
Host Integration Server 2009Host Integration Server 2009

Copyright© 2017 Microsoft Corporation

The content in this document is retired and is no longer updated or supported. Some links might not work. Retired content represents the
latest updated version of this content.

Microsoft Host Integration Server
This version of Host Integration Server Help provides documentation and in-depth information about Host Integration
Server 2009.

 Getting Started Information about new features, prerequisites, and topics for users who are new to Host Integration Serv
er.

Programmer's Guide Information about how to develop Host Integration Server solutions for your environment.

 Samples Information about samples that are available for Host Integration Server.

 Community Resources Host Integration Server community resources such as blogs and forums.

https://msdn.microsoft.com/en-us/library/aa771975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Getting Started
This section contains information about new features, prerequisites, and topics for users who are new to Host Integration
Server.

What's New for 2009

BizTalk Adapters

Transaction Integrator

Security Integration

Data Integration

Network Integration

Messaging

Software Development Kit

Community Resources

What's New for 2009
The following is an overview of the new features and enhancements in this release of Microsoft Host Integration Server and
the BizTalk Adapters for Host Systems.

Expanded Microsoft platform support

Windows Vista SP1, Windows Server 2008, Hyper-V

Visual Studio 2008 SP1 and .NET Framework 3.5 SP1

SQL Server 2008 and BizTalk Server 2009

Extended deployment options and management tools

IPv6 networking for selected features

Backup and recovery using VSS Writer

New common Trace Viewer

Enhanced connectivity to host applications

Generation of WCF Services based on Transaction Integrator objects

Improved performance of Transaction Integrator and BizTalk adapter runtimes

Dynamic Remote Environments for TI and BizTalk adapter

New migration and deployment tools

Design tool improvements, including COBOL/400 import/export

Support for CICS v3.2 and IMS Connect v9

New WCF channel for WebSphere MQ

With synchronous message correlation

Built on system service model in .NET Framework 3.5

Visual Studio project type to support optional data conversion

Supports WebSphere MQ v7

Expanded connectivity to DB2

Entity Designer and Entity Provider for DB2

Improved performance when fetching data from DB2

Support for DB2 for Linux and HP-UX platforms

Compatibility with DB2 for z/OS v9 and DB2 UDB V9.5

Improved connectivity to host files

Off-line data reader for host files ADO.NET provider and BizTalk adapter

Visual Studio design tools for host files

BizTalk Adapters
This release of Microsoft Host Integration Server 2009 includes the following adapters:

The Microsoft BizTalk Adapter for Host Applications is designed for BizTalk Server. It is based on technology in Microsoft
Transaction Integrator (TI) for Windows-Initiated Processing, which enables efficient client access to existing IBM mainframe
zSeries (CICS and IMS) or midrange iSeries (RPG) server programs. The TI design tools are integrated with Visual Studio and
BizTalk Server solutions, enabling IT developers to be highly productive when defining the client proxy and creating the XSD
schema. For BizTalk Server administrators, the existing TI Manager, Microsoft Management Console (MMC) snap-in, has been
enhanced to improve supportability and support the required remote BizTalk Server solution deployment scenarios.

The Microsoft BizTalk Adapter for Host Files is an advanced data adapter that enables IT organizations to access and
integrate information stored in host file systems, including mainframe zSeries VSAM datasets and midrange iSeries physical
files. The Visual Studio design tool is used within a BizTalk Server solution to define a metadata map of the host program-
described files, which is then exported as XSD for use with the BizTalk adapter. The configuration wizards are integrated into
the BizTalk Server administration tools, allowing IT pros to define dynamic send ports and static and solicit response receive
ports, based on a simplified set of SQL commands (SELECT, INSERT, UPDATE, DELETE). This BizTalk adapter is based on a new
Microsoft .NET Framework Data Provider for Host Files that maps SQL to non-relational host datasets and members, This
makes it simple for non-programmers to read/write host file data sources.

The Microsoft BizTalk Adapter for DB2 is a relational database adapter that allows IT professionals to access vital data
stored in IBM DB2 database servers on remote host computing platforms, IBM mainframe zSeries and midrange iSeries
(DB2/400), and also IBM DB2 Universal Database (UDB) on open platforms. Using standard SQL commands and a
configuration wizard built into BizTalk Server administration tools, IT pros can create solutions that read and write to DB2
without any need for database programming. The new DB2 adapter, which is based an updated Microsoft .NET Framework
Data Provider for DB2, supports a broad range of functions, including dynamic send ports, and static and solicit response
receive ports.

The Microsoft BizTalk Adapter for WebSphere MQ (Client-Based) uses IBM WebSphere MQ Client (Base-Client) and IBM
WebSphere MQ Extended Transactional Client (Extended-Client) APIs to communicate with remote MQSeries Queue
Managers. The adapter enables BizTalk Server to communicate directly with MQSeries Queue Managers deployed on non-
Windows operating systems, without needing to deploy and manage WebSphere MQ Server for Windows, to efficiently
exchange messages with line-of-business applications across the enterprise. When used with the Base-Client, the adapter
provides non-transactional message processing, guaranteeing only the delivery of messages. It is the responsibility of the
application on the receiving end to handle any duplicate messages. When used with the Extended-Client, the adapter provides
transactional message processing to guarantee once-and-only-once delivery of messages.

Transaction Integrator
Transaction Integrator (TI) is the synchronous COM+ or .NET Framework application integration solution in Host Integration
Server. TI enables you to integrate mainframe-based transaction programs (TP) and AS/400 transactions with component-
based Windows Server System applications when the following conditions are true:

A synchronous or transactional solution is needed.

Both the client and server systems are running at the time the call is made.

If you need an application integration solution that does not require the client and server systems to be running at the time the
call is made, use an asynchronous messaging solution such as the MSMQ-MQSeries Bridge instead of TI. In an asynchronous
solution, the middle-tier queuing system is running at the time the client issues a request message, the server retrieves the
message and sends back the reply, and then the client receives the reply back from the middle tier.

With TI, you can integrate existing mainframe-based TPs with Windows-based COM, distributed COM (DCOM), or applications
built on the .NET Framework. You might not even have to modify your TP if you have separated the business logic from the
presentation logic. The wizards in TI guide you through the modification process, step by step.

With TI, you can preserve existing CICS and IMS TPs as you move to a three-tier client/server or Web-to-host computing
environment. By using TI to invoke mainframe transactions, you can program in the visual object-oriented environments and
programming languages that you know while you maintain access to host transactions.

TI supports both SNA connectivity and TCP/IP connectivity without requiring a host footprint or costly host transaction
rewrites. You can choose SNA connectivity if you need two-phase commit (2PC), or choose TCP/IP connectivity if you need
direct throughput. IBM has not implemented 2PC for the TCP/IP protocol, but for those cases where 2PC is not necessary,
TCP/IP can give you direct connectivity.

True integration of online transaction processing (OLTP) with COM- or .NET-compliant systems means the integration of CICS
and IMS with Windows-based solutions. CICS and IMS are widely used in the mainframe arena to create distributed OLTP
solutions such as customer tracking and order entry. TI integrates CICS and IMS with COM by creating COM interfaces or .NET
interfaces to the CICS and IMS transactions and then running the CICS and IMS transactions on the mainframe from Windows.

A TI component in a COM+ application works in concert with the TI run-time environment, Microsoft Distributed Transaction
Coordinator (MS DTC), and the associated remote environment (RE) to drive a CICS or IMS TP. Together, they accomplish these
tasks:

Activate the host (mainframe) TP.

Pass the parameters specified by the TI component to the TP.

Run the TP.

Return the results to the TI component.

When you deploy a TI component (a type library .tlb file) in a COM+ application, that COM+ application becomes a TI
Automation server. When a client application invokes a method in that TI Automation server, Windows automatically starts the
TI run-time environment in the associated remote environment to invoke the mainframe transaction that is associated with
that TI method. Component Services in Windows 2000 automatically handles any class factory, early or late binding, or other
internal operations needed. The invoked mainframe transaction can call other transactions on the mainframe before it returns
the result to the COM-based client application through the TI Automation server.

Security Integration
Enterprise Single Sign-On (SSO) provides services to enable single sign-on for end users in enterprise application integration
(EAI) solutions.

The SSO system maps Microsoft Windows accounts to back-end credentials. SSO simplifies the management of user IDs and
passwords, both for users and administrators. It enables users to access back-end systems and applications by logging on only
one time to the Windows network. For more information, see Security User's Guide.

https://msdn.microsoft.com/en-us/library/aa754312(v=bts.10).aspx

Data Integration
Data services included with Host Integration Server 2009 enable you to interact with host data sources, including VSAM and
DB2 systems.

The following diagram shows an overview of the Data Integration Services.

Data Integration Services

Note
If you are using TCP/IP to connect to the mainframe or AS/400, you do not have to install or configure the Network Integrati
on Services. You can use the Application and Data Integration Services over TCP/IP.

The following services are available.

OLE DB Provider for AS/400 and VSAM

OLE DB Provider for DB2

ODBC Driver for DB2

OLE DB Provider for AS/400
The Data Access Tool simplifies configuration and access to AS/400 systems.

The following diagram shows an overview of the OLE DB Provider for AS/400.

OLE DB Provider for AS/400

OLE DB Provider for VSAM
The Data Access Tool simplifies configuration and access to VSAM systems.

https://msdn.microsoft.com/en-us/library/aa745737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745699(v=bts.10).aspx

The following diagram shows an overview of the OLE DB Provider for VSAM.

OLE DB Provider for VSAM

OLE DB Provider for DB2
The Data Access Tool simplifies configuration and access to DB2 systems.

The following diagram shows an overview of the OLE DB Provider for DB2.

OLE DB Provider for DB2

ODBC Provider for DB2
The Microsoft ODBC Driver for DB2 enables access over SNA LU 6.2 and TCP/IP networks to remote DB2 databases. This driver
is implemented as an IBM Distributed Relational Database Architecture (DRDA) application requester that can connect to most
DRDA-compliant DB2 systems, including MVS, VSE, VM, OS/400, AIX RS/6000, Sun Solaris, HP-UX, Digital/Compaq UNIX,
OS/2, and Microsoft Windows 2000.

The driver can be used interactively or from an application program to issue SQL statements and execute DB2 stored
procedures. Microsoft Office Excel users can import DB2 tables into worksheets and use Excel graphing tools to analyze the
data. Microsoft Office Access users can import from and export to DB2. By using Microsoft Internet Information Server (IIS) on
Windows 2000, developers can publish DB2-stored information to users through a Web browser interface.

The following diagram shows an overview of the ODBC Driver for DB2.

Diagram of ODBC Driver for DB2

Network Integration
The IP-DLC link service is a Host Integration Server feature that provides SNA connectivity for applications that use dependent
and independent sessions over a native IP network. It implements the HPR/IP protocol, which is also known as HPR over IP or
Enterprise Extender. Each SNA packet is transmitted natively across the IP network as a UDP datagram.

This version of Host Integration Server supports the following physical connection methods to your host system:

DLC 802.2 (for supported OSA adapters)

SDLC

Channel (ESCON and Bus & Tag)

Physical connections to a host system are provided with link services that support a variety of third-party adapters. A list of
supported third-party adapters can be found in the online Help.

This version of Host Integration Server supports the following standard SNA protocols for communications:

LU 1 and LU 3 (for host printing)

LU 2 (for 3270 displays)

LU 6.2 (for APPC)

LU 0

LUA

Note
If you are using TCP/IP to connect to the mainframe or AS/400, you do not have to install or configure the Network Integrati
on Services. You can use the Application and Data Integration Services over TCP/IP.

Host Services
This version of Host Integration Server provides a range of services that extend mainframe services to LAN users. These
include the TN3270 Service for mainframe environments, the TN5250 Service for AS/400 environments, and Host Print
Service for both mainframe and AS/400 environments.

Administrative Services
This version of Host Integration Server gives network administrators tools and services to monitor and manage host resources
in your enterprise. These services are available for both the hierarchical and peer environments.

Messaging
MSMQ-MQSeries Bridge enables your applications to exchange messages between IBM MQSeries and Microsoft Message
Queue Server easily and efficiently. MSMQ-MQSeries Bridge provides connectionless, store-and-forward messaging across
messaging systems and computing platforms throughout your network. To learn more about MSMQ-MQSeries Bridge, see
Messaging User's Guide

https://msdn.microsoft.com/en-us/library/aa746102(v=bts.10).aspx

Software Development Kit
This version of Host Integration Server includes a software development kit (SDK). This allows you to create custom
applications, run samples, and use tutorials to learn more about Host Integration Server.

For more information, see Development.

https://msdn.microsoft.com/en-us/library/aa746171(v=bts.10).aspx

Community Resources
Plug into the Host Integration Server community to connect with other developers and get answers to your questions, read the
latest from bloggers, see webcasts, find out about events, and connect with MVPs.

Resource Location

Host Integration Server blog http://go.microsoft.com/fwlink/?LinkId=142377

Host Integration Server discussion groups http://go.microsoft.com/fwlink/?LinkId=142378

Host Integration Server community on TechNet http://go.microsoft.com/fwlink/?LinkId=142379

http://go.microsoft.com/fwlink/?LinkId=142377
http://go.microsoft.com/fwlink/?LinkId=142378
http://go.microsoft.com/fwlink/?LinkId=142379

Planning and Architecture
This section summarizes the key points of how to plan a Host Integration Server deployment.

In This Section

Planning

Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa771962(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

Planning
This section summarizes the key points of planning a Host Integration Server deployment.

In This Section

Planning Your Hardware

Planning 3270 Connectivity

Planning APPC Connectivity

Planning for Transaction Integrator

https://msdn.microsoft.com/en-us/library/aa705275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745543(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745183(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753958(v=bts.10).aspx

Planning Your Hardware
Because Host Integration Server can be used in a wide variety of situations, there is no simple formula for the amount of
processing power a specific computer needs. The information provided in this topic can help you evaluate your hardware
requirements, including:

A list of elements that reduce or increase demands on hardware. This helps you estimate the general level of your
processing requirements. For example, a Host Integration Server computer can serve as many as 1500 to 2500 users.
This indicates a need for large amounts of processing power, perhaps a Pentium processor with 64 or 128 megabytes
(MB) of RAM. However, if your servers each support 500 users and most of those users connect briefly and at random
times during the day, less processing power is needed.

Ways to evaluate the current demand on an existing Host Integration Server computer, and the ability of the existing
hardware to support that demand. This gives you a valuable baseline from which to work.

In This Section

Variables Affecting Hardware

Estimating Hardware Demands

Best Practices

https://msdn.microsoft.com/en-us/library/aa770985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771664(v=bts.10).aspx

Variables Affecting Hardware
Many factors affect the amount of memory and processing power required by a particular Host Integration Server computer.
The major variables are:

Number of clients served.

This is the most important variable affecting hardware requirements. If you support large numbers of client computers,
you need not only servers that have ample memory and processing capacity, but also fast, powerful LAN adapters. Such
LAN adapters include their own processor and memory, and can use direct memory access (DMA). Without such
adapters, the network interface can become the bottleneck when many clients are being supported. Similarly, SNA
adapters must be powerful enough to keep pace with the communications load.

Demand generated by the clients (constant, intermittent, heavy, light).

Number of Host Integration Server computers configured to work together within a particular subdomain.

This is affected by the configuration of the Host Integration Server installation: centralized, branch, or distributed. Host
Integration Server computers in a centralized or a distributed configuration can provide load balancing; they can each
take a share of the connection load. Server computers in a branch configuration are separated by wide area network
(WAN) links, and cannot readily provide load balancing because of the communication delays involved.

Use of data encryption between clients and servers.

Data encryption is not dependent on the number of clients being served but on the number of messages that are
encrypted. As the number of transactions per second increases, the load on the CPU increases. Using 128-bit encryption
instead of 40-bit encryption also increases the load on the CPU.

Additional network services (file sharing, database access, mail service, and so on) provided by each server computer.

It is difficult to predict exactly how much processing power is required to run multiple server applications. In many cases,
your own requirements to meet a certain level of response time or transaction rate will indicate the specific hardware
requirements for your environment.

See Also
Concepts
Estimating Hardware Demands
Best Practices

https://msdn.microsoft.com/en-us/library/aa754327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771664(v=bts.10).aspx

Estimating Hardware Demands
Use the information in the following table to estimate the amount of processing power required for your Host Integration
Server computers.

Installation category Hardware guidelines
Approximately 1500–5000 users for each serv
er, with up to 15,000 sessions for each server

A multiprocessor system with at least 128 megabytes (MB) of RAM.

Connections (such as DLC 802.2 or channel) that are fast enough to avoid bottl
enecks (recommended). Multiple SNA adapters, except for channel.

Multiple LAN adapters to avoid LAN bottlenecks.

Optionally, dedicated Host Integration Server computers that do not provide fil
e sharing or other LAN services (this depends on the load created by other LA
N services).

Up to 600 users for each server (heavy use) or
up to 1500 users for each server (light or inter
mittent use)

A Pentium computer, with at least 128 MB of RAM.

Connections (such as DLC 802.2 or channel) that are fast enough to avoid bottl
enecks (recommended). Multiple SNA adapters may be needed, except for cha
nnel connections.

Multiple LAN adapters may be needed to avoid LAN bottlenecks.

A more powerful CPU and more RAM may be needed if Host Integration Serve
r computers must support significant additional loads, such as file sharing.

Up to 200 users for each server (heavy use) or
up to 500 users for each server (light or interm
ittent use)

A Pentium computer, with at least 128 MB of RAM.

A more powerful CPU and more RAM may be needed if Host Integration Serve
r computers must support significant additional loads, such as file sharing.

Up to 25 users for each server A Pentium computer, with at least 128 MB of RAM.

A more powerful CPU and more RAM may be needed if Host Integration Serve
r computers must support significant additional loads, such as file sharing.

See Also
Concepts
Variables Affecting Hardware
Best Practices

https://msdn.microsoft.com/en-us/library/aa770985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771664(v=bts.10).aspx

Best Practices
Several rules of thumb can be applied when selecting your Host Integration Server hardware:

Try to avoid memory paging.

It is useful to increase the amount of physical memory in a Host Integration Server computer to avoid paging. This
guideline is true for any Windows Server that performs communications-related functions.

Increase memory when using Host Print service.

When using Print service, you may need more memory on the Host Integration Server computer if large files or many
print jobs are submitted. You also need adequate disk space to temporarily store the spooled print jobs.

Use TCP/IP instead of Microsoft Networking.

The Windows Sockets (Winsock) and TCP/IP combination uses less memory on the Host Integration Server computer
than Microsoft Networking or other named socket solutions. TCP/IP also provides better performance than Microsoft
Networking because of its lower network overhead.

See Also
Concepts
Variables Affecting Hardware
Estimating Hardware Demands

https://msdn.microsoft.com/en-us/library/aa770985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754327(v=bts.10).aspx

Planning 3270 Connectivity
In the hierarchical SNA network model most frequently associated with a mainframe computer, you access centralized
applications from remote terminals across a network.

This network model uses the information display protocol for IBM mainframe computers known as 3270. This protocol
facilitates conversations between the mainframe and devices such as terminals, printers, and controllers. Through the
definition and assignment of 3270 logical units (LUs), Host Integration Server provides access to these mainframe resources.

Once you establish the physical connection from the Host Integration Server computer to the mainframe, you need to
determine the type of 3270 connectivity your users need. The topics in this section detail the networking services Host
Integration Server can provide to your users and offers information on ways to set up these services.

In This Section

3270 Access

TN3270 Access

Downstream Connections

https://msdn.microsoft.com/en-us/library/aa705529(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745641(v=bts.10).aspx

3270 Access
Host Integration Server provides 3270 connectivity through 3270 logical units (LUs). A 3270 LU is known as a dependent LU
because it requires a mainframe to function. Each 3270 LU defined within Host Integration Server is configured to use an
existing connection to the mainframe system. Each 3270 LU corresponds to a matching LU resource allocated on the host
computer, usually specified within VTAM. The 3270 LU definition in Host Integration Server is identified by a number that
matches the number of the corresponding LU resource on the mainframe, and by a user-specified name.

The 3270 LU is further classified by the type of service provided over the connection. Like physical units (PUs) physical units,
LU types are designated by numbers. For example, 3270 display data streams are known as LU 2 streams. Within Host
Integration Server, a 3270 LU can be configured as one of the following types:

Display (LU 2)

Printer (LU 1 or LU 3)

Application (LUA)

Downstream

Once configured, these LUs are accessed from an end-user applications using Host Integration Server client software that is
installed on the client workstation. The client software manages communications between a 3270 application (like a terminal
emulator) and the Host Integration Server computer. Applications designed for the Host Integration Server client API use the
LUs defined within Host Integration Server to establish a communications link from the client personal computer to the
mainframe via Host Integration Server.

The link between the LU definition in Host Integration Server and the host LU resource is called a session. Sessions can be
permanent and automatically started during initialization, or established on an as-needed basis. Concurrent sessions can share
the same physical devices and communications links.

See Also
Concepts
Using LU Pools
Assigning LUs to Workstations
Providing Hot Backup and Load Balancing

https://msdn.microsoft.com/en-us/library/aa744744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753892(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770735(v=bts.10).aspx

Deployment Strategies
This section describes deployment strategies that can be applied if you are providing 3270 connectivity services including:

Using LU Pools

Assigning LUs to Workstations

Providing Hot Backup and Load Balancing

https://msdn.microsoft.com/en-us/library/aa744744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753892(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770735(v=bts.10).aspx

Using LU Pools
Although you can create individual LUs and assign them to users and groups, using LU pools to manage and deploy a large
number of LUs is a more efficient method of administering these resources. LU pools are groupings of LUs that allow you to
maximize access to these LUs. As shown in the following illustration, a user, an application, or a downstream system can access
the LUs as long as any LU assigned to the pool is free. If any one of the pooled LUs ceases to function, another free LU in the
pool is automatically used.

Diagram of creating and assigning LU pools

Creating and assigning LU pools

LU pools also allow groups of intermittent users to use a limited number of host resources more efficiently. Dedicating LUs to
specific users who occasionally require host access wastes host resources. Using a pool, you can assign a smaller number of
LUs to a group of users who require sporadic access. For example, if a group of 100 users require host access 25 percent of the
time, assigning a pool of 25 LUs to the group may fulfill their needs.

See Also
Concepts
Assigning LUs to Workstations
Providing Hot Backup and Load Balancing

https://msdn.microsoft.com/en-us/library/aa753892(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770735(v=bts.10).aspx

Assigning LUs to Workstations
LUs and LU pools can also be assigned to workstations rather than users, effectively locking LUs to a specific machine.
Assigning LUs to a workstation makes it easier for users to find and access different resources. For example, 200 hospital
employees can share 50 workstations, each of which has a printer attached. Employees may want to access any of the 50
workstations and 50 printers. Instead of assigning 50 printer LUs to a pool and making the pool available to each user, each of
the workstations can be added to Host Integration Server and a printer LU can be assigned to each workstation. Now, when a
user logs onto any of the 50 workstations, the printer that is attached to the workstation will be available in the list of LUs.

See Also
Concepts
Using LU Pools
Providing Hot Backup and Load Balancing

https://msdn.microsoft.com/en-us/library/aa744744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770735(v=bts.10).aspx

Providing Hot Backup and Load Balancing
The following diagram shows hot backup across host connections on the same server and across servers.

Diagram showing hot backup across host connections on the same server and across servers

To recover from situations where a particular host connection has failed, the Host Integration Server hot backup feature can be
configured to allow for similarly configured resources to automatically fill in and support functions dependent on the failed
connection. When a failure occurs, a user can simply reconnect to a given resource using an alternate connection or server
without reconfiguring client software. Hot backup can be implemented across host connections on the same server, or across
several servers in a domain using LU pools as shown in the preceding figure. Implementing fault-tolerant connections is a
recommended strategy for enterprises of any size, and helps to provide reliable host access to your users.

Related to hot backup is a feature called load balancing. Load balancing evenly distributes sessions across multiple host
connections and multiple servers using 3270 LU pooling. Instead of explicitly requesting specific LUs, users request the first
available LU in a pool and Host Integration Server randomly assigns the user a free LU in the pool. Because each LU can be
configured using different connections or servers, the server load can be spread out across all configured resources. Load
balancing is implemented automatically when a pool is configured with LUs from multiple servers or connections.

See Also
Concepts
Using LU Pools
Assigning LUs to Workstations

https://msdn.microsoft.com/en-us/library/aa744744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753892(v=bts.10).aspx

TN3270 Access
TN3270 is a type of Telnet service that allows access to mainframe computers over a TCP/IP network. Users can connect to
mainframes using a TN3270 client and the TN3270 service provided with Host Integration Server.

The TN3270 service supports these protocols:

TN3270, for display sessions

TN3287, for printer sessions

TN3270E, for extended display and print sessions

The TN3270 service uses Host Integration Server features to provide mainframe access and to address issues such as security
and redundancy when the data communications path between the client and server contains one or more nonsecured
segments.

TN3270 Service

The TN3270 service communicates with Host Integration Server using the LUA (Logical Unit for Applications) API. Because of
this, LUA-type connections and LUs must be configured on the server. Once configured, LUA LUs and LU pools can be assigned
to the TN3270 service and made available for use by TN3270 clients requesting mainframe access.

See Also
Concepts
Setting Port Numbers
Deploying Hot Backup and Load Balancing
Assigning LUs to an IP Address

https://msdn.microsoft.com/en-us/library/aa705396(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770650(v=bts.10).aspx

Deployment Strategies
This section describes deployment strategies that can be applied if you are providing TN3270 connectivity services including:

Setting Port Numbers

Deploying Hot Backup and Load Balancing

Assigning LUs to an IP Address

https://msdn.microsoft.com/en-us/library/aa705396(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770650(v=bts.10).aspx

Setting Port Numbers
As with all TCP/IP services, TN3270 requires a free TCP port in which clients can locate the TN3270 service. By default, the
TN3270 service defaults to port 23, the same port as standard Telnet services. Because no two services can share the same TCP
port, it is recommended that you change the TN3270 service to use TCP port 24 or some other unused TCP port. When
attempting to connect to the TN3270 service from a client application, you must also specify the new TCP port within the
application connection settings.

See Also
Concepts
Deploying Hot Backup and Load Balancing
Assigning LUs to an IP Address

https://msdn.microsoft.com/en-us/library/aa754074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770650(v=bts.10).aspx

Deploying Hot Backup and Load Balancing
A Windows domain can contain one or more Host Integration Server subdomains. Like 3270 LUs, LUA LUs from multiple
servers in different subdomains can be assigned to the TN3270 service. This lets you distribute client sessions among the
participating servers in the subdomain, thereby balancing the load.

Creating redundant connections to the mainframe and assigning them to a TN3270 service increases service availability. If one
server goes down, a client can still access LUA LUs on a different server. Similarly, a single server can be configured with
redundant host links to increase hot backup and bandwidth if no other Host Integration Server computers are available.

See Also
Concepts
Setting Port Numbers
Assigning LUs to an IP Address

https://msdn.microsoft.com/en-us/library/aa705396(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770650(v=bts.10).aspx

Assigning LUs to an IP Address
In the same way that you assign 3270 LUs to a user or workstation, you can restrict access to LUA LUs or pools by specifying
an IP address or subnet mask for clients that must access the resource. If a workstation has a name that can be resolved using
name resolution services like DHCP or WINS, the name can be associated with the resource instead.

Restricting access to clients with specific IP addresses or workstation names increases the security of the LUA resources.

See Also
Concepts
Setting Port Numbers
Deploying Hot Backup and Load Balancing

https://msdn.microsoft.com/en-us/library/aa705396(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754074(v=bts.10).aspx

Downstream Connections
In a hierarchical SNA environment, you configure 3270 communications between SNA nodes using SNA protocols. Usually
those nodes are Host Integration Server computers and mainframes. A downstream system, however, is an SNA node that
uses Host Integration Server as a physical unit (PU) gateway. To the downstream system, the Host Integration Server computer
appears to be the actual mainframe providing the PUs and 3270 LUs. The following figure illustrates a downstream system.

Diagram of a downstream system

A downstream system in this type of environment must be a PU 2 device, for instance, a cluster controller like an IBM 3745, or
a client personal computer running a terminal emulator that emulates a PU 2 and acquires LU sessions from the Host
Integration Server computer.

On the Host Integration Server computer, two connections are required to support downstream systems:

A host connection between the server and the mainframe. This can be any standard physical connection method
supported by the mainframe.

A downstream connection between the server and the downstream system. This physical connection can be a DLC 802.2,
SDLC, or X.25 connection.

Once configured, Host Integration Server can manage the downstream LUs in a manner similar to other LUs, including
assigning them to LU pools.

See Also
Concepts
Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa745796(v=bts.10).aspx

Deployment Strategies
This type of configuration is useful in environments in which the downstream system may be unable to communicate directly
with the mainframe because of hardware or network incompatibilities that the intermediate Host Integration Server computer
can resolve.

Using Host Integration Server as a PU concentrator can also help reduce host configuration requirements. LUs from one or
more physical units (PUs) can be shared with multiple downstream devices, alleviating the need to configure each downstream
device in VTAM on the mainframe system. The result is more efficient use of host resources.

See Also
Concepts
Downstream Connections

https://msdn.microsoft.com/en-us/library/aa745641(v=bts.10).aspx

Planning APPC Connectivity
A peer-oriented SNA network, using the Advanced Program-to-Program Communications (APPC) protocol, relies on each
device in the network to communicate directly with the others. Each computer depends primarily on its own intelligence and
does not require constant access to a centrally located host computer.

APPC supports display and other application services across an SNA network. Although peer-oriented SNA networks are
usually associated with an AS/400 host system, mainframe systems can also support peer-to-peer networking.

Once you establish the physical connection from Host Integration Server to the AS/400, you need to determine the types of
APPC services required by your users. This section discusses the APPC services that Host Integration Server can provide to
your users and tells how to set up these services.

In This Section

Understanding Peer-to-Peer Networking

APPC Applications

APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa745724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Understanding Peer-to-Peer Networking
Devices in peer-oriented SNA networks participate in Advanced-Peer-to-Peer Networking (APPN). Each device, known as a
type 2.1 physical unit (PU 2.1), handles all network routing functions, as well as normal computing activities and applications.

LU 6.2 logical units are associated with PU 2.1 devices. Devices in an APPN network appear as LU 6.2 (also called APPC LU)
entities. Programs that are executed on these devices are called transaction programs(TPs).

Diagram of peer-oriented SNA network

APPC enables TPs on different APPN systems to communicate directly with each other across an APPN network. In APPN
networks, Host Integration Server provides support for the APPC protocol and emulates a PU 2.1 low-entry networking (LEN)
node.

In the AS/400 environment, APPC is used for a variety of applications, including:

5250 access

TN5250 access

File transfer

TPs use LU 6.2 names to access other systems and other transaction programs as shown inthe following figure. With Host
Integration Server, a transaction program, such as a 5250 terminal emulator, can also use an APPC LU alias to access another
TP. In this case, the LU alias maps to an LU name that is actually used to access the other system's TP.

Diagram of transaction programs in APPC

APPC uses pairs of LUs to facilitate simultaneous, bi-directional communication between transaction programs. To achieve this,
a local LU and a remote LU are defined on each device in the APPN network.

The perception of local and remote LUs is dependent on the system that you are configuring. When configuring Host
Integration Server, the local APPC LU corresponds to the Host Integration Server computer and the remote LU corresponds to
the AS/400. Local LUs on one system communicate with remote LUs on another system. If you view the configuration from the
AS/400 perspective, the Host Integration Server computer is the remote system and the AS/400 is the local system.

Diagram of conversation components in APPC

When a client/server network TP, such as a 5250 terminal emulator, requests a conversation with a TP on the AS/400 (remote
system), the server (local system) acts on behalf of the client request and negotiates an LU 6.2 - LU 6.2 session to the AS/400.
The data sent or received from the AS/400 TP is handled by the server and sent to the client TP over the selected client/server
protocol. This is illustrated in the preceding figure.

See Also
Concepts
Understanding CPI-C

https://msdn.microsoft.com/en-us/library/aa771106(v=bts.10).aspx

Understanding CPI-C
Common Programming Interface for Communications (CPI-C) is an application programming interface (API) that uses the LU
6.2 communications architecture. CPI-C comprises a set of C programming language routines that allow applications on
computers to communicate with one another to accomplish a processing task, such as copying a file or accessing a remote
database.

CPI-C programming provides a mechanism called client-side information that associates a set of parameters with a specified
CPI-C symbolic destination name. The CPI-C program uses the symbolic destination name to initialize a conversation using
APPC LUs that are associated with the CPI-C symbolic name.

Diagram showing CPI-C symbolic names

Host Integration Server supports the CPI-C API and provides for configuration of CPI-C parameters. These parameters allow
applications on the Host Integration Server systems to communicate with applications on any platform that supports APPC
communications and CPI-C including mainframes, AS/400s, Windows systems, and UNIX systems.

See Also
Concepts
Understanding Peer-to-Peer Networking

https://msdn.microsoft.com/en-us/library/aa745724(v=bts.10).aspx

APPC Applications
Advanced Program-to-Program Communications (APPC) can be used to support a wide range of applications. This section
describes how Host Integration Server is used to support the following services:

5250 terminal access

TN5250 terminal access

APPC file transfers

See Also
Concepts
5250 Access
TN5250 Access

https://msdn.microsoft.com/en-us/library/aa754261(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745229(v=bts.10).aspx

5250 Access
If your enterprise contains AS/400 systems, display sessions are provided through APPC using the 5250 data stream. Host
Integration Server computers provide APPC access to an AS/400 using 5250 emulation clients. Clients can only communicate
with AS/400s using APPC.

For 5250 services, the local APPC LU acts as an identifier for local Host Integration Server clients; the remote APPC LU
identifies the AS/400 system. The following figure shows the local and remote LUs used for this configuration.

Diagram showing 5250 access configuration

See Also
Other Resources
APPC Applications

https://msdn.microsoft.com/en-us/library/aa704727(v=bts.10).aspx

TN5250 Access
TN5250 is a protocol that allows users to access AS/400 systems over a TCP/IP network using an appropriate TN5250 client
terminal emulator. The TN5250 service provided with Host Integration Server enables any TN5250 client to connect to the
AS/400 by means of Host Integration Server without installing or configuring TCP/IP on the AS/400. Full 5250 terminal
emulation functions are supported by the service, as well as hot backup and security features similar to those provided with
the TN3270 service.

Diagram showing TN5250 service

To provide TN5250 access, you need to define local and remote APPC LUs, a mode, an AS/400 user name and password, a
terminal type, and, optionally, an IP address and subnet mask.

See Also
Other Resources
APPC Applications

https://msdn.microsoft.com/en-us/library/aa704727(v=bts.10).aspx

APPC Deployment Strategies
In most cases, deployment strategies are effective for APPC LUs, regardless of the application that the LUs support. This section
describes the factors that you should consider when deploying APPC connections with Host Integration Server.

In This Section

Using Independent APPC LUs

Using Dependent APPC LUs

Choosing Modes

Using LU Pools

Configuring LUs

Providing Hot Backup

Choosing IP Settings

See Also
Other Resources
Planning APPC Connectivity

https://msdn.microsoft.com/en-us/library/aa746001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771449(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745858(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745183(v=bts.10).aspx

Using Independent APPC LUs
An independent LU can communicate directly with a peer system and does not need the support of a host computer.
Independent APPC LUs, as used in AS/400 APPN networks, provide the ability to run multiple, concurrent, parallel sessions
between a local and remote LU pair.

When configuring independent APPC LUs, you should note that when Host Integration Server is used to communicate with a
transaction program (TP) on a mainframe over an independent APPC LU, the host system must be running VTAM version 3,
release 2 (V3R2) or later. The version of Network Control Program (NCP) required on the mainframe depends on the type of
front-end processor (FEP) used. For 3725 systems, NCP V4R3 or later is required. For 3745 systems, NCP V5R2 or later is
required.

See Also
Other Resources
APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Using Dependent APPC LUs
A dependent local APPC LU requires the support of a mainframe in order to communicate with a remote TP. Dependent APPC
LUs cannot be used to communicate with AS/400s. Unlike independent APPC LUs, dependent APPC LUs only allow a single
session per LU.

Dependent APPC LUs are helpful when configuring Host Integration Server to communicate with a mainframe using a version
of VTAM earlier than V3R2. Independent LUs are not supported in earlier VTAM versions. Support for dependent APPC LUs is
provided with Host Integration Server for compatibility with older VTAM versions. If possible, use independent LUs.

When configuring APPC dependent LUs, you should specify the network name and LU name. Even though they are not
required, they are used by software running on the Host Integration Server computer, such as the Windows Event Log. For
example, if a remote APPC LU will be partnered with a dependent local APPC LU, naming the remote APPC LU helps to identify
any events associated with the LU in the Windows Event Log.

See Also
Other Resources
APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Choosing Modes
When choosing modes, each LU-LU pair has a mode associated with it that determines session properties for that pair. For
independent APPC LU sessions, the Parallel Session Limit parameter is of particular importance because this limit determines
the number of simultaneous conversations that a session can support. If you plan to use a remote APPC LU that supports
parallel sessions, it can only be used with a mode whose parallel session limit has a value greater than 1.

The following table lists the modes supplied with Host Integration Server and describes the scenarios in which each mode can
be used.

Mode Name Suitability
#BATCH Batch-oriented sessions

#BATCHSC Batch-oriented sessions that employ a minimal level of routing security

BLANK Sessions using a default node name, encoded as eight blank EBCDIC spaces in a BIND APPC command

#INTER Interactive sessions

#INTERSC Interactive sessions that employ a minimal level of routing security

QPCSUPP All sessions with an AS/400 computer

QSERVER Database connectivity with an ODBC driver

See Also
Other Resources
APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Using LU Pools
Although you can create individual LUs and assign them to users and groups, using LU pools to manage and deploy a large
number of LUs lets you administer these resources more efficiently. An LU pool is a grouping of LUs that allows you to
maximize access to these LUs as shown in the following figure. A user, an application, or a downstream system can access the
LUs as long as any LU assigned to the pool is free. If any one of the pooled LUs ceases to function, another available LU in the
LU pool is automatically used.

Diagram showing LU pools

LU pools also allow groups of intermittent users to use a limited number of host resources more efficiently. Dedicating LUs to
specific users who occasionally require host access wastes host resources. Using a pool, you can assign a smaller number of
LUs to a group of users who require sporadic access. For example, if a group of 100 users require host access 25 percent of the
time, assigning a pool of 25 LUs to the group may fulfill their needs.

See Also
Other Resources
APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Configuring LUs
When a user configures a 5250 emulator to access an AS/400, the emulator is configured with the local and remote APPC LU
alias names. The LU alias names are mapped to LU names that are used for the conversation with the AS/400.

Host Integration Server allows you to define a default local and remote APPC LU for each user group accessing the AS/400.
Setting default values relieves the user from having to remember APPC LU names; these values should be specified, if possible.

When creating local APPC LUs, it is recommended that you use the name of a user or group as the local LU alias. When the
session from a particular user or group is active, the LU alias name is displayed in SNA Manager. Matching local LU alias
names with user names allows you to tell which 5250 users are connected to the AS/400. This also makes it easy to keep track
of which local LU a particular user should use.

To use this method, create a separate local APPC LU with an LU alias that matches the user name of each person or group
being added to the SNA subdomain. After the LU is created, assign the LU to the user as the default local APPC LU along with a
default remote APPC LU.

In Host Integration Server, you can also specify an implicit incoming remote LUthat defines the properties to use when Host
Integration Server receives a request to start a session with a local LU, and the remote LU named in the request is not
recognized by Host Integration Server. You can also specify an implicit incoming mode that defines the session characteristics
when a mode is not recognized by Host Integration Server.

If you want to accept an incoming request that can arrive by many different remote LUs without explicitly defining each remote
LU, you can specify implicit incoming remote LU pairs, along with their mode. When the implicit incoming remote LU and
mode are specified, the remote LU does not need to be recognized by the server. As long as the local LU specified in the
session request is recognized, the connection can be initiated.

See Also
Other Resources
APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Providing Hot Backup
In the AS/400 environment, Host Integration Server uses a combination of LU names and LU aliases over one or more servers
to achieve transparent connections with hot backup to an AS/400.

Hot backup connections to an AS/400

A single Host Integration Server computer can use multiple connections to provide hot backup. To use this method, two or
more APPC connections to the same AS/400 are configured and appropriate LUs are grouped into a pool. If one of the
connections fails, the clients can reconnect to the AS/400 without reconfiguration.

Host Integration Server can also use multiple Host Integration Server computers as backups to one another. If one of the
servers fails, the clients are shifted from the failed server to a working server. Use a combination of connections and servers
with hot backup to maintain a high level of host availability in your enterprise.

See Also
Other Resources
APPC Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa753857(v=bts.10).aspx

Choosing IP Settings
IP settings assigned to the TN5250 definitions allow TN5250 clients to connect to the AS/400. By default, the TN5250
definition is not assigned an IP address or a subnet mask. This allows any TN5250 client to connect to the AS/400.

You can restrict access to the TN5250 service by specifying the IP address or subnet mask of the client workstation(s). When
these values are specified, only clients whose IP and/or subnet mask match those specified in the TN5250 configuration are
allowed access to the AS/400 through the TN5250 service. You can also specify the workstation name in place of the IP, and
use a WINS, DHCP, or other name-resolution service to resolve a friendly name to an IP address.

See Also
Concepts
Host Integration Server (SNA) Remote Access Service
Deployment Strategies

https://msdn.microsoft.com/en-us/library/aa754029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705804(v=bts.10).aspx

Host Integration Server (SNA) Remote Access Service
SNA Remote Access Service integrates the LU 6.2 transport of Host Integration Server with Windows Remote Access Service,
allowing administrators to create virtual LAN connections between Windows systems across an existing SNA network. Using
SNA Remote Access Service, the SNA network acts as a network backbone, passing network traffic between the Windows
systems that are bridged with the host system.

The functions available with SNA Remote Access Service are the same as those for Remote Access Service over ISDN or X.25,
except for the dial-back connection feature, which is not supported by SNA Remote Access Service. The SNA Remote Access
Service supports the either the Windows Remote Access Service Server or Windows Remote Access Service client, depending
on whether the machine to which SNA Remote Access Service is installed is a Host Integration Server client or server. In
addition, a Windows Workstation computer running Host Integration Server client software and SNA Remote Access Service
can dial out through the Host Integration Server computer that is also running SNA Remote Access Service.

SNA Remote Access Services is configured using local and remote APPC LUs that are assigned to clients using SNA Remote
Access Service to connect to mainframe and AS/400 computers. After SNA Remote Access Service is installed, a SNA Remote
Access Service port must be specified for each client or server connection that the computer will support. For example, to
support one client and four server connections, a total of five ports must be specified. Each port must be added and configured
before it can be used by SNA Remote Access Service.

See Also
Concepts
Choosing IP Settings

https://msdn.microsoft.com/en-us/library/aa745858(v=bts.10).aspx

Deployment Strategies
Since legacy SNA networks may include smaller-bandwidth links like SDLC, and LAN traffic typically generates more network
traffic that can be effectively handled by slower connections, care should be taken to resolve bandwidth needs before
deploying SNA Remote Access Service in your enterprise.

Before Windows Remote Access Service clients can connect through SNA Remote Access Service, Host Integration Server must
be configured to provide the following items for each client system:

A peer incoming connection

A remote APPC LU for each client

Each Host Integration Server computer must also be configured with at least one local APPC LU that can be used by SNA
Remote Access Service when communicating with the client system. One local LU is required for each SNA Remote Access
Service port that is used. For each connection that you set up for use by SNA Remote Access Service, a corresponding remote
APPC LU must be configured. This remote LU defines the local LU on the Remote Access Service client that will be used to
connect to the server via SNA Remote Access Service. Once the LUs are configured, each remote user must be given
permission to dial in to the server.

If you create a SNA Remote Access Service connection between a client and a server that are also connected by a LAN, you
must disable the bindings between the Remote Access Server Service and the network adapter to prevent Windows Remote
Access Service from attempting to insert the Remote Access Service client into the LAN. This scenario usually occurs when
testing a Remote Access Service connection over a network.

After the APPC LUs are configured, the final step is to create a phone book entry for each connection. If you have configured
more than one port for use by SNA Remote Access Service, you can create an additional set of phone book entries by
associating the same connection with the additional Remote Access Service ports.

A common use of SNA Remote Access Service is to enable an administrator to manage Host Integration Server computers
remotely via the SNA network itself. An administrator working at a Windows Workstation running SNA client software and
SNA Remote Access Service can use the service to connect to and administer servers at branch locations connected to SNA
network.

See Also
Concepts
Choosing IP Settings

https://msdn.microsoft.com/en-us/library/aa745858(v=bts.10).aspx

Planning for Transaction Integrator
Before installing and using Transaction Integrator (TI), determine whether your mainframe-based transaction programs (TPs)
can be used with TI and whether any of them need modification. Answer the following three questions to find out whether TI
can invoke your TP:

Is the TP irretrievably terminal-oriented, or can you expose a request-response interface?

What programming model does the TP need?

Does the TP use data types that TI supports?

To use TI to invoke a mainframe-based transaction program (TP), you must separate the business logic from the presentation
logic in the TP. TI uses the request-response model; it does not support conversational or pseudo-conversational transactions.
The TP must support the so-called ping-pong request-reply mode.

Although TI does not support screen scraping, it does support eight other communication models. Some CICS and most IMS
transactions that expose terminal interface can also be invoked using one of the eight supported models. For example, a CICS
transaction might be terminal-oriented but still have the business logic partitioned in a separate link model transaction for load
balancing or maintainability.

See Also
Concepts
Communication Models
Choosing the Appropriate Programming Model
Other Resources
Data Types
Host and Automation Data

https://msdn.microsoft.com/en-us/library/aa745828(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705418(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753912(v=bts.10).aspx

Communication Models
Transaction Integrator (TI) supports the following communication protocols for interacting with the host computer. These
protocols are limited to singlerequest/single response. However, the request and response can consist of multiple data
segments in the case of unbounded recordsets.

CICS TCP Transaction Request Message Link

The host transaction must be IBM DPL-enabled. In other words, the mainframe transaction must be designed to be
invoked by EXEC CICS LINK.

CICS TCP Transaction Request Message User Data

The host transaction must use explicit TCP SEND/RECEIVE.

CICS LU 6.2 Link

The host transaction must be IBM DPL-enabled (Distributed Program Link), that is, the mainframe transaction must be
designed to be invoked by EXEC CICS LINK.

CICS LU 6.2 User Data

The host transaction must use explicit APPC SEND/RECEIVE.

IMS Connect

Enables you to use TCP/IP with your IMS-based TP without recompiling it. By using IMS Connect or OTMA, you can
connect to existing IMS transactions without linking listeners to the TPs.

IMS Implicit

The IMS program must use implicit message queue and IMS library CBLADLI (rather than CBLTDLI).

IMS Explicit

The host transaction must use explicit TCP SEND/RECEIVE.

IMS LU 6.2 User Data

The IMS program must use an implicit message queue (the common design model).

OS/400 Distributed Program Calls

See Also
Concepts
Planning for Transaction Integrator

https://msdn.microsoft.com/en-us/library/aa753958(v=bts.10).aspx

Transaction Integrator Architecture
Transaction Integrator (TI) integrates the IBM Customer Information Control System (CICS), Information Management System
(IMS) transaction programs (TP), and OS/400 applications with the Component Object Model (COM) and the .NET Framework
by doing the following:

Creating interfaces to the CICS, IMS, and OS/400 transaction programs.

Invoking those transactions on the mainframe or midrange computer (also called the host computer) from a Microsoft
Windows–based application.

The primary function of TI is to manage the process and data conversions necessary to allow input data to be provided to the
host TPs from a COM or .NET Framework application and to send any output data generated from the TP to the Windows-
based application. TI provides data type conversion, tabular data definition, and code page translation. The following figure
shows an overview of the role that TI plays in the communications between the application and the host.

TI provides the data conversions between a Windows-based application and a host

An example of this type of distributed application is reading a DB2 database on the mainframe to update data in a SQL Server
database on Microsoft Windows 2000 Server.

Because all TI processing is done on the Windows 2000 Server or Windows Server 2003 platform, no TI-related executable
code (or footprint) is required on the mainframe or midrange computer. TI uses SNA (APPC/LU 6.2) and TCP/IP standard
communication protocols for all communications between Windows and the host computer. You can use TI Designer to build
TI components, and you can use TI Manager to deploy, configure, and manage those TI components and the TI run-time
environment.

In This Section

Online Transaction Processing

Transaction Integrator Basic Functions

Transaction Integrator Components

Programming Models

Host-Initiated Processing

Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa754764(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705504(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745014(v=bts.10).aspx

Online Transaction Processing
Most mainframe and midrange mission-critical applications run as online transaction processing (OLTP) applications underthe
direction of a transaction-processing monitor, such as customer information control system (CICS) and information
management system (IMS). CICS and IMS are widely used in mainframe environments to create distributed OLTP solutions,
such as customer-tracking and order-entry solutions. TI integrates CICS and IMS with COM by creating COM and .NET
interfaces to the CICS and IMS transactions and by calling for the services of, or invoking, those transactions on the host from a
Windows-based application.

A two-phase commit (2PC) protocol is used when a transaction involves multiple programs running on multiple computers.
Use the 2PC protocol to verify that eachl computer has completed its part of the transaction.

In This Section

CICS Components

IMS Components

Two-Phase Commit

Windows Transactions vs. Mainframe Transactions

See Also
Other Resources
Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745403(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

CICS Components
Customer Information Control System (CICS) is a mainframe application system that provides components such as a
transaction-processing monitor and a transaction-processing manager for a mainframe computer to run online transaction
processing (OLTP) applications. You can install CICS on all three mainframe operating systems: Multiple Virtual Storage (MVS),
Virtual Storage Extended (VSE), and Virtual Machine (VM). Due to the popularity of MVS, CICS is commonly installed on MVS
mainframe computers. CICS extends the capabilities of a batch-only environment by providing the application system
components that allow the mainframe computer to run OLTP applications.

CICS can run online applications on the mainframe computer because CICS acts almost like a separate operating system: it
manages its own memory address space, runs its own file management functions, and manages the concurrent execution of
multiple transaction applications.

To use Transaction Integrator (TI) successfully, you must understand the following CICS components and terminology:

CICS region

Each instance of CICS running on a mainframe computer is defined in Virtual Telecommunications Access Method (VTAM) by
using a VTAM application statement. Each CICS instance defined in an application statement is called a CICS region. It is
useful to define multiple CICS regions on a single mainframe computer because it allows you to logically group TPs in
separate CICS regions and to use at least one CICS region for test purposes.

TP

The transaction program (TP) is the application software that executes under the supervision of CICS and contains the actual
programming code necessary to process the business logic. Other terms that refer to a TP are transaction, host transaction
program, application program, and program.

Transaction ID

All TPs that run under CICS are invoked by using a unique, four-character transaction identification (TRANID). This may
sometimes be confusing because the transaction ID typically is different than the TP name. For example, the TP that handles
CICS resource definitions is called Resource Definition Online (RDO), whereas the transaction ID that starts RDO is CEDA.

Program control table (PCT)

The program control table (PCT) is a CICS table that contains a mapping between TRANIDs and their associated TP names.
After the TRANID is invoked, CICS starts the TP associated in the PCT with that TRANID.

File control table (FCT)

The file control table (FCT) is a CICS table that monitors which VSAM files are available to TPs. The FCT lists the name and
type of VSAM files and valid operations that users can perform on each file. Although CICS can access other types of data
stores, such as DB2, it accesses VSAM most frequently.

RDO

The RDO is a CICS TP that allows a CICS systems programmer to define the resources contained in the internal control
tables.

Task

A task executes the functions of the TP; every CICS TP performs its functions by using a task. A CICS TP can use a single task
or multiple tasks to perform its functions. Each time a TP is invoked, CICS starts the tasks required to perform its functions.
CICS is a multitasking environment, which means that more than one task can, and often is, running at the same time.

See Also
Other Resources
Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

IMS Components
The information management system (IMS) provides a transaction program (TP) Monitor with an integrated TP Manager and
hierarchical database. Both the TP Monitor and the database can coordinate transactions with non-IMS TP Monitors and
databases.

To use Transaction Integrator (TI) successfully, you must understand the following IMS components and terminology:

IMS region
IMS uses defined regions to perform its functions. The following regions are typically defined in VTAM when using IMS:

Control region - The main IMS region. It owns all of the databases that IMS transactions access and is responsible for
all communications with the databases. It runs continuously and oversees the operation of other dependent regions.

Message processing region (MPR) - A dependent region used for processing messages. The control region schedules
TPs to run in the MPR. You can have multiple MPRs defined on a single mainframe computer.

Batch message processing (BMP) region - A dependent region used for processing batch operations.

IMS message queue
The IMS message queue is used by TPs to access the MPP region for processing. Each MPP region has an IMS message
queue associated with it. Placing application data in the IMS message queue allows the IMS server TP to use standard Get
Unique (GU), Get Next (GN), and Insert (ISRT) calls to exchange data with a client application.

Data Language (DL)/I
Data language (DL)/I is the programming language used in traditional IMS environments to access IMS databases. IMS TPs
and CICS TPs can be written in many different programming languages, such as COBOL, PL/I, C, VS Pascal, Ada, REXX, or
assembler language. However, when any of these TPs needs to access IMS databases, they must use the proper DL/I calls
from their application code. Some of the standard DL/I calls are:

GU. This call retrieves input data to be processed.

GN. This call retrieves sequential records.

ISRT. This call inserts data into a database or returns data to an invoking client.

See Also
Other Resources
Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

Two-Phase Commit
A given business logic operation can involve multiple programs running on multiple computers. In this design, the transaction
is not considered complete unless all of the programs involved complete their executions successfully. For these programs to
verify that all other programs that are part of the transaction have completed their transactions, they must employ the two-
phase commit (2PC) protocol.

The term transaction (or any of its derivatives, such as transactional), might be misleading. In many cases, the term transaction
describes a single program executing on a mainframe computer that does not use the 2PC protocol. In other cases, however, it
is used to denote an operation that is carried out by multiple programs on multiple computers that are using the 2PC protocol.

The 2PC protocol is so named because it employs the following two phases prior to committing the operation performed:

Phase 1—Prepare. In this phase, each of the programs involved in the transaction sends a message to the TP Manager,
such as Microsoft Distributed Transaction Coordinator (MS DTC), informing the TP Manager that it is ready to and
capable of performing its part of the operation. This phase is also known as prepare because the programs are prepared
either to commit the changes or rollback the changes. If the TP Manager receives confirmation from each of the
programs involved, it proceeds to phase 2.

Phase 2—Commit or Rollback. In this phase, the TP Manager instructs each of the programs to commit or rollback all of
the changes that were requested as part of the transaction. A properly executed rollback should return the system to its
original state.

Note
The state between phase 1 and phase 2 is known as the in-doubt state. Developers using COM+ or .NET in their applications
can decide which parts of the application require access to a TP and which parts do not. TI extends this choice to the mainfra
me, as well, by handling calls that require transactions and calls that do not. For applications that require full integration betw
een Windows-based two-phase commit and mainframe-based Sync Level 2 transactions, TI provides all the necessary functi
onality. TI does this without requiring you to change the client application, without placing executable code on the mainframe
, and with little or no change to the mainframe TPs. The client application does not need to distinguish between the TI compo
nent (type library) and any other COM+ component reference.

The following figure shows how a Windows-based client application implicitly uses the Microsoft Distributed Transaction
Coordinator (DTC) to coordinate the two-phase commit of a distributed transaction involving SQL Server and a CICS TP. DTC
coordinates 2PC transactions.

Client application using Transaction Integrator and DTC to coordinate a two-phase commit between SQL Server
and a CICS application

Client application using TI and DTC

Two-phase commit (2PC) transactions involve a number of components. To use Transaction Integrator (TI) successfully, you
must understand the following 2PC components and terminology:

Sync Point Level 2

TPs can interact with one another by using the LU6.2 protocol at one of three levels of synchronization: Sync Level 0, Sync
Level 1, or Sync Level 2. Only one of these three sync levels, Sync Level 2, uses the 2PC protocol. Sync Level 0 has no
message integrity, whereas Sync Level 1 supports limited data integrity.

TP Manager

The transaction program (TP) Manager is a system service that is responsible for coordinating the outcome of transactions to
be able to achieve atomicity. The TP Managers ensure that the resource managers reach a consistent decision on whether the
transaction should commit or abort. The Windows 2000 TP Manager is MS DTC.

Resync service

The LU6.2 Resync Service is a component of Host Integration Server that works with MS DTC to perform automatic recovery
to a consistent state as a result of failures at any point in a 2PC transaction. The LU6.2 Resync Service is installed by default
when installing Host Integration Server.

Resource Manager

The resource manager is a system service that manages durable data. Server applications use resource managers to
maintain the durable state of the application, such as a record of available inventory, pending orders, and accounts
receivable. The resource managers work in cooperation with the transaction manager to provide the application with a
guarantee of atomicity and isolation (by using the 2PC protocol). Microsoft SQL Server™ and TI are examples of resource
managers.

See Also
Concepts
Windows Transactions vs. Mainframe Transactions
Other Resources
Online Transaction Processing

https://msdn.microsoft.com/en-us/library/aa745403(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754764(v=bts.10).aspx

Windows Transactions vs. Mainframe Transactions
In the Host Integration Server Help, a transaction in the Microsoft Windows, COM, COM+, or .NET Framework environments
does not mean the same thing as a transaction in the mainframe environment.

A transaction in the Windows environment is a set of actions coordinated by the Microsoft Distributed Transaction
Coordinator (DTC) as an atomic unit of work that meets the ACID test; in other words, a transaction is atomic, consistent,
isolated, and durable. Either all the actions in the transaction are completed, or none of them are completed.

A transaction in the mainframe host (CICS or IMS) environment is a section of code in a structured transaction program
(TP), and a TP is a single COBOL program file that contains one or more mainframe transactions. Therefore, a mainframe
transaction may or may not meet the ACID test.

A TI Automation server is a TI component deployed in a COM+ or .NET Framework application. A single method in a TI
Automation server invokes a single mainframe-based TP. Any TI method in the TI Automation server can invoke any
transaction in the TP, but it is the TP that determines which of its transactions to run. The mainframe TP makes this decision
based on the information sent to it from the TI Automation server. A CICS or IMS TP can provide any type of service, such as
terminal interaction, data transfer, database query, and database updates. A TP can also contain one or more transactions.

A mainframe TP also has a specialized meaning in the IBM CICS environment. Any program that uses Advanced Program-to-
Program Communications (APPC) with another program is referred to as a transaction program (TP). APPC is a set of protocols
developed by IBM specifically for peer-to-peer networking among mainframes, AS/400s, 3174 cluster controllers, and other
intelligent devices. For a TP to communicate directly with another TP using APPC, the two programs must first establish an LU
6.2 session and conversation with each other.

LU 6.2 is the de facto standard protocol for distributed transaction processing in the mainframe environment. It is used by both
CICS and IMS subsystems. One program can interact with another program at one of three levels of synchronization:

Sync Level 0 has no message integrity beyond sequence numbers to detect lost or duplicate messages.

Sync Level 1 supports the CONFIRM-CONFIRMED verbs that allow end-to-end acknowledgment for client and server.

Sync Level 2 supports the SYNCPT verb that provides ACID (atomicity, consistency, isolation, durability) properties across
distributed transactions by way of two-phase commit (2PC).

Of the three sync levels, only Sync Level 2 provides the same guarantees provided by a Windows, COM, COM+, or .NET
Framework transaction.

Note
The TCP/IP protocol is not designed for distributed transaction processing, so TCP/IP does not provide the ACID guarantee th
at 2PC in LU 6.2 Sync Level 2 provides. Therefore, it is the network protocol (LU 6.2 or TCP/IP) that determines whether it is p
ossible to guarantee that a transaction in a TP operates as an atomic, consistent, isolated, and durable unit.

Thus, in the CICS and IMS environment, the term transaction program (TP) may or may not imply the use of 2PC. The term
transaction program refers to the program itself. It is only when the term transaction is qualified by adding the term Sync Level
2 that the Windows developer and the mainframe developer can be sure they are referring to the same thing.

TI supports both Sync Level 0 and Sync Level 2 conversations over LU 6.2 in SNA networks. If a method invocation is part of a
DTC-coordinated transaction, TI uses Sync Level 2 to communicate with CICS or IMS version 6.0 with Resource Recovery
Services (RRS). If a method invocation is not part of a DTC-coordinated transaction, then TI uses Sync Level 0.

See Also
Concepts
Support for Transactions and Two-Phase Commit

https://msdn.microsoft.com/en-us/library/aa771982(v=bts.10).aspx

Transaction Integrator Basic Functions
In current Internet-driven, graphical user interface (GUI) computing environments, users usually prefer to access mainframe
online transaction processing (OLTP) applications using the same interfaces that they use to access the Internet or their
organizations intranet, instead of by using traditional green screen, dumb terminal access methods. Transaction Integrator (TI)
provides any application that is compatible with Microsoft Windows 2000 Server or Microsoft Windows Server 2003 access to
transactions and data in CICS, IMS, OS/400 applications. By providing this access, TI reduces the time and effort involved in
programming specialized interfaces for mainframe computers.

As a generic proxy for a mainframe or midrange computer, TI intercepts object method calls and redirects those calls to the
appropriate host application. TI also handles the return of all output parameters and values from the host computer. When TI
intercepts the method call, it converts and formats the parameters from the representation understood by the Microsoft
Windows platform into the representation that is understandable by the host transaction program (TP).

In This Section

Managing Data Input/Output

Data Type Conversion

Tabular Data Definition

Code Page Translation

See Also
Other Resources
Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa705469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754753(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704833(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

Managing Data Input/Output
Most mainframe and midrange transaction programs (TP) rely on a set of input parameters that carry input data, typically
provided by a user at a dumb terminal, to the TP. TPs then perform some function with the input data and return output data
through their defined output parameters. The primary function of Transaction Integrator (TI) is to manage the process and data
conversions necessary to allow input data to be provided to the mainframe TP from a COM or .NET Framework application and
to send any output data generated from the TP to a COM or .NET Framework application. To accomplish this, TI provides data
type conversion, tabular data definition, and code page translation.

See Also
Other Resources
Transaction Integrator Basic Functions

https://msdn.microsoft.com/en-us/library/aa704698(v=bts.10).aspx

Data Type Conversion
One of the primary features of Transaction Integrator (TI) is converting and formatting a method's data from the data types
understood by the Windows platform into the data types understood by a mainframe transaction program (TP). The
conversion is defined at design time and implemented at runtime. At design time, the developer uses the TI Designer to
associate a COM or .NET data type with a COBOL or RPG data type. TI provides default mappings between standard COM or
.NET data types and COBOL or RPG data types, and the developer can either accept the default mappings or override the
default with other mappings supported by TI. The TI Designer records the mappings in the TI component library, and the
generated COBOL or RPG data declarations reflect them.

See Also
Reference
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Converting Data Types from RPG to Automation
Converting Data Types from Automation to RPG
Other Resources
Transaction Integrator Basic Functions

https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771908(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704698(v=bts.10).aspx

Tabular Data Definition
In many cases, the input or output data that Transaction Integrator (TI) handles might be in tabular or array format. TI allows
you to define this type of data as one of the following formats:

Recordset. A recordset provides a means of presenting and manipulating tabular data in a Microsoft ActiveX® Data
Objects (ADO) environment. A recordset contains all of the ADO information to make it manageable by any ADO
application. A recordset is the primary object used for retrieving and modifying tabular data by using ADO. A recordset
object represents a set of records in a table. Recordsets allow TI to support what is effectively an array of a structure (or
table in COBOL terminology); it even can support the special case of a structure that is a recordset containing only one
row. Each column in the row can contain only a single data element. Recordsets cannot be nested or contain arrays.

User-defined type (UDT). Unlike recordsets, which must contain all of the formatting necessary to expose them to ADO
applications, a UDT is just raw data and can therefore be faster than recordsets. A UDT can contain an ordinary (fixed-
size) array. It can also contain a dynamic array. You can combine variables of several different types to create UDTs. UDTs
are useful when you want to create a single variable that records several related pieces of information.

Array. In the COM/COM+ and .NET environments, arrays are SAFEARRAYs that contain information about their bounds
and contain the data for the array elements. SAFEARRAYs are mapped to fixed-size arrays on the host computer.
SAFEARRAYs have a variable size and require custom information to be marshaled to and from fixed-size arrays on the
host computer.

Arrays are created on the mainframe computer during the import process when a simple data type has one or more OCCURS
clauses. The OCCURS clause can represent a fixed or variable-length table. Although it is possible in COBOL to have nested
OCCURS DEPENDING clauses, only the OCCURS DEPENDING length specifier for the outermost table dimension is supported
by TI. The TI Designer ignores nested length specifiers.

Note
A UDT and recordset that have the same fields look the same in COBOL.

See Also
Other Resources
Transaction Integrator Basic Functions

https://msdn.microsoft.com/en-us/library/aa704698(v=bts.10).aspx

Code Page Translation
The choice of language or code page in TI Manager for a remote environment (RE) determines which code page is used to
convert from Unicode on the automation side to Extended Binary Coded Decimal Interchange Code (EBCDIC) on the
mainframe side. You can either select the language and accept the subsequent default code page for that language, or you can
select the specific code page itself.

See Also
Other Resources
Transaction Integrator Basic Functions

https://msdn.microsoft.com/en-us/library/aa704698(v=bts.10).aspx

Transaction Integrator Components
Transaction Integrator (TI) consists of three major components: two graphical user interfaces, TI Designer and TI Manager, and
the TI run-time environment that automatically handles the actual transaction integration.

In This Section

TI Designer

TI Manager

TI Runtime

https://msdn.microsoft.com/en-us/library/aa754279(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx

TI Designer
TI Designer is a design-time development tool that is hosted inside, and uses the graphical user interface, of Microsoft Visual
Studio. You use TI Designer to set the rules for mapping and resolving data types between a Windows resource (such as
COM+, the .NET Framework, BizTalk Server) and an IBM batch or online transaction program.

TI Designer creates TI components stored as type libraries (.tlb files) or .NET Framework assemblies (.dll) describing the
methods and data for a mainframe TP. Each TI component includes TI run-time environment settings that associates the
component with a specific type of remote environment (RE) class, for example CICS LU 6.2 Link, for the mainframe or
midrange host computer. In addition to the description of the methods and Automation parameters, the TI component type
library contains custom data describing how data types are mapped between a method in TI Automation server and a
mainframe transaction in a COBOL transaction program (TP) or a OS/400 transaction in a RPG transaction program. It also
establishes other parameters that affect data conversion at runtime.

TI components are not true COM or .NET Framework components because they are type libraries. However, when you place a
TI component in a COM+ or .NET Framework application, the TI component becomes encapsulated in a true COM component
or .NET Framework assembly, and the COM+ or .NET Framework application becomes a TI Automation server that can be used
by any COM-based or .NET Framework application.

Note
When you create a class in Visual Basic, the component type library is embedded in the .dll file that also contains the logic for
the methods. In other words, unlike TI, the type library is not in a separate .tlb file. In the case of TI, the .dll file is a generic .dll
file that holds the TI run-time environment. Together, the .tlb file created by TI Designer and the generic .dll file installed by TI
are equivalent to the .dll file created for a Visual Basic class.

You can also use TI Designer to import or export the data definition section of the COBOL or RPG code making up mainframe
transaction programs (TPs). TI Designer can automatically generate a TI component (type library) from imported COBOL code,
or it can export generated COBOL code that you can use in your mainframe TP.

See Also
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

TI Manager
TI Manager a design-time administrative tool that is hosted inside, and uses the graphical user interface, of the Microsoft
Management Console. You use TI Manager to configure end-points, associate resources with requests, and define security and
access rules. The rules and mapping of the data transformations are created in the Transaction Integrator (TI) Designer. TI
Manager configures, administers, and manages TI components and the TI run-time environment settings they contain.

TI Manager gives you direct access to Windows Component Services (COM+). By using the Component Services folder in TI
Manager, you can configure and administer COM components and COM+ applications, configure your system, deploy
components, and configure and monitor services. For example, you can use COM+ to:

Create new COM+ applications.

Deploy TI components in COM+ applications.

Administer application security.

Administer distributed transactions by using Microsoft Distributed Transaction Coordinator (MS DTC).

View transaction statistics.

Resolve transaction states.

Configure routine component and application behavior, such as participation in transactions.

For more information about application development with Component Services, see COM+ (Component Services) under
"Component Services" in the Microsoft Platform SDK.

See Also
Other Resources
Transaction Integrator Components
Transaction Integrator Manager Help

https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745657(v=bts.10).aspx

TI Runtime
The TI run-time environment is a specialized run-time environment started by Windows or a requesting IBM application
program when the application contains a TI component. For each TI component you create, the TI run-time environment
provides the Automation server interface and communicates with the mainframe programs. The TI run-time environment does
not have a visible user interface.

As a generic proxy for the mainframe or AS/400 computer, the TI run-time environment intercepts object method calls and
redirects those calls to the appropriate mainframe program. It also handles the return of all output parameters and return
values from the mainframe. When TI intercepts the method call, it converts and formats the method's parameters from the
representation understandable by the Windows 2000 Server or Windows Server 2003 platform into the representation
understandable by host transaction programs (TPs).

The TI Automation Server is a COM object that exposes the functionality of a mainframe TP as an Automation interface
method. It can expose all of the TP's functionality, a subset, or a superset. A TI Automation server that supports two-phase
commit contains the transaction logic that determines when work will be committed or rolled back. A TI Automation server is a
TI component that you have deployed in a COM+ application. A client application calls the TI Automation server to invoke the
mainframe TP, pass parameters, and return results.

At run time, the TI run-time environment intercepts method invocations from a client application for a TI component library
and provides the actual parameter conversion and formatting.

The client application can be any COM-based or .NET Framework application that calls a TI Automation server to invoke a
mainframe TP. The client application provides the presentation layer for the application or data. It can be anything capable of
calling a COM+ or .NET Framework object, including an Active Server Page (ASP), a Visual Basic application, or even a
Microsoft Office application. The client application that uses a TI Automation server (a TI component embedded in a COM+
application) can be running on computer that is running Windows 2000, Windows XP, any later version of Windows, or any
other operating system that supports the distributed Component Object Model (DCOM). DCOM is language-independent, so
developers can build their client application by using the languages and tools with which they are most familiar, including
Microsoft Visual Basic®, Visual Basic for Applications, Microsoft C#®, Microsoft Visual C++®, Microsoft Visual J++™, Delphi,
Powerbuilder, and Microfocus Object COBOL. The client application can then easily make calls to the TI Automation server (or
any other Automation object) registered on Windows 2000 Server or Windows Server 2003.

Then the TI run-time environment sends and receives the method calls to and from (in and out of) the appropriate mainframe
TP. TI uses the TI component library created in TI Designer at design time to transform the parameter data that is passed
between the TI Automation server and the mainframe TP. TI also integrates with Component Services and with Microsoft
Distributed Transaction Coordinator (DTC) to provide two-phase commit (2PC) transaction support in SNA networks.

The TI run-time environment uses the information in the TI component (type library) and the associated RE to:

Activate the TP on the mainframe in the RE.

Pass the parameters specified by the TI component to the TP on the mainframe by way of the associated RE.

Run the TP.

Return the results of the TP to the COM+ application (the TI Automation server, which in turn returns the results to the
client application that called it.

This The TI runtime environment provides the proxy that the Automation server uses to invoke the mainframe TP. The TI run-
time environment provides these functions:

Translates between Automation and COBOL data types.

Translates messages to and from the mainframe.

Provides a generic object for COM+, the behavior of which is described by a TI component (type library) for a specific
instance.

See Also

Other Resources
Programming Models

https://msdn.microsoft.com/en-us/library/aa705504(v=bts.10).aspx

Programming Models
A programming model defines the method(s) used to access and integrate server applications with host applications. A
programming model is a combination of:

The communication protocol that is used to exchange data with the remote application program.

The target host environment used to host the server application program.

The interaction semantics defined by the application to control connect, data exchange, and disconnect sequences.

Transaction Integrator supports a set of predefined programming models for Windows-initiated processing and for host-
initiated processing. The following table summarizes the 11 available WIP programming models depending on the protocol
and the target environment.

Protoc
ol

Target/Host Environ
ment

Host Integration Server Programmin
g Model

Host Integration Server COMTI name

TCP/IP CICS TCP Transaction Request Message (TRM)
Link

MS Link

TCP/IP CICS TCP Enhanced Listener Message (ELM) Li
nk

n/a

TCP/IP CICS TCP Transaction Request Message (TRM)
User Data

Concurrent Server

TCP/IP CICS TCP Enhanced Listener Message (ELM) U
ser Data

n/a

TCP/IP IMS IMS Connect IMS Open Transaction Management Architecture (OT
MA) Connect

TCP/IP IMS IMS Implicit Implicit

TCP/IP IMS IMS Explicit Explicit

TCP/IP OS/400 OS/400 Distributed Program Calls (DPC) n/a

LU6.2 CICS CICS LU6.2 User Data CICS using LU6.2

LU6.2 CICS CICS LU6.2 Link CICS using Link

LU6.2 IMS IMS LU6.2 User Data IMS using LU6.2

The following table summarizes the five available HIP programming models depending on the protocol and the target
environment.

Protoco
l

Target/Host Environmen
t

Host Integration Server Programming Mode
l

Host Integration Server COMTI nam
e

TCP/IP CICS TCP Transaction Request Message (TRM) Link n/a

TCP/IP CICS TCP Enhanced Listener Message (ELM) Link n/a

TCP/IP CICS TCP User Data n/a

TCP/IP OS/400 OS/400 Distributed Program Calls (DPC) n/a

LU6.2 CICS CICS LU6.2 User Data n/a

LU6.2 CICS CICS LU6.2 Link n/a

In This Section

TCP Transaction Request Message Link

TCP Enhanced Listener Message Link

TCP Transaction Request Message User Data

TCP Enhanced Listener Message User Data

IMS Connect

IMS Implicit

IMS Explicit

OS/400 Distributed Program Calls

CICS LU6.2 Link

CICS LU6.2 User Data

IMS LU6.2 User Data

Choosing the Appropriate Programming Model

Supported Data Flow Models

Iterative vs. Concurrent TCP/IP Models

See Also
Other Resources
Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771844(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705769(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771458(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

TCP Transaction Request Message Link
The TCP transaction request message (TRM) Link model allows data and parameters to be passed between TI and the server TP
through the COMMAREA. The model also allows a Concurrent Server to Link to a CICS DPL program. The standard Listener for
TCP/IP uses two network exchanges to execute a single transaction program and requires the client to:

Send a Transaction Request Message (TRM) to the standard Listener.

Receive a TRM reply from the application program.

Send the application request data stream to the server transaction program.

Receive the application reply data from the server transaction program.

The TCP TRM Link model is based on the CICS Concurrent Server model. The TCP TRM Link model is a Microsoft variant that
supports execution of DPL server application programs within the CICS environment and maintains compatibility with the CICS
LU6.2 Link programming model.

The following figure summarizes the workflow occurring between the client, the standard CICS Listener, the Concurrent Server,
and the mainframe transaction program. The numbers in parentheses indicate the approximate order in which events occur. A
more detailed description of the events follows the figure.

Process by which the client starts the default Listener, which passes the call to the concurrent server, which then
sends and receives data from the client, which the server then passes to the CICS DPL program for processing by
the business logic

Summary Workflow for the TCP TRM Link Programming Model

The TCP TRM Link programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Reads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. passes the data stream to the TCP transport component.

4. The TI TCP transport sends a connect request to the standard Listener using the Internet Protocol (IP) address of the
mainframe computer and the port address of the Listener.

5. The standard Listener accepts the connection request and tells TI runtime to send the TRM. The standard Listener then
waits for the TRM.

The TRM is a formatted data record that identifies the server TP to be invoked by using its TRANID. The Listener TP is a
special mainframe TP, whose main function is to receive server TP invocations sent by client applications running TCP/IP.

The TRANID of the IBM-provided, standard Listener TP is CSKL. The TP name of the Listener TP, as it appears in the CICS
program control table (PCT) is EZACIC02.

6. TI runtime formats either a standard or custom TRM and sends it to the standard Listener. TI runtime then waits for the
TRM reply.

7. The standard Listener receives the TRM, sends TI runtime a receive confirmation, and then reads the contents of the TRM.
The Listener interprets the information in the TRM and extracts the transaction ID of the Concurrent Server program that
is to service the request.

8. The standard Listener starts the concurrent server TP program (Mscmtics.cbl sample application) that is identified by the
TRANID in the TRM using EXEC CICS Start.

Mscmtics.cbl is the Microsoft sample TP file that is used to pass data between TI and the server TP using the COMMAREA.
The Mscmtics.cbl sample TP is developed by Microsoft and provided as part of the Host Integration Server software. It is
located in the $\Microsoft Host Integration Server\SDK\Samples\Comti\ProgrammingSpecifics\Tcp. The code must be
compiled, linked, and installed on the mainframe computer prior to using this model.

Note
If the standard Listener is unable to start the Concurrent Server, the Listener formats an error message and sends it bac
k to the COMTI TCP Transport. Reasons the Listener might be unable to start include:

Rejected connection due to limited CICS resources (for example, exceeds the maximum number of CICS tasks or concur
rent server tasks)

Invalid or disabled TRANID for the concurrent server

Invalid, disabled or unavailable Concurrent Server program associated with the transaction ID

Note

The error message from the CICS listener is character based and always begins with the letters EZY. The length of the e
rror message is variable, and the end of the message is determined by the socket closed by the CICS Listener. The stan
dard Listener calls the socket application protocol interface (API) in the host environment. The standard Listener cannot
send the TRM Reply. The TRM Reply represents a synchronization process that allows time for the transaction program
to be started prior to the application request data being sent by the client. This synchronization process is necessary du
e to internal CICS architectural consideration (there is no guarantee as to when a transaction program is started after th
e request is made).

After the standard CICS Listener has issued the start command for the concurrent server transaction, the standard
Listener is no longer needed for application processing and is free to listen for another incoming request.

9. After the concurrent server is running, it reads the transaction initial message (TIM) sent by the standard Listener.

The TIM describes the TCP/IP environment in which the server is running and contains the TCP/IP socket information the
concurrent server uses to communicate with the COMTI TCP Transport and the client message header the concurrent
server uses to customize its execution behavior. The header contains the name of the server program to be linked to.

10. The Concurrent Server:

a. Formats the standard or custom TRM reply.

b. Sends a TRM reply to the TI TCP Transport to inform it that it can now send the application request data.

c. Issues a receive and waits for the application request data.

Sending of the TRM reply completes the 1st part of the standard Listener exchange sequence.

11. TI runtime evaluates the TRM and passes the data to the Concurrent Server program through the CICS COMMAREA by
using a standard EXEC CICS Link call. TI runtime also sends a socket (that is, 2 byte) shutdown and then waits for the
reply data.

12. After the Concurrent Server receives the application request data it links to the serving application program that was
specified in the TRMs client message header. The CICS EXEC CICS LINK command is used to start the real server
application. The Link command passes the application data received from the COMTI TCP Transport to the common area
of memory (COMMAREA) and performs the business logic on the data. All business logic is defined in the server TP.

13. After the server application program has finished processing the request and formulating the reply, it issues an EXEC
CICS RETURN command to give control back to the Concurrent Server (mscmtics.cbl) program. The server TP prepares
the reply data along with a standard or custom TRM, accepts the data from the COMMAREA, and then sends the
application reply data back to the TI TCP Transport through the COMMAREA. Completing the processing of the
application data signals the end of the 2nd exchange sequence.

14. The concurrent server closes the socket.

15. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the TCP transport component.

b. Reads the message buffer.

If the application is a COM+ component, the TI Automation proxy:

a. Maps the COBOL data types to the automation data.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Maps the COBOL data types to the .NET Framework data types.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

16. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

To implement this model, you must provide TI with an IP address, a port number, and a CICS program name to execute the
application passed by the concurrent server program (Mscmtics.cbl). The model requires the installation, within CICS, of the
IBM-supplied default Listener (EZACIC02). The CICS IBM default Listener uses IBM-provided default settings.

Host Integration Server includes sample code showing how to implement the TCP TRM Link programming model. The sample
code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial of your choice,
and follow the instructions in the Readme.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: CICS
TCP/IP Socket Interface Guide (IBM Document #SC31-7131).

See Also
Tasks
Transaction Request Messages
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
CICS Components
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa704351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

TCP Enhanced Listener Message Link
The TCP enhanced listener message (ELM) Link model allows data and parameters to be passed between TI and the server TP
using the COMMAREA. The model also allows a Concurrent Server to link to a CICS DPL program. The enhanced Listener was
introduced in CICS Transaction Server version 1.4, and its architecture increases the efficiency of the CICS TCP/IP environment
by eliminating the TRM and TRM Reply sequence sequence. The enhanced Listener accepts a header and request data from the
client in the initial stream and eliminates the need for the server application to deliver a separate response before the
application data is made available. The enhanced Listener requires the client to:

Construct and send a single data stream composed of a request header followed by the application request data to the
server application program

Receive a single data stream that consists of a reply header and application data from the server application program

The following figure summarizes the workflow occurring between the client, the enhanced CICS Listener, the Concurrent
Server, and the mainframe transaction program. The numbers in parentheses indicate the approximate order in which events
occur. A more detailed description of the events follows the figure.

Summary workflow diagram for the TCP ELM Link programming model

The TCP ELM Link programming model works as follows:

1. An application invokes a method in a TI component configured in Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. reads in the type library created previously by the TI Designer

b. maps the automation data types to COBOL data types

If the application is a .NET Framework assembly, the TI Automation proxy:

a. reads in the assembly and meta data created previously by the TI Designer

b. maps the .NET Framework data types to COBOL data types

The TI Automation proxy then:

a. calls the conversion routines to convert the application data to mainframe COBOL types

b. builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. passes the message to the TCP transport component.

4. The TI TCP transport sends a connect request to the enhanced Listener using the Internet Protocol (IP) address of the
mainframe computer and the port address of the Listener.

5. The enhanced Listener accepts the connection request and tells TI runtime to send the ELM. The enhanced Listener then
waits for the ELM.

The ELM is a formatted data record that identifies the server TP to be invoked by using its TRANID. The Listener TP is a
special mainframe TP, whose main function is to receive server TP invocations sent by client applications running TCP/IP.
The TRANID of the IBM-provided enhanced Listener TP is defined by the user.

6. TI run-time formats the ELM and sends it to the enhanced Listener. TI then bypasses the transport logic that waits for a
ELM reply and immediately sends the application request data after the request header. TI then waits for the ELM reply.

7. The enhanced Listener receives the 35 byte ELM, and then reads the contents of the ELM header. The enhanced Listener
places the 35 bytes in the transaction initial message (TIM) but does not operate on its content.

The TIM describes the TCP/IP environment in which the server is running and contains the TCP/IP socket information the
concurrent server uses to communicate with the COMTI TCP Transport and the client message header the concurrent
server uses to customize its execution behavior. The header contains the name of the server program to be linked to.

8. The enhanced Listener starts the concurrent server TP program (Mscmtics.cbl sample application) that is defined in the
Listener Definition.

Mscmtics.cbl is the Microsoft sample TP file that is used to pass data between TI and the server TP using the COMMAREA.
The Mscmtics.cbl sample TP is developed by Microsoft and provided as part of the Host Integration Server software. It is
located in the $\Microsoft Host Integration Server\SDK\Samples\Comti\ProgrammingSpecifics\Tcp. It must be compiled,
linked, and installed on the mainframe computer prior to using this model.

Note
If the enhanced Listener is unable to start the Concurrent Server, the Listener formats an error message and sends it ba
ck to the COMTI TCP Transport. Reasons the Listener might be unable to start include:

rejected connection due to limited CICS resources (for example, exceeds the maximum number of CICS tasks or
concurrent server tasks)

invalid or disabled TRANID for the concurrent server

invalid, disabled or unavailable Concurrent Server program associated with the transaction ID

Note
The error message from the CICS listener is character based and always begins with the letters EZY. The length of the e
rror message is variable, and the end of the message is determined by the socket closed by the CICS Listener.

9. The enhanced Listener calls the socket application protocol interface (API) in the host environment. After the enhanced
Listener has issued the start command for the concurrent server transaction, the enhanced Listener is out of the
application processing loop and is free to listen for another incoming request.

10. The concurrent server retrieves the TIM, connects the socket, and reads the contents of the ELM.

11. TI passes the application data through the CICS COMMAREA to the server application program that contains the business
logic using a standard EXEC CICS Link call. TI runtime also issues a shutdown for the sending 1/2 socket and then waits
for the reply data.

12. The server TP receives the application data, processes the request, and performs the business logic on the data. All
business logic is defined in the server TP.

13. The concurrent server sends the ELM reply header to TI through the COMMAREA.

14. The server TP prepares the reply data and then sends the response to the client through the COMMAREA.

15. The application reply data stream consists of two parts. The first is an ELM reply that informs the transport as to the
success or failure of the request. The TCP Transport will consume the ELM reply from the stream and then, if the ELM
reply indicates the call was successful, receive the application reply data until the socket is closed by the Concurrent
Server.

16. The concurrent server closes the sockets

17. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the TCP transport component.

b. Reads the message buffer.

If the application is a COM+ component, the TI Automation proxy:

a. Maps the COBOL data types to the automation data.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

If the application is a .NET assembly, the TI Automation proxy:

a. Maps the COBOL data types to the .NET Framework data types.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

18. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

To implement this model, you must provide TI with an IP address, a port number, and a CICS program name to execute the
application passed by the concurrent server program (Mscmtics.cbl).

Host Integration Server includes sample code showing how to implement the TCP ELM Link programming model. The sample
code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial of your choice
and follow the instructions in the Readme.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: CICS
TCP/IP Socket Interface Guide (IBM Document #SC31-7131).

See Also
Tasks
Transaction Request Messages
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation

https://msdn.microsoft.com/en-us/library/aa704351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx

Concepts
CICS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

TCP Transaction Request Message User Data
The TCP transaction request message (TRM) User Data programming model allows data and parameters to be exchanged
directly between TI and the host TP. The TCP TRM User Data model is based on the CICS Concurrent Server model. The
standard Listener uses two network exchanges to execute a single transaction program and requires the client to:

Send a Transaction Request Message (TRM) to the standard Listener

Receive a TRM reply from the application program

Send the application request data stream to the server transaction program

Receive the application reply data from the server transaction program

The following figure summarizes the workflow occurring between the client, the standard CICS Listener, and the Concurrent
Server. The numbers in parentheses indicate the approximate order in which events occur. A more detailed description of the
events follows the figure.

Process by which the client starts the default Listener, which passes the call to the concurrent server, which then
sends and receives data from the client

Summary Workflow Diagram for the TCP TRM User Data Programming Model

The TCP TRM User Data programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Reads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the TCP transport component.

4. The TI TCP transport sends a connect request to the standard Listener using the Internet Protocol (IP) address of the
mainframe computer and the port address of the Listener.

5. The standard Listener accepts the connection request and tells TI runtime to send the TRM. The standard Listener then
waits for the TRM.

The TRM is a formatted data record that identifies the server TP to be invoked by using its TRANID. The CICS Listener TP
is a special mainframe TP, whose main function is to receive server TP invocations sent by client applications running
TCP/IP.

The TRANID of the IBM-provided, standard Listener TP is CSKL. The TP name of the Listener TP as it appears in the
program control table (PCT) is EZACIC02.

6. TI runtime formats the TRM and sends it to the standard Listener. TI waits for the TRM reply.

7. The standard Listener receives the TRM, sends TI runtime a receive confirmation, and then reads the contents of the TRM.
The Listener interprets the information in the TRM and extracts the transaction ID of the Concurrent Server program that
is to service the request.

8. The standard Listener starts the concurrent server TP program that is identified by the TRANID in the TRM (Mscmtics.cbl
sample application) using EXEC CICS Start.

Mscmtics.cbl is the Microsoft sample TP file that is used to pass data between COMTI and the server TP using the
COMMAREA. The Mscmtics.cbl sample TP is developed by Microsoft and provided as part of the Host Integration Server
software. It is located in the $\Microsoft Host Integration Server\SDK\Samples\Comti\ProgrammingSpecifics\Tcp. It must
be compiled, linked, and installed on the mainframe computer prior to using this model.

Note
If the standard Listener is unable to start the Concurrent Server, the Listener formats an error message and sends it back to t
he COMTI TCP Transport. Reasons the Listener might be unable to start include:

rejected connection due to limited CICS resources (for example, exceeds the maximum number of CICS tasks or
concurrent server tasks)

invalid or disabled TRANID for the concurrent server

invalid, disabled or unavailable Concurrent Server program associated with the transaction ID

Note
The error message from the CICS listener is character based and always begins with the letters EZY. The length of the error m
essage is variable, and the end of the message is determined by the socket closed by the CICS Listener.

1. The standard Listener calls the socket application protocol interface (API) in the host environment. The standard Listener
cannot send the TRM Reply. The TRM Reply represents a synchronization process that allows time for the transaction
program to be started prior to the application request data being sent by the client. This synchronization process is
necessary due to internal CICS architectural consideration (there is no guarantee as to when a transaction program is
started after the request is made).

After the standard CICS Listener has issued the start command for the concurrent server transaction, the standard
Listener is out of the application processing loop and is free to listen for another incoming request.

2. After the concurrent server is running, it reads the transaction initial message (TIM) sent by the standard Listener.

The TIM describes the TCP/IP environment in which the server is running and contains the TCP/IP socket information the
concurrent server uses to communicate with the COMTI TCP Transport and the client message header the concurrent
server uses to customize its execution behavior.

3. The Concurrent Server:

a. Formats the TRM reply.

b. Sends a TRM Reply to the TI TCP Transport to inform it that it can now send the application request data.

c. Issues a receive and waits for the application request data.

Sending of the TRM Reply completes the 1st part of the Standard Listener exchange sequence.

4. TI evaluates the TRM and passes the data to the Concurrent Server. TI also sends socket shutdown, and then TI waits for
the reply data.

5. After the Concurrent Server receives the application request data, the server performs the business logic on the data.

6. After the server has finished processing the request and formulating the reply, prepares the reply data and then sends
the response directly to the client. Completing the processing of the application data signals the end of the 2nd exchange
sequence.

7. The concurrent server closes the socket.

8. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the TCP transport component.

b. Reads the message buffer.

If the application is a COM+ component, the TI Automation proxy:

a. Maps the COBOL data types to the automation data.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Maps the COBOL data types to the .NET Framework data types.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

9. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

To implement this model, you must provide TI with an IP address, a port number, and a CICS program name to execute the
application passed by the concurrent server program (Mscmtics.cbl). The model requires the installation, within CICS, of the
IBM-supplied default Listener (EZACIC02). The CICS IBM default Listener uses IBM-provided default settings.

Host Integration Server includes sample code showing how to implement the TCP TRM Link programming model. The sample

code is located at \installation directory\SDK\Samples\AppInt. Start Visual Studio, open either the tutorial you want to use,
and follow the instructions in the Readme.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: CICS
TCP/IP Socket Interface Guide (IBM Document #SC31-7131).

See Also
Tasks
Transaction Request Messages
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
CICS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa704351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

TCP Enhanced Listener Message User Data
The TCP enhanced listener message (ELM) User Data model allows data and parameters to be passed directly between TI and
the server TP.

The following figure summarizes the workflow occurring between the client, the enhanced CICS Listener, the Concurrent
Server, and the mainframe transaction program. The numbers in parentheses indicate the approximate order in which events
occur. A more detailed description of the events follows the figure.

Summary workflow for the TCP ELM User Data programming model

TCP ELM User Data Programming Model

The TCP ELM User Data programming model works as follows:

1. An application invokes a method in a TI component configured in Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Reads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the TCP transport component.

4. The TI TCP transport sends a connect request to the enhanced Listener using the Internet Protocol (IP) address of the
mainframe computer and the port address of the Listener.

5. The enhanced Listener accepts the connection request and tells TI run-time to send the ELM. The enhanced Listener then
waits for the ELM.

The ELM is a formatted data record that identifies the server TP to be invoked by using its TRANID. The Listener TP is a
special mainframe TP, whose main function is to receive server TP invocations sent by client applications running TCP/IP.

6. TI run-time formats the ELM and sends it to the enhanced Listener. TI then bypasses the transport logic that waits for a
ELM reply and immediately sends the application request data after the request header. TI then waits for the ELM reply.

7. The enhanced Listener receives the 35 byte ELM, and then reads the contents of the ELM header. The enhanced Listener
places the 35 bytes in the transaction initial message (TIM) but does not operate on its content.

The TIM describes the TCP/IP environment in which the server is running and contains the TCP/IP socket information the
concurrent server uses to communicate with the COMTI TCP Transport and the client message header the concurrent
server uses to customize its execution behavior. The header contains the name of the server program to be linked to.

8. The enhanced Listener starts the concurrent server TP program (Mscmtics.cbl sample application) that is identified by the
TRANID in the ELM using EXEC CICS Start.

Mscmtics.cbl is the Microsoft sample TP file that is used to pass data between TI and the server TP using the COMMAREA.
The Mscmtics.cbl sample TP is developed by Microsoft and provided as part of the Host Integration Server software. It is
located in the $\Microsoft Host Integration Server\SDK\Samples\Comti\ProgrammingSpecifics\Tcp. It must be compiled,
linked, and installed on the mainframe computer prior to using this model.

Note
If the standard Listener is unable to start the Concurrent Server, the Listener formats an error message and sends it back to t
he COMTI TCP Transport. Reasons the Listener might be unable to start include:

rejected connection due to limited CICS resources (for example, exceeds the maximum number of CICS tasks or
concurrent server tasks)

invalid or disabled TRANID for the concurrent server

invalid, disabled or unavailable Concurrent Server program associated with the transaction ID

Note
The error message from the CICS listener is character based and always begins with the letters EZY. The length of the error m
essage is variable, and the end of the message is determined by the socket closed by the CICS Listener. The enhanced Listene
r calls the socket application protocol interface (API) in the host environment. After the enhanced Listener has issued the start
command for the concurrent server transaction, the enhanced Listener is out of the application processing loop and is free to
listen for another incoming request.

1. After the concurrent server is running, it reads the transaction initial message (TIM) sent by the standard Listener.

The TIM describes the TCP/IP environment in which the server is running and contains the TCP/IP socket information the
concurrent server uses to communicate with the COMTI TCP Transport and the client message header the concurrent
server uses to customize its execution behavior.

2. The concurrent server sends the TRM to TI and waits for the application request data.

3. TI evaluates the TRM and passes the data directly to the concurrent server program (Mscmtics.cbl). TI also sends socket
shutdown, and then TI waits for the reply data.

4. After the data is received, the server TP performs the business logic on the data. All business logic is defined in the server

TP.

5. The server TP prepares the reply data and then sends the response directly to the client.

6. The concurrent server closes the socket

7. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. receives the message from the TCP transport component.

b. reads the message buffer

If the application is a COM+ component, the TI Automation proxy:

a. maps the COBOL data types to the automation data

b. calls the conversion routines to convert the mainframe COBOL types to the application data

If the application is a .NET Framework assembly, the TI Automation proxy:

a. maps the COBOL data types to the .NET Framework data types

b. calls the conversion routines to convert the mainframe COBOL types to the application data

8. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

Host Integration Server includes sample code showing how to implement the TCP ELM User Data programming model. The
sample code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial you want
to use, and follow the instructions in the Readme.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: CICS
TCP/IP Socket Interface Guide (IBM Document #SC31-7131).

See Also
Tasks
Transaction Request Messages
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
CICS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa704351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

IMS Connect
The IMS Connect programming model provides access to information management systems (IMS) transactions using TCP/IP.
This model uses the IMS message queue for processing data.

The following figure summarizes the workflow occurring between the client, the default IMS Listener, the Concurrent Server,
and the mainframe transaction program. The numbers in parentheses indicate the approximate order in which events occur. A
more detailed description of the events follows the figure.

Process by which the client passes input data to the ITOC listener and the HWSIMSO0 provides access to the IMS
program, which delivers the response data to the client

Summary Workflow Diagram for the IMS Connect Programming Model

The IMS Connect programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Rreads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the TCP transport component.

4. The TI runtime sends an initial request message (IRM) to the IMS Connect, either HWSIMSO0 or HWSIMSO1, using the
Internet Protocol (IP) address of the mainframe computer and the port address of the IMS Connect as stored in the
TCP/IP profile data set (hlq.PROFILE.TCPIP) supplied by IBM.

HWSIMSO0 and HWSIMSO1 are IBM-supplied host web server (HWS) exit routines that define the request and reply
protocols between the TI Automation server (a TI component in a COM or .NET Framework application) and ITOC. The
HWS runs in an MVS address space that is separate from the IMS regions and performs the listener services for the IMS
connection.

5. The IMS Connect exit routine takes control of the IMS application (referred to as the IMS TCP/IP Open Transaction
Management Architecture (OTMA) Connection (ITOC)).

6. The TI run-time environment sends an ITOC request header to ITOC and HWSIMSO0.

7. The HWSIMSO0 exit routine:

Validates the ITOC request header

Receives all request data from the TI run-time environment

Interfaces with security routines

Drives the OTMA process to connect to an IMS data store

Places and retrieves message segments into and from the IMS message queue through OTMA

Sends all reply data segments to the TI run-time environment

Controls recovery operations within IMS

8. ITOC reads the ITOC header information, locates the correct IMS region, and schedules the execution of an IMS
transaction in that IMS region. The ITOC header must contain this information:

ITOC HWS exit routine identifier (default '*IRMREQ*')

IMS data store identifier

Transaction identifier

Flow control information

IBM's Resource Access Control Facility (RACF) security credentials

Protocol control flags

9. HWSIMSO0 schedules the correct IMS message queue

10. The TI run-time sends the request data segments to ITOC

11. The TI run-time sends EOM

12. IMS Control region sends to message processing region (MPR)

13. After all request data is placed on the IMS message queue, the transaction is scheduled for execution

14. The IMS server application program uses the standard CBLTDLI Get Unique (GU), Get Next (GN), and Insert (INSRT) call
interface commands to retrieve the request data and to place reply data on the IMS message queue.

15. MPR returns data to TI. ITOC sends EOM-CSMOKY ITOC returns the following information to the TI run-time
environment:

Request mod message

Reply data segments

End-of-message segment

CSMOKY segment

16. ITOC and the ITOC exit routine then remove the reply data from the message queue and deliver it back to the TI run-time
environment.

17. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. receives the message from the TCP transport component.

b. reads the message buffer

If the application is a COM+ component, the TI Automation proxy:

a. maps the COBOL data types to the automation data

b. calls the conversion routines to convert the COBOL data types to the application data

If the application is a .NET Framework assembly, the TI Automation proxy:

a. maps the COBOL data types to the .NET Framework data types

b. calls the conversion routines to convert the COBOL data types to the application data

18. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: IMS
TCP/IP Application Developers Guide (IBM Document #SC31-7186) and IMS Connect Guide and Reference V1R2 (IBM
Document #SC27-0946).

Host Integration Server includes sample code showing how to implement the IMS Connect programming model. The sample
code is located at \installation directory\SDK\Samples\AppInt. Start Visual Studio, open the tutorial you want to use, and
follow the instructions in the Readme.

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
IMS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx

Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

IMS Implicit
The IMS Implicit programming model provides access to information management systems (IMS) transactions using TCP/IP.
This model uses the IMS message queue for processing data. This model is known as an implicit mode of communication
because each IMS application implicitly issues all socket calls.

The following figure summarizes the workflow occurring between the client, the default IMS Listener, and the mainframe
transaction program. The numbers in parentheses indicate the approximate order in which events occur. A more detailed
description of the events follows the figure.

Process by which the client passes input data to the BMP Listener, which in turn puts the data into the message
queue, from which the MSR reads the request and delivers the response data to the client

Summary workflow diagram for the IMS Implicit programming model

The IMS Implicit programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Reads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the TCP transport component.

4. The TI Automation proxy sends a TRM and the application data to the default IMS Listener using the proper Internet
Protocol (IP) address of the mainframe computer and the port address of the default Listener.

The TRM is a formatted data record that identifies the IMS server TP to be invoked by using its TRANID. EZAIMSLN is the
default Listener TP supplied by IBM, whose main function is to receive server TP invocations sent by client applications
running TCP/IP.

5. The Listener receives the TRM and data and then creates a transaction initiation message (TIM)

6. The Listener inserts the TRANID along with the client data into the IMS message queue that is associated with the MPP
region in which the server TP is running. The server TP runs concurrently with the Listener.

7. After the connection is established, the Listener releases control and continues to listen for more client TCP/IP calls. The
Listener is able to maintain multiple concurrent connections.

8. The IMS control region schedules the transaction in a message processing region (MPR) and passes the socket to the IMS
server TP.

9. The server TP is coded to use the IBM-supplied Assist Module (CBLADLI, instead of the standard COBOL DL/I module,
CBLTDLI) to intercedes between the server TP and the TI run-time environment, thereby allowing the server TP to
exchange data with TI by using DL/I calls (GU, GN, and ISRT).

The Assist Module translates IMS programming calls to TCP/IP socket API calls that are understood by TCP/IP client
applications such as TI. When developing IMS TPs, you do not need to learn the TCP/IP sockets interface because the
Assist Module performs all of the necessary translations.

10. The server TP calls the Assist Module and reads the request from the queue using GU and GN commands. All business
logic is defined in the concurrent server TP.

11. After processing of the data is complete, the server TP uses the DL/I ISRT call to return data to the TI runtime by way of
TCP/IP.

12. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the TCP transport component.

b. Reads the message buffer.

If the application is a COM+ component, the TI Automation proxy:

a. Maps the COBOL data types to the automation data

b. Calls the conversion routines to convert the mainframe COBOL types to the application data

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Maps the COBOL data types to the .NET Framework data types.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

13. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

Host applications are written using standard IMS commands. However, the commands use the CBLADLI application
programming interface (API), rather than the standard CBLTDLI API.

In addition, the proper IMS control regions must be defined in an APPL statement in VTAM.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: IMS
TCP/IP Application Developers Guide (IBM Document #SC31-7186).

Host Integration Server includes sample code showing how to implement the IMS Connect programming model. The sample
code is located at \installation directory\SDK\Samples\AppInt. Start Visual Studio, open the tutorial you want to use, and follow
the instructions in the Readme.

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
IMS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

IMS Explicit
The IMS Explicit programming model provides access to IMS transactions by using TCP/IP. This model does not use the IMS
message queue for processing data. This model is known as an explicit mode of communication because each IMS application
must specify all socket calls explicitly.

The following figure summarizes the workflow occurring between the client, the default IMS Listener, and the mainframe
transaction program. The numbers in parentheses indicate the approximate order in which events occur. A more detailed
description of the events follows the figure.

Process by which the client passes input data to the BMP listener, which in turn puts the data into the message
queue, from which the IMS region schedules execution in the MPR and delivers the response data to the client
using socket API calls

Summary Workflow Diagram for the IMS Explicit Programming Model

The IMS Explicit programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Reads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the TCP transport component.

4. The TI Automation proxy sends a TRM and the application data to the default IMS Listener using the proper Internet
Protocol (IP) address of the mainframe computer and the port address of the default Listener.

The TRM is a formatted data record that identifies the IMS server TP to be invoked by using its TRANID. EZAIMSLN is the
IBM-supplied default Listener TP, whose main function is to receive server TP invocations sent by client applications
running TCP/IP.

5. The Listener receives the TRM and creates a transaction initiation message (TIM).

6. The Listener inserts the TRANID along with the client data into the IMS message queue that is associated with the
message processing region (MPR) in which the server TP is running. The server TP runs concurrently with the Listener.

Note
All IMS host server programs must be administered to IMS as NonResponse transactions.

7. After the connection is established, the Listener releases control and continues to listen for more client TCP/IP calls. The
Listener is able to maintain multiple concurrent connections.

8. The IMS control region schedules the transaction in the MPR and passes the socket to the IMS server TP.

9. The server TP uses the standard COBOL DL/I module, CBLTDLI, to initiate the transfer of data from the TI run-time
environment by way of APPC/MVS.

The server TP uses a series of socket API calls to send and receive data directly with the TI runtime. You will need to learn
the TCP/IP sockets interfaces and make those calls explicitly in your program.

10. After processing of the data is complete, the server TP uses the DL/I ISRT call to return data to the TI runtime by way of
APPC/MVS.

11. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the TCP transport component.

b. Reads the message buffer.

If the application is a COM+ component, the TI Automation proxy:

a. Maps the COBOL data types to the automation data.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

If the application is a .NET assembly, the TI Automation proxy:

a. Maps the COBOL data types to the .NET Framework data types.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

12. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

In addition, the proper IMS control regions must be defined in an APPL statement in VTAM.

Host Integration Server includes sample code showing how to implement the IMS Connect programming model. The sample

code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial you want to
use, and follow the instructions in the Readme.

For information about configuring the mainframe and writing server applications for TCP/IP, see TCP/IP V3R2 for MVS: IMS
TCP/IP Application Developers Guide (IBM document #SC31-7186).

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
IMS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

OS/400 Distributed Program Calls
The OS/400 Remote Command and Distributed Program Calls (DPC) programming model allows most AS/400 applications to
interact with TI in request-reply fashion (client-initiated only) with minimum modifications. DPC is a documented protocol that
supports program to program integration on an AS/400, which can be accessed easily from PC based applications using the
TCP/IP networking protocol.

Note
This interface does not support host-initiated processing (HIP); AS/400 integration is for client-initiated calls only.

The following figure summarizes the workflow occurring between the client, the default DPC Server, and the AS/400
transaction program. The numbers in parentheses indicate the approximate order in which events occur. A more detailed
description of the events follows the figure.

AS/400 model flow

Summary Workflow Diagram for the OS/400 DPC Programming Model

The OS/400 DPC programming model works as follows:

1. An application invokes a method in a TI component configured in Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is COM+ component, the TI Automation proxy:

a. Reads in the type libraries previously created by the TI Designer.

b. Maps the automation data types to AS/400 RPG data types.

If the application is a .NET Framework assembly, the TI Automation proxy:

a. Reads in the assembly and metadata previously created by the TI Designer.

b. Maps the .NET Framework data types to AS/400 RPG data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to AS/400 RPG types.

b. Builds the parameterized message buffer that represents the RPG PLIST.

c. Passes the message to the AS/400 DPC transport component.

4. The TI TCP transport sends a connection request to the DPC Server system using the Internet Protocol (IP) address of the
AS/400 computer and the port address of the server. The TI TCP transport then waits for a reply.

5. The DPC Server on the AS/400 accepts the session request and issues a receive. The DPC Server then waits for the start
server request.

6. The TI automation proxy sends the DPC Server a start server request and issues a receive. The TI TCP transport then waits
for a start server reply.

7. The DPC server processes the start server request, sends a start server reply, and then issues a receive. The DPC Server
then waits for an exchange attributes request.

8. The TI runtime processes the start server reply, sends the attributes request, and issues a receive. The TI runtime then
waits for an exchange attributes reply.

9. The DPC server processes the exchange attributes request, sends a exchange attributes reply, and then issues a receive.
The DPC then waits for a remote program call request.

10. TI runtime processes the exchange attributes reply and then sends remote program call request followed immediately by
remote program call reply and the converted data.

11. The DPC server processes the request, sends remote program call reply followed by remote program call parameters and
data.

12. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the TCP transport component.

b. Reads the message buffer.

If the application is a COM+ component, the TI Automation proxy:

a. Maps the OS/400 data types to the automation data.

b. Calls the conversion routines to convert the OS/400 RPG types to the application data.

If the application is a .NET assembly, the TI Automation proxy:

a. Maps the AS/400 data types to the .NET Framework data types.

b. Calls the conversion routines to convert the OS/400 RPG types to the application data.

13. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

Note
The maximum size of a message is 32,767 bytes, including field headers and data.

Note
The RMTPGMCALL can pass maximum 35 parameters as IN or OUT, or as IN/OUT in any combination.

Host Integration Server includes sample code showing how to implement the IMS Connect programming model. The sample

code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial you want to
use, and follow the instructions in the Readme.

For information about configuring the mainframe and writing server applications for IBM AS/400e, see the ILE RPG/400
Programmers Guide Version 4 (IBM Document #SC09-2507-02) and the ILE RPG/400 Reference Version 3 (IBM Document
#SC09-2077-01).

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from RPG to Automation
Converting Data Types from Automation to RPG
Concepts
AS/400 Security
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components
COMTIContext Interface

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771908(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705581(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770526(v=bts.10).aspx

CICS LU6.2 Link
The CICS LU6.2 Link programming model is one of the simplest models that you can use to implement TI functionality.

The following figure summarizes the workflow occurring between the client, the default CICS Mirror Transaction, and the
mainframe transaction program. The numbers in parentheses indicate the approximate order in which events occur. A more
detailed description of the events follows the figure.

Transaction Integrator sending and receiving parameters with DPL information from a CICS Mirror Transaction

Summary workflow diagram for the CICS LU6.2 Link programming model

The CICS LU6.2 Link programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy does the following:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET assembly, the TI Automation proxy does the following:

a. Reads in the assembly and metadata created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the SNA transport component.

4. TI sends the TP Name CSMI request specified by the TI component method to the CICS Mirror Transaction using DPL
information and the LU6.2 protocol. (IBM provides CSMI with CICS on the TI prerequisite systems.)

The CICS Mirror Transaction is a special CICS TP that acts as a gateway between TPs running in different CICS regions,
thereby allowing them to exchange data through the COMMAREA. TI takes advantage of this standard method of
communication between CICS TPs to access mainframe TPs. CSMI handles all APPC and transactional properties required
on the communication. The TRANID for this TP is CSMI.

The Distributed Program Link (DPL) is the protocol used when communicating with CSMI. TI uses DPL to communicate

with CSMI.

5. CSMI (the CICS Mirror Transaction) takes control and issues an EXEC CICS Link command to the requested server TP in
CICS. (The name of this program can be associated the remote environment (RE) and with the method name in TI
Designer.)

6. The CICS Mirror transaction passes the COMMAREA that contains the input fields to the server TP.

The COMMAREA is a communication area of up to 32 KB containing all of the data that is passed to and from the
mainframe program. Many CICS TPs, written in COBOL, use this area of the mainframe transaction code to exchange
data. When using the CICS Link using LU6.2 programming model, TI appears to the mainframe TP as just another CICS
TP exchanging data through the COMMAREA.

The Server TP is the TP that TI invokes on behalf of the client application. It contains the business logic being executed
and is identified by its TRANID in the method call of the client application.

Note
The term server TP is used to identify the TP that TI is accessing. This clarification is necessary because access to mainfr
ame applications may and typically does involve a number of TPs.

7. When the server TP is finished processing, it issues an EXEC CICS RETURN command, which returns the data in the
COMMAREA to the CICS Mirror transaction with all output fields updated.

8. The CICS Mirror transaction returns the output data, if any is required, to TI.

9. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. receives the message from the SNA transport component.

b. reads the message buffer

If the application is a COM+ component, the TI Automation proxy:

a. maps the COBOL data types to the automation data

b. calls the conversion routines to convert the mainframe COBOL types to the application data

If the application is a .NET assembly, the TI Automation proxy:

a. maps the COBOL data types to the .NET Framework data types

b. calls the conversion routines to convert the mainframe COBOL types to the application data

10. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

Only the flow model is supported with CICS Link, so unbounded recordsets are not supported for this class of TP. Fixed-sized
recordsets (that is, bounded recordsets) are supported.

CSMI also handles any Sync Level 2 interactions with TI, and thus transparently provides the 2PC capability for programs in
this class.

Existing CICS programs may already be structured this way. Instead of TI issuing the LU 6.2 request, another CICS TP might
already issue an EXEC CICS Link to run the CICS program shown in the previous illustration. In that case, both the existing CICS
TP and the TI component can coexist and run the same CICS program.

Note

CSMI is the default mirror transaction name, but you can specify a different name.

Host Integration Server includes sample code showing how to implement the CICS LU6.2 Link programming model. The
sample code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial you want
to use, and follow the instructions in the Readme.

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
CICS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

CICS LU6.2 User Data
The CICS LU6.2 User Data programming model provides direct invocations and data exchanges between TI and the server TP.
No other communication components are required with this model.

The following figure summarizes the workflow occurring between the client, the default CICS Mirror Transaction, and the
mainframe transaction program. The numbers in parentheses indicate the approximate order in which events occur. A more
detailed description of the events follows the figure.

Transaction Integrator sending and receiving LU 6.2 or TCP/IP from the mainframe transaction program

Summary workflow diagram for the CICS LU6.2 User Data programming model

The CICS LU6.2 User Data programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET assembly, the TI Automation proxy:

a. Reads in the assembly and metadata created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the SNA transport component.

4. The TI proxy sends the TP invocation request specified by the TI component method to the server TP by using the LU6.2
protocol. In this message, TI sends the TRANID of the server TP that the method is invoking.

5. TI and the server TP communicate directly by issuing APPC or Common Programming Interface for Communications
(CPI-C) verbs to receive and send the input and output fields, respectively.

6. If necessary, the server TP issues the appropriate verbs to implement Sync Level 2 properties and 2 phase commit.

7. The mainframe TP closes the socket.

8. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

a. Receives the message from the SNA transport component.

b. Reads the message buffer

If the application is a COM+ component, the TI Automation proxy:

a. Maps the COBOL data types to the automation data.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

If the application is a .NET assembly, the TI Automation proxy:

a. Maps the COBOL data types to the .NET Framework data types.

b. Calls the conversion routines to convert the mainframe COBOL types to the application data.

9. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

Host Integration Server includes sample code showing how to implement the CICS LU6.2 User Data programming model. The
sample code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial you
want to use, and follow the instructions in the Readme.

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
CICS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

IMS LU6.2 User Data
The IMS LU6.2 programming model provides access to IMS transactions using LU6.2.

The following figure summarizes the workflow occurring between the client, the default IMS Listener, and the mainframe
transaction program. The numbers in parentheses indicate the approximate order in which events occur. A more detailed
description of the events follows the figure.

Transaction Integrator sending and receiving LU 6.2 from MVS/APPC, which then sends and receives from the IMS
message queue

Summary workflow diagram for the IMS LU6.2 User Data programming model

The IMS LU6.2 programming model works as follows:

1. An application invokes a method in a TI component configured in either Component Services or the .NET Framework.

2. The TI runtime calls the TI Automation proxy.

3. If the application is a COM+ component, the TI Automation proxy:

a. Reads in the type library created previously by the TI Designer.

b. Maps the automation data types to COBOL data types.

If the application is a .NET assembly, the TI Automation proxy:

a. Reads in the assembly and meta data created previously by the TI Designer.

b. Maps the .NET Framework data types to COBOL data types.

4. The TI Automation proxy then:

a. Calls the conversion routines to convert the application data to mainframe COBOL types.

b. Builds the flattened data stream buffer that represents the COBOL declaration or copybook.

c. Passes the message to the SNA transport component.

5. The TI Automation proxy sends the transaction execution request (TER) and the user data to MVS APPC through the IBM-
supplied multiple virtual storage/advanced program-to-program communications (APPC/MVS) application.

6. APPC/MVS application instructs IMS to place the transaction execution request and user data on the IMS message queue.

7. IMS schedules the server TP into a message processing region (MPR).

8. After execution begins, the TP issues a DL/I Get Unique (GU) command to get the input parameters that were sent by the
TI runtime. If there is an input unbounded record set, the TP also makes one or more Get Next (GN) calls to get each row
of the record set that was sent.

9. After the TP processes the inputs and makes any database calls, it makes one or more Insert (ISRT) calls to place the
output parameters and possibly an output or return-value unbounded recordset into the IMS message queue to be
packaged and returned to the TI runtime through the APPC/MVS application.

10. The TI Automation proxy receives the reply data and processes the reply. The TI Automation proxy:

11. receives the message from the SNA transport component.

12. reads the message buffer

If the application is a COM+ component, the TI Automation proxy:

13. maps the COBOL data types to the automation data types

14. calls the conversion routines to convert the mainframe COBOL types to the application data

If the application is a .NET assembly, the TI Automation proxy:

15. maps the COBOL data types to the .NET Framework data types

16. calls the conversion routines to convert the mainframe COBOL types to the application data

17. The TI runtime sends the converted data back to the COM or .NET Framework application that invoked the method.

Host Integration Server includes sample code showing how to implement the IMS LU6.2 User Data programming model. The
sample code is located at \installation directory\SDK\Samples\AppInt. Start Microsoft Visual Studio, open the tutorial you
want to use, and follow the instructions in the Readme.

See Also
Reference
Configure Host Environment and Programming Model Wizard Page
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation
Concepts
IMS Components
TI Runtime
Choosing the Appropriate Programming Model
Other Resources
Transaction Integrator Components

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754464(v=bts.10).aspx

Choosing the Appropriate Programming Model
A TI programming model determines the method used to access and integrate host applications and TI configuration
requirements depending on the specific TI programming model being used. Implementing TI may require modification to the
existing mainframe TPs to be able to fit the programming models that it supports. Specifically, this may be necessary when:

A TP does not expect a simple request-reply response.

A CICS TP has terminal processing logic embedded in the same TP with the business logic. This type of TP must be
restructured as two separate TPs. Accesses business logic that already exists on the mainframe computer as TPs. You can
use this function, or you can create the methods on the COM side and then create the necessary server TPs on the
mainframe computer. This is still a viable option because TI may be better for accessing some types of data, such as those
stored in VSAM data sets, than standard data access methods.

You must carefully analyze the business requirements of your organization so that you can implement transaction access by
using one of the programming models provided in TI.

TI supports the programming models listed in the table below. Some of the factors you should consider when choosing the
appropriate programming model for your organization are:

the network procotol

the maximum size of the message or data that can be sent to the host

whether you need to use two-phase commit transactions in host applications

whether you have to write your own communications protocol to support a Link program

whether you want the server to have the ability to maintain the client to server context, also referred to as a persistent
connection

other requirements specific to a particular model.

The following table summarizes the similarities and differences among the programming models.

Programming Model Ne
tw
ork
Pr
ot
oc
ol

Maxi
mum
Messa
ge or
Data
Size

Supp
orts T
wo-p
hase
Com
mit?

Write Own Co
mmuni-catio
ns Protocol?

Suppo
rts Per
sistent
Conne
ct-ion
s?

Other Requirements

TCP Transaction Request Message Link TC
P/I
P

32 KB No No (see sample
code)

Yes See mscmtics.cbl sample applicati
on.

1:many relationship between serv
er application and port.

TCP Enhanced Listener Message Link TC
P/I
P

32 KB No No (see sample
code)

Yes See mscmtics.cbl sample applicati
on.

1:1 relationship between server a
pplication and port.

https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx

TCP Transaction Request Message User Data TC
P/I
P

unlimi
ted

No Yes

(Server TPs are
coded to handl
e all socket call
s over TCP/IP)

Yes 1:many relationship between serv
er application and port.

TCP Enhanced Listener Message User Data TC
P/I
P

unlimi
ted

No Yes

(Server TPs are
coded to handl
e all socket call
s over TCP/IP)

Yes 1:1 relationship between server a
pplication and port.

IMS Connect TC
P/I
P

10MB No No No No inbound (from TI to the host)
unbounded recordsets are allowe
d. TI cannot send unbounded rec
ordsets to the host; only those rec
ordsets coming back from the ho
st to TI are supported.

Dependent on the IBM supplied H
WSIMSO0 and HWSIMSO0 exit r
outines.

IMS Implicit TC
P/I
P

unlimi
ted in
bound

32KB
outbo
und

No No No

IMS Explicit TC
P/I
P

unlimi
ted

No Yes

(IMS TPs are co
ded to handle a
ll socket calls o
ver TCP/IP)

No

OS/400 Distributed Program Calls TC
P/I
P

32KB No No Yes

https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771844(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771713(v=bts.10).aspx

CICS LU6.2 Link LU
6.2

32KB Yes No No Server TPs are already coded to u
se the COMMAREA.

Note
CICS Link does not support multi
ple send-and-receive commands.
Therefore, variable length record
sets are not supported, but fixed-
sized recordsets are supported.

CICS TPs do not contain the nece
ssary logic to handle issuing APP
C verbs directly, but instead must
rely on the CICS Mirror transactio
n.

The TP is coded for a simple send
-and-receive sequence.

CICS LU6.2 User Data LU
6.2

unlimi
ted

Yes Yes

(Server TPs are
coded to handl
e all APPC and
Sync Level 2 co
mmunica-tions
.)

Yes Existing TPs contain the proper co
de necessary to manage their ow
n APPC and Sync Level 2 commu
nications.

Can use multiple send-and-receiv
e commands.

IMS LU6.2 User Data LU
6.2

unlimi
ted

Yes No No Each server TP must have the em
bedded code necessary to handle
all data communications using th
e LU6.2 protocol.

Implementing a specific programming model requires that you install and configure the appropriate software on your
mainframe or AS/400 computer. When choosing the appropriate programming model for your organization, you might want
assess how closely your current host configuration match the minimum requirements. The following table summarizes the
minimum software and configuration requirements for each programming model.

Programming Model To use this model, you must install and configure
TCP Transaction Request Message Link IBM MVS operating system 4.3 or later.

IBM CICS 4.0 or later.

The Listener TP, which is included in CICS TCP/IP, configured and started.

TCP/IP for MVS version 3.2 or later.

At least one CICS region defined in an APPL statement in VTAM with TPs co
nfigured.

https://msdn.microsoft.com/en-us/library/aa770317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx

TCP Enhanced Listener Message Link IBM MVS operating system 4.3 or later.

IBM CICS Transaction Server 1.3 or 2.0.

The Listener TP, which is included in CICS TCP/IP, configured and started.

TCP/IP for MVS version 3.2 or later.

At least one CICS region defined in an APPL statement in VTAM with TPs co
nfigured.

TCP Transaction Request Message User Data IBM MVS operating system 4.3 or later.

IBM CICS 4.0 or later.

The Listener TP, which is included in CICS TCP/IP, configured and started.

TCP/IP for MVS version 3.2 or later.

At least one CICS region defined in an APPL statement in VTAM with TPs co
nfigured.

TCP Enhanced Listener Message User Data IBM MVS operating system 4.3 or later.

IBM CICS Transaction Server 1.3 or 2.0.

The Listener TP, which is included in CICS TCP/IP, configured and started.

TCP/IP for MVS version 3.2 or later.

At least one CICS region defined in an APPL statement in VTAM with TPs co
nfigured.

IMS Connect IBM MVS operating system 4.3 or later.

IBM IMS 4.1 or later.

The Listener TP included in IMS TCP/IP.

TCP/IP for MVS version 3.2 or later.

IMS TCP/IP.

https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770672(v=bts.10).aspx

IMS Implicit IBM MVS operating system 4.3 or later.

IBM IMS 4.1 or later.

The Listener TP included in IMS TCP/IP.

TCP/IP for MVS version 3.2 or later.

IMS TCP/IP.

IMS Explicit IBM MVS operating system 4.3 or later.

IBM IMS version 4.1 or later.

The Listener TP included in IMS TCP/IP.

TCP/IP for MVS version 3.2 or later.

IMS TCP/IP.

OS/400 Distributed Program Calls IBM OS/400 release 4 version 1 or later.

CICS LU6.2 Link IBM MVS operating system version 4.3 or later.

IBM CICS version 3.3 or later.

The CICS Mirror transaction, which is included in CICS version 3.3 or later.

VTAM.

At least one CICS region defined in an Application (APPL) statement in VTA
M with TPs configured.

The proper VTAM PU, LU, and Mode definitions necessary to establish Syst
ems Network Architecture (SNA) connectivity

CICS LU6.2 User Data IBM MVS operating system 4.3 or later, including OS/390.

IBM CICS 3.3 or later.

VTAM.

At least one CICS region defined in an APPL statement in VTAM with TPs co
nfigured.

The proper VTAM PU, LU, and Mode definitions necessary to establish SNA
connectivity.

https://msdn.microsoft.com/en-us/library/aa771844(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746251(v=bts.10).aspx

IMS LU6.2 User Data IBM MVS operating system 4.3 or later.

MVS/APPC must be installed on the mainframe computer. MVS/APPC is inc
luded with the operating system.

IBM IMS 4.0 or later.

IBM IMS 6.0 or later if using 2PC protocols (Sync Point level 2).

IBM Recovery Resource Services (RRS) if using 2PC protocols (Sync Point le
vel 2). In addition, the proper IMS control regions must be defined in an AP
PL statement in VTAM.

See Also
Concepts
Two-Phase Commit
Other Resources
Programming Models

https://msdn.microsoft.com/en-us/library/aa704943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705504(v=bts.10).aspx

Supported Data Flow Models
Transaction Integrator (TI) supports the following four data flows:

Non-transactional Data Flows That Support Bounded Recordsets

Non-transactional Data Flows That Support Unbounded Recordsets

Transactional Data Flows That Support Bounded Recordsets

Transactional Data Flows That Support Unbounded Recordsets

The following table shows the mainframe-based programming models and the data flows that TI supports.

Mainframe Programming
Models

Non-transactional bo
unded recordsets

Non-transactional unb
ounded recordsets

Transactional boun
ded recordsets

Transactional unbou
nded recordsets

TCP Transaction Request Me
ssage (TRM) Link

X

TCP Enhanced Listener Mess
age (ELM) Link

X

TCP Transaction Request Me
ssage (TRM) User Data

X X

TCP Enhanced Listener Mess
age (ELM) User Data

X X

IMS Connect X

IMS Implicit X

IMS Explicit X X

OS/400 Distributed Program
Calls

X

CICS LU6.2 Link X X

CICS LU6.2 User Data X X X X

IMS LU6.2 X X X X

In This Section

Non-transactional Data Flows That Support Bounded Recordsets

Non-transactional Data Flows That Support Unbounded Recordsets

Transactional Data Flows That Support Bounded Recordsets

Transactional Data Flows That Support Unbounded Recordsets

See Also
Other Resources
Programming Models

https://msdn.microsoft.com/en-us/library/aa771100(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771845(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705813(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771100(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771845(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705813(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705504(v=bts.10).aspx

Non-transactional Data Flows That Support Bounded
Recordsets

For each method invocation, TI converts and sends the input parameters to the transaction program (TP). The mainframe TP
executes, processes the input data (for instance, accessing or updating the database), and sends its response back to TI. Then TI
receives the output parameters from the TP and converts them to return to the invoker.

This data flow model does not support unbounded recordsets. (An unbounded recordset has no set number of rows.)

The following server models support this data flow model:

CICS LU6.2 Link

CICS LU6.2 User Data

IMS LU6.2

TCP Transaction Request Message (TRM) Link

TCP Transaction Request Message (TRM) User Data

IMS Explicit

IMS Implicit

IMS Connect

OS/400 Distributed Program Calls

See Also
Other Resources
Supported Data Flow Models

https://msdn.microsoft.com/en-us/library/aa705769(v=bts.10).aspx

Non-transactional Data Flows That Support Unbounded
Recordsets

This model supports one or more consecutive sends followed by one or more consecutive receives. Therefore, the last input
parameter of the method invocation can be an unbounded recordset (that is, a recordset with no set number of rows).

The input parameters are converted and sent, and then each row of the recordset is converted and sent to the mainframe
transaction program (TP). The mainframe TP executes, receives the input data and each row of the recordset, processes the
data (perhaps doing database accesses and/or updates), and then sends its response back to TI. TI receives any output
parameters from the TP and converts them to return to the invoker. Then each row of an unbounded recordset is received, if
appropriate. The mainframe TP has no notion of a recordset; it is just receiving or sending tabular data. TI handles all
conversion to and from the recordset.

The following server models support this data flow model:

CICS LU6.2 User Data

IMS LU6.2

TCP Transaction Request Message (TRM) User Data

IMS Explicit

See Also
Other Resources
Supported Data Flow Models

https://msdn.microsoft.com/en-us/library/aa705769(v=bts.10).aspx

Transactional Data Flows That Support Bounded Recordsets
This data flow model does not support unbounded recordsets. (An unbounded recordset has no set number of rows.)

The following figure shows what happens when a TI component participates in a COM+ transaction (a DTC-coordinated two-
phase commit [2PC] exchange). TI uses LU 6.2 Sync Level 2 to manage the transaction. This capability applies to CICS and to
IMS version 6.0 with Resource Recovery Services (RRS).

Transaction Integrator sending and receiving a two-phase commit exchange from a mainframe via LU 6.2

TI sending and receiving a two-phase commit

This transactional model does not support unbounded recordsets. (An unbounded recordset has no set maximum number of
rows.) The transactional model is supported only by the LU 6.2 protocol, not the TCP/IP protocol. Therefore this model
supports the following server models only:

CICS LU6.2 Link

CICS LU6.2 User Data

IMS LU6.2

Microsoft Distributed Transaction Coordinator (DTC) works with the TI run-time environment and with the SNA LU 6.2 Resync
TP service to provide the necessary 2PC flows as well as transaction log synchronization and recovery services. TI Automation
clients can remain completely uninvolved in transaction commit or rollback decisions, or they can participate as shown in the
following Visual Basic code. TI Automation clients are never aware of, nor involved in, transaction recovery. The following code
sample is for a Visual Basic client that is involved in transaction control.

If a client remains uninvolved in transaction control, the TI run-time environment automatically commits transactions that have
no run-time environment failures and automatically rolls back those transactions that have failures. The TI run-time
environment, however, cannot detect or react to application-specific conditions that require a transaction to initiate a rollback.
These must be handled by the client application. For example, an "out of cash" situation in an automated teller machine must
be handled by the client application.

See Also
Other Resources

'Get object context reference
Set ctxObject = GetObjectContext()
'Create object instance for an example ProgID
Set obj = ctxObject.CreateInstance ("A.B.1")
'Invoke a method on the object with some parameters
ret = obj.YourMethod(c,d,e)
Do any other work that is part of this transaction
'If application finds all is well, then commit, otherwise roll back
If<something is not OK> Then
 ctxObject.SetAbort
Else
 ctxObject.SetComplete
End if

Supported Data Flow Models

https://msdn.microsoft.com/en-us/library/aa705769(v=bts.10).aspx

Transactional Data Flows That Support Unbounded Recordsets
This model supports one or more consecutive sends followed by one or more consecutive receives. Therefore, the last input
parameter and/or the return value of the method invocation can be an unbounded recordset (that is, a recordset with no set
number of rows).

The CICS Link programming model cannot be used, so this data flow model supports only these two server models:

CICS LU6.2 User Data

IMS LU6.2

See Also
Other Resources
Supported Data Flow Models

https://msdn.microsoft.com/en-us/library/aa705769(v=bts.10).aspx

Iterative vs. Concurrent TCP/IP Models
IBM defines two models for accessing server applications in CICS and IMS. In both models, there is a TCP/IP connection
Listener and a Server aspect to the total application. The manner in which the Listener and Server portions of the application
are implemented determines whether the model is Iterative or Concurrent.

Iterative model. In the Iterative model, the Listener and Server portions of the application coexist in the same CICS or IMS
TP and run as part of the same CICS task. The server application, therefore, holds the socket until all application
processing has completed. This means that after a client TP starts a server TP, another client TP cannot access the Listener
or the server TP until the first client is finished.

Concurrent model. In the Concurrent model, the Listener and Server portions of the application run under the control of
different tasks. The Listeners purpose is to accept the connection and invoke the Server task. The Server portion of the
application deals with all sending and receiving of application data and performing application-dependent processing.
This model allows a higher degree of transaction concurrency because the listening socket is not held by a single client
and can instead listen concurrently to multiple clients. Even though the CICS MS Link using TCP/IP programming model
is not called concurrent, the server TP does work concurrently instead of iteratively.

In the four TI-supported TCP/IP models other than IMS Connect, there is both a TCP/IP connection Listener aspect and a Server
aspect. The manner in which the Listener and Server portions of the application are implemented determines whether the
Iterative or the Concurrent access model is used. The Concurrent access model requires the use of a Transaction Request
Message (TRM); the Iterative model does not. The TRM is a formatted data record that identifies the IMS or CICS transaction
program (TP) to be invoked and its characteristics.

In This Section

Iterative Model

Concurrent Model

See Also
Other Resources
Programming Models

https://msdn.microsoft.com/en-us/library/aa770719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705504(v=bts.10).aspx

Iterative Model
In the Iterative model, the Listener and Server portions of the application coexist in the same CICS or IMS TP, so the TP holds
the socket until all application processing has been completed. The Iterative model uses this sequence:

1. Create a socket

2. Bind it to a local address

3. Listen (make TCP/IP aware that the socket is available)

4. Select (wait for a connection request)

5. Accept the connection request

6. Read or write the data

7. Close

The advantages of the Iterative model are:

Simplicity

Reduced network overhead and delay because a TRM exchange sequence is not required

Less CPU intensive

Higher single-threaded transaction throughput

The disadvantages of the Iterative model are:

Severely limits concurrent access to TPs that run for a long time

Server application contains all of the SEAPI calls (Create to Close)

Each TP has its own Listener, which means duplicate code

Select with timeout causes a CICS region to sleep

See Also
Other Resources
Iterative vs. Concurrent TCP/IP Models

https://msdn.microsoft.com/en-us/library/aa771458(v=bts.10).aspx

Concurrent Model
In the Concurrent model, the Listener and Server portions of the TP run under the control of different tasks. The Listener's sole
purpose is to accept the connection and spawn the Server task. The Server portion of the application sends and receives data
and performs TP-dependent processing. This model allows a higher degree of concurrency because the listening socket is not
held for an extended period of time.

The Listener must receive a TRM as the first data from the TI run-time environment. The TRM tells the Listener which TP to
invoke and the characteristics of that program. After sending the TRM, the TI run-time environment must wait for a response
before sending data. The Listener of the Concurrent model follows this sequence:

1. Create a Listening socket

2. Bind it to a local address

3. Listen (make TCP/IP aware that the socket is available)

4. Select (wait for a connection request)

5. Accept the connection

6. Read the TRM

7. Check the validity of the requested transaction ID (TRANID)

8. Give a socket (prepare TCP/IP for the transfer of the socket)

9. Start the task

10. Synchronize on the worker task acceptance of the socket

11. Select (wait for connection request)

The Worker task of the Concurrent model follows this procedure:

1. Take a socket (accept the socket request from the Listener).

2. Write a response to the TRM.

3. Read or write application data.

4. Close.

The advantages of the Concurrent model are:

Easy to implement concurrent access to TPs that run for a long time.

One Listener is shared by many TPs.

Server TCP/IP logic is simple.

The disadvantages of the Concurrent model are:

Increased network overhead and delays due to the requirement of the TRM exchange.

More CPU and resource intensive than is the Iterative model.

See Also
Other Resources
Iterative vs. Concurrent TCP/IP Models

https://msdn.microsoft.com/en-us/library/aa771458(v=bts.10).aspx

Host-Initiated Processing
Host-initiated processing (HIP) enables a host application to call a method of a COM or .NET object, pass parameters to the
method, and receive parameters back from the method. As data travels first from the host to the client and then from the client
to the host, the data is transformed from a format understandable by the host to the format appropriate for the client

Host-initiated processing is implemented in the following steps:

1. The HIP service process, called an application, begins listening for incoming connections on a list of endpoints specified
by a local environment definition.

2. The client application, running on the host, initiates a TCP connection to a HIP system using one of the endpoints

3. The HIP service process checks if there is an established association between the endpoint and the clients host name or IP
address. If no association is found, the connection is aborted.

4. The association uniquely identifies the work plan that is a sequence of workflows to be performed to complete the clients
request. There are three types of work plans:

a. Endpoint

b. Transaction Request Message

c. Data.

Endpoint

The endpoint work plan consists of a single final workflow. The association is directly mapped to a method of a COM object
that is to be invoked for the clients request processing. The endpoint workflow performs the following:

1. Receives client data

2. Unpacks data and populates parameters for the method

3. Creates the object and calls the method

4. Packs returned parameters into the client data

5. Sends client data

6. Closes connection.

Transaction Request Message

The Transaction Request Message (TRM) work plan consists of two workflows: TRM and Final workflow. TRM workflow
handles initial part of the conversation when client sends the TRM and the workflow replies with the TRM Reply. Depending on
the type of TRM, the TRM workflow can use one of three TRM Handlers: Microsoft Concurrent Server, Microsoft Link, IBM
Concurrent Server. The TRM workflow performs the following:

1. Receives and unpacks the TRM using the assigned input format

2. Passes the TRM to the assigned handler

3. The handler returns the resolution information and the positive TRM Reply

4. The resolution information, which is expected to be character data, is converted to Unicode using the code page
associated with the host environment

5. Workflow queries the database if there is a mapping to a method of an object defined for the resolution information

6. In case the match is not found, the handler is called to get the negative TRM Reply

7. The TRM Reply is packed using the assigned output format and sent. In the negative case, the connection is aborted

8. Workflow passes control to Final workflow along with the method identity found

Data

The Data determinant work plan consists of two workflows: Data Determinant and Final workflow. Data Determinant workflow
preprocesses the client data trying to find a match to one of the determinants defined for the association. Determinant includes
a string of characters and the position of the string in the client data. Each determinant is mapped to a method of an object. At
startup the determinants are pre-converted to all code pages of hosts associated with determinants. The rules are enforced that
determinants for an end point – host association are not duplicated or one determinant is not a part of the other. The workflow
follows these steps:

1. The list of determinants for the given End Point – Host combination is obtained and sorted by the sum of the length and
position in ascending order

2. The first determinant is taken from the list

3. A part of client data is received

4. The data is checked if it matches the determinant

5. In case of no match the next determinant is taken from the list, more client data received if needed, data compared to
determinant

6. When no available determinant matches the data the connection is aborted

7. If a determinant is found the control is passed to Final workflow along with the method identity and the client data
already read. There could be a situation when the determinant data is located within or even after the client data mapped
to the methods parameters.

Note
A HIP MVS client must perform a socket shutdown immediately after a socket send and before a socket receive. Failure to pe
rform an immediate socket shutdown causes the TI runtime to refuse the data, break the connection, and log an 808 event m
essage (A Transaction Integrator HIP application received more data than expected.) to the server application event l
og. In addition, the packet containing the data being sent to the workstation might appear misleading: the Microsoft Network
Monitor shows the data within the packet and data length not being excessive.

See Also
Other Resources
Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa745014(v=bts.10).aspx

Windows-Initiated Processing
Windows-initiated processing (WIP) enables Windows-based client applications to invoke mainframe based transaction
programs (TPs). Transaction Integrator (TI) along with the Windows operating system includes everything you need to build,
deploy, and manage TI components that enable mainframe transaction programs (TPs) to interoperate with Windows-based
COM and .NET applications.

The following programming models support Windows-initiated processing:

TCP Transaction Request Message Link

TCP Enhanced Listener Message Link

TCP Transaction Request Message User Data

TCP Enhanced Listener Message User Data

IMS Connect

IMS Implicit

IMS Explicit

OS/400 Distributed Program Calls

CICS LU6.2 User Data

CICS LU6.2 Link

IMS LU6.2 User Data

In This Section

What WIP Does

WIP Programming Model

Providing a Fail-Safe Environment for ACID Transactions

Using TI in a Non-DPL Environment

See Also
Other Resources
Transaction Integrator Architecture

https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771844(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770321(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705274(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771479(v=bts.10).aspx

What WIP Does
Windows-initiated processing (WIP) enables Windows-based client applications to invoke mainframe based transaction
programs (TPs). Transaction Integrator (TI) provides a COM or .NET object interface (an Automation interface), maps data types
to convert from the Intel-based architecture to the OS/390-based or OS/400-based architecture, and interacts with the host
TPs.

In This Section

How TI Associates a Method with a TP

How TI Enables TPs to Return Exceptions

See Also
Other Resources
Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa771246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704857(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745014(v=bts.10).aspx

How TI Associates a Method with a TP
TI generally establishes some type of association between a method call in the Windows environment and the corresponding
TP on the mainframe.

In the CICS TRM and ELM Link programming models, you can specify three names:

Mainframe transaction program (TP) name

TI component's method name

Source TP Name

The name of the mainframe TP is constant for a given remote environment (RE). CSMI (the Mirror transaction) is an example of
a mainframe TP Name. Each method name can be associated with a different mainframe TP Name. In addition, a third name,
called the Source TP Name, can be specified for each method. The Source TP Name can be used with DB2 to associate a specific
mainframe TP (and TI method) with a region control task (RCT).

In the CICS TRM and ELM User Data programming models, each method in a TI component is associated with a TP Name, and
multiple methods can be associated with the same TP Name. If multiple methods are associated with the same TP Name, TI
assumes that the TP is able to distinguish between the requests generated by each method. The TI run-time environment
should optionally provide Meta data to assist the TP with this process. When Meta data is included, the method name is sent as
a fixed-length character string (32 characters) and is always the first item sent. The method name is left justified in the field and
padded with blanks. Developers can specify the method-TP Name mapping on a per-method basis or as a default for the entire
component.

When COBOL that is imported to build a TI component library contains REDEFINES clauses, the TP can expect different kinds of
requests. The developer should consider creating a method for each REDEFINES group that represents a different message
format. All of the methods created from these REDEFINES groups can map to the same TP.

See Also
Other Resources
What WIP Does

https://msdn.microsoft.com/en-us/library/aa770321(v=bts.10).aspx

How TI Enables TPs to Return Exceptions
TI provides a Meta data mechanism for returning exceptions from Automation server applications like TI applications. TI uses
this mechanism to provide the mainframe developer with an optional way to return mainframe error information (also known
as exception data) back through the normal application.

A transaction program (TP) returns error information as optional Meta data that includes an exception block as part of the
reply message. The exception block contains information, in a standard format, that can be used to populate an Automation
exception structure.

TI error messages have numbers in the range 0-9999. Meta data error message numbers returned from the mainframe can fall
within the same range. To distinguish TI error messages from Meta data messages returned from the mainframe, TI adds
10000 to the number of any Meta data error message returned from the mainframe.

A TP can also use this mechanism to provide information regarding the TP state to the TI run-time environment. Specifically, a
TP can indicate whether the TP:

Is willing to commit the work performed so far (and deallocate the conversation).

Can perform no more work on the current conversation and expects the client to prepare and commit.

Has encountered an error that will prevent it from committing the transaction.

While it is always possible for a TP to deallocate the conversation abruptly, TI exceptions allow it to return detailed information
about the error to the calling client application.

TI uses the information contained in the exception block to update state information in the TI run-time environment and (if
requested) return an exception to the client application.

The following table shows the fields in the EXCEPINFO exception structure.

Fiel
d

Description

wCo
de

The error code returned in the exception block.

bstr
Sou
rce

Generated automatically by TI based on information about the customer's object and the remote TP.

bstr
Des
cript
ion

From the exception block. This error description comes from the remote TP.

bstr
Hel
pFil
e

Formed by taking the Help path associated with the object's component library (in the Registry) and combining it with an
unqualified file name included as custom information in the component library. This allows the developer to identify the f
ile name of the Help file as it was created, while giving the administrator ultimate control over where the Help file is instal
led during deployment.

dw
Hel
pCo
ntex
t

From the exception.

scod
e

Same as wCode.

It is possible for the TP to return state information without actually raising an exception. To keep the mainframe TP code as
straightforward as possible, the exception data is part of the optional Meta data and is returned in all cases, whether an error
occurs or not.

See Also
Other Resources
What WIP Does

https://msdn.microsoft.com/en-us/library/aa770321(v=bts.10).aspx

WIP Programming Model
The programming models provide a synchronous bridge between the component object model (COM) or the .NET Framework
and the mainframe transaction-programming model. Consequently, Transaction Integrator (TI) has no APIs that a developer
must use.

Although TI uses existing mainframe programming models, you may need to make some changes to an existing mainframe
transaction program (TP) if any of the following are true:

The TP uses a conversational or pseudo-conversational mode. TI supports only the nonconversational TP model known
as the ping-pong or request-reply conversational sequence in conversations between clients and servers. The TI
programming model requires nonconversational method calls; that is, a single input message and a single output
message. See "Supported Conversational Model" for more information.

The TP has terminal processing logic embedded in the same program with the business logic. To get this program to
work with TI, you must first restructure it as two separate TPs, one for the terminal processing logic and the other for the
business logic. Then you can use TI with the business logic TP.

A CICS Link transaction program (TP) using LU 6.2 uses explicit EXEC SYNCPOINT commands. There may be a way to
work around this issue without rewriting the TP. For more information, see TPs with Explicit SYNCPOINT Commands.

The topics in this section give you the details on the mainframe programming models and how they are addressed in the TI
programming model.

In This Section

Supported Conversational Model

TPs with Explicit SYNCPOINT Commands

Support for Transactions and Two-Phase Commit

See Also
Other Resources
Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa705764(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746164(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745014(v=bts.10).aspx

Supported Conversational Model
TI supports only the nonconversational (ping-pong) model. A mainframe transaction program (TP) may not expect a request-
reply (ping-pong) nonconversational sequence like that required by TI, in which case, you will need to modify the mainframe
TP. The mainframe TP may be set up to communicate with other TPs by using the conversational or pseudo conversational
models, neither of which are supported by TI.

In a nonconversational transaction, the entire exchange of data between the client and server occurs within a single method
call. The exchange of data can be fairly complex (for example, if recordsets are used), but the base application has no
opportunity to delay the exchange of data or otherwise cause the conversation to remain idle.

A pseudo-conversational TP attempts to get conversational-type client/server interactions while avoiding the scalability
problems associated with true conversations. Pseudo-conversations are implemented by TPs that maintain state for clients
over a series of nonconversational requests. An application-specific context handle is used to retrieve the saved state over the
course of the pseudo-conversation. TI does not support the pseudo-conversational model.

See Also
Other Resources
WIP Programming Model

https://msdn.microsoft.com/en-us/library/aa705274(v=bts.10).aspx

TPs with Explicit SYNCPOINT Commands
CICS LU 6.2 Link transaction programs (TPs) cannot use explicit EXEC SYNCPOINT commands to control the transaction
semantics of COM+ transactions. However, if an existing CICS Link TP does issue explicit EXEC SYNCPOINT commands, you do
not need to modify the TP to have it work successfully with TI. You need only meet the following two requirements for TI
components that execute within the transaction.

Set the TI component's transaction property to Does not support transactions. You define a component's transaction
property when you create the component in TI Designer. Once you deploy the TI component in a COM+ application, you
can view or modify its transaction property in TI Manager.

Configure the remote environment (RE) that describes the region on the mainframe and that hosts the CICS Link TP to
allow the use of explicit SYNCPOINT commands for non-transactional components.

To configure the RE to allow the use of explicit SYNCPOINT commands

1. In TI Manager, right-click the RE that you want to configure, click Properties, and then click the CICS Mirror TP tab.

2. Select the Allow use of explicit SYNCPOINT commands for nontransactional components check box.

3. Click OK.

If the two requirements are not met, the transaction will not work on either the Windows or the mainframe side. In which case,
TI writes a message to the Windows 2000 Event Log explaining the cause of the failure.

See Also
Other Resources
WIP Programming Model

https://msdn.microsoft.com/en-us/library/aa705274(v=bts.10).aspx

Support for Transactions and Two-Phase Commit
In COM terminology, a transaction is always a unit of work that is atomic, consistent, isolated, and durable (ACID). In
mainframe terminology, a transaction may or may not be an ACID transaction; in mainframe terminology, a transaction is a set
of operations or commands in a transaction program (TP). This difference in terminology can be confusing. The word
transaction as it is used in TI Manager and TI Designer always refers to an ACID transaction.

Two-phase commit (2PC) is a protocol that allows a set of application (or cross-application) operations or commands to be
either all rolled back or all committed as a single transactional unit.

Note
If you invoke a TI Automation server over the TCP/IP protocol, there is no support for two-phase commit transactions. Two-p
hase commit works only over the SNA APPC/LU 6.2 protocol.

A TI component has four possible transactional properties:

Requires transaction

Requires new transaction

Supports transactions

Does not support transactions

The first two choices require the mainframe TP to be transactional (that is, meet the ACID properties) and to support Sync Level
2. This is transparent to the mainframe TP if it is a CICS Link or IMS version 6.0 or later program. The third choice requires the
mainframe TP to support Sync Level 2 requests and handle the transaction semantics appropriately. The fourth choice is
required for IMS TPs prior to IMS version 6.0 and for any CICS TPs that support only Sync Level 0 or Sync Level 1.

If a TI component is invoked within the scope of a COM+ transaction, TI will establish a Sync Level 2 conversation with CICS
(otherwise, Sync Level 0 is used). This is transparent to the client of the TI component. If the mainframe TP is a CICS Link
program, the transactional nature of the conversation is transparent to the TP as well, since IBM's mirror transaction in CICS
(CSMI) handles the Sync Level 2 protocol, and the TP to which it is linked is unaware whether Sync Level 0 or Sync Level 2 is
being used.

TI complies with the COM+ programming model by calling SetComplete or SetAbort when it completes the operation of each
method call from the client. If no errors were detected, TI calls SetComplete; otherwise it calls SetAbort. TI also calls SetAbort if
the mainframe TP indicates that the transaction should not commit by setting the DisableCommit flag in the meta data error
block returned. TI Automation client applications can also choose to call SetAbort if they determine that there are application-
level problems that should prohibit the transaction from committing.

When the client's method call returns, the TP on the mainframe has performed some unit of work, but any changes to
protected resources in CICS are not yet committed. TI uses new DTC interfaces to enlist the Sync Level 2 conversation on the
DTC transaction. When DTC is ready to commit or abort the transaction, it communicates with TI to drive the appropriate two-
phase commit flows on the LU 6.2 conversation. Again, all of the 2PC work is performed transparently by TI on the client's
behalf.

Although the TI object can be deactivated when the method completes, the conversation must be maintained until the
transaction commits or aborts. Users can adversely affect performance and tie up system resources if their application code
makes one or more transactional method calls but does not commit the transaction for a long period of time. Conversations
can be quickly consumed by poorly structured user code.

When a conversation is waiting to commit, it will be divorced from the object with which it was associated. TI manages a pool
of these "waiting" conversations and performs the required sync-level operations when the appropriate notifications are
received from DTC. When possible, TI reuses these conversations to minimize overhead.

TI also provides a resynchronization service (SNA LU 6.2 Resync TP). This Windows 2000 service is configured to be the auto-
started invokable service for the SNA-defined Resync TP (0x06f2). The Resync service implements the "Exchange Log Names"
and "Compare States" functions of an SNA transaction manager. It allows both DTC (Distributed Transaction Coordinator) and
CICS to initiate the recovery process as required during system startup or following a system or communication failure.

For information about IBM's SNA SyncPoint or 2PC flows, SNA SyncPoint Services Architecture Reference (IBM SC31-8134-00).
All TI 2PC flows are implemented in conformance with this architecture.

Note
For information on how to use CICS Link TPs that use explicit SYNCPOINT commands, see TPs with Explicit SYNCPOINT Com
mands.

In summary, to use two-phase commit, you must meet all of the following requirements:

The local and remote LUs must each have SyncPoint support enabled in the Host Integration Server node.

The local and remote LUs should each point to the computer that is running Resync services.

The remote environment (RE) must have Sync Level 2 support enabled. To check this, right-click the RE in TI Manager,
click Properties, and then click the LU 6.2 tab.

The TI component must have Transaction Support set to Supported, Required, or Requires New. To check this setting,
right-click the TI component in TI Manager, click Properties, and then click the Transactions tab.

The remote host computer must be configured for Sync Level 2 support.

See Also
Other Resources
WIP Programming Model

https://msdn.microsoft.com/en-us/library/aa705274(v=bts.10).aspx

Providing a Fail-Safe Environment for ACID Transactions
ACID (atomic, consistent, isolated, and durable) transaction processing using two-phase commit (2PC) generally requires a fail-
safe environment, which is an environment that ensures continuation in spite of hardware failures. This is often called 2PC
failover or hot backup.

Host Integration Server includes enhancements to the SNA LU 6.2 Resync TP commonly called the Resync service along with
enhancements to the configuration and APPC DLL to make 2PC failover work through two or more redundantly configured
Host Integration Server SNA servers (computers). In the event of a failure of one of the servers (computers), a separate Host
Integration Server computer running either TI or the DB2 Provider can continue to initiate transactions through an alternate
server (computer).

To configure 2PC failover to work with Host Integration Server, complete these tasks:

Configure two Host Integration Server servers to support the same SyncPoint-enabled local APPC LU alias but with
different LU names. Have these local APPC LUs point to the same computer name where Microsoft Distributed
Transaction Coordinator (DTC) service and the Resync service are running (that is, a separate Host Integration Server
computer that supports TI or an application that uses the DB2 Provider). Also, have both servers support the same
remote APPC LU alias and name.

In the applicable TI remote environment (RE), configure the local and remote LU aliases, and choose transactional
support. If the application is using the DB2 Provider, configure the Universal Data Link with the local and remote APPC
LU aliases, and set the Units of Work property to DUW.

When the Resync service starts, it searches all SyncPoint-enabled local APPC LUs that specify the computername where the
Resync service is running. Resync then initiates an Exchange Log Names request over every found local APPC LU with all
SyncPoint-enabled remote APPC LUs.

When a TI Automation server (application) or the DB2 Provider invokes a transaction program (TP) on the mainframe and
initiates a conversation, the APPC DLL locates any available Host Integration Server server (computer) that supports the LU/LU
pair.

In this way, a TI Automation server (application) or the DB2 Provider gains fault tolerance by getting a conversation through
any Host Integration Server server (computer) that supports the LU/LU pair. The Resync service then coordinates the DTC
transaction log reconciliation when a Host Integration Server SNA server (computer) comes back online, if a server (computer)
failure occurs during a transaction. Note that this configuration does not provide fault tolerance for the Host Integration Server
server (computer) that is running only TI or the DB2 Provider, not the SNA service.

Note
Clustering the servers (computers) that are running the SNA service is not recommended. Instead of using Windows Clusteri
ng, use the configuration recommendations described in this topic.

Note
2PC works only when you are using the SNA (APPC/LU 6.2) protocol to communicate with the host system. Neither TI nor th
e DB2 Provider support 2PC over the TCP/IP transport, so there is no 2PC failover solution for TCP/IP-based systems.

See Also
Other Resources
Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa745014(v=bts.10).aspx

Using TI in a Non-DPL Environment
A non-linked environment (that is, a non-DPL environment) is one that does not use IBM Distributed Program Link (DPL). You
can use TI to invoke a mainframe transaction program (TP) that uses the EXEC CICS RECEIVE INTO and EXEC CICS SEND
FROM COBOL commands. These two COBOL commands are useful when you want a CICS TP to take on SNA (APPC/LU 6.2)
conversation responsibilities and therefore bypass the Mirror TP. In other words, the EXEC CICS RECEIVE INTO and EXEC
CICS SEND FROM COBOL commands are most often used in a non-linked environment to transfer data to and from an LU of
type 6.2 (APPC).

TI supports the LU 6.2 model for both linked and nonlinked environments. You can create the following remote environment
(RE) types to support each model:

CICS Link using LU 6.2

Use this in an IBM DPL environment that uses the Mirror TP.

CICS using LU 6.2

Use this in a non-DPL environment that bypasses the Mirror TP.

Many customers use TI in a non-DPL environment. The only concern is whether terminal logic is embedded with the business
logic. When a COBOL TP supports IBM DPL, the presentation logic has already been separated from the business logic, so you
probably will not need to modify the COBOL. However, if the TP was written to communicate with a terminal, it is likely that
you will need to modify the COBOL code to separate the business logic from the presentation logic.

For example, the following sample COBOL code shows how to handle unbound recordsets by using the EXEC CICS RECEIVE
INTO and EXEC CICS SEND FROM COBOL commands:

* Example showing how to send unbounded recordsets
* to a client application.

 IDENTIFICATION DIVISION.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

* INPUT AREA
 01 CUSTOMER-INPUT-NUMBER PIC 9(9).

* OUTPUT AREA
 01 CUSTOMER-DATA.
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).

* ONE ROW IN A DATABASE TABLE
 01 INVOICES.
 05 INVOICE-NUMBER PIC 9(10).
 05 INVOICE-DATE PIC 9(7) COMP-3.
 05 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
 05 INVOICE-DESCRIPTION PIC X(40).

 LINKAGE SECTION.

 PROCEDURE DIVISION.
*
* Get the input customer account number from the
* client applicaton:
*
 MOVE LENGTH OF CUSTOMER-INPUT-NUMBER TO RECEIVE-LENGTH

See Also
Other Resources
Windows-Initiated Processing

 EXEC-CICS RECEIVE INTO(CUSTOMER-INPUT-NUMBER)
 LENGTH(RECEIVE-LENGTH)
 END-EXEC.
*
* Do some work; then send the first and last name back:
*
 MOVE LENGTH OF CUSTOMER-DATA TO SEND-LENGTH
 EXEC-CICS SEND FROM(CUSTOMER-DATA)
 LENGTH(SEND-LENGTH)
 END-EXEC.
*
* Follow regular data with unbounded table data that
* the client application sees as a recordset:
*
 MOVE LENGTH OF INVOICES TO SEND-LENGTH
 PERFORM UNTIL NO-MORE-INVOICES
*
* Do some work to get the next row:
*
 MOVE DB-INVOICE-NUMBER TO INVOICE-NUMBER
 MOVE DB-INVOICE-DATE TO INVOICE-DATE
 MOVE DB-INVOICE-AMOUNT TO INVOICE-AMOUNT
 MOVE DB-INVOICE-DESC TO INVOICE-DESCRIPTION
*
* Send the row:
*
 EXEC-CICS SEND FROM(INVOICES)
 LENGTH(SEND-LENGTH)
 END-EXEC.
 END-PERFORM.

https://msdn.microsoft.com/en-us/library/aa745014(v=bts.10).aspx

Security and Protection
The information contained in the following sections details securing your Host Integration Server environment, including
Enterprise Single Sign-On.

For information about Single Sign-On, see Understanding Enterprise Single Sign-On.

In This Section

Understanding Windows Security

Maximizing Product Security

Resource Security

Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705775(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

Understanding Windows Security
This section presents general security information.

In This Section

Security Overview

File System Choices and Security

Securing Host Integration Server 2009 Files and Directories

Authentication

Domain Authentication

Workstation Authentication

Client Logon

Denying Access to Host Integration Server

Security Audit

Viewing and Interpreting Audited Events

Firewall Support Overview

Screening Routers and Internet Firewalls

Data Encryption

https://msdn.microsoft.com/en-us/library/aa705774(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772043(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745632(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746060(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771093(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770543(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754277(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770715(v=bts.10).aspx

Security Overview
As corporate networks become increasingly integrated with the Internet and other external networks, the threat of
unauthorized access to your corporate resources grows significantly. When you plan your networking environment, you must
strike a balance between protecting your resources and allowing users unobstructed access to data.

The following list includes some of the questions that must be answered as you prepare to secure your Host Integration Server
environment:

How can I authenticate users who require host resources?

How can I control access to host resources?

How can I control sensitive data flowing between workstations and host applications?

How can I maintain security while connecting my host network to external sources like the Internet?

How can I make host resources easier to access for authenticated users, yet maintain a more secure and easy-to-
administer host environment?

This section helps answer these questions and describes how to implement the security features to create a more secure LAN-
to-host environment.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

File System Choices and Security
One of the keys to controlling security on Host Integration Server computers is the configuration file. To maintain good
security with this file, be sure to install the Host Integration Server server software on an NTFS (NT File System) partition. With
NTFS, you can assign permissions on a file-by-file basis. With the FAT (File Allocation Table) file system or HPFS (High
Performance File System), this is not possible. Installing Host Integration Server software on an NTFS partition is especially
important for the primary server because this computer contains the master copy of the configuration file used by all Host
Integration Server computers in the subdomain.

If you must install Host Integration Server on a non-NTFS partition, you can limit a users ability to view or change a Host
Integration Server configuration file through the Host Integration Server SNA Manager, but you will not be able to set file
permissions on the configuration file itself.

In addition, if you choose to install the software for one or more servers on a FAT or HPFS partition, you can set appropriate
Read and Change permissions on the share, which gives servers access to the configuration file. (This is unnecessary for Host
Integration Server software installed on an NTFS partition, because file permissions established through the Host Integration
Server SNA Manager place tighter control on the configuration file than can be established by controlling the share.)

Securing Host Integration Server 2009 Files and Directories
If you install Host Integration Server onto an NTFS volume, you can control which SNA subdomain users can modify the Host
Integration Server configuration file. A Host Integration Server administrator can control access to the configuration using the
Host Integration Server SNA Manager. By specifying access permissions for users, you can control who has the ability to
administer, change, or view a configuration.

When you install Host Integration Server, you create a single directory tree that contains the files needed to configure and use
Host Integration Server. To control access to the configuration files in these shares, use the following guidelines:

Create domain user accounts to run the SnaBase and SnaServer services. A domain user account is one that is allowed to
log on to the network.

Disable the Windows domain guest account.

At least one domain user or group must have Full Control permissions over all the shares, preferably a trusted group such as
Administrators. If no user or group has Full Control permissions, the only person who can change the share permissions is the
owner of the share. If necessary, this individual can change his or her permissions to Full Control as needed.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Authentication
When Host Integration Server receives a request to access a host resource, such as an LU for a terminal session, the server
must have some way to verify the request.

User validation is a fundamental security issue that you can address using one of two methods: Domain Authentication and
Workstation Authentication. The method you choose depends upon the type of service being requested.

https://msdn.microsoft.com/en-us/library/aa746060(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771093(v=bts.10).aspx

Domain Authentication
A domain, as it pertains to Windows, is a group of computers that share a network resource database and have a common
security policy. A Windows domain contains a primary domain controller (PDC) computer that acts as the resource and user
manager for the entire domain. One or more computers in the domain can be configured to act as a backup domain controller
(BDC). The BDC can take over for the PDC should any problems arise. The remaining computers in the domain are user
workstations or servers that provide resources to domain users.

Within a Windows domain, Host Integration Server computers are logically grouped into an entity called a subdomain. Each
SNA subdomain can contain up to 15 Host Integration Server computers, and a Windows domain can contain an unlimited
number of subdomains. It is common to have multiple domains that manage user accounts independently of one another.

The domain model provides two key advantages over peer-to-peer networks with regards to security:

You can manage user accounts from a central location.

You can set up one unified security system for all user accounts in the domain.

Host Integration Server relies on the PDC or BDC to provide authentication services to users requesting access to host
resources. Only users who have been validated by the PDC or BDC can gain access to resources provided by servers in the
subdomain.

You can use domain authentication to verify users who request resources provided by these services:

3270 or 5250 terminal access from workstations using Host Integration Server client software

APPC, CPI-C, or LUA applications built using Host Integration Server APIs

See Also
Concepts
Authentication
Workstation Authentication

https://msdn.microsoft.com/en-us/library/aa745634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771093(v=bts.10).aspx

Workstation Authentication
When you receive a request from a source that is external to the corporate network containing the SNA subdomain, or if you
are not using a domain-type network, domain authentication is usually difficult to implement.

In this case, Host Integration Server performs workstation authentication on the following services:

TN3270 terminal access

TN5250 terminal access

3270 access from terminal emulators connecting through Host Integration Server client software

For these services, you can specify a list of allowed client workstation IP addresses for defined resources. When Host
Integration Server receives a session request, it determines whether the requesting IP (or workstation name for TN3270E
connections) matches that specified for the requested resource. Once verified, Host Integration Server allows the request to
proceed.

Note
This type of authentication is not as secure as domain security because workstation names and the IP address are transmitte
d in clear text over the network.

See Also
Concepts
Authentication
Domain Authentication

https://msdn.microsoft.com/en-us/library/aa745634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746060(v=bts.10).aspx

Client Logon
The logon process conducted by a user on a client system performs the essential task of identifying the user to the Windows
domain and to Host Integration Server computers in the domain. The way that Host Integration Server handles the logon
process depends on the network software on the client system.

For any type of client computer, once the clients logon process for one Host Integration Server computer has been completed,
additional servers can provide services without another interactive user logon. Servers can repeat the logon verification
without the user being involved.

If you maintain tight security with the logon to a mainframe, it may make sense to keep access open-ended on the Host
Integration Server computer.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Denying Access to Host Integration Server
You can use one of two methods to deny a user or group the ability to use Host Integration Server. Either remove the user or
group from the list of those who have permissions, or assign No Access to the user or group.

When removing a user or group from the list of those who have been granted permissions, be sure to consider all groups to
which a particular user belongs. To deny access to that user, either remove the applicable groups from the list of those with
permissions, or remove the user account from these groups. Otherwise, the user can receive access through one of the groups
(unless the second method, assigning No Access, is used).

You can deny all access to a user or group by assigning No Access, which overrides any other permissions that may apply to a
user. For example, if a user belongs to a group that has Read permission, but the user has No Access, the user is not permitted
administrative access. Likewise, if a user belongs to Group1 and Group2, and Group1 has Read permission while Group2 has
No Access, the user is not permitted administrative access.

The following table provides recommendations for using the two methods of denying access.

Method of denyi
ng access

Recommended situations for use

Remove from list o
f those granted per
missions

Use when you want to deny access to a medium or large group. If you then want to grant access to specific
users in that group, add those users to the list of those with permissions.

In contrast, if you assign No Access to a large group, none of the members of the group will be allowed ac
cess, even if explicit access is assigned to them through other accounts.

Assign No Access Use when you want to deny access to an individual user or a small group. If you then want to grant access
to other groups to which the affected users belong, you can do so. The No Access permission overrides the
other permissions for the affected users.

In contrast, if you attempt to deny an individual user access by removing the user from the list of those gra
nted permissions, a group to which the user belongs might be left in the list. The permissions assigned to t
hat group would be given to the user.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Security Audit
When you set up security auditing, you specify events for which the system will create event log entries.

You can monitor system events using the Host Integration Server SNA Manager. When you configure the properties, you can
view a detailed problem analysis, significant system events or general information messages, or you can disable audit logging.

You can cause the system to create an entry every time a member of the Administrators group changes the configuration file.
The entry would include the time, the user and process IDs, and other information.

When you set up auditing with Host Integration Server, you are able to record not only access to the configuration file, but the
running of Host Integration Server processes. However, using a file system other than NTFS limits the possibilities for auditing,
just as it limits the possibilities for setting permissions. When Host Integration Server is not installed on NTFS, the only event
that will actually result in log entries is the starting of the Host Integration Server SNA Manager. However, auditing information
for this event is useful, if limited.

Auditing is an important way of collecting security-related information. However, there is a small performance overhead for
each audit check the system performs. In addition, if you record a wide variety of events, the event log can grow very quickly.
For these reasons, you may want to be selective when specifying events to be audited. You may want to focus on such events
as Read Domain (Success), Write Domain (Success), and Manage Domain (Success). This list of events is a suggestion only. All
the events offered for auditing through Host Integration Server can be useful, depending on the situation.

Among the events recorded when you enable auditing are the actions of Host Integration Server itself. For more information
about event logs, the Event Viewer, and strategies for auditing, see your Windows documentation.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Viewing and Interpreting Audited Events
Events audited by Host Integration Server are recorded on the server in which they occur. They are not stored centrally, in
contrast with other records generated through Host Integration Server.

The records generated through auditing are stored in the security section of the event log. In contrast, other Host Integration
Server events are recorded in the application section of the log.

Note
When you view log entries for audited events related to Host Integration Server, you will see a record of actions carried out b
y Host Integration Server itself, as well as actions carried out by users. The source of the actions carried out by Host Integrati
on Server is the account under which the service is running.

The event details for some events will list an item called Accesses in the Description box. Unusual information may be shown
here for events related to Host Integration Server.

Use the following table for interpreting this information.

Information shown fo
r Accesses (under Des
cription)

Meaning

Unknown specific acces
s (bit 0)

Read Domain access. This access applies when someone starts or attempts to start the Host Integratio
n Server SNA Manager. (Host Integration Server must read the configuration file in order to function.)

Unknown specific acces
s (bit 1)

Write Domain access. This access applies when someone starts the Host Integration Server SNA Mana
ger in write mode — that is, when someone starts Host Integration Server and the primary Host Integ
ration Server computer is available.

Unknown specific acces
s (bit 2)

Manage Domain access. This access applies when someone starts or attempts to start the Host Integr
ation Server SNA Manager.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Firewall Support Overview
Host Integration Server client computers and servers can interoperate with screening routers, where the client computer
knows the address of the Host Integration Server computer. Host Integration Server client computers and servers can also
interoperate with full-blown Internet firewalls, where the end user is not allowed to know the IP address of the Host Integration
Server computers.

A firewall is a network security device that restricts access to network resources by allowing traffic only through specified port
numbers. These port numbers are commonly defined in software components to allow Internet firewalls to filter packets based
on port number, thereby denying or accepting their propagation to the private network. In many instances, the services of a
firewall are provided in conjunction with a network router that bridges two network segments together.

Host Integration Server can be configured to use specific software port numbers, allowing administrators of Internet firewalls
to filter packets based on port number. By assigning specific destination port numbers to Host Integration Server components,
Host Integration Server can interoperate with screening routers and full-blown firewalls.

If the Host Integration Server address is known, the client workstation configures the appropriate port and destination IP of the
Host Integration Server computer in the client software, for example, 1477 and 128.124.1.2. Alternatively, the Host Integration
Server computer's service port numbers can be changed to the port number requested by the client.

You can configure destination port numbers in Host Integration Server for end-user and Administrator clients using TCP/IP,
IPX/SPX.

Each network transport has the following three components for which you can assign destination ports.

DatagramPort

This port is used for datagram (mostly broadcast or multicast) traffic. Use the Server Broadcasts dialog box in the Host
Integration Server SNA Manager to control which transport is used for server-to-server communication.

SnaBasePort

This is the port to which the server SnaBase listens for new client sponsor connections. Sponsor connections are used by the
Host Integration Server client to learn about the SNA subdomain in which it participates.

SnaServerPort

This is the port where the SNASERVR.EXE waits for new application session requests.

If the Host Integration Server address is not known, the Host Integration Server IP transport replaces the real destination IP
address with the address of a firewall. The firewall then maps the connection request to the actual Host Integration Server
computer. This takes place when the transport opens a connection to a Host Integration Server-based computer for application
sessions or a sponsor connection.

Host Integration Server supports firewalls primarily on TCP/IP networks. It may also be possible to implement firewalls on
IPX/SPX. For more information on configuring a firewall, consult your network documentation.

Note
The clients obtain the Host Integration Server ports through the sponsor connection. On IPX/SPX, the clients get the SnaBase
ports from the NetWare bindery and VINES StreetTalk, respectively. There is no need to configure any port numbers on these
two client network types.

It is also possible to create IP mappings which, by overriding service table entries, replace a specified IP address with a firewall
address. To create a mapping, add an IPMapping key under the SnaTcp key, and then add a REG_SZ value for each mapping.
An example is shown below:

With this mapping, any attempts at establishing a connection with xxx.xxx.x.xxx will instead connect to yyy.yy.yy.yyy.

For additional information on firewall support, including client-side registry settings and the use of DLS with firewalls, see the
following Knowledge Base articles: Q139508, Q164590, Q224303, and Q215838.

See Also

IPMapping
xxx.xxx.x.xxx = yyy.yy.yy.yyy

Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Screening Routers and Internet Firewalls
You can configure destination port numbers in Host Integration Server for End-user and Administrator clients using TCP/IP,
IPX/SPX.

Each network transport has the following three components for which you can assign destination ports.

DatagramPort

This port is used for datagram (mostly broadcast or multicast) traffic. Use the Server Broadcasts dialog box in Host
Integration Server SNA Manager to control which transport is used for Server-to-Server communication.

SnaBasePort

This is the port to which the server SnaBase listens for new client sponsor connections. Sponsor connections are used by the
Host Integration Server client to learn about the SNA subdomain in which it participates.

SnaServerPort

This is the port where the SNASERVR.EXE waits for new application session requests.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Data Encryption
Data Encryption helps secure traffic between the client computer and Host Integration Server on a per-user basis. There is a
client component and a server component. The data encryption is implemented transparently to any application that is written
to the Host Integration Server APIs (application program interfaces). Any software, such as a third-party emulator, that is
written to use the Host Integration Server client APIs will automatically benefit from the encryption.

Host Integration Server lets you encrypt data for client-to-server and server-to-server communications.

Client-to-server encryption prevents information from being sent in clear text between Host Integration Server client
workstations and Host Integration Server computers. Data encryption enhances network security on the client-to-server
communications path for all applications using Host Integration Server client connections, including 3270/5250 emulators and
APPC logon IDs and passwords. Data encryption is enabled by default.

Server-to-server encryption can be used to help provide more secure communications across your network, the Internet, or
any other wide area network. If a user enables data encryption, information transferred through Distributed Link Service (DLS)
is automatically more secure.

Data encryption is also supported in the distributed deployment of SNA Open Gateway Architecture (SOGA), which uses Host
Integration Server to help provide more secure server-to-server communications across the Internet, intranets, and other
WANs.

Host Integration Server lets you encrypt data for client-to-server and server-to-server communications.

Client-to-server encryption prevents information from being sent in clear text between Host Integration Server client
workstations and Host Integration Server computers. Data encryption enhances network security on the client-to-server
communications path for all applications using Host Integration Server client connections, including 3270/5250 emulators and
APPC logon IDs and passwords. You can enable data encryption on a user-by-user basis using the Host Integration Server SNA
Manager.

Server-to-server encryption can be used to provide more secure communications across your network, the Internet, or any
other wide area network. If a user enables data encryption, information transferred through the Distributed Link Service (DLS)
is automatically secure.

Data encryption is enabled for Distributed Link Service by adding the domain user account under which Host Integration
Server services such as SnaBase or SnaServer are running to the SNA subdomain. The actual encryption is implemented in the
transport providers layer of the Host Integration Server architecture. You can then enable data encryption settings for the user
account, as described above.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Maximizing Product Security
In addition to the general guidelines elsewhere in this section, the following specific recommendations can help you increase
the security of your Host Integration Server deployment. Since all of these actions are performed during deployment or
configuration, procedures are located in the appropriate sections of this documentation.

Note
Whereas these recommendations apply across the entire product, the Transaction Integrator Threat Mitigation section also of
fers information specifically for TI users.

Single Sign-On

The most effective action you can take is to use integrated security by using the Host Integration Server Single Sign-on (SSO)
feature. It is especially important to use SSO because certain data used by the product is impossible or unwise to encrypt,
making it potentially vulnerable. The SSO feature reduces or eliminates this issue.

Accessing SQL Server Databases

When you are accessing a SQL Server database:

Because the Resync service will access this database -- and the database may service multiple, unsecured domains -- you
should always use a local SQL Server database and never grant remote access to it.

Use only Windows NT integrated security, and restrict access to only privileged Windows NT accounts.

Use only Host Integration Server security groups which were created with the Host Integration Server Configuration
Wizard.

When you are connecting via SNA Protocol:

When connecting to an upstream Host Integration Server computer, use client/server encryption.

When implementing SNA Open Gateway Architecture (SOGA) Distributed Link Service (DLS) across wide area networks,
use server-to-server encryption.

Locate upstream Host Integration Server computers within the data center using secure Token Ring, Ethernet, Bus and
Tag Channel, or ESCON fiber channel attachments.

When you are connecting via TCP/IP protocol:

Use upstream Windows software router computers or hardware routers to encrypt the TCP/IP traffic.

Locate the upstream router within the data center using either secure Token Ring or Ethernet connections to the host.

Because DRDA AR sometimes stores data in plain text:

Use direct network connections over a private segment, with static IP or SNA addresses.

Use IPSec where supported for IP communications between host and Windows servers.

When connecting an SNA LU6.2 network to a mainframe or AS/400, with the Host Integration Server computer deployed
as the SNA gateway to a downstream Host Integration Server computer, use Host Integration Server server-to-server
data encryption.

For SNA LU6.2 network connections to mainframe, use the IP-DLC Link Service in conjunction with IPSec.

Use encryption that is part of the Host Integration Server server-to-server and client-to-server connections.

https://msdn.microsoft.com/en-us/library/aa705450(v=bts.10).aspx

When connecting to a mainframe DB2 for z/OS, use IPSec on an IP-DLC, and also use NNS on the target system to utilize
direct connections to DLUS and APPN Peer resources.

When you are accessing DB2 DUW over the IP Resync Service:

Increase the level of security access rights to the SQL Server database which stores the UOWID mapping tables.

Use the (default) separate SQL Server database, as opposed to one shared with other applications.

To protect unencrypted data and credentials in the com.cfg file:

Implement IPSec.

Deploy the Host Integration Server computer in an isolated network segment.

Increase security settings on the host account used for session security.

When using the TN3270 Server:

Stop and restart the TN3270 Server whenever a new CRL is downloaded. Otherwise, you will be using an out of date
CRL, which could permit unwanted access to the host.

Server-to-Host Security

The following actions will increase server-to-host security, especially on an APPN Network or UDP sockets for HPR/IP Protocol
Traffic:

Deploy Host Integration Server in a secure network segment, and use encryption that is part of the Host Integration
Server server-to-server and client-to-server connections.

Use IPSec on the IP-DLC connection.

Use NNS on the target system to utilize direct connections to DLUS and APPN Peer resources.

Use a direct IP-DLC Connection to CS/390 (DLUS) and NNS, or a direct IP-DLC Connection to a peer APPN node.

Additional Security Recommendations

Finally, as in the following recommendations, be vigilant about access to every file, connection, or other product component:

In general, use System or User DSNs rather than file DSNs, as System and User DSNs are more secure.

When using the OLE DB Provider for AS/400 and VSAM, store your HCD files in a secure local folder or share that can
only be accessed by the developer and the runtime application.

When using Transaction Integrator, place any objects going to CICS or IMS in a remote environment that requires
Enterprise Single Sign-On.

Be vigilant about your access control list (ACL). Although it is possible to install Host Integration Server and inherit a
previous ACL, you should remove any existing ACLs and replace them with new ones.

Store Printer Definition Tables (PDTs) and Printer Definition Files (PDFs) in a secure location to prevent their being
replaced with a rogue file.

Since trace files may contain non-encrypted data, always store them in a secure location, and delete them as soon as
trace analysis is complete.

Minimize unwanted access to the Resync Service by running it on the same computer as the application it services.

Enable LUA Security for TN3270 access to the host, and then add the service account to the Configured Users folder.
Among other things, this provides encryption if the TN3270 service uses LUs on another server.

Enable LUA Security for TN5250 access to the host. This increases security by requiring explicit assignment of LUs to user
records.

When using the printing feature associated with the TN3270 Server, reconfigure the display and printer to use the same
port. This is necessary because, since these two items are configured separately, they are often inadvertently configured
to different ports, and subsequently different security settings.

Always use IPSec when using the TN3270 or TN5250 Servers. Although data might be safe between the client and server
without IPSec, that same data may become vulnerable between the server and the host. Using IPSec reduces the attack
surface, ensures data encryption, and makes access available only to authorized users.

See Also
Other Resources
Understanding Windows Security

https://msdn.microsoft.com/en-us/library/aa705714(v=bts.10).aspx

Resource Security
This section describes accessing Host Integration Server resources, including Display LUs, Printer LUs, and LU pools.

In This Section

3270 Terminal Access

5250 Terminal Access and APPC Access

Securing the TN3270 and TN5250 Services

https://msdn.microsoft.com/en-us/library/aa745392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705549(v=bts.10).aspx

3270 Terminal Access
Users or groups who require access to 3270 sessions from workstations using Host Integration Server client applications must
be members of the SNA subdomain. Therefore, they are also members of the Windows domain of which the subdomain is a
part.

Once enrolled in the SNA subdomain, you can assign specific 3270 (LU type 2) resources to the appropriate accounts. The
users can access only the specific resources you allocate to them.

The preferred method for maintaining security in your environment is by using domain security to authenticate users, and then
limiting their access by assigning them only specified resources.

See Also
Other Resources
Resource Security

https://msdn.microsoft.com/en-us/library/aa705708(v=bts.10).aspx

5250 Terminal Access and APPC Access
Users who want Advanced Program-to-Program Communications (APPC) access need not be defined in the SNA subdomain,
but they must be members of a Windows domain.

For 5250 terminal access using a Host Integration Server client computer within the network, the AS/400 supplies the required
security for logon to the AS/400.

For APPC access programmed into specific applications, you maintain security through the actual programmatic conversation,
if required.

See Also
Other Resources
Resource Security

https://msdn.microsoft.com/en-us/library/aa705708(v=bts.10).aspx

Securing the TN3270 and TN5250 Services
You can help secure TN3270 and TN5250 services by specifying client workstation IP addresses that have permission to use
the resources provided. With TN3270E clients, you can specify a workstation name in place of the client IP address.

The method employed for verifying workstations can also be used to allow only specified IPs to request resources allocated to
them.

See Also
Other Resources
Resource Security

https://msdn.microsoft.com/en-us/library/aa705708(v=bts.10).aspx

Transaction Integrator Security
Security affects Transaction Integrator (TI) in two ways. First, TI components can be assigned security attributes in the same
way as other COM+ components. This requires no TI development. Second, the TI run-time environment needs to deal with the
security mechanisms of the remote environment (RE). TI provides two security options with an optional override for each:

Package-level (also known as application-level)

4User-level

Optional explicit-level override

When configured for user-level credentials, TI makes use of the APPC Privileged Proxy feature for single sign on. This requires
that the user context that the APPC application (TI, in this case) is running under be a member of the HSDomain_Proxy group.
(The HSDomain_Proxy group is one of the two groups created when the host security domain is created.) By default, the
HSDomain_Proxy group contains the Domain Admins group. If TI is not running under the context of a user in the Domain
Admins group, you will need to add the user to the HSDomain_Proxy group.

When deploying a TI component, the administrator must choose either package-level security or user-level security as the
default. The optional explicit-level security override is a separate option that the administrator can enable or disable; the
override applies regardless of which security option (package-level or user-level) is in place. If the explicit-level override is
disabled, base applications will not be permitted to use the callback to provide user credentials. The administrator can also turn
on the optional Already Verified settings.

In This Section

Application-Level Security

User-Level Security

Single Sign-On in Transaction Integrator

Special Security Settings for TCP/IP

Mainframe Authentication for CICS LINK

AS/400 Security

Limitations of User Access Level Sign On

Transaction Integrator Threat Mitigation

https://msdn.microsoft.com/en-us/library/aa744298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771467(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705593(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705581(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705450(v=bts.10).aspx

Application-Level Security
When using application-level (or package-level) security, the Transaction Integrator (TI) run-time environment uses the Single
Sign-On support in Host Integration Server to authenticate itself to the host by using the Windows 2000 security identity of the
COM+ application. The COM+ application containing the TI component must be configured in COM+ to run under a Windows
account that maps to valid mainframe credentials.

When a TI component is deployed in a COM+ Application which itself is configured as a Library application or package (instead
of a Server application or package) on the Activation tab of its property page, the choice of security level (Package-level or
User-level) for a TI remote environment (RE) is ignored. A Library application (or package) runs in the Windows user
credentials of the process that invoked it, and TI attempts to map this name to a corresponding host user ID.

Although the TI security level is ignored in Library COM+ applications, both of the following security options on the RE
property page are accepted by both Library and Server COM+ applications:

Allow application to override selected authentication

Use Already Verified or Persistent Verification authentication

The Library application deployment model is supported by COM+. It offers better performance than the Server application
deployment model in certain situations. TI supports both models. For example, Internet Information Services (IIS)
documentation recommends that COM+ Automation servers that will be invoked from an active server page (ASP) be
deployed in a COM+ Library application rather than a COM+ Server application. This way, IIS can control the level of
multitasking on a system and kick off new Windows processes to support very high hit rates. By deploying in a Library
Application, each IIS process gets its own set of TI components. Also, as a developer debugging a new application, you might
prefer to debug a Library COM+ application instead of a Server COM+ application because the Library application simplifies
debugging. All the breakpoints come up in one Windows process, and you can more easily see the flow of control.

To set the security level

1. Start TI Manager, and double-click COM Transaction Integrator for the computer.

2. Double-click Remote Environments.

3. Right-click the specific remote environment (RE) that you want to set, and then click the Security tab.

4. Select the Set security on check box.

5. Click Authenticate with package credentials, or click Authenticate with User credentials.

See Also
Other Resources
Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

User-Level Security
If user-level security is enabled, the TI run-time environment provides the client identity to the Single Sign-On support of Host
Integration Server before allocating the LU 6.2 conversation or connecting to the remote TCP/IP end point. This enables TI to
use the client's identity (the identity of the client that invoked the COM+ component that resulted in the invocation of the TI
component) to map to a mainframe credential by using the Host Integration Server Single Sign-On capability to authenticate
itself with the mainframe.

When a TI component is deployed in a COM+ Application which itself is configured as a Library application or package (instead
of a Server application or package) on the Activation tab of its property page, the choice of security level (Package-level or
User-level) for a TI remote environment (RE) is ignored. A Library application (or package) runs in the Windows user
credentials of the process that invoked it, and TI attempts to map this name to a corresponding host user ID.

Although the TI security level is ignored in Library COM+ applications, both of the following security options on the RE
property page are accepted by both Library and Server COM+ applications:

Allow application to override selected authentication

Use Already Verified or Persistent Verification authentication

The Library application deployment model is supported by COM+. It offers better performance than the Server application
deployment model in certain situations. TI supports both models. For example, Internet Information Services (IIS)
documentation recommends that COM+ Automation servers that will be invoked from an active server page (ASP) be
deployed in a COM+ Library application rather than a COM+ Server application. This way, IIS can control the level of
multitasking on a system and kick off new Windows processes to support very high hit rates. By deploying in a Library
Application, each IIS process gets its own set of TI components. Also, as a developer debugging a new application, you might
prefer to debug a Library COM+ application instead of a Server COM+ application because the Library application simplifies
debugging. All the breakpoints come up in one Windows process, and you can more easily see the flow of control.

See Also
Other Resources
Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

Single Sign-On in Transaction Integrator
Single Sign-On (SSO) is a mechanism that enables a user to enter a user name and password once to access multiple
applications. It gives users simplified logon and maintenance of the many passwords needed to access Windows and back end
systems and/or applications. It enables applications to integrate by automating the process of logging on to the host/backend
system.

In general, there are three types of single sign-on services:

Common authentication single sign-on: These services enable you to connect to multiple applications within your
computer. Your credentials are requested and verified once when you log into the computer, and these credentials are
used to determine what actions you can perform based on your permissions. An example of this type of single sign-on is
Exchange Server, which uses Windows Integrated Security. Once the user has logged on to Windows, they do not need to
provide additional credentials to access their e-mail.

Internet single sign-on: These services enable you to access resources over the Internet by using a single set of user
credentials. The user provides a set of credentials to log on to different Web sites that belong to different organizations.
An example of this type of single sign-on is Windows Live ID.

Intranet single sign-on: These services enable you to connect to multiple heterogeneous applications and systems
within the enterprise environment in your company. An example of this type of single sign-on is Enterprise Single Sign-
On, which provides a framework for Windows applications to integrate with non-Windows applications to enable single
sign-on.

SSO facilitates the translation of credentials by the Security Policy Wizard. SSO lets you define and manage the relationship
between foreign host user ID and password credentials to Windows credentials. The basis for managing these relationships is
the SSO Affiliated Application.

An Affiliated Application is a grouping of well defined host user identities under a logical entity that reflects the host
administrators view of application processing systems in the non-Windows environments.

When SSO is handed a set of host credentials (user ID and password) along with a valid SSO Affiliated Application, SSO returns
a Windows Access Token that represents the Windows credentials. HIP uses this Access Token when setting up the execution
thread for methods on server object.

To make this process easier, the Security Policy must know which SSO Affiliated Applications are to be queried in an attempt to
gain access to the Windows credentials (access token) needed to execute methods on the server object. The wizard pane lets
the user select from a list of valid SSO Affiliated Applications and add them to the Security Policy being defined. The wizard
pane also lets the user remove SSO Affiliated Applications previously defined to the Security Policy.

Special Security Settings for TCP/IP
Two special security settings are available for the TCP/IP protocol for CICS and IMS:

Link and Concurrent Server Mainframe authentication for the TCP/IP CICS MS Link and Concurrent server must have a
user exit, EZACIC06, coded on the mainframe to validate the user ID and password supplied by TI. The user ID and
password are part of the CICS transaction request message that is formatted by TI and used to initiate the TCP/IP server
application in CICS. Refer to the IBM TCP/IP and CICS documentation for further detail.

For TCP/IP IMS Explicit, IMS Implicit, and IMS Connect or OTMA Mainframe authentication for TCP/IP IMS Explicit, IMS
Implicit, and IMS Connect or OTMA must have a user exit, IMSLSECX, coded on the mainframe to validate the user ID and
password supplied by TI. The user ID and password are part of the IMS transaction request message that is formatted by
TI and used to initiate the TCP/IP server application in IMS. Refer to the IBM TCP/IP and IMS documentation for further
detail.

See Also
Other Resources
Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

Mainframe Authentication for CICS LINK
Resource-level authentication is recommended in the CICS region. Due to a restriction imposed by the IBM Distributed
Program Link (DPL) protocol, a user ID and password transmitted from the workstation by TI are ignored and not used for
transaction-level authentication. The target CICS region expects, under the circumstances, that authentication has been
completed by the application that executes the IBM DPL; for example, a TI application on the PC. (Traditionally, the application
that executes an IBM DPL has been another CICS region.) Instead, for transaction-level authentication, the target CICS region
associates the default user ID for the region with the transaction ID of the CICS (mirror transaction) task and the user ID from
the sender is ignored. Unless this is taken into consideration, attempts to secure the mirror transaction can cause an
application malfunction because of the failure to authenticate.

See Also
Other Resources
Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

AS/400 Security
The support for AS/400 security is the same as for other Windows-initiated operations against the mainframe, with the
following adjustments:

No support for RACF, AFC/2, Kerberos, or Top Secret.

Integrate with AS/400 native security system only.

Support Single Sign-On via SSO.

See Also
Other Resources
Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

Limitations of User Access Level Sign On
When you sign on with only user access permissions, you have restricted capabilities for using Transaction Integrator. For TI
Manager, user access:

Allows you to view COM+ applications

Does not allow you to open TI Manager

Does not allow you to export a COM+ application.

For TI Designer, user access:

Allows you to open TI Designer

Allows you to create and save new type libraries

Allows you to open and save existing type libraries.

See Also
Other Resources
Transaction Integrator Security

https://msdn.microsoft.com/en-us/library/aa753946(v=bts.10).aspx

Transaction Integrator Threat Mitigation
Product security is a top priority across Microsoft. Beginning with the Windows Security Push in 2002, Microsoft has invested
additional time and resources to developing more secure code and detailed instructions for deploying and securing your
computing environment. The Host Integration Server product team conducted a complete threat modeling analysis to identify
and mitigate potential areas of concern. A threat model is a security-based analysis that helps you determine the highest-level
security risks posed to a product or application and how attacks can manifest themselves.

Although Microsoft has mitigated all possible internal security threats to Host Integration Server, there are steps you should
take to mitigate threats from elsewhere in your network environment. Threat modeling helps you evaluate the threats to the
applications you are writing or running, and thereby reduce the overall risk to your computer system. For more information
about threat model analysis, see Chapter 4 Threat Modeling in Michael Howard and David LeBlanc, Writing Secure Code 2nd
Edition, Redmond, WA: Microsoft Press. 2003.

Howard and LeBlanc summarize six categories of possible security threats to your computing environment:

Spoofing identity. Spoofing threats allow an attacker to pose as another user or allow a rogue server to pose as a valid
server. An example of user identity spoofing is illegally accessing and then using another users authentication
information, such as username and password.

Tampering with data. Data tampering involves malicious modification of data. Examples include unauthorized changes
made to persistent data, such as that held in a database, and the alteration of data as it flows between two computers
over an open network, such as the Internet.

Repudiation. Repudiation threats are associated with users who deny performing an action without other parties having
any way to prove otherwise—for example, a user performing an illegal operation in a system that lacks the ability to
trace the prohibited operations.

Information disclosure. Information disclosure threats involve the exposure of information to individuals who are not
supposed to have access to it—for example, a users ability to read a file that she was not granted access to and an
intruders ability to read data in transit between two computers.

Denial of service. Denial of service (DoS) attacks deny service to valid users— for example, by making a Web server
temporarily unavailable or unusable. You must protect against certain types of DoS threats simply to improve system
availability and reliability.

Elevation of privileges. In this type of threat, an unprivileged user gains privileged access and thereby has sufficient
access to compromise or destroy the entire system. Elevation of privilege threats include those situations in which an
attacker has effectively penetrated all system defenses and become part of the trusted system itself, a dangerous
situation indeed.

Howard and LeBlanc also point out that some threat types can interrelate. For example, it is possible for information disclosure
threats to lead to spoofing threats if the users credentials are not secured. Similarly, elevation of privilege threats are by far the
worst because if someone can become an administrator or root on the target computer, every other threat category becomes a
reality. Conversely, spoofing threats might lead to a situation where escalation is no longer needed for an attacker to achieve
his goal.

To mitigate threats that originate outside Transaction Integrator but which can negatively affect TI components and your
application, Microsoft recommends that you do the following:

Protect the MSHIS60_HIP Database and SQL Server Stored Procedures

Protect the TI DCGen COM+ Application and TCP/IP Listeners

Protect the COM+ and .NET Servers

Protect the Raw User Data

https://msdn.microsoft.com/en-us/library/aa770485(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772089(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771237(v=bts.10).aspx

Protect the HIP Listener

Protect the Local File System, Database, and Registry

Protect the Client Proxy

Protect the Remoting Session

Protect TI from Unauthorized Mainframe or AS/400 Access

Protect the TI Runtime Environment

Protect Mainframe Security Credentials from Being Overridden

Protect the TI Runtime and Host Environments from Data Overflows

https://msdn.microsoft.com/en-us/library/aa754089(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704839(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744756(v=bts.10).aspx

Protect the MSHIS60_HIP Database and SQL Server Stored
Procedures

To prevent an attacker from spoofing their identity or tampering with the data or stored procedures in the HIP database, you
should do the following:

Run the HIP Service in a valid Windows privileged account and use Windows integrated security to access the HIP SQL
Server database.

Allow only privileged accounts access to the HIP SQL Server database.

Use a local SQL Server database and do not allow remote access.

Use only Windows integrated security and restrict access to only privileged Windows accounts.

You can also help mitigate this threat with the following deployment scenarios:

Service-based Security

Host-initiated Single Sign-On (SSO).

You can learn more about this threat by reading about:

How to secure remote access to SQL Server (for example, integrated Windows security).

Protect the TI DCGen COM+ Application and TCP/IP Listeners
To prevent an attacker from spoofing their identity, tampering with the data on the host, elevating their privileges, or denying
service, you should:

Use ASP.NET Admin to set the level of user or role-based security for Application Directory

Tighten COM+ Application Security on the TI DCGen package

Use TI Manager to set the security level for a remote environment

Move the TI Designer-generated .dll to the remoting client computer.

You can also help mitigate this threat with the following deployment scenario:

ASP.NET web client

You can learn more about this threat by reading about:

ASP.NET application and IIS security

Multiple levels of authorized users.

See Also
Reference
New Security Policy Wizard

https://msdn.microsoft.com/en-us/library/aa745018(v=bts.10).aspx

Protect the COM+ and .NET Servers
To prevent an attacker from spoofing their identity, tampering with the data on the host, elevating their privileges, accessing
restricted data, or denying service, you should:

Use bounded recordsets

Use static IP addresses on the host

Run server components in-process with a HIP Service account.

You can also help mitigate this threat with the following deployment scenario:

Send properly-formatted messages (for example, ELM, TRM, DPL, SNA, IP)

Service-based security

See Also
Concepts
Bounded Recordsets

https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx

Protect the Raw User Data
To prevent an attacker from reading data packets on the network and either tampering with the data or disclosing the data, or
to prevent an attacker from denying service, you should:

Place the computer running Transaction Integrator (TI) and the host in a secure location.

Use direct network connections over a private segment

Use IPSec, where supported, for IP communications between host and Windows servers

For SNA LU6.2 network connections to mainframe or AS/400 computers, use Host Integration Server server-to-server
data encryption when deploying upstream an Host Integration Server computer as a SNA gateway to a downstream TI
HIP computer

For SNA LU6.2 network connections to mainframe, use Host Integration Server IP-DLC Link Service in conjunction with
IPSec.

See Also
Reference
Configuring an IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa744907(v=bts.10).aspx

Protect the HIP Listener
To prevent an attacker from spoofing their identity, tampering with the data, or denying service, you should run the HIP
services in valid Windows privileged account.

To protect the HIP listener

1. Click Start, click Control Panel, double-click Administrative Tools, and then double-click Services.

2. In the details pane, right-click HIPService, and then click Properties.

3. Click This account,and then specify a valid Windows privileged account.

4. Type the password for the user account in Password and in Confirm password, and then click OK. If you select the
Network Service account, the password must be blank.

You can also help mitigate this threat with the following deployment scenario:

Service-based security

See Also
Reference
Services Account Screen

https://msdn.microsoft.com/en-us/library/aa754294(v=bts.10).aspx

Protect the Local File System, Database, and Registry
To prevent an attacker from spoofing their identity, accessing restricted data, or tampering with the data, you should do the
following:

Place the computer that is running Transaction Integrator (TI) in a secure location.

Confirm that the access permissions to TI programs, TI components, and the registry are set correctly.

Use host-initiated Single Sign-On (SSO) in conjunction with valid host UID and PWD passed in the initial connection
flows. You should not run the COM Server program in context of the default COM+ security context. Using both UID and
PWD causes the HIP application to validate both items when calling SSO.

Not use DCOM to remote calls from HIP Application server to a second Windows Server hosting COM+ server
application.

Use a secure network connection (for example, CICS TRM over IPSec-protected TCP/IP network connection).

You can also help mitigate this threat with the following deployment scenarios:

Service-based security

Host-initiated SSO

You can learn more about this threat by reading about the following:

How to help secure remote access to SQL Server (for example, integrated Windows security)

How to send a valid host user ID

How to send a valid host password

See Also
Reference
New Security Policy Wizard
Concepts
Single Sign-On in Transaction Integrator

https://msdn.microsoft.com/en-us/library/aa745018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771467(v=bts.10).aspx

Protect the Client Proxy
To prevent an attacker from tampering with a properly formatted message (for example, a TRM, DPL, SNA, or IP) sent by the
client computer to the TI runtime or to prevent an attacker from sending a malformed message to the TI runtime, you should
do the following:

Move the .NET Framework assembly DLL generated by TI Designer to the remote client computer.

You can learn more about this threat by reading about the following:

.NET remoting

ASP.NET Web clients

See Also
Other Resources
Transaction Integrator Threat Mitigation

https://msdn.microsoft.com/en-us/library/aa705450(v=bts.10).aspx

Protect the Remoting Session
To prevent an attacker from tampering with the remote session or denying service, you should do the following:

Use HTTPS between the remoting client and the server

Use separate ASP.NET application contexts for various levels of privileged users, thereby preventing lower-privileged
users from affecting sessions belonging to higher-privileged users.

You can also help mitigate this threat with the following deployment scenario:

ASP.NET Web client.

You can learn more about this threat by reading about the following:

Multiple levels of authorized users

ASP.NET application and IIS security

Properly-formatted TRM, DPL, SNA, IP, and other messages

Valid host user ID and password

Valid Windows user ID for Single Sign-On (SSO).

See Also
Other Resources
Transaction Integrator Threat Mitigation

https://msdn.microsoft.com/en-us/library/aa705450(v=bts.10).aspx

Protect TI from Unauthorized Mainframe or AS/400 Access
To prevent an attacker from using the mainframe or AS/400 connection to access the server running Transaction Integrator,
you should:

Utilize direct network connections over private segment.

Use IPSec, where supported, for IP communications between the host and Windows servers.

For SNA LU6.2 network connections to mainframe or AS/400 computers, use Host Integration Server server-to-server
data encryption when deploying upstream Host Integration Server computer as SNA gateway to downstream TI HIP
computer.

For SNA LU6.2 network connections to mainframe, use Host Integration Server IP-DLC Link Service in conjunction with
IPSec.

See Also
Concepts
Secure Deployment of the IP-DLC Link Service
Other Resources
Introduction to the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754488(v=bts.10).aspx

Protect the TI Runtime Environment
To prevent an attacker from instantiating multiple Transaction Integrator (TI) components to launch a denial of service attack
on the TI runtime environment, you should:

Store all TI component type libraries and .NET assemblies in a secure directory.

Confirm that the access permissions on all type libraries and .NET assemblies are set correctly.

Confirm that the access permissions on the directory where the type libraries and .NET assemblies are stored are set
correctly.

See Also
Other Resources
Transaction Integrator Threat Mitigation

https://msdn.microsoft.com/en-us/library/aa705450(v=bts.10).aspx

Protect Mainframe Security Credentials from Being Overridden
To prevent an attacker from gaining control over security credentials used to access a mainframe host, you should do the
following:

Use host-initiated Single Sign-On (SSO) in conjunction with valid host UID and PWD passed in the initial connection
flows.

Set the ClientContext to not allow security credentials to be overridden when using the SelectionHint property.

See Also
Tasks
Specifying a Remote Environment Programmatically
Other Resources
Remote Environment Selection Using the SelectionHint Property

https://msdn.microsoft.com/en-us/library/aa754711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705658(v=bts.10).aspx

Protect the TI Runtime and Host Environments from Data
Overflows

To prevent an attacker from using inbound, unbounded recordsets to launch a denial of service attack on either the Transaction
Integrator (TI) runtime or host environment, you should:

Store all TI component type libraries and .NET assemblies in a secure directory.

Confirm that the access permissions on all type libraries and .NET assemblies are set correctly.

Confirm that the access permissions on the directory where the type libraries and .NET assemblies are stored are set
correctly.

See Also
Concepts
Unbounded Recordsets

https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx

Deployment
This section provides instructions for deploying and configuring Host Integration Server. This includes how to test and verify
connections with the mainframe or AS/400 computer.

In This Section

Installation Guide

Deploying Host Integration Server

Making and Testing a Connection

Configuring Your Enterprise

https://msdn.microsoft.com/en-us/library/aa770536(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771881(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745331(v=bts.10).aspx

Installation Guide
This document contains information about the basic installation process for Microsoft® Host Integration Server 2009.

You can download the latest version of this topic at http://go.microsoft.com/fwlink/?LinkId=141188.

It is important to read the entire document before you start the installation because it contains hardware and software
requirements, correct installation procedures, and other information necessary for successful installation.

Note
It is also important to read the Readme.htm file before you start installation. The Readme.htm file is located in your downloa
d folder, and contains late-breaking information and known issues that you should understand before installation.

This document contains:

Hardware and Software Requirements

Installing the Product

Hardware and Software Requirements

In the following sections, the version numbers listed are minimum requirements. Versions later than those listed here are
supported unless otherwise noted.

Hardware Prerequisites

The minimum hardware requirements for a complete installation of Host Integration Server 2009 are as follows:

450 megahertz (MHz) or higher Intel Pentium-compatible CPU

512 megabytes (MB) of RAM

6-gigabyte (GB) hard disk

CD drive or DVD drive

Super VGA monitor (800 x 600) or higher-resolution monitor with 256 color

For HIS Designer only: Display Super VGA (1024x768) or higher-resolution monitor with 256 colors

Microsoft Mouse or compatible pointing device

Software Prerequisites
Important

Microsoft Host Integration Server 2009 will not install on a computer that already has the Microsoft OLE DB Provider for DB2
installed. If you have the OLE DB provider installed on your computer, you must uninstall it before you install Host Integratio
n Server 2009.

Supported Operating Systems

To install Host Integration Server 2009, you must be running one of the following operating systems:

Microsoft Windows® XP Professional with Service Pack 2 (x86 or x64)

Microsoft Windows Server® 2003 Service Pack 2 (x86 or x64)

Windows Server 2003 R2 Service Pack 2 (x86 or x64)

http://go.microsoft.com/fwlink/?LinkId=141188

Microsoft Windows Vista® Service Pack 1 (x86 & x64)

Windows Server 2008 (x86 & x64)

Product Prerequisites

Host Integration Server 2009 requires the following prerequisites:

.NET Framework version 3.5 SP1

Microsoft XML Core Services (MSXML) 6.0 SP1

Note
Setup will install redistributable prerequisites automatically from the Web or from a pre-downloaded CAB file. Automatically
installing from the Web or downloading the CAB file requires Internet access. You can download the CAB file at:
http://go.microsoft.com/fwlink/?LinkId=133541.

Feature Prerequisites

If you choose to install only selected features of Host Integration Server 2009, the following tables outline which software
prerequisites you will need.

Server Installation
Feature Requirement

Developer Design Tools Microsoft Visual Studio® 2005 SP1 or Visual Studio 2008

BizTalk Adapter for Host Applications Microsoft BizTalk® Server 2006, BizTalk Server 2006 R2, or BizTalk Server 2009

BizTalk Adapter for DB2 BizTalk Server 2006, BizTalk Server 2006 R2, or BizTalk Server 2009

BizTalk Adapter for Host Files BizTalk Server 2006, BizTalk Server 2006 R2, or BizTalk Server 2009

BizTalk Adapter for WebSphere MQ BizTalk Server 2006, BizTalk Server 2006 R2, or BizTalk Server 2009

MSMQ-MQSeries Bridge Message Queuing with routing support

Configuration After Server Setup

You can install the Server software without running the Configuration Tool, and then run the Configuration Tool later (on the
Start menu). Eventually, however, you must run the Configuration Tool. To do this, you will need the software listed in the
following table. It can be installed either on the local Host Integration Server computer or on a remote computer.

Feature Requirement

DB2 Distributed Transactions Microsoft SQL Server® 2005 SP2 or SQL Server 2008

Transaction Integrator SQL Server 2005 SP2 or SQL Server 2008

Enterprise Single Sign-On SQL Server 2005 SP2 or SQL Server 2008

MQ Connectors

The following are the supported versions of WebSphere MQ:

Software Requirements

You must have the following software installed before you can install the adapter.

BizTalk Adapter for WebSphere MQ (Client-Based)

IBM WebSphere MQ Client 6.0 with Fix Pack 6.0.1.1 or higher

http://go.microsoft.com/fwlink/?LinkId=133541

IBM WebSphere MQ Client 7.0 (required for 64-bit)

IBM WebSphere MQ Extended Transactional Client (for transactional support)

MSMQ-MQSeries Bridge

IBM WebSphere MQ Client 6.0 with Fix Pack 6.0.1.1 or higher

IBM WebSphere MQ Client 7.0 (required for 64-bit)

IBM WebSphere MQ Extended Transactional Client (for transactional support)

WCF Channel for WebSphere MQ

IBM WebSphere MQ Client 6.0 with Fix Pack 6.0.1.1 or higher

IBM WebSphere MQ Client 7.0 (required for 64-bit)

IBM WebSphere MQ Extended Transactional Client (for transactional support)

Note
When using Extended-Client, in addition to configuring the adapter receive locations and send port, ensure that you refer to t
he “How to Configure the MQSC Adapter for Transactional Messaging” topic in the Host Integration Server 2009 documentat
ion for additional information. Also refer to the Known Issues section in the Readme file.

Refer to your IBM documentation for additional information about how to obtain and install WebSphere MQ Extended
Transactional Client or WebSphere MQ Client.

Installing the Product

The following sections contain installation information for Host Integration Server 2009.

Important Notes About Installation

If you are upgrading a Host Integration Server 2004 or Host Integration Server 2006 computer, Host Integration Server 2009
Setup will upgrade your configuration automatically.

New to the Product Installation

The product installation now includes both Server and Client components, and also a developer-only and documentation-only
installation.

To Install Host Integration Server 2009

1. In Windows Explorer, locate the installation folder in which you extracted the Setup files.

2. Double-click Setup.exe. The Host Integration Server 2009 Installation panel appears.

3. Click the product name to start installation.

The Installation Wizard appears and guides you through the rest of the installation process.

4. Click Finish when you are finished.

To Uninstall Host Integration Server 2009 Using Add or Remove Programs

1. Click Start, point to Settings, and then click Control Panel.

2. In Control Panel, open Add or Remove Programs, select the name of the product, and then click Change/Remove.

The Add or Remove Application dialog box appears.

3. Click Remove, and then click Next.

The Uninstall Wizard appears and automatically starts the uninstall process.

4. When the wizard has completed the process, click Finish.

Note
Uninstalling Host Integration Server 2009 does not uninstall Enterprise Single Sign-On (SSO). To uninstall SSO, see "Uninstal
ling Enterprise Single Sign-On" later in this document.

Configuring Host Integration Server 2009

Host Integration Server 2009 contains an update to the Configuration Tool that is used during setup to complete the initial
installation. On first use of the Configuration Tool, a Configuration – Start panel gives the user the option of doing a Basic or
Custom configuration.

Basic Configuration

To install by using the default setting, you can use the Basic configuration option. When you click Configure, the tool
proceeds using the default settings, together with the minimum information supplied by the user on the Configuration -
Start panel.

Custom Configuration

If you choose Custom configuration and then click Configure, you are presented with a list of configuration panels based on
the features selected during installation. Selecting an item in the left pane displays its associated settings in the right pane.
After you have entered your configuration settings, you can click Apply Configuration in the toolbar to implement those
settings. Note that any settings made in the initial Configuration - Start panels are populated as defaults in the custom
configuration.

Updating the Configuration

You can update the configuration later by running the Configuration Tool on the Start menu. Individual settings can be
changed on each panel. To update the service account or database settings for all panels, click the View menu and then select
Service Accounts or Databases. In these dialog boxes you can multi-select all the rows by using the CTRL key, and bulk edit
the settings.

Unconfigure

A feature can be disabled by unconfiguring that feature. Select Unconfigure Feature on the menu, select the feature to be
unconfigured, click OK, and then continue through the wizard. This process removes any settings (for example, services and
registry keys) that were created when the configuration was previously applied.

Unattended Configuration

The Configuration Tool can export a configuration file that can be used to perform an unattended installation and
configuration. Select Export Configuration on the File menu. The unattended installation consists of two steps: setup and
configuration.

Unattended Installation

Unattended installation is useful for installing Host Integration Server 2009 on a large number of computers to ensure that
they are all configured in exactly the same way. It is also useful if you need to change or update the existing configuration of a
large number of computers.

You perform an unattended installation by creating a “model” installation on one computer, which you then apply to the other
computers.

To perform unattended installations

1. Using the standard Windows-based installation program, perform a full installation on a single computer. Because the
installation parameters you choose will be saved as a model, make the selections you want to use on the other
installations.

2. When setup is complete, run the Configuration Tool on the same computer. As in step 1, make the selections you want to
use on the other installations. Select Export Configuration on the File menu, and save the configuration XML file.

3. If you need to update the configuration XML file, select Import Configuration, open a saved file, and make any
necessary changes. This option is available only until you have completed configuration. If you need to make an update
after configuration, you will need to configure the system again.

4. On the appropriate server computer, open a command prompt and run the Unattended Installation command (see the
following sections). Where the command calls for the configuration file, use the name and location of the
HISServerConfig.xml file created in step 1. You can also use the options listed in the "Options" section.

Commands

Use the following commands and options for unattended installation.

Options
/InstallPlatform

This flag causes the installation program to install any platform prerequisites.

/L c:\HISInstall.log

This flag determines the log file location that is created during setup.

/S C:\HISServerConfig.xml

This flag specifies the configuration file (list of features) that is used on installation. The file "HISServerConfig.xml" contains
information about which features to install and how they should be configured. Sample copies of these files are located in the
Support\Unattended_Installs directory of the installation folder. This file can also be created during setup by clicking Save in
the summary panel of the Configuration Tool.

/INSTALLDIR

This option tells Setup where to install the product.

Unattended Uninstall

Use the following command for unattended uninstall:

Note that Setup.exe will need to have the install location appended to the beginning to ensure that the correct Setup.exe
program is launched.

Uninstalling BizTalk Adapters

Uninstall will not delete the adapter registration from BizTalk Server. This is because there could be other instances of the
adapter installed on different BizTalk Server computers in the group. If you want to clean this up, after you have uninstalled the
last adapter installation from all the BizTalk Server computers in the group, you can manually delete the adapter from the
BizTalk Server Administration console or by using Windows Management Instrumentation (WMI).

Uninstall will not undeploy the schema DLLs (for example, MQSeriesEx.dll or MQSeries.dll) from the BizTalk Management
database.

Uninstalling Enterprise Single Sign-On
Uninstall

Uninstalling Host Integration Server does not uninstall Enterprise Single Sign-On. To uninstall this feature, follow these steps:

1. Click Start, point to Settings, and then click Control Panel.

Setup.exe /InstallPlatform /L c:\HISInstall.log /S c:\HISServerConfig.xml /INSTALLDIR C:\HI
S

Configuration.exe /L c:\ConfigFramework.Log /S c:\HISServerConfig.xml

Setup.exe /l C:\UninstallLog.txt /REMOVE ALL /Product HIS

2. Double-click Add or Remove Programs.

3. In the Add or Remove Programs dialog box, click Microsoft Enterprise Single Sign-On, and then click Remove.

4. Click Yes when you are prompted to confirm removal of Microsoft Enterprise SSO.

Note
If you have BizTalk Server Runtime, Development, or Administration features installed, or Host Integration Server Administra
tion features installed, you cannot uninstall the SSO Runtime or Administration components until all dependencies are remo
ved.

Unattended Uninstall
Note

You will need the original installation media to perform unattended uninstalls of Single Sign-On Server or Client versions.

Use the following commands for unattended uninstall:

Host Integration Server 2009 Server

Host Integration Server 2009 Client

Note
If you have BizTalk Server Runtime, Development, or Administration features installed, or Host Integration Server Administra
tion features installed, you cannot uninstall the SSO Runtime or Administration components until all dependencies are remo
ved.

Special Considerations When Installing Enterprise Single Sign-On

The following sections contain information about installation of the Enterprise Single Sign-On (SSO) feature. Because of this
feature’s complex relationships to other features and systems, and because of its importance to system security, we
recommend that you read these sections carefully before you install Enterprise Single Sign-On.

Installing SSO and Creating the Master Secret Server

Initial installation of Enterprise Single Sign-On must be done on the server that you will use as the Master Secret Server. This is
also the only Master Secret Server allowed in the entire SSO system.

To install Enterprise Single Sign-On, run the Host Integration Server 2009 or BizTalk Adapters for Host Systems Setup program
and under the Server node, select Enterprise Single Sign-On and continue installation.

After installation is complete, the Configuration Wizard starts. Select the Custom Configuration mode. Because this is the
Master Secret Server, select the option to “Create a new SSO System” when configuring Enterprise SSO. This creates the
Master Secret Server and the SSO Credential database.

Processing Servers for Enterprise Single Sign-On

In a multi-computer environment, after the Master Secret Server and Credential database have been created, you can install
Enterprise Single Sign-On on subsequent computers. These are typically the computers on which Host Integration Server 2009
is also installed.

The initial installation process is the same as on the first computer. Configuration, however, becomes slightly different. Because
the Master Secret Server and the SSO Credential database are already in place, select “Join an existing SSO System” when
configuring Enterprise SSO.

EntSSO Administration Installation Only

MSIEXEC /X <Drive>\Platform\SSO\SSO.msi\SSO.MSI

MSIEXEC /X <Drive>\Platform\SSO\CLIENT\SSOClient.msi

You can install just the Enterprise Single Sign-On Administration feature. To do this, when you run the installation program,
under the Client node, select only Enterprise Single Sign-On Administration and continue installation.

Only SSO administrative components will be installed. The hardware and software requirements are the same as for a typical
EntSSO installation.

Note
While the SSO Administration feature in Host Integration Server 2009 is compatible with the server version of SSO in BizTalk
Server 2009, the administrative components of Enterprise SSO in BizTalk Server 2009 are not compatible with the server ver
sion of Enterprise SSO in Host Integration Server 2009.

Enterprise SSO MMC snap-ins require MMC 3.0. It is not supported on Windows 2000.

Installing the SSO Administration feature installs command-line-based utilities (ssomanage.exe and ssoconfig.exe) and an
MMC snap-in that can be accessed by clicking Start, pointing to All Programs, and then clicking Microsoft Enterprise Single
Sign-on. To run the SSO administrative command-line utilities after installation, you must open a command prompt and
navigate to the SSO directory located at Program Files\Common Files\Enterprise Single Sign-On. You can use ssomanage.exe
to specify the SSO server you want to use for management. To do this, open a command prompt and navigate to the SSO
directory located at Program Files\Common Files\Enterprise Single Sign-On, and then run ssomanage -serverall <SSO
server name>.

SSO Client Installation

The SSO client utility (ssoclient.exe or SSOClientUI.exe) enables end users to configure their client mappings in the Credential
database. You can install the client utility from a self-extracting file (SSOClientInstall.exe), which is installed with the SSO
Administration feature. This also installs the UI-based SSO client utility that can be accessed by clicking Start, pointing to All
Programs, and then clicking Microsoft Enterprise Single Sign-on.

To install the SSO client utility, you must be running one of the following operating systems on the client computer:

Windows Server 2003 (x86 or x64), Windows Server 2003 R2 (x86 or x64)

Windows XP Professional with Service Pack 1

Windows Vista

Note
The UI-based SSO client utility (SSOClientUI.exe) requires .NET Framework 2.0.

To run the command-line-based SSO client utility (ssoclient.exe) after installation, you must open a command prompt and
navigate to the SSO directory located at Program Files\Common Files\Enterprise Single Sign-On.

Password Synchronization

To install the password synchronization feature, run the installation program under Server – Enterprise Single Sign-On;
select the Enterprise Single Sign-On Password Management sub-feature and continue with installation.

Password Change Notification Service (PCNS) can be obtained from the following location:
http://go.microsoft.com/fwlink/?LinkID=68145.

Upgrading from an Earlier Version of SSO

Host Integration Server 2009 and the Microsoft BizTalk Adapters for Host Systems include Microsoft Enterprise Single Sign-On
version 4.0. Previous Microsoft products include the following versions of Enterprise Single Sign-On:

Enterprise SSO v1 is included in Microsoft BizTalk Server 2004

Enterprise SSO v2 is included in Microsoft Host Integration Server 2004

Enterprise SSO v3 is included in Microsoft BizTalk Server 2009 and Microsoft Connected Services Framework Server 3.0

http://go.microsoft.com/fwlink/?LinkID=68145

Upgrade Procedure

If Enterprise SSO was installed with Host Integration Server 2004, installing the BizTalk Adapters for Host Systems or Host
Integration Server 2009 will automatically upgrade SSO. (Note that you must first perform the upgrade on the Master Secret
Server.)

If Enterprise SSO was installed with one of the preceding products other than Host Integration Server, follow the procedure
below to upgrade to this release of SSO.

To perform these operations, you must be an SSO Administrator and a computer Administrator.

1. Make a secure backup of the SSO Credential database from your SQL Server computer before performing an upgrade.

2. Make sure you have a secure backup of the current secret from the Master Secret Server.

3. Upgrade Enterprise SSO on the Master Secret Server. To do this, follow these steps:

Run setup.exe for Microsoft BizTalk Adapters for Host Systems or Microsoft Host Integration Server 2009
package.

In the custom setup tree, select Enterprise Single Sign-On, and clear all other options to only install Enterprise
SSO. This will uninstall the earlier version and install the new version.

After installation is completed, start the Configuration Wizard to configure Enterprise SSO.

In the Configuration Wizard, select Custom Configuration. In the left pane, select Enterprise SSO, and in the right
pane, select Enable Enterprise Single Sign-On. All the settings will be unavailable. Select Apply Configuration,
and then click Next to continue with the configuration. This will also upgrade the SSO database if it is required.

After configuration is completed, restore the secret from the backup on the Master Secret Server.

4. Upgrade Enterprise SSO on other SSO servers. To do this, follow these steps:

Run setup.exe for Microsoft BizTalk Adapters for Host Systems or Microsoft Host Integration Server 2009
package.

In the custom setup tree, select Enterprise Single Sign-On, and clear all other options to only install Enterprise
SSO. This will uninstall the earlier version and install the new version.

After installation is completed, start the Configuration Wizard to configure Enterprise SSO.

In the Configuration Wizard, select Custom Configuration. In the left pane, select Enterprise SSO, and in the right
pane, select Enable Enterprise Single Sign-On. All the settings will be unavailable. Select Apply Configuration,
and then click Next to continue with the configuration.

Note
Services dependent on ENTSSO may be stopped after the upgrade. Check your System and Application event log for errors a
nd warnings. You might have to restart any services that are dependent on the ENTSSO service on the computer where the u
pgrade was performed.

Using Host-Initiated SSO Functionality in Enterprise Single Sign-On

Host-Initiated Single Sign-On uses the protocol transition feature of Windows Server 2003 to perform Single Sign-On for the
non-Windows user. This feature requires Windows Server 2003 and must be in a domain that has its Domain Functional Level
set to Windows Server 2003.

Supported Host Platforms
SNA connectivity, 3270 terminal emulation, host print service, and SNA programming interfaces

IBM z/OS, OS/390, MVS, VSE and VM

SNA connectivity, 5250 terminal emulation, host print service, and SNA programming interfaces

IBM i5/OS V5R4 & V6R1 and later

IP-DLC Link Service

IBM z/OS 1.8 and later

OLE DB Provider for DB2, ODBC Driver for DB2, Managed Provider for DB2, and BizTalk Adapter for DB2

IBM DB2 V8 and V9 for z/OS to support an SNA LU6.2 or TCP/IP network connection

IBM i5/OS V5R4 & V6R1 to support an SNA LU6.2 or TCP/IP network connection

IBM DB2 for Universal Database V8.2 and later for Windows and AIX operating systems to support a TCP/IP network
connection

OLE DB Provider for AS/400 and VSAM, Host File Transfer ActiveX Control, Managed Provider for Host Files, and BizTalk Adapter
for Host Files

IBM Distributed File Manager (DFM) V1R4, V1R5, V1R6, and V1R7 to support an SNA LU6.2 network connection (DFM is
a component of IBM Data Facility Storage Management Subsystem (DFSMS) for z/OS)

IBM i5/OS V5R4 & V6R1 to support an SNA LU6.2 or TCP/IP network connection

AS/400 Data Queues ActiveX Control

IBM i5/OS V5R4 & V6R1 to support an SNA LU6.2 network connection

Transaction Integrator and BizTalk Adapter for Host Applications

IBM CICS Transaction Server for VSE/ESA V2R3 to support an SNA LU6.2 network connection

IBM CICS Transaction Server for z/OS V2.3, V3.1, and V3.2 to support an SNA LU6.2 or TCP/IP network connection

IBM IMS Version 9.1 & 10.1, with IMS Connect 2.2,to support an SNA LU6.2 or TCP/IP network connection

IBM i5/OS V5R4 & V6R1 to support a TCP/IP network connection

WCF Channel for WebSphere MQ, MSMQ-MQSeries Bridge, and BizTalk Adapter for WebSphere MQ

IBM WebSphere MQ for Windows V5.3 with Fix Pack 12

IBM WebSphere MQ for Windows V6.0 with Fix Pack 6.0.1.1

IBM WebSphere MQ for Windows v7.0

Deploying Host Integration Server
This section describes the concepts and considerations necessary for successfully deploying Host Integration Server.

In This Section

Deployment Overview

Connecting Servers

Understanding Connectivity

https://msdn.microsoft.com/en-us/library/aa744915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704514(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705768(v=bts.10).aspx

Deployment Overview
This section provides an overview of the SNA Open Gateway Architecture (SOGA) as it applies to Host Integration Server. It
outlines the deployment models for Host Integration Server.

In This Section

SNA Open Gateway Architecture

Deploying Host Integration Server 2009

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa770971(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

SNA Open Gateway Architecture
Organizations with IBM mainframe or AS/400 computers are now consolidating their SNA-only and non-SNA networks into
single TCP/IP-based wide area networks (WANs). In the past, two parallel networking systems have been deployed in most
organizations: the traditional SNA network used to connect computers and hardware controllers with IBM mainframes and
AS/400 computers, and local area networks (LANs) used primarily to access files and client/server applications running on
local server computers.

Many organizations are seeking a single WAN solution that provides access to all desktops, servers, and host systems across a
single networking protocol. At the same time, TCP/IP is emerging as the protocol of choice because of its versatility, openness,
and ability to support Internet and intranet connections.

Many organizations cannot integrate their networks because of the need to ensure reliable and secure access to their existing
IBM host systems—on which most organizations base their mission-critical daily operations.

SNA Open Gateway Architecture (SOGA) satisfies the requirement for reliable and secure host connectivity in the context of an
integrated WAN. SOGA is a scalable framework for SNA enterprise connectivity, offering multiple options for integrating
branch offices by means of routed inter-networks with IBM mainframe and AS/400 computers. This framework encompasses
components from leading channel attachment and inter-networking vendors while deploying Host Integration Server
computers in both traditional and innovative ways.

SOGA supports industry standards for SNA host access and presents flexible options for integrating host data across open
WANs, such as those composed of Data Link Switching (DLSw), Frame Relay (RFC 1490), and Asynchronous Transfer Mode
(ATM). Request for Comment (RFC) 1490 specifies methods of encapsulating TCP/IP and SNA within Frame Relay. The SOGA
blueprint consists of three core elements:

Flexible SNA gateway deployment models

High-performance SNA gateway configurations

Efficient wide area network utilization

See Also
Other Resources
Deploying Host Integration Server 2009

https://msdn.microsoft.com/en-us/library/aa770324(v=bts.10).aspx

Deploying Host Integration Server 2009
Whether your enterprise consists of a single office or many branches spread throughout the world, SNA Open Gateway
Architecture (SOGA) offers three flexible deployment models to implement Host Integration Server in your environment.

When planning your deployment strategy, ask the following questions:

With what type of host systems do I need to connect?

What kind of performance and host availability do my users expect?

What kind of networking infrastructure is in place?

By answering these questions and using the information provided in this section, you can determine the best deployment
strategy for your enterprise.

See Also
Concepts
SNA Open Gateway Architecture

https://msdn.microsoft.com/en-us/library/aa770971(v=bts.10).aspx

Connecting Servers
After you have determined a suitable deployment model and subdomain configuration, you must choose how to connect Host
Integration Server computers to the host system, to client workstations, and to other Host Integration Server computers.

This section explores how to choose:

Connections between Host Integration Server computers and the host

Network protocols for Host Integration Server computers and clients

To understand the connectivity options, you should first examine the different physical connections and network protocols that
Host Integration Server supports.

In This Section

Connection Methods

Choosing Server-to-Host Connections

Choosing Network Protocols for Host Integration Server

Installing Host Integration Server 2009 Clients

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705647(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705212(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Connection Methods
Host Integration Server supports many different connection methods. However, not all may be available in your environment.
When you choose a connection method, you should keep in mind:

Deployment model you are implementing

Host networking infrastructure that is in place

Host systems to which you are connecting

Expected usage level of host resources

Level of performance and response expected by your users

In This Section

802.2 Data Link Control (DLC)

Synchronous Data Link Control (SDLC)

Channel

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744305(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

802.2 Data Link Control (DLC)
Token Ring, Ethernet, and Fiber Distributed Data Interconnect (FDDI) connections use the IEEE DLC 802.2 protocol to connect to
the host. In a mainframe environment, Host Integration Server usually connects to a front-end processor (FEP) or a
communications controller, such as an IBM 3174. Occasionally, you can establish a connection to an adapter within a
mainframe. With an AS/400 system, the connection goes directly to a network adapter in the AS/400 computer.

Token Ring connections are typically limited to 4 or 16 megabits per second (Mbps). Token Ring solutions are still found in
some mainframe environments. In many scenarios, a Token Ring connection provides good performance at a reasonable cost
in equipment.

Ethernet is a common connection type for local area networks (LANs) with workstations or computers. This connection type is
also common in peer-type networks.

FDDI connections use fiber cabling to achieve connections reaching 100 Mbps or greater. The FDDI line communicates through
an FEP that is channel-attached to the mainframe. This may limit the overall speed of communications. In many cases, this type
of connection can provide a reasonably cost-effective solution if you require higher throughput and a channel solution is not
possible.

DLC connections are well suited for the centralized and distributed deployment models, because both strategies implement
Host Integration Server computers close to the host. You can also deploy data link control (DLC) in a branch model using
routers or bridges that can route traffic between the branch offices and the central host system.

Host Integration Server supports DLC connections over any network adapter supported by Windows using the Windows-
based DLC network transport driver.

See Also
Concepts
Synchronous Data Link Control (SDLC)
Channel
Other Resources
Connection Methods

https://msdn.microsoft.com/en-us/library/aa744305(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705647(v=bts.10).aspx

Synchronous Data Link Control (SDLC)
SDLC connections use a standard phone line (leased, public, point-to-point, or multidrop). An SDLC adapter within the Host
Integration Server computer connects to a modem that uses the phone line to establish a connection with the host system. In a
mainframe system, the SDLC connection uses a front end processor (FEP), a communications controller, or an integrated SDLC
adapter. In an AS/400 system, the connection goes directly into the AS/400 computer.

SDLC throughput is limited by the medium used for the connection and the capabilities of the SDLC adapter in the Host
Integration Server computer. The cost to implement SDLC grows significantly as faster line types are used. In general, SDLC
connections are much slower than 802.2 connections. The following table lists the common line types and their speeds:

Line type Typical speed
Analog (conventional phone line) 9600 to 19200 bits per second (BPS)

Digital Data System (DDS) 56 to 64 kilobits per second (Kbps)

Integrated Services Digital Network (ISDN) 56 to 128 Kbps

T1 carrier system 1.544 megabits per second (Mbps)

T3 carrier system 2.048 Mbps

SDLC connections are useful for wide-area connections between geographically disparate locations or when bandwidth and
usage requirements are low. Because of these factors, SDLC is ideally suited for branch-type deployment strategies.

Host Integration Server supports SDLC connections using the link support included with Host Integration Server or through an
SDLC link service available through various third-party vendors. Not all supported SDLC adapters support all link speeds listed
in the previous table.

See Also
Concepts
802.2 Data Link Control (DLC)
Channel
Other Resources
Connection Methods

https://msdn.microsoft.com/en-us/library/aa771374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705647(v=bts.10).aspx

Channel
Channel connections provide direct channel attachment to a mainframe. There are two types of channel connections: older Bus
& Tagchannel connections, which can reach speeds of up to 4.5 megabytes per second (MBps), and newer ESCON connections,
which can reach speeds approaching 17 MBps. Support for channel connections is limited to adapters supported natively
through Host Integration Server.

Enterprise System Connection (ESCON) channel attachments use standard fiber cable and increase throughput significantly.

ESCON is an ideal connection method in centralized or distributed deployments where high performance and responsiveness
are required.

The following table summarizes all common connection methods that can be used with Host Integration Server.

Method Throughput Characteristics
Token Ring 4 or 16 MBps Midrange performance using data link control (DLC) protocol

Supports multiple host connections using a single adapter

Uncomplicated and inexpensive to implement

Suitable for a wide range of purposes

Ethernet 10 GBps Midrange performance using DLC protocol

Supports multiple host connections using a single adapter

Uncomplicated and inexpensive to implement

Suitable for light to medium network traffic conditions

FDDI 100 MBps High performance using DLC protocol

Supports multiple host connections using a single adapter

Relatively expensive to implement

Suitable for higher-performance connections

SDLC 9600–19200 bits per second (BPS) Low performance using SDLC protocol

Supports 256 sessions over a single host connection

Uncomplicated and inexpensive to implement

Suitable for low-traffic WAN connections

Channel: Bus & Tag 4.5 MBps High performance

Supports a high number of host connections.

More expensive

Suitable for high-performance connections

Channel: ESCON 17 MBps Highest performance

Supports a high number of host connections

More expensive

Suitable for conditions where maximum throughput is required

See Also
Concepts
802.2 Data Link Control (DLC)
Synchronous Data Link Control (SDLC)
Other Resources

https://msdn.microsoft.com/en-us/library/aa771374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744305(v=bts.10).aspx

Connection Methods

https://msdn.microsoft.com/en-us/library/aa705647(v=bts.10).aspx

Choosing Server-to-Host Connections
In Host Integration Server terms, a host connection is the data communications path between Host Integration Server and a
host system. For a mainframe, the connection corresponds to a physical unit (PU) definition in Virtual Telecommunications
Access Method (VTAM). On the AS/400 computer, the connection corresponds to an Advanced Program-to-Program
Communications (APPC) controller definition.

For each physical adapter or connection, you install and configure an appropriate link service within Host Integration Server. A
link service is a Windows-based service or device driver that is used to control server-to-host communication adapters
supported by Host Integration Server. Once configured, the link service is available for use not only on the configured Host
Integration Server computer, but also on any server in the subdomain using the Distributed Link Service (DLC) feature. See
Distributed Link Service for more information.

After you configure the link services, you can configure the connections. Using a host connection, a client computer on a LAN
can communicate with the mainframe system. For some link services, it is possible to define multiple connections over a single
host link.

In SNA terms, a physical unit (PU) is the combination of a physical connection and the link service it uses. In an SNA network,
Host Integration Server provides PU 2 or PU 2.1 functionality similar to that of an IBM cluster controller.

Several factors should be taken into account when determining a physical connection method to your mainframe:

Performance requirements

Expected server loads

Existing network infrastructure

Chosen Host Integration Server deployment model

Cost

You should plan for enough future capacity to support additional connections to your host system. Ethernet connections are
the best choice for an all-purpose connection to a host.

For some link services, multiple host connections are possible using a single adapter, most notably the IP-DLC link service.
Host Integration Server supports up to 250 host connections per server. Up to four instances of Host Integration Server are
supported on a single computer.

In This Section

Mainframe Connection Summary

AS/400 Connection Summary

https://msdn.microsoft.com/en-us/library/aa772029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745696(v=bts.10).aspx

Mainframe Connection Summary
The hierarchical SNA network model provides access to a centralized processing resource from elements on the network. This
model is most frequently associated with mainframe environments in which centralized applications are accessed from remote
terminals across a network.

Devices in a hierarchical SNA network, such as terminals or cluster controllers, are called physical units (PUs). A number
designates each class of device. For example, the mainframe is known as a PU 5 device.

Diagram of network model showing Host Integration Server connecting to a mainframe and to a front-end
processor. Also shows supported protocols.

Host Integration Server can directly connect to the mainframe if a high-performance connection is required. These physical
connection methods are available:

Open Systems Adapter, supporting Token Ring, Ethernet, and Fiber Distributed Data Interconnect (FDDI) connections

Bus & Tag channel connection

Enterprise System Connection (ESCON) channel connection

Connections to a front-end processor (FEP), which is a PU 4 device, are also supported. These types of connections may be
easier to implement depending on your existing infrastructure and the physical proximity of the Host Integration Server to the
mainframe. For an FEP, you can use one of the following connection methods:

Token Ring

Ethernet

FDDI

SDLC

In a hierarchical SNA network, Host Integration Server emulates a cluster controller and supports all standard protocols:

LU 2, for 3270 terminal sessions

LU 1 or 3, for SCS or 3270 printer sessions

LU 6.2, for Advanced Program-to-Program Communications (APPC) and Common Programming Interface for
Communications (CPI-C) applications

LU 0, 1, 2, or 3, for logical unit application (LUA) RUI/RI general-purpose, customized applications

Any combination of these protocols can be used over a given physical connection.

See Also
Concepts
AS/400 Connection Summary
Other Resources
Choosing Server-to-Host Connections

https://msdn.microsoft.com/en-us/library/aa745696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705533(v=bts.10).aspx

AS/400 Connection Summary
In the peer-oriented SNA network model, all computers on the network can communicate directly with each other. Advanced
Peer-to-Peer Networking (APPN) is the architecture developed by IBM that enables distributed data processing. APPN defines
how components communicate with each other, and the level of network-related services, like routing sessions, that are
supplied by each computer in the network.

Diagram showing Host Integration Server connecting to an AS/400 with several connection methods

In an APPN network, Host Integration Server emulates a type 2.1 physical unit device (PU 2.1). Host Integration Server
computers can connect to an AS/400 computer using several connection methods:

Token Ring

Ethernet

FDDI

SDLC

Frame relay or bridging solutions can also be implemented to transport SNA traffic over wide area network (WAN)
connections in branch-based deployment models. Host Integration Server operates as an APPN low-entry networking (LEN)
node and communicates with other APPN nodes using the Advanced Program-to-Program Communications (APPC) or LU 6.2
protocol.

See Also
Concepts
Mainframe Connection Summary
Other Resources
Choosing Server-to-Host Connections

https://msdn.microsoft.com/en-us/library/aa771914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705533(v=bts.10).aspx

Choosing Network Protocols for Host Integration Server
After you determine the server-to-host connection, you must choose the protocols to use for two additional Host Integration
Server communication paths: client/server communication and server/server communication. You can use one protocol for
both, or you can use a combination of different protocols, if all servers share at least one client/server protocol and use it for
server/server communication.

Deploying a single protocol across your wide area network (WAN) is the easiest way to manage your communications. The
following figure shows a network in which TCP/IP is used for all types of communication involving Host Integration Server
computers and clients.

Diagram of network using TCP/IP for both server-to-server and server-to-client communication

You may decide to gradually implement Host Integration Server throughout your enterprise, in which case you may need to
use existing protocols for certain connections. The following figure shows a local area network (LAN) in which two protocols
are used. For server/server communication, Microsoft Networking (Named Pipes) is used.

Diagram of network using NetBEUI for server-to-server communication and IPX/SPX for server-to-client
communication

Note
IPX\SPX is no longer supported in this version of Host Integration Server.

Similarly, other combinations of protocols can be used, if all the Host Integration Server computers share one protocol and use
that protocol for server/server and client/server communication.

In This Section

Choosing Client/Server Network Protocols

Choosing Server/Server Network Protocols

See Also
Other Resources

https://msdn.microsoft.com/en-us/library/aa753911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704945(v=bts.10).aspx

Connecting Servers

https://msdn.microsoft.com/en-us/library/aa704514(v=bts.10).aspx

Choosing Client/Server Network Protocols
Host Integration Server client computers can communicate through a number of different local area APIs or network
transports: Microsoft Networking (Named Pipes), or TCP/IP (sockets). The network software and the Host Integration Server
software must be installed correctly on both clients and servers for them to handle different protocols correctly. Correct
installation ensures two essential aspects of communication:

Host Integration Server computers and client computers are visible to each other on the LAN. This results when the
network software is installed correctly on all affected computers.

Host Integration Server computers communicate with clients over the correct LAN protocol. Clients direct their
communication to the correct subdomain name or (for some clients using Microsoft Networking (Named Pipes) or
TCP/IP) to one or more correct server names.

TCP/IP is the standard network protocol for client/server applications. Its high performance and routing ability make it suitable
for many wide area network (WAN) environments. In many cases, TCP/IP will be the best protocol choice for your network,
especially if TCP/IP is already deployed to some degree in the LAN segment on which the Host Integration Server computers
and clients reside.

See Also
Concepts
Choosing Server/Server Network Protocols
Installing Host Integration Server 2009 Clients
Other Resources
Choosing Network Protocols for Host Integration Server

https://msdn.microsoft.com/en-us/library/aa704945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705212(v=bts.10).aspx

Choosing Server/Server Network Protocols
Host Integration Server computers communicate with each other using mailslot messages or directed datagrams over a
network. Host Integration Server enables you to make choices concerning these broadcasts.

You can select among the following protocols for server broadcasts: Microsoft Networking (Named Pipes), and TCP/IP.

Important
You must make sure that at least one protocol is available on all Host Integration Server computers in the subdomain, and th
at this protocol is used for server/server communication and client/server communication.

Note
For example, if all Host Integration Server computers in a subdomain use TCP/IP, the protocol used for server/server commu
nication must be TCP/IP, and all servers must use TCP/IP for client/server communication as well.

Using multiple server/server transport protocols can add significantly to network overhead. This is because every server
broadcast must be sent out through all protocols selected in the Host Integration Server management console.

For highest efficiency, select only one protocol for broadcasts between Host Integration Server computers. Remember that the
protocol must be available on all Host Integration Server computers in the subdomain. Where multiple choices are available
(multiple protocols are bound to the network adapters on all Host Integration Server computers), select a protocol other than
Microsoft Networking (Named Pipes). This is recommended because of design requirements for mailslot broadcasts. When
these broadcasts are sent over Microsoft Networking (Named Pipes), there is the local system cannot determine which
protocol the receiving system will be using, so the broadcast is sent over all protocols bound to the local adapter. This causes
multiple mailslot broadcasts by means of Microsoft Networking (Named Pipes) for adapters to which several protocols are
bound. The multiple broadcasts cause an increase in network traffic.

In subdomains in which all Host Integration Server adapters can use multiple protocols, TCP/IP protocol is recommended. You
may be able to select extra protocols that do not exist in your network. However, selecting these has no effect.

The Host Integration Server management console also allows you to specify a parameter called Mean Time Between Server
Broadcasts. For optimum efficiency, you should specify a value greater than or equal to 60 seconds (the default). The smaller
this value, the less the efficiency, but the more likely the broadcasts will compensate for lost messages. It is recommended that
you choose a value of 120 seconds or greater initially. If you encounter an increased number of lost messages, this value
should be reduced until a low number of messages are lost.

See Also
Concepts
Choosing Client/Server Network Protocols
Installing Host Integration Server 2009 Clients
Other Resources
Choosing Network Protocols for Host Integration Server

https://msdn.microsoft.com/en-us/library/aa753911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705212(v=bts.10).aspx

Installing Host Integration Server 2009 Clients
Host Integration Server client software allows client workstations to communicate with Host Integration Server computers to
access host resources. Client software is installed on each workstation using applications that communicate using any Host
Integration Server programmatic interfaces. Client software is available for the following platforms:

Microsoft Windows Server 2008

Microsoft Windows Server 2003

Windows 2000 Server

The fastest Host Integration Server client/server network interface is TCP/IP, although you can use other local area network
(LAN) protocols such as Microsoft Networking (Named Pipes) if your LAN supports them. If you select TCP/IP or Microsoft
Network, the remote installation option is recommended. Selecting "local" requires the client workstation to be on the same
TCP/IP subnet as the Host Integration Server computer, which is uncommon in routed IP networks.

Note
Host Integration Server client software is not required to use services such as TN3270 and TN5250. Applications, such a TN3
270 emulator, communicate directly with these services using TCP/IP and do not use the Host Integration Server client/serve
r interface.

See Also
Concepts
Choosing Server/Server Network Protocols
Choosing Client/Server Network Protocols
Other Resources
Choosing Network Protocols for Host Integration Server

https://msdn.microsoft.com/en-us/library/aa704945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705212(v=bts.10).aspx

Understanding Connectivity
After you have completed Host Integration Server installation, you are ready to configure your installation. This section
provides the concepts and procedures for configuring Host Integration Server.

In This Section

Host Integration Server 3270 Connectivity

Host Integration Server 5250 (AS/400) Connectivity

Independent APPC LUs

Dependent APPC LUs

APPC Mode Definition

CPI-C Access

Transaction Programs

APPC Security

Optimizing Communications

APPC Mode

Notes Section

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa770477(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771277(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705477(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744977(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770935(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Host Integration Server 3270 Connectivity
In the hierarchical SNA network model most frequently associated with a mainframe computer, you access centralized
applications from remote terminals across a network. This network model uses the information display protocol for IBM
mainframe computers known as 3270. This protocol facilitates conversations between the mainframe and devices such as
terminals, printers, and controllers. Through the definition and assignment of 3270 logical units (LUs), Host Integration Server
provides access to mainframe resources.

A 3270 LU is known as a dependent LU because it requires a mainframe to function. Each 3270 LU defined within Host
Integration Server is configured to use an existing connection to the mainframe system. Each 3270 LU corresponds to a
matching LU resource allocated on the host computer, usually specified within Virtual Telecommunications Access Method
(VTAM). The 3270 LU definition in Host Integration Server is identified by a number that matches the number of the
corresponding LU resource on the mainframe, and by a user specified name.

The 3270 LU is further classified by the type of service provided over the connection. Like physical units (PUs), numbers
designate LU types. For example, 3270 display data streams are known as LU 2 streams. Within Host Integration Server, a 3270
LU can be configured as one of the following types:

Display (LU 2)

Printer (LU 1 or LU 3)

Application (LUA)

Downstream

After the LUs are configured, they are accessed from client computers and applications using Host Integration Server client
software that is installed on the client workstation. The client software manages communications between a 3270 application
(like a terminal emulator) and the Host Integration Server computer. Applications designed for the Host Integration Server
client API use the LUs defined within Host Integration Server to establish a communications link from the client workstation to
the mainframe by means of Host Integration Server.

3270 users connecting through Host Integration Server to a mainframe

The link between the LU definition in Host Integration Server and the host LU resource is called a session. Sessions can be
permanent and automatically started during initialization, or established on an as-needed basis. Concurrent sessions can share
the same physical devices and communications links.

A 3270 user communicating with a host uses a 3270 LU. The 3270 LU has a specific name (recognized by the host), is
associated with a specific connection, and supports a specific use (either printing, or terminal emulation of a particular size). A
collection of 3270 LUs that will be used by a group of users can be placed in an LU pool, so that whenever a user needs an LU,

the next one in the pool will be made available. The connection, the 3270 LU, the 3270 LU pool, and the list of users (or groups)
are the basic elements to configure when supporting 3270 users in a Host Integration Server installation.

See Also
Concepts
LUA Access
Precedence of Accounts in Determining LU Access
Downstream Connections

https://msdn.microsoft.com/en-us/library/aa770506(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754063(v=bts.10).aspx

LUA Access
Logical unit application (LUA) is an application programming interface (API) that allows you to write customized applications to
communicate with the host. LUA LUs enable programmable control over the SNA messages that are sent between the
communications software and the host. LUA LUs can be used to communicate with LU types 0, 1, 2, or 3 at the host as long as
the application sends the appropriate SNA messages required by the host.

An LUA application uses a local LU, which uses Host Integration Server to communicate with the host system. When Host
Integration Server connects to the host, there are three progressive sessions:

1. The PU-SSCP between the Host Integration Server physical unit (PU) and the system services control point (SSCP) on the
host.

2. The SSCP-LU session between the LUA LU at the computer running the application and the SSCP.

3. The LU-LU session between the LUA LU at the computer running the application and the host LU.

The LU session's normal flow carries most of the data. The other flows are used only for control purposes.

The Host Integration Server configuration file contains information that is required for LUA applications to communicate. An
LUA LU is configured to use a connection to the host by the link service that is installed. It is then given the LU number that
matches that of an LU on the host.

The configuration may include LUA LU pools. A pool is a group of LUs with similar characteristics, and it allows an application
to use any free LU from the pool. This feature can be used for allocating LUs on a first-come, first-served basis when there are
more applications than LUs available, or for providing a choice of LUs on different connections, as well as
providing hot backup and load balancing.

The communications components to be configured include:

A link service for communicating with the host.

A connection to the host that uses the link service.

A Host Integration Server service which owns the connection. This component is configured automatically.

An LUA LU on a Host Integration Server service, configured to use the connections, with an LU number that matches an
LU on the host.

You can perform the following actions with LUA LUs:

Assign an LUA LU, or a range of LUA LUs, to a connection. A range of LUA LUs will allow multiple applications to use
LUAs simultaneously. Configure the numbering for a new range of LUA LUs by specifying the lowest LU number and the
number of LUs in the range.

After creating a range of LUs, you can change the numbering of individual LUs in the range.

Configure properties for a new LUA LU or a new range of LUA LUs. This includes specifying the LU name and LU number
for the LUs.

Group LUA LUs into one or more LUA LU pools. An LUA LU pool contains a number of LUs that are made available as a
group to LUA applications. A given application can get LU access as long as one of the pooled LUs is available.

View or modify an existing LUA LU, regardless of whether it was created as part of a range.

Copy properties from one LU to another.

Move an LU from one connection to another.

https://msdn.microsoft.com/en-us/library/aa770735(v=bts.10).aspx

Delete an LU.

Move an LUA LU from one connection to another.

Check with the host administrator to determine the appropriate names and numbers for LUA LUs on your system. The LU
Number for LUs on 802.2 or Synchronous Data Link Control (SDLC) connections should match the LOCADDR= parameter of
the LU definition in VTAM or in the NCP Gen.

If the number you specify has already been assigned to an LU or an APPC LU-LU pair on the current connection, you must use
a different number. The range for LU numbers is from 1 through 254.

The LU Name cannot be the same as any other LU name or pool name (except for APPC LU names) on the server.

If the High Priority LU is assigned to a pool, the priority setting of the pool overwrites the setting of the LU.

On an 802.2 or SDLC connection, you can configure multiple LUs at one time by configuring them as a consecutively
numbered range. Multiple LUA LUs will allow multiple applications to access the host simultaneously. After configuring the
range of LUs, you can modify the numbering and properties of individual LUs in the range.

See Also
Concepts
Precedence of Accounts in Determining LU Access
Downstream Connections

https://msdn.microsoft.com/en-us/library/aa704680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754063(v=bts.10).aspx

Precedence of Accounts in Determining LU Access
When user and group account memberships overlap, the highest-priority account that contains a 3270 LU or pool determines
the access the user gets. Accounts are prioritized as follows:

1. User accounts (highest priority)

2. Subdomain groups

3. Local groups

4. Well-known groups such as Everyone (lowest priority)

For example, if a 3270 LU called LU 1 is assigned to a user account (a high-priority account) called JOHND, and at the same
time an LU called LU 2 is assigned to a local group (a low-priority account) of which JOHND is a member, JOHND will be given
access to LU 1, not LU 2.

See Also
Concepts
LUA Access
Downstream Connections

https://msdn.microsoft.com/en-us/library/aa770506(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754063(v=bts.10).aspx

Downstream Connections
A downstream connection enables a remote computer without a direct connection to the host computer to pass information
back and forth using Host Integration Server as the gateway. To the downstream system, there appears to be a direct
connection to the host. Host Integration Server accomplishes this by passing information back and forth between the
downstream system and the host.

Downstream connections and LUs enable Host Integration Server to support communication between 3270 nodes using SNA
protocols. A downstream system is an SNA node (a Host Integration Server computer or mainframe) that uses Host Integration
Server as a physical unit (PU) gateway. To the downstream system, the Host Integration Server computer appears to be the
3270 host providing the PUs and LUs. The downstream system may be unable to communicate directly with the 3270 host
because of hardware or network incompatibilities that are supported by the intermediate Host Integration Server computer.

One method of reducing host configuration requirements is to concentrate PUs on the SNA gateway computer and pass the
LUs to attached downstream physical units (DSPUs). LUs from one or more PUs can be shared with one or more downstream
devices. This allows for more economical use of configured resources and alleviates the need to configure each downstream
device in host Virtual Storage Access Method (VSAM).

Communication by means of a downstream connection and downstream LU in Host Integration Server is always dependent
(controlled by a host). Independent communication, including APPC, is not available by means of downstream LUs on Host
Integration Server.

The following figure illustrates downstream connections.

Communication with a downstream system

The information that Host Integration Server passes from the downstream system to the host includes LU information.
Therefore, Host Integration Server does not store detailed LU configuration information for downstream LUs. However, Host
Integration Server does require all the usual connection information for the host and downstream connections.

Two connections are needed for a downstream system: a downstream connection (from the downstream system to Host
Integration Server) and an upstream connection, which is an ordinary host connection from Host Integration Server to the host.

You can configure the upstream connection as you would any other connection to the host. After that, you can configure the
downstream connections. These must be 802.2 or SDLC.

See Also
Concepts
LUA Access
Precedence of Accounts in Determining LU Access

https://msdn.microsoft.com/en-us/library/aa770506(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704680(v=bts.10).aspx

Host Integration Server 5250 (AS/400) Connectivity
In the peer-oriented SNA network model, all computers on the network can communicate directly with each other. Advanced
Peer-to-Peer Networking (APPN) enables distributed data processing, defines how components communicate with each other,
and determines the level of network-related services that are supplied by each computer in the network. Although peer-
oriented SNA networks are usually associated with an AS/400 host system, mainframe systems can also support peer-to-peer
networking.

IBM AS/400 computers use the 52xx series of devices. In particular, 5250 describes the terminal display data stream. The
Advanced Program-to-Program Communications (APPC) protocol is used to support 5250 terminals and other APPN network
computers, devices, and programs to communicate with each other. Each device in an APPN network is known as a type 2.1
physical unit (PU 2.1). In addition, the APPC protocol defines associated logical units as APPC LUs (also called LU 6.2).

Communications in a peer-oriented network

In an APPN network, Host Integration Server computers emulate PU 2.1 devices and can connect to an AS/400 using several
connection methods:

Token Ring

Ethernet

Fast Ethernet

FDDI

SDLC

Frame relay or bridging solutions can also be implemented to transport SNA traffic over wide area network (WAN)
connections in branch-based deployment models.

See Also
Concepts
APPC
Connecting to an AS/400 Using 5250 Terminals

https://msdn.microsoft.com/en-us/library/aa746031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770995(v=bts.10).aspx

APPC
Advanced Program-to-Program Communications (APPC), or LU 6.2, provides a transport vehicle for programs on peer systems
to communicate with each other over the SNA network. APPC is software that enables high-speed communications between
programs on different computers.

APPC is a change from the terminal-to-host connections used in many 3270 systems. APPC moves to a distributed transaction
programming environment by providing a common set of SNA protocols that brings compatibility at a program
communications level.

APPC serves as translator between application programs and the network. When applications on one computer pass
information to the APPC software, APPC translates the information and passes it to a network interface. APPC translates the
information back into its original format and passes it to the corresponding partner application. APPC can be used across any
of the standard types of connections supported by SNA and is not tied to any particular physical connection.

APPC generally uses a local APPC LU (LU 6.2) and one or more remote APPC LUs. A local APPC LU can be independent or
dependent. In full peer-oriented APPN networks, typically implemented in an AS/400 environment or under the most modern
evolution of mainframe technology, the independent APPC model applies. Dependent APPC is used in older mainframe
networks, and its functions are reduced.

Local and remote APPC LUs work together in pairs. The local APPC LU is assigned to a server (unlike other LU types, which are
assigned to connections). The remote APPC LU is assigned to the connection. Host Integration Server uses dynamic partnering
to create any possible LU partnership on demand when local and remote LUs and modes recognize each other.

With dynamic APPC partnering, an administrator configures remote LUs, but does not need to partner them with local LUs.
Host Integration Server will automatically partner the LUs when needed.

With dynamic APPC configuration, an administrator does not need to configure remote LUs. If a connection is designated to
support dynamic APPC configuration, Host Integration Server will automatically define a remote LU and partner it with a local
LU when needed.

Independent APPC provides the ability to run multiple, concurrent, parallel sessions between a single pair of LUs. Dependent
APPC allows only a single session between a given pair of LUs.

Programs that use APPC are referred to as transaction programs (TPs). There are two types of TPs: those that can invoke a
conversation, and those that can be invoked. A TP can provide any type of service: terminal emulation, data transfer, database
query or update, and so on.

The characteristics that govern the interactions between TPs using an LU 6.2-LU 6.2 connection are determined by the mode
associated with the connection. The mode can be associated in a fixed manner with a given LU, or it can be supplied by the
invoking TP when a session is first initiated.

See Also
Concepts
Host Integration Server 5250 (AS/400) Connectivity
Connecting to an AS/400 Using 5250 Terminals

https://msdn.microsoft.com/en-us/library/aa705535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770995(v=bts.10).aspx

Connecting to an AS/400 Using 5250 Terminals
Host Integration Server computers provide access to AS/400 computers by emulating 5250 display terminals. A 5250 user
communicating with an AS/400 must use a pair of APPC LUs (LU 6.2). This pair contains a local LU and a remote LU (as viewed
by the Host Integration Server computer). Together, these two LUs (along with the mode that they use) contain the
configuration information needed for establishing a session with the AS/400 computer.

A local APPC LU can be either independent or dependent. An independent local APPC LU can communicate directly with a peer
system. A dependent APPC LU requires the support of a mainframe. These are described in more detail in later sections.

The 5250 user can share this pair of LUs with many other users at the same time, or the 5250 user can have exclusive
possession of the LUs (depending on the Host Integration Server configuration). In addition, Host Integration Server computers
can be configured so that users can start 5250 emulation sessions without knowing the names of LUs to request. This
configuration is accomplished with the use of default LUs that are specified for each 5250 user or for groups of users.

See Also
Concepts
Host Integration Server 5250 (AS/400) Connectivity
APPC
Using Wizards

https://msdn.microsoft.com/en-us/library/aa705535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744659(v=bts.10).aspx

Using Wizards
You can configure 5250 terminal emulation using the wizard provided with Host Integration Server. Available under the Tools
menu, the wizard takes you through each step of configuring AS/400 connection properties, creating remote APPC LUs linked
to your AS/400 computer, and, if necessary, creating local APPC LUs.

In addition to wizards, several features of Host Integration Server can simplify configuration for APPC:

Implicit Incoming Remote LU and Implicit Incoming Mode, which allow Host Integration Server to accept requests that
arrive by unrecognized remote LUs and modes.

Default Local APPC LU and the Default Remote APPC LU, which allow LU aliases to be associated with user or group
names, simplifying the routing of incoming requests and the configuration of client systems.

Default Outgoing Local APPC LU Pool, which allows LUs to be allocated dynamically to any invoking TP (transaction
program) that does not specify a local LU.

Single-System APPC, which allows two local APPC LUs residing on the same server to communicate with each other
using defined parameters.

https://msdn.microsoft.com/en-us/library/aa745628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746218(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744285(v=bts.10).aspx

Independent APPC LUs
In APPC, an independent LU can communicate directly with a peer system and does not need the support of a host computer.

Independent APPC LUs provide the ability to run multiple, concurrent, parallel sessions between a single pair of LUs. Programs
that use independent APPC LUs are referred to as transaction programs (TPs) and may provide any type of service: terminal
emulation, data transfer, database query or update, and so on.

The following figure illustrates how an independent local APPC LU can communicate directly with a peer system.

Independent APPC LU communications with a peer system

Modes determine the interactions between TPs on an APPC-APPC connection. Modes can be assigned to an LU or supplied
when the session is first established. For more information about modes, see APPC Mode Definition later in this section.

When configuring independent APPC LUs, note the following:

If the independent local APPC LU communicates with a TP on a mainframe, the host system must be using VTAM version
3, release 2 or later with either NCP version 5, release 2 or later (3745 systems), or NCP version 4, release 3 or later
(3725 systems).

For independent LUs that communicate with a host, the LOCADDR parameter should be set to 0 in VTAM or in the NCP
Gen.

On connections used for independent APPC, the exchange identification (XID) type must be Format 3.

The Network Name parameter is required. The default is the network name of Host Integration Server.

An LU Name parameter is required to identify local and remote APPC LUs to other components on the network. In
contrast to 3270 LUs, independent APPC LUs do not need an LU number.

If the remote APPC LU supports parallel sessions, it can only be used with a mode whose parallel session limit has a
value greater than 1.

https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx

Dependent APPC LUs
A dependent local APPC LU requires the support of a mainframe to communicate with a remote TP. Dependent APPC LUs
cannot be used to communicate with an AS/400 computer.

The next figure illustrates how a dependent APPC LU can communicate with the host.

Dependent APPC LU communications with the host

Dependent local LUs have the following characteristics:

Allow only a single session per LU.

Use a connection configured with a Remote End of Host, not Peer.

Only type of APPC LUs that Host Integration Server supports when communicating with a mainframe using a version of
VTAM earlier than version 3, release 2.

Require the mainframe VTAM to use a value of 1 or greater in the LOCADDR parameter in the NCP Gen.

The Network Name and LU Name are recommended but not required, because they are used only by local software such as
the Microsoft® Windows® event log software. The default is the network name specified for the Host Integration Server
computer. If a network name is not specified for the server, the default is APPN.

For a remote APPC LU that will be partnered with a dependent local APPC LU, the LU Name is recommended but not required.
It identifies the LU to local software, such as the Windows event log software.

A number identifying the LU on its connection is required and should match the LOCADDR=parameter for the LU definition in
VTAM or in the NCP Gen. Check the numbering for any non-APPC LUs on the connection that the remote APPC LU will use
because this number must be unique.

The usual range for LU numbers is from 2 through 254.

A dependent APPC LU requires the support of a mainframe. During LU configuration, you need to select a host type of the
connection to which the LU will be assigned. Also, the remote LU needs the same name as defined on the remote system
services control point (SSCP). This name is required when using dependent APPC.

See Also
Concepts
Configuring Dependent LUs

https://msdn.microsoft.com/en-us/library/aa772101(v=bts.10).aspx

Configuring Dependent LUs
When you configure a dependent LU, make sure you do the following:

Set up a single session for each dependent LU. (Only one session is allowed for each dependent LU.)

Specify the remote end, using Host.

Use VTAM 3.2 or later for host-to-APPC LU communication.

Set the host VTAM to a value of 1 or greater in the LOCADDR= parameter of the LU definition.

SeeAlso

Dependent APPC LUs

https://msdn.microsoft.com/en-us/library/aa705477(v=bts.10).aspx

APPC Mode Definition
A mode is associated with an LU-LU pair, and determines the session properties for that pair. One of the key mode properties
is the Parallel Session Limit. This limit determines whether an LU-LU pair can perform only one interaction at a time or multiple
concurrent interactions.

Parallel sessions are used only with independent APPC. If parallel sessions are to be allowed with an LU-LU pair, the local LU
must be independent, and the remote LU in the pair must support parallel sessions.

If the LU-LU pair can have multiple parallel sessions, other mode properties, such as Minimum Contention-Winner Limit,
determine to what extent each LU can initiate interactions.

The following table lists the modes provided with Host Integration Server.

Mode name To be used for

#BATCH Batch-oriented sessions

#BATCHC Batch-oriented sessions using compression

#BATCHSC Batch-oriented sessions that employ a minimal level of routing security

BLANK Sessions using a default mode name, encoded as eight blank EBCDIC spaces in BIND

#INTER Interactive sessions

#INTERC Interactive sessions using compression

#INTERSC Interactive sessions that employ a minimal level of routing security

QPCSUPP All sessions with an AS/400 computer

QSERVER The ODBC drivers

The configuration parameters of the modes provided with Host Integration Server are shown in the following table.

Configuration parameter #BATCH #BATCHSC and BLANK #INTER and #INTERSC QPCSUPP QSERVER

Parallel Session Limit 8 8 64 8

Minimum Contention Winner Limit 4 4 32 4

Partner Contention Winner Limit 0 0 0 0

Automatic Activation Limit 0 0 0 0

High Priority Mode No Yes Yes Yes

Pacing Send Count 3 7 7 7

Pacing Receive Count 3 7 7 7

Max Send RU Size 1024 1024 1024 1024

Max Receive RU Size 1024 1024 1024 1024

The mode name and configuration parameters are used for both dependent and independent APPC LUs.

The Parallel Session Limit defines the number of sessions that can be activated. If the local APPC LU is dependent, specify 1 for
the parallel session limit. Dependent local APPC LUs cannot have parallel sessions. Independent local APPC LUs can have from
1 through 1024 parallel sessions. The default is 1.

The Minimum Contention Winner Limit is the guaranteed number of sessions the local machine can initiate. The Partner
Contention Winner Limit is the guaranteed number of sessions the remote machine can initiate. Each session can be
established without permission from the partner LU. The sum of both must be less than or equal to the Parallel Session Limit.
The range for each is from 0 through the Parallel Session Limit; the default is 0.

The Automatic Activation Limit specifies the number of Contention Winner sessions to be activated for the local LU whenever
the connection for this mode is started. In a Contention Winner session, the LU can initiate conversations without permission
from the partner LU. For a single-system APPC (communication between two local LUs), this field is meaningless. The range is
from 0 through the Minimum Contention Winner limit.

High Priority Mode defines the priority of the data sent. This is beneficial for segregating batch data from interactive data.
Batch data typically has a lower priority than interactive data.

Pacing Send Count and Pacing Receive Count allow you to specify the maximum number of frames without an SNA pacing
response from either the local or remote APPC LU. For example, if you specify 0, the local APPC LU can send an unlimited
number of frames without receiving a response. In this case, the remote APPC LU can negotiate and set a limit on the count.
The range is from 0 through 63; the default is 4.

The request/response unit (RU) sets the size of the data message that can be sent or received. If an application needs to send a
file that is larger than the specified size, it needs to break it up before sending the file. The minimum RU size on Host
Integration Server is 256. The range for Max Send RU Size and Max Receive RU Size is from 256 through 16384; the default is
1024.

To add an APPC mode definition

1. In the SNA Manager tree, click APPC Modes.

2. On the Action menu, point to New, and click Mode Definition.

3. On each tab, configure the mode properties.

4. On the Action menu, click Save configuration.

See Also
Tasks
Single-System APPC
Concepts
Implicit Incoming Remote LU and Implicit Incoming Mode
Default Local APPC LU and the Default Remote APPC LU
Default Outgoing Local APPC LU Pool

https://msdn.microsoft.com/en-us/library/aa744285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746218(v=bts.10).aspx

Implicit Incoming Remote LU and Implicit Incoming Mode
An implicit incoming remote LU is a remote APPC LU that defines the properties to use when Host Integration Server receives
a request to start a session with a local LU and when the remote LU named in the request is not recognized by Host Integration
Server.

An implicit incoming mode is a mode that defines the properties to use when Host Integration Server receives a request to
start a session and the mode named in the request is not recognized by Host Integration Server.

An implicit incoming remote LU requires an implicit incoming mode. An implicit incoming mode must be configured for any
remote LU that will be used as an implicit incoming remote LU. An implicit incoming mode can be (but does not have to be)
configured for remote LUs that will only be used explicitly.

You may want to accept incoming requests that arrive by many different remote LUs without having to explicitly define each
remote LU on a Host Integration Server computer. The Implicit Incoming Remote LU and Implicit Incoming Mode allow for
flexible acceptance of requests. When these two items have been configured, and an incoming request is received by Host
Integration Server, the remote LU need not be recognized, as long as the local LU specified in the request is recognized. In such
a situation, Host Integration Server uses the properties of the Implicit Incoming Remote LU and Implicit Incoming Mode for
that LU-LU session.

For a session to be established, the incoming local LU name must be recognized by Host Integration Server. Then the incoming
remote LU must either be recognized explicitly or handled implicitly (if an implicit incoming remote LU has been configured). If
the remote LU is recognized explicitly, but the mode is not recognized (as part of an LU-LU pair), Host Integration Server
internally creates a new mode definition with the correct name using the properties of the implicit incoming mode.
Alternatively, if the remote LU is handled implicitly, Host Integration Server also handles the mode implicitly, by internally
creating a mode, as described.

To use an implicit incoming remote LU

1. In the SNA Manager tree, expand an SNA subdomain, expand the server you want to work with, expand SNA service,
and then expand Local APPC LUs.

2. Right-click the first local LU that you want to configure, and click Properties.

3. Click the Advanced tab, and specify the Implicit Incoming Remote LU for incoming conversations, and then click OK
to exit.

4. Using steps 2–4, configure each local LU that the remote system will call.

5. Expand Remote APPC LUs, right-click the remote LU that you want to configure, and then click Properties.

6. Click the Options tab, and select the Implicit Incoming Mode.

7. On the Action menu, click Save configuration.

Note
All incoming requests must specify a local LU name that is recognized by Host Integration Server, even when using an implici
t incoming remote LU and implicit incoming mode.

See Also
Tasks
Single-System APPC
Concepts
APPC Mode Definition
Default Local APPC LU and the Default Remote APPC LU
Default Outgoing Local APPC LU Pool

https://msdn.microsoft.com/en-us/library/aa744285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746218(v=bts.10).aspx

Default Local APPC LU and the Default Remote APPC LU
If a user or group uses transaction programs, 5250 emulators, or APPC applications, you can assign a default local APPC LU
and a default remote APPC LU. These default LUs are accessed when the user or group member starts an APPC program (a TP,
5250 emulator, or APPC application) and the program does not specify LU aliases.

With Host Integration Server, you can assign a default local APPC LU and a default remote APPC LU to each user or group. A
user or group member can then start APPC programs (TPs, 5250 emulators, or APPC applications) that do not specify LU
aliases. Host Integration Server will use the default local APPC LU and the default remote APPC LU assigned to that user or
group.

There are two steps before assigning default APPC LUs to a user or group:

1. The user or group must have an account on the local area network.

2. The user or group must be added to the list used by Host Integration Server.

If a user is assigned LUs through one or more accounts, such as group accounts and the user's individual account, one account
determines the access for that user. The account that determines this access is the account found first when searching is
performed in this order:

User accounts (highest priority)

Domain groups

Local groups

Well-known groups such as Everyone (lowest priority)

For example, suppose a user account (a high-priority account) called JOHND contains LOCLU1 as the default local APPC LU,
but no default remote APPC LU. At the same time, suppose a local group (a low-priority account) of which JOHND is a member
contains LOCLU2 as the default local APPC LU, and REMLU2 as the default remote APPC LU. For JOHND, the high-priority
assignment, the default local APPC LU of LOCLU1 will be combined with the only other available assignment, the default
remote APPC LU of REMLU2.

See Also
Tasks
Single-System APPC
Concepts
APPC Mode Definition
Implicit Incoming Remote LU and Implicit Incoming Mode
Default Outgoing Local APPC LU Pool

https://msdn.microsoft.com/en-us/library/aa744285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746218(v=bts.10).aspx

Default Outgoing Local APPC LU Pool
With Host Integration Server, you can set up a pool of local APPC LUs that will be allocated dynamically for any invoking
transaction program that does not specify a local LU. This feature is designed to coexist with the default local and remote LUs
for users and groups, and does not override these settings.

Both of the default APPC LU features (the default outgoing local APPC LU pool and the default local and remote LUs for users
and groups) allow client computers to start a session without specifying an LU name. This helps to simplify administration by
eliminating APPC configuration for client computers.

If an application begins the invoking process but does not specify a local APPC LU, Host Integration Server first tries to
determine the default local APPC LU of the associated user or group (the user or group logged on at the system where the
application is running). If no such LU can be substituted, Host Integration Server attempts to assign an LU from the default pool
of outgoing local APPC LUs. If no LUs are available from the default pool, the attempt to begin the invoking process is rejected.

The default outgoing local APPC LU pool differs from, and should not be confused with, 3270, LUA, and downstream pools.

See Also
Tasks
Single-System APPC
Concepts
APPC Mode Definition
Implicit Incoming Remote LU and Implicit Incoming Mode
Default Local APPC LU and the Default Remote APPC LU

https://msdn.microsoft.com/en-us/library/aa744285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744712(v=bts.10).aspx

Single-System APPC
Single-system APPC has two local APPC LUs residing on the same server. The LUs communicate with each other using defined
parameters. You do not need to define a connection because the LUs are communicating with each other on the same system.

For a single-system APPC, you will need to assign two local APPC LUs to a server, not to a connection. Configuration of the
local APPC LUs includes specifying the LU Alias, Network Name, and LU Name. Each of these labels identifies an LU to a
particular set of software components.

If Common Programming Interface for Communications (CPI-C) is used, configure one or more CPI-C symbolic destination
names. For more information, see CPI-C Access in the next section.

Single-system APPC is generally used for testing transaction programs. The basic steps for configuring single-system APPC are
as follows.

To configure single-system APPC

1. Assign two local APPC LUs to a server.

2. Configure the local APPC LUs by specifying the LU Alias, Network Name, and LU Name.

3. If an appropriate mode has not already been configured, configure it.

Note
For single-system APPC, the Automatic Activation Limit specified in the mode is meaningless. Use one of the local LUs for the
originator conversation and the other local LU for the destination conversation.

See Also
Concepts
APPC Mode Definition
Implicit Incoming Remote LU and Implicit Incoming Mode
Default Local APPC LU and the Default Remote APPC LU
Default Outgoing Local APPC LU Pool

https://msdn.microsoft.com/en-us/library/aa745809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746218(v=bts.10).aspx

CPI-C Access
Common Programming Interface for Communications (CPI-C) provides a consistent application programming interface for
network applications. CPI-C is a set of C-language routines that applications distributed across an SNA network can use to
communicate as peers and exchange data to accomplish a processing task.

CPI-C programming provides a mechanism, called side information, that associates a set of parameters with a specified
symbolic destination name. The CPI-C program then uses the symbolic destination name to initialize a conversation.

If you are using applications based on CPI-C, you configure one or more CPI-C symbolic destination names. A CPI-C symbolic
destination name is a name assigned to a set of properties for a CPI-C conversation.

LU partners will need to recognize each other. This is accomplished using fully qualified names and LU aliases. The fully
qualified name is a two-part name that identifies the remote LU. The first part of the fully qualified name is the network name
and the second part is the remote LU name.

You will also need a mode name. For more information about modes, see the section APPC Mode Definition earlier in this
section.

Conversation-level security requires a match between the user ID and password supplied by the invoking TP, and the user ID
and password stored on the server where the remote TP resides. If the ID and password do not match, the session is not
activated.

https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx

Transaction Programs
The part of an application that initiates or responds to APPC communications is called a transaction program (TP). TPs use
APPC to exchange data with other TPs on a peer-to-peer basis.

Similar to a conversation when people talk with each other, the communication between two transaction programs is called a
conversation. An application running on your computer can have many conversations active at one time, either with one other
transaction program or with different transaction programs.

There are two types of TPs: TPs that can invoke (initiate a conversation with) other TPs, and TPs that can be invoked. A TP that
can invoke another TP is called an invoking TP, and a TP that can be invoked is called an invokable TP.

If your Host Integration Server installation contains multiple systems (client computers or Host Integration Server computers),
you can place invokable TPs on more than one system. When an invoking request is received in such an installation, there will
(potentially) be a choice of systems on which to run the invokable TP. You can maintain specific control over this choice, or you
can allow the choice to be made randomly by Host Integration Server (to distribute the load).

You can maintain specific control over this choice of system by setting up invokable TPs with unique names, or by setting up
each invokable TP to run only with a specific, unique LU alias. With this arrangement, the information provided by the invoking
TP (in the ALLOCATE verb) can specify the particular system on which the TP should run.

You can avoid controlling this choice of system, and allow the choice to be made randomly by Host Integration Server, by
setting the DloadMatchLocalFirst registry entry to NO, as described in the Host Integration Server Administrators Reference.
Then use invokable TPs that leave the local LU alias unspecified. When an incoming request is received, it is routed randomly,
rather than preferentially, to the local Host Integration Server computer. In addition, no matter what LU alias is requested for
the invokable TP, there cannot be a mismatch. Host Integration Server will start the TP, choosing randomly among the available
systems.

Following are three of the possible ways that TPs can be arranged to run.

In This Section

TP Name Unique for Each TP

TP Name Not Unique; Local LU Alias Unique

TP Name Not Unique; Local LU Alias Unspecified

Invoking Transaction Programs

Invoking TPs and Host Integration Server Configuration

Invokable Transaction Programs

Invokable TPs and the Host Integration Server Configuration

https://msdn.microsoft.com/en-us/library/aa754470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx

TP Name Unique for Each TP
If you want to specify the system on which the invokable transaction program (TP) will run, you can use a unique TP name for
each invokable TP. In this arrangement, the invoking TP identifies the invokable TP (and system) by naming the TP. This makes
it unnecessary for an invokable TP to specify any LU alias in registry or environment variables.

See Also
Concepts
TP Name Not Unique; Local LU Alias Unique
TP Name Not Unique; Local LU Alias Unspecified
Invoking Transaction Programs
Invoking TPs and Host Integration Server Configuration
Invokable Transaction Programs
Invokable TPs and the Host Integration Server Configuration
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa746020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

TP Name Not Unique; Local LU Alias Unique
Instead of using a unique transaction program (TP) name to specify the system on which the invokable TP will run, you can
give the same name to multiple invokable TPs, but associate each TP with a unique local LU alias. Configure each invokable TP
(through registry or environment variables) to use a unique local LU alias. Then set up the invoking TPs so that each one is
routed not only to the correct TP name but also to the correct partner LU alias for the intended invokable TP.

See Also
Concepts
TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unspecified
Invoking Transaction Programs
Invoking TPs and Host Integration Server Configuration
Invokable Transaction Programs
Invokable TPs and the Host Integration Server Configuration
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa754470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

TP Name Not Unique; Local LU Alias Unspecified
If it does not matter on which system an invokable TP runs, use the same name for multiple invokable TPs, but do not specify
an LU alias in the registry or environment variables for the TPs. In such a situation, there are no associated aliases in the list of
available invokable TP names on a Host Integration Server computer. Thus, a request received from an invoking TP cannot
cause a mismatch on the LU alias, and will match according to the TP name.

If you set the DloadMatchLocalFirst registry entry to NO, as described in the Microsoft Host Integration Server Reference, the
server randomly routes the request to one of the available TPs. This spreads the processing load among multiple systems, and
provides hot backup (so that you can take systems online and offline without disrupting service).

See Also
Concepts
TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unique
Invoking Transaction Programs
Invoking TPs and Host Integration Server Configuration
Invokable Transaction Programs
Invokable TPs and the Host Integration Server Configuration
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa754470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

Invoking Transaction Programs
An invoking TP initiates a conversation with other TPs. An invoking TP can be located on any system on the SNA network.

An invoking TP identifies itself by issuing a TP_STARTED verb. TP_STARTED specifies the name of the invoking TP, and may
specify the LU alias that the TP uses (or may leave the LU alias blank).

Next, the invoking TP initiates the invoking process by issuing an ALLOCATE verb. In ALLOCATE, the invoking TP specifies the
name of the invokable TP, and may also specify the partner LU alias (the LU alias to be used by the invokable TP).

See Also
Concepts
TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unique
TP Name Not Unique; Local LU Alias Unspecified
Invoking TPs and Host Integration Server Configuration
Invokable Transaction Programs
Invokable TPs and the Host Integration Server Configuration
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa754470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

Invoking TPs and Host Integration Server Configuration
For Host Integration Server to support the beginning of the invoking process (to accept the TP_STARTED and ALLOCATE verbs
issued by an invoking TP), the following parameters must be configured correctly:

If the invoking TP specifies the LU alias that it uses (in TP_STARTED), that LU alias must match a local APPC LU alias on
the supporting Host Integration Server computer.

If the invoking TP leaves the LU alias blank in TP_STARTED, one of two methods for designating a default LU must be
used on the supporting Host Integration Server:

Assign a default local APPC LU to the user or group that starts the invoking TP (the user or group logged on at
the system from which TP_STARTED is issued).

– or –

Designate one or more LUs as members of the default outgoing local APPC LU pool.

If the invoking TP leaves the LU alias blank in TP_STARTED, Host Integration Server first attempts to determine the
default local APPC LU of the associated user or group, and then attempts to assign an available LU from the default
outgoing local APPC LU pool. If these attempts fail, Host Integration Server rejects the TP_STARTED request.

In most situations, the supporting Host Integration Server must contain an appropriate connection to another system
(host or peer). Sometimes, for testing purposes, Host Integration Server contains two local LUs paired together (for
invoking and invokable TPs that are in the same domain). In this situation, a connection to a host or peer is not necessary.

If the invoking TP specifies the partner LU alias (in ALLOCATE), that LU alias must match a remote LU alias. In addition,
that remote LU alias must be paired with the local LU alias specified in TP_STARTED. If the LU alias is left blank in
ALLOCATE, a default remote APPC LU must be assigned to the user who started the invoking TP. If the default remote
APPC LU is used, it must be paired with the local LU that will be used. Otherwise, the ALLOCATE verb fails.

The preceding parameters support the beginning of the invoking process. For the invoking process to successfully complete,
additional parameters must be configured on another Host Integration Server computer, as described in the next section.

See Also
Concepts
TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unique
TP Name Not Unique; Local LU Alias Unspecified
Invoking Transaction Programs
Invokable Transaction Programs
Invokable TPs and the Host Integration Server Configuration
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa754470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

Invokable Transaction Programs
An invokable TP is a TP that can be invoked by another TP. Invokable TPs are written or configured to supply their names to
Host Integration Server as a notification that they are available for incoming requests. Host Integration Server invokable TPs
can be run on any Host Integration Server computer or on a Windows Server™ 2003 or Windows 2000 client.

There are two types of invokable TPs:

Operator-started invokable TPs

An operator-started invokable TP must be started by an operator before the TP can be invoked. When the operator-
started invokable TP is started, it notifies Host Integration Server of its availability by issuing a RECEIVE_ALLOCATE verb.
RECEIVE_ALLOCATE provides the name of the invokable TP.

Autostarted invokable TPs

An autostarted invokable TP can be started by Host Integration Server when needed. The TP must be registered on its
local system, so that it can be identified to Host Integration Server. (For details about how the TP is registered, see
Microsoft Host Integration Server APPC Applications or Microsoft Host Integration Server CPI-C Applications.) The
registered information defines the TP as autostarted, and must specify the TP name. The registered information may also
specify the local LU alias that the invokable TP will use.

If no local LU alias is registered with autostarted TPs, the resulting Host Integration Server configuration can be more
flexible in responding to invoking requests.

After an autostarted invokable TP is started by Host Integration Server, the TP issues RECEIVE_ALLOCATE (just as an
operator-started TP does). RECEIVE_ALLOCATE must provide the same TP name as was registered for the TP.

Each Host Integration Server maintains a list of invokable TP names and any LU aliases associated with the TP names. When a
request comes in from an invoking TP, Host Integration Server compares the requested invokable TP name and the associated
LU alias to the list of available invokable TPs (which may include associated LU aliases). For details about how this comparison
is carried out, see Microsoft Host Integration Server APPC Applications or Microsoft Host Integration Server CPI-C Applications.

If a match is found, Host Integration Server signals the system containing the requested TP to connect to that Host Integration
Server computer.

If no match is found, Host Integration Server rejects the incoming request.

See Also
Concepts
TP Name Unique for Each TP
TP Name Not Unique; Local LU Alias Unique
TP Name Not Unique; Local LU Alias Unspecified
Invoking Transaction Programs
Invoking TPs and Host Integration Server Configuration
Invokable TPs and the Host Integration Server Configuration
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa754470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

Invokable TPs and the Host Integration Server Configuration
For Host Integration Server to receive requests from an invoking TP on another system, and then route those requests to an
invokable TP, certain parameters must be configured correctly:

Host Integration Server must have a connection to the system from which the invoking TP's request is sent.

Host Integration Server must have a remote LU capable of receiving the incoming request. This remote LU can be
configured either explicitly or implicitly. When configured explicitly, there is an explicit match between a remote LU alias
on Host Integration Server and the alias of the LU that conveys the invoking TP's request.

When configured implicitly, an Implicit Incoming Remote LU (with its Implicit Incoming Mode) is used. Several items
must work together. First, the LU alias specified in the incoming request (the LU alias requested for the invokable TP)
must match a local LU alias on the server receiving the request. Second, the local LU on the server must have an Implicit
Incoming Remote LU assigned to it. The properties of the Implicit Incoming Remote LU will be used for that LU-LU
session. For more details about how an Implicit Incoming Remote LU works, see
Implicit Incoming Remote LU and Implicit Incoming Mode, earlier in this section.

Appropriate local LUs must be defined in the Host Integration Server configuration file.

https://msdn.microsoft.com/en-us/library/aa745628(v=bts.10).aspx

APPC Security
Owners of APPC transaction programs may want to allow only a limited set of users to start the program. APPC provides a
mechanism, called APPC conversation security, by which the client transaction program identifies its user to the server system.

There are three levels of security for client programs: None, Same, and Program:

If the level of security is None, the client system sends no security information (user ID or password).

If the level of security is set to Same, APPC tries to determine a user ID for the client program. If the server system
requires a password and the client system permits APPC to retrieve one for the user ID, APPC will also send the password
to the server system. If no user ID is available, or if the server requires a password but the client system does not allow
APPC to retrieve the password, no security information is sent to the server. This is sometimes referred to as
downgraded to security NONE.

If the security level is set to Program, the client transaction program will override any security information that the local
system may provide. The client program must supply both a user ID and a password. CPI-C programs may get the user
ID and password by either prompting the user to enter the information or by checking the CPI-C side information. Not all
systems allow this option.

If the client program uses SECURITY=SAME or SECURITY=PROGRAM, APPC on the server must check the user ID and
password regardless of the server transaction's security requirements. This requirement can cause unexpected problems and is
not recommended.

To configure session security for remote LUs

1. In the SNA Manager tree, expand an SNA subdomain, expand the server you want to work with, expand SNA service,
and then expand Remote APPC LUs.

2. Right-click the LU that you want to configure, and click Properties.

3. Click the Options tab. Under Session-Level Security, select an option.

4. Click OK.

5. On the Action menu, click Save configuration.

6. To put the changes into effect, you must restart the server.

Note
Setting the security for remote LU sessions is optional.

See Also
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

Optimizing Communications
Servers used primarily for communications need to provide fast throughput, but they do not need to provide fast file access (as
a file server would). Faster throughput will result if portions of memory are set aside for communications programs (such as
Host Integration Server or Microsoft® SQL Server™).

Such dedicated memory includes nonpaged memory, or portions of memory that are never swapped to disk, but remain
available for immediate use at all times. If more memory is dedicated to Host Integration Server or similar programs, less
memory is available for file sharing.

Windows Server 2003 or Windows 2000 Server allow you to view or change network throughput options. However, Host
Integration Server installation automatically sets the option to maximize throughput for network applications.

Servers used primarily for communications run many important background processes (processes not related to user actions
in the current window). These servers generally do not need to run foreground processes at maximum speed. Host Integration
Server throughput can be increased by making the operating system more responsive to background processes and less
responsive to foreground processes.

A server that is less responsive to foreground processes will run local applications such as word-processing software,
spreadsheets, or SNA Manager more slowly. Tasking is most appropriate for servers used primarily to support client systems,
and not for servers used locally as desktop computers.

To optimize background processing for a computer running Windows Server 2003 or Windows 2000 Server

1. Click Start, point to Settings,click Control Panel, and then double-click System.

2. Select the Advanced tab.

3. In the Performance box, click Performance Options.

4. In the Application response box, select Applications or Background services.

5. Click OK, and then click OK again.

See Also
Other Resources
Transaction Programs

https://msdn.microsoft.com/en-us/library/aa705782(v=bts.10).aspx

APPC Mode
A mode is associated with an LU-LU pair, and determines the session properties for that pair. One of the key mode properties
is the Parallel Session Limit. This limit determines whether an LU-LU pair can perform only one interaction at a time or multiple
concurrent interactions.

Parallel sessions are used only with independent APPC. If parallel sessions are to be allowed with an LU-LU pair, the local LU
must be independent, and the remote LU in the pair must support parallel sessions.

If the LU-LU pair can have multiple parallel sessions, other mode properties, such as Minimum Contention-Winner Limit,
determine to what extent each LU can initiate interactions.

The following table lists the modes provided with Host Integration Server.

Mode name To be used for
#BATCH Batch-oriented sessions

#BATCHC Batch-oriented sessions using compression

#BATCHSC Batch-oriented sessions that employ a minimal level of routing security

BLANK Sessions using a default mode name, encoded as eight blank EBCDIC spaces in BIND

#INTER Interactive sessions

#INTERC Interactive sessions using compression

#INTERSC Interactive sessions that employ a minimal level of routing security

QPCSUPP All sessions with an AS/400 computer

QSERVER ODBC drivers

See Also
Concepts
APPC Mode Definition

https://msdn.microsoft.com/en-us/library/aa770693(v=bts.10).aspx

Notes Section
This section contains notes about AS/400 computers, local and remote names, time-outs for 802.2 connections, and adapter
and adapter addresses.

Note About AS/400 Computers

To connect to an AS/400 computer, supply both local node and remote node parameters for the Network Name and the
Control Point Name. These properties are configured in separate dialog boxes:

Local node (server) properties. In the Server Properties dialog box of the computer running Host Integration Server,
type the Control Point Name and the Network Name. The server Network Name must correspond to the RMTNETID
parameter in the AS/400 APPC controller description. (The default for the AS/400 computer network ID is typically
APPN.) If this value is set to *SAME, refer to the Local Network ID parameter in the AS/400 Network Attributes screen
(using the dspneta command). The server Control Point Name must match the RMTCPNAME parameter in the AS/400
APPC controller description. For 802.2 connections, the AS/400 computer can be configured to automatically create the
APPC controller description when the computer running Host Integration Server first connects to the AS/400 computer,
by setting the AUTOCRTCTL parameter to *YES in the AS/400 Token-Ring or Ethernet line description. However, for
SDLC connections, the APPC controller description must be manually created.

If you specify a CPNAME in Connection Properties, it overrides the CPNAME in the Server Properties dialog box. The
CPNAME in Server Properties is the default and will be used unless it is changed in Connections Properties.

Remote node (connection) properties. In the Properties dialog box for an 802.2 or SDLC connection, type the
Network Name and Control Point Name (CP name) of the AS/400 computer into the Network Name (Remote
Node) and Control Point Name (Remote Node) fields. The AS/400 Network Name and Local Control Point Name can
be found on the AS/400 Network Attributes screen using the DSPNETA. For more information about these fields, click
Help on the Properties dialog box for the connection.

On an AS/400 computer, the Network Name is specified in the Local network ID parameter in the Network Attributes
screen and in the RMTNETID parameter on the APPC controller description. For more information, see your APPN
documentation.

Using Remote Node Identifiers

You can use several types of parameters to specify the remote node with which a connection should connect:

Remote address (802.2 connections only)

This parameter is required for 802.2 connections. For outgoing calls, it is used to specify the remote host, peer, or downstream
system being called. This parameter is the Remote Network Address.

Network Name (Remote Node) and Control Point Name (Remote Node)

As a general guideline, use these parameters if the administrator of the remote host, peer, or downstream system uses them.

These two parameters work together; if either parameter is supplied, the other should also be supplied. These parameters are
used only for Format 3 exchange identifications (XIDs), one of two types of exchange identification. Format 3 XIDs are generally
used for APPC. If a connection does not use Format 3 XIDs, there is no need to specify these parameters.

Remote Node ID

As a general guideline, use this parameter if the administrator of the remote host, peer, or downstream system uses it. This
parameter can be used in Format 0 XIDs or Format 3 XIDs, the two types of identification exchange. Format 0 XIDs are
generally used for 3270 communication and for LUA; Format 3 XIDs are generally used for APPC.

Note About Local and Remote Names

The Network Name and Control Point Name for the remote node are different from the Network Name and Control
Point Name for the local node. The remote Network Name and Control Point Name are specified in the Connection
Properties dialog box. The local Network Name and Control Point Name are specified in the Server Properties dialog box.

Configuring Multidrop Connections

In a multidrop connection, one primary computer communicates simultaneously with multiple secondary computers. Host

Integration Server supports multidrop connections used for downstream systems on leased SDLC lines.

You can configure up to four multidrop connections on each line, with a computer running Host Integration Server as the
primary server on each.

Configure each connection to be used in the multidrop configuration according to the instructions that follow.

To configure multidrop connections

1. Configure a link service for an SDLC line with the Constant RTS option not selected.

2. Configure each connection to be used in the multidrop configuration as follows:

In the SDLC Properties dialog box, select the same link service for each connection.

In the SDLC Properties dialog box, under Remote End, select Downstream.

Make all the parameters identical for each configuration, except for Poll Address, and possibly the Local Node ID
and Remote Node ID. For these parameters, obtain values from the downstream system administrators. Make the
Poll Address unique for each station.

3. For the primary connection in the multidrop configuration, on the SDLC page of the SDLC Properties dialog box, select
the Multidrop Primary box.

For information about using the configuration dialog boxes, click Help in the SDLC Properties dialog box.

Note About Time-outs for 802.2

The time-outs for 802.2 (t1, t2, and ti) are derived from basic timer values that are set in the Windows registry. Host
Integration Server is designed with the assumption that these registry values will not be changed after they have been set by
the DLC (802.2) driver. If these registry values are changed, the choices displayed in the Response Timeout, Receive ACK
Timeout, or Inactivity Timeout fields may no longer reflect the actual amounts of time that Host Integration Server waits.

Simplified Facility Data Example

The following simplified example shows how identifiers allow each facility request to be distinguished from the ones that
follow:

40AAAA20BB

The example contains two requests. The first request begins with a 4, indicating that after the two-character identifier there are
four characters (in this case, four occurrences of the A character). The second request follows, beginning with a 2, indicating
that after the two-character identifier there are two characters (two occurrences of the B character).

Standard Facility Data Example

The facility data string in this example initiates a connection using 256-byte packets, a sending window of 7, a receive window
of 4, and charges reversed. The facility requests that do this are as follows:

42 08 08 for Packet Size

43 04 07 for Window Size

01 01 for reverse charging

When these requests are concatenated, the following facility data string is created:

4208084304070101

Common Identifier Table

The following table shows commonly used identifiers for facility requests.

Facility Ident
ifier

Param
eters

Meaning

Reverse c
harging

01 00 01 Reverse charging NOT requested Reverse charging requested

Packet Siz
e

42 0r0s r = Receive Packet Size s = Send Packet Size

 r and s can have the following values:

 6 for 64-byte packets 7 for 128-byte packets 8 for 256-byte packets 9 for 512-byte packets A for 10
24-byte packets

Window S
ize

43 0r0s r = Receive Window Size s = Send Window Size r and s can be from 1 through 7. They are usually se
t equal, making the send and receive windows the same size.

In this table, send and receive operate from the view of the initiator of the connection.

Note About Local Adapter Address

When communicating with the administrator of a remote host, peer, or downstream system, you may need to tell that
administrator the address of your local adapter.

To determine the local address of an 802.2 adapter, at the command prompt, type:

net config server

In the resulting display, the address of the local adapter appears in the line labeled Server is Active On.

Primary Configuration Server

The primary configuration server is the Host Integration Server computer designated to contain the domain-wide
configuration file. The configuration file reflects the Host Integration Server resources for the SNA subdomain, including all
Host Integration Server computers, link services, LUs, 3270 users, and so on. There can be only one primary server in the
subdomain.

Backup Configuration Server

The backup configuration server is a Host Integration Server computer on which the configuration file is replicated by Host
Integration Server. There can be more than one backup server in an SNA subdomain. Host Integration Server will load the copy
of the configuration file located on a backup Host Integration Server computer if the primary Host Integration Server computer
goes down. In this case, servers and connections can be started and stopped, but the configuration cannot be changed or
saved.

Identifiers in Incoming XIDs

When deciding which type of remote node identifier to specify for a connection that accepts incoming calls, it may be helpful to
understand how Host Integration Server uses exchange identifications (XIDs) from incoming calls.

When Host Integration Server receives an XID from an incoming call, it looks at the XID for some type of identifier of the
remote system that made the call. It compares this identifier, in the order shown in the following list, against identifiers stored
in the Host Integration Server configuration. If it finds a match, it accepts the call. If it finds that identifiers are left unspecified
(in the configuration or the XID), and the connection is an SDLC connection, Host Integration Server accepts the call, pending
further exchange of information. In other cases—when every comparison yields a mismatch, or when identifiers are left
unspecified but the connection is 802.2—Host Integration Server rejects the incoming call.

Identifiers are compared in the following order:

1. If the incoming XID is Format 3, Host Integration Server examines the XID for a remote node Network Name and Control
Point Name. If these parameters are present in both the Incoming XID and in the Host Integration Server configuration,
and they match, the call is accepted. If the parameters are present and do not match, the call is rejected.

2. If the parameters were not available for the preceding step, Remote Node IDs are examined next. (Remote Node IDs may
be used in either Format 0 or Format 3 XIDs.) If a Remote Node ID is present in both the Incoming XID and in the Host
Integration Server configuration, and they match, the call is accepted. If the parameters are present and do not match, the
call is rejected.

3. If the parameters were not available for the preceding steps, for 802.2 connections, remote addresses are examined:

For 802.2 connections, the Remote Network Address in the Host Integration Server configuration is compared to the
address from which the XID was received. If the addresses match, the call is accepted; if not, the call is rejected.

4. For 802.2 connections, if no match is found in any of the preceding steps, the incoming call is rejected.

For SDLC connections, if no match is found in the preceding steps, but identifiers were left unspecified in the
configuration or the XID, the call is accepted, pending further exchange of identifiers. However, if identifiers were not left
unspecified and no identifiers match, the call is rejected.

Guidelines for Identifiers for 802.2 Connections

The following table lists guidelines for identifiers for 802.2 connections.

Conn.
type

Allowed call
directions

Guidelines for identifiers for remote node

802.2 Outgoing Use Remote Network Address

802.2 Incoming Match the identifiers used on the remote system: Remote node Network Name and Control Point N
ame or Remote Node ID or Remote Network Address

802.2 Both Use a combination of outgoing plus incoming identifiers

Guidelines for Identifiers for SDLC Connections

The following table lists guidelines for identifiers for SDLC connections.

Conn. t
ype

Allowed call dire
ctions

Guidelines for identifiers for remote node

SDLC Outgoing If Host Integration Server supplies the phone number to the modem, specify Dial Data (phone nu
mber of remote system)

SDLC Incoming Match the identifiers used on the remote system: Remote node Network Name and Control Poi
nt Name or Remote Node ID

SDLC Both Use a combination of outgoing plus incoming identifiers

Making and Testing a Connection
This section provides the procedures used to make successful connections. Several steps are required to connect your host
system to Host Integration Server.

One way to remember the four steps required to make a successful connection is with the acronym LCLUA that stands for L-
Link Service, C-Connection, LU-LUs and A-Adding and Assigning Users.

For information on the new IP-DLC Link Service, see IP-DLC Link Service.

For information about configuring Host Integration Server for your enterprise environment, see Configuring Your Enterprise.

In This Section

Important Connection Information

Important Configuration Information

Step 1 (L) Creating and Configuring Link Services

Step 2 (C) Creating and Configuring Connections

Step 3 (LU) Creating and Configuring 3270 LUs

Step 4 (A) Adding and Assigning Users

Testing Connections

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754290(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705238(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772061(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Important Connection Information
This section includes details about the information required to make a successful connection. Review the connection
information section to verify your settings.

In This Section

Making a Connection

Items to Consider for a Successful Connection

Verifying Host Connection Information

Verifying Operating System Connection Information

Verifying Host Integration Server Information

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771054(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745393(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754087(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Making a Connection
Complete the following steps to give users and groups access to the mainframe environment, install connections, and verify
the installation.

(For information on the new IP-DLC Link Service, see IP-DLC Link Service.)

Install Host Integration Server

Verify Host connection information.

Verify Microsoft Windows Server 2003 or Windows 2000 Server configuration information.

Verify Host Integration Server SNA service configuration information

Install Host Integration Server.

Install appropriate link services.

Configure Host Integration Server

Step 1 (L) Creating and Configuring Link Services

Step 2 (C) Creating and Configuring Connections

Step 3 (LU) Creating and Configuring 3270 LUs

Step 4 (A) Adding and Assigning Users

Test Host Integration Server

Testing Connections with the 3270 Client

Testing Connections with the 5250 Client

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705238(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705801(v=bts.10).aspx

Items to Consider for a Successful Connection
For a connection to be established successfully, a number of software settings and hardware characteristics must work
together.

The following table outlines items to consider when configuring a connection with Host Integration Server.

For information on the new IP-DLC Link Service, see IP-DLC Link Service.

Element Considerations

Host configuration settings must
match the connectionandserversettin
gs on the Host Integration Server co
mputer.

Mainframe node ID settings: For most mainframes, IDBLK and IDNUM in the physical
unit (PU) definition must match the two parts of the Remote Node ID on the Host Integra
tion Server connection.

AS/400 name settings: For the AS/400 computer, local and remote control point name
s (CP names) and network names must be matched with corresponding Host Integration
Server settings

Addresses: For 802.2, X.25, or channel connections, you must match the host settings wi
th equivalent settings on the Host Integration Server connection.

BTU length: For the mainframe, the BTU length is set through MAXDATA in the PU defin
ition. For the AS/400 computer, this is set through MAXFRAME. These should equal the
Max BTU Length on the Host Integration Server connection.

Other settings: With SDLC, the NRZ/NRZI settings on the host must match those on the
Host Integration Server connection.

For SDLC and X.25

Communications hardware: line,
modem (if applicable), and adapter c
haracteristics must match thelink ser
viceandconnectionsettings on the Ho
st Integration Server computer.

Speed and duplexing: For SDLC and X.25, note the speed and duplexing capabilities of
the line, modem (or DCE), and adapter, to be sure that they will not be exceeded by the s
ettings in the Host Integration Server link service and connection. Settings for fast trans
mission or for full duplexing cause greater demands on hardware. The hardware elemen
t with the smallest capacity limits the capacity of the entire system.

See Also
Other Resources
Important Connection Information

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx

Verifying Host Connection Information
See Also
Other Resources
IP-DLC Link Service
Important Connection Information

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx

Verifying Operating System Connection Information
Collect and review the required operating system information to ensure your operating environment is set up and configured
correctly.

See Also
Other Resources
IP-DLC Link Service
Important Connection Information

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx

Verifying Host Integration Server Information
See Also
Other Resources
IP-DLC Link Service
Important Connection Information

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx

Important Configuration Information
The topics in this section detail important configuration information.

In This Section

Using SNA Manager

How to Open a Subdomain

How to Configure Server Properties

How to Configure SNA Service Properties

See Also
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa746211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771083(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Using SNA Manager
SNA Manager provides an interface for configuration and operation of Host Integration Server components. SNA Manager
allows flexibility in viewing and managing SNA server subdomains, computers, link services, connections, logical units (LUs),
sessions, and users. It integrates the administration of TN3720 service, TN5250 service, Host Print service, Shared Folder
Gateway service, and Host Security Integration.

You can view all Host Integration Server computers in an SNA server subdomain and manage multiple subdomains at the
same time. This allows for central configuration and administration of all servers in an enterprise. You can remotely configure
and manage Host Integration Server computers across all popular protocols, including TCP/IP, IPX/SPX, and Microsoft
Networking.

SNA Manager can be installed on any computer running Windows Server 2003 or Windows 2000 Server, enabling
management of the entire Host Integration Server network from a single computer. In addition, SNA Manager allows more
than one administrator to simultaneously view and manage the same SNA server subdomain.

SNA Manager provides a hierarchical, tree-like view of an SNA server subdomain and all its resources.

In the console tree, the subdomain is presented as a hierarchical collection of resources. At the top of the hierarchy is the
subdomain itself, which contains Servers, LU Pools, Configured Users, Workstations APPC Modes, CPI-C Symbolic Names, and
Host Security Domains. You can view as much of the subdomain detail as needed by opening and closing folders.

When you click an item in the console tree, the details pane shows resources available to the item. Double-clicking an item that
does not contain other objects displays the properties of the item.

Shortcut menus (available by right-clicking an object) allow selection of the appropriate command for a particular object. For
example, if you select a server and right-click, a shortcut menu allows you to stop the service, control all other services, insert
new resources, and view and configure the properties.

SNA Manager lets you administer more than one SNA subdomain by displaying each domain in a separate window with its
own hierarchical arrangement of resources.

SNA Manager also simplifies administrative tasks by providing wizards to step you through many of the more complicated
tasks, such as configuring AS/400 connectivity, configuring 3270 display LUs, and creating a range of LUs.

See Also
Tasks
How to Open a Subdomain
How to Configure Server Properties
How to Configure SNA Service Properties
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771083(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Open a Subdomain
Before you can configure Host Integration Server components, you must open a subdomain.

The Start Subdomain dialog box can be used to change SNA subdomains including:

Local SNA Subdomain

Remote SNA Subdomain

Offline Configuration

To open a subdomain

1. Start SNA Manager.

2. In SNA Manager, right-click SNA Manager (top level), and select Open Subdomain. The Start SNA Manager for
dialog box appears.

3. Select the appropriate settings for your subdomain, and click Finish.

See Also
Tasks
How to Configure Server Properties
How to Configure SNA Service Properties
Concepts
Using SNA Manager
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771083(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure Server Properties
The Server Configuration dialog box can be used to change Host Integration Server properties, including:

Server Name

Subdomain Name

Active Directory OU Name

Server Role - Primary or Backup

Restart - MngAgent and SnaBase

To configure server properties

1. Start SNA Manager.

2. In SNA Manager, right-click the server, and select Properties.

3. To change the server name, click Change near the top of the Server Configuration tab. Note that the server must be
offline before you can change the name.

4. To set the Group Identity (Subdomain name and Active Directory), Server Role (Primary or Backup), or Network
Transports (TCP/IP is default), click Change near the bottom of the Server Configuration tab.

5. Make the appropriate changes to your configuration, and then click OK.

6. You must save your configuration to keep the properties you set. Right-click the server, and click Save Configuration.

See Also
Tasks
How to Open a Subdomain
How to Configure SNA Service Properties
Concepts
Using SNA Manager
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771083(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure SNA Service Properties
The SNA Service configuration dialog box can be used to change SNA service properties, including:

Server Comment

Network Name

Control Point Name

To change properties of SNA service

1. Start SNA Manager.

2. In SNA Manager, right-click SNA Service, and select Properties.

3. Make appropriate changes.

4. Click OK when done.

5. You must save your configuration to keep the properties you set. Right-click the server, and click Save Configuration.

See Also
Tasks
How to Open a Subdomain
How to Configure Server Properties
Concepts
Using SNA Manager
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Step 1 (L) Creating and Configuring Link Services
This section details creating and configuring link services. The maximum number of 802.2 link services that one Host
Integration Server computer can support is:

64 per network adapter (limited by SAP)

255 per SNA server (limited by index from 0x01 to 0xFF)

However, SNA Manager allows only 64 link services per Host Integration Server computer, no matter how many adapters are
installed on the server. To configure the number higher than this, use the utility Linkcfg.exe.

For information on the new IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Creating Link Services

Configuring Link Services

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770523(v=bts.10).aspx

Creating Link Services
By default, when Host Integration Server is installed, all the software files required by all standard link services are copied to
the server, but the link services themselves are not installed or configured.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

The following sections contain procedures detailing how to create link services using SNA Manager.

In This Section

How to Create the DLC 802.2 Link Service

How to Create the 3270 Demonstration

How to Create the 5250 Demonstration

How to Create the LU1 Print Demonstration

How to Create the LU3 Print Demonstration

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771652(v=bts.10).aspx

How to Create the DLC 802.2 Link Service
The following procedure details creating a new DLC 802.2 link service.

To create the DLC 802.2. link service

1. Start SNA Manager.

2. In SNA Manager, right-click the server on which to add the link service, point to New,and then click Link Service.

3. Select the DLC 802.2 Link Service, and click Add.

4. Configure the following link service information (if required):

Title

Adapter

Local Service Access Point (SAP)

Use Fixed SAP option

Allow Link Server to be Distributed option

5. Click OK.

The Insert Link Service box will continue to be displayed, allowing you to insert additional link services as needed.

6. After you have finished adding the needed link services, click Finish.

7. Right-click Link Services, and then click Save configuration.

Note
When the link services have been inserted, SNA Manager displays them in the Link Services folder.

See Also
Tasks
How to Create the 3270 Demonstration
How to Create the 5250 Demonstration
How to Create the LU1 Print Demonstration
How to Create the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Creating Link Services

https://msdn.microsoft.com/en-us/library/aa705480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770744(v=bts.10).aspx

How to Create the 3270 Demonstration
The following procedure details creating the Continuous 3270 Demonstration.

To create the 3270 demonstration

1. Start SNA Manager.

2. In SNA Manager, right-click the server on which to add the link service, point to New, and then click Link Service.

3. Select DEMO SDLC Link Service, and click Add.

4. Verify the script file is for the 3270 Continuous Demo and click OK.

The Insert Link Service box will continue to be displayed, allowing you to insert additional link services as needed.

5. After you have finished adding the needed link services, click Finish.

6. Right-click Link Services, and then click Save configuration.

Note
When the link services have been inserted, SNA Manager displays them in the Link Services folder.

See Also
Tasks
How to Create the DLC 802.2 Link Service
How to Create the 5250 Demonstration
How to Create the LU1 Print Demonstration
How to Create the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Creating Link Services

https://msdn.microsoft.com/en-us/library/aa745017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770744(v=bts.10).aspx

How to Create the 5250 Demonstration
The following procedure details creating the 5250 Demonstration.

To create the 5250 demonstration

1. Start SNA Manager.

2. In SNA Manager, right-click the server on which to add the link service, point to New,and then click Link Service.

3. Select DEMO SDLC Link Service,and click Add.

4. Verify the script file is for the AS 400 Demo and click OK.

The Insert Link Service box will continue to be displayed, allowing you to insert additional link services as needed.

5. After you have finished adding the needed link services, click Finish.

6. Right-click Link Services, and then click Save configuration.

Note
When the link services have been inserted, SNA Manager displays them in the Link Services folder.

See Also
Tasks
How to Create the DLC 802.2 Link Service
How to Create the 3270 Demonstration
How to Create the LU1 Print Demonstration
How to Create the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Creating Link Services

https://msdn.microsoft.com/en-us/library/aa745017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770744(v=bts.10).aspx

How to Create the LU1 Print Demonstration
The following procedure details creating the LU1 Print Demonstration.

To create the LU1 print demonstration

1. In SNA Manager, right-click the server on which to add the link service, point to New,and then click Link Service.

2. Select DEMO SDLC Link Service, and click Add.

3. Verify the script file is for the LU1 Print Demo and click OK.

The Insert Link Service box will continue to be displayed, allowing you to insert additional link services as needed.

4. After you have finished adding the needed link services, click Finish.

5. Right-click Link Services, and then click Save configuration.

Note
When the link services have been inserted, SNA Manager displays them in the Link Services folder.

See Also
Tasks
How to Create the DLC 802.2 Link Service
How to Create the 3270 Demonstration
How to Create the 5250 Demonstration
How to Create the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Creating Link Services

https://msdn.microsoft.com/en-us/library/aa745017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770744(v=bts.10).aspx

How to Create the LU3 Print Demonstration
The following procedure details creating the LU3 Print Demonstration.

To create the LU3 print demonstration

1. In SNA Manager, right-click the server on which to add the link service, point to New,and then click Link Service.

2. Select the DEMO SDLC Link Service, and click Add.

3. Verify the script file is for the LU3 Print Demo, and click OK.

The Insert Link Service box will continue to be displayed, allowing you to insert additional link services as needed.

4. After you have finished adding the needed link services, click Finish.

5. Right-click Link Services, and then click Save configuration.

Note
When the link services have been inserted, SNA Manager displays them in the Link Services folder.

See Also
Tasks
How to Create the DLC 802.2 Link Service
How to Create the 3270 Demonstration
How to Create the 5250 Demonstration
How to Create the LU1 Print Demonstration
Other Resources
IP-DLC Link Service
Creating Link Services

https://msdn.microsoft.com/en-us/library/aa745017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770744(v=bts.10).aspx

Configuring Link Services
By default, when Host Integration Server is installed, all the software files required by all standard link services are copied to
the server. After the link services are installed, they must be configured for your host environment.

The following sections contain procedures detailing how to configure link services.

For information on the new IP-DLC Link Service, see IP-DLC Link Service.

In This Section

How to Configure the DLC 802.2 Link Service

How to Configure the 3270 Demonstration

How to Configure the 5250 Demonstration

How to Configure the LU1 Print Demonstration

How to Configure the LU3 Print Demonstration

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746035(v=bts.10).aspx

How to Configure the DLC 802.2 Link Service
Use the following procedure to configure the DLC 802.2 link service.

To configure the DLC 80.2. link service

1. In SNA Manager, expand the server, and then click Link Service.

2. Right-click the DLC 802.2 (SNADLC1) link service, and click Properties.

3. In Properties, click Configure.

4. Make configuration changes, and click OK.

5. Click OK to close the Properties dialog box.

See Also
Tasks
How to Configure the 3270 Demonstration
How to Configure the 5250 Demonstration
How to Configure the LU1 Print Demonstration
How to Configure the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Configuring Link Services

https://msdn.microsoft.com/en-us/library/aa745454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770523(v=bts.10).aspx

How to Configure the 3270 Demonstration
Use the following procedure to configure the 3270 Demonstration link service.

To configure the 3270 demonstration

1. In SNA Manager, expand the serve,r and then click Link Service.

2. Right-click the 3270 Demonstration (SNADEMO1) link service, and click Properties.

3. In Properties, click Configure.

4. Make configuration changes, and click OK.

5. Click OK to close the Properties dialog box.

See Also
Tasks
How to Configure the DLC 802.2 Link Service
How to Configure the 5250 Demonstration
How to Configure the LU1 Print Demonstration
How to Configure the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Configuring Link Services

https://msdn.microsoft.com/en-us/library/aa745537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770523(v=bts.10).aspx

How to Configure the 5250 Demonstration
Use the following procedure to configure the 5250 (AS/400) Demonstration link service.

To configure the 5250 demonstration

1. In SNA Manager, expand the server, and then click Link Service.

2. Right-click the 5250 Demonstration (SNADEMO2) link service, and click Properties.

3. In Properties, click Configure.

4. Make configuration changes, and click OK.

5. Click OK to close the Properties dialog box.

See Also
Tasks
How to Configure the DLC 802.2 Link Service
How to Configure the 3270 Demonstration
How to Configure the LU1 Print Demonstration
How to Configure the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Configuring Link Services

https://msdn.microsoft.com/en-us/library/aa745537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770523(v=bts.10).aspx

How to Configure the LU1 Print Demonstration
Use the following procedure to configure the LU1 Print Demonstration link service.

To configure the LU1 print demonstration

1. In SNA Manager, expand the server, and then click Link Service.

2. Right-click the LU1 Print Demonstration (SNADEMO3) link service, and click Properties.

3. In Properties, click Configure.

4. Make configuration changes, and click OK.

5. Click OK to close the Properties dialog box.

See Also
Tasks
How to Configure the DLC 802.2 Link Service
How to Configure the 3270 Demonstration
How to Configure the 5250 Demonstration
How to Configure the LU3 Print Demonstration
Other Resources
IP-DLC Link Service
Configuring Link Services

https://msdn.microsoft.com/en-us/library/aa745537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770523(v=bts.10).aspx

How to Configure the LU3 Print Demonstration
Use the following procedure to configure the LU3 Print Demonstration link service.

To configure the LU3 print demonstration

1. In SNA Manager, expand the server, and then click Link Service.

2. Right-click the LU3 Print Demonstration (SNADEMO4) link service, and click Properties.

3. In Properties, click Configure.

4. Make configuration changes, and click OK.

5. Click OK to close the Properties dialog box.

See Also
Tasks
How to Configure the DLC 802.2 Link Service
How to Configure the 3270 Demonstration
How to Configure the 5250 Demonstration
How to Configure the LU1 Print Demonstration
Other Resources
IP-DLC Link Service
Configuring Link Services

https://msdn.microsoft.com/en-us/library/aa745537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770523(v=bts.10).aspx

Step 2 (C) Creating and Configuring Connections
This section details creating and configuring connections.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Creating Connections

Configuring Connections

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705495(v=bts.10).aspx

Creating Connections
With Host Integration Server, you can create connections with wizards or manually. Host Integration Server provides you with
three wizards to aid you in installing and configuring connections to your host environment (HE).

These tools step you through configuring connection properties, creating 3270 display LUs and an LU pool, and assigning the
LUs to the LU pool.

For information on the new IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Mainframe (3270) environments:

How to Create a 3270 Connection Using a Wizard

How to Create a 3270 Connection Manually

AS/400 (5250) environments:

How to Create a 5250 Connection Using a Wizard

How to Create a 5250 Connection Manually

How to Create a 5250 Local APPC LU

How to Create a 5250 Remote APPC LU

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744988(v=bts.10).aspx

How to Create a 3270 Connection Using a Wizard
The following procedure details using a wizard to create a 3270 connection. The 3270 Continuous link service will be used as
an example.

To create a 3270 connection using a wizard

1. In SNA Manager, right-click the server on which to add a connection.

2. Point to All Tasks, and then select the 3270 Wizard option.

3. Click Next on the Welcome screen.

4. Select the computer where SNA service resides, and click Next.

5. Enter a Name for the connection, DM3270, and click Next.

6. Select the appropriate link service, SNADEMO1, and click Next.

7. Accept the default Local Node ID information, and click Next.

8. Accept the default PU address information, and click Next.

9. Accept the default LU information, and click Next.

10. Click Add to add a member (user).

11. Select a member, click Add, and then click OK.

12. Click Next.

13. Click Finish to complete the wizard.

14. Click OK on the final wizard information page.

15. When the wizard completes, right-click SNA Service, and click Save configuration.

16. Stop and then start SNA service.

See Also
Tasks
How to Create a 3270 Connection Manually
How to Create a 5250 Connection Using a Wizard
How to Create a 5250 Connection Manually
How to Create a 5250 Local APPC LU
How to Create a 5250 Remote APPC LU
Concepts
Creating Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 3270 Connection Manually
The following procedure details creating a 3270 connection manually.

To create a 3270 connection manually

1. In SNA Manager, expand the server on which to create the connection, and then expand SNA Service.

2. Right-click Connections, point to New, and then click the type of connection (802.2) to be created.

3. Configure the Connection Properties. You are required to specify which link service to use for the connection, as well
as the name of the connection and additional information. The choices you make depend on the purpose of the
connection.

The following information must be configured correctly to make a connection:

General Tab

Address Tab

System Identification Tab

DLC 802.2 Tab

4. Click OK.

5. Right-click SNA Service, and then click Save configuration.

6. Stop and then start SNA service.

To display this dialog box after the connection has been created, double-click the connection in the tree view, or select the
connection, and click Properties in the View menu.

See Also
Concepts
Creating Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 5250 Connection Using a Wizard
The following procedure details using a wizard to create a 5250 connection.

To create a 5250 connection using a wizard

1. In SNA Manager, right-click the server on which to add a connection.

2. Point to All Tasks, and then select the AS/400 Wizard option.

3. Click Next on the Welcome screen.

4. Select the computer where SNA service resides, and click Next.

5. Enter a name for the connection, DM5250, and click Next.

6. Select the appropriate link service, SNADEMO2, and click Next.

7. Accept the default network name and control point name, and click Next.

8. Accept the default PU address information, and click Next.

9. Click Finish to complete the wizard.

10. Click OK on the final wizard information dialog box.

11. When the wizard completes, right-click SNA Service, and click Save configuration.

12. Stop and then start SNA service.

See Also
Tasks
How to Create a 3270 Connection Using a Wizard
How to Create a 3270 Connection Manually
How to Create a 5250 Connection Manually
How to Create a 5250 Local APPC LU
How to Create a 5250 Remote APPC LU
Concepts
Creating Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 5250 Connection Manually
The following procedure details creating a 5250 connection manually.

To create a 5250 connection manually

1. In SNA Manager, expand the server on which to create the connection, and then expand SNA Service.

2. Right-click Connections, point to New, and then click the type of connection (such as SDLC or 802.2) to be created.

Connection Properties lets you specify which link service to use for the connection, as well as the name of the
connection and additional information. The choices you make depend on the purpose of the connection.

3. Click OK.

4. Right-click SNA Service, and then click Save configuration.

5. Stop and then start SNA service.

To display this dialog box after the connection has been created, double-click the connection in the tree view. Or select
the connection and then, on the View menu, click Properties.

See Also
Tasks
How to Create a 3270 Connection Using a Wizard
How to Create a 3270 Connection Manually
How to Create a 5250 Connection Using a Wizard
How to Create a 5250 Local APPC LU
How to Create a 5250 Remote APPC LU
Concepts
Creating Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 5250 Local APPC LU
The following procedure details creating a 5250 local APPC LU manually.

To create a 5250 local APPC LU

1. In SNA Manager, expand the server on which to add the Local APPC LU.

2. Expand SNA Service, and right-click Local APPC LU.

3. Point to New, and then select Local LU.

4. On the General tab:

Enter LU Alias.

Enter Network Name.

Enter LU Name.

Enter Comment (optional).

5. On the Advanced tab:

Select if this is a member of default local APPC LU pool.

Enter time-out in seconds for starting invokable TPs.

Select implicit incoming remote LU.

Select LU 6.2 type.

Select SyncPoint support.

6. Click OK.

7. Right-click SNA Service, and click Save configuration.

8. Stop and then start SNA service.

See Also
Tasks
How to Create a 3270 Connection Using a Wizard
How to Create a 3270 Connection Manually
How to Create a 5250 Connection Using a Wizard
How to Create a 5250 Connection Manually
How to Create a 5250 Remote APPC LU
Concepts
Creating Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 5250 Remote APPC LU
The following procedure details creating a 5250 remote APPC LU manually.

To create a 5250 remote APPC LU

1. In SNA Manager, expand the server on which to add the Remote APPC LU.

2. Expand SNA Service, and right-click Remote APPC LU.

3. Point to New, and then select Remote LU.

4. On the General tab:

Enter Connection.

Enter LU Alias.

Enter Network Name.

Enter LU Name.

Enter Uninterpreted Name.

Enter Comment (optional).

5. On the Options tab:

Select if this remote LU supports parallel sessions.

Select implicit incoming remote LU.

Select Session-Level security.

Select SyncPoint support.

6. Click OK.

7. Right-click SNA Service, and click Save configuration.

8. Stop and then start SNA service.

See Also
Tasks
How to Create a 3270 Connection Using a Wizard
How to Create a 3270 Connection Manually
How to Create a 5250 Connection Using a Wizard
How to Create a 5250 Connection Manually
How to Create a 5250 Local APPC LU
Concepts
Creating Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Configuring Connections
If you run a wizard to create your connections, most of the configuration information will be added with the criteria you
entered when the wizard runs. The AS/400 Wizard, the Mainframe APPC/LU6.2 Wizard, and the 3270 Wizard step you through
configuring connection properties, creating 3270 display LUs and an LU pool, and assigning the LUs to the LU pool.

If you need to configure a connection manually, you may need to verify the host connection information before you can
proceed. For more information, see Verifying Host Connection Information.

For information on the new IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Mainframe (3270) environments

How to Configure a 3270 Connection

AS/400 (5250) environments

How to Configure a 5250 Connection

How to Configure a 5250 Local APPC LU

How to Configure a 5250 Remote APPC LU

https://msdn.microsoft.com/en-us/library/aa746254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771843(v=bts.10).aspx

How to Configure a 3270 Connection
The following procedure details configuring a 3270 connection.

To configure a 3270 connection

1. In SNA Manager, expand the server on which to configure the connection, and then expand SNA Service.

2. Expand Connections, right-click the 3270 (DM3270) connection, and then click Properties.

Connection Properties lets you specify which link service to use for the connection, as well as the name of the
connection and additional information. The choices you make depend on the purpose of the connection.

3. After you have made your configuration changes, click OK.

4. Right-click SNA Service, and then click Save configuration.

5. Stop and then start SNA service.

See Also
Tasks
How to Configure a 5250 Connection
How to Configure a 5250 Local APPC LU
How to Configure a 5250 Remote APPC LU
Concepts
Configuring Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771843(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a 5250 Connection
The following procedure details configuring a 5250 connection.

To configure a 5250 connection

1. In SNA Manager, expand the server on which to configure the connection, and then expand SNA Service.

2. Expand Connections, right-click the 5250 (DM5250) connection, and then click Properties.

Connection Properties lets you specify which link service to use for the connection, as well as the name of the
connection and additional information. The choices you make depend on the purpose of the connection.

3. After you have made your configuration changes, click OK.

4. Right-click SNA Service, and then click Save configuration.

5. Stop and then start SNA service.

See Also
Tasks
How to Configure a 3270 Connection
How to Configure a 5250 Local APPC LU
How to Configure a 5250 Remote APPC LU
Concepts
Configuring Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771843(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a 5250 Local APPC LU
The following procedure details configuring a 5250 local APPC LU.

To configure a 5250 local APPC LU

1. In SNA Manager, expand the server on which to configure the connection, and then expand SNA Service.

2. Expand Local APPC LUs, right-click the appropriate 5250 local APPC LU, and then click Properties.

Connection Properties lets you specify which LU alias to use, as well as the name of the network and LU name
information. The choices you make depend on the purpose of the connection.

3. After you have made your configuration changes, click OK.

4. Right-click SNA Service, and then click Save configuration.

5. Stop and then start SNA service.

See Also
Tasks
How to Configure a 3270 Connection
How to Configure a 5250 Connection
How to Configure a 5250 Remote APPC LU
Concepts
Configuring Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771843(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a 5250 Remote APPC LU
The following procedure details configuring a 5250 remote APPC LU.

To configure a 5250 remote APPC LU

1. In SNA Manager, expand the server on which to configure the connection, and then expand SNA Service.

2. Expand Remote APPC LUs, right-click the appropriate 5250 remote APPC LU, and then click Properties.

Connection Properties lets you specify which LU alias to use, as well as the name of the network and LU name
information. The choices you make depend on the purpose of the connection.

3. After you have made your configuration changes, click OK.

4. Right-click SNA Service, and then click Save configuration.

5. Stop and then start SNA service.

See Also
Tasks
How to Configure a 3270 Connection
How to Configure a 5250 Connection
How to Configure a 5250 Local APPC LU
Concepts
Configuring Connections
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa771268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Step 3 (LU) Creating and Configuring 3270 LUs
This section details information regarding creating and configuring LUs.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Creating LUs

Configuring LUs

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754417(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704511(v=bts.10).aspx

Creating LUs
After configuring the connection, you can create the 3270 LUs. The LUs can be display (terminal emulation) LUs, printer LUs,
application LUs (LUAs), or downstream LUs.

Each 3270 LU is configured based on the type of connection used. If the connection is channel, 802.2, X.25, or SDLC, the LUs
need an LU number, which identifies the LU on its connection. This number should match the LOCADDR= parameter of the LU
definition in Virtual Telecommunications Access Method (VTAM) or in the Network Control Program (NCP) GEN. Up to 254
LUs can be configured for each connection, and they can be consecutively configured as a range of LUs.

You can create LUs one at a time or in a consecutively numbered range. When creating a range of LUs, all the LUs are given the
same properties. You can modify individual LUs after creating them.

In This Section

How to Create a 3270 Display LU

How to Create a 3270 Printer LU

How to Create a 3270 Application LU (LUA)

How to Create a 3270 Downstream LU

How to Create a Local APPC LU

How to Create a Remote APPC LU

https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx

How to Create a 3270 Display LU
The following procedure details how to create a display LU.

To create a 3270 display LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270, point to New, and then click Display LU.

You can define LUs in this Properties dialog box. Keep the default for the LU Number box as 2. Two is the first available
number, because one is reserved for the host.

The LU number is meaningful to the connection. You can add a user-friendly name in the LU Name box.

3. Type the LU Name, LU 2. Leave the other boxes as they are.

4. Click the Display Model tab and choose 2 (24 X 80) as the display station model. Because models can change without
notification, click Model can be overridden.

5. Click the Associated Printer tab. When configuring an LU, these boxes are generally left blank.

6. Click OK.

See Also
Tasks
How to Create a 3270 Printer LU
How to Create a 3270 Application LU (LUA)
How to Create a 3270 Downstream LU
How to Create a Local APPC LU
How to Create a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 3270 Printer LU
The following procedure details how to create a printer LU.

To create a 3270 printer LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270, point to New, and then click Printer LU.

You can define LUs in this Properties dialog box. Keep the default for the LU Number box as 3. Three is the first
available number, because two was used in the previous example and one is reserved for the host.

The LU number is meaningful to the connection. You can add a user-friendly name in the LU Name box.

3. Type the LU Name, LU 4. (You might have expected LU 3, but LU 3 is reserved for the LU3 demo.) Leave the other boxes
as they are.

4. Type a comment (optional).

5. If you are using compression, select the Use Compression box.

6. If the workstation is secured, select the User Workstation Secured box.

7. Click OK.

See Also
Tasks
How to Create a 3270 Display LU
How to Create a 3270 Application LU (LUA)
How to Create a 3270 Downstream LU
How to Create a Local APPC LU
How to Create a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 3270 Application LU (LUA)
The following procedure details how to create an application LU (LUA).

To create a 3270 application LU (LUA)

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270, point to New, and then click Application LU (LUA).

You can define LUs in this Properties dialog box. Keep the default for the LU Number box as 4. Four is the next available
number, because two and three were used in the previous examples, and one is reserved for the host.

The LU number is meaningful to the connection. You can add a user-friendly name in the LU Name box.

3. Type the LU Name, LU 5. Leave the other boxes as they are.

4. Type a comment (optional).

5. If you are using compression, select the Use Compression box.

6. If the workstation is secured, select the User Workstation Secured box.

7. If you require high priority mode, select the High Priority Mode box.

8. Click OK.

See Also
Tasks
How to Create a 3270 Display LU
How to Create a 3270 Printer LU
How to Create a 3270 Downstream LU
How to Create a Local APPC LU
How to Create a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a 3270 Downstream LU
The following procedure details how to create a downstream LU.

To create a 3270 downstream LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270, point to New, and then click Downstream LU.

You can define LUs in this Properties dialog box. Keep the default for the LU Number box as 5. Five is the next available
number, because two, three, and four were used in the previous examples and one is reserved for the host.

The LU number is meaningful to the connection. You can add a user-friendly name in the LU Name box.

3. Type the LU Name, LU 6. Leave the other boxes as they are.

4. Type a comment (optional).

5. Click OK.

See Also
Tasks
How to Create a 3270 Display LU
How to Create a 3270 Printer LU
How to Create a 3270 Application LU (LUA)
How to Create a Local APPC LU
How to Create a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a Local APPC LU
The following procedure details how to create a local APPC LU.

To create a local APPC LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Local APPC LUs.

2. Right-click Local APPC LUs, point to New, and then click Local LU.

3. On the General tab:

Type the LU Alias.

Type the Network Name.

Type the LU Name.

Type a comment (optional).

4. On the Advanced tab:

If you are a member of the local APPC LU pool, select the Member of Default Outgoing Local APPC LU Pool
box.

Type the amount of time in seconds for Timeout for Staring Invokable TPs.

Select the Implicit Incoming Remote LU.

Select the LU 6.2 Type (Independent or Dependent).

Select SyncPoint Support if required.

5. Click OK.

See Also
Tasks
How to Create a 3270 Display LU
How to Create a 3270 Printer LU
How to Create a 3270 Application LU (LUA)
How to Create a 3270 Downstream LU
How to Create a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Create a Remote APPC LU
The following procedure details how to create a remote LU.

To create a remote APPC LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Remote APPC LUs.

2. Right-click Remote APPC LUs, point to New, and then click Remote LU.

3. On the General tab:

Type the LU Alias.

Type the Network Name.

Type the LU Name.

Type the Uninterpreted Name.

Type a comment (optional).

4. On the Options tab:

Select the Support Parallel Sessions box.

Select the Implicit Incoming Mode.

Select the Session-Level Security mode.

Select SyncPoint Support if required.

5. Click OK.

See Also
Tasks
How to Create a 3270 Display LU
How to Create a 3270 Printer LU
How to Create a 3270 Application LU (LUA)
How to Create a 3270 Downstream LU
How to Create a Local APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Configuring LUs
This section provides information detailing configuring logical units (LU).

In This Section

How to Configure a 3270 Display LU

How to Configure a 3270 Printer LU

How to Configure a 3270 Application LU (LUA)

How to Configure a 3270 Downstream LU

How to Configure a Local APPC LU

How to Configure a Remote APPC LU

https://msdn.microsoft.com/en-us/library/aa753849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704733(v=bts.10).aspx

How to Configure a 3270 Display LU
The following procedure details how to configure a display LU.

To configure a 3270 display LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270. You should see the available LUs in the details pane.

3. Click the Display LU, LU 2, and then click Properties.

4. Make appropriate configuration changes, and then click OK.

See Also
Tasks
How to Configure a 3270 Printer LU
How to Configure a 3270 Application LU (LUA)
How to Configure a 3270 Downstream LU
How to Configure a Local APPC LU
How to Configure a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa744728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a 3270 Printer LU
The following procedure details how to configure a printer LU.

To configure an 3270 printer LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270. You should see the available LUs in the details pane.

3. Click the Printer LU, LU 3, and then click Properties.

4. Make appropriate configuration changes, and then click OK.

See Also
Tasks
How to Configure a 3270 Display LU
How to Configure a 3270 Application LU (LUA)
How to Configure a 3270 Downstream LU
How to Configure a Local APPC LU
How to Configure a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa753849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a 3270 Application LU (LUA)
The following procedure details how to configure an application LU (LUA).

To configure a 3270 application LU (LUA)

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270. You should see the available LUs in the details pane.

3. Click the Application LU, LU 4, and then click Properties.

4. Make appropriate configuration changes, and then click OK.

See Also
Tasks
How to Configure a 3270 Display LU
How to Configure a 3270 Printer LU
How to Configure a 3270 Downstream LU
How to Configure a Local APPC LU
How to Configure a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa753849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a 3270 Downstream LU
The following procedure details how to configure a downstream LU.

To configure a 3270 downstream LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Connections.

2. Right-click the appropriate connection, DM3270. You should see the available LUs in the details pane.

3. Click the Downstream LU, LU 5, and then click Properties.

4. Make appropriate configuration changes, and then click OK.

See Also
Tasks
How to Configure a 3270 Display LU
How to Configure a 3270 Printer LU
How to Configure a 3270 Application LU (LUA)
How to Configure a Local APPC LU
How to Configure a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa753849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a Local APPC LU
The following procedure details how to configure a local APPC LU.

To configure a local APPC LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Local APPC LUs.

2. Right-click the appropriate Local APPC LU, and then click Properties.

3. On the General tab:

Verify LU Alias.

Verify Network Name.

Verify LU Name.

4. On the Advanced tab:

Verify you are a member of the local APPC LU pool, and then select the Member of Default Outgoing Local
APPC LU Pool box.

Verify the amount of time in seconds for Timeout for Staring Invokable TPs.

Verify the Implicit Incoming Remote LU.

Verify the LU 6.2 Type.

Verify SyncPoint Support.

5. Click OK.

See Also
Tasks
How to Configure a 3270 Display LU
How to Configure a 3270 Printer LU
How to Configure a 3270 Application LU (LUA)
How to Configure a 3270 Downstream LU
How to Configure a Remote APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa753849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Configure a Remote APPC LU
The following procedure details how to configure a remote LU.

To configure a remote APPC LU

1. In SNA Manager, expand Servers, expand SNA Service, and then expand Local APPC LUs.

2. Right-click the appropriate remote LU, and then click Properties.

3. On the General tab:

Verify Connection.

Verify Network Name.

Verify LU Name.

Verify Uninterpreted Name.

4. On the Options tab:

Verify Supports Parallel Sessions box.

Verify Implicit Incoming Mode.

Verify Session-Level Security.

Verify SyncPoint Support.

5. Click OK.

See Also
Tasks
How to Configure a 3270 Display LU
How to Configure a 3270 Printer LU
How to Configure a 3270 Application LU (LUA)
How to Configure a 3270 Downstream LU
How to Configure a Local APPC LU
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa753849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Step 4 (A) Adding and Assigning Users
This section describes adding users and assigning LUs to configured users.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

In This Section

How to Add New Users

How to Assign LUs to Configured Users

How to Assign Remote APPC LUs to Configured Users

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770532(v=bts.10).aspx

How to Add New Users
Although Host Integration Server uses the User accounts of the Windows Server 2003 or Windows 2000 Active Directory
directory service, users must be configured to use Host Integration Server resources such as LUs.

To add new users

1. In SNA Manager, expand the SNA subdomain where the users reside.

2. Right-click Configured Users, point to New, and then click User.

3. Select a user (or group) from the list, and click OK.

See Also
Tasks
How to Assign LUs to Configured Users
How to Assign Remote APPC LUs to Configured Users
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa744278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770532(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Assign LUs to Configured Users
Although Host Integration Server uses the User accounts of the Windows Server 2003 or Windows 2000 Active Directory
directory service, users must be configured to use Host Integration Server resources such as LUs.

To assign LUs to configured users

1. In SNA Manager, expand the SNA subdomain where the users reside.

2. Expand Configured Users. Select a user, and then right-click Assign LUs.

3. Select an LU, and then click OK.

The list of LUs that a particular user can access depends on how the user connects to Host Integration Server. If Active
Directory is used, a user can access any LUs assigned directly to the user account and can also access any LUs assigned to any
of the groups the user is a member of. If not using Active Directory, a user can only access LUs assigned directly to the user, or
if no LUs are assigned to the user account, then the user can access LUs assigned to exactly one group. The groups are checked
in the following order: global groups, local groups, well known groups. There is no ordering within a group.

See Also
Tasks
How to Add New Users
How to Assign Remote APPC LUs to Configured Users
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa754275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770532(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

How to Assign Remote APPC LUs to Configured Users
Although Host Integration Server uses the User accounts of the Windows Server 2003 or Windows 2000 Active Directory
directory service, users must be configured to use Host Integration Server resources such as LUs.

To assign remote APPC LUs to a configured user

1. In SNA Manager, expand the SNA subdomain where the users reside.

2. Select Servers, expand Servers, select a server, expand it, and then expand Remote APPC LUs.

3. Select an LU, right-click it, and assign it to a user.

4. Select the user, and click OK.

See Also
Tasks
How to Add New Users
How to Assign LUs to Configured Users
Other Resources
IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa754275(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx

Testing Connections
The topics in this section detail testing, including running and configuring, the 3270 and 5250 Client applications.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Testing Connections with the 3270 Client

Testing Connections with the 5250 Client

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705801(v=bts.10).aspx

Testing Connections with the 3270 Client
The 3270 Client can be used to access your mainframe (3270) environment.

In This Section

How to Run the 3270 Client

How to Configure the 3270 Client

How to Run the 3270 Client Demonstration

https://msdn.microsoft.com/en-us/library/aa705278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705795(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772050(v=bts.10).aspx

How to Run the 3270 Client
The following procedure details running the 3270 Client application.

To run the 3270 client

1. Start SNA Manager.

2. On the Tools menu, click 3270 Client. This launches the Host Integration Server 3270 Client application.

3. Next, configure the 3270 Client application. For details, see How to Configure the 3270 Client.

https://msdn.microsoft.com/en-us/library/aa705795(v=bts.10).aspx

How to Configure the 3270 Client
The following procedure details configuring the 3270 Client application.

The 3270 continuous demo will be used for this procedure.

To configure the 3270 client

1. Start SNA Manager.

2. On the Tools menu, click 3270 Client.

3. On the Session menu, click Session Configuration.

4. Select the correct LU or pool name, DM3270, and then click OK.

5. Next, run the 3270 demonstration. For details, see Running the 3270 Client Demonstration.

https://msdn.microsoft.com/en-us/library/aa772050(v=bts.10).aspx

How to Run the 3270 Client Demonstration
The following procedure details running the 3270 continuous demonstration.

To run the 3270 client demonstration

1. Start SNA Manager.

2. On the Tools menu, click 3270 Client.

3. On the Session menu, click Connect, which connects you to the 3270 demonstration script.

4. Return to SNA Manager. The status of the DM3270 connection should show Active.

See Also
Other Resources
IP-DLC Link Service
Testing Connections with the 3270 Client

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744304(v=bts.10).aspx

Testing Connections with the 5250 Client
The 5250 Client can be used to access your AS/400 environment. The following topics detail running and configuring the 5250
Client application.

In This Section

How to Run the 5250 Client

How to Configure the 5250 Client

How to Run the 5250 Client Demonstration

https://msdn.microsoft.com/en-us/library/aa770962(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745527(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746100(v=bts.10).aspx

How to Run the 5250 Client
The following procedure details running the 3270 Client application.

To run the 5250 client

1. Start SNA Manager.

2. Right-click SNA Service, and click Start.

3. On the Tools menu, click 5250 Client. This launches the Host Integration Server 3270 Client application.

4. Next, configure the 5250 Client application. For details, see Configuring the 5250 Client.

https://msdn.microsoft.com/en-us/library/aa745527(v=bts.10).aspx

How to Configure the 5250 Client
The following procedure details configuring the 5250 Client application.

The 5250 (AS/400) demo will be used for this procedure.

To configure the 5250 client

1. Start SNA Manager.

2. On the Tools menu, click 5250 Client.

3. On the Session menu, click Session Configuration.

4. Select the correct LU or pool name, DM5250, and then click OK.

5. Next, run the 5250 demonstration. For details, see Running the 5250 Client Demonstration.

https://msdn.microsoft.com/en-us/library/aa746100(v=bts.10).aspx

How to Run the 5250 Client Demonstration
The following procedure details running the 5250 demonstration.

To run the 5250 client demonstration

1. Start SNA Manager.

2. On the Tools menu, click 5250 Client.

3. On the Session menu, click Connect, which connects you to the 5250 (AS/400) demonstration script.

4. Return to SNA Manager. The status of the DM5250 connection should show Active.

See Also
Other Resources
Testing Connections with the 5250 Client

https://msdn.microsoft.com/en-us/library/aa705801(v=bts.10).aspx

Configuring Your Enterprise
Making and Testing a Connection provides the basic steps to configure a link service, make a connection, create logical units
(LU), and log on to a host computer; this section follows a similar format and provides the concepts and procedures for
configuring Host Integration Server in your enterprise.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

In This Section

Creating and Configuring Link Services

Creating and Configuring Connections

Service Connection Point

Creating and Configuring LUs

User Management

https://msdn.microsoft.com/en-us/library/aa771881(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754334(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704597(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772011(v=bts.10).aspx

Creating and Configuring Link Services
By default, when Host Integration Server is installed, all the software files required by all standard link services are copied to
the server, but the link services themselves are not installed or configured.

For information about the IP-DLC Link Service, see IP-DLC Link Service.

The following procedures detail how to create link services using SNA Manager:

How to Create the DLC 802.2 Link Service

How to Create the 3270 Demonstration

How to Create the 5250 Demonstration

How to Create the LU1 Print Demonstration

How to Create the LU3 Print Demonstration

The following procedures detail how to configure link services using SNA Manager:

How to Configure the DLC 802.2 Link Service

How to Configure the 3270 Demonstration

How to Configure the 5250 Demonstration

How to Configure the LU1 Print Demonstration

How to Configure the LU3 Print Demonstration

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746035(v=bts.10).aspx

Creating and Configuring Connections
You can create connections between Host Integration Server and your host computer with wizards or manually. Host
Integration Server provides three wizards to help you install and configure connections to your host environment (HE).

The AS/400 Wizard, the Mainframe APPC/LU 6.2 Wizard, and the 3270 Wizard step you through configuring connection
properties, creating 3270 display LUs and an LU pool, and assigning the LUs to the LU pool.

For information about the new IP-DLC Link Service, see IP-DLC Link Service.

The following procedures detail how to create connections:

Mainframe (3270) environments:

Creating a 3270 Connection Using a Wizard

Creating a 3270 Connection Manually

AS/400 (5250) environments:

Creating a 5250 Connection Using a Wizard

Creating a 5250 Connection Manually

Creating a 5250 Local APPC LU

Creating a 5250 Remote APPC LU

If you use a wizard to create your connections, most of the configuration information is added along with the criteria you
entered when the wizard runs.

If you need to configure a connection manually, you may need to verify some of your connection information. For more
information, see Important Connection Information.

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx

Service Connection Point
During installation, a Service Connection Point in Active Directory is created by Host Integration Server 2009 that identifies this
instance of the product. The Active Directory Schema defines a serviceConnectionPoint (SCP) object class to make it easy for
a service to publish service-specific data in the directory. Users can search the Global Catalog for all instances of the product’s
Service Connection Point. When the Host Integration Server 2009 is uninstalled, the Service Connection Point is removed from
Active Directory.

Service Connection Point properties

Property Value\Description
serviceClassName HISServer (matching the SPN used for Kerberos)

serviceBindingInformation Name of the HIS Subdomain (blank if SNA Gateway is not installed)

serviceDNSNameType ‘A’ (meaning host type)

serviceDNSName NETBIOS Host name

Keywords List of words to identify this server.

Keyword list

Keyword Description
“Host Integration Server 2009” Product Name

“Microsoft” Company Name

“8.0” Product Version

{3CA45AFD-4759-4768-9BA2-FA516043DA34} SNA Gateway

{39707A81-0933-453f-8D90-6A0CFA851D94} Data Providers

{7609DE49-9AAC-41f0-A606-9BA2D69012A0} Transaction Integrator

{80B96EA7-CD92-4067-BC4A-AC59F1B87602} MSMQ-MQSeries Bridge

{52163C3B-D6D5-4c71-A768-DA581AA5D632} Session Integrator

Creating and Configuring LUs
After you configure the connection, you can create the 3270 LUs. The LUs can be display LUs (terminal emulation), printer LUs,
application LUs (LUAs), or downstream LUs.

Each 3270 LU is configured based on the type of connection used. If the connection is channel, 802.2, X.25, or Synchronous
Data Link Control (SDLC), the LUs need an LU number, which identifies the LU on its connection. This number should match
the LOCADDR= parameter of the LU definition in Virtual Telecommunications Access Method (VTAM) or in the Network
Control Program (NET) Gen. Up to 254 LUs can be configured for each connection, and they can be consecutively configured as
a range of LUs.

You can create LUs one at a time or in a consecutively numbered range. When you create a range of LUs, all the LUs are given
the same properties. You can modify individual LUs after creating them.

For information about the new IP-DLC Link Service, see IP-DLC Link Service.

For procedures about creating LUs, see the following:

Creating a 3270 Display LU

Creating a 3270 Printer LU

Creating a 3270 Application LU (LUA)

Creating a 3270 Downstream LU

Creating a Local APPC LU

Creating a Remote APPC LU

For procedures about configuring LUs, see the following:

Configuring a Range of 3270 LUs

Assigning LUs to Workstations

Associating 3270 Printer LUs with 3270 Display LUs

Configuring Downstream Connections

Configuring APPC LUs for TPs or 5250 Emulation

Precedence of Accounts in Determining Default LUs

To modify a 3270 LU

1. In SNA Manager, ensure that the appropriate service is inactive by right-clicking SNA service, and then click Stop.

2. Double-click Connections, and then double-click the connection that contains the LU you want to view.

3. Right-click the LU whose properties you want to view, and then click Properties. Click the appropriate tab to view or
modify the LU properties.

4. Click Save Configuration on the Action menu if you made changes, and then restart the affected service.

Note
Restarting the server disconnects all users. Try to schedule configuration changes when they least affect users.

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704820(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771075(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745406(v=bts.10).aspx

How to Configure a Range of 3270 LUs
You can create a consecutively numbered range of logical units (LU). To do so, you must identify the base LU name limited to
eight characters on which the numbered range of names will be built.

After identifying the base LU name, you can create the LUs by identifying the number of LUs in the range and the number the
range will start with. Host Integration Server will create LUs using the sequential numbering scheme.

To configure a range of 3270 LUs

1. In SNA Manager, ensure that the appropriate service is inactive by right-clicking SNA service, and then click Stop.

2. Right-click the connection to which you want to assign the LUs. Point to All Tasks, and then click the Range of LUs.

3. Fill in the LU Creation Wizard, and click Finish when done.

4. On the Action menu, click Save Configuration.

5. On the Action menu, click Refresh.

Note
When you create a range of LUs, all the LUs are given the same properties. You can modify individual LUs after creating the
m.

See Also
Tasks
Creating and Configuring LUs

https://msdn.microsoft.com/en-us/library/aa705659(v=bts.10).aspx

How to Create LU Pools
Although you can create individual LUs and assign them to users and groups, using LU pools to manage and deploy a large
number of LUs is a more efficient method of administering these resources.

LU pools are groupings of 3270, LUA, or downstream LUs that allow you to maximize access to LUs. A user, LUA application, or
downstream system using the pool can get LU access as long as one of the pooled LUs is available. If some of the pooled LUs
are not functioning, the user, LUA application, or downstream system will not be affected, as long as another LU in the pool is
available.

LU pools allow groups of intermittent users to use resources efficiently. For example, ten 3270 users who only need
intermittent access may find that a pool of five 3270 LUs is adequate for their needs.

If a user needs access to multiple LU sessions, you can assign one LU or LU pool for each session that the user needs. A pool
can be assigned multiple times to the same user.

An LU can be removed from an LU pool by simply deleting it from the pool.

The following procedures will help you manage your LU pools:

To create LU pools

To assign a 3270 LU to a connection

To assign LUs and LU pools to users and groups

To view LUs or pools assigned to users

To add 3270 LUs to a pool

To add a workstation and assign LUs

To remove an LU from a pool

To create LU pools

1. In SNA Manager, right-click the Pools folder, point to New, and then click 3270 Display LU Pool.

2. In Pool Properties, enter a name for your pool, up to eight characters in length. A comment is optional.

3. Leave the check box cleared, and click OK.

4. The new pool appears in the Pools folder.

To assign a 3270 LU to a connection

1. In SNA Manager, expand SNA service for the server you are working with, and then expand Connections.

2. Right-click the connection where you want to add the LU, point to New, and click the type of 3270 LU you want to assign.

3. In the 3270 LU Properties box, enter the LU Name. The LU number is system-assigned.

4. Click OK to exit.

5. On the Action menu, click Save Configuration.

To assign LUs and LU pools to users and groups

1. In SNA Manager, right-click the LU or LU pool, click Assign to User, and then select the users you want to assign.

2. Click OK.

3. Verify that the state of the server is active and that the connections are available (either OnDemand or Active). If the
server is not active, right-click the server in SNA Manager, and then click Start.

To view LUs or pools assigned to users

1. In SNA Manager, double-click Configured Users. Then click the user or group that you want to view. The details pane
shows the LUs and pools assigned to that user or group, plus other details, such as status and LU number.

2. To view local or remote APPC LUs assigned to a user or group, right-click the targeted user or group, and click
Properties under Configured Users. Click the APPC Defaults tab. When you are done viewing, click Cancel.

To add 3270 LUs to a pool

1. In SNA Manager, expand Servers, and then expand the server you are working with.

2. Expand Connections, and then click the connection that contains the needed 3270 LUs.

3. In the right pane, right-click the 3270 LU that you want to assign and click Assign Pool.

4. In the dialog box, click the pool to which you want to assign the LU, and then click OK.

5. Repeat steps 2 and 3 for each LU that you want to assign to a pool.

6. On the Action menu, click Save Configuration.

Note
To verify that the LUs are in the correct pool, make sure the Pools node is expanded, double-click the name of the affected p
ool, and view its LUs in the details pane.

Note
Both the LUs and the LU pool must be of the same type (3270).

To add a workstation and assign LUs

1. In SNA Manager, right-click Workstations, point to New, and then click Workstation.

2. Fill in the Workstation Properties dialog box.

3. Click OK to add the new workstation.

4. To assign LUs to the workstation, double-click Connections, and then double-click the connection that contains the
needed LUs.

5. Right-click the LU that you want to assign, and click Assign to Workstation.

6. In the dialog box, click the workstation, and then click OK.

7. On the Action menu, click Save Configuration.

Note
All workstation users must be members of the same SNA subdomain. You can avoid having to add each user to the subdom
ain by assigning the Everyone group to the subdomain and assigning no LUs to the group.

To remove an LU from a pool

1. In SNA Manager, click Pools.

2. Right-click the LU that you want to remove, and then click Delete.

3. In the Confirmation dialog box, click Yes to delete the LU.

4. On the Action menu, click Save Configuration.

5. On the Action menu, click Refresh.

Note

An empty pool provides no LU access.

See Also
Tasks
Creating and Configuring LUs

https://msdn.microsoft.com/en-us/library/aa705659(v=bts.10).aspx

How to Assign LUs to Workstations
You can assign LUs to a workstation rather than a user, which makes it possible to lock LUs to a particular workstation.
Assigning an LU to a workstation makes it easier for users to find and access different resources. For example, it makes it easier
for a user at a workstation to use a printer located near the workstation, instead of one assigned to the user.

With this feature, you can insert a workstation object and define it by specifying parameters such as IP address, workstation
name, and others. You can then assign 3270 display and printer LUs to the workstation. These LUs will be accessible to any
users connecting from those workstations. The LUs do not need to be specifically assigned to the user.

For example, 200 hospital users share 50 workstations and 50 printers. Users may want to use any of the 50 workstations and
50 printers. They can log on to any of the 50 workstations and print using the printer attached to that workstation. Instead of
assigning all 50 printers to 200 user accounts, the administrator can add the 50 workstations to Host Integration Server and
assign a printer LU to each workstation. When a user logs on to any of the 50 workstations, the printer attached to that
workstation will be available in the list of LUs.

You can also configure a workstation so that it will only allow the use of those LUs assigned to the workstation, regardless of
the user who is logged on. You can assign LUs to workstations in the same manner that LUs are assigned to users.

For example, if the workstation is flagged for restricted access, a user cannot gain unauthorized access to other LUs regardless
of the user ID and password that is used. This feature enhances network security.

To assign LUs to workstations

1. In the Host Integration Server console tree, right-click Workstations, point to New, and then click Workstation.

2. Fill in the Workstation Properties dialog box.

3. Click OK to add the new workstation.

4. To assign LUs to the workstation, click Connections, and then click the connection that contains the LUs.

5. Right-click the LU that you want to assign, and click Assign to Workstation.

6. Click the workstation, and click OK.

7. On the Action menu, click Save Configuration.

Note
All workstation users must be members of the same SNA subdomain. You can avoid having to add each user to the subdom
ain by assigning the Everyone group to the subdomain and assigning no LUs to the group.

See Also
Tasks
How to Associate 3270 Printer LUs with 3270 Display LUs

https://msdn.microsoft.com/en-us/library/aa771075(v=bts.10).aspx

How to Associate 3270 Printer LUs with 3270 Display LUs
Users who have host applications with direct relationships between display LUs and printer LUs can associate printers with the
LUs.

You can associate a printer LU with a display LU. This feature is designed to support specialized host applications that have
hard-coded associations between display LUs and printer LUs. When a 3270 display LU is configured to have an associated
printer and then subsequently assigned to a user or group, users will see both the display LU and a special printer LU named
ASSOCPRT. When users connect to the display LU, they can then open the ASSOCPRT LU, which Host Integration Server maps
to the defined associated printer LU.

You can also add display LUs with associated printer LUs to LU pools. The LU pools can then be assigned to users and groups.

When multiple display LUs are assigned to users, the order in which the resources are opened is important. If all of the display
LUs have associated printers, the user should alternate opening displays and ASSOCPRTs. If some of the display LUs do not
have associated printers, use a naming convention so the user can determine the display LUs that have associated printers
from those that do not.

To associate printer LUs to display LUs

1. In the Host Integration Server console tree, click Pools.

2. Right-click the display LU that you want to associate with a printer, and click Properties.

3. Click the Associated Printer tab.

4. In the Associated Printer LU box, select the printer that you want to associate, and then click OK.

5. Repeat steps 2 through 4 for each display LU that you want to associate with a printer LU.

6. On the Action menu, click Save Configuration.

Note
Printer LUs are available to any users or groups that have been assigned the corresponding display LUs.

Note
Associated printer LUs are assigned a generic placeholder name of ASSOCPRT.

See Also
Tasks
How to Assign LUs to Workstations

https://msdn.microsoft.com/en-us/library/aa744708(v=bts.10).aspx

How to Configure Downstream Connections
You can configure Host Integration Server to enable downstream LUs to communicate with the host. Following are the general
procedures:

1. Gather needed information about the host and downstream systems, including information about identifiers, such as
addresses and exchange identification (XID), and information about Max BTU Length.

2. Configure the host connection as you would configure any other host connection. When specifying the remote end for
the connection, select Host System.

3. Select the host connection and assign and configure one or more new downstream LUs.

4. Optionally, you can put downstream LUs into a pool to maximize their availability.

5. Configure the downstream connection. When specifying the remote end for the connection, select Downstream.

The downstream connection can be an 802.2, SDLC, or X.25 connection. It cannot be a channel connection.

6. Select the downstream connection and associate the downstream LUs (from step 3) and LU pools (from step 4) with that
connection.

7. If necessary, reorder the downstream LU numbers; that is, the LU numbers used by the downstream system.

A downstream LU has two LU numbers: one recognized by the downstream system and one recognized by the host.
These numbers need not match.

To put configuration changes into effect, save the configuration file and restart the server (if you have added a link service or
connection).

Note
It is recommended that you manually separate the sessions of your downstream pools if you are upgrading from SNA Serve
r 4.0 or later. If this is not done, you may experience incorrect behavior from Host Integration Server when attempting to con
nect downstream client computers.

After creating the downstream LUs, you must associate them with the downstream connection they will use. Downstream LUs
do not stand alone and need to be mapped to the upstream LU. Associating the LUs with the upstream connection maps the
correct downstream LUs to the correct upstream LUs.

Downstream LUs have two parameters:

The LU number, which identifies the LU to the host.

The downstream LU number, which identifies an LU or LU pool to the downstream system.

The LU number and the downstream LU number need not match, and probably will not match. The downstream LU number
should match the LU number on the downstream system.

Check with the host administrator for the correct value of the LU number. It should match the LOCADDR= parameter of the LU
definition in VTAM or in the NCP Gen. If the number you specify has already been assigned to an LU or an APPC LU-LU pair on
the current connection, you must change the number. The range for LU numbers is 1 through 254.

Host Integration Server assigns a downstream LU number to each LU or LU pool assigned to the downstream connection. Host
Integration Server assigns downstream LU numbers starting with 2 and ascending sequentially. Therefore, one way to change
downstream LU numbers is to reorder the list of LUs for the downstream connection. Another way to change downstream LU
numbers is to use empty LU pools to take up unwanted numbers, leaving the correct (larger) numbers for other LU pools or
LUs.

Note
The LU numbers generated for an LU range are sequential. If the numbers assigned by your host administrator are not seque
ntial, you can modify the numbers of individual LUs after they have been created.

You can move one or more downstream LUs to a different host connection, regardless of whether the LUs were created as part
of a range. Although downstream LUs can be associated with multiple downstream connections, they can be assigned to only
one host connection.

You can configure multiple LUs simultaneously by configuring them as a consecutively numbered range. After configuring the
range of LUs, you can modify the numbering of individual LUs in the range.

To configure a downstream connection

1. In the Host Integration Server console tree, expand Servers, expand the server you are working with.

2. Right-click Connections, point to New, and click either 802.2, SDLC, or X.25.

3. Fill in the Connection Properties dialog box, type a name for the new downstream connection, select a link service, and
type a comment.

4. Under Remote End, select Downstream.

5. Under Allowed Directions, select an option. For SDLC downstream connections, select Outgoing Calls.

6. If you selected Outgoing Calls, under Activation, select either On Server Startup or By Administrator.

7. Click the other tabs to specify other connection parameters between the downstream system and Host Integration
Server. Click OK to exit.

8. On the Action menu, click Save Configuration.

9. To put the configuration changes into effect, you must restart the server.

Note
Restarting the server disconnects all users. Try to schedule configuration changes when they least affect users.

Note
Two connections are needed for a downstream system: a downstream connection (from the downstream system to the com
puter running Host Integration Server) and an ordinary host connection (from the computer running SNA Server to the host)
.

Note
Activation does not affect incoming calls. A connection that accepts incoming calls begins to listen for these calls when the se
rver node is started.

To assign a downstream LU to a host

1. Before you begin, verify that you have configured the host connection that the downstream LU will use.

2. Ensure that the server is inactive. If necessary, right-click the appropriate server node, and click Stop.

3. Double-click SNA service, and then double-click Connections.

4. Right-click the host connection to which you want to assign a downstream LU, point to New, and then click
Downstream LU.

5. Enter the LU name. Click OK to exit.

6. On the Action menu, click Save Configuration.

Note

After you assign a new downstream LU to a host, you must also associate that LU with a downstream connection.

Note
A downstream LU pool must contain LUs from a single server. Downstream LUs cannot access pooled downstream LUs from
multiple servers.

To view or modify a downstream LU

1. Right-click the LU whose properties you want to view, and click Properties.

2. In the Properties dialog box, do one of the following:

View the properties and click Cancel.

Modify the properties and click OK.

3. If you made changes, on the Action menu, click Save Configuration.

4. Stop and restart SNA service.

To assign a downstream LU

1. In the Host Integration Server console tree, expand Servers, expand the server you are working with, and then click
Connections.

2. Right-click the host connection to which you want to assign the downstream LU, point to New, and click Downstream
LU.

3. Fill in the Connection Properties dialog box, and click OK.

4. On the Action menu, click Save Configuration.

To associate a downstream LU with a downstream connection

1. Verify that the server is inactive. If necessary, right-click the service node and click Stop.

2. In the Host Integration Server console tree, select the downstream LUs from the host connection.

To select several adjacent items, click the first item you want, hold down SHIFT, and click the last item.

To select several nonadjacent items, hold down CTRL as you click the items that you want.

3. Drag the LUs from the host connection to the downstream connection.

4. On the Action menu, click Save Configuration.

Important
If a downstream system needs access to multiple LU sessions, assign one LU or LU pool for each session needed. You can ass
ign a pool multiple times to the same downstream connection.

Note
Before you can associate downstream LUs with a downstream connection, you must define the host connection, downstream
connection, and the LUs.

Note
Downstream LU pools must contain LUs from a single server. Downstream LUs cannot access pooled downstream LUs from
multiple servers.

See Also
Tasks
Creating and Configuring LUs

https://msdn.microsoft.com/en-us/library/aa705659(v=bts.10).aspx

How to Reorder Downstream LUs
An administrator might create a downstream LU called DOWNLU3, and then realize that two additional LUs are needed. After
creating the LUs, with the names DOWNLU2 and DOWNLU4, the LUs would be associated with the listed LU numbers.

LU name Downstream LU number

DOWNLU3 2

DOWNLU2 3

DOWNLU4 4

To change the downstream numbers so that they match the digits in the LU names, DOWNLU2 could be reordered so that it is
placed before DOWNLU3.

LU name Downstream LU number

DOWNLU2 2

DOWNLU3 3

DOWNLU4 4

To reorder the numbering of downstream LUs

1. Verify that the server is inactive. If necessary, right-click the server node, and click Stop.

2. In the Host Integration Server console tree, select the downstream connection with which the LUs are associated.

3. Select one or more LUs and pools that you want to move up in the list.

To select several adjacent items, click the first item you want, hold down SHIFT, and click the last item.

To select several nonadjacent items, hold down CTRL as you click the items that you want.

4. To move LUs up or down in the list, click the up or down arrow buttons on the Host Integration Server toolbar.

5. To put configuration changes into effect, restart the server.

To create a downstream pool

1. Right-click Pools, point to New, and then click Downstream LU Pool.

2. Type a pool name and, if desired, a comment. This name identifies the pool on SNA Server, not on the host or
downstream system.

3. To add LUs to the new downstream pool, double-click Connections, and then double-click the connection that has the
LUs you want to work with.

4. Verify that the Pools node is fully expanded, and drag the first LU into the pool.

5. To add more LUs to the pool, drag each LU from its place in the Connections folder to its downstream LU pool.

6. On the Action menu, click Save.

Note
Downstream LU pools must contain LUs from a single server. Downstream LUs cannot access pooled downstream LUs from
multiple servers.

See Also
Tasks
Creating and Configuring LUs

https://msdn.microsoft.com/en-us/library/aa705659(v=bts.10).aspx

How to Configure APPC LUs for TPs or 5250 Emulation
The following is an overview of the procedures to add and configure APPC LUs:

1. Assign the local APPC LU to a server.

2. Configure the local APPC LUs:

For an independent LU, specify the LU Alias, Network Name, and LU Name. Depending on system configuration,
you may need to specify other information.

For a dependent LU, specify LU Alias, LU Number, and LU Name. Depending on system configuration, you may
need to specify other information.

3. Create a remote APPC LU on a connection and configure the remote APPC LU:

For a remote LU to be used with an independent local LU, specify the LU Alias, Network Name, and LU Name.
Depending on system configuration, you may need to specify other information. For communication with an
AS/400 computer, make the remote LU name the same as the name of the AS/400 computer.

For a remote LU to be used with a dependent local LU, specify the LU Alias, Network Name, LU Name, and
Uninterpreted LU Name. Depending on system configuration, you may need to specify other information.

4. Optionally, configure session security for the remote LU.

5. You must configure an appropriate mode if it has not already been done.

6. Optionally, assign a default local APPC LU and a default remote APPC LU to users and groups.

7. If you are using Common Programming Interface for Communications (CPI-C), configure one or more CPI-C symbolic
destination names.

8. If you are using the display verb, you may want to change the default connection that Host Integration Server uses for
the verb. To ensure that all changes take effect, restart the server.

Note
APPC LUs are used for transaction programs (TPs) or for 5250 emulation. APPC LUs used with TPs are generally for commun
ication between TPs on different systems, not communication between TPs on a single system.

To add local and remote APPC LUs

1. In the Host Integration Server console tree, double-click SNA service, and then click Local APPC LUs.

2. On the Action menu, point to New, and click Local LU.

3. Configure the properties for the local LU, and then click OK.

4. To add the remote LU, click Remote APPC LUs.

5. On the Action menu, point to New, and click Remote LU.

6. Configure the properties for the remote LU, and click OK.

7. On the Action menu, click Save Configuration.

Note

APPC uses both local and remote LUs. These LUs need to be properly configured before Host Integration Server can commu
nicate with the AS/400 computer.

Note
The option, Member of Outgoing Local APPC LU Pool, differs from other types of LU pools, such as the 3270, LUA, and d
ownstream LU pools.

Note
Configuring session security for remote LUs is optional.

To configure incoming APPC sessions

1. Verify that you have configured a remote LU to represent the incoming host or that you have configured one remote LU
for each host.

2. In the Host Integration Server console tree, double-click Local APPC LUs, and then click the local LU that you want to
configure.

3. On the Action menu, click Properties.

4. Click the Advanced tab, specify the Implicit Incoming Remote LU, which is the name of the incoming host, and then
click OK.

5. Repeat steps 2–4 for each local APPC LU that you want to configure.

6. On the Action menu, click Save Configuration.

Note
All incoming requests must specify a local LU name that is recognized by Host Integration Server, even when using an Implici
t Incoming Remote LU and Implicit Incoming Mode.

To assign default APPC LUs to users or groups

1. In the Host Integration Server console tree, double-click Configured Users, and click the user or group that you want to
configure.

2. On the Action menu, click Properties.

3. Click the APPC Defaults tab.

4. In the Local APPC LU box, select a default local APPC LU.

5. In the Remote APPC LU box, select a default remote APPC LU, and then click OK.

6. On the Action menu, click Save Configuration.

See Also
Tasks
Creating and Configuring LUs

https://msdn.microsoft.com/en-us/library/aa705659(v=bts.10).aspx

Precedence of Accounts in Determining Default LUs
When user and group account memberships overlap, the highest-priority account that contains a default local APPC LU
determines that LU for the user, and the highest-priority account that contains a default remote APPC LU determines that LU
for the user. Accounts are prioritized as follows:

1. User accounts (highest priority)

2. Subdomain groups

3. Local groups

4. Well-known groups such as Everyone (lowest priority)

For example, suppose a user account (a high-priority account) called JOHND contains LOCLU1 as the default local APPC LU,
but no default remote APPC LU. At the same time, suppose a local group (a low-priority account) of which JOHND is a member
contains LOCLU2 as the default local APPC LU, and REMLU2 as the default remote APPC LU. For JOHND, the high-priority
assignment, a default local APPC LU of LOCLU1, will be combined with the only other available assignment, a default remote
APPC LU of REMLU2.

To assign or edit CPI-C information

1. In the Host Integration Server console tree, click CPI-C Symbolic Names.

2. On the Action menu, point to New, and click CPI-C Symbolic Name.

3. Fill in the Properties dialog box, and click OK.

4. On the Action menu, click Save Configuration.

Note
If you are using applications based on Common Programming Interface for Communications (CPI-C), use this procedure to c
onfigure the CPI-C symbolic destination name.

To configure the default display verb

1. In SNA Manager, select the subdomain that you want to configure.

2. On the Action menu, click Properties.

3. Click the Display Verb tab.

4. Select the default connection for the display verb, and click OK.

5. On the Action menu, click Save Configuration.

Note
When the display verb does not specify a connection, Host Integration Server uses the connection that you specify in this pro
cedure. If you do not specify a default display verbconnection, Host Integration Server randomly selects a connection for the
verb to use.

Configuring hot backup involves setting up a system environment in which one resource can automatically fill in if another
fails. In such a configuration, resources are interchangeable.

To configure hot backup for 5250 LUs

1. Configure one connection to the AS/400 computer for each computer that runs Host Integration Server and supports the
5250 protocol.

2. Create a local LU on each server, specifying the following:

For LU 6.2 Type, select Independent.

For LU Alias, specify the same string on each server.

For LU Name, specify a unique string on each server. This is required to avoid device name conflicts across servers.

3. Create a remote LU on each server and give all the remote LUs the same LU name and alias, (which must match the
Control Point Name of the AS/400 computer).

Be sure that the Supports Parallel Sessions box is selected for these LUs.

4. Make the local and remote LUs available to users and groups, by doing one of the following:

For each group or user that uses 5250, select the appropriate default local APPC LU and the appropriate default
remote APPC LU.

To keep this process simple, use or create a group that includes all 5250 users, and assign the appropriate default
LUs to that group.

For the 5250 emulator, have users specify the local and remote LUs when configuring a session on the emulator.

Note
To achieve hot backup, Host Integration Server chooses a server to connect with the AS/400 computer based on availability.
This distributes the load more evenly.

Note
To configure hot backup for 5250 users, you must configure multiple servers and pairs of LUs that can all handle sessions to
the intended AS/400 computer.

Note
For better protection against failure, use multiple servers, and not multiple connections on the same server.

To configure a server with multiple connections to the same AS/400 computer

1. In the Host Integration Server console tree, double-click Connections.

2. Click the first connection that you want to configure.

3. On the Action menu, click Properties.

4. Click the System Identification tab, and fill in the properties for the local and remote node.

5. Click OK to exit the dialog box.

6. Repeat steps 2 through 5 for each connection to the same AS/400 computer.

7. On the Action menu, click Save Configuration.

8. After you configure a connection, you must stop and restart the server.

Important
Each connection to the same AS/400 computer must use a separate link service.

Note
This procedure makes the fully qualified network name unique for each connection.

Note
The settings that you specify in this procedure override the fully qualified network name configured in the properties for the
server.

To configure a connection for dynamic definition of remote APPC LUs

1. Select the connection that you want to configure.

2. On the Action menu, click Properties.

3. On the General tab in the Properties dialog box, select Supports Dynamic Remote APPC LU Definition, and click
OK.

4. On the Action menu, click Save Configuration.

See Also
Tasks
How to Configure APPC LUs for TPs or 5250 Emulation

https://msdn.microsoft.com/en-us/library/aa753861(v=bts.10).aspx

User Management
Although Host Integration Server uses the User accounts of the Microsoft Windows Server 2003 or Windows 2000 Active
Directory directory service, users must be configured to use Host Integration Server resources such as LUs.

To create users

1. In SNA Manager, expand the SNA subdomain where the users reside.

2. Right-click Configured Users, point to New, and then click User.

3. Select a user (or group) from the list, and then click OK.

To view active 3270 users

1. In SNA Manager, expand Servers, and then expand the server you are working with.

2. Click Active Users. The results pane shows the active 3270 users and provides details such as User Name, Client, and
Server.

See Also
Tasks
How to Configure APPC LUs for TPs or 5250 Emulation

https://msdn.microsoft.com/en-us/library/aa753861(v=bts.10).aspx

Operations
This section includes individual Users Guides for all feature sets of Host Integration Server. These guides contain the concepts,
procedures, and security best practices necessary to operate your deployment of Host Integration Server.

In This Section

BizTalk Adapters

Data Integration User's Guide

Network Integration User's Guide

Messaging User's Guide

Security User's Guide

Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa770734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746214(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705620(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746102(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754312(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

BizTalk Adapters
This release of Microsoft Host Integration Server includes the following four adapters:

The Microsoft BizTalk Adapter for Host Applications is designed for BizTalk Server. It is based on technology in
Microsoft Transaction Integrator (TI) for Windows-Initiated Processing, which enables efficient client access to existing
IBM mainframe zSeries (CICS and IMS) or midrange iSeries (RPG) server programs. The TI design tools are integrated
with Visual Studio and BizTalk Server solutions, enabling IT developers to be highly productive when defining the client
proxy and creating the XSD schema. For BizTalk Server administrators, the existing TI Manager, Microsoft Management
Console (MMC) snap-in, has been enhanced to improve supportability and support the required remote BizTalk Server
solution deployment scenarios.

For more information, see BizTalk Adapter for Host Applications.

The Microsoft BizTalk Adapter for Host Files is an advanced data adapter that enables IT organizations to access and
integrate information stored in host file systems, including mainframe zSeries VSAM datasets and midrange iSeries
physical files. The Visual Studio 2005 design tool is used within a BizTalk Server solution to define a metadata map of the
host program-described files, which is then exported as XSD for use with the BizTalk adapter. The configuration wizards
are integrated into the BizTalk Server administration tools, allowing IT professionals to define dynamic send ports and
static and solicit response receive ports, based on a simplified set of SQL commands (SELECT, INSERT, UPDATE, DELETE).
This BizTalk adapter is based on a new Microsoft .NET Framework Data Provider for Host Files that maps SQL to non-
relational host datasets and members. This makes it simple for non-programmers to read and write host file data
sources.

For more information, see BizTalk Adapter for Host Files.

The Microsoft BizTalk Adapter for DB2 is a relational database adapter that enables IT professionals to access vital
data stored in IBM DB2 database servers on remote host computing platforms, IBM mainframe zSeries and midrange
iSeries (DB2/400), and also IBM DB2 Universal Database (UDB) on open platforms. Using standard SQL commands and a
configuration wizard built into BizTalk Server administration tools, IT professionals can create solutions that read and
write to DB2 without any need for database programming. The new DB2 adapter, which is based on an updated
Microsoft .NET Framework Data Provider for DB2, supports a broad range of functions, including dynamic send ports,
and static and solicit response receive ports.

For more information, see BizTalk Adapter for DB2.

The Microsoft BizTalk Adapter for WebSphere MQ (Client-Based) uses IBM WebSphere MQ Client (Base-Client) and
IBM WebSphere MQ Extended Transactional Client (Extended-Client) APIs to communicate with remote MQSeries Queue
Managers. The adapter enables BizTalk Server to communicate directly with MQSeries Queue Managers deployed on
non-Windows operating systems, without needing to deploy and manage WebSphere MQ Server for Windows, to
efficiently exchange messages with line-of-business applications across the enterprise. When used with the Base-Client,
the adapter provides non-transactional message processing, guaranteeing only the delivery of messages. It is the
responsibility of the application on the receiving end to handle any duplicate messages. When used with the Extended-
Client, the adapter provides transactional message processing to guarantee once-and-only-once delivery of messages.

For more information, see BizTalk Adapter for WebSphere MQ.

In This Section

BizTalk Adapter for DB2

BizTalk Adapter for Host Files

BizTalk Adapter for Host Applications

BizTalk Adapter for WebSphere MQ

See Also
Other Resources
Operations

https://msdn.microsoft.com/en-us/library/aa744368(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744368(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754339(v=bts.10).aspx

BizTalk Adapter for DB2
The BizTalk Adapter for DB2 is a send and receive adapter that enables BizTalk orchestrations to interact with host systems.
Specifically, the adapter enables send and receive operations over TCP/IP and APPC connections to DB2 databases running on
mainframe, AS/400, and UDB platforms. Based on Host Integration Server technology, the adapter uses the Data Access Library
to configure DB2 connections, and the Managed Provider for DB2 to issue SQL commands and stored procedures.

The adapter serves two main functions:

For Send operations (both One Way and Solicit Response), the adapter sends SQL commands and stored procedures to
a DB2 instance, with the option of soliciting a response.

For Receive operations (One Way only), the adapter creates an SQL command or stored procedure that polls DB2
objects and creates per-row messages, which are then submitted to the BizTalk message system.

In addition, the BizTalk Adapter for DB2 uses the standard BizTalk Adapter tracing tool as a troubleshooting mechanism.

In This Section

Installation Components

How to Create a Send Port for the DB2 Adapter

How to Create a Receive Port and a Receive Location for the Host File Adapter

How to Create a Schema for the DB2 Adapter

How to Create a BizTalk Application Using the DB2 Adapter

See Also
Other Resources
Data Access Library
Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa705780(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705208(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704606(v=bts.10).aspx

Installation Components
You can only install BizTalk Adapter for DB2 on a computer that is already running BizTalk Server and its prerequisites.

Required Components

The adapter installation package installs the following on your BizTalk Server computer:

BizTalk Adapter for DB2

Managed Provider for DB2

Data Access Library

Nodeless Host Integration Server server installation and configuration

DRDA IP Resync Service (DUW)

SNA Resync Service

Optional Components

Distributed Units of Work for DB2

Host Integration Server configured for APPC connections

Microsoft Enterprise Single Sign-On

Apart from this installation, and the configuration steps outlined in the other topics in this section, no additional registration is
necessary.

See Also
Other Resources
BizTalk Adapter for DB2
Data Access Library Programmer's Guide
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

How to Create a Send Port for the DB2 Adapter
You create a send port for the BizTalk Adapter for DB2 by using the BizTalk Server Administration console. You must be logged
on with an account that is a member of the BizTalk Server Administrators group. In addition, you must have appropriate
permissions in the Single Sign-On (SSO) database.

To configure a send port

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a send port.

3. Right-click Send Ports, point to New, and then click Static One-way Send Port.

The Send Port Properties dialog box appears.

4. In the Transport Type field, select DB2.

5. Click Configure.

The DB2 Transport Properties dialog box appears.

6. Configure the following properties:

Use this To do this

Connection Stri
ng

The name of a connection string that is used to connect to the DB2 database.

To configure a new or existing Connection String, click the ellipsis (…). This starts the Data Source Wiz
ard.

To access Help, click Help on the wizard pages, or open the Host Integration Server Help and look in T
echnical Reference - UI Help - Data Integration Help - Data Source Wizard.

Document Targ
et Namespace

The target namespace that is used in the XML documents that are sent to DB2.

Response Root E
lement Name

The root element name that is used in the XML documents that are received from DB2. (This property
may be empty for a one-way port.)

URI Uniform resource identifier. A name to identify the send port location. Default is DB2://.

7. Click OK to return to the Send Port Properties dialog box.

8. In the Send Handler field, select the host instance on which the send adapter is running.

9. In the Send Pipeline field, select the pipeline that processes messages that are sent through this port. To configure a
Send Pipeline, click “..”.

For more information, click Help on the property pages.

10. You can configure additional properties by clicking the following tabs: Transport Advanced Options, Backup
Transport, Outbound Maps, Filters, Certificate, and Tracking.

For more information click Help on these tabs.

11. When you are finished with configuration, click OK to close the Send Port Properties dialog box and return to the
BizTalk Server Administration console tree.

12. In the Send Ports window, right-click the send port in the Name column and select Enlist.

13. Right-click the send port in the Name column and select Start.

See Also
Other Resources
BizTalk Adapter for DB2

https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx

Data Access Library
Managed Provider for DB2 Programmer's Guide
Data Access Library Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704684(v=bts.10).aspx

How to Create a Receive Port and a Receive Location for the
DB2 Adapter

You create a receive port and receive location for the BizTalk Adapter for DB2 by using the BizTalk Server Administration
console. You must be logged on with an account that is a member of the BizTalk Server Administrators group. In addition, you
must have appropriate permissions in the Single Sign-On (SSO) database.

To configure a receive port and a receive location

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a send port.

3. Right-click Receive Ports, point to New, and then click Static One-way Receive Port.

The Receive Port Properties dialog box appears.

4. Configure the properties and then click OK.

For more information, click Help.

5. In the console tree, right-click Receive Locations, point to New, and then click One-way Receive Location.

The Select a Receive Port dialog box appears.

6. Select the receive port you created in step 3, and then click OK.

The Receive Location Properties window appears.

7. In the Transport Type field, select DB2, and then click Configure.

The DB2 Transport Properties dialog box appears.

8. Configure the following properties:

Use thi
s

To do this

Connec
tion Str
ing

Enter the name of a connection string that will be used to connect to the DB2 database.

To configure a new or existing Connection String, click the ellipsis (…). This starts the Data Source Wizard. To ac
cess Help, click Help on the wizard pages, or open the Host Integration Server Help and look in Technical Refe
rence - UI Help - Data Integration Help - Data Source Wizard.

Docum
ent Ro
ot Ele
ment N
ame

The root element name that is used in the XML documents that are received from DB2.

Docum
ent Tar
get Na
mespa
ce

The target namespace that is used in the XML documents that are received from DB2.

SQL Co
mman
d

The select or stored procedure command that is executed one time for each polling interval.

Update
Comm
and

The command that is executed after each row in the receive operation is processed. It can be either a delete stat
ement that deletes the row from the table in the SQL command, or an update command that statically modifies
one or more rows. When this option is specified, the SQL command must be a Select statement and must acces
s a single table.

URI A name identifying the receive port location. Default is DB2://.

Polling
Interva
l

The number of units between polling requests. Allowed range is 1 - 65535.

Polling
Unit of
Measur
e

The unit of measure (seconds, minutes, or hours) used between polling requests. Default is seconds.

Messag
e Batch
Size

When an SQL command returns a result set to the DB2 receive adapter, the adapter submits one message to th
e BizTalk message engine for each row in the result set. This is referred to as a single row receive. The receive ad
apter can optionally return the result set in its entirety as a single message to the BizTalk message engine. Mess
ages can also have a fixed number of rows in them (for example, one message contains 10 rows). Default is -1.

9. Click OK to return to the Receive Location Properties dialog box.

10. In the Receive Handler field, select the instance of the BizTalk Server host on which the receive location will run. The
receive handler must be running on this host.

11. In the Receive Pipeline field, select the receive pipeline to use to receive messages at this receive location.

12. To configure a receive pipeline, click “..”. For more information, click Help on the property pages.

13. To configure scheduling, click the Schedule tab.

For more information, click Help on the Schedule tab.

14. When you are finished with configuration, click OK to close the Receive Location Properties dialog box and return to
the BizTalk Server Administration console tree.

15. In the Receive Locations window, right-click the receive location in the Name column and select Enable.

See Also
Other Resources
BizTalk Adapter for DB2
Data Access Library
Managed Provider for DB2 Programmer's Guide
Data Access Library Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704684(v=bts.10).aspx

How to Create a Schema for the DB2 Adapter
To create the XSD schemas for the BizTalk Adapter for DB2, you use the DB2 Schema Generation Wizard.

To generate the DB2 schema

1. Open your BizTalk Visual Studio project.

2. Right-click the project, point to Add, and then click Add Generated Items.

3. In the Add Generated Items dialog box, select Add Adapter Metadata.

This starts the Add Adapter Wizard.

4. On the Select Adapter page, select DB2, and then click Next.

This starts the DB2 Adapter Schema Generation Wizard.

5. On the Database Information page, create a connection string, or select an existing connection string.

This can be Initial Catalog, Package Collection, (TCP Address and Port) or (APPC Local LU, Remote LU, and Mode), (User
Name and Password), or (Integrated Security). Maximum length is 1024.

6. On the Schema Information page, define the default namespace, root elements, and port type to be used in the
schema.

If you select Receive port, only a request document root element name is needed. If you select Send port, both request
and response document root element names are required.

7. On the Statement Type Information page, select the type of database command to be issued.

If you selected receive ports on the previous page, you can choose either a SELECT SQL statement or a stored procedure.
If you selected send ports on the previous page, you can choose to issue an updategram, stored procedure, or SELECT
statement.

8. On the Statement Information page, enter the details about the DB2 database.

Depending on the information entered on earlier pages, the following properties are available:

a. Receive Select Statement If you chose to use a receive port with an SQL statement, you can either select, or
browse to, the statement here.

b. Receive Stored Procedure If you chose to use a receive port and issue a stored procedure, you can select a stored
procedure from the current connection’s catalog. You must enter values for all parameters on this page.

c. Send Updategram If you chose to use a send port and updategrams, you can select an updategram operation
here, and also the table and columns that will be present in the updategram.

d. Send Stored Procedure If you chose to use a send port and issue a stored procedure, you can select a stored
procedure from the current connection’s catalog. You do not have to enter values for all parameters on this page.

e. Send Select Statement If you chose to use a send port with an SQL SELECT statement, you can either select, or
browse to, the statement here.

9. On the Completing the DB2 Transport Schema Generation Wizard page, click Finish.

See Also
Other Resources
BizTalk Adapter for DB2
Data Access Library Programmer's Guide
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

How to Create a BizTalk Application Using the DB2 Adapter
After you create the schema, ports, and receive locations for the BizTalk Adapter for DB2, you can start coding your BizTalk
application.

To create a BizTalk application using the DB2 Adapter

1. Create a BizTalk project to hold your BizTalk application.

2. Use the schema that you created in How to Create a Schema for the DB2 Adapter to describe the DB2 database to the
BizTalk application.

3. Use the send port that you created in How to Create a Send Port for the DB2 Adapter to send data to the DB2 database.

4. If necessary, use the receive port and location that you created in
How to Create a Receive Port and a Receive Location for the DB2 Adapter to receive data from the DB2 database.

5. Add any additional orchestrations, components, or code, as necessary.

6. Test your application.

7. After you finish testing your application, create an .msi package to move your application to a staging or live server.

See Also
Other Resources
BizTalk Adapter for DB2
Data Access Library

https://msdn.microsoft.com/en-us/library/aa745380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705208(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

BizTalk Adapter for Host Files
The BizTalk Adapter for Host Files is a send and receive adapter that enables BizTalk orchestrations to interact with host
systems. Specifically, the adapter enables send and receive operations over TCP/IP and APPC connections to host files that run
on mainframe and AS/400 platforms. Based on Host Integration Server technology, the adapter uses Data Access Library
metadata assemblies to configure connections, and the Microsoft .NET Framework data provider for host files to issue SQL
commands and stored procedures.

The adapter serves two main functions:

For Send operations (both One Way and Solicit Response), the adapter sends SQL commands and system commands to
a host file instance, with the option of soliciting a response.

For Receive operations (One Way only) the adapter creates an SQL command that polls host file objects and creates per-
row messages, which are then submitted to the BizTalk message system.

In addition, the BizTalk Adapter for Host Files uses the standard BizTalk Adapter tracing tool as a troubleshooting mechanism.

Note
The BizTalk Adapter for Host Files is a non-transactional adapter. This means that once an action is performed, it cannot be u
ndone or rolled back.

In This Section

Installation Components

How to Create a Metadata Assembly for the Host File Adapter

How to Create a Send Port for the Host File Adapter

How to Create a Receive Port and a Receive Location for the Host File Adapter

How to Create a Schema for the Host File Adapter

How to Create a BizTalk Application for the Host File Adapter

See Also
Other Resources
Data Access Library
Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa745425(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771445(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705765(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx

Installation Components
You can only install BizTalk Adapter for Host Files on a computer that is already running BizTalk Server and its prerequisites.

Note
To run the native 64-bit (X64) adapter, you must use a 64-bit (X64) BizTalk Server 2006 host instance.

Note
This adapter requires the SNA DDM Service. Before using the adapter, check to see that the SNA DDM Service is running by
using either Services in Control Panel or the NET START SNADDM Windows command.

Note
All editions of BizTalk Server 2000, BizTalk Server 2002, and BizTalk Server 2004 can be installed on an x64 operating system
but only the BizTalk Server 2006 Enterprise and BizTalk Server 2006 Developer editions support running a BizTalk Serve
r 2006 host instance using native 64-bit execution.

Required Components

The adapter installation package installs the following components on your BizTalk Server computer:

BizTalk Adapter for Host Files

Managed Provider for Host Files

Data Access Library

Nodeless Host Integration Server server installation and configuration

Optional Components

Host Integration Server configured for APPC connections

Microsoft Enterprise Single Sign-On

Apart from this installation, and the configuration steps that are outlined in the topics in this section, no additional registration
is necessary.

See Also
Other Resources
BizTalk Adapter for Host Files
Data Access Library
Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx

How to Create a Metadata Assembly for the Host File Adapter
After you install the adapter, you can create a metadata assembly that describes your remote system to BizTalk Server.

To create a metadata assembly

1. Create a Host File project and application in Visual Studio.

Part of the process of creating a Host File application in Visual Studio is describing the layout of the host file system. This
process creates both a metadata assembly and a schema. The metadata assembly is a programmatic representation of
the remote host file system, whereas the schema is an XML representation of the host file system. You will use the
metadata assembly to describe the host file system to BizTalk Server.

For more information about how to create a Host File application in Visual Studio, see
How to Create an Application Using the Managed Data Provider for Host Files.

See Also
Other Resources
BizTalk Adapter for Host Files
Managed Data Provider for Host Files
Data Access Library

https://msdn.microsoft.com/en-us/library/aa746053(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

How to Create a Send Port for the Host File Adapter
You create a send port for the BizTalk Adapter for Host Files by using the BizTalk Server Administration console. You must be
logged on with an account that is a member of the BizTalk Server Administrators group. In addition, you must have
appropriate permissions on the Enterprise Single Sign-On (SSO) database.

To configure a send port

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a send port.

3. Right-click Send Ports, point to New, and then click Static One-way Send Port or Solicit Response Send Port.

The Send Port Properties dialog box appears.

4. In the Transport Type field, select Host File.

5. Click Configure.

The Host File Transport Properties dialog box appears.

6. Configure the following properties:

Use this To do this

Connectio
n String

The name of a connection string that is used to connect to the Host File database.

To configure a new or existing connection string, click the ellipsis (…). This starts the Data Source Wizard. To
access Help, click Help on the wizard pages, or open the Host Integration Server Help and look in Technica
l Reference - UI Help - Data Integration Help - Data Source Wizard.

Document
Target Na
mespace

The target namespace that is used in the XML documents that are sent to the host.

Response
Root Elem
ent Name

The root element name that is used in the XML documents that are received from the host. (This property m
ay be empty for a one-way port.)

URI Uniform resource identifier. A name to identify the send port location.

7. Click OK to return to the Send Port Properties dialog box.

8. In the Send Handler field, select the host instance on which the send adapter is running.

9. In the Send Pipeline field, select the pipeline that processes messages sent through this port.

10. To configure a Send Pipeline, click “..”.

For more information, click Help on the property pages.

11. You can configure additional properties by clicking the following tabs: Transport Advanced Options, Backup
Transport, Outbound Maps, Filters, Certificate, and Tracking.

For more information, click Help on these tabs.

12. When you are finished with configuration, click OK to close the Send Port Properties dialog box and return to the
BizTalk Server Administration console tree.

13. In the Send Ports window, right click the send port in the Name column and select Enlist.

14. Right-click the send port in the Name column and select Start.

See Also
Tasks

How to Create a Receive Port and a Receive Location for the Host File Adapter
Other Resources
BizTalk Adapter for Host Files
Data Access Library
Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa704837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx

How to Create a Receive Port and a Receive Location for the
Host File Adapter

You create a receive port and receive location for the BizTalk Adapter for Host Files by using the BizTalk Server Administration
console. You must be logged on with an account that is a member of the BizTalk Server Administrators group. In addition, you
must have appropriate permissions in the Single Sign-On (SSO) database.

To configure a receive port and a receive location

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a send port.

3. Right-click Receive Ports, point to New, and then click Static One-way Receive Port.

The Receive Port Properties dialog box appears.

4. Configure the properties and then click OK.

For more information, click Help.

5. In the console tree, right-click Receive Locations, point to New, and then click One-way Receive Location.

The Select a Receive Port dialog box appears.

6. Select the receive port you created in step 3, and then click OK.

The Receive Location Properties window appears.

7. In the Transport Type field, select HostFiles, and then click Configure.

The HostFiles Transport Properties dialog box appears.

8. Configure the following properties:

Use this To do this

Connecti
on String

Enter the name of a connection string that will be used to connect to the host database.

To configure a new or existing connection string, click the ellipsis (…). This starts the Data Source Wizard. To a
ccess Help, click Help on the wizard screens, or open the Host Integration Server Help and look in Technical
Reference - UI Help - Data Integration Help - Data Source Wizard.

When configuring a receive location or send port based on the BizTalk Adapter for Host Files, the metadata de
finition should be created as a metadata assembly and not an HCD file. For instructions on how to create a m
etadata assembly, see How to Create an Application Using the Managed Data Provider for Host Files.

Docume
nt Root E
lement N
ame

The root element name that is used in the XML documents that are received from the host.

Docume
nt Target
Namespa
ce

The target namespace that is used in the XML documents that are received from the host.

SQL Com
mand

The Select command that is executed one time for each polling interval.

https://msdn.microsoft.com/en-us/library/aa746053(v=bts.10).aspx

Update C
ommand

The command that is executed after each row in the receive operation is processed. It can be either a delete st
atement that deletes the row from the table in the SQL command, or an update command that statically modi
fies one or more rows. When this option is specified, the SQL command must be a Select statement and acces
s a single table.

You can specify additional properties by clicking the ellipsis (…) button. This opens the Change Command d
ialog box, which provides three options:

Do nothing clears the other two options if selected.

Delete after read deletes the row after the adapter has read it.

Update lets you type an SQL command to be updated.

URI Uniform resource identifier. A name identifying the receive port location.

Polling I
nterval

The number of units between polling requests. Allowed range is 1 - 65535.

Polling U
nit of Me
asure

The unit of measure (seconds, minutes, or hours) used between polling requests. Default is seconds.

9. Click OK to return to the Receive Location Properties dialog box.

10. In the Receive Handler field, select the instance of the BizTalk Host on which the receive location will run. The receive
handler must be running on this host.

11. In the Receive Pipeline field, select the receive pipeline to use to receive messages at this receive location.

To configure a receive pipeline, click “..”. For more information, click Help on the property pages.

12. To configure scheduling, click the Schedule tab.

For more information, click Help on the Schedule tab.

13. When you are finished with configuration, click OK to close the Receive Location Properties dialog box and return to
the BizTalk Server Administration console tree.

14. In the Receive Locations window, right-click the receive location in the Name column and select Enable.

See Also
Tasks
How to Create a Send Port for the Host File Adapter
Other Resources
BizTalk Adapter for Host Files
Data Access Library
Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa754105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx

How to Create a Schema for the Host File Adapter
You can use the Host File Schema Generation Wizard to create the XSD schemas for the BizTalk Adapter for Host Files. After
you create the schema, you are ready to continue configuration on the BizTalk Server side.

To generate the Host File schema

1. Open your BizTalk Server Visual Studio project.

2. Right-click the project, point to Add, and then select Add Generated Items.

3. In the Add Generated Items dialog box, select Add Adapter Metadata.

This starts the Add Adapter Wizard.

4. On the Select Adapter page, select Host File, and then click Next.

This starts the Host File Adapter Schema Generation Wizard.

5. On the Database Information page, browse to an existing connection string or create a new one.

This can be Initial Catalog, Package Collection, (TCP Address and Port) or (APPC Local LU, Remote LU, and Mode), (User
Name and Password), or (Integrated Security). Maximum length is 1024.

6. On the Schema Information page, define the default namespace, root elements, and port type that you want to use in
the schema.

If you select Receive port, only a request document root element name is needed. If you select Send port, request and
response document root element names are required.

7. On the Statement Type Information page, select the type of database command to be issued.

If you selected send ports on the previous page, you can choose to issue an updategram, stored procedure, or SELECT
statement. If you selected receive ports, this step is unnecessary.

8. On the Statement Information page, enter the details about the host file.

Depending on the information entered on earlier pages, the following properties will be available. If you selected send
port:

Send Updategram If you chose to use a send port and updategrams, you can select the updategram operation
here, and also the table and columns that will be present in the updategram.

Send System Command If you chose to use a send port and issue a stored procedure, you can select a stored
procedure from the current connection’s catalog. You do not have to enter values for all parameters on this page.

Send Select Statement If you chose to use a send port with an SQL Select statement, you can either select or
browse to the statement here.

If you selected receive port:

Receive Select Statement If you chose to use a receive port with an SQL statement, you can either select or
browse to the statement here.

Send Updategram If you chose to use a send port and updategrams, you can select the updategram operation
here, and also the table and columns that will be present in the updategram.

Send Stored Procedure If you chose to use a send port and issue a stored procedure, you can select a stored
procedure from the current connection’s catalog. You do not have to enter values for all parameters on this page.

Send Select Statement If you chose to use a send port with an SQL Select statement, you can either select or
browse to the statement here.

9. On the Completing the Host File Transport Schema Generation Wizard page, click Finish.

See Also
Other Resources
BizTalk Adapter for Host Files
Data Access Library
Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx

How to Create a BizTalk Application for the Host File Adapter
After you create the schema, you can code your BizTalk application. Your application will use the metadata assembly that you
created in Visual Studio, in addition to the schema and ports that you created in previous steps.

To create a BizTalk application using the Host File Adapter

1. Create a BizTalk project to hold your BizTalk application.

2. Use the schema that you created in How to Create a Schema for the Host File Adapter to describe the Host File system to
the BizTalk application.

3. Use the send port that you created in How to Create a Send Port for the Host File Adapter to send data to the host file
system.

4. If necessary, use the receive port and location that you created in
How to Create a Receive Port and a Receive Location for the Host File Adapter

5. Add any additional orchestrations, components, or code, as necessary.

6. Test your application.

7. After you finish testing your application, create an .msi package to move your application to a staging or live server.

When you are creating a BizTalk Server .msi package, make sure that you include the host file metadata assembly that
you created in How to Create a Metadata Assembly for the Host File Adapter.

See Also
Other Resources
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa705765(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771445(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

BizTalk Adapter for Host Applications
The Microsoft BizTalk Adapter for Host Applications is based on technology in Transaction Integrator (TI) that enables
enterprises to connect BizTalk Server solutions to existing IBM mainframe zSeries (CICS and IMS) or midrange iSeries (RPG)
server programs. The adapter offers an intuitive Visual Studio 2005 designer, including host COBOL and RPG source code
import wizards, with which to generate XSD schemas for use in BizTalk projects. The administration tools are integrated with
the BizTalk Server port configuration and deployment tools. Using this adapter, IT professionals can efficiently extend existing
business rules in host programs with new solutions based on BizTalk Server 2006.

Note
A receive location is not available for this adapter.

A typical scenario involves the following steps:

The IT professional installs the adapter.

The IT professional configures the adapter and uses Transaction Integrator to define the Remote Environment.

The developer creates the BizTalk application in Visual Studio. This involves defining the Remote Environment, building
the TI assembly and schema, deploying, testing, and debugging the application, exporting the assemblies, and building
the export package for use by BizTalk Server.

Finally, the IT professional imports the developer’s application into BizTalk Server, updates any necessary information,
and deploys the application.

Tracing tools are available to debug your deployed application and improve its performance.

Some knowledge of Transaction Integrator is necessary. For an overview of TI basics, see the
Transaction Integrator User's Guide.

In This Section

Installation Components

How to Configure SSO for the Host Application Adapter

How to Create a Send Port for the Host Application Adapter

Creating an Application for the BizTalk Adapter for Host Applications

How to Deploy the BizTalk Server Application

https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705677(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704849(v=bts.10).aspx

Installation Components
The following software must be installed on the appropriate computers.

Development Computer

The following software must be installed on the computer where the developer will create the BizTalk application:

Windows Server 2003

Visual Studio 2005

SQL Server 2005

BizTalk Server 2006

BizTalk Adapter for Host Applications (or Host Integration Server)

Deployment Computer

The following software must be installed on the computer where the IT professional will deploy the BizTalk application:

Windows Server 2003

SQL Server 2005

BizTalk Server 2006

BizTalk Adapter for Host Applications

Installing the Adapter

If you installed Host Integration Server, the BizTalk Adapter for Host Applications was installed by default. If it was not, or if you
have uninstalled it, rerun the Host Integration Server Setup program. When you reach the Select Components screen, select
Adapters and then select BizTalk Adapter for Host Applications.

See Also
Other Resources
BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa744368(v=bts.10).aspx

How to Configure SSO for the Host Application Adapter
When using the BizTalk Adapter for Host Applications with the BizTalk Server Service Account, it is necessary to create and map
a Single Sign-On Affiliate Application.

To create and map the Affiliate Application

1. In the Enterprise Single Sign-On Management Console, create an SSO Affiliate Application. For more information,
see How to Create an Affiliate Application.

2. Create a mapping for the Host Instance Account. For more information, see How to Create User Mappings.

3. In TI Manager, right-click the Host Instance Account, and then click Properties.

4. Click the Security tab.

5. In the Affiliate Application field, choose the SSO mapping you just created, and click OK.

6. In the BizTalk Server Administration console, right-click the Send Port for this adapter, and then click Properties.

7. On the Properties page, confirm that SSO Affiliate Application is set to <Use RE settings>.

8. Confirm that Allow application to override selected authentication is not selected.

9. Click OK.

https://msdn.microsoft.com/en-us/library/aa744316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770819(v=bts.10).aspx

How to Create a Send Port for the Host Application Adapter
You create a send port for the BizTalk Adapter for Host Applications by using the BizTalk Server Administration console. You
must be logged on with an account that is a member of the BizTalk Server Administrators group. In addition, you must have
appropriate permissions in the Single Sign-On (SSO) database.

To configure a send port

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a send port.

3. Right-click Send Ports, point to New, and then click Solicit Response Send Port.

The Send Port Properties dialog box appears.

4. In the Transport Type field, select HostApps.

5. Click Configure.

The HostApps Transport Properties dialog box appears.

6. Configure the following properties:

Use this To do this

Host Type Defines the type of host that the adapter instance will interact with. The Host Type is a three part name:

“TI” <TI Programming model / RE Style> <RE Override name>

The first part of the name is always TI.

The second part is the TI RE Style.

The third part is the optional RE Override Name.

You can change the host type or RE Override by clicking the ellipsis (…) to start the Select Host Type and R
E Override dialog box.

TI Remote
Environm
ent Type

Displays a list of all available Remote Environment class types. Selecting <Any host type> will allow messag
e processing with no restrictions.

RE Overri
de

Enables the adapter administrator to change the Remote Environment destination at run time. This is useful i
f, in addition to the central production RE, a test or backup RE is required.

If selected, this will apply to all messages that flow through the specific adapter instance.

This option is only available when the TI Remote Environment Type is set to a valid RE Class, and is not availa
ble if the TI Remote Environment Type is set to <Any host type>.

Implicit P
ersistent C
onnection
s

Enables the adapter to use TI persistent connections in the case where a batch of messages is delivered to th
e adapter for processing. The adapter evaluates the messages in the batch to determine the viability of using
a persistent connection. For example, persistent connections could be used in the following scenarios:

When TRM Link, ELM Link, CICS Link, IMS Connect or DPC are used, and all messages are associated w
ith the same TI object.

When TRM User Data, ELM User Data, or CICS User Data is used, and all messages are associated with
the same TI object and method.

If it is selected, the adapter will sort the messages into logical groups to facilitate the use of persistent connec
tions.

Use Trans
actions

Allows a remote environment to be used with or without transactions through multiple instances of this ada
pter.

7. Click OK to return to the Send Port Properties dialog box.

8. In the Send Handler field, select the host instance on which the send adapter is running.

9. In the Send Pipeline field, select the pipeline that processes messages that are sent through this port.

10. To configure a Send Pipeline, click “..”.

For more information, click Help on the property pages.

11. You can configure additional properties by clicking the following tabs: Transport Advanced Options, Backup
Transport, Outbound Maps, Filters, Certificate, and Tracking.

For more information, click Help on these tabs.

12. When you are finished with configuration, click OK to close the Send Port Properties dialog box and return to the
BizTalk Server Administration console tree.

13. In the Send Ports window, right-click the send port in the Name column and select Enlist.

14. Right-click the send port in the Name column and select Start.

See Also
Other Resources
BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa744368(v=bts.10).aspx

Creating an Application for the BizTalk Adapter for Host
Applications

The following list describes the steps that you must follow to create an application that uses the BizTalk Adapter for Host
Applications:

1. Set your mainframe environment and communications protocols to run your application.

2. Create a Visual Studio solution to contain all the necessary BizTalk and Host Integration Server projects for your
application.

3. Create a Transaction Integrator (TI) project that will hold the interface definition of the host application.

If necessary, you may modify the generated XML file to pass client context information.

4. Create a BizTalk project that will hold your BizTalk application, using the created interface definition and associated
schema.

5. Create your BizTalk application, using the ports and settings that were defined earlier.

6. Associate the interface definition with the mainframe environment using TI Manager.

7. Deploy the schema.

8. Build the BizTalk Server deployment MSI package.

After you create the export package, you can move the solution to a staging or production server and import the package.

For more information, see Application Integration Programmer’s Guide.

In This Section

Mainframe Setup

How to Create a Visual Studio Solution

How to Create a Transaction Integrator Project and Interface Definition

How to use a Client Context with the BizTalk Adapter for Host Applications

How to Create a BizTalk Project

Creating a BizTalk Application

How to Associate the Interface Definition with the Mainframe Environment

How to Export the Schema

How to Create a BizTalk Server Export Package

https://msdn.microsoft.com/en-us/library/aa744913(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745449(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753884(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705182(v=bts.10).aspx

Mainframe Setup
The primary purpose of the BizTalk Adapter for Host Applications is to connect to an application that is running on a remote
mainframe. Therefore, the first step in writing your BizTalk application is to confirm that the host mainframe is, in fact, running
the specified application, and that you can access the mainframe from your system.

How to create, load, and troubleshoot a remote host application is beyond the scope of this topic. You should work with your
mainframe developer to create and load an application onto the specified mainframe. You can also work with a mainframe
system developer to access the mainframe from your system.

In addition, the SDK for the BizTalk Adapter for Host Applications includes a detailed readme on how to create and load a
sample mainframe application. For more information, see [installation directory]\Microsoft Host Integration
Server\SDK\Samples\AppInt\BizTalkHostApplications\. This directory contains instructions on how to set up a mainframe
sample application, in addition to several variations on how to set different network protocols for the sample.

See Also
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to Create a Visual Studio Solution
After you create, debug, and confirm your access to the host application, you can start to create the application for the BizTalk
Adapter for Host Applications. The first task you must perform is to create a Visual Studio solution. This solution will contain
the BizTalk Server and Host Integration Server projects that will, in turn, contain the necessary components for your
application.

To create a Visual Studio solution

1. In Visual Studio, click File, point to New, and then click Project.

2. In the New Project dialog box, in the Project types pane, click Other Project Types, and then click Visual Studio
Solutions.

3. In the Templates pane, click Blank Solution.

4. Enter the name of your project in the Name field, and then click OK.

See Also
Tasks
How to Create a Transaction Integrator Project and Interface Definition
Concepts
Creating an Application for the BizTalk Adapter for Host Applications
Mainframe Setup

https://msdn.microsoft.com/en-us/library/aa771921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744913(v=bts.10).aspx

How to Create a Transaction Integrator Project and Interface
Definition

When you are creating an application for the BizTalk Adapter for Host Applications, you first create a Visual Studio solution to
contain your projects, and then you create a Transaction Integrator (TI) project. Using the TI project, you will create an interface
definition of the host application. Later, you will use the interface definition, together with an associated .xml schema, to
describe the interface to your BizTalk application.

To create a TI project in Visual Studio

1. In your Visual Studio solution, click File, point to Add, and then click New Project.

2. In the Add New Project dialog box, in the Project types pane, click Host Integration Projects.

3. In the Templates pane, click Transaction Integrator Project.

4. Enter the name of your TI project in the Name field, enter the location to save the project in the Location field, and then
click OK.

To add a .NET client library to the TI project

1. In Solution Explorer, right-click the name of your TI project, point to Add, and then click Add .NET Client Library.

2. In the Add New Item dialog box, confirm that .NET Client Library is selected in the Templates pane.

3. Type the name of the client library in the Name field, and then click OK.

4. On the .NET Client Library Wizard Welcome page, click Next.

5. On the Library page, in the Type Restrictions field, select BAHA.

6. Enter the relevant name, version number, and description, and then click Next.

7. On the Remote Environment page, enter the relevant information that describes the remote environment, click Next,
and then click Create.

If you do not know this information, you should speak to your mainframe systems developer.

To construct the interface definition

1. In Host Integration Server Designer, right-click the node of the .NET client library, point to Import, and then click Host
Definition.

2. Use the Import COBOL Wizard to import a host definition file.

By importing the host definition file into the .NET client library, HIS Designer also creates an XML schema data (XSD) file.
This XSD file contains the interface definition you will use later in your BizTalk application. For more information about
using the Import COBOL Wizard, see Import COBOL Wizard.

3. You may view the XSD file by clicking the XSD Definition tab in HIS Designer.

4. Click File, and then click Save All.

The XSD file should be saved in the standard location for the project. Note that you will need this location in the next step,
when you add the XSD file to your BizTalk project. For more information, see How to Create a BizTalk Project.

See Also
Tasks
How to Create a Visual Studio Solution
How to Create a BizTalk Project
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa705663(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to use a Client Context with the BizTalk Adapter for Host
Applications

For Host Integration Server, the client context is a set of values that describe the context in which the client application is
running in the Windows environment. By modifying the ClientContext keyword in the XML file associated with your BizTalk
project, you can pass the client context information on to the remote application.

To use client context keywords in a BizTalk Adapter for Host Applications application

1. Generate an instance of the XML document that describes your assembly.

For more information, see How to Create a Transaction Integrator Project and Interface Definition

2. In the XML document, edit the TIClientContext keyword.

The TIClientContext keyword will appear in the XML document in the following format:

<ns0:TIClientContext TIContextKeyword="TIContextKeyword_0" TIContextValue="TIContextValue_1" />

Where "TIContextKeyword_0" and TIContextValue_1" represent the keyword and value pair, respectively.

For the BizTalkAdapter for Host Applications, TIClientContext accepts USERID, PASSWORD, RecvTimeOut, and
SendTimeOut as valid keywords.

Note that you do not have to remove TIClientContext elements from your document if you are not using
ClientContext.

3. When finished, save the XML file and exit.

Example

The following example describes an XML document generated by the Transaction Integrator Designer.

See Also
Other Resources
COMTIContext Keywords

<ns0:DPC_WGB__GetBalance__WGBANK__Request xmlns:ns0="http://microsoft.com/HostApplications/
TI/WIP">
 <ns0:WGBANKInDocument>
 <ns0:ACCNUM>1234</ns0:ACCNUM>
 <ns0:name>Kim Akers</ns0:name>
 </ns0:WGBANKInDocument>
 <ns0:TIClientContext TIContextKeyword=" RecvTimeOut " TIContextValue="15" />
<ns0:TIClientContext TIContextKeyword="TIContextKeyword_0"TIContextValue="TIContextValue_1"
/>
</ns0:DPC_WGB__GetBalance__WGBANK__Request>

https://msdn.microsoft.com/en-us/library/aa771921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

How to Create a BizTalk Project
After you create an XSD file for your application, you create a BizTalk project to contain the application. After you create the
BizTalk project, you can add the XSD file as a standard item, and then use it to create your BizTalk application.

To create a BizTalk project for an application that uses the BizTalk Adapter for Host Applications

1. In Visual Studio, click File, point to Add, and then click New Project.

2. In the Add New Project dialog box, in the Project Types pane, click BizTalk Projects.

3. In the Templates pane, click Empty BizTalk Server Project.

4. Type the name of the project in the Name field, type the location of the project in the Location field, and then click OK.

To add the .xsd file to the BizTalk project

1. In Solution Explorer, right-click the name of your BizTalk project, select Add, and then click Existing Item.

2. In the Add Existing Item dialog box, navigate to the location where you saved the .xsd file in the previous step, click the
.xsd file, and then click Add.

See Also
Tasks
How to Create a Transaction Integrator Project and Interface Definition
Concepts
Creating an Application for the BizTalk Adapter for Host Applications
Creating a BizTalk Application

https://msdn.microsoft.com/en-us/library/aa771921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753884(v=bts.10).aspx

Creating a BizTalk Application
After you have created a BizTalk project and added the Transaction Integrator (TI) schema, you can start to create your BizTalk
application. For more information, see the BizTalk Server documentation.

See Also
Tasks
How to Create a BizTalk Project
How to Associate the Interface Definition with the Mainframe Environment
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa705451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to Associate the Interface Definition with the Mainframe
Environment

After you create a BizTalk project for your application that uses the BizTalk Adapter for Host Applications, and then add the .xsd
file to the project, you must identify your target mainframe, and then associate the interface definition with the mainframe
environment.

To configure the remote environment using TI Manager

1. Start TI Manager.

2. Double-click Transaction Integrator in the console tree.

3. Right-click Remote Environments, point to New, and then click Remote Environment.

4. Use the New Remote Environment Wizard to describe the environment on your target mainframe.

For more information about how to use the Remote Environment Wizard, see
Creating and Managing Remote Environments Using TI Manager

To administer the TI .NET assembly metadata using TI Manager

1. Start TI Manager.

2. Double-click Transaction Integrator in the console tree.

3. In the Windows-Initiated Processing node, right-click Objects, point to New, and then click Object.

4. Use the Object Wizard to associate the TI assembly that you created earlier with the remote environment of your target
mainframe.

For more information about how to use the Object Wizard, see Object Wizard (for WIP).

See Also
Tasks
How to Export the Schema
Concepts
Creating an Application for the BizTalk Adapter for Host Applications
Creating a BizTalk Application

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753884(v=bts.10).aspx

How to Export the Schema
After you associate the interface with the mainframe environment, you must deploy the schema. Deploying the schema
exposes an artifact from Visual Studio to BizTalk Server.

To deploy a schema

1. In Visual Studio, in Solution Explorer, right-click the name of your BizTalk project, and then click Deploy.

See Also
Tasks
How to Associate the Interface Definition with the Mainframe Environment
How to Create a BizTalk Server Export Package
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa770983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705182(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to Create a BizTalk Server Export Package
After you finish testing your BizTalk application in your development environment, you can put the associated dependencies
into an export package. After you create the export package, you can then move your BizTalk application to a staging or live
server.

Note
The process for creating an export package for a BizTalk application that uses the BizTalk Adapter for Host Applications is ide
ntical to creating any other export package that uses an adapter.

To create an export package for an application that uses the BizTalk Adapter for Host Applications

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Server 2006 Administration, expand the BizTalk group, and then expand
Applications.

3. Right-click the application that you want to export, point to Export, and then click MSI file.

4. On the Welcome to the Export MSI File Wizard page, click Next.

5. On the Select Resources page, select the artifacts to export into the .msi file, and then click Next.

6. If you are prompted, on the Specify IIS Hosts page, type the server name of the computer hosting the virtual directory
that you want to include, and then click Next.

You will be prompted to specify the server only if the virtual directory has not been previously added to the BizTalk
Management database, such as when it was added to the application or was imported in an application.

7. On the Dependencies page, review the dependencies for the application, and then click Next.

8. On the Destination page, in Destination application name, type the application name.

9. In MSI file to generate, type the full path for the .msi file, and then click Export.

10. On the Summary page, note the location of the log file for this operation, and then click Finish.

See Also
Tasks
How to Export the Schema
How to Deploy the BizTalk Server Application
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa754667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to Deploy the BizTalk Server Application
After a developer has created and exported an application for the BizTalk Adapter for Host Applications, an IT professional can
import it, update the connection properties, and deploy the application.

Before you import the application, you can find more information by completing the Importing Exported Packages tutorial.
After you complete these procedures, you can perform any application-specific deployment tasks as necessary.

To import the BizTalk Server application

1. In the BizTalk Server Administration console, expand the BizTalk Server 2006 Administration node.

2. Expand the BizTalk Group node.

3. Right-click the Applications node, click Import, and then click MSI file.

This starts the Import MSI Wizard.

4. Follow the instructions in the wizard. If you need help, you can click Help on each wizard page.

To update the connection properties

1. In the TI Manager Console, expand the Remote Environments folder.

2. Right-click the Remote Environment for this application, and then click Properties.

If you have a TCP/IP connection, select the TCP/IP tab, and either confirm or enter the appropriate information in
the IP/DNS Address and Port fields.

If you have an SNA connection, select the LU6.2 tab, and either confirm or enter the appropriate information in the
Local LU Alias, Remote LU Alias, and Mode Name fields.

You may have to obtain this information from your Mainframe or System Administrator.

See Also
Concepts
Creating an Application for the BizTalk Adapter for Host Applications
Other Resources
BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744368(v=bts.10).aspx

BizTalk Adapter for WebSphere MQ
The Client-Based BizTalk Adapter for WebSphere MQ (MQSC Adapter) is a connectivity solution that enables you to use BizTalk
Server in an enterprise with WebSphere MQ as the chosen messaging standard.

Previously, once-and-only-once delivery of messages between BizTalk Server and WebSphere MQ applications was provided
by the Server-Based BizTalk Adapter for WebSphere MQ, which requires MQSeries Server on Windows as an intermediate
server between BizTalk Server and non-Windows Queue Managers. To enable once-and-only-once delivery of messages,
BizTalk Server and the adapter require WebSphere MQ to participate in a distributed transaction using MSDTC (Microsoft
Distributed Transaction Coordinator). MSDTC support has been available only with the Server version of WebSphere MQ on
Windows.

With BizTalk Server 2006, transactional messaging (once-and-only-once delivery) is also available through the MQSC Adapter.
This is made possible by the MQSC Adapter working together with the WebSphere MQ Extended Transactional Client (MQ
Extended-Client). Like the MQSeries Server, the MQ Extended Client supports distributed transactions using Microsoft
Distributed Transaction Coordinator (MSDTC) on Windows. Therefore, the adapter can guarantee once-and-only-once delivery
of messages by ensuring that both BizTalk Server and MQ Extended-Client participate in a distributed transaction.

When receiving messages from MQSeries and submitting them to BizTalk Server, the adapter starts an MSDTC transaction and
performs an MQGet with SYNCPOINT so that MQSeries participates in the transaction. The adapter passes this same
transaction context to BizTalk Server so that BizTalk Server participates in the same transaction when the adapter submits the
message to it. After the message has been submitted, the adapter commits the transaction. When sending messages from
BizTalk Server to MQSeries, the adapter starts the transaction and performs an MQPut operation with the SYNCPOINT option.
BizTalk Server uses this same transaction to remove the message from the BizTalk Server MessageBox database, after which
the adapter commits the transaction.

You can also configure the MQSC Adapter to support non-transactional messaging when integrating with MQSeries Queues.
For this, the MQSC Adapter uses the WebSphere MQ Base-Client. In this case, the adapter only guarantees that no messages
are lost. Duplication of messages can occur under failure conditions. Therefore, you should use this configuration option only if
the application that is consuming the message from BizTalk Server or MQSeries Queues can handle duplication of messages.
To prevent loss of messages, the MQSC adapter first does an MQGET with a browse lock by setting the
MQGMO_BROWSE_FIRST and MQGMO_LOCK options. The adapter then submits the message to BizTalk Server. If the
submitted message to BizTalk Server is successful, the adapter does a destructive MQGet with
MQGMO_MSG_UNDER_CURSOR option. If a failure occurs while submitting the message to BizTalk Server, the adapter does
an MQGet with MQGMO_UNLOCK so that additional operations can be performed on the message.

Both the Server-Based BizTalk Adapter for WebSphere MQ and the Client-Based BizTalk Adapter for WebSphere MQ offer their
own advantages. The Client-Based Adapter was not designed to replace the Server-Based Adapter. Instead, it provides an
additional option for integration between BizTalk Server and WebSphere MQ.

The following table compares the client-based MQSC adapter with the server-based MQSC adapter.

Feature Server-Based BizTalk Adapter for WebSphere
MQ (MQS)

Non-Transactional Client
-Based BizTalk Adapter fo
r WebSphere MQ (MQSC)

Transactional Client-Based
BizTalk Adapter for WebSp
here MQ (MQSC)

WebSphere MQ
Dependency

Requires WebSphere MQ Server on Windows to
communicate with WebSphere MQ Queue Mana
gers on non-Windows Systems. This can be on Bi
zTalk Server or on a remote server running Wind
ows.

Requires WebSphere MQ Cl
ient to be installed on BizTal
k Server to communicate dir
ectly to WebSphere MQ Qu
eue Managers on remote sy
stems.

Requires WebSphere MQ Ext
ended Transactional Client to
be installed on BizTalk Server
to communicate directly to W
ebSphere MQ Queue Manage
rs on remote systems.

Receive capabilit
y

Yes Yes Yes

Static send ports Yes Yes Yes

Dynamic send p
orts

Yes Yes Yes

Polling queues o
n receive

Yes, with static MQGMO Wait Interval for three se
conds.

Yes, with configurable MQG
MO Wait Interval.

Yes, with configurable MQGM
O Wait Interval.

Supports transac
tional or non-tra
nsactional scena
rios

Only transactional scenarios are supported. Non-
transactional configuration is available for test/de
bug mode, but not supported in production.

Non-transactional only. Transactional only.

Guarantees once
-and-only-once
delivery of mess
ages

Yes No, in failure conditions, du
plicate messages can occur
either in BizTalk Server or in
MQSeries queues. Applicati
on is responsible for handli
ng duplicate messages.

Yes

Prevents loss of
messages

Yes Yes Yes

Performance an
d scalability char
acteristics

Provides highest performance; better suited to ha
ndle heavy message loads.

Compared to server-based
adapter, performance is low
because of overhead built in
to prevent loss of messages.

Performance is higher than n
on-transactional adapter, but
lower than server-based adap
ter.

Receive-side con
version

When performing MQGET, MQGMO CONVERT o
ption is specified when configured.

When performing MQGET,
MQGMO CONVERT option i
s specified when configured.

When performing MQGET, M
QGMO CONVERT option is sp
ecified when configured.

Send-side conve
rsion

Can be configured to convert to code page of MQ
Series Server on Windows.

Not applicable Not applicable

Access to MQSer
ies headers from
Orchestrations a
nd Pipeline Com
ponents

Yes Yes Yes

Segmentation us
ing Queue Mana
ger capabilities

Yes Yes Yes

Security betwee
n BizTalk Server
and MQSeries S
erver

COM+ application (MQSAgent) on MQSeries Ser
ver on Windows uses COM+ roles to allow users
who can access it. On the wire, data is encrypted
using Packet Privacy. MQSeries Server on Windo
ws to remote MQSeries Server on non-Windows
system can be configured to use SSL.

Configure Secure Sockets L
ayer (SSL) between MQSeri
es Client and Server

Configure SSL between MQS
eries Client and Server

Dynamically rec
eives from queu
e using solicit-re
sponse send por
t based on certai
n match options

Yes No No

MQSeries Chann
el configuration
on BizTalk Serve
r

No Yes, uses Server Connection
Channel.

Yes, uses Server-Connection
Channel.

To use SSL, Client Channel De
finition file must be used.

In This Section

MQSC Adapter Features

How to Install the MQSC Adapter

How to Add the MQSC Adapter to a BizTalk Server Installation

How to Configure a Send Port for the MQSC Adapter

How to Configure a Receive Port and a Receive Location for the MQSC Adapter

How to Configure a Client Channel Definition File

How to Configure the MQSC Adapter for Transactional Messaging

How to Configure SSL for the MQSC Adapter

MQSC Adapter Schema

https://msdn.microsoft.com/en-us/library/aa754328(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771089(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771857(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754431(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754036(v=bts.10).aspx

MQSC Adapter Features
The Client-Based BizTalk Adapter for WebSphere MQ (MQSC Adapter) is designed for BizTalk Server and works with all the
BizTalk Server components and tools. With the adapter, you can do the following:

Communicate with remote Queue Managers that are running on Windows or other operating systems directly from
BizTalk Server.

Send messages to MQSeries Remote Queue Definitions, Local queues, Transmission queues, and Alias queues from
BizTalk Server.

Receive messages from MQSeries Transmission queues, Local queues, and Alias queues.

Support clustered MQSeries Queue Managers.

Support clustered BizTalk servers.

Poll MQSeries Queues with wait interval.

Configure Static, Dynamic, Solicit-Response send ports, and Static Receive Locations for this adapter.

Map context properties to header properties for both transmitting and receiving messages. Gain easy programmatic
access to MQSeries header properties (including MQMD, MQXQH, MQCIH, and MQIIH) through BizTalk context
properties.

Receive messages in batches from MQSeries queues.

The MQSC Adapter also does the following:

Enables correlation with either BizTalk Server or MQSeries using the correlation identifier.

Provides ordered delivery of messages.

Provides Secure Sockets Layer (SSL) support for secure communication with remote MQSeries Queue Managers.

The MQSC Adapter can co-exist with the Server-Based Microsoft BizTalk Adapter for WebSphere MQ (MQSeries Adapter).

See Also
Concepts
How to Install the MQSC Adapter
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa705007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Install the MQSC Adapter
The BizTalk Adapter for WebSphere MQ (MQSC Adapter) is installed as part of the BizTalk Adapters for Host Systems
installation process.

To use the adapter with the IBM WebSphere MQ Client (Base-Client), you must also have the following software installed:

Microsoft BizTalk Server 2006.

Microsoft .NET Framework 2.0.

IBM WebSphere MQ Client 5.3 with CSD10, or IBM Websphere MQ Client 6.0 with Fix Pack 6.0.1.1.

To use the MQSC adapter for Extended-Client support, you must also have the following software installed:

IBM WebSphere MQ Client 5.3 with CSD10 and IBM WebSphere MQ Extended Transactional Client, or IBM WebSphere
Client 6.0 with Fix Pack 6.0.1.1.

To install the MQSC Adapter

1. Run the Host Integration Server Setup.

2. On the component installation screen, expand BizTalk Adapters.

3. Select BizTalk Adapter for WebSphere MQ (Client-Based).

As with other adapters, you can uninstall through the Add or Remove Programs utility in Control Panel.

Note
When you are using Extended-Client and configuring the adapter send port, receive port, and receive location, refer to
How to Configure the MQSC Adapter for Transactional Messaging for more information

Refer to IBM documentation for more information about how to obtain and install WebSphere MQ Extended Transactional
Client or WebSphere MQ Client. For information about how to obtain necessary fixes from IBM, refer to the README file

Important
Only x86 (32-bit) Windows operating systems that are supported by BizTalk Server 2006 are supported by the MQSC Adapte
r. WebSphere MQ on Windows is not supported on 64-bit Windows operating systems. This means that the MQSC Adapter i
s not supported on either X64 (64-bit) Windows or a 32-bit BizTalk Host Instance on x64.

See Also
Tasks
How to Add the MQSC Adapter to a BizTalk Server Installation
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa771857(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Add the MQSC Adapter to a BizTalk Server Installation
When you install the BizTalk Adapter for WebSphere MQ (MQSC Adapter), the BizTalk Adapters for Host Systems installation
process adds the adapter to your BizTalk Server installation by default. Following installation, if for any reason the adapter is
missing from the BizTalk Server 2006 Administration Console (for example, if it was deleted during testing), you can add it
manually by using the following procedure.

To add the MQSC adapter

1. In the Console Root of the BizTalk Server 2006 Administration Console, expand the BizTalk Server 2006
Administration node.

2. Expand the BizTalk Group node.

3. Expand the Platform Settings node.

4. Right-click Adapters.

5. Click New.

The Adapter Properties window is displayed.

6. In the Name field, type a name for the adapter.

7. In the Adapter field, select MQSC in the list.

8. In the Description box, type any text that is useful to you. (This is an optional step.)

9. Click OK.

Note
Adding the adapter requires that you restart the host instance.

See Also
Concepts
How to Install the MQSC Adapter
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa705007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Configure a Send Port for the MQSC Adapter
You configure a send port for the BizTalk Adapter for WebSphere MQ by using the BizTalk Server Administration console. You
must be logged on with an account that is a member of the BizTalk Server Administrators group. In addition, you must have
appropriate permissions in the Single Sign-On (SSO) database.

To configure a send port

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a send port.

3. Right-click Send Ports, point to New, and then click Static One-way Send Port.

4. In the Send Port Properties window, select mqsc in the Transport Type list.

5. Click Configure.

6. In the adapter’s Transport Properties window, configure the send port properties (refer to the tables at the end of this
procedure).

Note
The following properties are required to configure a send port:

Channel Name (This is a case-sensitive property.)

Connection Name

Transport Type

Queue (This is a case-sensitive property.)

Queue Manager (This is a case-sensitive property.)

If you do not specify a Channel Name property, you must provide a client channel definition file to enable the
WebSphere MQ Client installed on the BizTalk Server computer to communicate with remote queue managers. You must
also provide a client channel definition file if you configure Secure Sockets Layer (SSL) to work with transactional
messaging. For more information, see How to Configure a Client Channel Definition File.

7. When you have finished configuring the properties, click OK.

8. In the Send Port Properties window, in the Send handler list, select the host instance on which the send adapter is
running.

9. In the Send pipeline list, select the pipeline that processes the messages sent through this port.

10. Click OK.

11. In the Send Ports window, right-click the send port in the Name column and select Enlist.

12. Right-click the send port in the Name column and select Start.

In the Advanced section of the Transport Properties window, you can set the following send port properties.

Use this To do this

SSO Affil
iate

Sets the Single Sign-On (SSO) affiliate application. The user ID and password from SSO are used for the MQM
D_UserIdentifier, and the MQIIH_Authenticator (or MQCIH_Authenticator) property respectively. This assumes
that a valid SSO ticket exists.

Default: Blank

https://msdn.microsoft.com/en-us/library/aa771089(v=bts.10).aspx

Transacti
on Supp
orted

When this property is set to Yes, the MQSC adapter works in conjunction with the WebSphere MQ Extended T
ransactional Client (Extended-Client) on the BizTalk Server computer to prevent loss of messages and to guara
ntee once-and-only-once delivery of messages.

When it is set to No, duplication of messages may occur. In this case, the adapter uses the non-transactional
WebSphere MQ Client (Base-Client) for integration with MQSeries.

Default: No

In the Channel Definition section of the Transport Properties window, you can set the following properties.

Use thi
s

To do this

Chann
el Nam
e

Name of the channel defined on the MQSeries Server computer that the client communicates with. This must be
a ‘Server Connection’ Channel type.

Note that this is a case-sensitive property.

Connec
tion Na
me

Name of the MQSeries Server that contains the Queue Manager and Queues that the MQSC Adapter sends mes
sages to.

For the TCP transport type, the format to be specified is SERVERNAME(PORT). The port number is equivalent to
the port number defined in the Listener associated with the Queue Manager.

The server name can also be specified as an IP address.

For LU6.2, specify the LU Name or LU Pool Name configured in Host Integration Server.

Heart B
eat

Number of seconds between checks to verify that the client/server connection is working.

Default: 300

Passwo
rd

Password that can be used by the MCA when attempting to initiate a secure LU 6.2 session with a remote MCA.

The initial value of this optional property is null.

SSL Cip
her Spe
cificati
on

Defines a single CipherSpec for an SSL connection that will be used by the end-point configured in the adapter.
Both ends of a WebSphere MQ SSL channel definition must include the attribute, and the value specified here s
hould match the name specified on the server end of the channel. The value is a string with a maximum length
of 32 characters.

Required only when SSL is configured for communication between the MQSeries Client and remote Queue Ma
nagers.

SSL Pe
er Nam
e

Used to check the distinguished name (also known as DN) of the certificate from the peer queue manager or cli
ent at the other end of a WebSphere MQ channel. If the distinguished name that is received from the peer does
not match this value, the channel does not start.

Required only when SSL is configured for communication between the MQSeries Client and Queue Managers.

Transp
ort Typ
e

TCP and LU6.2 are supported.

Default: TCP

User Id MCA user identifier that is used by MQSeries MCA for authorization to access MQSeries resources.

The initial value is null. This is an optional property. When this attribute is blank, the MCA uses its default user id
entifier.

In the MQSeries section of the Transport Properties window, you can set the following properties.

Use this To do this

Segmentation All
owed

Set to Yes to tell MQSeries Queue Manager to create segmented messages when submitting large
messages to MQSeries Queues.

Default: No

In the Queue Definition section of the Transport Properties window, you can set the following properties.

Use this To do this

Queue MQSeries queue to which the adapter will send messages.

Remote Queue Definitions, Local Queues, Alias Queues, and Transmission Queues are supported.

Note that this is a case-sensitive property.

Queue Manager Name of MQSeries Queue Manager that contains the queues to which the adapter will send messages.

Clustered Queue Managers are supported.

Note that this is a case-sensitive property.

13. Click OK.

See Also
Tasks
How to Configure a Receive Port and a Receive Location for the MQSC Adapter
Concepts
How to Configure a Client Channel Definition File
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa705592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771089(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Configure a Receive Port and a Receive Location for the
MQSC Adapter

You configure a receive port and receive location for the BizTalk Adapter for WebSphere MQ by using the BizTalk Server
Administration console. You must be logged on with an account that is a member of the BizTalk Server Administrators group.
In addition, you must have appropriate permissions in the Single Sign-On (SSO) database.

To configure a receive port and receive location

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2006, and then click BizTalk Server Administration.

2. In the console tree, expand BizTalk Group, expand Applications, and then select the application for which you want to
create a receive port.

3. Right-click Receive Ports, point to New, and then click One-way Receive Port.

4. In the Receive Port Properties window, configure properties for the port, and then click OK.

5. In the console tree, right-click Receive Locations, point to New, and then click One-way Receive Location.

6. In the Select a Receive Port window, click the receive port that you created in the previous step, and then click OK.

7. In the Receive Location Properties window, select the MQSC adapter as the Transport Type, and then click Configure.

8. In the adapter’s Transport Properties window, configure the receive location’s properties (refer to the tables at the end
of this procedure).

Note
The following properties are required to configure a receive location:

Channel Name (This is a case-sensitive property.)

Connection Name

Transport Type

Queue (This is a case-sensitive property.)

Queue Manager (This is a case-sensitive property.)

If you do not specify a Channel Name property, you must provide a client channel definition file to enable the WebSp
here MQ Client installed on the BizTalk Server computer to communicate with remote queue managers. You must also
provide a client channel definition file if you configure Secure Sockets Layer (SSL) to work with transactional messagin
g. For more information, see How to Configure a Client Channel Definition File.

9. When you have finished configuring the properties, click OK.

10. In the Receive Location Properties window, in the Receive handler list, select the instance of the BizTalk Server host
on which the receive location will run.

The receive handler must be running on this host.

11. In the Receive pipeline list, select the receive pipeline to use to receive messages at this receive location.

12. Click OK.

13. In the Receive Locations window, right-click the Receive Location in the Name column and select Enable.

Receive Location Properties

In the Advanced section of the Transport Properties window, you can set the following properties.

Use this To do this

https://msdn.microsoft.com/en-us/library/aa771089(v=bts.10).aspx

Data Off
set for H
eaders

The adapter uses values from the MQSeries headers (the MQMD, MQXQH, MQIIH, and MQCIH structures) and
populates corresponding values in the BizTalk Server context properties. By default, the adapter removes thes
e MQSeries properties from the message body. Set to No to retain the properties in the message body.

Default: Yes

Event Lo
g Error T
hreshold

The maximum number of the same error to be logged for certain error conditions. The adapter continues oper
ating and, if the adapter recovers, it logs the event in the Application log.

Default: 10

Ordered Set to Yes to maintain the order of the messages as they are received from the MQSeries queue and submitte
d to the BizTalk Server MessageBox.

For the send side, the adapter sends the message to the queue in the same order that it receives it from the m
essage box.

Set to No to not maintain message order.

For send-side ordering, if you are not using Orchestration, you must enable Ordered Delivery in the Transport
Advanced Options of the send port configuration.

For receive-side ordering, if you are using Orchestration, you must also set the Ordered Delivery property to
True in your orchestration for the receive location.

Ordered delivery can decrease performance; unless you require ordered delivery, it is not recommended.

Default: No

Stop on
error

Set to Yes to stop processing if there is an error. This option ends the transaction and disables the receive loca
tion if there is an error.

Default: No

Suspend
As Non R
esumabl
e

Set to Yes to move a message to the suspended queue when there is an error and indicate if it is resumable or
not.

Enabling this value does not preserve ordered delivery when there is an error, but does allow the receive locat
ion to continue receiving messages.

Default: No

Transacti
on Supp
orted

When set to Yes, the MQSC adapter works together with the WebSphere MQ Extended Transactional Client (E
xtended-Client) on the BizTalk Server computer to prevent loss of messages and to guarantee once-and-only-
once delivery of messages.

When set to No, duplication of messages may occur. In this case, the adapter uses the non-transactional Web
Sphere MQ Client (Base-Client) for integration with MQSeries.

Default: No

Wait Int
erval

When MQGet is performed to retrieve messages from MQSeries Queue, MQGMO option for Wait Interval can
be set. If there are no messages in the queue, the adapter waits for the specified time (in seconds) before closi
ng the client request. As soon as messages arrive on the queue, the adapter starts retrieving the messages.

Default: 3

In the Channel Definition section of the Transport Properties window, you can set the following properties.

Use thi
s

To do this

Chann
el Nam
e

Name of the channel defined on the MQSeries Server computer that the client communicates with. This must be
a ‘Server Connection’ Channel type.

Note that this is a case-sensitive property.

Conne
ction
Name

Name of the MQSeries Server that contains the Queue Manager and Queues that the MQSC Adapter receives m
essages from.

For the TCP transport type, the format to specify is SERVERNAME(PORT). Port number is equivalent to the port
number defined in the Listener associated with the Queue Manager.

The server name can also be specified as an IP address.

For LU6.2, specify the LU Name or LU Pool Name configured in Host Integration Server.

Heart
Beat

Number of seconds between checks to verify that the client/server connection is working.

Default: 300

Passw
ord

Password that can be used by the MCA when trying to initiate a secure LU 6.2 session with a remote MCA.

The initial value of this optional property is null.

SSL Cip
her Sp
ecifica
tion

Defines a single CipherSpec for an SSL connection that will be used by the end-point configured in the adapter.
Both ends of a WebSphere MQ SSL channel definition must include the attribute, and the value specified here sh
ould match the name that is specified on the server end of the channel. The value is a string with a maximum len
gth of 32 characters.

Required only when SSL is configured for communication between the MQSeries Client and remote Queue Man
agers.

SSL Pe
er Na
me

Used to check the distinguished name (also known as DN) of the certificate from the peer queue manager or clie
nt at the other end of a WebSphere MQ channel. If the distinguished name that is received from the peer does n
ot match this value, the channel does not start.

Required only when SSL is configured for communication between the MQSeries Client and Queue Managers.

Transp
ort Typ
e

TCP and LU6.2 are supported.

Default: TCP

User Id MCA user identifier that is used by MQSeries MCA for authorization to access MQSeries resources.

The initial value is null. This is an optional property. When this attribute is blank, the MCA uses its default user id
entifier.

In the MQSeries section of the Transport Properties window, you can set the following properties.

Use this To do this

Charact
er Set

Character set to which the message should be converted when messages are received from the MQSeries Que
ue. If this property is set to a value other than None, the adapter sets the MQGMO CONVERT option when perf
orming an MQGet.

None: Do not convert.

UCS-2 and UTF-16: Convert to these character sets. MQSeries does not distinguish between them.

UTF-8: Convert to the UTF-8 character set.

Default: None

Segmen
tation Al
lowed

Set MQSeries to assemble segmented messages or to get the message as is. Use No Action to read messages f
rom the MQSeries queue without enabling segmentation. Use Complete Message to have MQSeries assemble
segmented messages before passing them on to the adapter.

Default: No Action

In the Performance section of the Transport Properties window, you can set the following properties.

Use this To do this

Maximum Batch Size Maximum size of a batch of messages in KB.

This property and Maximum Messages in Batch work together so that the limit is whichever
value the adapter reaches first.

Default: 100

Maximum Messages i
n Batch

Maximum number of messages from 1 to 10,000 in a batch.

This property and Maximum Batch Size work together so that the limit is whichever value the
adapter reaches first.

Default: 10

Threads Number of threads used per receive location.

Default: 2

In the Queue Definition section of the Transport Properties window, you can set the properties listed in the following
table.

Use this To do this

Queue MQSeries queue from which the adapter will receive (MQGet) messages.

Transmission Queues, Local Queues, Alias Queues are supported.

Note that this is a case-sensitive property.

Queue Manag
er

Name of MQSeries Queue Manager that contains the Queues from which the adapter will retrieve mes
sages.

Clustered Queue Managers are supported.

Note that this is a case-sensitive property.

14. Click OK.

See Also
Tasks
How to Configure a Send Port for the MQSC Adapter
Concepts
How to Configure a Client Channel Definition File
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa770469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771089(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Configure a Client Channel Definition File
To specify a channel definition, you must provide a client channel definition file for WebSphere MQ Client components to use if
the following are true:

When configuring send and receive ports, you did not specify a Channel Name property.

When configuring send and receive ports, you set the Transaction Supported property to Yes, and you configured
Secure Sockets Layer (SSL) for client/server communication for WebSphere MQ.

To configure a client channel definition file

1. On your WebSphere MQ Server computer, create the client channel definition file.

For information about how to create a client channel definition file, refer to IBM WebSphere MQ product documentation.

After the file is defined, a binary format .TAB file is created. By default, this file is named AMQCLCHL.TAB, and it is
typically located in the <WebSphere MQ Server installation folder>\qmgrs\<QueueManagerName>\@ipcc folder.

2. Move the AMQCLCHL.TAB file to the WebSphere MQ client computer on which BizTalk Server is installed, and define the
MQCHLLIB and MQCHLTAB environment variables on this computer.

For MQCHLLIB, specify the folder that contains the AMQCLCHL.TAB file. By default, it is the WebSphere MQ client
installation folder.

For MQCHLTAB, specify the name of the .TAB file (by default AMQCLCHL.TAB).

When you are setting up SSL using a client channel definition file, the key repository environment variable (MQSSLKEYR) must
also be set on the WebSphere MQ client computer on which BizTalk Server is installed. For MQSSLKEYR, specify the path of the
key repository for the client.

See Also
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Configure the MQSC Adapter for Transactional
Messaging

After you install the IBM WebSphere MQ Extended Transactional Client on your BizTalk Server computer, the following
additional configuration steps are necessary before you can implement transactional messaging with the BizTalk Adapter for
WebSphere MQ.

In the WebSphere MQ Server environment, give your Network Service account appropriate permissions, as described in
the IBM Technote article 1223479. For security reasons, it is strongly recommended that you use the “Security Exit” so
that you do not have to add “Network Service” account into the MQM group.

On your BizTalk Server computer, add the MQSeries XA dll to the MSDTC registry. To the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\XADLL, add the string value amqmtsxatmc.dll in the
Name column and add its path to the Data column. Provide the path in the form <WebSphere MQ Client installation
folder>\bin\amqmtsxatmc.dll; for example, C:\Program Files\IBM\WebSphere MQ\bin\amqmtsxatmc.dll.

On your BizTalk Server computer, if you are using WebSphere MQ 5.3, give your Network Service account read/write
access to the @SYSTEM folder, contained in <WebSphere MQ Client installation folder>\qmgrs\@SYSTEM. (You do not
have to do this if you are using WebSphere MQ 6.0.)

Make sure that MSDTC is enabled on the computer on which BizTalk Server is installed and that security is configured as
described in the following procedure:

To enable MSDTC and configure security

1. Click Start, point to Programs, point to Administrative Tools, and then click Component Services.

2. In the Console Root of the Component Services Console, expand Component Services.

3. Expand Computers.

4. Right-click My Computer, and then click Start MSDTC.

5. Right-click My Computer, and then click Properties.

6. Click the MSDTC tab.

7. Under Transaction Configuration, click Security Configuration.

8. Under Security Settings, select the Network DTC Access and Enable XA Transactions check boxes.

9. Click OK.

See Also
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

How to Configure SSL for the MQSC Adapter
The following procedures are designed to help you with configuring a Windows MQSeries Client to run with Secure Sockets
Layer (SSL)-enabled MQSeries Server channels. The procedures describe configuration for one-way (Server) authentication.

Configuration is performed in the following steps:

Set up the Queue Manager/Client to work without SSL.

Add SSL to the configuration.

Configure the MQSeries Client-Based Adapter properties for SSL.

Note
For more information, refer to IBM WebSphere MQ documentation. If you already have MQSeries client/server SSL working,
you can go directly to the procedure for configuring the SSL properties in the adapter.

The following procedures assume that you are setting up a new Queue Manager. However, you can also apply these steps to
existing Queue Managers.

To set up the Queue Manager/Client to work without SSL

1. Create a Queue Manager named QM1, and define a listener on the required port.

2. Define a SVRCONN channel TO.QM1.

3. Define a CLNTCONN channel TO.QM1.

4. Supply the name on the SVRCONN channel to which it will connect (TO.QM1), the transport type, the IP address/DNS
name of the server, and the port number.

5. Define a local queue on the target Queue Manager named TESTQUEUE, which can be used for testing the client
connections.

6. Copy the AMQCLCHL.TAB file from the server onto the client computer. (This file can be found in
/var/mqm/qmgrs/<QueueManagerName>/@IPCC on most UNIX installations and /Program Files/<Websphere MQ
Server installation folder>/qmgrs/<QueueManagerName>/@IPCC on most Windows installations.)

7. On the client computer, set the following environment variables:

MQCHLLIB=C:\sslclient\ssl\ (where MQCHLLIB is set to the path of the client channel table).

MQCHLTAB=AMQCLCHL.TAB (where MQCHLTAB is set to the name of the client channel table).

Note
There are defaults for these environment variables if you want to use them. See the WebSphere MQ Client manual for
more information.

8. Test that the client connection works by running amqsputc.exe on your BizTalk Server computer: amqsputc.exe
TESTQUEUE.

To add SSL to the configuration

1. Add the certificate to the Queue Manager’s store (using Internet Explorer/the MQSeries user interface or amqmcert on
Windows, or gsk6ikm or gsk6cmd on UNIX).

2. Alter the SVRCONN channel so the SSLCIPH is set (for example, to NULL_MD5) and set SSLCAUTH to OPTIONAL.

Note

SSLCAUTH is required for two-way authentication (client/server).

3. Alter the CLNTCONN channel so the SSLCIPH is set to the same as the SVRCONN channel (for example, to NULL_MD5).

4. Copy the new AMQCLCHL.TAB file from the server onto the client computer; the changes made for SSL can be picked up.

5. On the Windows client computer, ensure that the CA certificates are in the system key store (you can do this from
Internet Explorer) and if they are not, import them into it (again, using Internet Explorer).

6. Export the following environment variable to specify the location and name of the client key store: set
MQSSLKEYR=C:\sslclient\ssl\key.

Note
The key store must have the file name extension .sto and the environment variable must not specify it.

7. When you have the required CA certificates in the system store, you can set up a client key store.

a. List the certificates in the system CA store: amqmcert -l -k ca and note the number(s) of the required CA
certificate(s)

b. Add the certificates to the client store: amqmcert -a (certificate_number), where (certificate_number) is the
number of each required certificate.

8. Test that the SSL Client connections work by using the amqsputc sample program and the test queue that you set up
previously.

Note
You do not actually have to import CA certificates into the Windows system store before; for example, you can import t
he certificates to the client certificate store straight from a file. See the IBM MQSeries System Admin guide for informat
ion about amqmcert.

When the MQSeries Client-to-MQSeries Queue Manager SSL is working, the adapter can be configured on both receive
locations and send ports to use SSL. The property values that were used in the test must be specified in the adapter
configuration. The following adapter properties are relevant to both send port and receive locations:

SSL Cipher Specification defines a single CipherSpec for an SSL connection that will be used by the endpoint
configured in the adapter. Both ends of a WebSphere MQ SSL channel definition must include the attribute, and the value
specified here should match the name that was specified on the server end of the channel. The value is a string with a
maximum length of 32 characters.

SSL Peer Name is used to check the distinguished name (also known as DN) of the certificate from the peer queue
manager or client at the other end of a WebSphere MQ channel. If the distinguished name received from the peer does
not match this value, the channel does not start.

See Also
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

MQSC Adapter Schema
The BizTalk Adapter for WebSphere MQ uses the same property schema assembly (MQSeries.dll) that is available with the
server-based MQSeries Adapter. Because the server-based MQSeries Adapter is available with BizTalk Server 2006, this
assembly should be already deployed in the BizTalk Management Database.

In addition, an extension schema assembly is available with the MQSC Adapter. This property schema assembly is called
MQSeriesEx.dll, and it contains properties that are valid only to the Client-Based MQSeries Adapter. The assembly is deployed
into the BizTalk Management Database as part of the adapter installation.

For information about these context properties in both property schema assemblies (MQSeries.dll and MQSeriesEx.dll), refer to
the Programming Guide section.

If these assemblies are not deployed, you can deploy them by using the btsdeploy command-line utility.

At the command prompt, type the following:

btsdeploy DEPLOY assembly=<Path to MQSeries.dll or MQSeriesEx.dll>

Both assemblies can be found in the MQSC Adapter installation location.

See Also
Other Resources
BizTalk Adapter for WebSphere MQ

https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx

Data Integration User's Guide
The Data Integration User's Guide contains information about the Data Access Tool (DAT). The DAT provides a single
mechanism to help configure network, security, and database information. The DAT also helps you create packages on the DB2
system.

In This Section

Data Access Tool

Data Access

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704865(v=bts.10).aspx

Data Access Tool
The Data Access Tool (DAT) is a new feature in Host Integration Server designed to streamline the process of creating and
managing connections to data sources on host environments. Whereas this used to be divided into multiple feature sets and
programs, the DAT provides a single mechanism to guide you through configuring network, security, and database
information, and creating packages on the DB2 system.

The DAT consists of two items:

The Data Source Browser displays all data sources in familiar Microsoft Management Console (MMC) format for
configuration and management.

The Data Source Wizard guides you step by step through the configuration process. The wizard dynamically adapts to both
DB2 and File System data sources, and displays the appropriate screens.

Note
The Data Access Tool and DB2 data providers create DB2 packages for use by all DB2 users, by setting the execute privilege o
n the DB2 packages to PUBLIC. It is recommended that you revoke execute privileges to PUBLIC on these packages, and then
grant execute to selected DB2 users or groups.

In This Section

How to Edit a Configuration

How to Display an Initialization String

How to Test a Connection

How to Create Packages

How to Run a Sample Query

How to Convert Data Sources

How to Add a Table

How to Create a New Data Source or Data Description

How to Open a File

How to Import a File

Other Tasks

https://msdn.microsoft.com/en-us/library/aa744311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745567(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745410(v=bts.10).aspx

How to Edit a Configuration
Editing the configuration brings up the editor for the specific data source. In other words, OLE DB data sources trigger the
Universal Data Links page, and ODBC data sources trigger the Data Access Tool Wizard.

To edit a configuration

1. In the Data Source Browser window, on the Action menu, click Edit Data Source.

The Data Source property page appears.

2. When you are finished editing, click OK.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Display an Initialization String
This option displays the native initialization string, for example, an OLE DB connection string or an ODBC connection string, in
the output window. This string can be copied from the output window and pasted into another text-based window.

To display an initialization string

1. In the Data Source Browser window, on the Action menu, click Display Connection String.

The connection string appears for viewing or copying.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Test a Connection
You can test the connection to the data source and display information about it, such as the host platform and version. In a
connection between an AS/400 and a DB2, a typical result of this operation might look like the following:

Certain operations may require the user to enter a user name and password. If this is the case, the Password dialog box
appears.

To test a connection

1. In the Data Source Browser window, click the Action menu.

2. Click Test Connection.

See Also
Other Resources
Data Access Tool

Successfully connected to data source 'My_SOURCE'.
Server class: DB2/400
Server version: 05.01.0000

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Create Packages
The create package command creates Host Integration Server packages on a DB2 system. As the process runs, status messages
are displayed in the results pane. As seen on an AS/400, the result of this operation is:

To create packages

1. In the Data Source Browser window, click the Action menu.

2. Click Create Packages.

The Create Packages dialog box appears.

See Also
Other Resources
Data Access Tool

Connected to data source 'MY_SOURCE_IP'.
AUTOCOMMITTED package has been created.
READ COMMITTED package has been created.
READ UNCOMMITTED package has been created.
SERIALIZABLE package has been created.
REPEATABLE READ package has been created.
The package creation process has completed successfully.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Run a Sample Query
You can perform a sample query against the host data source. The query retrieves a list of tables from the system catalogs
using the default schema property configured in the data source. The data is displayed in the results pane as two tabs: an
Output tab and a Grid tab.

To run a sample query

1. In the Data Source Browser window, click the Action menu.

2. Click Sample Query.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Convert Data Sources
Converting data sources allows you to convert a DB2 data source from one provider type to another. Only acceptable provider
type conversion is displayed. For example, converting from DB2 OLE DB to DB2 OLE DB is not enabled.

To convert a data source

1. In the Data Source Browser window, click the Action menu.

2. Click Convert To, and then select a provider from the list.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Add a Table
This command displays the Table dialog box. You can also access this dialog box by selecting a table and clicking Properties
from the context-sensitive menu.

To add a table

1. In the Data Source Browser window, click the Action menu.

2. Click Add Table.

The Table property page appears.

3. Enter the appropriate information in the Table property page.

For more information about these properties, click Help.

4. When you are finished, click OK.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Create a New Data Source or Data Description
Clicking New Data Source initiates the Data Source Wizard. Clicking New Data Description creates an empty data
description file and adds it to the tree view.

To create a new data source or data description

1. In the Data Source Browser window, click the File menu.

2. Click New, and then click Data Source or Data Description.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Open a File
Use this command to choose a .udl or .dsn file through a standard File Open dialog box. The command will open the data
source using the Data Source Wizard.

To open a file

1. In the Data Source Browser window, click the File menu.

2. Click Open Data Source.

The File Open dialog box appears.

3. Locate the appropriate data source and then click Open.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

How to Import a File
This command enables you to import a file that contains the information in a DB2 Connect exported file (TCP/IP only). The
values in the file are parsed and displayed in the Data Source Wizard.

To import a file

1. In the Data Source Browser window, click the File menu.

2. Click Import, and then click the appropriate file.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

Other Tasks
The following are additional user interface components in the Data Access Tool that you can use to perform tasks in Host
Integration Server.

Edit menu

Use the Edit menu to Undo, Cut, Copy, or Paste strings, and to Delete or Remove data sources.

View menu

Use the View menu to Refresh the browser or view the Data Access Tool Options dialog box.

Help menu

Use the Help menu to access Host Integration Server Help.

Toolbar buttons

The toolbar buttons located at the top of the browser window offer single-click access to menu commands. To display a
function, rest the pointer over a button.

See Also
Other Resources
Data Access Tool

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

Data Access
Data services included with Host Integration Server enable you to interact with vital data sources, including host file systems
and DB2 databases.These services are available for both the hierarchical and peer environments.

In This Section

OLE DB Provider for AS/400 and VSAM

OLE DB Provider for DB2

ODBC Driver for DB2

How to Add an ODBC Data Source

File Transfer

How to Add or Configure a Data Link for Windows

https://msdn.microsoft.com/en-us/library/aa745737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771839(v=bts.10).aspx

OLE DB Provider for AS/400 and VSAM
To use Microsoft OLE DB Provider for AS/400 and VSAM with an OLE DB consumer application, you must either create a
universal data link (.udl) file and call this from your application, or call the provider using a connection string that includes the
provider name. Microsoft Data Access Components (MDAC) includes Microsoft Data Link, a generic method for managing and
loading connections to OLE DB data sources. Microsoft Data Link also supports finding and storing connections to OLE DB data
sources.

For additional information about using .udl files or connection strings, see How to Create a Connection String for a .udl File or
Configuring Data Descriptions in the Programmer's Guide.

Note
The SNAOLEDB provider runtime and Data Access Tool both support a full path to the HCD files. To maximize security, you s
hould store HCD files in a secure local folder or share that only the developer and the runtime application can access.

See Also
Tasks
How to Browse OLE DB Data Sources
Reference
Configuring a Data Source for OLE DB Provider for AS/400 and VSAM
Concepts
How to Add or Configure a Data Link for Windows

https://msdn.microsoft.com/en-us/library/aa745362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771839(v=bts.10).aspx

Data Description for AS/400 and VSAM
With the Microsoft OLE DB Provider for AS/400 and VSAM, you can directly access record-level data in mainframe VSAM,
Partitioned Data Sets (PDS), and midrange OS/400 files from an application that uses OLE. The OLE database (OLE DB) is a
standard set of interfaces that provides heterogeneous access to disparate sources of information located anywhere — file
systems, e-mail folders, and databases. The OLE DB Provider for AS/400 and VSAM combines the universal data access of OLE
DB with the record-level input/output (RLIO) protocol of the IBM Distributed Data Management (DDM) architecture.

In addition to describing tables that are used by the Microsoft OLE DB Provider for AS/400 and VSAM, you can describe tables
for the File Transfer utility. To indicate that the File Transfer Utility should use a given table, click the Properties page for the
specific table, and then select the Use Table for File Transfer check box. Leaving this box clear indicates that the table is to be
used by the Microsoft OLE DB Provider for AS/400 and VSAM.

In addition to the sample applications provided on the Host Integration Server CD-ROM, many of the sample programs that
ship as part of the Microsoft Data Access Components (MDAC) SDK can be used with the OLE DB Provider for AS/400 and
VSAM. To use the OLE DB Provider for AS/400 and VSAM, you must specify SNAOLEDB for the provider name.

For more information about using the Host Data Description utility, see Host CCSID and Data Description in the
OLE DB Providers Programmer's Guides.

See Also
Concepts
OLE DB Provider for AS/400 and VSAM
Other Resources
Data Access

https://msdn.microsoft.com/en-us/library/aa745848(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704865(v=bts.10).aspx

OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2 contains the following features:

Interactive and scriptable Setup program

SNA Trace Utility and Trace Viewer

TCP/IP network connection

Execution of dynamic SQL commands (DDL and DML), including CALL statement for stored procedures

Customized Data Link property dialog boxes for creating and modifying file-persisted OLE DB data link files.

To use the Microsoft OLE DB Provider for DB2 with an OLE DB consumer application, you must either create a universal data
link (.udl) file and call it from your application, or call the provider using a connection string that includes the provider name.
Microsoft Data Access Components (MDAC) version 2.0 and later includes Microsoft Data Link, a generic method for managing
and loading connections to OLE DB data sources. Microsoft Data Link also supports finding and storing connections to OLE DB
data sources.

For more information about using .udl files or connection strings, see the OLE DB Provider for DB2 Programmer's Guide in the
OLE DB Providers Programmer's Guides

How to Browse OLE DB Data Sources
By default, data links are created in the \Program files\Common files\System\Ole db\Data links folder. A shortcut is provided in
the Host Integration Server program group.

To browse OLE DB data sources

1. Click Start, point to Programs, and then point to Host Integration Server.

2. Point to Data Integration, and then click OLE DB Data Source Browser.

The list of data links appears.

See Also
Concepts
OLE DB Provider for DB2
OLE DB Provider for AS/400 and VSAM

https://msdn.microsoft.com/en-us/library/aa754706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745737(v=bts.10).aspx

How to Create Packages for DB2
Microsoft OLE DB Provider for DB2 and Microsoft ODBC Driver for DB2 are implemented as IBM Distributed Relational
Database Architecture (DRDA) Application Requesters. These features use DB2 packages to issue dynamic SQL statements and
call DB2 stored procedures. The provider and driver create packages dynamically in the location to which the user points by
using the Package Collection attribute in the data source definition.

To start the Create Package utility

1. Click Start, point to Programs, and then point to Host Integration Server.

2. Click Data Integration, and then select Packages for DB2.

See Also
Concepts
OLE DB Provider for DB2
OLE DB Provider for AS/400 and VSAM
Create Package Utility

https://msdn.microsoft.com/en-us/library/aa754706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745879(v=bts.10).aspx

Create Package Utility
Microsoft OLE DB Provider for DB2 and Microsoft ODBC Driver for DB2 are implemented as IBM Distributed Relational
Database Architecture (DRDA) application requesters. These features use DB2 packages to issue dynamic SQL statements and
call DB2 stored procedures. The provider and driver create packages dynamically in the location to which the user points using
the Package Collection attribute in the data source definition.

By default, the provider automatically creates one package in the target collection, if one does not exist, at the time the user
issues the first SQL statement (or calls SQL catalog to fetch schema information). The package is created with GRANT EXECUTE
authority to a single <AUTH_ID> only, where AUTH_ID is based on the User ID value that is configured in the data source. The
package is created for use by SQL statements issued under the same isolation level that is associated with the transaction
isolation level property and parameter. If no transaction isolation level is specified, the default for mainframe DB2 is CS and for
other platforms the default is NC.

Multiuser Environments

A problem can occur in multiuser environments. For example, if User A specifies a Package Collection value that represents a
DB2 collection used by multiple users, but User A does not have authority to GRANT execute rights to the packages to other
users (for example, PUBLIC), the package is created for use only by User A. This means that User B might be unable to access
the required package. The solution is for an administrative user who has package administrative rights (for example, PACKADM
authority in DB2 for OS/390) to create a set of packages for use by all users.

Host Integration Server offers the Create Packages for DB2 utility, which an administrator can use to create packages. This
utility can be run using a privileged User ID to create packages in collections accessed by multiple users. The utilities create the
following sets of packages and grant EXECUTE privilege to PUBLIC for all:

AUTOCOMMIT package (MSNC001)

READ_UNCOMMITTED package (MSUR001)

REPEATABLE_READ package, (MSRR001)

READ_COMMITTED package, (MSCS001)

SERIALIZABLE or REPEATABLE_READ package (MSRS001)

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, DB2/400 QSYS.SYSPACKAGE, and DB2
UDB SYSIBM.SYSPACKAGE catalog tables.

Note
When you are upgrading to Host Integration Server from Microsoft SNA Server 4.0 Service Pack 2 or Service Pack 3, you mu
st re-create any existing packages by running the CrtPkg utility.

See Also
Tasks
How to Create Packages for DB2
Concepts
Support for Isolation Levels Using the ODBC Driver for DB2
OLE DB Provider for DB2
Other Resources
Support for Isolation Levels Using the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa754781(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705391(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754706(v=bts.10).aspx
http://go.microsoft.com/fwlink/?LinkID=148814

ODBC Driver for DB2
Microsoft ODBC Driver for DB2 enables access over SNA LU 6.2 and TCP/IP networks to remote DB2 databases. This driver is
implemented as an IBM Distributed Relational Database Architecture (DRDA) application requester that can connect to most
DRDA-compliant DB2 systems, including MVS, OS/390, OS/400, AIX RS/6000, and Microsoft Windows.

You can use the driver interactively or from an application program to issue SQL statements and execute DB2 stored
procedures. From Microsoft Office Excel, users can import DB2 tables into worksheets and use Excel graphing tools to analyze
the data. From Microsoft Office Access, users can import from and export to DB2. Using Microsoft Internet Information
Services (IIS), developers can publish DB2-stored information to users through a Web browser interface.

See Also
Tasks
How to Add an ODBC Data Source
Other Resources
Data Access

https://msdn.microsoft.com/en-us/library/aa705189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704865(v=bts.10).aspx

How to Add an ODBC Data Source
Follow these steps to add an ODBC data source.

To add an ODBC data source

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click ODBC Data Sources.

3. Click Add.

4. Click ODBC Driver for DB2, and then click Finish.

For additional information about specific ODBC Driver for DB2 parameters, see
Configuring a Data Source for the ODBC Driver for DB2.

Note
You can also display the ODBC Data Sources configuration tool from the shortcut located in the Host Integration Server prog
ram group.

See Also
Other Resources
Data Access
Data Integration User's Guide

https://msdn.microsoft.com/en-us/library/aa746212(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746214(v=bts.10).aspx

How to Create Packages for DB2
Microsoft OLE DB Provider for DB2 and Microsoft ODBC Driver for DB2 are implemented as IBM Distributed Relational
Database Architecture (DRDA) Application Requesters. These features use DB2 packages to issue dynamic SQL statements and
call DB2 stored procedures. The provider and driver create packages dynamically in the location to which the user points using
the Package Collection attribute in the data source definition.

To launch the Create Package utility

1. Click Start, point to Programs, and then point to Host Integration Server.

2. Point to Data Integration, and then click Packages for DB2.

See Also
Tasks
How to Add an ODBC Data Source
Concepts
Create Package Utility

https://msdn.microsoft.com/en-us/library/aa705189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770921(v=bts.10).aspx

Create Package Utility
Microsoft OLE DB Provider for DB2 and Microsoft ODBC Driver for DB2 are implemented as IBM Distributed Relational
Database Architecture (DRDA) Application Requesters. These features use DB2 packages to issue dynamic SQL statements and
call DB2 stored procedures. The provider and driver create packages dynamically in the location to which the user points using
the Package Collection attribute in the data source definition.

By default, the provider automatically creates one package in the target collection, if one does not exist, at the time the user
issues the first SQL statement (or calls SQL catalog to fetch schema information). The package is created with GRANT EXECUTE
authority to a single <AUTH_ID> only, where AUTH_ID is based on the User ID value that is configured in the data source. The
package is created for use by SQL statements issued under the same isolation level associated with the transaction isolation
level property and parameter. If no transaction isolation level is specified, the default for mainframe DB2 is CS, and the default
for other platforms is NC.

Multiuser Environments

A problem can occur in multiuser environments. For example, if User A specifies a Package Collection value that represents a
DB2 collection that is used by multiple users, but User A does not have authority to GRANT execute rights to the packages to
other users (for example, PUBLIC), the package is created for use only by User A. This means that User B might be unable to
access the required package. The solution is for an administrative user who has package administrative rights (for example,
PACKADM authority in DB2 for OS/390) to create a set of packages for use by all users.

Host Integration Server offers the Create Packages for DB2 utility, which an administrator can use to create packages. This
utility can be run using a privileged User ID to create packages in collections accessed by multiple users. The utilities create the
following sets of packages and grant EXECUTE privilege to PUBLIC for all:

AUTOCOMMIT package (MSNC001)

READ_UNCOMMITTED package (MSUR001)

REPEATABLE_READ package, (MSRR001)

READ_COMMITTED package, (MSCS001)

SERIALIZABLE or REPEATABLE_READ package (MSRS001)

For a table that maps the DB2 isolation levels to the ANSI isolation levels, see the following topics:

Support for Isolation Levels Using the OLE DB Provider for DB2

Support for Isolation Levels Using the ODBC Driver for DB2

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, DB2/400 QSYS.SYSPACKAGE, and DB2
UDB SYSIBM.SYSPACKAGE catalog tables.

Note
When you are upgrading to Host Integration Server from Microsoft SNA Server 4.0 Service Pack 2 or Service Pack 3, you mu
st re-create any existing packages by running the CrtPkg utility.

See Also
Tasks
How to Create Packages for DB2
How to Add an ODBC Data Source

http://go.microsoft.com/fwlink/?LinkId=148814
https://msdn.microsoft.com/en-us/library/aa705391(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705189(v=bts.10).aspx

File Transfer
Host File Transfer gives a user the ability to move a file between the local computer and a host system.

In This Section

Host File Transfer

https://msdn.microsoft.com/en-us/library/aa745415(v=bts.10).aspx

Host File Transfer
Host File Transfer gives a user the ability to move a file between the local computer and a host system. Host Integration Server
provides this service by using a single ActiveX control. This extends the ability for the client application to perform file transfer
operations from many client development environments.

For an example of the correct usage of the File Transfer ActiveX control, see the following SDK sample:

SDK/Samples/FileTransfer/TestConnectVB/TestConnect.exe

Samples in this directory can also be used as fully functional utilities.

See Also
Concepts
Data Description

https://msdn.microsoft.com/en-us/library/aa704829(v=bts.10).aspx

Data Description
With the Microsoft OLE DB Provider for AS/400 and VSAM, you can directly access record-level data in mainframe VSAM,
Partitioned Data Sets (PDS), and midrange OS/400 files from an application that uses OLE. The OLE Database (OLE DB) is a
standard set of interfaces that provides heterogeneous access to disparate sources of information located anywhere — file
systems, e-mail folders, and databases. The OLE DB Provider for AS/400 and VSAM combines the universal data access of OLE
DB with the record-level input/output (RLIO) protocol of IBM's Distributed Data Management (DDM) architecture.

In addition to describing tables that are used by the Microsoft OLE DB Provider for AS/400 and VSAM, you can describe tables
for the File Transfer utility. To indicate that a given table is to be used by the File Transfer utility, select the Properties page for
the table and select the Use Table for File Transfer check box. Leaving this box cleared indicates that the table is to be used
by the Microsoft OLE DB Provider for AS/400 and VSAM.

In addition to the sample applications provided on the Host Integration Server CD-ROM, many of the sample programs that
ship as part of the Microsoft Data Access Components (MDAC) SDK can be used with the OLE DB Provider for AS/400 and
VSAM. To use the OLE DB Provider for AS/400 and VSAM, you must specify SNAOLEDB for the provider name.

For more information about how to use the Data Description utility, see the Host Integration Server SDK documentation.

See Also
Concepts
Host File Transfer
Other Resources
Data Integration User's Guide

https://msdn.microsoft.com/en-us/library/aa745415(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746214(v=bts.10).aspx

How to Add or Configure a Data Link for Windows
The following procedure shows the process for adding or configuring a data link.

To add or configure a data link for Windows

1. Click Start, point to Programs, and then point to Host Integration Server.

2. Point to Data Integration, and then click OLE DB Data Source.

The Data Link Properties dialog box appears.

3. Configure the data source information for the selected provider.

Click Help for more information.

4. Click OK to save the data link.

See Also
Concepts
Host File Transfer
Data Description
Other Resources
Data Access

https://msdn.microsoft.com/en-us/library/aa745415(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704829(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704865(v=bts.10).aspx

Network Integration User's Guide
The topics in this section provide an overview of network communication in a Host Integration Server environment and
describe the services you can use to manage it.

In This Section

IP-DLC Link Service

SNA Service

Host Print Service

TN Service

Active Directory Services

Host Configuration

Applications and Tools

https://msdn.microsoft.com/en-us/library/aa745825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771061(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705225(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745005(v=bts.10).aspx

IP-DLC Link Service
This section describes the configuration and use of the IP-DLC Link Service.

In This Section

Introduction to the IP-DLC Link Service

Managing IP-DLC Link Services

Managing IP-DLC Link Service Connections

Secure Deployment of the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa754488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705792(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx

Introduction to the IP-DLC Link Service
This section describes the overall architecture of the Host Integration Server system with IP-DLC link service functionality.

IP-DLC is a Host Integration Server feature that provides SNA connectivity for applications using dependent and independent
sessions over a native IP network. It implements the HPR/IP protocol, which is also known as HPR over IP or Enterprise
Extender. Each SNA packet is transmitted natively across the IP network as a UDP datagram.

In This Section

System Overview

Supported Features

Scalability

Key Limitations

IP-DLC Link Service Concepts and Terminology

https://msdn.microsoft.com/en-us/library/aa705024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745404(v=bts.10).aspx

System Overview
This topic outlines key points of the Host Integration Server implementation of the IP-DLC link service.

The IP-DLC link service is configured and managed by the Host Integration Server administrator as for any other link
service.

To provide the support required for transporting dependent LU sessions across an APPN network, the IP-DLC link service
runs the DLUR feature as defined by the SNA/APPN DLUR Architecture Reference. This provides dependent LU session
support to a CS/390 host running the matching DLUS feature.

The IP-DLC link service operates as a Branch Network Node (BrNN) as defined in the SNA/APPN Branch Extender
Architecture Reference. When large numbers of Host Integration Server systems are connected to a mainframe, the
Branch Network Node configuration ensures that the overhead of topology and network search traffic on the Host
Integration Server and mainframe links is minimal—comparable to using Host Integration Server without the IP-DLC link
service.

Multiple IP-DLC link services can be configured, one for each local IP address on the Host Integration Server system.

Multiple IP-DLC connections are supported for each IP-DLC link service. There is one IP-DLC connection for each PU local
to Host Integration Server.

Remote independent LUs are associated with an IP-DLC link service instead of a connection. All remote independent LUs
accessible through an IP-DLC link service are associated with the single peer connection for the IP-DLC link service. All
independent LU traffic is routed by the APPN network and may traverse any active HPR/IP link.

See Also
Concepts
Supported Features
Scalability
Key Limitations
IP-DLC Link Service Concepts and Terminology

https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745404(v=bts.10).aspx

Supported Features
This topic lists the features that are supported over the IP-DLC link service.

Base SNA Features

The following existing Host Integration Server SNA features are supported over the IP-DLC link service:

LU types 0, 1, 2, 3 and 6.2 (dependent and independent)

LUA, FMI, APPC, and CPI-C APIs

Dynamically Defined Dependent LUs (DDDLUs)

Dynamic addition of local LUs, remote LUs, and connections

Incoming and outgoing calls

Connection Activation at Server startup, on demand or by administrator

SNA data compression

PU concentration with the upstream link over IP-DLC

NetView RUNCMD/Alerts (note that the IP-DLC link service does not generate alerts)

Because the preceding SNA features are supported, it follows that the following applications are also supported over the IP-
DLC link service:

Host Integration Server-compatible 3270 emulators

Host Integration Server-compatible 5250 emulators

APPC - 3270 Session Viewer (including the LU-LU Test feature)

Host Print Service

Data Integration Services

Local and remote administration

TN3270 server

TN5250 server

MSMQ-MQSeries Bridge

Transaction Integrator

Fault Tolerance Features

Note that because the IP-DLC link service uses the APPN and HPR/IP protocols, it is automatically able to take advantage of the
following fault tolerance features:

Ability to reroute sessions around a failure in the network provided that an alternative route exists.

Ability for mainframe applications to be moved to a different processor with little or no impact to users when system or
application failures occur on the mainframe.

Load Balancing Features

Load balancing for a single IP-DLC link service, with a single local IP address, over multiple adapter cards can be achieved
using NIC Teaming at the MAC layer. The IP-DLC link service handles frames arriving out of sequence.

Security Features

Because the IP-DLC link service uses UDP/IP, the Windows IPSec feature can be used to provide end-to-end data security over
the IP-DLC link service. Windows handles configuration of IPSec independently. No specific configuration is required for the IP-
DLC link service.

Diagnostic Features

The diagnostics provided by the IP-DLC link service are used through the Host Integration Server Tracer Initiator and Trace
Viewer facilities.

See Also
Concepts
System Overview
Scalability
Key Limitations
IP-DLC Link Service Concepts and Terminology

https://msdn.microsoft.com/en-us/library/aa705024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745404(v=bts.10).aspx

Scalability
The IP-DLC link service supports the Host Integration Server capacity of 30,000 simultaneous host sessions per server.

Note
Four nodes are required to achieve 30,000 simultaneous host sessions and a single node supports a maximum of 15,000 sim
ultaneous host sessions.

See Also
Concepts
System Overview
Supported Features
Key Limitations
IP-DLC Link Service Concepts and Terminology

https://msdn.microsoft.com/en-us/library/aa705024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745404(v=bts.10).aspx

Key Limitations
The key limitations with the IP-DLC link service implementation are as follows:

The IP-DLC link service cannot be run as a distributed link service (DLS).

The PU Passthrough and Downstream connections are not supported over IP-DLC connections. It is not possible to have
a one-to-one correspondence between upstream and downstream messages where the upstream connection is an IP-
DLC connection.

Each IP-DLC link service must use a different CP name from the SNA node service.

Each IP-DLC link service requires a unique local IP address. If multiple IP-DLC link services are required, each must have
its own unique local IP address.

A single IP-DLC link service cannot be shared by multiple SNA node services. Each SNA node service must use a different
IP-DLC link service for IP-DLC connectivity.

See Also
Reference
Key Limitations
Concepts
System Overview
Supported Features
Scalability

https://msdn.microsoft.com/en-us/library/aa705024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx

IP-DLC Link Service Concepts and Terminology
The following is a brief introduction to the terminology and concepts that are referred to in this section, including APPN and
HPR.

Session

A session is a logical connection between two network accessible units (NAUs). The most common example of an NAU is a
logical unit (LU) (for more information, see Logical Unit (LU) later in this topic).

Physical Unit (PU)

The component that manages and monitors the resources (such as attached links and adjacent link stations) associated with a
node. This term applies to non-APPN nodes only.

Logical Unit (LU)

A logical unit (LU) is a port through which an application or end user accesses the SNA network to communicate with another
application or end user. An LU may be capable of supporting many sessions with other LUs.

There are two types of LUs:

Dependent LUs require assistance from a mainframe to establish a session with another LU. These are also sometimes
referred to as old LUs.

Independent LUs can establish a session with another LU without the assistance of a mainframe.

APPN

Advanced Peer-to-Peer Networking (APPN) is a network architecture that supports distributed network control. It makes
networks easier to configure and use, provides centralized network management, and supports flexible connectivity.

APPN Nodes

APPN nodes include systems of various sizes, such as mainframes using CS/390, Solaris servers running DCLs SNAP-IX, PCs
running IBM Communications Server for Windows NT/2000 and IBM AS/400.

In an APPN network, nodes can be one of the following types:

Network Nodes (NN)

End Nodes (EN)

Branch Network Nodes (BrNN)

Low-entry networking nodes (LEN nodes)

Each node in an APPN network is connected to at least one other node in the APPN network. Where supported, CP-CP (Control
Point to Control Point) sessions are established over these connections to adjacent nodes (nodes in the same network that can
establish direct connections without going through a third node). CP-CP sessions are used to exchange network topology
information, request the location of network resources, and manage sessions. All of the nodes in an APPN network share a
common network name.

Network Node

A Network Node provides distributed directory and routing services for all LUs in its domain, where its domain is all directly
attached End Nodes and LEN nodes that are using the services of the Network Node. The Network Node is referred to as the
Network Node Server (NNS) for those directly attached End Nodes and LEN nodes.

A Network Node provides the following services:

LU-LU session services for its local LUs.

Directory searches and route selection for all LUs in its domain.

Intermediate session routing for sessions between LUs on different nodes.

Routing for Management Services (MS) data, such as alerts, between a served End Node or LEN node and an MS focal
point.

End Node

An End Node is an end point in an APPN network. It maintains directory information only for local resources. An APPN End
Node can independently establish sessions between local LUs and LUs on adjacent nodes. For sessions with LUs on nodes not
directly connected to the End Node, an End Node requests routing and directory information from its Network Node Server
using CP-CP sessions.

End Nodes can register their local LUs with their Network Node Server. This capability means the network operator at the
Network Node Server does not have to predefine the names of all LUs on the attached End Nodes to which the Network Node
provides services.

An End Node can be attached to multiple network nodes, but it can have CP-CP sessions active with only one Network Node at
a time: its Network Node Server. The other Network Nodes can be used only to provide intermediate routing for the end node
or as substitute Network Node servers if the main Network Node Server becomes unavailable.

An End Node can also have a direct connection to another End Node or LEN node, but CP-CP sessions are never established
between the two nodes.

LEN Node

A LEN Node is a type 2.1 node that uses independent LU 6.2 protocols, but does not support CP-CP sessions. It can be
connected to a Network Node or End Node but does not support APPN functions. The existing SNA node of Host Integration
Server is a LEN node.

A Network Node can provide routing services for an attached LEN node, enabling the LEN node to participate in an APPN
network without requiring links to be defined between the LEN node and all of the nodes in the APPN network.

LUs in the APPN network with which the LEN node may want to establish sessions must be defined to the LEN node as if they
reside on the LEN node's Network Node server. The LEN node establishes sessions with LUs defined to be contacted through
its Network Node Server. The Network Node routes the session through the APPN network to the node in the network where
the LU actually resides.

LUs on the LEN node must be predefined to the Network Node that serves the LEN node. LU resources on LEN nodes (unlike
those on End Nodes) cannot be registered on the Network Node Server by the LEN node.

When a LEN node's only link is to an End Node, the LEN node can communicate only with LUs on the End Node through the
direct link between the two nodes. This is because an End Node cannot provide intermediate routing.

Branch Network Node

The Branch Network Node (BrNN) combines the functions of a Network Node and an End Node. As the name implies, a BrNN
can be used to subdivide a network into a backbone network and attached branch networks. The BrNN provides the following
functions:

To the backbone network, the BrNN appears as an End Node, connected to its Network Node Server (NNS) in the
backbone network.

The nodes in the backbone network are not aware of the nodes within the branch, reducing the amount of topology
information that must be stored.

Because the BrNN appears as an End Node, it does not receive topology information from the backbone network
(topology information is transmitted only between Network Nodes) reducing the amount of network overhead traffic
flowing into the branch network.The BrNN registers all resources in the branch with its NNS as though they were located
on the BrNN itself. This means that the nodes in the backbone network can locate resources in the branch without having
to be aware of the separate nodes in the branch.

To the branch network, the BrNN appears as a Network Node, acting as the NNS for End Nodes and LEN Nodes in the
branch.

High Performance Routing

High Performance Routing (HPR) is an extension of the APPN architecture. HPR provides the following functions:

Rapid Transport Protocol (RTP) minimizes processing cycles and storage requirements for routing network layer packets
through intermediate nodes on a session route.

Automatic network routing (ANR) enables APPN networks to automatically reroute sessions if a portion of the originally
computed route fails.

Dependent LU Requester/Server

Dependent LU Requester (DLUR) function enables sessions for dependent LUs to reside on remote nodes across an APPN
network, instead of requiring a direct connection to the host.

DLUR works in conjunction with Dependent LU Server (DLUS) at the host. Together, they route sessions across the network
from dependent LUs in the APPN network to the DLUS host. The route to the host can span multiple nodes and can take
advantage of APPN's network management, dynamic resource location, and route calculation facilities.

If the local node is a Network Node, dependent LUs on downstream computers can also use pass-through DLUR, in the same
way that LUs internal to the node do, to access the host across the network.

See Also
Concepts
System Overview
Supported Features
Scalability
Key Limitations

https://msdn.microsoft.com/en-us/library/aa705024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx

Managing IP-DLC Link Services
This section gives procedures for creating, configuring, viewing, and deleting IP-DLC link services.

In This Section

Supported Features

Scalability

Key Limitations

Deleting Link Services

Link Service and the LnkCfg Utility

https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771494(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746047(v=bts.10).aspx

Creating an IP-DLC Link Service
You create and configure an IP-DLC link service as you would create any other link service.

To create an IP-DLC link service

1. In the SNA Manager, locate the computer on which you want to create the IP-DLC link service.

2. Right-click the Link Services folder under that computer.

3. On the context menu, click New/Link Service. The Insert Link Service dialog box appears.

4. From the list of available link services, select IP-DLC Link Service.

5. Click Add to load the IP-DLC Link Service properties dialog box.

6. To configure the new link service, follow the steps for Configuring an IP-DLC Link Service.

See Also
Other Resources
Managing IP-DLC Link Services

https://msdn.microsoft.com/en-us/library/aa744907(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705792(v=bts.10).aspx

Viewing Link Services
As with other link services, you can view IP-DLC link services in the list view of the Link Services folder.

To view link services

1. In the scope pane of the Host Integration Server MMC snap-in, locate the computer with the link services that you want
to view.

2. Expand the list for that computer.

3. Select the Link Services folder. The link services for that computer will appear in the right pane.

See Also
Other Resources
Managing IP-DLC Link Services

https://msdn.microsoft.com/en-us/library/aa705792(v=bts.10).aspx

Viewing Link Service Properties
As with other link services, you can view IP-DLC link service properties by using the context menu in the list view of the Link
Services folder.

To view link service properties

1. In the scope pane of the Host Integration Server MMC snap-in, locate the computer with the link services that you want
to view.

2. Expand the list for that computer.

3. Select the Link Services folder.

The link services for that computer appear in the right pane.

4. Right-click the appropriate link service, and then click Properties. The Link Service Properties page appears.

5. Click Configure.

The properties for this IP-DLC link service appear, and can be viewed or edited.

See Also
Other Resources
Managing IP-DLC Link Services

https://msdn.microsoft.com/en-us/library/aa705792(v=bts.10).aspx

Deleting Link Services
As with other link services, you can delete an IP-DLC link service in the MMC snap-in.

Note
When you delete a link service, all related connections will no longer be associated with any link service. A user might associa
te such a connection with any other IP-DLC link service that is associated with the node. Deleting a node associated with a lin
k service will break association between these items.

To delete a link service

1. In the scope pane of the Host Integration Server MMC snap-in, locate the computer with the link services that you want
to delete.

2. Expand the list for that computer.

3. Right-click the appropriate link service, and then click Delete.

See Also
Other Resources
Managing IP-DLC Link Services

https://msdn.microsoft.com/en-us/library/aa705792(v=bts.10).aspx

Link Service and the LnkCfg Utility
LnkCfg is a useful command-line utility for deploying and managing link services. The format of the command line for
configuring the link service is specified as follows.

LINKCFG LINKSVC "Title"

/SERVER:servername

/LSTYPE:"IP-DLC Link Service"

/PRIMARYNNS:NNSServer

/BACKUPNNS:NNSServer

[/LOCALADDRESS:ipaddress] or [/ADAPTER:adaptername]

/NETWORKNAME:networkname

/CPNAME:name

/NODEID:"xxx.xxxxx"

/LENNODE:lennode

The following table describes the command-line parameters.

Property Description Content
"Title" Title of the link service. 1-128 characters.

/SERVER:servernam
e

Name of the server. Valid server name.

/PRIMARYNNS:NNS
Server

Primary network node server. DNS name or IP address.

/BACKUPNNS:NNSS
erver

Backup network node server. DNS name or IP address.

/ADAPTER:adaptern
ame

Name of the local adapter. /ADAPTER and /LOCALADDRESS argu
ments should not be used together.

Name of the physical or logical adapter
on the computer.

/LOCALADDRESS:ip
address

Local address. /ADAPTER and /LOCALADDRESS arguments shoul
d not be used together.

Valid IP address or server name.

/NETWORKNAME:n
etworkname

Network name of the Branch Network Node implemented by the
link service.

1-8 characters SNA Type A string.

/CPNAME:name Control point name of the Branch Network Node implemented b
y the link service.

1-8 characters SNA Type A string.

/NODEID:"xxx.xxxxx" Identity of the Branch Network Node implemented by the link se
rvice.

String in format HHH.HHHHH where H
is a hexadecimal digit.

/LENNODE:lennode Name of the associated LEN node. Name of a LEN node deployed on the l
ocal computer.

See Also
Other Resources
Managing IP-DLC Link Services

https://msdn.microsoft.com/en-us/library/aa705792(v=bts.10).aspx

Managing IP-DLC Link Service Connections
This section gives procedures for creating, configuring, viewing, and deleting IP-DLC link service connections.

In This Section

System Overview

Supported Features

Scalability

Key Limitations

IP-DLC Link Service Concepts and Terminology

https://msdn.microsoft.com/en-us/library/aa705024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745404(v=bts.10).aspx

Creating an IP-DLC Connection
You create and configure an IP-DLC link service connection as you would create any other link service connection.

To create an IP-DLC connection

1. In the scope pane of the Host Integration Server MMC snap-in, locate the computer on which you want to create the IP-
DLC link service connection.

2. Under that computer, expand SNA Service.

3. Right-click the Connections folder under that computer.

4. On the context menu, click New, and then click IP-DLC.

5. To configure the new link service connection, follow the steps for Configuring an IP-DLC Connection.

See Also
Tasks
Viewing Connections
Viewing Link Service Properties
Concepts
Defining Dependent LUs
Connections and the SnaCfg Utility
Secure Deployment of the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa753933(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704969(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx

Viewing Connections
As with other connections, you can view IP-DLC link service connections in the list view of the Connections folder.

To view connections

1. In the scope pane of the Host Integration Server MMC snap-in, locate the computer with the link services that you want
to view.

2. Expand the list for that computer, expand SNA Service, and expand Connections. The link service connections for that
computer will appear in the right pane.

See Also
Tasks
Creating an IP-DLC Connection
Viewing Link Service Properties
Concepts
Defining Dependent LUs
Connections and the SnaCfg Utility
Secure Deployment of the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa770745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704969(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx

Viewing Connection Properties
As with other link services, you can view IP-DLC link service properties by using the context menu in the list view of the Link
Services folder.

To view connection properties

1. In the scope pane of the Host Integration Server MMC snap-in, locate the computer with the link service connections that
you want to view.

2. Expand the list for that computer, expand SNA Service, and expand Connections. The link service connections for that
computer will appear in the right pane.

3. Right-click the appropriate link service connection, and then click Properties. The Connection Property page will
appear, and the properties for this connection can be viewed or edited.

See Also
Tasks
Creating an IP-DLC Connection
Viewing Connections
Concepts
Defining Dependent LUs
Connections and the SnaCfg Utility
Secure Deployment of the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa770745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx

Defining Dependent LUs
You can configure dependent LUs (both 3270 and LUA) as you would with any other link service.

See Also
Tasks
Creating an IP-DLC Connection
Viewing Connections
Concepts
Connections and the SnaCfg Utility
Secure Deployment of the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa770745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx

Connections and the SnaCfg Utility
SnaCfg is a useful command-line utility for deploying and managing SNA Server configurations.

The following table describes the command-line parameters.

Property Description Validation

/conntype:ty
pe

Connection type. IP-DLC.

/RemoteAdd
ress:adr

Address of the remote DLUS service. This property is not accessible through the user interface.
It provides a way of establishing a direct connection with DLUS rather than routing the connect
ion through the NNS.

Valid IP address o
r DNS name.

/PrimNetwo
rkName:na
me

Network name of the primary DLUS server. 1–8 characters, S
NA Type A string.

/PrimCPNa
me:name

Control point name of the primary DLUS server. 1–8 characters, S
NA Type A string.

/BackupNet
workName:
name

Network name of the backup DLUS server. 1–8 characters, S
NA Type A string.

/BackupCPN
ame:name

Control point name of the backup DLUS server. 1–8 characters, S
NA Type A string.

/DLURRetry
Type:N

DLUR retry type. 0 indicates none

1 indicates infinit
e

2 indicates limite
d

/DLURRetry
Limit:N

DLUR retry limit. This parameter is invalid unless the DLUR retry type is set to limited. 1–65534

/DLURRetry
Delay:N

Delay after a DLUR retry. This parameter is invalid unless the DLUR retry type is set to limited. 1–65535

/RetryLimit:
N

Number of the connection retries. 0 indicates unlimi
ted

1–65534 number
of retries

/RetryDelay:
N

Delay after a connection retry. 0–327670, must
be a factor of 5.

/XIDFormat:
N

XID type. Set to:

1 – "Format 3"

/RemoteNet
Name:name

This value is always set to the network name of the IP-DLC link service. Must be left blan
k for a new conne
ction.

/RemoteCP
Name:name

This value is always set to the control point name of the IP-DLC link service. Must be left blan
k for a new conne
ction.

See Also
Tasks
Creating an IP-DLC Connection
Viewing Connections
Concepts
Defining Dependent LUs
Secure Deployment of the IP-DLC Link Service

https://msdn.microsoft.com/en-us/library/aa770745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771065(v=bts.10).aspx

Secure Deployment of the IP-DLC Link Service
The IP-DLC link service takes advantage of the entire Host Integration Server secure deployment feature set, especially the
following:

A typical IP-DLC link service deployment scenario may use Internet Protocol security (IPSec), a firewall, or a virtual private
network (VPN) as a security barrier between the Host Integration Server computer and the remote node. (A VPN is
advisable if the HPR/IP link spans an insecure IP network.)

Incoming frames from IP addresses that are not already defined in Host Integration Server are rejected. This isolates the
main SNA node service from such attack.

The IP-DLC link service checks the length of incoming datagrams before copying the data into internal data areas, and
discards any that are too long.

All configuration data—whether from registry entries, COM.cfg, or the SNA node service—is validated for correct value
when first accessed. Particular consideration is given to validating lengths to avoid buffer overruns. If any errors are
found, the IP-DLC link service logs an event and terminates.

See Also
Tasks
Creating an IP-DLC Connection
Viewing Connections
Concepts
Defining Dependent LUs
Connections and the SnaCfg Utility

https://msdn.microsoft.com/en-us/library/aa770745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745026(v=bts.10).aspx

SNA Service
The core of the power of Host Integration Server is its ability to provide a wide range of host connectivity services. Host
Integration Server uses client/server architecture to distribute communications processing. This architecture maximizes the
power of the host, Host Integration Server, and individual client computers. Within the context of Host Integration Server, a
connection is the data communication path between a Host Integration Server computer and an IBM host (mainframe or
AS/400). A connection is what makes it possible for a client computer on a local area network (LAN), using standard LAN
protocols, to communicate with a host by means of one or more Host Integration Server computers. Each server supports up
to 3,000 users operating 30,000 concurrent sessions, 8,000 split stock users per node, four nodes per server.

In This Section

Communication Between Host Integration Server Computers and a Host Computer.

Communication Between Multiple Host Integration Server Computers.

Communication Between Host Integration Server Computers and Client Computers.

https://msdn.microsoft.com/en-us/library/aa744700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705177(v=bts.10).aspx

Communication Between Host Integration Server Computers
and a Host Computer

Within the context of Host Integration Server, a connection is the data communication path between a Host Integration Server
computer and an IBM host (mainframe or AS/400). A connection corresponds to a physical unit (PU) definition on a mainframe
or an APPC controller definition on an AS/400. The connection is what makes it possible for a personal computer on the LAN
to communicate with a host by means of a Host Integration Server computer. Note that SNA connections do not use BISYNC,
an older IBM standard for communications.

The following figure shows a Host Integration Server network connected to an IBM mainframe.

Host Integration Server network connected to IBM mainframe

For each physical adapter or connection, an appropriate link service is installed and configured within Host Integration Server.
The link service is a Windows server service or device driver that is used to control server-to-host communication adapters
supported by Host Integration Server. The link service provides the SNA data link-level protocol used by the Host Integration
Server computer to communicate with the host.

After being configured, the link service is available for use not only on the configured Host Integration Server, but also on any
Host Integration Server computer in the subdomain using the Distributed Link Service feature of Host Integration Server.

After a link service is configured, you can create connections. A link service may support multiple links to one or more hosts.

In SNA terms, the combination of a connection and the link service it uses is equivalent to a PU. In hierarchical SNA networks,
Host Integration Server provides PU 2.0 functionality. For peer-oriented SNA networks, Host Integration Server provides
PU 2.1 LEN node functionality.

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Physical Unit (PU)
Although the name physical unit (PU) strongly implies a hardware component, a PU is an IBM naming convention for hardware
and software combinations that perform a specific task in an SNA network. For example, PU 5 represents not only the
mainframe itself, but also the mainframe software components (such as SSCP and VTAM) within the SNA network.

The following table lists the SNA defined PU types and a brief description of each.

PU numbe
r

Description

PU 1 Terminal Controller (IBM 6670, 3767)

PU 2 Cluster controller running configuration support programs (IBM 3174, 3274, 4701, 4702)

PU 2.1 Peer-to-Peer (APPN), used primarily in AS/400 networks

PU 4 IBM Front End Processor, usually running ACF and the Network Control Program (IBM 3754, 3725, 3720, 3745, 3
746)

PU 5 IBM Host (mainframe) system

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Logical Unit (LU)
A logical unit (LU) is a configurable unit of software that contains the information needed to specify the type of
communications session with the host computer or peer system. Thus, an LU is a point of access to the Host Integration Server
network. There are several types of LUs:

APPC

3270

Downstream

Logical unit application (LUA)

LUs represent a set of functions that manage the exchange of data between users and applications, acting as intermediaries
between the user and the network. Host Integration Server protocols identify several LUs on host computers that represent
specific functions. The following table is a list of LU numbers and a brief functional description.

LU number Description
LU 0 (also LU/A or L
UA, logical unit appl
ication)

General purpose LU for development of specialized applications such as TN3270. Used for program-to-pr
ogram communications in hierarchical networks.

LU 1 LU 1 handles the transmission of printer data to network and system printers in SNA character string for
mat.

IBM 3287-type printers and Host Integration Server Host Print service that allows you to redirect print dat
a streams to LAN printers.

Used to communicate with multiple-device terminals.

LU 2 IBM monochrome terminals 3278 (3270)

IBM Color graphic terminals 3279/3179

Host Integration Server displays

LU 3 IBM 3284-style printers and Host Integration Server Host Print service, which allows you to redirect print
data streams to LAN printers. LU 3 is a simple printing protocol that uses the 3270 data stream format to
communicate with a single printer.

LU 4 IBM 6670 information distributor and is not supported through Host Integration Server.

LU 5 Not defined.

LU 6 LU 6.2 is most common revision. IBM 5250 devices and Host Integration Server local and remote APPC L
Us.

Provides peer-to-peer communication through Advanced Program-to-Program Communication (APPC) a
nd (Common Programming Interface for Communications (CPI-C).

LU 7 IBM 5250 display terminal. Used mainly on System 3.x but not on AS/400 systems.

On Host Integration Server computers, you can configure LUs to emulate the 3270 data streams needed to communicate with
the mainframes or 5250 data streams for AS/400 systems.

A 3270 LU is a dependent LU that requires the mainframe to function. It has a fixed designation, such as a display LU, printer
LU, logical unit application (LUA) LU, or downstream LU. Each type of LU has a specific number assigned to it. A 3270 LU on
Host Integration Server has an LU number, and a corresponding resource must be defined on the host computer. The 3270 LU
name is arbitrary and does not have to match the name of the resource on the host.

Additional information about APPC is available later in this section.

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Choosing a Connection Type
A Host Integration Server computer can use any of the types of connections described in this section. To choose a connection
type for your servers, you should first contact the host administrator and find out the type of connection available to the
mainframe or AS/400. If more than one type is available, choose a type based on comparisons of cost and speed.

For demonstration purposes, you can install the Demo SDLC link service, which receives messages from Host Integration
Server and responds to them itself from a prerecorded script.

The various adapters in a computer must be configured to work together so that there are no interrupt, port address, or direct
memory access (DMA) conflicts. When you install a new adapter in your computer, you may need to study the configuration of
the new and old adapters to make sure that there are no conflicts.

The following connection types are available:

802.2 Data Link Control (DLC 802.2)

Token ring, Ethernet, or Fiber Distributed Data Interface (FDDI) connections use the IEEE 802.2 protocol. With a
mainframe, an 802.2 connection goes to a 37xx front-end processor (FEP) or a 3174 communications controller (or,
rarely, to an adapter in the mainframe). With an AS/400 system, an 802.2 connection goes directly to the AS/400.

These connections are generally faster than other connections, except for channel connections. The following table
provides details.

Type of 802.2
connection

Common speeds

Token ring 4 megabits per second (Mbps) or 16 Mbps.

Ethernet/Fast E
thernet

10–100 Mbps.

FDDI 100 Mbps (or more); however, the FDDI line communicates through a front-end processor that is channe
l-attached to the mainframe, and this may limit the overall speed of communications.

DLC 802.2 also has certain limitations. The 802.2 link service cannot support more than one 802.2 connection to the
same MAC address and destination SAP (that is, to the same host) at the same time, whether the connections originate
from the local or a remote SNA Server computer. The 802.2 protocol specification does not permit two distinct
connections to have the same Source MAC, Source SAP, Destination MAC, and Destination SAP. The 802.2 link service is
bound to a particular LAN adapter and source SAP value, and therefore uses the same source MAC and SAP for all
connections. To support multiple connections, you can:

Connect to different network adapters on the host.

Configure multiple 802.2 link services, all bound to the same LAN adapter but specifying different source SAPs.

Support multiple connections to a given host through the same 802.2 link service. Verify that the host is
configured to accept 802.2 connections on multiple SAPs. This can be configured to mainframe FEPs (but is rarely
used). AS/400s support multiple SAPs by default. These SAP values are configured as the remote SAP value on
the Host Integration Server connection, which is configured on the Host Integration Server computer using the
distributed link service.

This limitation applies to connections based on the 802.2 link service in general.

When you make an 802.2 link service available to distributed link service on other Host Integration Server computers, it
cannot be used by the local Host Integration Server computer, and is not visible in SNA Manager Console.

Synchronous Data Link Control (SDLC)

https://msdn.microsoft.com/en-us/library/aa745644(v=bts.10).aspx

SDLC uses a standard phone line, which can be leased or switched and can be point-to-point or multi-drop. An SDLC line
is used with a modem or other type of data circuit -terminating equipment (DCE) at each end. With a mainframe, an
SDLC line travels through a modem or other DCE to a 37xx front-end processor (FEP), 3174 communications controller,
or integrated synchronous adapter. With an AS/400 system, an SDLC line goes through a modem or other DCE, and then
directly to the AS/400.

An SDLC connection is slower than an 802.2 or channel connection. Common speeds for SDLC connections are listed in
the following table.

Type of transmission Common speeds

Analog (conventional phone line) 9600–56000 bits per second

Digital Data System (DDS) 56 kilobits per second (kbps) (sometimes 64 kbps)

Integrated Services Digital Network (ISDN) 56 kbps (can be more)

T1 carrier system (digital) 1.544 megabits per second (Mbps)

E1 carrier system (digital) 2.048 Mbps

SDLC connections are useful for wide-area connections between geographically disparate locations, or when bandwidth
and usage requirements are low. Because of these factors, SDLC is ideally suited for branch-type deployment strategies.

Host Integration Server supports SDLC connections using the link support that is included with it or through an SDLC
link service available through various third-party vendors. Not all supported SDLC adapters support all link speeds listed
in preceding table.

Distributed Link Service

The distributed link service feature provides a method for a Host Integration Server computer to connect to a host using
a link service installed on a different Host Integration Server computer. The network connecting SNA Server computers
need not support any SNA link level protocol such as DLC 802.2 or SDLC.

The distributed link service is configured in two parts: by installing the distributed link service on one SNA Server
computer and by marking a real link service on another computer as distributable. The distributed link service acts as a
proxy for sharing the distributable link service. It supports load balancing across multiple, distributed link services. It also
supports hot backup because the distributed link service can select alternate remote servers when a remote link fails. It
allows a branch SNA Server computer to connect to the host over a wide area network (WAN). This supports only
routable internetworking protocols such as TCP/IP, rather than requiring an SNA WAN protocol such as SDLC or bridged
DLC.

Distributed link services provide the following benefits:

The branch-based Host Integration Server computers provide split-stack SNA gateway service for local client
computers, simplifying configuration of the client computers. This conserves PUs and concentrates traffic on
behalf of several client computers, which saves valuable network bandwidth.

The branch-based Host Integration Server computer communicates with the central-site Host Integration Server
computers through a native TCP/IP connection, which eliminates DLC 802.2 time-out problems associated with
traditional SNA encapsulation methods.

Because the central site servers provide the equivalent of PU pass-through service for the branch-based servers,
the host operator sees each branch-based server as a PU and can manage the branches through standard
NetView alerts and RunCmds.

The branch-based servers can connect to the host through multiple centralized servers, load-balancing among
the multiple central-site servers at connect time.

Should a central-site server fail for any reason, the branch-based servers will automatically establish a new
connection through an alternate centralized server for hot backup.

Should the WAN fail for any reason, the branch-based Host Integration Server computers can be configured to
connect to the host through a direct dial-up SDLC connection as a backup that will be activated automatically
upon the host connection failure. It is actually activated upon the first request after a failure.

The routers at the branches only need to route TCP/IP, which provides for simplicity of WAN management and
cost savings.

Because the branch-based servers rely on WAN services provided by the leading networking vendors, the
distributed link service will work over all existing and future WAN technologies, including leased lines, X.25,
frame relay, and ATM networks.

Unlike other native TCP/IP solutions such as TN3270, the distributed link service is not limited in SNA
functionality. Each branch-based Host Integration Server computer provides full SNA access for the local personal
computers, including PU 2.0, PU 2.1, and APPN LEN service, as well as LU 0, LU 1, LU 2, LU 3, and LU 6.2 support.
Both mainframe and AS/400 access are supported.

Although the majority of customers are moving to TCP/IP networks, the distributed link service also fully
supports IPX protocols.

When Host Integration Server is set up to use more than one client/server protocol, distributed link service first attempts
to establish communication between the servers using TCP/IP, if available. If that fails, distributed link service next
attempts to connect using IPX/SPX. To designate a protocol other than TCP/IP as the primary protocol to be used by
distributed link service, use the Registry Editor to add or modify the values in the Windows registry. For an example of
the registry entry, see the Host Integration Server Administrators Reference.

By default, when you make a link service available to distributed link service on other servers, it will permit a connection
from distributed link service running on any remote server that is configured to connect to it. This is similar to the level of
access control permitted by traditional pass-through gateways. Any downstream device that is configured for the correct
MAC address can use the gateway.

However, you can restrict access to the distributed link service, requiring the remote distributed link service to provide a
valid Windows server username and password. The procedure requires coordination between the upstream and remote
servers.

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Communication Between Multiple Host Integration Server
Computers

Host Integration Server computers communicate with each other using mail slot or datagram broadcast messages. They use
the SnaBase service to keep track of names of servers, client computers, and available transaction programs (TPs), which are
the programs used for communication through Advanced Program-to-Program Communications (APPC) or Common
Programming Interface for Communications (CPI-C).

Microsoft Windows Server 2003 and Windows 2000 Server support multiple protocols simultaneously, but there is no need to
send the same Host Integration Server broadcasts over all available protocols. Using the SNA Manager Console, you can
specify the network protocol for server broadcasts. You must make sure that one protocol is available on all Host Integration
Server computers in the SNA subdomain, and use that protocol for server broadcasts. For more information, see
Configuring a Server Broadcast. The following figure shows a network in which TCP/IP is used for server-to-server
communications and IPX/SPX is used for client-to-server communications.

Using different protocols for server-to-server and client-to-server communications

Separate protocol used for server-to-server and client-to-server communications

It is recommended that you use only one protocol for server broadcasts. Using multiple server-to-server transport protocols
can add to network overhead because every server broadcast must be sent out through all the protocols selected.

Server broadcasts need to be configured only once for a subdomain; the configuration affects all servers in the subdomain.

The mean time between server broadcasts is specified in number of seconds, with the default being 60 seconds. Specifying a
smaller value brings heavier demands on the network because the broadcasts occur more often.

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa771098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Configuring a Server Broadcast
You can configure a server broadcast to ensure that your servers use the appropriate protocols for your network configuration.

To configure a server broadcast

1. In the SNA Manager tree, select the subdomain that you want to configure.

2. On the Action menu, click Properties.

3. Click the Server Broadcasts tab, fill in the options, and then click OK to exit.

4. On the Action menu, click Save configuration.

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Communication Between Host Integration Server Computers
and Client Computers

Client computers locate the resources of the Host Integration Server computer in either one of two ways:

Sponsor connection

Active Directory directory service

A sponsor connection is created when a client computer makes a request to communicate with a Host Integration Server
computer and an initial connection is established. The first Host Integration Server computer to respond to the request (called
the sponsor computer) provides the client computer with all the names of Host Integration Server computers in the
subdomain. From these names, the client computer locates an available LU or LU pool.

In a similar way, a client computer that is configured to use Active Directory makes a request to the Active Directory database.
Active Directory responds to the request and provides the client computer with all the names of Host Integration Server
computers in the Organizational Unit.

For client/server protocols to operate properly with Host Integration Server, both client computers and servers must have the
network software and the Host Integration Server software installed properly. The network protocols available for use by
various client operating systems are listed in the following table.

Operating system on client computer Client/server protocols

Windows Server 2003 or Windows 2000 Microsoft Networking (Named Pipes) Novell NetWare (IPX/SPX) TCP/IP

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Host Integration Server Client and SNA Communications
When a client computer makes an SNA request, the client computer must direct that request to a domain or to one or more
Host Integration Server computers. The appropriate way for a client computer to direct requests depends on the protocol used
and the relative location of client computers and servers. The following table lists the ways that client computers direct SNA
requests, and the information that will be requested by Setup during client software installation.

Network
protocol
used on cl
ient

How the client directs SNA requests Information to find out before running client s
etup

Microsoft
Networkin
g

Either to the local domain (if the Host Integration Server comp
uters are in the same domain as the client computer), or to on
e or two specific Host Integration Server computers in a remot
e domain.

Whether the client computer is in the same domain
as the Host Integration Server computers, and if no
t, one or two names of Host Integration Server com
puters.

Novell Net
Ware (IPX/
SPX)

To a specific domain. The Host Integration Server computers
must be located in this domain for the client computer to locat
e them.

The name of the SNA subdomain in which the Host
Integration Server computers are located.

TCP/IP Either to a domain name or to a specific server name, dependi
ng on what is specified in the SNA Client Mode or Host Integra
tion Server Location dialog box.

Contact your network administrator for additional i
nformation regarding a specific IP address for Host
Integration Server.

When a client computer first makes a request for communication with the SNA network, it establishes an initial connection (the
sponsor connection) with a Host Integration Server computer. The client computer then requests a logical unit (LU), either by
name or by requesting an LU from a particular pool of LUs. If the request is for a particular LU, the sponsor server responds by
providing the name of the Host Integration Server computer that contains the LU. If the request is for an LU pool, the sponsor
server responds by providing the client computer with all the names of Host Integration Server computers in its subdomain
that support the pool. From these names, the client computer picks a server at random.

Host Integration Server computers and client computers keep track of the names of servers in the SNA subdomain through the
SnaBase service (formerly known as the network access protocol, or NAP). For client computers, the sponsor connections,
along with the SnaBase provide a view into the server subdomain.

See Also
Other Resources
SNA Service

https://msdn.microsoft.com/en-us/library/aa745730(v=bts.10).aspx

Host Print Service
Host Print service provides server-based 3270 and 5250 print emulation, allowing mainframe and AS/400 applications to print
to a LAN printer supported by Microsoft Windows Server 2003 and Windows 2000. Host Integration Server Host Print service
enables centralized control of LU print resources. You can administer all Host Print service functions using SNA Manager,
including margin control, fonts, and characters per line. Host Print service also supports print-to-file with auto-incrementing
file names. You can configure the file naming scheme for each printer LU.

The following three methods of printing host information are available:

Screen printing. This method allows any 3270 or 5250 emulator to print what is on the display using print screen
features of the client operating system. The printer output can be directed to a printer attached to the client computer or
the network.

Client-redirected printing. This method delivers an SNA host printer data stream (such as 3287) to the appropriate
emulation application running on a Host Integration Client 2000 computer. The client software converts the data stream
into data that can be printed locally or to a network printer.

Server-based redirected printing. This method uses a server process to convert SNA host printer data streams into
data that can be directed to a local or network printer.

In This Section

Using Host Print Services

Mainframe Printing

Configuring Host Print Service

AS/400 (APPC) Printing

Printer Definition Files

https://msdn.microsoft.com/en-us/library/aa705576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754765(v=bts.10).aspx

Using Host Print Services
Host Print service is a Windows Server service, and is found as SnaPrint in the Services utility in Windows Control Panel. To
access network printers, the SnaPrint service must run in a domain account with administrative privileges. You must create this
account before Host Integration Server Setup.

See Also
Other Resources
Host Print Service

https://msdn.microsoft.com/en-us/library/aa771061(v=bts.10).aspx

Mainframe Printing
Mainframe printing supports both LU 1 and LU 3 data streams. It also includes pass-through support from the host for
Intelligent Printer Data Stream (IPDS). Using IPDS, mainframe print jobs can be printed on LAN printers without changing
either the print job or the host application.

Connections between mainframe printing and local printer

Host Print service provides print emulation for three LU types: LU 3, LU 1, and LU 6.2 (APPC). The LU type defines the
characteristic of the host data stream. LU 3 and LU 1 printing use a 3270 data stream over a session to a mainframe. APPC
printing uses a LU 6.2 data stream over a session to an IBM AS/400. The following sections provide an overview of LU 3 and
LU 1 printing. APPC printing is discussed under the AS/400 section later in this section.

The Host Print service must run in a user account that has permission to access the defined network printer (or printers). For
example, if you are printing to a printer attached to a Novell NetWare system, the Host Print service must run in an account
that is recognized by NetWare.

See Also
Other Resources
Host Print Service

https://msdn.microsoft.com/en-us/library/aa771061(v=bts.10).aspx

LU 3 Printing
LU 3 printing is the simplest of the three types of host printing. The LU 3 data stream closely resembles that for 3270-display
emulation. It consists of a write command code and a write control character (WCC) followed by the print job. These print jobs
contain printable characters and only four simple formatting orders (new line, form feed, carriage return, and end of medium).
No other control of the print output is available. This form of printing is similar to printing a text file from a personal computer.
If more print formatting is required, an LU 1 print session should be used. For more information, see the section LU 1 Printing.

In SNA Manager, the 3270 Print Session properties Page Layout tab includes specifications for the number of characters per
line and the number of lines per inch. Host print jobs using the LU 3 data stream also provide defaults for these parameters.
The defaults may be different depending on the settings.

For LU 3, the settings in the host print job normally override the Print Service session settings. However, if you leave the host
settings at their defaults of 6 lines per inch and 132 columns per row, the Print service session settings are used.

After the defaults for lines per inch and page width have been determined, the Print service chooses a font for the print job that
will accommodate this size print output on the paper loaded in the printer.

There are no transparent sections in LU 3 print jobs, so Transparency is ASCII does not apply. LU 3 print jobs do not have SCS
codes, but do have NL, CR, FF, and LF characters and do have commands to allow you to position print data on the page. The
Print service uses these to build an internal representation of the page before printing it out. When a PDT file is used, Print
service uses the definitions of NL, CR, FF, and LF from the PDT file to allow it to format the printout correctly. If no PDT file is
configured, Print service uses the Windows GDI.

Command Code

The write command codes are not unique values, but are identified by occupying the first byte in the Request Unit (the
message format used in an SNA network, also known as an RU). In addition there can be only one command code per RU. For
LU 3 printing, the most commonly used command code is Erase/Write '0xF5'. Read command codes, which would be normal
for display sessions, are not valid for LU 3 printing, and will be rejected with a sense code of '1003'.

Write Control Character (WCC)

Following the write command code is the write control character (WCC). This byte is also identified by its position, second byte
in the RU. With LU 3 printing, bits 2 and 3 of the WCC define the printout format.

Write Control Character (WCC) Codes
Bit Explanation

0,1 Ignored by the printer.

2,3 Defines printout format.

none 00 NL or CR orders define the print line length, EM indicates the end of the message.

none 01 Indicates 40-character lines.

none 10 Indicates 64-character lines.

none 11 Indicates 80-character lines.

4 Start-printer bit.

6 Keyboard reset.

7 Reset MDT bit.

Format Control Orders

There are four control codes used only for printing known as Format Control Orders.

Format Control Orders
Abbreviation Order EBCDIC

https://msdn.microsoft.com/en-us/library/aa772090(v=bts.10).aspx

NL New Line 0x15

EM End of Medium 0x19

FF Form Feed 0x0C

CR Carriage Return 0x0D

NL, CR, and EM are valid only when the write operation does not specify a line length format in the WCC byte. FF is valid in any
write operation.

3270 Orders

The 3270 data stream can contain sequences, called 3270 Orders, which provide additional control functions. The two most
commonly used in LU 3 printing are Set Buffer Address (SBA) and Repeat to Address (RA). Note that the buffer address used in
these commands is relative to each write. The print buffer in LU 3 allows a maximum of 4 KB of data, and often only 2 KB. This
may require multiple write commands to be sent for a full page of text. The first write command will start at the top of the
page. Its first buffer address will also be at the top of the page. Subsequent writes will continue where the first left off. Their
first buffer address will also start where the previous write ended, unless it was ended with a form feed. For the examples
below, it is assumed that these are the first write commands.

SBA is indicated by a '0x11' followed by a two-byte buffer address. This order sets the cursor position to the location specified
in the two-byte buffer address. In LU 3 printing, this sets the print position. The data following the SBA will be printed starting
from this location. For example:

114040 Sets the print position to row 1 and column 1.

RA is indicated by a '0x3C' followed by a two-byte stop buffer position and the character to be repeated. This order causes a
character to be repeated from the current buffer address up to but not including the stop buffer address specified in the RA.
For example:

3C40D3C1 Repeats the character 'A' ('0xC1') to row 1 and column 20.

Data

For LU 3 printing the data or printable characters must have values between '0x40' and '0xFE'. The only valid values outside
this range are the 3270 Orders.

Example: 15C1C2C3 Prints a new line followed by 'ABC'

Example: 1BC1C2C3 Rejected because '0x1B' is an invalid value

Sample Host Data

Following is sample data from a host along with an explanation of the data and resulting printout.

This sample data is analyzed in the following table.

3270 LU 3 Sample Data
Data Interpretation

F5 Command code Write/Erase

C8 WCC with bits 2, 3 specifying that NL, EM and CR orders determine the print line length.

114040 SBA sets print position to row 1 column 1

15 New line

F5C81140 40151515 C1C2C3C4 15404040
E6E7E8E9 19

15 New line

15 New line

C1C2C3C4 EBCDIC hex values for ABCD

15 New line

404040 EBCDIC hex values for three spaces

E6E7E8E9 EBCDIC hex values for WXYZ

19 End Medium

Print output from the sample data in the preceding table. ABCD on top print line and WXYZ indented on lower line.

See Also
Other Resources
Host Print Service

https://msdn.microsoft.com/en-us/library/aa771061(v=bts.10).aspx

LU 1 Printing
LU 1 printing allows the host to specify formatting for a print job. This is accomplished through the use of SNA Character
String (SCS) control codes. The SCS codes encompass the 3270 format orders (FF, CR, and NL), as well as providing additional
control codes to format the print output. Through the SCS codes, the host application can set the margins, characters per line,
and lines per inch. In addition to the format of the print job, SCS code allows the host application to send a transparent section.
By using an SCS code, the host can mark a section of data as transparent. This will cause the print emulator (the Host Print
service in this case) to not scan this section for SCS control codes but to pass it to the print output untouched. Transparent
sections are most commonly used to embed printer control codes, such as the HP PCL, in the print job. Unlike LU 3 printing,
there is no write command code or WCC. The first byte of the RU is either an SCS code or data.

Data Stream Flags

The BIND sent by the host for a LU 1 session indicates what SCS control codes are valid for this session. These Data Stream
Flags are set in byte 18 of the BIND.

Data Stream Flags
Bit Value Description

0 Base SCS code support

 0 Base support (NL & FF only)

 1 Full Base includes Base plus the following:

 BS (back space)

 CR (carriage return)

 LF (line feed)

 ENP (enable presentation)

 INP (inhibit presentation)

 HT (horizontal tab)

 VT (vertical tab)

1 Set Horizontal Format (SHF)

 0 not supported

 1 supported

2 Set Vertical Format (SVF)

 0 not supported

 1 supported

3 Vertical Channel Select (VCS)

 0 not supported

 1 supported

4 Set Line Density (SLD)

 0 not supported

 1 supported

5 Reserved

6 Bell (BEL)

 0 not supported

 1 supported

7 Transparent (TRN) & Interchange Record Separator (IRS)

 0 not supported

 1 supported

SCS Codes

The SCS control codes are fully documented in the IBM Host Print Guide (document number SC31-7145). All of the SCS
control codes fall within the range of '0x00'–'0x3F.' These codes range from single byte codes, such as Subscript '0x38', to
multiple byte codes followed by several parameters, such as Set Horizontal Format '0x2BC1...'

The following are some of the more common SCS control codes used.

Note
[L]=length and (Abv) represents one-byte parameters in the SCS control code.

Set Horizontal Format (SHF) — '0x2BC1[L](MPP)(LM)(RM)(T1)(. . .)(Tn)'

[L] — Length of the parameters, including the length byte

MPP — Maximum Presentation Position; defines the characters per line

LM — Left Margin; column value for the left most print position

RM — Right Margin; column value for the right most print position

T1 — Horizontal tab stop; column value for a tab stop

Tn — Additional tab stops, which can be added in any order

Example

2BC1068401840542

2BC1 — SHF

06 — length of the parameters is 6 bytes including the length byte

84 — MPP is set to 132 characters per line

01 — LM is set to column 1

84 — RM is set to column 132

05 — T1 is set to column 5

42 — T2 is set to column 66

Set Vertical Format (SVF) — '0x2BC2[L](MPL)(TM)(BM)(T1)(. . .)(Tn)'

[L] — Length of the parameters, including the length byte

MPL — Maximum Presentation Line; defines the lines per page

TM — Top Margin; line number of top most print position

BM — Bottom Margin; line number of the bottom most print position

T1 — Vertical Tab Stop; line number for a tab stop

Tn — Additional Tab Stops, which can be added in any order

Example

2BC20642053D0A21

2BC2 — SVF

06 — length is 6 bytes

42 — MPL is set to 66 lines per page

05 — TM is set to line 5

3D — BM is set to line 61

0A — T1 is set to line 10

21 — T2 is set to line 33

Set Line Density (SLD) — '0x2BC6[L](Point)'

[L] — length, including length byte. Value of '0x01' denotes default.

Point — Distance to be moved vertically for a single line. The number is indicated in typographic points (one point is equal to
1/72 inch). Setting a value of '0x0C' will result in 6 lines per inch, a value of '0x09' will result in 8 lines per inch. Value of '0x00'
denotes default a value of 6 lines per inch.

Example

2BC6020C

2BC6 — SLD

02 — length is 2

0C — 12 points or 6 lines per inch

Set Print Density (SPD) '0x2BD2[L]29(CharDensity)(Resv)'

[L] — length, including length byte. Value of 0x02 denotes default characters per inch (cpi) of 10

CharDensity — value indicating the numbers of cpi

Resv — Reserved (not used)

Example

2BD204290A00

2BD2 — SPD

04 — length is 4 bytes

29 — type

0A — 10 cpi

00 — reserved

Transparent (TRN) — '0x35[L](P1)(. . .)(Pn)'

This SCS control code indicates a section of data that is not scanned for SCS codes, but passed to the print output untouched.
The extent of the section of data is denoted by the length byte.

Example

35051B28313055

35 — TRN

05 — length of transparent section, not including the length byte

1B28313055 — transparent section, HP PCL code for PC-8 symbol set 'Esc(10U'

Note
In this example, the transparent section is in ASCII. This would require that the "Transparent is ASCII" box be selected in the P
rint Services printer session properties in the SNA Manager.

Sample Host Data

Following is sample data from a host along with an explanation of the data and resulting printout.

3270 LU 1 Sample Data
Data Interpretation

35021B45 Transparent section, send 'Esc E', a Reset in HP PCL, to printer

2BC1068401840542 SHF, 132 characters per line, LM 1, RM 132

2BC2064204420A21 SVF, 66 lines per page, TM 4, BM 66

C1C2C3C4 EBCDIC hex values for ABCD

15 New line

404040 EBCDIC hex values for three spaces

E6E7E8E9 EBCDIC hex values for WXYZ

Print output from data in the preceding table. ABCD on the top print line and WXYZ indented on the lower line.

See Also
Other Resources
Host Print Service

35021B45 2BC10684 01840542 2BC20642
04420A21 C1C2C3C4 15404040 E6E7E8E9

https://msdn.microsoft.com/en-us/library/aa771061(v=bts.10).aspx

Configuring Host Print Service
Configuring Host Print service involves the following steps:

Creating Link Services

Creating Connections

Creating a 3270 Printer LU

Configuring Host Print Service

In addition, a print demonstration using a script is available. The following procedures will create and configure the print
demonstration:

Configuring Host Print service for a 3270 connection

1. In SNA Manager, expand the server on which you want to add print services.

2. Right-click Print Service, point to New, and then click 3270 Session.

3. The Properties page for this session appears.

4. On the General tab, type a session name.

5. Click Printer, and then configure a printer.

6. Click the 3270 tab, choose an LU Name to use for this print session. If there are no LU names in the drop-down list, you
will need to insert a printer LU on the 3270 connection to be used for this print session (To create a print LU, see the
earlier procedure).

7. Configure other parameters as desired.

8. Click OK to add this print session.

9. In the console tree, right-click Print Service, and then click Save Configuration.

10. Right-click Print Service again, and then click Start.

The Host Print service is configured with startup set to Manual. To start the Host Print service at system startup, go to the
Services icon of Control Panel. Select the service name. Click Startup. Change the service activation type from Manual (the
default) to Automatic for this service.

SNA Manager will only lock the configuration file when you initiate a configuration change. If the lock is obtained, the status
bar will flash 'CONFIG LOCK'. When you complete the change and save the configuration file, the lock will be released and the
status bar will be cleared. The status bar will display 'OUT OF DATE' on other servers in the domain. To refresh the status on
the 'OUT OF DATE' servers, SNA Manager must be closed and reopened.

AS/400 (APPC) Printing
APPC printing, like LU 1 printing, uses SCS control codes in the data stream. The set of SCS control codes available for use in
APPC printing is more extensive, and allows more formatting options than the set described for LU 1 printing. The IBM AS/400
also provides an additional method for formatting print jobs called Host Print Transform (HPT). With HPT enabled, the AS/400
takes responsibility for rendering the print job into data the printer can understand.

APPC connection between AS/400 and Host Integration Server to send print job to local printer

Host Print Transform (HPT)

When SCS control codes are used by the host to format the print output, a print emulator is responsible for translating the SCS
codes and characters into data that the printer can understand, through the Windows printer driver and Windows Print system.
With HPT enabled, the AS/400 converts the data to printer control codes before sending the data to Host Integration Server.
This output from the host requires no further processing after it leaves the AS/400. The print emulator's only responsibility is
submitting the data to the printer.

HPT is enabled on the AS/400 in the Device description for the print session. When HPT is enabled, pre-rendered print jobs are
sent to the Host Integration Server in marked ASCII Transparent (ATRN) sections using the SCS control code '0x03.' The ATRN
control code provides the same function as the Transparent (TRN) control code detailed in the LU 1 printing section. In addition
to indicating that the block of data that should be dealt with as transparent, ATRN also indicates that the data is ASCII; therefore
it is not converted from EBCDIC to ASCII.

To enable the host transform feature using the default 5224 print device

1. Stop the print writer associated with the print device.

2. Vary off the print device.

3. Issue the following command:

Common LAN printer types include: *HP4, *HPIII, *HPII, *IBM4039. To see a complete list of available options, prompt
(F4) on the MFRTYPMDL parameter.

4. Vary on the print device.

5. Start the print writer.

For more details on the Host Print Transform feature, see the "OS/400 Printer device programming" manual (SC41-3713), or
the "AS/400 Printing IV" redbook (GG24-4389). Both are available from IBM.

SCS Codes

The SCS control codes are fully documented in the IBM Host Print Guide (document number SC31-7145). All of the SCS control
codes fall within the range of '0x00'–'0x3F.' These codes range from single-byte codes, such as Subscript '0x38' to multiple-
byte codes followed by several parameters, such as Set Horizontal Format '0x2BC1...'

The following are some of the more common SCS control codes used.

chgdevprt devd(<print device>) transform(*YES) mfrtypmdl(<LAN printer type>)

Note
[L]=length and (Abv) represents one-byte parameters in the SCS control code

ASCII Transparency (ATRN) — '0x03[L](P1)(. . .)(Pn)'

This SCS control code indicates a section of data that is not scanned for SCS codes, but passed to the print output untouched.
In addition, this control code indicates that the data is ASCII. The extent of the section of data is denoted by the length byte.
With HPT jobs, the length byte will commonly be '0xFF'.

Example

030441424344

03 — ATRN

04 — length of 4

41424344 — ASCII hex values for ABCD

SCS Control Code Formatted (Non-HPT)

If HPT is disabled in the Device description for the print session, SCS control codes will be used for the formatting of the print
job. The SCS control codes, SHF, SVF, SLD, and SPD detailed earlier for LU 1 printing are also supported in APPC printing. Also
commonly used in APPC printing is the SCS control code Presentation Position (PP) '0x34.' This control code allows the print
position to be moved either horizontally or vertically, relative to the previous position or to an absolute position.

The following are the four forms of the Presentation Position SCS control code.

Absolute Horizontal Presentation Position (AHPP) '0x34C0(nn)'

nn — column number the print position is set to.

Example

34C00F

34C0 — AHPP

0F — column number 15

Relative Horizontal Presentation Position (RHPP) '0x34C8(nn)'

nn — number of columns to move from the current print position.

Example

34C80F

34C8 — RHPP

0F — 15 columns

Absolute Vertical Presentation Position (AVPP) '0x34C4(nn)'

nn — line number the print position is set to.

Example

34C40F

34C4 — AVPP

0F — line number 15

Relative Vertical Presentation Position (RVPP) '0x344C(nn)'

nn — number of lines to move from the current print position.

Example

344C0F

344C — RVPP

0F — 15 lines

Sample Host Data

Following is sample data from a host along with an explanation of the data and resulting printout.

Data Interpretation

2BC1068401840542 SHF, 132 characters per line, LM 1, RM 132

2BC2064204420A21 SVF, 66 lines per page, TM 4, BM 66

34C404 AVPP sets print position to line 4

C1C2C3C4 EBCDIC hex values for ABCD

344C01 RVPP sets print position down one line

34C004 AHPP sets print position to column 4

E6E7E8E9 EBCDIC hex values for WXYZ

Print output from data in preceding table. ABCD on top print line and WXYZ indented on lower line.

See Also
Other Resources
Host Print Service

2BC10684 01840542 2BC20642 04420A21
34C404 C1C2C3C4 344C01 34C004 E6E7E8E9

https://msdn.microsoft.com/en-us/library/aa771061(v=bts.10).aspx

How to Configure Host Print Service for an AS/400 Computer
Configuring AS/400 print service involves the following steps:

Creating Link Services

Creating Connections

Creating LUs

To create a print LU

1. In SNA Manager, expand SNA Service for the server that you are working with, and then expand Connections.

2. Right-click the appropriate connection, point to New, and then click Printer LU.

3. Define your printer LU. You can keep the default for the LU Number or assign your own. Although the LU number is
meaningful to the connection itself, the number is not very useful, so you can add a user-friendly name in the LU Name
box.

4. Click OK.

To configure Host Print service for an AS/400 Connection

1. In SNA Manager, expand the server on which you want to add print services.

2. Right-click Print Service, point to New, and then click APPC Session.

3. The Properties page for this session appears.

4. On the General tab, type a session name, click Printer, and then configure a printer.

5. On the APPC tab, provide an AS/400 Device Name, a Local LU Alias, a Mode Name, and a Remote LU to use for this
print session.

6. If the AS/400 Device Name you specify does not exist on the AS/400, it will be created.

7. On the Security tab, configure security for this print session.

8. Configure other parameters as desired.

9. Click OK to add this print session.

10. In the console tree, right-click Print Service, and then click Save Configuration.

11. Right-click Print Service again, and then click Start.

The Print Service feature of Host Integration Server supports print jobs from an AS/400 that contain basic formatting options.
Some print jobs require special formatting. To properly print these jobs, the Host Print Transform feature of the AS/400 must
be enabled. Host Print Transform is a feature of the AS/400 operating system (V3R1 and later) that translates print jobs in the
SNA character string (SCS) data stream into an ASCII data stream (such as PCL). The data stream is specific to a particular make
and model of ASCII printer, which must be defined at the time Host Print Transform is enabled.

Custom Host Code Page
Host Integration Server allows a custom host code page to be used for a printer session. The host code page is used for the
translation between ASCII and EBCDIC. By default, a printer session will use the standard language code page provided by
Windows Server 2003 or Windows 2000. As an alternative, a custom code page can be specified to allow a different
translation. For example, using the default code page, the EBCDIC letter "A" ('0xC1') would be translated to an ASCII letter "A"
('0x41'). With a custom code page, it would be possible to have the EBCDIC "A" translated to any value. The custom code pages
are text files that can be modified with a hex editor. Samples are included in the PRINTSERVERADDONS directory on the Host
Integration Server CD-ROM. The code page file contains 512 bytes. The first 256 bytes represent what the EBCDIC characters
are translated to. The second 256 bytes are what the ASCII characters are translated to. Logically each section is a 16-column
by 16-row block.

Bytes 0-255: Data from Host

Bytes 256-511: Data to Host

The value being translated is matched to its new value using the first number in the hex value as the row and the second as the
column. For example, to find what the EBCDIC character "Z" ('0xE9') is translated to in the sample code page count down to
row E and over to column 9. This position has the value '0x5A', which is the ASCII value for a "Z".

Sample Host Code Page (as seen in a Hex editor)

 | 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
10| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
30| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
40| 20 a0 e2 e4 e0 e1 e3 e5 e7 f1 a2 2e 3c 28 2b 7c
50| 26 e9 ea eb e8 ed ee ef ec df 21 24 2a 29 3b ac
60| 2d 2f c2 c4 c0 c1 c3 c5 c7 d1 a6 2c 25 5f 3e 3f
70| f8 c9 ca cb c8 cd ce cf cc 60 3a 23 40 27 3d 22
80| d8 61 62 63 64 65 66 67 68 69 ab bb f0 fd de b1
90| b0 6a 6b 6c 6d 6e 6f 70 71 72 aa ba e6 b8 c6 a4
a0| b5 7e 73 74 75 76 77 78 79 7a a1 bf d0 dd fe ae
b0| 5e a3 a5 b7 a9 a7 b6 bc bd be 5b 5d af a8 b4 d7
c0| 7b 41 42 43 44 45 46 47 48 49 ad f4 f6 f2 f3 f5
d0| 7d 4a 4b 4c 4d 4e 4f 50 51 52 b9 fb fc f9 fa ff
e0| 5c f7 53 54 55 56 57 58 59 5a b2 d4 d6 d2 d3 d5
f0| 30 31 32 33 34 35 36 37 38 39 b3 db dc d9 da 00

 | 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00| 00 01 02 03 37 2d 2e 2f 16 05 25 0b 0c 0d 0e 0f
10| 10 14 24 04 b6 15 32 26 18 19 00 27 1c 1d 1e 1f
20| 40 5a 7f 7b 5b 6c 50 7d 4d 5d 5c 4e 6b 60 4b 61
30| f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 7a 5e 4c 7e 6e 6f
40| 7c c1 c2 c3 c4 c5 c6 c7 c8 c9 d1 d2 d3 d4 d5 d6
50| d7 d8 d9 e2 e3 e4 e5 e6 e7 e8 e9 ba e0 bb b0 6d
60| 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96
70| 97 98 99 a2 a3 a4 a5 a6 a7 a8 a9 c0 4f d0 a1 00
80| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0| 41 aa 4a b1 9f b2 6a b5 bd b4 9a 8a 5f ca af bc
b0| 90 8f ea fa be a0 b6 b3 9d da 9b 8b b7 b8 b9 ab
c0| 64 65 62 66 63 67 9e 68 74 71 72 73 78 75 76 77
d0| ac 69 ed ee eb ef ec bf 80 fd fe fb fc ad 8e 59
e0| 44 45 42 46 43 47 9c 48 54 51 52 53 58 55 56 57
f0| 8c 49 cd ce cb cf cc e1 70 dd de db dc 8d ae df

20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20

See Also
Concepts
AS/400 (APPC) Printing

20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20
20 A0 E2 E4 E0 E1 E3 E5-E7 F1 A2 2E 3C 28 2B 7C
26 E9 EA EB E8 ED EE EF-EC DF 21 24 2A 29 3B AC
2D 2F C2 C4 C0 C1 C3 C5-C7 D1 A6 2C 25 5F 3E 3F
F8 C9 CA CB C8 CD CE CF-CC 60 3A 23 40 27 3D 22
D8 61 62 63 64 65 66 67-68 69 AB BB F0 FD DE B1
B0 6A 6B 6C 6D 6E 6F 70-71 72 AA BA E6 B8 C6 A4
B5 7E 73 74 75 76 77 78-79 7A A1 BF D0 DD FE AE
5E A3 A5 B7 A9 A7 B6 BC-BD BE 5B 5D AF A8 B4 D7
7B 41 42 43 44 45 46 47-48 49 AD F4 F6 F2 F3 F5
7D 4A 4B 4C 4D 4E 4F 50-51 52 B9 FB FC F9 FA FF
5C F7 53 54 55 56 57 58-59 5A B2 D4 D6 D2 D3 D5
30 31 32 33 34 35 36 37-38 39 B3 DB DC D9 DA 00
00 01 02 03 37 2D 2E 2F-16 05 25 0B 0C 0D 0E 0F
10 14 24 04 B6 15 32 26-18 19 00 27 1C 1D 1E 1F
40 5A 7F 7B 5B 6C 50 7D-4D 5D 5C 4E 6B 60 4B 61
F0 F1 F2 F3 F4 F5 F6 F7-F8 F9 7A 5E 4C 7E 6E 6F
7C C1 C2 C3 C4 C5 C6 C7-C8 C9 D1 D2 D3 D4 D5 D6
D7 D8 D9 E2 E3 E4 E5 E6-E7 E8 E9 BA E0 BB B0 6D
79 81 82 83 84 85 86 87-88 89 91 92 93 94 95 96
97 98 99 A2 A3 A4 A5 A6-A7 A8 A9 C0 4F D0 A1 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
41 AA 4A B1 9F B2 6A B5-BD B4 9A 8A 5F CA AF BC
90 8F EA FA BE A0 B6 B3-9D DA 9B 8B B7 B8 B9 AB
64 65 62 66 63 67 9E 68-74 71 72 73 78 75 76 77
AC 69 ED EE EB EF EC BF-80 FD FE FB FC AD 8E 59
44 45 42 46 43 47 9C 48-54 51 52 53 58 55 56 57
8C 49 CD CE CB CF CC E1-70 DD DE DB DC 8D AE DF

https://msdn.microsoft.com/en-us/library/aa744331(v=bts.10).aspx

Formatting Print Jobs
Host Print service can format print jobs by either using the Windows Server 2003 or Windows 2000 printer driver or by using
a Printer Definition Table.

By default, print jobs submitted by Host Print service to a Windows Server 2003 or Windows 2000 Server print queue rely on
the Windows Server 2003 or Windows 2000 printer driver to format the print data and send to the physical printer. Formatting
the print data is done by the Windows Graphical Device Interface (GDI).

In addition to the Windows GDI, Host Integration Server Host Print service supports the use of a Printer Definition Table (PDT),
which bypasses the formatting function of the Windows Server 2003 or Windows 2000 printer driver. The PDT file provides a
function similar to a printer driver, in that it translates Graphic Device Interface (GDI) calls to control codes specific for a printer.

Selecting PDT causes the Windows Server 2003 or Windows 2000 Host Print service to treat all received data as transparent.
All data is passed directly to the printer, except SCS codes, which are treated differently. Using a PDT, the SCS codes will be
translated using the PDT before they are passed to the printer. For more information about Printer Definition Files, see
Printer Definition Files.

The PDT is created in two steps.

1. A source text file is created and called the Printer Definition File (PDF) that defines the codes that can be used to control
the printer.

2. A program is used to compile the information in the PDF into a binary file, the PDT that is used by Host Print service.

For example, if the host sends a byte indicating a new line ('0x15'), the PDT could be used to convert this to a carriage return,
line feed ('0x0D0A').

For more information about creating a PDT, see Printer Definition Files.

To enable GDI

1. In SNA Manager, expand the server, and then click Print Service.

2. Right-click a print service displayed in the details pane, and then click Properties.

3. Click the Job Format tab, and then select GDI.

To select a PDT for printing

1. In SNA Manager, expand the server, and then click Print Service.

2. Right-click a print service displayed in the details pane, and then click Properties.

3. Click the Job Format tab, select PDT, and then click PDT File. The Select Compiled Printer Definition File dialog box
appears.

4. Select the PDT that you want to use, and then click Open.

5. Click OK.

https://msdn.microsoft.com/en-us/library/aa754765(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754765(v=bts.10).aspx

Transparency
Transparency sets a flag that indicates that transparent data from the host is in ASCII and needs no translation from EBCDIC
to ASCII. Selecting Transparency is ASCII causes the Windows Server 2003 or Windows 2000 Host Print service not to put the
received data through an EBCDIC to ASCII translation table before printing.

Check Transparency Custom Byte to send the data stream in transparent mode. Transparency Custom Byte indicates the
character designated to start a sequence of transparent data (the transparent data may or may not be ASCII). The IBM standard
is 0x35, but if the host print job uses another value (for example, 0x36), this should be specified.

To select Transparency

1. In SNA Manager, expand the server, right-click Print Service, and then click Properties.

2. Click the Advanced tab, click Transparency Custom Byte,enter the byte data, and then click OK.

See Also
Tasks
Formatting Print Jobs

https://msdn.microsoft.com/en-us/library/aa745859(v=bts.10).aspx

Printer Definition Files
Host Print service enables you to specify the capabilities of a printer to override the defaults provided by the Windows printer
driver.

By default, jobs submitted by Host Print service to a Windows print queue rely on the printer's Windows driver to send to the
physical printer the data required to perform such formatting tasks as breaking lines and starting a new page.

Applications that bypass the formatting function of the Windows printer driver can use codes specified in a printer definition
file to control the physical printer for a particular printer session under Host Print service. To use the file, open the properties
page of the printer session, click the Printing tab, select PDT, and then type the fully qualified path of the file in the box. For
more information about using the PDT file, click Help on the printer session properties dialog box.

Creating a printer definition file consists of two steps: First, you create a source text file that defines the codes that can be used
to control the printer. Second, you run a program to compile the information in the text file into a binary file that can be used
by Host Print service.

In This Section

Creating the Source Text File

https://msdn.microsoft.com/en-us/library/aa745542(v=bts.10).aspx

Creating the Source Text File
You can use any text editor (such as Notepad) to create the source text file. The conventional file extension for the source text
file is .pdf (which stands for Printer Definition File).

The PDF file consists of two sections:

The Macro Definition Section

The Parameter Definition Section

All text bounded by the C-language comment markers (/* and */) is treated as comments and ignored by the compiler.

The next two sections describe the PDF sections currently supported by Host Print service.

https://msdn.microsoft.com/en-us/library/aa754455(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704697(v=bts.10).aspx

Macro Definition Section
The macro definition section is bounded by BEGIN_MACROS and END_MACROS statements and consists of lines with the
following syntax.

macro_name EQU control_character_list

The macro name can be any alphanumeric string that does not contain spaces, and the control character list consists of one or
more two-digit hexadecimal values representing the data to be sent to the printer.

For example, the following macro defines the NUL character.

For an example macro definition, see Sample Source Text File.

NUL EQU 00

https://msdn.microsoft.com/en-us/library/aa705508(v=bts.10).aspx

Parameter Definition Section
The parameter definition section immediately follows the macro definition section and consists of one or more lines with the
following syntax.

parameter_name = value_list

The parameter name can be any character string that does not contain spaces. The compiler ignores parameter names not
supported by Host Print service.

The value list can be empty or can contain one or more of the following:

A three-digit decimal value.

A two-digit hexadecimal value.

A one-char character value.

The name of a macro specified in the macro definition section.

For example, the following shows a parameter defining the control sequence to be sent to the printer to begin a new line.

In this example, CRR and LFF are the names of macros specified in the macro definition section.

Host Print service currently supports the following parameters (definitions of unsupported parameters are ignored).

Parameter name Description
START_JOB Control sequence to be sent at the start of a print job.

END_JOB Control sequence to be sent at the end of a print job.

CARRIAGE_RETURN Control sequence for a carriage return.

LINE_FEED Control sequence for a line feed.

FORM_FEED Control sequence for a form feed.

NEW_LINE Control sequence for a new line.

SET_6_LINES_PER_INCH Control sequence to specify 6 LPI.

SET_8_LINES_PER_INCH Control sequence to specify 8 LPI.

START_HIGHLIGHT_INTENSE Control sequence to begin bold printing.

END_HIGHLIGHT_INTENSE Control sequence to end bold printing.

START_HIGHLIGHT_UNDERLINE Control sequence to begin underline printing.

END_HIGHLIGHT_UNDERLINE Control sequence to end underline printing.

KANJI_CODE? Control sequence of Kanji code for a printer, either JIS or SHIFT_JIS.

KANJI_ON Control sequence to start printing Kanji.

KANJI_OFF Control sequence to end printing Kanji.

SET_PAGE_LENGTH Control sequence to set number of lines per page.

NEW_LINE = CRR LFF

LEFT_MARGIN Control sequence to set left margin in number of characters.

RIGHT_MARGIN Control sequence to set right margin in number of characters.

TOP_MARGIN Control sequence to set top margin in number of lines.

SET_HORIZONTAL_POSITION Control sequence to set row position.

SET_VARIABLE_LINE_DENSITY Control sequence to set line density.

SET_VARIABLE_PRINT_DENSITY Control sequence to set number of characters per inch.

SET_FONT_SIZE Control sequence to set font size in points.

See Also
Other Resources
Printer Definition Files

https://msdn.microsoft.com/en-us/library/aa754765(v=bts.10).aspx

Sample Source Text File
The sample PDF file, HPLJ2.PDF, is provided on the Host Integration Server CD-ROM in the \SDK\Samples\SNA\PrintDefFile
directory.

See Also
Other Resources
Printer Definition Files

https://msdn.microsoft.com/en-us/library/aa754765(v=bts.10).aspx

Compiling the Source Text File
After you have created the source text file, the next step is to compile the file using the Pdfcomp (PDFCOMP.EXE) utility located
in the \platform\SYSTEM\PRINTSRV directory of the Host Integration Server CD-ROM. To run Pdfcomp, type the following at
the command prompt.

You must specify the full name (including file extensions) of the input and output files.

For example, to compile the sample PDF file, copy PDFCOMP.EXE and HPLJ2.PDF to a directory on the server's hard disk, open
a Command Prompt window and change the current directory to the directory containing the copied files. Then, type the
following at the command prompt.

This creates the binary PDT file in the current directory. Specifying this file in the properties of a printer session allows Host
Print service to send preformatted data to the printer, bypassing the formatting function of the Windows printer driver.

Compilation of the PDF file into a PDT is not strictly necessary. If an uncompiled PDF file is selected in a Print Session under the
SNA Manager, the compilation is performed automatically each time the print session is used. This feature has a performance
overhead and is available mainly for ease of development. For production systems, it is strongly recommended that you pre-
compile PDF files.

See Also
Other Resources
Printer Definition Files

 input_file output_file

 hplj2.pdf hplj2.pdt

https://msdn.microsoft.com/en-us/library/aa754765(v=bts.10).aspx

TN Service
TN Service, which is based on the Telnet protocol, enables a user at one site to connect and interact with a remote system at
another site using the TCP/IP network protocol. When connecting to a remote computer, the initiating computer acts as a
terminal for the remote computer. Host Integration Server supports TN3270-style and TN5250-style sessions in addition to
native Host Integration Server client 3270 and 5250 sessions.

In This Section

TN3270

TN5250

https://msdn.microsoft.com/en-us/library/aa745335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745241(v=bts.10).aspx

TN3270
TN3270 service utilizes the features of Host Integration Server to obtain mainframe access and to address issues such as
security and redundancy. TN3270 service supports the TN3270, TN3287, and TN3270E protocols, providing terminal
emulation and printing capabilities.

To provide for TN3270 service, in Host Integration Server you create connections and LU definitions that map to the
mainframe. TN3270 communicates with Host Integration Server using the logical unit application (LUA) API. Therefore, all LUs
configured for use with the TN3270 service must be LUA LUs. The LUA LUs and LUA pools defined for the Host Integration
Server computers can then be assigned to the TN3270 service using the drag-and-drop method. When the system is activated,
the LUA LUs become available for TN3270 clients to access mainframe applications.

Redundancy involves SNA local nodes and link services. Each Microsoft Windows Server 2003 or Windows 2000 domain can
contain one or more SNA subdomains. LUA LUs from multiple servers can be assigned to the TN3270 service. This results in
client sessions distributed among the participating servers in the subdomain, balancing the load. This also allows redundancy
between Host Integration Server computers. If one server goes down, a client computer can then access LUA LUs on a different
server.

Similarly, a server can be configured with redundant host links to increase fault tolerance and bandwidth.

In This Section

IP Settings

Administering TN3270

TN3270 and Single Sign-On

TN3270 Configuration

https://msdn.microsoft.com/en-us/library/aa770742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771376(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705766(v=bts.10).aspx

IP Settings
The IP settings assigned to an LUA LU or pool will allow TN3270 clients to connect to that LUA LU or pool. By default, the LUA
LU or pool is not assigned an IP address or a subnet mask. This will allow any TN3270 client to use the LUA LUs or pools.

If you want to restrict an LUA LU or pool to one or more specific TN3270 clients, you should determine the IP address or host
name of the client computers that will use these LUA LUs or pools. For client computers using Windows Server 2003 or
Windows 2000, you can determine the IP address, subnet mask, and host name by typing ipconfig/all from the command
prompt on the client computer.

If a workstation has a name that can be resolved using name resolution, it can be used in place of IP addresses. For example, if
a workstation name is Giraffe and if the IP name list contains that name, it will map to the correct IP address. Name resolution
works with WINS, DHCP, or similar name resolution services. For more information regarding WINS and DHCP, see your
Windows Server 2003 or Windows 2000 documentation.

You can modify, delete, or add IP addresses and subnet masks within LUA LUs or pools. If you want to change the
configuration of multiple LUA LUs, you can only change properties such as display types, the IP address, and subnet mask that
the LUA LUs have in common. You cannot change properties such as the LUA LU name or number, because these values are
unique for each LUA LU.

You can add new IP addresses and subnet masks to a range of LUA LUs. If the new IP address or subnet mask already exists on
some of the LUA LUs, but not on others, the addition will occur without duplication in the ones that already have the IP address
or subnet mask. You can also modify or delete the IP addresses that the LUA LUs have in common and that appear on the IP
address list.

Configuration changes are apparent only to users who establish a connection after the changes are saved. Users who were
connected at the time the configuration changes were made will not be affected.

See Also
Other Resources
TN3270

https://msdn.microsoft.com/en-us/library/aa745335(v=bts.10).aspx

Administering TN3270
Using SNA Manager, you can view client addresses, LU names, and the state of each defined client computer. The session
status information is useful if you need to stop, pause, or modify TN3270.

You can monitor network activity, including the state of each LU. An LU or pool will display one of the following states.

State Description

CONNECTED The TN client has established a connection to TN3270 service.

SSCP-LU The TN client has established a connection to VTAM.

LU-LU The LU is bound to a host application.

TERM The connected session is terminating.

To add LUs or pools to TN3270 service

1. Before LUs can be added to the TN3270 service, you must first create application (LUA) LUs on an appropriate
connection.

2. 0Select the LUs on the connection.

A contiguous range of LUs can be selected by using the mouse to select the first item in the range you want to add,
holding down the SHIFT key, and using the mouse to select the last item in the range that you want to add.

A noncontiguous range of LUs can be selected by using the mouse to select each item in the range that you want to add,
while holding down the CTRL key.

3. Drag the LUs into the desired server icon in the TN3270 Service folder.

The LU appears in the list frame when the server icon in the TN3270 Service folder is highlighted. The icon for the LUs
will change to a TN icon both in the TN3270 service and in the connection list.

By default, the LU will be assigned an IP address of 0.0.0.0 and a subnet mask of 0.0.0.0. This will allow any TN3270 client
to use this LU.

4. Specify one or more client IP addresses for this LU.

5. On the Action menu, click Save Configuration to put the changes into effect.

By adding an LU, you are defining Host Integration Server resource access to TN3270 service and you are defining logmode
entries that are associated with a Host Integration Server resource.

Configuration changes are apparent only to users who establish a connection after the configuration changes are saved. Users
who were connected at the time that the configuration changes were made will not be affected.

You can modify, delete, or add IP addresses and subnet masks to LUA LUs. If you want to change the configuration of multiple
LUA LUs, you can only change properties such as display types, the IP address, and subnet mask that the LUA LUs have in
common. You cannot change properties such as the LUA LU name or number, because these values are unique for each LUA
LU.

You can add new IP addresses and subnet masks to a range of LUA LUs. If the new IP address or subnet mask already exists on
some of the LUA LUs, but not on others, the addition will occur without duplication in the ones that already have the IP address
or subnet mask. You can also modify or delete the IP addresses that the LUA LUs have in common and that appear on the IP
address list.

You can assign a 3270 LU pool to a workstation, not an LUA pool. LUA pools can be assigned to the TN3270 service.

To edit a TN3270 LU configuration

1. In the SNA Manager console tree, select the LU that you want to view or modify.

2. Right-click the LU name, and then click Properties.

3. Click OK to exit.

TN services listen on multiple ports simultaneously. You can set a default port number for the TN service (assign the port
number to the server) and override this number on a per session basis (assign the port number to the LU session), allowing a
single client computer to connect to multiple host computers.

To override the default port value for a session

1. Select an LU.

2. Right click, and then click Properties. The TN3270 LU Properties dialog box appears.

3. Click Use, and then type a port number other than the default used for the server. The LU port assignment will override
the default port assigned to the server.

To start, pause, continue, and stop TN3270 service

1. Right-click TN3270, and then click Start or Stop.

- or -

2. In the Services utility of the Windows Server 2003 or Windows 2000 Administrative Tools or Windows Control
Panel, select TN3270 Service, and right-click Start, Pause, Continue, or Stop.

The TN3270 service is set to start manually by default. You can change this to automatic if you are not running either the
TN5250 service or the Telnet daemon on this server, or if you have configured the TCP ports for more than one of these
services.

Once TN3270 service has stopped, it can no longer be accessed. You may need to start the TN3270 service after you have
paused or stopped it. TN3270 service can be restarted only on the local system.

Pausing allows you to prevent new users from establishing a connection with TN3270 service without disconnecting current
users. You can then view TN3270 service session status and notify connected users to disconnect from TN3270 service.

Before stopping TN3270 service, notify all connected users that they will be disconnected within a specified time period. Stop
the service after expiration of your warning period.

Tips

To start TN3270 service from a command prompt, type

net start tn3270

To pause TN3270 service from a command prompt, type

net pause tn3270

To continue TN3270 service from a command prompt, type

net continue tn3270

To stop TN3270 service from a command prompt, type

net stop tn3270

TN3270, TN5250, and Telnet services all default to the well-known TCP port number 23. If you plan to install more than one of
these services, perform the following steps.

To use TN3270 service with TN5250 service or Telnet service

1. Configure the services to use unique port numbers.

2. Reconfigure all your TN3270 clients or TN5250 clients to use the new port numbers.

To remove TN3270 service

1. To pause TN3270 service, use the Services utility in Windows Server 2003 or Windows 2000 Control Panel.

2. Pausing TN3270 service allows you to notify connected users to disconnect from TN3270 service before you stop and
remove the application.

3. To stop TN3270 service, use the Services utility in Windows Server 2003 or Windows 2000 Control Panel.

4. Open Control Panel, and double-click Add/Remove Programs.

5. Click Host Integration Server, and then click Change. The Add/Remove Application dialog box appears.

6. In the Add/Remove dialog box, click Add/Remove.

7. Click the TM3270 Service icon, and then click Entire Feature will be unavailable.

8. Click Continue.

Note
You can remove TN3270 service anytime you want. However, removing TN3270 service deletes the TN3270 service fil
es from your computer, including TN3270 service configuration data. To use TN3270 service again, you must run Host
Integration Server Setup to reinstall TN3270 service files.

See Also
Concepts
TN3270 and Single Sign-On

https://msdn.microsoft.com/en-us/library/aa704710(v=bts.10).aspx

TN3270 and Single Sign-On
The TN3270 service does not work with Single Sign-On. You should not enable the TN3270 service to run under a user
account for which you have a Single Sign-On mapping. If you access the host through the TN3270 service by typing
MS$SAME for your logon, you will get the user ID and password of the user under which the TN3270 service is running (for
example, SNAUSER). If you use an Administrator-level account and change the password, SNA services will fail to start after the
password change.

TN3270 Configuration
This section describes the management and configuration of certificates necessary for running TN3270 on Host Integration
Server.

In This Section

Managing Certificates

Configuring Certificates

https://msdn.microsoft.com/en-us/library/aa745816(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745596(v=bts.10).aspx

Managing Certificates
The SChannel API uses certificates to provide its security features.

In This Section

Server Authentication

Client Authentication

Obtaining and Creating Certificates

https://msdn.microsoft.com/en-us/library/aa745342(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745396(v=bts.10).aspx

Server Authentication
For server authentication, the server requires a valid certificate with the following properties:

Type X509

Suitable for Server Authentication

Associated private key

Stored in the Personal or My certificate store for the service account used by the TN3270 service

By default, a TN3270 server will look for a certificate with a Common Name (CN) matching the host name of the
computer running the TN3270 server. This default can be changed by using a registry entry. For details, see
Changing the Default Server Authentication Certificate Common Name (CN).

This certificate will be sent to the client as part of the handshake negotiation when the connection is established. For the client
to accept the certificate:

The certificate (and its issuing chain) must be current (for example, not outside of its valid dates).

The issuing chain must lead to a certification authority (CA) that appears in the clients Trusted Root CA List.

The certificate (or any part of its issuing chain) should not appear on a certificate revocation list (CRL) of its issuer.

Most clients offer strict certificate checking, which if selected, will reject connections if the server certificates common
name does not match its host name.

Note
If the certificate on the server is changed, the TN3270 server must be stopped and restarted.

https://msdn.microsoft.com/en-us/library/aa744763(v=bts.10).aspx

Client Authentication
For client authentication, the client requires a valid certificate with the following properties:

Type X509

Suitable for Client Authentication

Associated private key

You might not want to grant access to some of these certificate settings. It is recommended that you check the list of default
Trusted Root Certification Authorities on the server, and remove any you do not want.

How the certificate is stored and selected depends on the client program. The certificate will be passed to the server as part of
the handshake process. For the server to accept the certificate:

The certificate (and its issuing chain) must be current.

The issuing chain must lead to a CA that appears in the servers Trusted Root CA list.

The certificate (or any part of its issuing chain) should not appear on a CRL of its issuer.

See Also
Concepts
Server Authentication
Obtaining and Creating Certificates

https://msdn.microsoft.com/en-us/library/aa745342(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745396(v=bts.10).aspx

Obtaining and Creating Certificates
It is recommended that you use the Microsoft Certificate Services and certification authorities to manage certificates.

When a certificate is issued, it includes a certificate and a private key. When the certificate is transmitted for verification
purposes, only the certificate part is sent (and not the private key). The server needs a certificate and a private key for the
server authentication certificate. The server needs a copy of the client authentication certificate for its root CA.

Obtaining Certificates

Certificates are obtained from certification authorities. Because these CAs are widely trusted organizations, the certificate will
be recognized widely.

Creating Certificates

Windows Server 2003 and Windows 2000 Server feature a certification authority program that allows a local CA to be set up.
The local CA may depend on a certificate obtained from an external, well-trusted CA, or it may be a stand-alone CA.

This system can be used if the root certificate (on the CA program) is copied to the Trusted Root CAs store on all the computers
using the certificates. The local CA can then issue client and server authentication certificates, and each will be recognized by
the other.

See Also
Concepts
Server Authentication
Client Authentication

https://msdn.microsoft.com/en-us/library/aa745342(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745420(v=bts.10).aspx

Configuring Certificates
The TN3270 Server properties dialog box contains a Port/Security tab, which allows you to configure the ports to be
available to the TN3270 server. The security parameters are then configured on a port-by-port basis.

The following issues are required to implement security support:

A client that attempts to connect to a port that has not been configured on the TN3270 server will be unsuccessful.

The default port defined in SNA Manager does not affect the security configuration. Either a port security record is found
(in which case it is used), or it is not found (in which case the client fails to connect).

A port with security level Unsecured means that TLS/SSL will be fully disabled on that port. There will be no exchange of
certificates on that port.

All the changes made to the configuration are dynamic.

Server authentication certificates may not be dynamically changed.

In This Section

Switching on Security and Changing Certificates

Changing the Default Values of the Security Parameters

Changing the Default Server Authentication Certificate Common Name (CN)

https://msdn.microsoft.com/en-us/library/aa772067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744760(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744763(v=bts.10).aspx

Switching on Security and Changing Certificates
To support security, the TN server needs to load a server authentication certificate. This is done when a TN server receives a
configuration requiring security (for example, at least one port is configured to a security level other than Unsecure) for the
first time. After a certificate has been loaded successfully, the certificate cannot be changed without restarting the TN server.

If the certificate-loading process fails (for example, if the certificate is not found or is invalid), any ports requiring security will
not be available to the TN server and an error will be logged. The user must then fix the certificate and try again.

Note
The certificate-loading process incorporates several stages, such as opening a certificate store, finding the certificate, and acq
uiring credentials based on the certificate. Obtaining credentials involves three steps:

Opening the servers certificate store (using CertOpenStore)

Obtaining the server authentication certificate (using CertFindCertificateInStore)

Getting a credential for each security setting (using AcquireCredentialHandle)

The credential contains all the security options supported by the credential (such as maximum and minimum encryption
strength, and algorithms supported). Client authentication is not a credential property. The credential is linked to the server
authentication certificate.

If security is specified but the TN3270 server fails to get the credentials, any ports that are defined as secure will be unavailable
to clients. An error will be logged and the user can try to reload the credentials again.

See Also
Concepts
Changing the Default Values of the Security Parameters
Changing the Default Server Authentication Certificate Common Name (CN)
Other Resources
Configuring Certificates

https://msdn.microsoft.com/en-us/library/aa744760(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745596(v=bts.10).aspx

Changing the Default Values of the Security Parameters
By default, the security levels are:

High = 168-bit encryption (minimum)

Medium = 128-bit encryption (minimum)

Low = 40-bit encryption (minimum)

Unsecured = TLS/SSL fully disabled

The default values of the first three of these levels can be overridden by the following registry entries (stored in
HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/TN3270/Parameters):

SSLHighSecurity

SSLMediumSecurity

SSLLowSecurity

Each registry entry will contain a numeric (DWORD) value. The registry is checked for entries only when the TN3270 server is
started. For any changes in the registry entries to take effect, the TN3270 server must be restarted.

See Also
Concepts
Switching on Security and Changing Certificates
Changing the Default Server Authentication Certificate Common Name (CN)
Other Resources
Configuring Certificates

https://msdn.microsoft.com/en-us/library/aa772067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745596(v=bts.10).aspx

Changing the Default Server Authentication Certificate
Common Name (CN)

By default, the TN3270 server will look for a certificate with a common name that matches its host name, for example, the
name returned by gethostname. This can be changed by the following registry entry (stored in
HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/TN3270/Parameters):

SSLServerCertCN

This entry contains a string containing the new CN for the certificate. The registry is checked for entries only when the TN3270
server is started. For any changes in the registry entries to take effect, the TN3270 server must be restarted.

See Also
Concepts
Switching on Security and Changing Certificates
Changing the Default Values of the Security Parameters
Other Resources
Configuring Certificates

https://msdn.microsoft.com/en-us/library/aa772067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744760(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745596(v=bts.10).aspx

TN5250
TN5250 acts as a gateway that allows an AS/400 access to TN5250 clients providing 5250 terminal emulation.

To provide for TN5250 service, you must create TN5250/AS400 definitions that map to the AS/400. TN5250/AS400 definitions
include local and remote APPC LUs, the mode (the default is QPCSUPP), AS/400 user name and password, terminal type, and
IP address and subnet mask.

TN5250 supports multiple sessions up to the limits of the mode used in the TN5250/AS400 definition.

IP Settings

IP settings assigned to TN5250/AS400 definitions allow TN5250 clients to connect to the AS/400. By default, the
TN5250/AS400 definition is not assigned an IP address or a subnet mask. This will allow any TN5250 client to connect to the
AS/400.

If you want to restrict the use of a TN5250/AS400 definition to one or more specific TN5250 clients, you should determine the
IP addresses or host names of the client computers that will use the TN5250/AS400 definition. For client computers using
Windows Server 2003 or Windows 2000, you can determine the IP address, subnet mask, and host name by typing
ipconfig/all at the command prompt on the client computer.

If a workstation's name can be resolved using name resolution, it can be used in place of IP addresses. For example, if a
workstation name is Giraffe, and if the IP name list contains that name, it will allow that workstation access. Name resolution
works with WINS, DHCP, or similar name-resolution services. For more information about WINS and DHCP, see the Windows
Server 2003 or Windows 2000 Help.

You can modify, delete, or add IP addresses and subnet masks within a TN5250/AS400 definition. If you want to change the
configuration of multiple TN5250/AS400 definitions, you can only change the properties of items that the TN5250/AS400
definitions have in common. You cannot change the name of remote LUs.

You can add new IP addresses and subnet masks to multiple TN5250/AS400 definitions. If the new IP address or subnet mask
already exists on some of the TN5250/AS400 definitions, but not on others, the addition will occur without duplication in the
ones that already have the IP address or subnet mask. You can also modify or delete the IP addresses that the TN5250/AS400
definitions have in common and that appear on the IP address list.

Configuration changes are apparent only to users who establish a connection after the changes are saved. Users who were
connected at the time the configuration changes were made are not affected.

See Also
Tasks
TN5250 Administration

https://msdn.microsoft.com/en-us/library/aa772046(v=bts.10).aspx

TN5250 Administration
The local LU, remote LU, and mode must match the configuration information in Host Integration Server.

To enable an APPC session with the AS/400, the user ID and password must be provided for conversation security. Contact
your AS/400 administrator for the correct information.

The TN5250 requires TN5250/AS400 definition terminal names to allow TN5250 service to accept client requests from client
computers emulating those types of terminals.

To set up Host Integration Server for TN5250 access

1. Open SNA Manager console tree.

2. Install and configure a link service, if this has not been done.

3. Insert a connection to an AS/400 that the TN5250 clients will access. Configure the connection with Remote End as Peer
System.

4. Configure a local LU and a remote LU for access to an AS/400, making sure the mode for the remote LU is QPCSUPP.

5. On the File menu, click Save Configuration to put the changes into effect.

To add and configure LUs for TN5250 service

1. Before LUs can be added to the TN5250 service, you must first install a link service, add a connection to an AS/400 on
this link service, and create local and remote LUs for accessing this AS/400.

2. Right-click TN5250, point to New, and then click TN5250 AS/400 Definition.

3. Configure the properties of this TN5250 AS/400 definition.

If you do not specify an IP address for an LU, the default value will allow any TN5250 client computer access to this LU.

Click Help for information on the property options.

4. Click OK to close the AS/400 Definition Properties dialog box.

5. On the Action menu, click Save Configuration to put the changes into effect.

Configuration changes are apparent only to users who establish a connection after the configuration changes are saved. Users
who were connected at the time that the configuration changes were made will not be affected.

You can modify, delete, or add IP addresses and subnet masks to AS/400 definitions. If you want to change the configuration of
multiple AS/400 definitions, you can only change properties such as display types, the IP address, and subnet mask that the
AS/400 definitions have in common. You cannot change properties such as the local or remote LUs, because these values are
unique for each AS/400 definition.

You can add new IP addresses and subnet masks to a range of AS/400 definitions. If the new IP address or subnet mask
already exists on some of the AS/400 definitions, but not on others, the addition will occur without duplication in the ones that
already have the IP address or subnet mask. You can also modify or delete the IP addresses that the AS/400 definitions have in
common and that appear on the IP address list.

To edit an AS/400 definition for TN5250 service

1. In the SNA Manager console tree, select the TN5250 service AS/400 definition that you want to view or modify, right-
click, and then click Properties.

To delete AS/400 definitions from TN5250 service

1. In the SNA Manager console tree, select the icon for the AS/400 definition that you want to delete.

2. Click Delete.

3. Click Save to save your configuration changes.

Note

Configuration changes are apparent only to users who establish a connection after the configuration changes are saved. User
s who were connected at the time that the configuration changes were made will not be affected.

To start, pause, continue, and stop TN5250 service

1. Right-click TN5250, and then click Start or Stop.

- or -

2. In the Services utility of the Windows Server 2003 or Windows 2000 Administrative Tools, select TN5250 Service
and click Start, Pause, Continue, or Stop.

The TN5250 service is set to start manually by default. You can change this to automatic if you are not running either the
TN5250 service on this server, or if you have configured the TCP ports for more than one of these services.

After TN5250 service has stopped, it can no longer be accessed. You may need to start the TN5250 service after you have
paused or stopped it. TN5250 service can be restarted only on the local system.

Pausing allows you to prevent new users from establishing a connection with TN5250 service without disconnecting current
users. You can then view session status in the Active TN5250 Sessions folder and notify connected users to disconnect from
TN5250 service.

Before stopping TN5250 service, notify all connected users that they will be disconnected within a specified time period. Stop
the service after expiration of your warning period.

Tips

To start TN5250 service from a command prompt, type

net start tn5250

To pause TN5250 service from a command prompt, type

net pause tn5250

To continue TN5250 service from a command prompt, type

net continue tn5250

To stop TN5250 service from a command prompt, type

net stop tn5250

Pausing or removing TN5250 service

1. To pause TN5250 service, use the Services utility in Windows Server 2003 or Windows 2000 Control Panel.

Pausing TN5250 service allows you to notify connected users to disconnect from TN5250 service before you stop and
remove the application.

2. To stop TN5250 service, use the Services utility in Windows Server 2003 or Windows 2000 Control Panel.

3. Open Control Panel, and then double-click Add/Remove Programs.

4. Click Host Integration Server, and then click Change. The Add/Remove Programs dialog box appears.

5. In the Add/Remove Application dialog box, click Add/Remove.

6. Click the TN5250 Service icon, and then click Entire feature will be unavailable.

7. Click Continue.

Note

You can remove TN5250 service anytime you want to do so. However, removing TN5250 service deletes the TN5250 service
files from your computer, including TN5250 service configuration data. To use TN5250 service again, you must run Host Inte
gration Server Setup to reinstall TN5250 service files.

See Also
Concepts
TN5250

https://msdn.microsoft.com/en-us/library/aa745241(v=bts.10).aspx

Active Directory Services
Microsoft Active Directory is the Microsoft Windows Server 2003 or Windows 2000 directory service.

A directory service is an object-oriented information database of network resources. It also provides the services that locate,
use, and manage the database and the network resources. These network resources are known as objects and can include
network servers, users, printers, computers, databases, and security policies.

Active Directory provides the following services and benefits:

Simplified administration. Active Directory provides a single point of administration for all network resources. It also
provides a single point of logon for network users.

Network security. Security policies can be implemented and enforced to help keep information and resources safe, and
at the same time, make information and resources available to the right people.

Scalability. The Active Directory database can be expanded by dividing it into partitions. A partition is a logical division
of objects. Using partitions, Active Directory can scale from small installations with a few objects, to large installations
containing millions of objects.

Directory replication and distribution. Replicating and distributing the directory to other servers in the network
ensures its availability and redundancy.

Open standards. Active Directory supports industry standard naming conventions, such as the Domain Name System
(DNS), and protocols, such as the Lightweight Directory Access Protocol (LDAP). This allows Active Directory to be
integrated into networks that already have a directory. It also allows you to unify and manage the multiple namespaces
that may exist in the heterogeneous environments of corporate networks.

Complete Active Directory services information is available from many sources, including the Windows Server 2003 and
Windows 2000 Help.

In This Section

How Host Integration Server Uses Active Directory

How to Configure Active Directory During Host Integration Server Installation

Host Integration Server Active Directory Administration

https://msdn.microsoft.com/en-us/library/aa744753(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745561(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705588(v=bts.10).aspx

How Host Integration Server Uses Active Directory
Host Integration Server uses Active Directory by registering services and resources with the Active Directory schema. The
benefits of using Active Directory include:

Client configuration and resource location on the network is simplified.

The limitation of 8,000 sponsor connections that existed in SNA Server 4.0 is eliminated.

Host Integration Server client computers must be configured to communicate to a Host Integration Server computer using
either sponsor connections or Active Directory. A client computer cannot be set up to use both at the same time.

If a Host Integration Server computer is configured to use Active Directory, it must operate in an Organizational Unit (OU). If
the Active Directory schema is new or otherwise does not have any OUs, Host Integration Server will create an OU for itself.

In addition, the following relationships between the SNA subdomain and the OU containing the Host Integration Server
specific containers must be observed:

Multiple Host Integration Server computers can exist within the same OU.

Each OU containing a Host Integration Server must be a unique SNA subdomain.

Two different SNA subdomains cannot exist within the same OU.

An SNA subdomain cannot stretch across two OUs.

If an OU contains multiple Host Integration Server computers, they must be part of the same SNA subdomain.

The name of the OU and the name of the SNA subdomain within that OU can either be the same name or different
names.

See Also
Other Resources
Active Directory Services

https://msdn.microsoft.com/en-us/library/aa705225(v=bts.10).aspx

How to Configure Active Directory During Host Integration
Server Installation

Host Integration Server participation in Active Directory is accomplished by the SNA service and the SNA Windows
Management Instrumentation (SNAWMI) Provider. The SNA service is an installable option that can be selected during Host
Integration Server Setup. The SNAWMI is always installed automatically when the SNA service is installed.

With Host Integration Server, there are two mechanisms that will deliver SNA client resource location. One is sponsor
connections, which is the existing mechanism present in SNA Server 4.0. The second uses Windows Server 2003 or
Windows 2000 Active Directory. If you want to use Active Directory instead of SNA subdomains, you must add the Host
Integration Server schema to the Windows Server 2003 or Windows 2000 domain schema before installing Host Integration
Server.

The Windows Server 2003 or Windows 2000 schema is extended by running a command-line utility found on the Host
Integration Server CD-ROM. The following procedure adds the Host Integration Server schema to the Windows Server 2003 or
Windows 2000 domain schema:

To extend the Active Directory schema

1. Make sure you are logged on to the server running Windows Server 2003 or Windows 2000 as Administrator or
another user who is a member of both the Domain Admins and Schema Admins groups, and who has been delegated
control to the domain. You can use the Active Directory Users and Computers administrative tool to verify user
privileges and delegate control.

2. Click Start, point to Programs, point to Administrative Tools, and then click Active Directory Users and Computers.

3. Select Users, select Domain Admins, right-click, and then click Properties.

4. Select the Members tab and add members to this group.

5. Select Users, select Schema Admins, right-click, and then click Properties.

6. Select the Members tab and add members to this group.

7. Expand Domain Controllers, select the domain, right-click, and then click Delegate Control.

8. Complete the wizard.

9. Insert the Host Integration Server CD-ROM into the CD-ROM drive of the computer running Windows Server 2003 or
Windows 2000 Server .

10. Open a Command Prompt window.

11. Change drives to the CD-ROM drive.

12. Enter the following command.

13. The resulting display will indicate if the command was successful.

Note
If you do not successfully add the Host Integration Server schema, you will not be able to use Active Directory, but you can sti
ll configure a Host Integration Server client to use SNA subdomains and sponsor connections.

Configuring Host Integration Server to use Active Directory is performed during installation. The following figure shows the
Setup screen where you can choose to install Active Directory support.

Select Server Grouping screen

addschma HIserver.schema

Selecting Support Active Directory Clients, and then entering an Organizational Unit (OU) adds the following services to the
ServerResources container for that OU:

SNAServer Service

SNAWMI Provider Service

SNABase Service

MngAgent Service

See Also
Other Resources
Active Directory Services

https://msdn.microsoft.com/en-us/library/aa705225(v=bts.10).aspx

Host Integration Server Active Directory Administration
Administration of Host Integration Server Active Directory participation is done using the SNA Manager.

To access the Active Directory Server Configuration

1. In the SNA Manager tree, expand an SNA subdomain, select the server that you want to work with, right-click the server,
and then click Properties.

2. In the Properties box, click Change. The Server SNA Resource Location Wizard appears.

3. Follow the on-screen prompts to install Active Directory support.

The Server SNA Resource Location Wizard is the same wizard that configures Host Integration Server following setup.

Note
Changes made to the Server Properties page require the SNABase Service to be restarted.

See Also
Other Resources
Active Directory Services

https://msdn.microsoft.com/en-us/library/aa705225(v=bts.10).aspx

Host Configuration
For a connection to be established successfully between a host computer and a Host Integration Server computer, a number of
software configuration settings (VTAM, NCP, or AS/400), and hardware characteristics must work together. These include the
mainframe node ID settings, AS/400 name settings, addresses, BTU length, and link service settings.

The following table provides more details about important configuration items.

Element Important items to consider

Host configuration setti
ngs (VTAM, NCP, or AS/4
00 settings) must match t
he Connection and Ser
ver settings on Host Inte
gration Server

Mainframe Node ID settings: For most mainframes, IDBLK and IDNUM in the PU definition must
be matched by the two parts of the Remote Node ID on the Host Integration Server connection.

AS/400 name settings: For the AS/400, local and remote Control Point Names (CP names) and net
work names must match corresponding Host Integration Server settings (local names configured on
the server and remote names on the connection).

Addresses: For several connection types (802.2, X.25, and channel), host settings must be matched
with equivalent settings on the Host Integration Server connection. For details, see the section about
the type of connection you are configuring.

BTU length: For the mainframe, this is set through MAXDATA in the PU definition. For the AS/400, t
his is set through MAXFRAME. These should equal the Max BTU Length on the Host Integration Serv
er connection.

Other settings: For some connections, other settings are also important. For example, for Synchron
ous Data Link Control (SDLC), the NRZ/NRZI settings on the host must match those on the Host Inte
gration Server connection. For details about these and other settings, see the section about the type
of connection you are configuring.

For SDLC and X.25

Communications hard
ware: line, modem (if ap
plicable), and adapter cha
racteristics must match th
e Link service and conn
ection settings on the Ho
st Integration Server

Speed and duplexing: For SDLC and X.25, note the speed and duplexing capabilities of the line, m
odem (or DCE), and adapter, and make sure that they will not be exceeded by the settings in the Hos
t Integration Server link service and connection. Settings for fast transmission or for full duplexing c
ause greater demands on hardware. (Fast transmission plus full duplexing cause the greatest deman
ds.) The hardware element with the smallest capacity will limit the capacity of the entire system. For
example, with an SDLC adapter that lacks a coprocessor, you cannot use full-duplex transmissions at
high speeds, even if the modem and line can handle them.

When you are configuring a new host connection or troubleshooting an existing connection, regardless of the connection type,
the identifiers between the host and Host Integration Server must match. The following sections describe various configuration
settings.

In This Section

Mainframe Connections Using XIDs

Mainframe Connections Not Using XIDs

AS/400 Connections

Configuring VTAM for 3270 Access

802.2 Connection Parameters

SDLC Connection Parameters

X.25 Connection Parameters

Sample VTAM Parameters

Configuring VTAM for APPC Access

Sample CICS Configuration Screens for Use with APPC

Configuring NCP for Independent APPC

https://msdn.microsoft.com/en-us/library/aa754758(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705061(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705134(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771043(v=bts.10).aspx

Configuring the AS/400 for 5250 Access

Table of Parameters for AS/400 Communication

https://msdn.microsoft.com/en-us/library/aa745248(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744985(v=bts.10).aspx

Mainframe Connections Using XIDs
Node ID is the identifier used for exchange identifications (XIDs) with most mainframes. Check to make sure that the following
items match; if they do not, Host Integration Server is not identifying itself in a way that the host can recognize.

Identifier used on mainframe Identifier to configure on Host Integration Server
IDBLK and IDNUM in the PU definition The two parts of the Local Node ID (configured on the connection)

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

Mainframe Connections Not Using XIDs
There are some situations in which the mainframe does not use Node ID in exchange identifications (XIDs), but instead uses
Network Name and Control Point Name. These situations include mainframes communicating through LU 6.2 and mainframes
that call up Host Integration Server. (Host Integration Server accepts incoming calls on that mainframe connection.) In these
situations, the following parameters must match.

Note
Use the following identifiers only when necessary. They are more complicated than needed for most mainframe connections
and add the potential for error when used unnecessarily.

Identifier used on mainframe (in unusual cases only) Identifier to configure on Host Integration Server
NETID in the VTAM Start command for the local SSCP

CPNAME in the PU definition

NETID and SSCPNAME in the VTAM Start command for the
remote SSCP (VTAM system)

Local Network Name (configured on the server)

Local Control Point Name (configured on the server)

Remote Network Name and Remote Control Point Name (
configured on the connection)

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

AS/400 Connections
Network Name and Control Point Name (used together and called the fully qualified name) are the identifiers used when using
exchange identification (XID) with AS/400 computers. Check to make sure that the following items match; if they do not, Host
Host Integration Server is not identifying itself in a way that the AS/400 can recognize.

Identifier used on AS/400 Identifier to configure on Host Integration Server
RMTNETID (usually; often set to APPN); RMTCPNAME Local Network Name and Local Control Point Name (conf

igured on the server)

RMTNETID (often set to APPN); CP Name (shown in the Displ
ay network attributes screen)

Remote Network Name and Remote Control Point Name
(configured on the connection)

Event log entries can be very helpful in diagnosing and correcting mismatched identifiers between Host Integration Server and
host computers.

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

Configuring VTAM for 3270 Access
When setting certain Host Integration Server parameters for a host connection, you must match values set on the host or on
front-end processors for the host. Host values are configured in VTAM. Front-end processor values are configured in the
Network Control Program (NCP).

The following table shows how parameters for Host Integration Server correspond to VTAM host parameters.

Host Integration Server parameter VTAM parameter
Control Point Name (Local Node). CPNAME= in the PU definition.

Network Name (Local Node) Note that the
Network Name for the local and remote node
s is generally the same.

NETID parameter in the VTAM Start command for the local SSCP (the VTAM sys
tem to which Host Integration Server is attached). Note that this is generally the
same as the NETID for the remote SSCP.

Note
The local Control Point Name and Network Name are needed only if the Host Integration Server will accept incoming calls, o
r will be used for LU6.2 (APPC).

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

802.2 Connection Parameters
The following table shows how Host Integration Server parameters for 802.2 connections correspond to VTAM or Network
Control Program (NCP) parameters. Asterisks (*) indicate required parameters.

Host Integration Server parameter VTAM or NCP parameter
Local Node ID,* first three digits (block number). IDBLK= parameter in the PU definition

Local Node ID,* last five digits (node number). IDNUM= parameter in the PU definition

Network Name (Remote Node) Note that the Network Name for the
local and remote nodes is generally the same.

NETID parameter in the VTAM Start command for the
remote SSCP (VTAM system)

Control Point Name (Remote Node). SSCPNAME parameter in the VTAM Start command f
or the remote SSCP (VTAM system)

Remote Network Address* when connecting to a 3720, 3725, or 374
5 front-end processor.

MACADDR= parameter in the NCP Gen

Remote Network Address* when connecting to an IBM 9370 host. MACADDR= parameter in the PORT definition

Remote SAP Address when connecting to an IBM 9370 host. SAPADDR= parameter in the PU definition

Max BTU Length. MAXDATA= parameter in the PU definition (set Max
BTU Length ≤ MAXDATA)

* Required parameter in Host Integration Server

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

SDLC Connection Parameters
The following table shows how Host Integration Server parameters for Synchronous Data Link Control (SDLC) connections
correspond to VTAM or Network Control Program (NCP) parameters. Asterisks (*) indicate required parameters.

Host Integration Server parameter VTAM or NCP parameter
Local Node ID,* first three digits (block number). IDBLK= parameter in the PU definition

Local Node ID,* last five digits (node number). IDNUM= parameter in the PU definition

Network Name (Remote Node) Note that the Network Name for the
local and remote nodes is generally the same.

NETID parameter in the VTAM Start command for the
remote SSCP (VTAM system)

Control Point Name (Remote Node). SSCPNAME parameter in the VTAM Start command f
or the remote SSCP (VTAM system)

Max BTU Length. MAXDATA= parameter in the PU definition (set Max
BTU Length ≤ MAXDATA)

Encoding (NRZ or NRZI). NRZI= setting in the LINE/GROUP definition (defaults
to YES on host)

Local Poll Address. ADDR= parameter in the PU definition

* Required parameter in Host Integration Server

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

X.25 Connection Parameters
The following table shows how Host Integration Server parameters for X.25 connections correspond to VTAM or Network
Control Program (NCP) parameters. Asterisks (*) indicate required parameters.

Host Integration Server parameter VTAM or NCP parameter
Local Node ID,* first three digits (block number). IDBLK= parameter in the PU definition

Local Node ID,* last five digits (node number). IDNUM= parameter in the PU definition

Network Name (Remote Node) Note that the Network Name for the
local and remote nodes is generally the same.

NETID parameter in the VTAM Start command for the
remote SSCP (VTAM system)

Control Point Name (Remote Node). SSCPNAME parameter in the VTAM Start command f
or the remote SSCP (VTAM system)

Remote X.25 Address*. DIALNO= parameter in the PORT definition

Max BTU Length. MAXDATA= parameter in the PU definition (set Max
BTU Length ≤ MAXDATA)

* Required parameter in Host Integration Server

See Also
Other Resources
Host Configuration

https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx

Sample VTAM Parameters
VTAM parameters on host connections need to correspond to settings in Host Integration Server. Each connection needs its
own specified values.

In This Section

Sample VTAM Parameters for a Token Ring Connection

Sample VTAM Parameters Including CPNAME

Sample VTAM Parameters for Independent APPC

https://msdn.microsoft.com/en-us/library/aa704841(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705579(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745535(v=bts.10).aspx

Sample VTAM Parameters for a Token Ring Connection
The following is a sample of VTAM parameters that might be used for a Token Ring connection to an IBM 9370 host. The
underlined values correspond to values specified in Host Integration Server Manager.

The following table shows the Host Integration Server parameters and values that correspond to the sample VTAM parameters.

Host Integration Server parameter Sample valu
e

VTAM parameter

Remote Network Address 4000400040
01

MACADDR= parameter in the PORT definition

Local Node ID, first three digits (block nu
mber)

05D IDBLK= parameter in the PU definition

Local Node ID, last five digits (node numb
er)

00001 IDNUM= parameter in the PU definition

Max BTU Length 265 MAXDATA= parameter in the PU definition (set Max BTU Length ≤ M
AXDATA)

Remote SAP Address 04 SAPADDR= parameter in the PU definition

LU Numbers 2 through 8 LOCADDR= parameter in the LU definitions

Sample VTAM Parameters for an SDLC Connection

The following is a sample of VTAM parameters that might be used for a Synchronous Data Link Control (SDLC) connection to a
host. The underlined values correspond to values specified in Host Integration Server Manager.

R01100 PORT
CUADDR=100,<U>MACADDR=400040004001</U>,LANCON=(5,2),X

MAXDATA=2012,MAXSTN=52,SAPADDR=04

SERVER01 PU ADDR=C1, <U>IDBLK=05D, IDNUM=00001</U>,X

ANS=CONTINUE,<U>MAXDATA=0265</U>,MAXOUT=7,MAXPATH=7,X

PACING=0,VPACING=0,SSCPFM=USSSCS,X

LANACK=(0,0),LANCON=(5,2),LANINACT=4.8,LANRESP=(5,2), X

LANSDWDW=(7,1),LANSW=YES,MACADDR=400040001111,X

USSTAB=MSUSSTAB,DLOGMOD=D4C32792,X

PUTYPE=2,DISCNT=(NO),ISTATUS=ACTIVE,<U>SAPADDR=04</U>

T0110002 LU <U>LOCADDR=002</U>
T0110003 LU <U>LOCADDR=003</U>
T0110004 LU <U>LOCADDR=004</U>
T0110005 LU <U>LOCADDR=005</U>
P0110006 LU <U>LOCADDR=006</U>,DLOGMOD=LU33286S
T0110007 LU <U>LOCADDR=007</U>
T0110008 LU <U>LOCADDR=008</U>

SERVER02 PU <U>ADDR=C1,IDBLK=017,IDNUM=B8001</U>,DISCNT=NO,X
 VPACING=00,PACING=00,PUTYPE=2,<U>MAXDATA=265</U>,X
 DLOGMOD=D4C32792,USSTAB=MSUSSTAB

The following table shows the Host Integration Server parameters and values that correspond to the sample VTAM parameters.

Host Integration Server parame
ter

Sample value VTAM parameter

Local Poll Address C1 ADDR= parameter in the PU definition

Local Node ID, first three digits (bl
ock number)

017 IDBLK= parameter in the PU definition

Local Node ID, last five digits (nod
e number)

B8001 IDNUM= parameter in the PU definition

Max BTU Length 265 MAXDATA= parameter in the PU definition (set Max BTU
Length ≤ MAXDATA)

The encoding scheme (NRZ versus
NRZI)

Not specified; defaults to NRZI=
YES on host

The NRZI= setting in the LINE/GROUP definition

LU Numbers 2 through 6 LOCADDR= parameter in the LU definitions

Sample VTAM Parameters for an X.25 Connection

The following is a sample of VTAM parameters that might be used for an X.25 connection to a host. The underlined values
correspond to values specified in Host Integration Server Manager.

The following table shows the Host Integration Server parameters and values that correspond to the sample VTAM parameters.

Host Integration Server parameter Sample val
ue

VTAM parameter

Remote X.25 Address 3137002306
1

DIALNO= parameter in the PORT definition

Local Node ID, first three digits (block nu
mber)

05D IDBLK=parameter in the PU definition

T01B8002 LU <U>LOCADDR=002</U>
T01B8003 LU <U>LOCADDR=003</U>
T01B8004 LU <U>LOCADDR=004</U>
T01B8005 LU <U>LOCADDR=005</U>
P01B8006 LU <U>LOCADDR=006</U>,DLOGMOD=LU33286S

PORTA00 PORT
CUADDR=(A00,A08),NETTYPE=1,CHARGACC=YES,CHARGE=NO,X

VCALLS=(,,001,006,,),<U>DIALNO=31370023061</U>,MAXOUT=7,
NETLEVEL=80,PMOD=8,PLENGTH=256,PWINDOW=3,
REPLYT0=3,RETRIES=7

SERVER03 PU
ADDR=C1,<U>IDBLK=05D</U>,<U>IDNUM=00025</U>,ANS=CONTINUE,X
<U>MAXDATA=265</U>,MAXOUT=7,MAXPATH=0,PACING=0,VPACING=0,X

SSCPFM=USSSCS,IRETRY=YES,USSTAB=MSUSSTAB,PUTYPE=2,X

DISCNT=YES,ISTATUS=ACTIVE

Local Node ID, last five digits (node numb
er)

00025 IDNUM=parameter in the PU definition

Max BTU Length 265 MAXDATA= parameter in the PU definition (set Max BTU Length ≤ M
AXDATA)

Sample VTAM Parameters Including CPNAME
The following is a sample of VTAM parameters that might be used for a Token Ring connection to an IBM 9370 host, when
identification of the computer running Host Integration Server is based on Control Point Name (CPNAME). For this
configuration, Format XIDs must be exchanged.

In the PU definition, IDBLK, IDNUM, MACADDR, and SAPADDR are not used. For this configuration to work on Host Integration
Server, the Remote Node ID, Remote Network Name, and Remote Control Point Name should all be left blank. Additionally, the
Local Node ID can be left at the default value (because it is not used).

In this sample, the underlined values correspond to values specified in Host Integration Server Manager.

The following table shows the Host Integration Server parameters and values that correspond to the sample VTAM parameters.

Note
For this example, it is assumed that the local Network Name configured for the Host Integration Server matches the NETID p
arameter in the VTAM Start command for the local SSCP. (The VTAM system to which Host Integration Server is attached.)

Host Integration Server param
eter

Sample val
ue

VTAM parameter

Remote Network Address 400040004
001

MACADDR= parameter in the PORT definition

Local Control Point Name (for th
e server)

SERVER01 CPNAME= parameter in the PU definition

Max BTU Length 265 MAXDATA= parameter in the PU definition (set Max BTU Length less than or eq
ual to MAXDATA)

LU Numbers 2 through 8 LOCADDR= parameter in the LU definitions

See Also
Other Resources
Sample VTAM Parameters

R01100 PORT CUADDR=100,<U>MACADDR=400040004001</U>,LANCON=(5,2), X
 MAXDATA=2012,MAXSTN=52,SAPADDR=04

SERVER01 PU ADDR=C1,<U>CPNAME=SERVER01</U>,ANS=CONTINUE, X
 <U>MAXDATA=0265</U>,MAXOUT=7,MAXPATH=7, X
 PACING=0,VPACING=0,SSCPFM=USSSCS, X
 LANACK=(0,0),LANCON=(5,2),LANINACT=4.8, X
 LANRESP=(5,2),LANSDWDW=(7,1),LANSW=YES, X
 USSTAB=MSUSSTAB,DLOGMOD=D4C32792, X
 PUTYPE=2,DISCNT=(NO),ISTATUS=ACTIVE

T0110002 LU <U>LOCADDR=002</U>
T0110003 LU <U>LOCADDR=003</U>
T0110004 LU <U>LOCADDR=004</U>
T0110005 LU <U>LOCADDR=005</U>
P0110006 LU <U>LOCADDR=006</U>,DLOGMOD=LU33286S
T0110007 LU <U>LOCADDR=007</U>
T0110008 LU <U>LOCADDR=008</U>

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Sample VTAM Parameters for Independent APPC
The lists in this section show sample VTAM parameters that might be used for communication using independent Advanced
Program-to-Program Communications (APPC). The underlined values correspond to values specified in SNA Server Manager.

In the preceding example, the LOCADDR= value for the LOCLU1 is 0. This is the correct value to use with independent APPC
LUs.

The following table shows Host Integration Server parameters and values that correspond to the preceding sample VTAM
parameters.

Host Integration Server parameter Sample va
lue

VTAM parameter

Connection: Local Node ID, first three digits (blo
ck number)

05D IDBLK= parameter in the PU definition

Connection: Local Node ID, last five digits (node
number)

11111 IDNUM= parameter in the PU definition

Server: Control Point Name SNASERV CPNAME= parameter in the PU definition

Connection: Max BTU Length 521 MAXDATA= parameter in the PU definition (set Max BTU Lengt
h ≤ MAXDATA)

Local APPC LU: LU Name LOCLU1 Name in LU definition

APPC Partner LUs: Mode APPCMODE DLOGMOD= parameter in the LU definition

The following list shows mode table entries for use with independent APPC LUs.

SERVER1 PU ADDR=09, X
 <U>IDBLK=05D</U>, X
 <U>IDNUM=11111</U>, X
 <U>CPNAME=SNASERV</U>, X
 ISTATUS=ACTIVE X
 DLOGMOD=D4C32782, X
 MODETAB=ISTINCLM, X
 <U>MAXDATA=521</U>, X
 MAXPATH=1, X
 PUTYPE=2, X
 SSCPFN=USSSCS, X
 MAXOUT=7, X
 PASSLIM=4, X
 PACING=0, X
 DISCNT=NO, X
 USSTAB=USSTAB

TRPATH PATH DIALNO=2223331234567890, X
 GRPNM=AAA01, X
 GID=2

<U>LOCLU1</U> LU LOCADDR=0, X
 ISTATUS=ACTIVE,<U>DLOGMOD=APPCMODE</U>, X
 RESSCB=25,USSTAB=USSTAB,PACING=0, X
 VPACING=0

* LOGMODE TABLE ENTRY FOR RESOURCES *
* CAPABLE OF ACTING AS LU 6.2 DEVICES *

SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X'13', X
 TSPROF=X'07',PRIPROT=X'B0', X
 SECPROT=X'B0',COMPROT=X'D0B1', X

In the preceding list, the mode named APPCMODE is an example of a mode configured for use with APPC. The mode named
SNASVCMG is included in Host Integration Server, because it is required for parallel session support; it does not need to be
configured in SNA Server Manager.

See Also
Other Resources
Sample VTAM Parameters

 RUSIZES=X'8585',ENCR=B'0000', X
 PSERVIC=X'060200000000000000000300'

<U>APPCMODE</U> MODEENT LOGMODE=APPCMODE, X
 TYPE=0, X
 FMPROF=X'13', X
 TSPROF=X'07', X
 PRIPROT=X'B0', X
 SECPROT=X'B0', X
 COMPROT=X'50B1', X
 PSNDPAC=X'03', X
 SRCVPAC=X'03', X
 RUSIZES=X'8585', X
 PSERVIC=X'060200000000000000002F00'

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Configuring VTAM for APPC Access
Parameters on VTAM must match Advanced Program-to-Program Communications (APPC) parameters on Host Integration
Server. To configure the needed parameters, consult with the host administrator for the matching VTAM parameters.

The following tables show Host Integration Server parameters and values that correspond to VTAM and CICS parameters. Note
that the values given are samples only and may not work for your configuration.

The following table shows Host Integration Server parameters and values that correspond to sample VTAM parameters.

Host Integration Server parameter Sample va
lue

VTAM parameter

Connection: Local Node ID, first three digits (blo
ck number)

05D IDBLK= parameter in the PU definition

Connection: Local Node ID, last five digits (node
number)

11111 IDNUM= parameter in the PU definition

Server: Control Point Name SNASERV CPNAME= parameter in the PU definition

Connection: Max BTU Length 521 MAXDATA= parameter in the PU definition (set Max BTU Lengt
h ≤ MAXDATA)

Local APPC LU: LU Name LOCLU1 Name in LU definition

LU 6.2 Partner LUs: Mode APPCMODE DLOGMOD= parameter in the LU definition

The mode named APPCMODE is an example of a mode configured for use with LU 6.2. The mode named SNASVCMG is
included in Host Integration Server, because it is required for parallel session support. It does not need to be configured.

The following table shows Host Integration Server parameters and values that correspond to sample CICS parameters.

Host Integration Server parameter Sample value CICS parameter
LU Name for Local APPC LU LOCLU1 Sessions

Mode name APPCMODE Modename

Parallel Session Limit in the mode 250 Maximum

Partner Min Contention Winner Limit in the mode 125 Maximum

Max Receive RU Size in the mode 00521 SENDSize

Max Send RU Size in the mode 00521 RECEIVESize

LU Name for remote APPC LU CICSLU APPLID

The parameter called Maximum has two values, 250 and 125, separated by commas. The first value (250) is the parallel session
limit. The second value (125) is the host minimum contention winner limit. On Host Integration Server, this corresponds to
Partner Min Contention Winner Limit in the mode. In addition, because the host is the contention winner on 125 sessions (out
of a total of 250), Host Integration Server should be configured as the contention winner on the remaining 125 sessions. In this
case, Host Integration Server mode would have the following values:

Parallel Session Limit 250

Minimum Contention Winner Limit 125

Partner Min Contention Winner Limit 125

Automatic Activation Limit 0

See Also

Other Resources
Sample VTAM Parameters

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Sample CICS Configuration Screens for Use with APPC
The following series of screens show how CICS could be configured for independent Advanced Program-to-Program
Communications (APPC) through VTAM. In the first screen, the underlined values correspond to values specified in SNA Server
Manager.

The following table shows Host Integration Server parameters and values that correspond to the preceding sample CICS
parameters.

Host Integration Server parameter Sample value CICS parameter
LU Name for local APPC LU LOCLU1 Sessions

Mode name APPCMODE Modename

Parallel Session Limit in the mode 250 Maximum

Partner Min Contention Winner Limit in the mode 125 Maximum

Max Receive RU Size in the mode 00521 SENDSize

Max Send RU Size in the mode 00521 RECEIVESize

LU Name for remote APPC LU CICSLU APPLID

In the sample CICS screen, the parameter called Maximum has two values, 250 and 125, separated by commas. The first value
(250) is the parallel session limit. The second value (125) is the host minimum contention winner limit. On Host Integration
Server, this corresponds to Partner Min Contention Winner Limit in the mode. In addition, because the host is the contention
winner on 125 sessions (out of a total of 250), Host Integration Server should be configured as the contention winner on the
remaining 125 sessions. In this case, Host Integration Server mode would have the following values:

Parallel Session Limit 250

Minimum Contention Winner Limit 125

Partner Min Contention Winner Limit 125

Automatic Activation Limit 0

OVERTYPE TO MODIFY CICS RELEASE = 0330
 CEDA ALter
 <U>Sessions : LOCLU1</U>
 Group : VER3AAAA
 DEscription ==> VERSION 3 LU 6.2 SESSION ENTRY
 SESSION IDENTIFIERS
 Connection ==> CON1
 SESSName ==>
 NETnameq ==>
 <U>MOdename ==> APPCMODE</U>
 SESSION PROPERTIES
 Protocol ==> Appc Appc | Lu61
 <U>MAximum ==> 250 , 125</U> 0-999
 RECEIVEPfx ==>
 RECEIVECount ==> 1-999
 SENDPfx ==>
 SENDCount ==> 1-999
 <U>SENDSize ==> 00521</U> 1-30720
 <U>RECEIVESize ==> 00521</U> 1-30720

 <U>APPLID=CICSLU</U>
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

The remaining screens in this section show more information about how CICS could be configured for independent APPC
through VTAM.

In the following screen, the underlined value corresponds to the LU Name of the local APPC LU in Host Integration Server.

OVERTYPE TO MODIFY CICS RELEASE = 0330
 CEDA ALter
 SESSION PROPERTIES
 SESSPriority ==> 000 0-255
 Transaction :
 OPERATOR DEFAULTS
 OPERId :
 OPERPriority : 000 0-255
 OPERRsl : 0 0-24,...
 OPERSecurity : 1 1-64,...
 PRESET SECURITY
 USERId ==>
 OPERATIONAL PROPERTIES
 Autoconnect ==> Yes No | Yes | All
 INservice : No | Yes
 Buildchain ==> Yes Yes | No
 USERArealen ==> 000 0-255
 IOarealen ==> 00000 , 00000 0-32767
 RELreq ==> No No | Yes
 DIscreq ==> No No | Yes
 NEPclass ==> 000 0-255
 RECOVERY
 RECOVOption ==> Sysdefault Sysdefault | Clearconv
 | Releasesess | Uncondrel
 | None
 RECOVNotify ==> None None | Message | Transaction

 APPLID=CICSLU
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

OVERTYPE TO MODIFY CICS RELEASE = 0330
 CEDA ALter
 Connection : CON1
 Group : VER3AAAA
 DEscription ==> VERSION 3 LU 6.2 DEFINITION
 CONNECTION IDENTIFIERS
 <U>Netname ==> LOCLU1</U>
 INDsys ==>
 REMOTE ATTRIBUTES
 REMOTESystem ==>
 REMOTEName ==>
 CONNECTION PROPERTIES
 ACcessmethod ==> Vtam Vtam | IRc
 |INdirect | Xm
 Protocol ==> Appc Appc | Lu61
 SInglesess ==> No No | Yes
 DAtastream ==> User User | 3270 | SCs
 | STrfield | Lms
 RECordformat ==> U U | Vb
 OPERATIONAL PROPERTIES
 AUtoconnect ==> Yes No | Yes | All
 INService ==> Yes Yes | No
 SECURITY
 SEcurityname ==>
 ATtachsec ==> Verify Local | Identify
 | Verify | Persistent
 | Mixidpe
 BINDPassword ==> PASSWORD SPECIFIED
 BINDSecurity ==> No No | Yes

See Also
Other Resources
Sample VTAM Parameters

 APPLID=CICSLU
PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Configuring NCP for Independent APPC
Parameters on Network Control Program (NCP) must match Advanced Program-to-Program Communications (APPC)
parameters on Host Integration Server. To configure the needed parameters, consult with the host administrator for the
matching NCP parameters.

This section provides information about NCP definitions used for supporting and defining independent LUs. The section is not
intended to provide comprehensive information about NCP, which is described more thoroughly in IBM manuals such as:

Planning and Reference for NetView, NCP, VTAM (CN4D1200)

NCP, SSP, and EP Resource Definition Guide (CXDG7200)

NCP, SSP, and EP Resource Definition Reference (CXDH1200)

You may need to study other IBM documentation as well. Some of the topics to study are:

Independent LUs

Type 2.1 node support

Dynamic reconfiguration

Table of NCP Parameters That Affect Independent APPC

The following table shows basic recommendations for setting NCP parameters for independent APPC with Host Integration
Server. The next sections describe the parameters in more detail.

NCP defi
nition

NCP par
ameter

Recommendations

BUILD ADDSESS Must support the number of sessions needed.

Not appli
cable

AUXADD
R

Must support the number of additional addresses needed.

Not appli
cable

MAXSESS Use for setting the maximum sessions allowed for any LU. Corresponds to the sum of all the parallel sessi
on limits for all the modes with which a particular LU is partnered.

PUDRPO
OL

NUMBER Must support the number of servers accessing NCP.

LUDRPO
OL

NUMILU Must support the number of dynamically configurable LUs needed.

PU NETID Corresponds to the Local Network Name on Host Integration Server.

Not appli
cable

PUTYPE For independent APPC, use PUTYPE=2.

Not appli
cable

XID For independent APPC, use XID=YES.

LU LOCADD
R

For independent LUs with set definitions, use LOCADDR=0.

Not appli
cable

PACING Use a value greater than or equal to the corresponding Host Integration Server parameter, the Pacing Rec
eive Count in the mode.

Not appli
cable

VPACING Use a value less than or equal to the corresponding Host Integration Server parameter, the Pacing Send C
ount in the mode.

BUILD Definition

The following parameters in the BUILD definition affect independent APPC:

ADDSESS= value

Is equivalent to the total number of sessions available to independent LUs. ADDSESS specifies the number of LU-LU session
control blocks available for independent LUs. Note that session control blocks may be reserved for a particular LU by using
RESSCB (reserved session control blocks) in the LU definition.

The sum of ADDSESS, AUXADDR, and NUMILU equals the total number of control blocks available for dynamic configuration
of LUs. (For a description, see LUDRPOOL Definition, later in this topic.) This total should be high enough to support needed
sessions, but low enough so that NCP does not exceed the storage capacity of the controller.

AUXADDR= value

Specifies the number of addresses that can be dynamically defined for both dependent and independent LUs. To allow for
additional sessions between independent LUs, AUXADDR should be greater than ADDSESS. For more information about
dynamic reconfiguration, see ADDSESS (the preceding description).

MAXSESS= value

Specifies the maximum number of LU-LU sessions that one independent LU can support. If you specify MAXSESS in an LU
definition (as supported by NCP V6R2), the LU uses the value in the LU definition, not the BUILD definition. The limit set by
MAXSESS prevents an independent LU from using too many unreserved session control blocks.

PUDRPOOL Definition

The following parameter in the PUDRPOOL definition affects independent APPC:

NUMBER= value

Specifies the number of physical units (PUs) that can be dynamically defined.

LUDRPOOL Definition

The following parameter in the LUDRPOOL definition affects independent APPC:

NUMILU= value

Specifies the number of independent LUs that can be added through dynamic reconfiguration. Find a value high enough to
support needed sessions (including control-session overhead for parallel sessions), but low enough so that NCP does not
exceed the storage capacity of the controller. Note that total LUs allowed by NUMILU plus NUMTYP1 plus NUMTYP2 is
limited. The exact limit depends on your version of NCP.

PU Definition

The following parameters in the PU definition affect independent APPC:

NETID= name

Specifies the name of an adjacent network, and corresponds to the local Network Name on Host Integration Server. NETID
allows the network names to differ between the host and Host Integration Server. This name is used in exchange
identification (XID) negotiation.

PUTYPE=2

For independent APPC, use PUTYPE=2. When combined with XID=YES, this is equivalent to physical unit type 2.1.

XID=YES

For independent APPC, specify XID=YES, so that XIDs can be exchanged while in Normal Disconnected Mode (NDM).

LU Definition

The following parameters in the LU definition affect independent APPC:

LOCADDR=0

For independent LUs configured by an administrator (as contrasted with LUs dynamically configured by NCP), specify
LOCADDR=0.

PACING= value

Specifies the number of frames for NCP to send to an independent LU before NCP waits for a pacing response. The value for
PACING should generally be greater than or equal to the corresponding Host Integration Server mode parameter, Pacing
Receive Count. This ensures a smooth flow of data from the host to the Host Integration Server. (Host Integration Server
does not support adaptive pacing.)

VPACING= value

Specifies the number of frames for NCP to receive from an independent LU before NCP sends a pacing response; sometimes
called the receive window size. The value for VPACING should generally be less than or equal to the corresponding Host
Integration Server mode parameter, Pacing Send Count. This prevents delays in sending from the Host Integration Server to
the host. (Host Integration Server does not support adaptive pacing.)

See Also
Other Resources
Sample VTAM Parameters

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Configuring the AS/400 for 5250 Access
When setting Host Integration Server parameters for an AS/400 connection, you must match values set on the host. Check
with the host administrator to obtain required information for AS/400 access.

The administrator of the AS/400 may allow configurations to be created automatically in response to incoming requests.
Alternatively, the administrator may disable this feature, to ensure a higher level of security. Work with the documentation for
the AS/400 or with the administrator to determine the appropriate methods for configuring the AS/400.

Note
If the administrator of the AS/400 has allowed configurations to be created automatically in response to incoming requests, t
he parameters listed in this section need not be specified on the AS/400.

The following list shows command sequences on the AS/400 and the parameters to set after choosing those command
sequences. You must be logged on with administrative privilege on the AS/400 to configure the listed parameters. For more
detailed information, see the AS/400 documentation.

Communications > Network configuration > Configure communications and remote hardware > Work with lines

Find out the name of the line from the AS/400 administrator. To enable automatic configuration for the line, for Autocreate
controller, specify *YES, and for Autodelete controller (a time-out value), specify *NONE, or a large value such as 7000
(minutes). To prevent automatic configuration for the line, for Autocreate controller, specify *NO.

If the configuration is not automatic, specify the following:

APPN-capable *YES

A Control Point Name and network identifier that match corresponding parameters in Host Integration Server

APPN CP session support *YES

Communications > Network configuration > Configure communications and remote hardware > Work with communications
controllers

In this context, communications controller means the Host Integration Server.

If the configuration is not automatic, specify the local address of the Host Integration Server computer.

Connecti
on type

Address as specified in AS
/400 configuration

Method for finding out address on Host Integration Server

802.2 LAN remote adapter address At the command prompt, type net config server; then view the line labeled "Server
is active on."

SDLC Station address (STNADR) Start Host Integration Server Manager and view the Poll Address specified for the S
DLC connection. (For SDLC, both ends use same address.)

X.25 Network address Start SNA Manager, access the IBM X.25 Link Service Setup dialog box, and view t
he Local X.25 Address.

Guidelines for an AS/400 that Does Not Have PC Support

You can connect to an AS/400 for 5250 emulation even if the AS/400 does not have PC Support. However, to do this, you must
create the mode QPCSUPP on the AS/400, along with other resources that would have been created by PC Support. A
recommended way to do this is to create the QPCSUPP mode, create the QWCPCSUP class, and add the class QWCPCSUP to
the system QCMN. For details about how to create these resources, see the online OS/400 documentation for the related
commands: crtmodd, crtcls, and addrtge.

Changing Session Limits with a Single Mode Name

If the AS/400 requires different session limits on each LU (while the mode name stays the same), you must change the device
description attached to the controller to reflect the correct number of sessions allowed for the LUs. For example, with a 5250

emulator, the mode name must be QPCSUPP. If you change the Parallel Session Limit on QPCSUPP for one LU-LU pair, all
other LU-LU pairs that use the QPCSUPP mode will also be affected. Therefore, to change the session limit on some LUs but
not others, you must change it at the AS/400.

The simplest way to get the correct number of sessions for the LUs on the AS/400 is to autocreate the controllers and devices,
and then change the device description attached to the controller, so that the session limit is decreased. This is done by using
the Change Device Description (chgdevappc) command. It needs to be done for each device description that needs to have
different session limits. The AS/400 device settings that should be modified are Maximum Sessions (maxssn) and Maximum
Conversations (maxcnv).

For 5250 emulation in the AS/400 environment, you must configure the following elements:

Each Host Integration Server computer that will access the AS/400

Connections

Local APPC LUs

Remote APPC LUs

LU-LU pairs

See Also
Other Resources
Sample VTAM Parameters

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Table of Parameters for AS/400 Communication
The following table summarizes details about configuring Host Integration Server for the AS/400 environment. In addition, for
an X.25 connection using permanent virtual circuit (PVC), specify the PVC Alias.

SNA Ser
ver ele
ment

Parameter name i
n Host Integration
Server

Instructions for configuring for the AS/400 environment

Server Network Name (Loc
al Node)

This generally corresponds to the RMTNETID setting on the AS/400. (APPN is often used.)

Server Control Point Name
(Local Node)

Corresponds to RMTCPNAME on the AS/400.

Connecti
on

Remote End Select Peer System as the Remote End for the connection.

Connecti
on

Activation Coordinate with the switched disconnect (SWTDSC) setting on the AS/400. If SWTDSC is *YES, s
elect On Demand. If SWTDSC is *NO, select On Server Startup.

Connecti
on

Local Node ID Specify the Local Node ID, a required parameter for all connections. This corresponds to EXCHID
on the AS/400.

Connecti
on

Control Point Name
(Remote Node)

Specify the AS/400 Control Point Name (CP name) as the remote Control Point Name for the co
nnection.

Connecti
on

Network Name (Re
mote Node)

Corresponds to the RMTNETID on the AS/400. (APPN is often used.)

Connecti
on

802.2: Remote Net
work Address

SDLC: Poll Address

X.25: Remote X.25 A
ddress

Corresponds to ADPTADR in the Line Description on the AS/400.

Corresponds to STNADR in the Line Description on the AS/400.

Specify the address of the AS/400.

Connecti
on

Max BTU Length Corresponds to the MAXFRAME setting on the AS/400.

Remote
APPC LU

LU Name Specify the Control Point Name of the AS/400 as the remote LU name.

Mode Mode name Choose the QPCSUPP mode for all LU-LU pairs to be used for AS/400 connectivity.

User or g
roup listi
ng

Default local APPC
LU

Assign a Default local APPC LU to the user or group. If the user or group does not specify a local
LU name when opening a session to an AS/400, this default local LU name will be used.

User or g
roup listi
ng

Default remote APP
C LU

Assign a Default remote APPC LU which is the same as a default AS/400 to the user or group. If
the user or group does not specify a remote LU (that is, an AS/400) when opening a session, the
assigned AS/400 will be used.

See Also
Other Resources
Sample VTAM Parameters

https://msdn.microsoft.com/en-us/library/aa754487(v=bts.10).aspx

Applications and Tools
Microsoft Host Integration Server includes several applications and tools to assist you in managing your environment. The
following sections describe how to set up tracing on a Host Integration Server computer, and how to view trace files for
information on the activity between components. They also discuss the performance-monitoring counters that provide basic
stress testing for Host Integration Server.

In This Section

Network Management Support

Using the SNA Trace Utility

Status and Performance Tools

https://msdn.microsoft.com/en-us/library/aa771878(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704840(v=bts.10).aspx

Network Management Support
The requirement to manage heterogeneous network environments containing mainframes, midrange systems, and personal
computers is a big challenge. This section discusses two mainframe management tools, IBM NetView and Response Time
Monitor, which are supported by Host Integration Server and can be used to manage your integrated network.

Host Integration Server can be managed either from the Host Integration Server computer (and other computers on the LAN)
or from the mainframe using NetView. NetView is a centralized network management system that allows you to control SNA
network resources, including Host Integration Server.

Using the IBM Response Time Monitor (RTM) provides additional management of Host Integration Server. RTM measures the
length of time it takes for a host to respond to an incoming 3270 end-user request. Working in conjunction with NetView on
the mainframe, RTM gathers data from 3270 terminal emulators and sends the information to the host through the NetView
connection.

In This Section

How to Manage the SNA Environment Using NetView

Monitoring Mainframe Response Times

https://msdn.microsoft.com/en-us/library/aa705678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705023(v=bts.10).aspx

How to Manage the SNA Environment Using NetView
The IBM NetView program sends and receives alerts and other information between a host (mainframe or AS/400) and the
computers that connect to it. Host Integration Server supports NetView, bringing centralized SNA-based network management
into local area network (LAN) environments. Using NetView, you can control any Host Integration Server computer that
represents a physical unit (PU) in the SNA environment.

NetView can forward Host Integration Server alerts to the host system. In addition, NetView can be extended with the Windows
NVAlert and NVRunCmd services. NVAlert provides the ability for the host system console to receive and display alerts
generated by Windows and applications running on the Windows computer. NVRunCmd provides the ability to command
Host Integration Server from the host system console.

The NVAlert and NVRunCmd services are installed when you install Host Integration Server. By default, the NVAlert
configuration file, NVAlert.ini, is created and placed in the \Program Files\Host Integration Server\System folder. Also installed
in the Windows Control Panel is the NVAlert service, and is configured with a startup setting of Manual.

If you plan to manage Host Integration Server most of the time using NetView from the mainframe, you should change the
default startup configuration from Manual to Automatic. In Control Panel, click the Services icon, and then select the service
you want to change. Click Startup, and then click Automatic as the Startup Type.

To configure NetView

1. In the Host Integration Server console tree, right-click the subdomain that you want to configure, and click Properties.

2. Click the NetView tab, and fill in the option.

3. Click OK, and save the configuration.

NVAlert runs as a background process, enabling alert messages generated by Windows or by Windows-based applications to
be forwarded to a host system through NetView. To control the alert messages sent from the NVAlert service, modify the
NVAlert.ini file to specify the Windows alerts that you want forwarded to the host system.

As events occur and are recorded in a log file, NVAlert compares each logged event to the list in the NVAlert.ini file. When an
event matches one on the list, NVAlert forwards an alert as specified in NVAlert.ini to the host system.

If a problem occurs sending an alert, NVAlert follows a preset pattern of time-outs and retries. No additional alerts can be sent
until the alert is successfully sent to the host.

See Also
Reference
NVAlert.ini File
Concepts
Sending Commands to Host Integration Server from the Mainframe

https://msdn.microsoft.com/en-us/library/aa744945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705517(v=bts.10).aspx

NVAlert.ini File
The following sections describe the structure and the required and optional lines of data for NVAlert.ini. For information about
standard code points and values used by NetView, see your IBM NetView documentation.

Required Data Lines

You must precede each section of data lines that you add to NVAlert.ini with the following heading, including the square
brackets [] as shown:

Use the Windows Event Log service to view the intended alert, and supply values as described in the following list. For
information about the Event Log service, see your Windows documentation.

For source, substitute the name that appears beneath the Source heading in the Windows Event Log service.

For type, find the type listing (in the event detail in the Windows Event Log service), and substitute one of the following
values:

Success 0

Information 1

Warning 2

Error 3

Success audit 4

Failure audit 5

For eventid, use the decimal number that appears under the EventID heading in the Windows Event Log service.

Note
Choose alerts that will not exceed the basic transmission unit (BTU) of the connection over which the alerts will flow be
cause the host cannot handle alerts exceeding this size.

After the heading, type data lines using the following syntax:

In these lines, each letter x represents a hexadecimal digit specifying NetView code points. For the appropriate values to
provide, see your IBM NetView documentation. The element characters [,...] indicate that the argument can be repeated, with
commas separating the repetitions. Do not type the brackets.

Adding Optional Data Lines

To help you monitor the SNA environment or diagnose a problem, you can add additional data to the alerts sent to the
mainframe. The following optional data lines can be added to an alert:

source.type.eventid

 =xx=xxxx=xxxx[,...]

 =xxxx[,...]

Each letter x represents a hexadecimal digit specifying NetView code points. For the appropriate values, see your NetView
documentation. The elements [,...] and [;...] indicate that the argument can be repeated, with commas or semicolons separating
the repetitions. Do not type the brackets.

RecAct is an abbreviation for recommended action and DetData is an abbreviation for detailed data. You can use the DetData
syntax to add blocks of detailed data to an alert.

For xx, type the Data ID code point as described in the IBM SNA Formats manual (IBM document GA27-3136-12) or other
NetView documentation.

For string, provide a text string using the following variables:

%M Module name.

%C Computer name.

%I Event ID.

%Sn String number n in the event log (n starts at zero).

%Dxxxx,
yyyy

Raw data of length yyyy, starting at buffer offset xxxx. Both xxxx and yyyy are hexadecimal values. Use this varia
ble only if you do not specify any other variables.

Example of an Alert

The following is an example of a Windows-based alert and a description of each data line. The alert warns that a hard disk is
nearly full and the description in the Windows Event Log service will read "The C: disk is at or near capacity. You may need to
delete some files."

Sample alert and description
Data lines Description
[Srv.2.2013] Source is Srv, type is 2 (warning), and EventID is 2013

AlertType=11 Impending problem

AlertDescripti
on=5002 Resource nearing capacity

=00,xx,string[;...]

=xxxx[,...]

=00,xx,string[;...]

=xxxx[,...]

=00,xx,string[;...]

=xxxx[,...]

=00,xx,string[;...]

=xxxx[,...]

=00,xx,string[;...]

=xxxx[,...]

=00,xx,string[;...]

ProbableCauses
=5001 Media DASD device

UserCauses=010
2,F0A0 Insufficient storage media space available

UserDetData=00
,95,%C Problem located on the indicated file server name (supplied through NetView value 95); event logged on indi

cated computer name (supplied through %C)

See Also
Concepts
How to Manage the SNA Environment Using NetView

https://msdn.microsoft.com/en-us/library/aa705678(v=bts.10).aspx

Sending Commands to Host Integration Server from the
Mainframe

The NVRunCmd service enables you to launch processes on the Host Integration Server from the NetView console. Commands
are sent to the Host Integration Server computer, carried out, and results are returned to the NetView console as long as the
results contain only alphanumeric characters. The NVRunCmd service cannot send graphical information to the mainframe
NetView console. For example, if you use NVRunCmd to run the dir command, a character-based display of the current folder
is displayed in NetView. But if you use NVRunCmd to start a graphical application, no command output is sent to NetView.

NVRunCmd does not handle back-and-forth interactions, such as a confirmation generated by a Host Integration Server
computer in response to a command. If a command forwarded by NVRunCmd requires confirmation before being carried out,
the command process will not be completed, and will eventually time out.

NVRunCmd is configured during Host Integration Server Setup and runs as a background process, waiting for a command to
be sent from a NetView console. When NVRunCmd receives a command, it determines whether the command is one that it
can process, and returns either the results (in 256-byte segments) or a messagesaying that the command failed. NVRunCmd
attempts to send the results back to the NetView console only once, and if the NetView console does not receive the results,
the link or some other part of the communications has failed.

The pipe symbol (|) cannot be used to combine commands. For example, NVRunCmd cannot process the following command
string:

The maximum amount of information that can be returned to the NetView console is 31,700 bytes. Any additional information
returned by the command will be lost, with a message appended to the truncated data warning the user.

Configuring NVRundCmd Privileges

By default, the NVRunCmd service runs in the context of the local system's security. Therefore, some commands generate
responses that are different from the responses generated by a user logged on the same Windows operating system. For
example, the commands net use and chdir, typed without options, generate a response in the context of NVRunCmd, not the
context for a logged-on user.

For better system security, use the Windows Control Panel to access the Services dialog box and configure Startup options
for the NVRunCmd service. Associate the NVRunCmd service with a user account that has the privilege level that you want for
NVRunCmd.

Sending a Command from the Host Console

To send a command to the intended Host Integration Server computer, you need to specify the corresponding PU in the
runcmd command in the NetView console of the host system. Use the following syntax to launch a process on the Host
Integration Server software. Commands are not case sensitive; commands entered in lower case are converted to upper case.

For servicepoint, type the name of the VTAM PU of the Host Integration Server computer (node) in which you want the
command to run. Note that on the server, this value is configured as the control point name for the server.

For commandname, type the command you want to run. The command must be alphanumeric because NetView cannot
return graphical output.

 servicepoint

 commandname
 parameters

For parameters, type the parameters needed for running the command on the server.

Note
NVRunCmd does not use or need a defined NetView connection. You can use NVRunCmd from the host to each Host Integra
tion Server computer in the subdomain separately. The NetView connection is needed only for sending alerts to NetView.

See Also
Concepts
How to Manage the SNA Environment Using NetView

https://msdn.microsoft.com/en-us/library/aa705678(v=bts.10).aspx

Monitoring Mainframe Response Times
The IBM response time monitor (RTM) measures the length of time it takes for a host to respond to an incoming 3270 end-
user request. Responding to customer requests is a good indication of system performance. Monitoring the response time can
be helpful diagnosing network and other system problems. RTM is a feature that works in conjunction with NetView on the
mainframe. It gathers data from 3270 terminal emulators and sends the information to the host through the NetView
connection for collection and analysis. Then you can view a graphical display of response times for a particular 3270 emulation
session.

In This Section

Configuring RTM in Host Integration Server

Additional Information About NetView and RTM

https://msdn.microsoft.com/en-us/library/aa771658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770813(v=bts.10).aspx

Configuring RTM in Host Integration Server
Use the SNA manager console to configure how response times are measured and classified. Response time monitor (RTM)
statistics for a specific logical unit (LU) are sent to the host that owns the LU, rather than to the connection designated for
NetView data.

In This Section

How to Configure Response Time Monitor (RTM)

Defining RTM Thresholds

Specifying When RTM Data is Sent

Indicating Lost RTM Data

https://msdn.microsoft.com/en-us/library/aa771006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770328(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754090(v=bts.10).aspx

How to Configure Response Time Monitor (RTM)
You can specify the times that RTM should send data and the trigger that causes it to register the host response. The
configuration settings are on the Response Time Monitor tab of the Properties page for the selected SNA subdomain and
are listed in the following table:

Note
For these settings to be meaningful, each emulator for your 3270 users must support RTM. If the host RTM settings are differ
ent, they override the Host Integration Server settings.

RTM Settings
Setting Definition

RTM Data S
ent At

 Specifies when RTM data is sent to the host. You can send the data during one or both of the follow
ing situations:

 Counter Over
flow

Sends the RTM data to the host when the number of host responses in a given time period overflo
ws the size of the available counter.

 End of Sessio
n

Sends the RTM data to the host at the end of each LU-to-LU session.

RTM Timers
Run Until

 Specifies when the RTM registers a host response - when RTM stops the timers. (The timers are sta
rted when the local system sends data.) Possible stopping points are as follows:

 First Data Rea
ches Screen

Stops timing when data reaches the local screen.

 Host Unlocks
Keyboard

Stops timing when the host unlocks the local keyboard.

 Host Lets Use
r Send

Stops timing when the host lets the local computer send more data.

RTM Thresh
olds

 Specify the cutoff times, in tenths of a second that the RTM saves its count of host responses and re
starts the count.

The range is 1–1000 in tenths of a second (from 0.1 seconds to 100.0 seconds). The defaults are 5,
10, 20, and 50 (0.5 seconds, 1.0 seconds, 2.0 seconds, and 5.0 seconds).

Although you can configure the RTM boundaries and definition that you want to use on your server, the host can override
these values, either for an individual 3270 LU or for all LUs the host controls. The host can also specify whether to permit local
display of RTM data, and, when Host Integration Server sends RTM data, it can disable collection of RTM statistics completely.

To configure Response Time Monitor (RTM)

1. In the Host Integration Server console tree, right-click the subdomain that you want to configure, and click Properties.

2. Click the Response Time Monitor (RTM) tab, and complete the options.

3. Click OK, and save the configuration.

Defining RTM Thresholds
Response time monitor (RTM) data is collected by comparing host response times against a series of four boundary values.
Each time a host transaction occurs, the response time is compared with the boundary values, and the appropriate counter is
incremented. There is a counter for each of the four intervals defined by the boundary values, and an overflow counter for
response times above the largest boundary value.

You can change the default boundaries — 0.5, 1, 2, and 5 seconds — using the SNA manager console. You also can select
which of three response time definitions to set as default.

The response time is measured from the time the user presses ENTER until one of the following events occurs:

The first character of host data reaches the 3270 display.

The keyboard is unlocked.

The user is enabled to send data.

A host can override the default boundaries and other host response time settings for any or all logical units (LUs) it controls.

See Also
Concepts
Specifying When RTM Data is Sent
Indicating Lost RTM Data

https://msdn.microsoft.com/en-us/library/aa770328(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754090(v=bts.10).aspx

Specifying When RTM Data is Sent
Response times are recorded for a specific logical unit (LU) rather than for a specific 3270 session. If a 3270 session ends and
another session of the same or a different 3270 user starts using the same LU, the response time counters include responses
from both sessions. To prevent the counters from collecting information from more than one 3270 session, you can reset the
RTM counters on the LU before a new session begins. The counters are reset when the host requests the reset or when
response time monitor (RTM) data is sent unsolicited by Host Integration Server. Usually when a host requests RTM data the
counters are reset at the same time.

To ensure that RTM data relates only to the current 3270 session, you should select the End-of-Session checkbox when
configuring RTM parameters for Host Integration Server. Note that the host can override this setting.

See Also
Concepts
Defining RTM Thresholds
Indicating Lost RTM Data

https://msdn.microsoft.com/en-us/library/aa705602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754090(v=bts.10).aspx

Indicating Lost RTM Data
When Host Integration Server sends response time monitor (RTM) data to the host, it can indicate to the host that RTM data
may have been lost, that is, some host response times were not included in the RTM data sent to the host. This indication is
sent when:

One of the RTM counters reaches its maximum value, and Host Integration Server is not configured to send RTM data
unsolicited at counter overflow. When this occurs, Host Integration Server stops recording response times until the host
requests the data or until end-of-session, if unsolicited sending at end-of-session is configured. The data is sent with an
indication that data may have been lost due to counter overflow.

Connection to the host for either Host Integration Server or the Windows servers ends abnormally. The first RTM data
sent to the host after the connection is re-established includes the lost-data indicator to indicate that data may have been
lost due to failure of the server.

Host Integration Server is configured to send RTM data at the end-of-session, and a new 3270 session is started before
the RTM data for the previous 3270 session on the same LU can be sent. Response times for the new session are
discarded until the RTM data from the previous session is sent and the counters are reset. When RTM data is sent on the
new session, it includes the lost data indicator.

See Also
Concepts
Defining RTM Thresholds
Specifying When RTM Data is Sent

https://msdn.microsoft.com/en-us/library/aa705602(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770328(v=bts.10).aspx

Additional Information About NetView and RTM
For additional information about NetView and RTM see Network Management The following topics are discussed:

Connections used for the IBM NetView program and RTM facilities

Link alerts

Link statistics

Application-generated alerts, and alerts generated through the NVAlert and NVRunCmd services

Local logging of network management data

https://msdn.microsoft.com/en-us/library/aa704725(v=bts.10).aspx

Using the SNA Trace Utility
The following information guides you through configuring and using the Host Integration Server SNA Trace Utility. The SNA
Trace Utility is used to control trace files.

In This Section

Using the SNA Trace Utility

Running the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771009(v=bts.10).aspx

Using the SNA Trace Utility
This section includes an overview of the Host Integration Server SNA Trace Utility and details the names and locations of the
files generated by the trace application.

In This Section

SNA Trace Utility

System Troubleshooting

Trace and Diagnostic File Location

Trace File Names

Choosing a Trace Type

Trace Types

Message Traces

Interpreting Traces

Using Trace to Diagnose Problems

https://msdn.microsoft.com/en-us/library/aa771295(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771707(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744300(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746217(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745549(v=bts.10).aspx

SNA Trace Utility
The Host Integration Server SNA Trace Utility (snatrace.exe) is a graphical tool that allows you to enable or disable tracing
options and set the SNA Trace Utility parameters.

After deciding the software components and types of tracing that can provide useful information, start the Host Integration
Server SNA Trace Utility application and configure trace options for Host Integration Server computers.

If you are working to improve system performance or solve a difficulty with Host Integration Server components, reviewing
trace files can assist in determining the source of the problem.

The SNA Trace Utility records activity between or within components of Host Integration Server. The files created provide
detailed information about the exact sequence of events occurring within Host Integration Server components or between Host
Integration Server computers and Host systems on the network.

Note
You must be an administrator on the local account to run the SNA Trace Utility.

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx

System Troubleshooting
When gathering information about system difficulties, it is best to start with information provided by the Windows Event Log
and System Monitor, see Windows Utilities for additional information.

Event log information is generally more straightforward to interpret than trace information; use trace information only if event
logs do not provide enough details.

When you report system problems to Microsoft Product Support (PSS), a technician may ask you for trace files and other
system information:

Trace files

Windows Event Logs

The current configuration file (Com.cfg)

Dump files, which may be created by Host Integration Server when a system trap (exception error) occurs

Datascope traces of protocol exchanges

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa753927(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx

Trace and Diagnostic File Location
The following table lists the default location of files containing trace and diagnostic information:

File type Default location File name or file name extens
ions

Trace files created by the Host Integration Server Trace ap
plication

\Host Integration Server\Traces *.atf

Log files \WINNT\System32\Config *.evt

Configuration file \Host Integration Server\System\C
onfig

com.cfg

Dr. Watson file \WINNT drwtsn32.log

Dump files \Host Integration Server\Traces snadump.log

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx

Trace File Names
Each trace file has two names associated with it, <Filename1>.atf and <Filename2>.atf.

Traces are written to the first file until it reaches the specified size, then to the second until it reaches that size, and so on
alternating between the two files.

By default, the trace files are stored in the \Program Files\Host Integration Server\Traces folder, with an .atf file extension.

The following table lists the file names used by Trace:

Service Type of tracing File names used File names used
SnaBase Internal Napint1.atf Napint2.atf

 Message Napmsg1.atf Napmsg2.atf

SnaServer (PU 2.1 node) Internal Nodeint1.atf Nodeint2.atf

 Message Nodemsg1.atf Nodemsg2.atf

Link service Internal Linkint1.atf Linkint2.atf

 Message Linkmsg1.atf Linkmsg2.atf

NetView Alert Internal Nvaint1.atf Nvaint2.atf

 Message Nvamsg1.atf Nvamsg2.atf

 API Nvaapi1.atf Nvaapi2.atf

NetView command Internal Nvcint1.atf Nvcint2.atf

 Message Nvcmsg1.atf Nvcmsg2.atf

 API Nvcapi1.atf Nvcapi2.atf

SNA applications Internal Cliint1.atf Cliint2.atf

 Message Cliimsg1.atf Cliimsg2.atf

 API Cliiapi1.atf Cliapi2.atf

Manage Agent Internal Mgaint1.atf Mgaint2.atf

 Message Mgamsg1.atf Mgamsg2.atf

Manage Client Internal Mgcint1.atf Mgcint2.atf

 Message Mgcmsg1.atf Mgcmsg2.atf

SNA Manager Internal Expint1.atf Expint2.atf

 Message Expmsg1.atf Expmsg2.atf

 API Expapi1.atf Expapi2.atf

TN3270 Internal tn3int1.atf tn3int2.atf

 Message tn3msg1.atf tn3msg2.atf

 API tn3api1.atf tn3api2.atf

TN5250 Internal tn5int1.atf tn5int2.atf

 Message tn5msg1.atf tn5msg2.atf

 API tn5api1.atf tn5api2.atf

Host Print Service Internal sprtint1.aft sprtint2.aft

 Message sprtmsg1.atf sprtmsg2.atf

 API sprtapi1.atf sprtapi2.atf

NetView Internal mnvtint1.atf mnvtint2.atf

DDM Internal ddmint1.atf ddmint2.atf

 Message ddmmsg1.atf ddmmsg2.atf

 API ddmapi1.atf ddmapi2.atf

DB2 Network Library Internal db2int1.atf db2int2.atf

 Message db2msg1.atf db2msg2.atf

 API db2api1.atf db2api2.atf

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx

Choosing a Trace Type
After selecting one or more Host Integration Server components to be traced, decide the type of tracing to apply.

The following table describes the types of tracing available:

Type of
tracing

Activity traced Applies to installed components

Internal* Activity within a software component of Host Integration Server. SnaBase, SnaServer (PU 2.1 node), SNA
applications, link services and more.

Messag
e

Messages passed into and out of a software component of Host Integration
Server, including messages sent to and received from the network.

SnaBase, SnaServer (PU 2.1 node), SNA
applications, link services and more.

API Information passed into and out of a Host Integration Server DLL, as the DL
L communicates with an application, such as the APPC DLL.

SNA applications and more.

* Internal tracing is intended for use by product support technicians. Interpreting internal traces and certain types of message
traces requires a specialized knowledge base.

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx

Trace Types
Before setting up tracing, decide the software components you want to trace, and which types of tracing information will be
useful.

Each type of tracing is enabled using the Host Integration Server Trace application.

Internal Trace types:

Fatal Conditions

Error Conditions

Debug Conditions

Function Entry/Exit

State Transition

Custom Conditions

Message Trace types:

Internal Messages

3270 Messages

LU 6.2 Messages

API Trace types:

APPC API

CPI-C API

LUA API

CSV API

TN3270 Internal Trace types:

TN3270 Internal Trace

See Also
Concepts
SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa771295(v=bts.10).aspx

Message Traces
The following table details Message traces.

Trace option Activity traced for Host Integration Server Applications on Host Integration Server client computers
Internal Messag
es

Messages between the SNA Manager (considered an application), and SnaBase and SnaServer (PU 2.1 node)

3270 Messages Messages between 3270 applications (3270 emulators and/or LUA programs) on the local system and the PU
2.1 node

LU 6.2 Message
s

Messages between the APPC DLL on the local system and the PU 2.1 node

See Also
Reference
Trace Types

https://msdn.microsoft.com/en-us/library/aa770702(v=bts.10).aspx

Interpreting Traces
The Host Integration Server Trace feature provides message, client API, SnaBase, Transaction Integrator, PU 2.1 node, and link
service tracing.

The following table shows the information needed for interpreting each type.

Type of tracing Software component traced Area of expertise needed

APPC API SNA applications APPC programming

CPI-C API SNA applications CPI-C programming

LUA API SNA applications LUA programming

SNA Formats SnaServer (PU 2.1 Node) SNA formats

Data Link Control (messages) SnaServer (PU 2.1 node) or link service DLC interface

Level 2 Messages Link service Link service interface

3270 Messages SNA Applications, SnaServer (PU 2.1 Node), or SnaBase 3270 emulator interface

Internal Messages All software components for Host Integration Server Intended for product support personnel

APPC Messages SNA Applications, SnaServer (PU 2.1 Node), or SnaBase Intended for product support personnel

Internal All software components for Host Integration Server Intended for product support personnel

See Also
Reference
Trace Types

https://msdn.microsoft.com/en-us/library/aa770702(v=bts.10).aspx

Using Trace to Diagnose Problems
The following table shows examples of possible difficulties and the types of tracing that may be useful.

Problem What to trace

Host Integration Server cannot connect to
host.

For the SnaServer (PU 2.1 node), trace data link control and 3270 Messages.

SNA Manager does not reflect changes in
network services.

For the SnaServer (PU 2.1 node), trace Internal Messages; for Manage Agent, enabl
e internal tracing.

Windows-based client computer cannot co
nnect to a Host Integration Server resourc
e.

For any client computer, enable internal tracing For a 3270 or LUA client computer,
trace 3270 messages For an APPC or CPI-C client computer, trace LU 6.2 messages.

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa705580(v=bts.10).aspx

Running the SNA Trace Utility
You can run the SNA Trace Utility from either the SNA Manager or from a command prompt.

In This Section

Starting the SNA Trace Utility

Tracing Servers Components

https://msdn.microsoft.com/en-us/library/aa770554(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704660(v=bts.10).aspx

Starting the SNA Trace Utility
The following topics explain how to start the SNA Trace Utility from the SNA Manager, from the Windows Start menu, or from
a command prompt.

In This Section

How to Start the SNA Trace Utility from the SNA Manager

How to Start the SNA Trace Utility from the Start Menu

How to Start the SNA Trace Utility from a Command Prompt

https://msdn.microsoft.com/en-us/library/aa705723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745645(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704663(v=bts.10).aspx

How to Start the SNA Trace Utility from the SNA Manager
The following procedure details how to start the SNA Trace Utility from the SNA Manager

To start the SNA Trace Utility from the SNA Manager

1. Click Start, and point to Programs.

2. Point to Host Integration Server, and then click SNA Manager.

3. Click Tools, and then click SNA Trace Utility.

How to Start the SNA Trace Utility from the Start Menu
The following procedure details how to start the SNA Trace Utility from the Windows Start menu.

To start the SNA Trace Utility from the Start menu

1. Click Start, and point to Programs.

2. Point to Host Integration Server, and then point to Application and Tools.

3. Click SNA Trace Utility.

How to Start the SNA Trace Utility from a Command Prompt
The following procedure details how to start the SNA Trace Utility from a command prompt.

To start the SNA Trace Utility from a command prompt

1. From Start, click Run.

2. Type in command, and click OK.

3. Type in:

-or-

To run the SNA Trace Utility on a specific server

1. From Start, click Run.

2. Type in command, and click OK.

3. Type in:

Tracing Servers Components
The Host Integration Server Trace application can be started locally or remotely for a Host Integration Server computer. For a
client computer, the Host Integration Server Trace application can only be started locally.

Important
All procedures listed in this section assume that Trace is running on a computer that has Host Integration Server installed an
d configured.

In This Section

Selecting Components to Trace

Tracing SNA APIs

Tracing SnaBase

Tracing PU 2.1 Node

Tracing Link Services

Tracing for TN3270

Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa753903(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Selecting Components to Trace
Before you can begin tracing files, you need to decide on the Host Integration Server components to trace.

The Trace application enables you to record internal or external activity for the following components:

Enterprise Single Sign-On

NVAlert

NVRuncmd

SNA applications

SNA Manager Client

SNA Manager Agent (MngAgent)

SnaBase

Installed link services

SNANetMn

SNAPrint

SNAServer

SNA Management

DB2 Network Library

SNADDM

TN3270

TN5250

See Also
Reference
Tracing SNA APIs
Tracing SnaBase
Tracing PU 2.1 Node
Tracing Link Services
Tracing for TN3270
Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Tracing SNA APIs
The following table details SNA API Trace Options.

Trace option Activity traced for SNA Applications

APPC API Activity between APPC applications and Host Integration Server

CPI-C API Activity between CPI-C applications and Host Integration Server

LUA API Activity between LUA applications and Host Integration Server

CSV API Activity between CSV applications and the CSV DLL on Host Integration Server

See Also
Reference
Tracing SnaBase
Tracing PU 2.1 Node
Tracing Link Services
Tracing for TN3270
Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Tracing SnaBase
The following table details SnaBase Trace Options.

Trace optio
n

Activity traced for SnaBase

Internal Mes
sages

Messages between the SnaBase software, which maintains lists of service names and statuses, the SNA Manager
and Client/Server messages

3270 Messa
ges

Messages between the SnaBase software, which maintains lists of service names and statuses, and 3270 applicati
ons (3270 emulators and/or LUA programs)

LU 6.2 Mess
ages

Messages between the SnaBase software, which maintains lists of service names and statuses, and the APPC DLL

See Also
Reference
Tracing SNA APIs
Tracing PU 2.1 Node
Tracing Link Services
Tracing for TN3270
Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Tracing PU 2.1 Node
The following table details PU 2.1 Node traces.

Trace opti
on

Activity traced for the SnaServer (PU 2.1 node).

Internal Me
ssages

Messages between the SnaServer (PU 2.1 node) and the SNA Manager.

3270 Mess
ages

Messages between the PU 2.1 node and all 3270 client computers (3270 emulators and/or LUA programs).

Data Link C
ontrol

Messages between the PU 2.1 node and link services.

SNA Forma
ts

Data link control messages that are in Host Integration Server formats. Understanding such messages requires kn
owledge of Host Integration Server formats and protocols.

LU 6.2 Mes
sages

Messages between the PU 2.1 node and the APPC DLL.

See Also
Reference
Tracing SNA APIs
Tracing SnaBase
Tracing Link Services
Tracing for TN3270
Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Tracing Link Services
The following table details link service traces.

Trace option Activity traced for the link service
Internal Messages Messages between the link service and the SNA Manager

Data Link Control Activity between the link service and PU 2.1 node

Level 2 Messages Information related to Level 2 in the international standards organization (ISO) model

See Also
Reference
Tracing SNA APIs
Tracing SnaBase
Tracing PU 2.1 Node
Tracing for TN3270
Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Tracing for TN3270
You can enable or disable tracing for TN3270 using the Host Integration Server Trace application. Host Integration Server Trace
provides API, internal, and message tracing.

Host Integration Server SNA Trace Utility places trace files for TN3270 in the \Host Integration Server\Tracesfolder by default.

The following table illustrates the TN3270 file names used by Host Integration Server Trace:

Service Type of tracing File names used File names used

TN3270 API Tn3api1.atf Tn3api2.atf

 Internal Tn3int1.atf Tn3int2.atf

 Message Tn3msg1.atf Tn3imsg2.atf

 TN3270 internal trace Tn_00.atf – Tn0a.atf

Note
The TN3270 internal trace contains up to 1024 bytes of information and creates up to ten files. The names are Tn_00.atf to Tn
_0a.atf.

Note
SNA Trace event monitoring will not stop the TN3270 internal trace.

See Also
Reference
Tracing SNA APIs
Tracing SnaBase
Tracing PU 2.1 Node
Tracing Link Services
Tracing for TN5250

https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771292(v=bts.10).aspx

Tracing for TN5250
You can enable or disable tracing for TN5250 using the Host Integration Server Trace application. Host Integration Server Trace
provides API, internal, and message tracing.

The Host Integration Server Trace application places trace files for TN5250 in the \Host Integration Server\Tracesfolder by
default.

The following table illustrates the TN5250 file names used by Host Integration Server Trace:

Service Type of tracing File names used File names used

TN5250 API Tn5api1.atf Tn5api2.atf

 Message Tn5msG1.atf Tn5msg2.atf

 Internal Tn5int1.atf Tn5int2.atf

See Also
Reference
Tracing SNA APIs
Tracing SnaBase
Tracing PU 2.1 Node
Tracing Link Services
Tracing for TN3270

https://msdn.microsoft.com/en-us/library/aa771273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744976(v=bts.10).aspx

Status and Performance Tools
The following information details the status and performance tools available in Host Integration Server and the Windows
operating systems.

In This Section

Status and Performance Information

Host Integration Server Status

Windows Utilities

https://msdn.microsoft.com/en-us/library/aa705497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753927(v=bts.10).aspx

Status and Performance Information
This section details the status and performance features of Host Integration Server and the Windows operating systems.

In This Section

Status and Performance

Optimizing Performance

Network Considerations

Network Analyzer

https://msdn.microsoft.com/en-us/library/aa772105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754033(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745862(v=bts.10).aspx

Status and Performance
Host Integration Server and the Windows operating system offer several tools for helping you evaluate the demand on, and
performance of, Host Integration Server computers and components.

You can use the following tools to quickly isolate problems:

Windows Utilities

The Windows Event Viewer allows you to monitor events on a server to troubleshoot various hardware and software
problem. User Manager allows you to set up auditing and Server Manager allows you to set up administrative alerts to be
sent to remote computers. For additional information on these utilities, refer to Windows documentation.

Host Integration Server Status (using the SNA Manager)

The Host Integration Server SNA Manager provides information about the current status of Host Integration Server resources,
including logical units (LU), connections, and print sessions. This shared console provides a convenient and consistent
environment for Host Integration Server, Transaction Integrator, and other console administration tools.

System Monitor

This Windows application enables you to measure the performance data for computers on the network. You can also
monitor connections, LU sessions, and adapters.

Note
In Windows, the name of this utility is System Monitor, although it appears on the Start menu as Performance.

Using the SNA Trace Utility

The Host Integration Server Trace utility records activity between or within Host Integration Server components. Tracing
provides detailed information of internal activities on Host Integration Server. It is helpful in isolating problems and is
frequently used by product support personnel.

See Also
Other Resources
Status and Performance Information

https://msdn.microsoft.com/en-us/library/aa753927(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771453(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705497(v=bts.10).aspx

Optimizing Performance
If more than one Host Integration Server computer is currently in use, you can evaluate the demand and performance on the
servers in order to obtain a benchmark, and to estimate hardware requirements for future growth. The two primary tools for
this kind of evaluation are the System Monitor, which is part of Windows, and the Host Integration Server Status available
through the SNA manager.

System Monitor is a graphical tool included in Windows. The System Monitor allows you to collect performance data on your
computer or on other computers in the network. For detailed instructions for using System Monitor, see the Windows
documentation.

Studying activity on a moderately or heavily used server involves studying a complex set of processes and process interactions.
Detailed interpretation of the data requires an understanding of how the operating system works, for example, how virtual
memory is managed or how processor time is divided between competing processes.

https://msdn.microsoft.com/en-us/library/aa771453(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

Network Considerations
Your network adapter can have a large impact on the overall network performance. Advanced adapters provide good setup
options to optimize the network I/O performance. Look for I/O buffering on the card itself, direct memory access (DMA)
(adjustable data link control (DLC) (maximum frame size, and local area network (LAN) speed setting parameters.

Host Integration Server performance tuning involves adjusting the frame size, BTU size, and DLC-level pacing on the
connection properties, as well as the request/response unit (RU) size and session-level pacing on the mode properties.

Additional tips:

Your test data buffer must fit into one RU; if the RU size is too large, it will consume excess memory. 1200 bytes of screen
paint data fits into an RU of 1484 bytes. This is the optimum for Ethernet. A 1920-byte data buffer would require two
client/server message frames.

The maximum BTU size needs to be at least the RU size + 9 bytes. For Ethernet, an RU of 1484 bytes and a BTU of 1493
bytes is good. For TokenRring, an RU of 4087 bytes and a BTU of 4096 bytes is a good starting point.

The DLC level pacing is the most common tuning problem. To avoid deadlocks and timeouts, set the pacing between the
two nodes so that the receiving window is one frame smaller than the partners send window. For example, node A can be
set to send seven frames until it stops and waits for acknowledgement from node B; node B can be set to send an ACK
after it receives six frames from node A, and vice versa. This guarantees successful DLC frame acknowledgements
between the nodes.

Setting the DLC receive acknowledgement to 1 or 2 would cause a receive ready (RR) to be sent after every second I-
frame. This results in unnecessary control frame overhead on the LAN between the gateway and the server.

See Also
Other Resources
Performance Tuning

https://msdn.microsoft.com/en-us/library/aa746046(v=bts.10).aspx

Network Analyzer
A network analyzer, is an important tool for checking the load and throughput on the network as well as verifying that there
are no mismatched configurations in the test environment.

You can use a network analyzer to verify the transaction counts by monitoring the data link control (DLC) traffic to and from
the computer being tested. You can filter traffic to count only incoming I-frames of a certain size and type. Using filtering, you
can determine the number of accepted frames and ascertain the number of responses from the receiver servers.

Another important measurement that uses a network analyzer is following the network bandwidth usage. Ethernet, in
particular, slows down drastically when usage rates grow beyond 40–50 percent. A Token Ring network is more predictable in
throughput even on higher loads; however, going beyond 60 percent network load levels should be cause for attention. Finally,
the network analyzer can be used to confirm proper tuning of local area network (LAN) protocols. DLC level pacing (send and
receive window size), timeouts, and retransmissions could artificially limit LAN throughput, perhaps to the point that the LAN,
rather than the system under test, is the performance-limiting component.

Looking at the captured messages will give a good indication of problems and where they are. If there are Receiver Not Ready
(RNR) frames present, one of the nodes is overloading and then limiting the message flow in. You can minimize an excess
number of Receiver Ready (RR) messages by adjusting the DLC level pacing for a larger send and receive window. Long
elapsed times between the individual frames can highlight configuration problems. This indicates which of the components,
client, gateway, or server, consume most of the processing time. A single client test is a good way to determine where the
delays might be.

A typical time for message transmission in Host Integration Server is between 1–5 milliseconds, even on almost full CPU loads.
A transmission time longer than 1–5 milliseconds indicates a configuration mismatch or lack of available RAM because the
system is using the virtual memory on the hard drive.

See Also
Other Resources
Status and Performance Information

https://msdn.microsoft.com/en-us/library/aa705497(v=bts.10).aspx

Host Integration Server Status
The Host Integration Server SNA Manager provides valuable status information for Host Integration Server computers within a
SNA subdomain. You can view the status of connections, LUs, and print sessions.

In This Section

Status Information

Server Status

Connection Status

Non-APPC LU Status

APPC LU Status

Print Session Status

https://msdn.microsoft.com/en-us/library/aa705699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745179(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771236(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705458(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772062(v=bts.10).aspx

Status Information
The Host Integration Server SNA Manager provides several types of status messages that can supplement other performance
information.

You can see the status of servers, logical units (LUs), and connections (Active, Inactive, Pending, Stopping, Active [Out of
Date], or Error) in the console tree by selecting the server of interest.

You can view the number of users and the number of sessions by double-clicking the relevant server. This information
can be especially useful when combined with data from System Monitor.

Also on the SNA Manager, you can view the names of active 5250 users being supported by a particular local LU. If there
is only one local LU per server, the names will include all users with active 5250 sessions on a particular server.

For example, click Servers in the console tree to view the status of a given SNA subdomain. The status of the servers in that
subdomain will appear in the details pane.

See Also
Other Resources
Host Integration Server Status

https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

Server Status
You can view the status of servers in a given subdomain, including the number of active users, and you can view the properties
for a server to gather status information. There are six status types on the Host Integration Server SNA Manager:

Active

Inactive

Pending

Stopping

Active [Out of Date]: Indicates that the Host Integration Server resource needs to be restarted to bring the internal
parameters up to date with the latest configuration changes. First, select the affected Host Integration Server resource.
Then, on the Action menu, click Stop, and then click Start.

Error: Indicates that an unexpected condition has made the server inaccessible to the Host Integration Server SNA
Manager.

You can also see the number of active users, 3270 sessions, Advanced Program-to-Program Communtications (APPC)
sessions, and Logical Unit for Applications (LUA) sessions. If the server is active, the number of licensed users and licensed
sessions is also shown.

Important
If the [Out of Date] message appears on the status bar at the bottom of the SNA Manager (as opposed to in the console tree),
then the SNA Manager is out of synchronization with the rest of the SNA subdomain. The SNA Manager is out of date when
another server saves the configuration file, so your copy of the file (which resides in RAM memory) is out of sync with the m
aster configuration file. To synchronize your copy of the configuration file, go to the Action menu, and click Refresh.

See Also
Other Resources
Host Integration Server Status

https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

Connection Status
The Host Integration Server SNA Manager offers six different messages that indicate the status of a connection:

Active

Pending

Stopping

Inactive

On Demand: Indicates that the connection is available to be started when needed. On Demand connections can also have
all of the statuses listed above.

Incoming: Indicates that the connection is available to receive incoming calls. Incoming connections can also have all of
the statuses listed above.

To view a connection status, simply select the appropriate connection in the SNA Manager.

See Also
Other Resources
Host Integration Server Status

https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

Non-APPC LU Status
The status of a non-Advanced Program-to-Program Communications (APPC) logical unit (LU) can be:

Inactive

In Session

System Services Control Point (SSCP). This indicates that the LU is in use, but is not yet bound to a specific host
application.

Available: Indicates the LU is recognized by the host as an available LU.

Pending: Indicates that a user is trying to access the LU, but either the connection is inactive or the mainframe does not
recognize the LU.

Unavailable: Applies to downstream LUs only.

To view the status of an LU, select the LU in the SNA Manager.

See Also
Other Resources
Host Integration Server Status

https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

APPC LU Status
The status of an Advanced Program-to-Program Communications (APPC) logical unit (LU) will either be Inactive or will show
the number of active sessions.

To view the status of an APPC LU, select the appropriate LU in the SNA Manager.

See Also
Other Resources
Host Integration Server Status

https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

Print Session Status
There are several different messages that show the status of a Host Integration Server print session:

Active

Inactive

Pending

In Session: Indicates the print server session is active, and the logical unit (LU) is bound. For Advanced Program-to-
Program Communications (APPC), a conversation is allocated.

Offline: Indicates the print session has been created, but the print server is not aware of it.

Paused: Indicates the print server session is active, but the printing has been paused.

To view the status of a print session, simply select the print session in SNA Manager.

Note
The status shown by the SNA Manager and the Diagnostic tool (DISPLAY.EXE) may appear to be different for a given item (fo
r example, LU status). This is because the SNA Manager shows the currently active sessions. The Display tool shows what was
negotiated during CNOS setup.

See Also
Other Resources
Host Integration Server Status

https://msdn.microsoft.com/en-us/library/aa771747(v=bts.10).aspx

Windows Utilities
Microsoft Windows has several built-in utilities that can assist you in tracking system usage, problems, and performance. These
utilities can provide the administrator with valuable information about any computer on the network.

In This Section

Windows Event Viewer

Setting Audit Policy

System Monitor

Performance Tuning

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745629(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771453(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746046(v=bts.10).aspx

Windows Event Viewer
You can use information from Windows Event Logs as you test a configuration or diagnose problems.

In This Section

Event Viewer

How to Start Event Viewer

How to Change Event Viewer Settings

How to Save Event Logs

How to Clear Event Logs

How to Select Computers in Event Viewer

How to Filter Events

How to Find Events

https://msdn.microsoft.com/en-us/library/aa745633(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754305(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772055(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744718(v=bts.10).aspx

Event Viewer
Windows Event Logs can tell you the sequence and type of events that led up to a particular state or situation.

The Event Logs for Windows include:

System Event Log

Security Event Log

Application Event Log

Directory Service

File Replication Service

The Event Viewer will display the following information about system events:

Type

Date

Time

Source

Category

Event ID

User

Computer

From the View menu you can:

View All events

Filter Events

View newest event first

View oldest event first

Find events

Display event details

Refresh events window.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Start Event Viewer
Event Logs can be viewed using the Windows Event Viewer.

You can start the Event Viewer from the SNA Manager or from the operating system.

To start Event Viewer with the SNA Manager

1. Click Start, and point to Programs.

2. Point to Host Integration Server, and click SNA Manager.

3. When the SNA Manager starts, click Tools.

4. Click Event Viewer.

To start Event Viewer with Windows

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Event Viewer.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Change Event Viewer Settings
In Windows, you can adjust Event Viewer settings by right-clicking the log and clicking Properties.

You can adjust the following Event Log settings:

Maximum log size

Overwrite events as needed

Overwrite events older than x days

Do not overwrite events (Clear log manually)

Using a low-speed connection (Windows)

To change Event Viewer settings

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Event Viewer.

3. Right-click the appropriate log file (Application, Security, System, Directory Service, or File Replication Service).

4. Click Properties.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Save Event Logs
You can save event logs for later reference or for historical data. Event log files can be saved as event files (*.evt), text files
(*.txt). or comma-delimited text files (*.txt).

To save event logs

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Event Viewer.

3. Right-click the appropriate log file (Application, Security, System, Directory Service, or File Replication Service).

4. Click Save Log File As.

5. Type a name for the file, and click Save.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Clear Event Logs
In Windows, you can clear the event logs by selecting Clear all Events on the Action menu after selecting the appropriate log
file. You have the option of saving the event log before you clear it.

To clear event logs

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Event Viewer.

3. Select the appropriate log file (Application, Security, System, Directory Service, or File Replication Service).

4. Click the Action menu, and then click Clear all Events.

5. You will be prompted to save the file.

Note
There is no verification for clearing the event log.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Select Computers in Event Viewer
In Windows, you can select any computer in your network to view its event logs in Event Viewer.

To select computers in Event Viewer

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Event Viewer.

3. Right-click Event Viewer (top level).

4. Select Connect to another computer.

5. Type the computer name on which to view Event Logs, and click OK.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Filter Events
In Windows, you can specify the type of information you want the event logs to record. The information can include the
following:

Event types

Event source

Category

Event ID

User

Computer

Events for various time/dates

To filter events

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Event Viewer.

3. Right-click the appropriate log file (Application, Security, System, Directory Service, or File Replication Service).

4. Select Properties, and click the Filter Tab.

5. Type the appropriate information that you want to filter, and then click OK.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Find Events
You can specify what type of event to find based on the following criteria:

Event type

Source

Category

Event ID

Computer

User

Description

Direction (up or down from the currently selected event)

How to find events

1. Click Start, point to Programs, point to Administrative Tools, and then click Event Viewer.

2. Right-click the appropriate log file (Application, Security, System, Directory Service, or File Replication Service).

3. Click the View menu, and select Find.

4. Enter the appropriate information that you want to find.

5. Click Find Next.

6. Click Close when you are finished.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

Setting Audit Policy
You can set the audit policies within the operating system. The audit policies control which events will be logged to the event
log files.

In This Section

Audit Policies

How to Set Audit Policy

https://msdn.microsoft.com/en-us/library/aa704985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744735(v=bts.10).aspx

Audit Policies
Auditing security events and then placing entries in the computers security log can track selected activities of users. Use the
audit policy to determine the types of security events that are logged.

Because the security log is limited in size, choose to log only those events necessary. The maximum size of the computer's
security log is defined in Event Viewer.

Entries in a security log can be reviewed using Windows Event Viewer.

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Set Audit Policy
The following procedure details how to set an audit policies with Windows.

To set an audit policy

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Local Security Policy.

3. Expand Local Policies, and select Audit Policy.

4. Make appropriate changes to audit policies.

See Also
Concepts
Audit Policies

https://msdn.microsoft.com/en-us/library/aa704985(v=bts.10).aspx

System Monitor
This section details the Windows System Monitor.

In This Section

System Monitor Overview

Useful Performance Counters

Performance Counters on Transaction Integrator

Maximizing Communications Throughput

How to Start System Monitor

How to Configure System Monitor

How to Save Performance Data

https://msdn.microsoft.com/en-us/library/aa746037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744370(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744998(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745846(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771841(v=bts.10).aspx

System Monitor Overview
Using the Windows System Monitor, you can view reports on CPU load, memory usage, and interrupt rate, as well as the
overall throughput of Host Integration Server traffic on the network. Restrained use of the system monitor is recommended
because the tool itself can cause extra stress on the servers CPU. Specifically, this can happen if tracking all the details of many
logical units (LUs) over the network from another server. Try to limit the system monitor to providing summary statistics only.

Also, try to check the CPU loads of your receiver servers and stress client computers during a practice run to make sure they
are not overloaded. If the client computers are Windows computers, you can use the System Monitor application in Windows
to check the CPU load on the client machines.

Host Integration Server services are fully integrated with the Windows operating system. This allows the services, connections,
and processes associated with Host Integration Server to be assigned to the System Monitor. You can evaluate the demand
and performance of one or more Host Integration Server-based computers to obtain a benchmark and to estimate hardware
requirements for future growth.

You can use the Windows System Monitor to look at the resource use of specific components and program processes. With the
system monitor, you can create charts and reports that gauge a computer's efficiency; identify and troubleshoot possible
problems such as unbalanced resource use, insufficient hardware, or poor program design; and plan for additional hardware
needs.

Using the System Monitor, you can configure object counters and instances to assist in evaluating Host Integration Server
performance. Specific counters and instances appear when a particular service is installed and running on the server.

For detailed instructions about using the System Monitor, see your Windows Server documentation.

See Also
Tasks
How to Start System Monitor
How to Configure System Monitor
How to Save Performance Data
Concepts
Useful Performance Counters
Performance Counters on Transaction Integrator
Maximizing Communications Throughput

https://msdn.microsoft.com/en-us/library/aa770499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745846(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771841(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744370(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744998(v=bts.10).aspx

Useful Performance Counters
Performance counters allow you to see where computer resources are being used. The counters described below provide
valuable information for evaluating the demand on, and performance of, Host Integration Server components.

Memory: Pages/sec

In order to understand memory load on a Windows Server, you must first understand paging, which is a technique for
implementing virtual memory. Paging is switching blocks (pages) of program instructions or data back and forth
between memory and disk. Paging is carried out as needed by the virtual memory manager in Windows.

Pages/sec is the number of pages read from the disk or written to the disk because they were not in memory when
needed (that is, the number of page faults that required disk access). The counter includes paging traffic generated when
the cache accesses file data for applications.

Pages/sec is the primary counter for determining whether your server is paging excessively. As this counter goes up,
server responsiveness slows because of the time required for disk access (reading or writing). A server dedicated to
communications should be equipped with enough physical memory so that little paging is required.

The highest acceptable value for pages/sec varies from system to system. One way to judge whether system load is
causing too much paging is to observe whether processor activity drops significantly as paging increases. This indicates
that the system is occupied with switching pages rather than with actually processing instructions.

The primary ways to correct excessive paging are to add more physical memory to the server or to decrease the demand
on the server. Demand can be decreased by narrowing the variety of tasks that a server must perform or by decreasing
the number of users accessing a server. For example, an overloaded multipurpose server with file, print, and Host
Integration Server demands, could be dedicated to Host Integration Server traffic only, or user loads placed on one server
could be divided between two servers (load balancing). In any case of memory overload, adding physical memory may
provide the needed performance increase.

A secondary way to decrease the impact of paging is to upgrade the disk system. This includes installing a faster disk,
installing a second disk, using RAID striping, or similar upgrades. This upgrading does not decrease paging (pages/sec),
but speeds up the paging process itself. For example, replacing a slow IDE disk with a faster SCSI disk may make a given
paging rate, perhaps 20 – 40 pages/sec acceptable.

System: %Total Processor Time and Processor: %Processor Time

System: %Total Processor Time is the percentage of elapsed time during which the system processors are busy. It can be
viewed as the fraction of total processor time spent doing useful work. Values of 60 – 80 percent during typical loads are
good values because they allow some reserve for peak loads. However, when the processor stays at 100 percent for
periods of time, this may indicate a processor bottleneck. On a multiprocessor system, you can view Processor:
%Processor Time for each processor to see how the load is distributed among processors.

One useful way to view Total Processor Time values is in Chart view, along with counters indicating increases and
decreases in user load. For user load, such counters include Host Integration Server Logical Unit Sessions:
Throughput Bytes/Sec, and Host Integration Server Adapter <adaptername>: Throughput Frames/Sec. These
two counters are available only when there is Host Integration Server activity. For example, you might notice that during
a period of peak demand for logical unit sessions, Total Processor Time reaches 100 percent and stays there. This could
indicate that the Host Integration Server computer is reaching peak capacity and that any additional demand might
require additional processors or additional servers.

It may also be helpful to view System: %Total Processor Time along with any other counters related to the servers
major functions. For example, when a Host Integration Server computer is also a file server, the Server: Server Sessions
counter can be helpful. Other counters that may help you analyze the sources of processor activity are Process:
%Processor Time for processes you think are relevant, as well as System: Total Interrupts/sec. Also, if your client
computers are using NetWare, consider looking at NWLink SPX: Connections Open. Similarly, if your client computers
use TCP/IP, consider looking at TCP: Connections Established.

System: Total Interrupts/sec and Processor: Interrupts/sec

System: Total Interrupts/sec is the rate at which the computer is receiving and servicing device interrupts. Device
interrupts are the signals that a device sends to a processor to indicate that a task is complete or the device requires
attention. Some devices that may generate interrupts are adapters, network adapters, the system timer (clock), and the
mouse. System: Total Interrupts/sec provides an indication of how busy these devices are on a computer-wide basis.

Similarly, for each processor, Processor: Interrupts/sec is the rate at which the processor is receiving device interrupts.

Normal thread execution is suspended during interrupts. An interrupt may cause the processor to switch to another,
higher-priority thread. Clock interrupts are periodic and frequent (on the order of 100 per second); they create a
background of interrupt activity.

These counters can help indicate the general demand on a server, and may be useful when combined with processor and
memory data, such as System: %Total Processor Time and Memory: Pages/sec.

SNA Connections: Throughput Bytes/Sec

SNA Logical Unit Sessions: Throughput Bytes/Sec

SNA Adapter adaptername: Throughput Frames/Sec

These counters provide an indication of Host Integration Server activity. When observing these counters, it may also be
useful to start the SNA Manager and double-click the same server being observed in System Monitor. You can see the
number of users and sessions that correlate with a particular level of Host Integration Server activity. This information,
combined with data about the processor and memory load, can help you understand the load and performance on your
servers. Low throughput does not necessarily mean poor performance, but instead may simply indicate that current
activity is low.

Measurement of frames/second may provide a better indicator of server load than bytes per second, because server
overhead for interrupt handling and message processing increases per frame, not per byte. In other words, a large frame
with many bytes requires about the same overhead as a small frame with fewer bytes.

SNA Connections: Data Bytes Received/Sec

SNA Connections: Data Bytes Transmitted/Sec

SNA Logical Unit Sessions: Data Bytes Received/Sec

SNA Logical Unit Sessions: Data Bytes Transmitted/Sec

SNA Adapter adaptername: Data Bytes Received/Sec

SNA Adapter adaptername: Data Bytes Transmitted/Sec

SNA Adapter adaptername: Frames Received/Sec

SNA Adapter adaptername: Frames Transmitted/Sec

SNA Adapter adaptername: Throughput Bytes/Sec

These counters provide additional detail about Host Integration Server activity when used with the previous three
counters.

SNA Adapter adaptername: Adapter Failures

SNA Adapter adaptername: Connection Failures

SNA Adapter adaptername: Successful Connects

These counters may be useful for detecting patterns in which connections or adapters fail for short periods and then
return to normal. Event Logs can provide more information about causes of failure. You might also want to set up
System Monitor alerts with these counters, so that an alert is triggered if too many failures occur.

See Also
Concepts
System Monitor Overview

https://msdn.microsoft.com/en-us/library/aa746037(v=bts.10).aspx

Performance Counters on Transaction Integrator
The following performance counters are available for Transaction Integrator.

Average Method Call Time
This counter measures the average time it takes Transaction Integrator to process method calls made by the client
application. The time begins when Transaction Integrator recognizes the request from the client application (the Invoke call).
The time ends when Transaction Integrator returns control to the client application. This counter is not specific to any
Transaction Integrator programming model. This counter is represented in terms of seconds of elapsed time.

Bytes received from host/sec
This counter indicates the number of bytes received from the mainframe by Transaction Integrator. This counter is not
specific to any Transaction Integrator programming model. For the CICS Link model, the number reported will be slightly
more than the amount of user data due to link model protocol header data. This number is represented in terms of bytes per
second.

Bytes sent to host/sec
This counter indicates the number of bytes sent from Transaction Integrator to the mainframe. This counter is not specific to
any Transaction Integrator programming model. For the CICS Link model, the number reported will be slightly more than the
amount of user data due to link model protocol header data. This number is represented in terms of bytes per second.

Host response time CICS Link
This counter measures the average time the host spends processing the transaction programs unit of work when the CICS
Link model is being used. This average time counter measures the time the host takes to respond to a request sent to it. The
time starts after Transaction Integrator sends the final data buffer and ends when the first response buffer is received by
Transaction Integrator. This counter is represented in terms of seconds of elapsed time.

Host response time CICS Non-link or IMS
This counter measures the average time the host spends processing the transaction programs unit of work when either the
CICS Non-link or IMS models are being used. This average time counter measures the time the host takes to respond to a
request sent to it. The time starts after Transaction Integrator sends the final data buffer and ends when the first response
buffer is received by Transaction Integrator. This counter is represented in terms of seconds of elapsed time.

Link calls/sec
This counter measures the number of method calls that use the CICS Link programming model. This number is in terms of
calls per second.

Non-link calls/sec
This counter measures the number of method calls that use the CICS Non-link or IMS programming model. This number is
represented in terms of calls per second.

Total calls/sec
This counter indicates the total number of method calls that Transaction Integrator has processed. This counter is not specific
to any Transaction Integrator programming model. This number is represented in terms of calls per second.

Total errors/sec
This counter indicates the total number of method calls that have returned a non-zero HRESULT indication to the client
application. This counter is not specific to any Transaction Integrator programming model. This number is represented in
terms of errors per second.

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Maximizing Communications Throughput
Servers used primarily for communications need to provide fast throughput, but do not need to provide fast file access as a file
server would. Faster throughput will result if portions of memory are set aside for communications programs such as Host
Integration Server or Microsoft SQL Server.

Such dedicated memory includes nonpaged memory, or portions of memory that are never switched to disk, but remain
available for immediate use at all times. This helps support fast throughput. If more memory is dedicated to Host Integration
Server or similar programs, less memory is available for file sharing.

With Windows operating systems, you can view or change network throughput options. For Host Integration Server, you may
not need to change the throughput option. Setup automatically sets the option to maximize throughput for network
applications.

Servers used primarily for communications run many important background processes. Background processes are processes
not related to user actions in the current window. These servers generally do not need to run foreground processes at
maximum speed. Therefore, making the operating system more responsive to background processes and somewhat less
responsive to foreground processes can increase Host Integration Server throughput. Setting background or foreground
responsiveness is known as tasking.

A server that is less responsive to foreground processes will run local applications such as word processing software,
spreadsheets, or the SNA Manager more slowly. Tasking is most appropriate for servers used primarily to support client
computers, not servers used locally as desktop computers.

The options available for tasking are:

Best Foreground Application Response Time

Foreground Application More Responsive than Background

Foreground and Background Applications Equally Responsive

Choose the one that is best suited to your network configuration.

See Also
Concepts
System Monitor Overview

https://msdn.microsoft.com/en-us/library/aa746037(v=bts.10).aspx

How to Start System Monitor
You can start the Windows System Monitor in several ways. The following procedures describe how to start the system
monitor from the operating system and from the SNA Manager.

To start System Monitor with the SNA Manager

1. Click Start, and point to Programs.

2. Point to Host Integration Server, and click SNA Manager.

3. Once the SNA Manager starts, click Tools.

4. Click System Monitor.

To start System Monitor with Windows

1. Click Start, and point to Programs.

2. Point to Administrative Tools, and then click Performance.

See Also
Concepts
System Monitor Overview

https://msdn.microsoft.com/en-us/library/aa746037(v=bts.10).aspx

How to Configure System Monitor
Configuring System Monitor consists of adding counters to the System Monitor user interface. You can also set up
administrative alerts to be generated by System Monitor. For more information about using System Monitor, see the Windows
operating system Help.

The following procedure details how to add counters to System Monitor with the Windows operating system.

To add System Monitor counters

1. Click Start, and point to Programs.

2. Point to Host Integration Server, and click SNA Manager.

3. Once the SNA Manager starts, click Tools.

4. Click Performance Monitor.

5. Click Add (Plus sign).

6. Select the object for which to gather performance data (SNA Connections for example).

7. Select the counter.

8. Select the instance.

9. Click Add.

10. Repeat steps 6 – 9 for each counter you add.

11. Click Done to return to the Performance Monitor.

Note
Using Windows, if you load System Monitor from a Terminal Server client session, the performance counters for Host Integr
ation Server and the MSMQ-MQSeries Bridge do not appear. When you are using the System Monitor in Terminal Server clie
nt session, you have to use "\\ComputerName\" instead of "\\ComputerName" for the computer field in order to be able to a
ccess the Host Integration Server or MSMQ-MQSeries bridge counters.

See Also
Concepts
System Monitor Overview

https://msdn.microsoft.com/en-us/library/aa746037(v=bts.10).aspx

How to Save Performance Data
When you capture performance data, you can save the data for future use.

To save System Monitor data

1. Click Start, and point to Programs.

2. Point to Host Integration Server and then click SNA Manager.

3. Once the SNA Manager starts, click Tools.

4. Click Performance Monitor.

5. Click Add (Plus sign).

6. Select the object for which to gather performance data (SNA Connections for example).

7. Select the counter.

8. Select the instance.

9. Click Add.

10. Repeat steps 6 through 9 for each counter you add.

11. Click Done to return to the System Monitor.

12. Collect the desired data, click Console, and then click Save As.

13. Type a file name, and click Save.

See Also
Concepts
System Monitor Overview

https://msdn.microsoft.com/en-us/library/aa746037(v=bts.10).aspx

Performance Tuning
In Windows, there are only two parameters that have to be set for optimum performance: the application performance boost
and the system performance balance.

In This Section

How to Boost Application Performance with Windows

How to Balance System Performance with Windows

https://msdn.microsoft.com/en-us/library/aa704700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744347(v=bts.10).aspx

How to Boost Application Performance with Windows
The following procedure details how to set the parameters for the application performance boost.

To boost application performance with Windows

1. In the Windows Control Panel, double-click System.

2. On the Advanced tab, click Performance Options.

3. Select the Application response (Application or Background services) and click OK.

See Also
Tasks
How to Balance System Performance with Windows

https://msdn.microsoft.com/en-us/library/aa744347(v=bts.10).aspx

How to Balance System Performance with Windows
The following procedure details how to set the parameters for the system performance balance.

To balance system performance with Windows

1. In the Windows Control Panel, double-click the Network and Dial-up Connections icon, and then double-click Local
Area Connection.

2. Click Properties.

3. Select File and Printer Sharing for Microsoft Networks, and double-click Properties.

4. Select the optimization setting, and click OK.

See Also
Tasks
How to Boost Application Performance with Windows

https://msdn.microsoft.com/en-us/library/aa704700(v=bts.10).aspx

Messaging User's Guide
Microsoft MSMQ-MQSeries Bridge is an adaptable system that can be customized. You can set up MSMQ-MQSeries Bridge to
operate on almost any Message Queuing (also known as MSMQ) or IBM MQSeries network configuration.

In This Section

Using MSMQ-MQSeries Bridge

How MSMQ-MQSeries Bridge Works

MSMQ-MQSeries Bridge Setup and Configuration

MSMQ-MQSeries Bridge Manager

Controlling MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771518(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745820(v=bts.10).aspx

Using MSMQ-MQSeries Bridge
The topics in this section describe the procedures for using MSMQ-MQSeries Bridge. In addition, Help buttons located on the
MSMQ-MQSeries Bridge user interface are linked to topics specific to their context.

In This Section

MSMQ-MQSeries Bridge Overview

MSMQ-MQSeries Bridge Operation

MSMQ-MQSeries Bridge Benefits

Message Queuing and MQSeries Features

Reference Material

https://msdn.microsoft.com/en-us/library/aa705146(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772008(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771849(v=bts.10).aspx

MSMQ-MQSeries Bridge Overview
MSMQ-MQSeries Bridge is an external gateway between two otherwise incompatible message queuing systems. MSMQ-
MQSeries Bridge provides a seamless interface between Message Queuing on computers running Microsoft Windows
Server 2003 or Windows 2000 Server and IBM MQSeries running on mainframes and other systems.

See Also
Other Resources
Using MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771518(v=bts.10).aspx

MSMQ-MQSeries Bridge Operation
MSMQ-MQSeries Bridge is an interface between Message Queuing and MQSeries, so that you can send messages between
Message Queuing applications and MQSeries queues.

MSMQ-MQSeries Bridge operates entirely in the background. In the MSMQ to MQSeries direction, a Message Queuing
application can send a message to an MQSeries queue by a standard MQSendMessage() application programming interface
(API) call or ActiveX control.

An MQSeries application can receive the message from the MQSeries queue by a standard MQGET() API call. In the MQSeries
to MSMQ direction, the opposite relations apply. Neither application needs to be aware that the message has crossed between
environments.

The MSMQ-MQSeries Bridge interface extends the features of Message Queuing and MQSeries across the combined
environment. MSMQ-MQSeries Bridge fully supports connectionless, asynchronous messaging.

Using MSMQ-MQSeries Bridge, you can route messages to each messaging system even if the two systems are not connected
to the network at the same time.

See Also
Other Resources
Using MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771518(v=bts.10).aspx

MSMQ-MQSeries Bridge Benefits
Using MSMQ-MQSeries Bridge, your applications can send messages between IBM MQSeries and Message Queuing easily
and efficiently. MSMQ-MQSeries Bridge extends connectionless, store-and-forward messaging across messaging systems and
computing platforms throughout your network.

MSMQ-MQSeries Bridge offers:

Compatibility
Each messaging system sends and receives data in its native format. MSMQ-MQSeries Bridge converts the message formats
automatically between the systems.

Adaptability
Your applications can send messages using standard Message Queuing or MQSeries API calls. You do not need to recode
existing applications to use MSMQ-MQSeries Bridge.

Reliability
MSMQ-MQSeries Bridge supports transactions and deliver-once features, ensuring that messages are properly delivered
following recovery from a system failure.

Performance
You can customize MSMQ-MQSeries Bridge for optimal performance in your network environment.

Management
Using MSMQ-MQSeries Bridge Manager, you can configure and manage all MSMQ-MQSeries Bridge computers in your
enterprise network from a central location.

See Also
Other Resources
Using MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771518(v=bts.10).aspx

Message Queuing and MQSeries Features
The Message Queuing and MQSeries message queuing systems offer the following features:

Connectionless, asynchronous messaging
The communicating applications do not need to log on to the remote system or establish a session with each other. The
computers on which the applications run do not need to be connected at the instant when messages are written or read.
Applications can continue running without waiting for transmission to be completed.

Guaranteed delivery and deliver once
Message Queuing and MQSeries provide mechanisms by which an application can guarantee and confirm that messages are
delivered, and prevent duplicate delivery.

Message prioritization
A sending application can specify the order in which the receiving application will get the messages.

User-defined message structure
The message body may contain a single byte (or no message contents at all), a text string, or a long and complex data
structure. The message body may be structured or encrypted in any syntax that the communicating applications understand.

Transaction support
Send-message or receive-message operations can participate in a transaction, and can be coordinated with other operations
such as database updates. The entire transaction is canceled and rolled back if any of the operations fail.

Application programming interface (API)
MSMQ and MQSeries operate on the Application Layer of the ISO Reference Model for Open System Interconnection. They
act as a simple interface between an application program and the network, freeing the application programmer from
concern about network or communication details.

See Also
Other Resources
Using MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771518(v=bts.10).aspx

Reference Material
Before installing or programming MSMQ-MQSeries Bridge, you should be familiar with the principles of message queuing and
with at least one message queuing environment (Message Queuing or MQSeries).

For background information, refer to the Host Integration Server Programmer's Guide, Message Queuing documentation, and
the IBM MQSeries documentation.

See Also
Other Resources
Using MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771518(v=bts.10).aspx

How MSMQ-MQSeries Bridge Works
The following topics detail how MSMQ-MQSeries Bridge works.

In This Section

MSMQ-MQSeries Bridge Concepts

Message Queuing Concepts

Message Fields or Properties

Sending and Receiving Messages

System Components

Message Conversion

Network Architecture

Multiple Connections

Sending Messages From Message Queuing to MQSeries

Sending Messages From MQSeries to Message Queuing

Transactional and Nontransactional Message Pipes

https://msdn.microsoft.com/en-us/library/aa745636(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754411(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770991(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771474(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745829(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770686(v=bts.10).aspx

MSMQ-MQSeries Bridge Concepts
With MSMQ-MQSeries Bridge, Message Queuing (also known as MSMQ) and MQSeries applications can send messages to
each other, between the message queuing systems.

MSMQ-MQSeries Bridge achieves this by mapping the messages and the data fields of the sending system and the values
associated with those fields, to the fields and values of the receiving environment.

After the mapping and conversion, MSMQ-MQSeries Bridge completes the process by routing the message across the
combined Message Queuing and MQSeries networks.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Message Queuing Concepts
Message queuing enables programs to share data across a network without necessarily having a synchronized connection
linking the sending and receiving applications at the same instant. The programs do this by putting the data, or message, on a
message queue, which is then retrieved by the receiving application.

Two basic concepts of both Message Queuing and MQSeries are message and message queue:

Message
A message is a set of data that needs to be transmitted from one application to another application, on the same or a
different computer in a network.

Message queue
A message queue is the location where messages are stored, which can be written and read by applications.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Message Fields or Properties
A message may contain one or more fields, such as the message buffer or body, label, priority, or sender ID. The following
applies to fields or properties:

In MQSeries, the fields are members of a fixed data structure.

In Message Queuing, the fields are known as properties. A message can contain any number of properties (even zero). In
practice, an application assembles a message from one or more properties in a dynamic data structure.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Sending and Receiving Messages
To create a message, an application specifies the message fields or properties and supplies the field values. The application
then issues a Message Queuing or MQSeries API call to send the message.

The Message Queuing or MQSeries Queue Manager (server) transmits the message to the destination message queue. If the
destination location is not connected to the network when the message is sent, the message queuing system stores the
message at an interim location. The system forwards the message automatically when a connection is established.

To receive a message, an application issues an API call that reads the message from the queue.

Receiving a message

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

System Components
The MSMQ-MQSeries Bridge system can contain two main components:

MSMQ-MQSeries Bridge
Converts and transmits messages between the Message Queuing and MQSeries environments.

MSMQ-MQSeries Bridge Manager
Configures, monitors, and controls the messaging traffic through MSMQ-MQSeries Bridge.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Message Conversion
MSMQ-MQSeries Bridge maps the fields or properties of a message to the corresponding fields or properties of the
destination message queuing system. For example, if you send a message from MQSeries to Message Queuing, MSMQ-
MQSeries Bridge analyzes the fields of the MQSeries message and maps each value to its Message Queuing counterpart. In
cases where one system needs an additional field that does not exist in the other, MSMQ-MQSeries Bridge provides the field
during the conversion process.

For example, if a Message Queuing message includes the PROPID_M_TIME_TO_BE_RECEIVED property with a specific value,
MSMQ-MQSeries Bridge maps this property to the MQSeries MQMD.Expiry property and multiplies the value by 10 to change
the units from seconds to tenths of seconds.

MSMQ-MQSeries Bridge does not restrict the content of a message. The message body may contain its own internal structure,
which is recognized only by the sending and receiving applications and is not interpreted in any way by MSMQ-MQSeries
Bridge.

For detailed information about how MSMQ-MQSeries Bridge maps and converts properties from Message Queuing to
MQSeries and from MQSeries to Message Queuing, see the Host Integration Server Programmer's Guide.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Network Architecture
MSMQ-MQSeries Bridge is used in conjunction with Message Queuing and MQSeries networks. MSMQ-MQSeries Bridge is a
Message Queuing Connector application.

MSMQ-MQSeries Bridge is installed on a Microsoft Windows Server 2003, Enterprise Edition or Windows 2000 Server
Enterprise Edition system that serves as a connection point between the networks. A Message Queuing routing server must be
installed on the same computer as MSMQ-MQSeries Bridge, and the computer must be connected by a TCP/IP or LU 6.2 link to
an MQSeries Queue Manager.

MSMQ-MQSeries Bridge connects Message Queuing and MQSeries

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Multiple Connections
You can connect any number of Message Queuing or MQSeries systems or networks using MSMQ-MQSeries Bridge. For
example, you can connect:

A single MSMQ-MQSeries Bridge to several MQSeries Queue Managers

A single MQSeries Queue Manager to several MSMQ-MQSeries Bridges

Several MSMQ-MQSeries Bridges to several MQSeries Queue Managers

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Sending Messages From Message Queuing to MQSeries
To send a message from Message Queuing to MQSeries, you must define a Message Queuing foreign computer representing
the MQSeries Queue Manager, and the MQSeries destination queue must already exist. If this is not the case, see
Installing and Configuring MSMQ-MQSeries Bridge.

The messaging process is as follows:

A Message Queuing application issues a Message Queuing MQCreateQueue() API call to create a foreign queue, located
on the foreign computer and representing the MQSeries destination queue. Alternatively, you can create the foreign
queue using Message Queuing, and in Windows Server 2003 or Windows 2000 the foreign queue is a part of Users and
Computers.

The application calls MQOpenQueue() to open the foreign queue.

The application calls MQSendMessage() to send a message to the foreign queue. Message Queuing routes the message
and stores it temporarily on a Message Queuing connector queue.

Sending a message from Message Queuing to MQSeries

MSMQ-MQSeries Bridge takes the message from the connector queue and converts the message properties to the
MQSeries message structure. MSMQ-MQSeries Bridge routes the message to the MQSeries destination queue.

An MQSeries application issues an MQSeries MQGET() API call to receive the message from the MQSeries queue.

Message Queuing processes the message from the initial MQSendMessage() call until it is placed on the connector queue.
MSMQ-MQSeries Bridge converts and transmits the message to MQSeries, which handles the transmission from that point on.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Sending Messages From MQSeries to Message Queuing
The path for sending a message from MQSeries to Message Queuing is essentially the inverse of Message Queuing to
MQSeries, with a few differences. You must define appropriate MQSeries aliases, transmission queues, and channels for the
Message Queuing destination queue or the Message Queuing server, and the Message Queuing destination queue must
already exist.

For additional information, see Typical Configuration.

The messaging steps are as follows:

An MQSeries application issues an MQOPEN() API call for a remote queue representing the Message Queuing
destination queue.

The MQSeries application calls MQPUT() to send a message to the remote queue. MQSeries transmits the message and
stores it temporarily on an MQSeries transmission queue located at the MQSeries Queue Manager.

MSMQ-MQSeries Bridge takes the message from the transmission queue and converts the message structure to
Message Queuing message properties. MSMQ-MQSeries Bridge transmits the message to the Message Queuing
destination queue.

A Message Queuing application issues a Message Queuing MQReceiveMessage() API call to receive the message from
the Message Queuing queue.

Sending a message from MQSeries to Message Queuing

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa744761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

Transactional and Nontransactional Message Pipes
Using MSMQ-MQSeries Bridge, you can send messages through transactional or nontransactional message pipes.

If you send a message by a transactional message pipe, MSMQ-MQSeries Bridge supports the deliver-once feature of Message
Queuing and MQSeries. This feature ensures that each message is delivered exactly once to the receiving application, but
entails some overhead.

Choosing a nontransactional message pipe may improve performance, but a message may be delivered more than once in the
event of a system failure during transmission.

Message Queuing messages in the foreign transactional queue will go through transactional message pipes, while Message
Queuing messages in the foreign nontransactional queue will go through the nontransactional message pipes.

In the MQSeries to Message Queuing direction, you can send a message by transactional or nontransactional message pipe by
specifying the appropriate remote queue manager alias as follows:

"BRIDGEQMNAME" refers to transactional message pipe.

"BRIDGEQMNAME%" refers to nontransactional message pipe.

In the Message Queuing to MQSeries direction, MSMQ-MQSeries Bridge sends transacted messages by normal service and
untransacted messages by high service. In the MQSeries to Message Queuing direction, you can send a message by normal or
high service by specifying an appropriate alias as the remote queue manager address.

See Also
Other Resources
How MSMQ-MQSeries Bridge Works

https://msdn.microsoft.com/en-us/library/aa753937(v=bts.10).aspx

MSMQ-MQSeries Bridge Setup and Configuration
The following sections detail the setup and configuration of MSMQ-MQSeries Bridge.

After installing, you must configure the Message Queuing (also known as MSMQ), MQSeries, and MSMQ-MQSeries Bridge
systems.

The configuration process is equivalent to building a bridge, enabling MSMQ-MQSeries Bridge to transfer messages.

In This Section

MSMQ-MQSeries Bridge Setup Requirements

MSMQ-MQSeries Bridge Prerequisites

MSMQ-MQSeries Bridge Properties

Naming Message Queuing and MQSeries Entities

Installing and Configuring MSMQ-MQSeries Bridge

Testing the Installation

Typical Configuration

https://msdn.microsoft.com/en-us/library/aa705025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770815(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770552(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744761(v=bts.10).aspx

MSMQ-MQSeries Bridge Setup Requirements
The following information details the steps required to set up MSMQ-MQSeries Bridge. The installation process is
straightforward, but rolling out a full installation may take some time in a complex network configuration.

This section helps you get started quickly and presents a step-by-step procedure for an initial MSMQ-MQSeries Bridge
configuration.

In This Section

MSMQ-MQSeries Bridge Minimal Configuration

Where You Work When Installing MSMQ-MQSeries Bridge

Gathering Required Information

https://msdn.microsoft.com/en-us/library/aa705696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771848(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744680(v=bts.10).aspx

MSMQ-MQSeries Bridge Minimal Configuration
The minimal configuration enables MSMQ and MQSeries applications to communicate with one another, so the benefits of
MSMQ-MQSeries Bridge are immediate. The minimal configuration requirements are:

One installation of MSMQ-MQSeries Bridge on a computer running Windows Server 2003 or Windows 2000 Server.

One installation of Message Queuing on the same computer as MSMQ-MQSeries Bridge. (Message Queuing with
routing in Windows Server 2003 or Windows 2000 Server.)

One installation of MQSeries Queue Manager on any supported platform.

See Also
Other Resources
MSMQ-MQSeries Bridge Setup Requirements

https://msdn.microsoft.com/en-us/library/aa705025(v=bts.10).aspx

Where You Work When Installing MSMQ-MQSeries Bridge
To install MSMQ-MQSeries Bridge, you must work on two computers:

The Message Queuing and MSMQ-MQSeries Bridge computer.

The MQSeries computer, where the MQSeries Queue Manager is installed.

There are several steps and data transfers that must be performed on each computer.

See Also
Other Resources
MSMQ-MQSeries Bridge Setup Requirements

https://msdn.microsoft.com/en-us/library/aa705025(v=bts.10).aspx

Gathering Required Information
Before you proceed, gather the following information. You will need this information later in the configuration process:

Computer name (example: MSBRIDGE1).

Directory in which the MQSeries Client for Windows Server 2003, Windows 2000, or Windows NT® is installed
(example: c:\MQCLIENT).

Connection information

For TCP/IP, the computer name or IP address (example: IBMNT) and the port number (example: 1414).

For SNA, the LU 6.2 Side Information Record (CPI-C Symbolic Destination Name).

Name of the MQSeries Queue Manager (example: IBMNT).

Note
All MQSeries names must be in uppercase (for example, MSBRIDGE1, and not Msbridge1).

See Also
Other Resources
MSMQ-MQSeries Bridge Setup Requirements

https://msdn.microsoft.com/en-us/library/aa705025(v=bts.10).aspx

MSMQ-MQSeries Bridge Prerequisites
For information about MSMQ-MQSeries Bridge prerequisites, see the following topics.

In This Section

MSMQ-MQSeries Bridge Platforms

Prerequisites for Computers Running Windows Server 2003 or Windows 2000

Prerequisites for MQSeries Computers

https://msdn.microsoft.com/en-us/library/aa705231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771105(v=bts.10).aspx

MSMQ-MQSeries Bridge Platforms
The server can be installed on any computer that is running Windows Server 2003 or Windows 2000 Server.

The Administrator Client can be installed on the following operating systems:

Windows Server 2003

Windows 2000 Professional

Windows 2000 Server with Terminal Services installed

See Also
Other Resources
MSMQ-MQSeries Bridge Prerequisites

https://msdn.microsoft.com/en-us/library/aa771042(v=bts.10).aspx

Prerequisites for Computers Running Windows Server 2003 or
Windows 2000

The following software should already be installed on the computer where you will install MSMQ-MQSeries Bridge Server or
Administrator Client:

Server Prerequisites

Windows Server 2003 or Windows 2000 Server

Message Queuing server (not in a workgroup) with routing enabled

IBM MQSeries Client for Windows NT or IBM MQSeries for Windows NT (with server and client installed)

TCP/IP or SNA (LU 6.2) link to an MQSeries Queue Manager (QM)

Administrator Client Prerequisites

Windows Server 2003, Windows 2000 Professional, or Windows 2000 Server with Terminal Services

Message Queuing set up (not in a workgroup)

See Also
Other Resources
MSMQ-MQSeries Bridge Prerequisites

https://msdn.microsoft.com/en-us/library/aa771042(v=bts.10).aspx

Prerequisites for MQSeries Computers
The following applies to MQSeries computers:

For OS/390 systems, be sure that your MQSeries Queue Manager is configured with the Client Attachment feature. For
additional information, refer to the IBM MQSeries documentation.

See Also
Other Resources
MSMQ-MQSeries Bridge Prerequisites

https://msdn.microsoft.com/en-us/library/aa771042(v=bts.10).aspx

MSMQ-MQSeries Bridge Properties
For information about MSMQ-MQSeries Bridge properties, see the following topics.

In This Section

Before Adding a Connected Network

How to Add a Connected Network

How to Delete a Connected Network

How to Set Connected Network Properties

How to Set Message Pipe Properties

See Also
Reference
General Tab
Advanced Tab
MQI Channels Tab
General Tab - CN
General Tab - Message Pipe
Batch Tab
Cache Tab
Retry Tab

https://msdn.microsoft.com/en-us/library/aa744313(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771516(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771308(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771379(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745608(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744365(v=bts.10).aspx

Before Adding a Connected Network
Before you can add a connected network (CN) to an MSMQ-MQSeries Bridge, you should:

Define the CN in Message Queuing and associate the MSMQ-MQSeries Bridge computer with the CN.

Open MSMQ-MQSeries Bridge Manager.

See Also
Other Resources
MSMQ-MQSeries Bridge Properties

https://msdn.microsoft.com/en-us/library/aa770815(v=bts.10).aspx

How to Add a Connected Network
To add a connected network (CN)

1. Right-click the MSMQ-MQSeries Bridge computer to which the CN is connected.

2. Select New CN from the pop-up menu, and select the CN name from the list.

Along with the new CN, the following four message pipes are added to the console tree.

Message pipe Description

MSMQ->MQS Transactional Message Queuing to MQSeries transactional message.

MSMQ->MQS Nontransactional Message Queuing to MQSeries nontransactional message.

MQS->MSMQ Transactional MQSeries to Message Queuing transactional message.

MQS->MSMQ Nontransactional MQSeries to Message Queuing nontransactional message.

3. Right-click the new CN and each message pipe to set their properties.

See Also
Other Resources
MSMQ-MQSeries Bridge Properties

https://msdn.microsoft.com/en-us/library/aa770815(v=bts.10).aspx

How to Delete a Connected Network
To delete a connected network (CN), right-click the CN and select Delete.

See Also
Concepts
How to Add a Connected Network
Other Resources
MSMQ-MQSeries Bridge Properties

https://msdn.microsoft.com/en-us/library/aa771516(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770815(v=bts.10).aspx

How to Set Connected Network Properties
To set the properties of a connected network (CN), right-click the CN icon in MSMQ-MQSeries Bridge Manager, and select
Properties.

Icon Description

Connected network icon.

See Also
Other Resources
MSMQ-MQSeries Bridge Properties

https://msdn.microsoft.com/en-us/library/aa770815(v=bts.10).aspx

How to Set Message Pipe Properties
To set the properties of a message pipe, right-click its icon in MSMQ-MQSeries Bridge Manager, and select Properties.

The following table shows the icons for message pipes.

Icon Description

Stopped

Paused

Pending

Recovering

Running

Error

See Also
Other Resources
MSMQ-MQSeries Bridge Properties

https://msdn.microsoft.com/en-us/library/aa770815(v=bts.10).aspx

Naming Message Queuing and MQSeries Entities
You must choose names for certain Message Queuing and MQSeries entities that you define during the configuration process.
For more information, see the topics in this section.

Note
The names are identical to or derived from other names that you already recorded. This naming system is recommended bec
ause it helps you maintain your system easily.

In This Section

Message Queuing Names

MQSeries Names

https://msdn.microsoft.com/en-us/library/aa745578(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771134(v=bts.10).aspx

Message Queuing Names
You will need the following information when creating your Message Queuing names.

Name of a connected network or foreign site (example: IBMNT_CN).

Name of the Queue Manager on the foreign computer (example: IBMQM).

Name of a foreign queue (example: IBM.NT.QUEUE).

Name of a Message Queuing queue to which you will send test messages (example: MSBRDIGE1.QUEUE).

See Also
Concepts
MQSeries Names

https://msdn.microsoft.com/en-us/library/aa771134(v=bts.10).aspx

MQSeries Names
You will need the following information when creating your MQSeries names.

MQI channel name (example: IBMNT_CN).

Transmission queue name for normal service (example: MSBRIDGE1.XMITQ).

Transmission queue name for high service (example: MSBRIDGE1.XMITQ.HIGH).

Name of an MQSeries queue to which you will send test messages (example: IBM.NT.QUEUE).

Installing and Configuring MSMQ-MQSeries Bridge
The following topics detail how to configure MSMQ-MQSeries Bridge components:

In This Section

How to Install the MSMQ-MQSeries Bridge Software

Transport Considerations

Configuring MSMQ-MQSeries Bridge on Windows Server 2003 or Windows 2000

How to Define a Foreign Site in Windows Server 2003 or Windows 2000

How to Add a Foreign Computer Representing MQSeries in Windows Server 2003 or Windows 2000

How to Set the Foreign Site Permission in Windows Server 2003 or Windows 2000

How to Create a Foreign Queue in Windows Server 2003 or Windows 2000

How to Add the Connected Network

How to Disable the Message Pipes

How to Export an MQSeries Server Definition File

How to Export an MQSeries Client Definition File

How to Run the MQSeries Server Definition File

How to Run the MQSeries Client Definition File

How to Configure the MQSeries Client

https://msdn.microsoft.com/en-us/library/aa771684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744379(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771229(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704933(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705538(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745994(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771381(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770455(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745986(v=bts.10).aspx

How to Install the MSMQ-MQSeries Bridge Software
The procedure for installing the MSMQ-MQSeries Bridge software is the same whether you are installing the Server or the
Administrator Client.

Choosing Server installs MSMQ-MQSeries Bridge and MSMQ-MQSeries Bridge Manager. Choosing Administrator Client
installs only MSMQ-MQSeries Bridge Manager.

To install MSMQ-MQSeries Bridge

1. Insert the Host Integration Server CD-ROM.

2. From the Host Integration Server startup page, click Install Server or Install Administrator Client and follow the
directions on the screen.

3. When the setup is complete, you can optionally view the Readme file and launch MSMQ-MQSeries Bridge Manager.
Click Finish to complete the installation.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

Transport Considerations
When the TCP/IP protocol is used between the MQSeries Client and MQSeries Queue Manager, check the Keep Alive and
Keep Alive Time settings in the MQSeries Queue Manager initialization file (Qm.ini). Keep Alive should be set to YES and the
Keep Alive Time should be no more than half the message pipes retry delay. This enables the MQSeries Listener to release
the resources of a broken connection before MSMQ-MQSeries Bridge retries the connection.

The message pipes retry delay can be found by right-clicking a message pipe in MSMQ-MQSeries Bridge Manager. Select
Properties,and then select the Cache tab.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

Configuring MSMQ-MQSeries Bridge on Windows Server 2003
or Windows 2000

Configuring MSMQ-MQSeries Bridge on Windows Server 2003 or Windows 2000 is a three-stage process requiring Message
Queuing 2.0 or later, MSMQ-MQSeries Bridge, and MQSeries to be configured in that order. Configuring Message Queuing 2.0
on Windows Server 2003 or Windows 2000 is the only stage that is different from that described for configuring MSMQ-
MQSeries Bridge on Windows NT 4.0.

Message Queuing 2.0 and MSMQ-MQSeries Bridge

Message Queuing 2.0 is built into Windows Server 2003 and Windows 2000 and offers the following additional functionality:

Integration with the Microsoft Active Directory directory service, removing the need to use a separate SQL Server™
computer to maintain the MQIS.

Mixed-mode operation, enabling Message Queuing 1.0 and Message Queuing 2.0 environments to coexist together.

Performance improvements, particularly in the area of transactions.

Workgroup Mode, enabling computers running Windows Server 2003 or Windows 2000 to use Message Queuing 2.0
without the need for Active Directory.

MSMQ-MQSeries Bridge is capable of running on Windows Server 2003 or Windows 2000. MSMQ-MQSeries Bridge can be
installed on any of the computers running Windows Server 2003 or Windows 2000.

To use MSMQ-MQSeries Bridge on Windows Server 2003 or Windows 2000, install:

Windows Server 2003 or Windows 2000 Server.

Message Queuing server (not in a workgroup) with routing enabled.

IBM MQSeries Client for Windows NT, Version 2.0, 5.0, or 5.1, or IBM MQSeries for Windows NT, version 2.0, 5.0, or 5.1
(both Server and Client)

MSMQ-MQSeries Bridge (from Host Integration Server)

There are some changes in Message Queuing 2.0 that are relevant to MSMQ-MQSeries Bridge. These are:

Foreign Connected Network has been replaced with the term Foreign Site. This is in keeping with Active Directory
terminology. Therefore, in Windows Server 2003 or Windows 2000 a CN refers to a foreign site.

The Message Queuing 2.0 COM API has changed. Many more of the Message Queuing message properties are now
exposed through the Message Queuing COM API. In particular, the extension property (PROPID_M_EXTENSION) is now
accessible from Visual Basic®, making it easier to override MSMQ-MQSeries Bridge conversions.

Creating foreign sites and foreign computers is achieved using Active Directory Sites and Services.

Configuring Message Queuing 2.0 on Windows Server 2003 or Windows 2000

This section assumes that Message Queuing 2.0 has been installed (with routing enabled) on a computer running Windows
Server 2003 or Windows 2000 on which you plan to install MSMQ-MQSeries Bridge. Using Active Directory Users and
Computers, it should be possible to see the Message Queuing object:

Domain Controllers

Computer Name (Your computer name)

Message Queuing

If this is not the case, check that the view is set to Advanced Features. If the Message Queuing object still does not appear,
Message Queuing 2.0 is not installed. Check the Windows Server 2003 or Windows 2000 Message Queuing Help to ensure the
Message Queuing 2.0 prerequisites are met before installing Message Queuing 2.0.

From Control Panel, select Add Remove Components and install the Message Queuing Services. During the installation
of Message Queuing 2.0, ensure that you select Enable Routing. This will enable you to define a foreign site (foreign
connected network) and define routing links to the foreign site, which are required to set up an MSMQ-MQSeries Bridge.

Active Directory is used to configure Message Queuing 2.0 for use with MSMQ-MQSeries Bridge. This requires permissions to
make changes to Active Directory. For example, when creating a routing link, the default is that only users of the Enterprise
Administrators group can make these changes. Check to ensure you have the appropriate permissions to make the required
Active Directory changes before commencing Message Queuing 2.0 configuration.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Define a Foreign Site in Windows Server 2003 or
Windows 2000

Use the following procedure to define a foreign site in Windows Server 2003 or Windows 2000.

To define a foreign site

1. From Active Directory Sites and Services, select View, and then select Show Services Node.

2. Under Services, right-click MsmqServices and select New Foreign Site.

3. Enter the name for the foreign site. This is the name of the Foreign Connected Network in Message Queuing 1.0. The
same naming conventions apply to the foreign site name as to the Foreign Connected Network name for Message
Queuing 1.0.

4. Click OK.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Add a Foreign Computer Representing MQSeries in
Windows Server 2003 or Windows 2000

Use the following procedure to add a foreign computer representing MQSeries in Windows 2003 Server or Windows 2000.

To add a foreign computer

1. From Active Directory Sites and Services, select View, and then select Show Services Node.

2. Under Services, right-click MsmqServices and select New Foreign Computer.

3. Enter the Name for the Foreign Computer. This name must be the same as that of the MQSeries Queue Manager.

Note
Windows Server2003 and Windows2000 do not allow the dot (.) character in computer names. If your MQSeries Queu
e Manager name contains a dot, you can replace it with a dash (-) and MSMQ-MQSeries Bridge will map the dash back
to a dot when routing the message to its MQSeries destination.

4. Select the name for the Site,and click OK. This is the name of the foreign site that was just created.

5. Click OK.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Set the Foreign Site Permission in Windows Server 2003
or Windows 2000

Use the following procedure to modify the permissions for the foreign site.

To set the foreign site permissions

1. From Active Directory Sites and Services, expand the Sites folder, and select the foreign site created earlier.

2. Right-click the foreign site, and then select Properties.

3. Select the Security tab, and select Everyone. If MSMQ-MQSeries Bridge was installed using a local account, enable
Open Connector Queue. Otherwise, select the account name used during setup.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Create a Foreign Queue in Windows Server 2003 or
Windows 2000

Use the following procedures to create a foreign queue.

To define the MQSeries queues

1. From Active Directory Users and Computers, select View, select Advanced Features, select View, and then select
Users, Groups and Computers As Containers.

2. Expand the Computers folder and select the foreign computer that was previously created.

3. Right-click the Message Queuing object, select New, and then select MSMQ Queue.

4. Type the name for the queue and click OK.

The name must be the same as that of the MQSeries Queue.

5. Or, if you want to create a queue to accept transactional messages, type a name, select the Transactional check box, and
then click OK.

A routing link is required to enable Message Queuing 2.0 to route messages between the current Windows Server 2003 or
Windows 2000 site and the newly created Foreign Site that is used for MQSeries. Use the following procedure to create a
routing link.

To create a routing link

1. From Active Directory Sites and Services, select View, and then select Show Services Node (if not already selected).

2. Under Services, right-click MsmqServices, select New, and then select MSMQ Routing Link.

3. Set Site 1 to the name of the foreign site that was previously created. Set Site 2 to the name of the current Windows
Server 2003 or Windows 2000 site.

4. Set the Routing link cost at 1 and then click OK. Using a value greater than 1 is only relevant when multiple routing
links are defined between sites, and you want to enforce one route over another. Do not set this value to zero, because it
will cause routing of Message Queuing messages to the foreign site to fail.

A site gate is an Message Queuing server that is configured to route messages between sites on behalf of other clients. The
Message Queuing server that will be defined as the site gate is the computer that will run MSMQ-MQSeries Bridge. This site
gate will use the routing link that was just created. Use the following procedure to define a site gate.

To define a site gate

1. From Active Directory Sites and Services, select View, and then select Show Services Node (if not already selected).

2. Under Services, right-click MsmqServices. The routing link that was previously created should appear in the right pane
window.

3. Right-click the routing link, and select Properties.

4. Select the Site Gates tab.

5. In Site Servers, select the name of the computer that will run MSMQ-MQSeries Bridge, and then click Add.

6. Click OK.

The Message Queuing server, which is the same computer running Windows Server 2003 or Windows 2000 as MSMQ-
MQSeries Bridge, must be added to the foreign site created earlier.

To add the site queuing server to the foreign site

1. From Active Directory Users and Computers, select View, select Advanced Features, select View, and then select
Users, Groups and Computers as containers.

2. Expand the Domain Controllersor Computers/<Your server name>/MSMQ folder.

3. Right-click the Message Queuing object, and select Properties.

4. Select the Sites tab.

5. Select the foreign site created earlier, and then click Add to add this server to the foreign site.

6. Click OK.

On the computer running Windows Server 2003 or Windows 2000, open MSMQ-MQSeries Bridge Manager. In MSMQ-
MQSeries Bridge Manager, perform the following steps.

To change the configuration in MSMQ-Series Bridge Manager

1. Expand the Enterprise icon.

2. Right-click the Microsoft MSMQ-MQSeries Bridge Service icon, click Stop, and then click OK.

3. Right-click the Microsoft MSMQ-MQSeries Bridge Service icon and click Properties.

4. On the MQI Channels tab, click Add.

5. Enter the Channel Name.

6. Enter the Queue Manager name.

7. For Transport Type, select TCP/IP or SNA LU6.2.

8. On the Address tab, if you connect by TCP/IP, specify the IP address or computer name for Address and the port
number for Port.

For SNA LU 6.2, specify the LU 6.2 Side Information Record.

9. Click OK twice.

A message appears warning you about changing the MQI Channel configuration. Click OK to bypass this message.

See the other topics in this section for more information about configuration.

See Also
Tasks
How to Export an MQSeries Server Definition File
How to Export an MQSeries Client Definition File
How to Run the MQSeries Server Definition File
How to Run the MQSeries Client Definition File
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770455(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Add the Connected Network
To add the connection network (CN), right-click the Microsoft MSMQ-MQSeries Bridge Service icon in MSMQ-MQSeries
Bridge Manager. Point to New, and click CN.

To add the connected network

1. Select CN from the drop-down list box.

2. Click OK. The CN Properties window (General tab) appears.

3. Select the MQSeries QM Name.

4. For the Reply to QM Name, enter the name of the computer running Windows.

5. For Startup, select Enabled and click OK.

6. MSMQ-MQSeries Bridge Manager displays four message pipes (MSMQ->MQS Transactional, MSMQ->MQS, and so on).

The message pipes are auto-started by default. You can disable the auto-start option in the appropriate Properties page.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Disable the Message Pipes
Use the following procedure to disable the message pipes.

To disable the message pipes

1. In MSMQ-MQSeries Bridge Manager, right-click the first message pipe icon, MSMQ->MQS Transactional, and click
Properties.

2. On the General tab, select Disabled and click OK.

3. Repeat steps 1 and 2 for the second message pipe, MSMQ->MQS.

4. Right-click the third message pipe icon, MQS->MSMQ Transactional, and click Properties.

5. On the General tab, select Disabled and click OK.

6. Repeat steps 4 and 5 for the MQS->Message Queuing message pipe.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Export an MQSeries Server Definition File
Use the following procedure to export an MQSeries Server definition file.

To export an MQSeries server definition file

1. Right-click the Microsoft MSMQ-MQSeries Bridge Service icon in MSMQ-MQSeries Bridge Manager, and click Export
Server Definitions.

2. Enter a directory name to save the definition file (by default, C:\Program Files\Host Integration Server\MQBridge), and
click OK. MSMQ-MQSeries Bridge Manager saves the file with an extension of .txt. If you define more than one CN, a
definition file for each MQSeries Queue Manager is created in the directory.

3. Transfer the files to the MQSeries computer. If you use FTP to transfer the file, be sure to specify the ASCII transfer
option.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Export an MQSeries Client Definition File
Use the following procedure to export an MQSeries Client definition file.

To export an MQSeries client definition file

1. Right-click the Microsoft MSMQ-MQSeries Bridge Service icon and click Export Client Definitions.

2. Enter the directory name to save the definition file (the default is C:\Program Files\Host Integration Server\MQBridge),
and click OK.

3. MSMQ-MQSeries Bridge Manager saves the file with the name ClientDf.txt.

4. Transfer the file to the MQSeries computer. If you transfer by FTP, be sure to specify the ASCII transfer option.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Run the MQSeries Server Definition File
On the MQSeries computer, run the MQSeries Server definition file that you transferred from MSMQ-MQSeries Bridge
Manager.

To run the MQSeries server definition file

1. At the command prompt, run the MQSC command, for example:

Note
Substitute the MQSeries Queue Manager name for IBMNT.

2. The MQSeries Queue Manager is now configured. Review the Servreport.out file to be sure that the definitions ran
successfully.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Run the MQSeries Client Definition File
On the MQSeries Queue Manager computer, run the MQSeries Client definition file that you transferred from MSMQ-
MQSeries Bridge Manager.

To run the MQSeries client definition file

1. At the command prompt, run the MQSC command, for example:

2. The MQSC command creates a channel file called Amqclchl.tab, located in the directory
MQMDirectory/QMGRS/<QueueManagerName>/@IPCC (the exact location may differ on various platforms).

3. Review the Clientreport.out file to be sure that the definitions ran successfully.

4. Transfer the Amqclchl.tab file to the MQSeries Client directory on the Windows computer. If you transfer by FTP, be sure
to specify the Binary transfer option.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

How to Configure the MQSeries Client
To complete the MQSeries configuration, return to the computer running Windows where MSMQ-MQSeries Bridge is installed.

To configure the MQSeries client

1. On the computer running Windows Server 2003 or Windows 2000, right-click My Computer, click Properties, select
the Advanced tab, and then click Environment Variable.

2. Verify the following variables are in the System Variables.

If they are not, set them correctly.

MQCHLLIB should be the directory path of the channel file (by default, the MQSeries Client directory).

MQCHLTAB should be the file name of the channel file (by default, Amqclchl.tab).

3. Check that the environment variable MQSERVER is not defined.

4. Click OK.

See Also
Other Resources
Installing and Configuring MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771430(v=bts.10).aspx

Testing the Installation
You can use the test programs provided in the server installation to test the MSMQ-MQSeries Bridge operation. By default, the
test programs are installed to C:\Program Files\Host Integration Server\system.

For additional information about testing the MSMQ-MQSeries Bridge configuration, see the following topics.

In This Section

Creating the Test Queues

How to Test the MQSeries Client Definitions

How to Start MSMQ-MQSeries Bridge

How to Send Test Messages from Message Queuing to MQSeries

How to Send Test Messages from MQSeries to Message Queuing

https://msdn.microsoft.com/en-us/library/aa771493(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705493(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745647(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705590(v=bts.10).aspx

Creating the Test Queues
Create a Message Queuing and an MQSeries queue to receive the test messages. Alternatively, you can use queues that
already exist on the computers running Windows and MQSeries.

To create a new Message Queuing queue on Windows Server 2003 or Windows 2000, see
Create a Foreign Queue in Windows Server 2003 or Windows 2000.

Note
Use IBMNT for your MQSeries Queue Manager name. Use IBM.NT.QUEUE for the MQSeries queue name. See Also

Test the Installation

https://msdn.microsoft.com/en-us/library/aa746259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770552(v=bts.10).aspx

How to Test the MQSeries Client Definitions
Use the following procedure to start the MQSRRECV program.

To test the MQSeries client definitions

1. To start the program, open the command prompt and go to the MSMQ-MQSeries Bridge samples directory (by default,
C:\Program Files\Host Integration Server\system).

2. Start the program by typing the following command:

Note
For IBMNT, use the MQSeries Queue Manager name. For IBM.NT.QUEUE, use the MQSeries queue name.

3. If the program starts successfully, it displays the message:

If you do not receive this message, confirm the channel file steps. You can view the channel file in Windows Notepad. If the file
does not exist or it contains no entries, delete the Amqclchl.tab file from the MQSeries Server and execute the channel file steps
again.

If the program still fails to start, override the channel file settings by issuing the following command:

An example for TCP/IP is:

An SNA example is:

Where MQSCPIC is the side information record name (CPI-C Symbolic Destination Name).

Then try MQSRRECV again. If the program now starts, either the channel file was not found, or it does not contain a correct MQI
channel definition. If MQSRRECV still does not start, check that the listener on the MQSeries computer is started for the correct
port. If not, start the listener and try again.

Press CTRL+C to stop the MQSRRECV program.

See Also
Other Resources
Testing the Installation

Use <CTRL-C> to stop!

https://msdn.microsoft.com/en-us/library/aa770552(v=bts.10).aspx

How to Start MSMQ-MQSeries Bridge
Open MSMQ-MQSeries Bridge Manager and then use the following procedure.

To start MSMQ-MQSeries bridge

1. Right-click the Microsoft MSMQ-MQSeries Bridge Service icon and click Start.

2. In the Manager display, all four message pipes should start (the icons should have a green arrow).

If the message pipes do not start, check the event log.

The MQS->MSMQ message pipes may fail in the following situations:

Another MSMQ-MQSeries Bridge computer is currently using the same transmission queue.

Microsoft MSMQ-MQSeries Bridge is terminated abnormally, causing the MQSeries server to behave as if MSMQ-
MQSeries Bridge is still using the corresponding XMIT queue. If this happens, you must restart MQSeries Queue
Manager, or configure the Keep Alive option in your MQSeries server. (For further information, see your MQSeries
documentation.)

See Also
Other Resources
Testing the Installation

https://msdn.microsoft.com/en-us/library/aa770552(v=bts.10).aspx

How to Send Test Messages from Message Queuing to
MQSeries

On the computer running Windows, perform the following procedure to send test messages.

To send test messages from message queuing to MQSeries

1. Open two MS-DOS windows. Change both windows to the server installation directory (by default, C:\Program Files\Host
Integration Server\System).

2. Start the MQSeries receiver program in the first window.

Note
Use IBMNT for your MQSeries Queue Manager name. Use IBMNT for the MQSeries queue name.

3. In the second window, send 10 messages from Message Queuing to MQSeries:

Note
Use IBMNT for your foreign computer name. Use IBMNT.QUEUE for the MQSeries queue name.

4. If the test succeeds, the first window displays the 10 messages that it receives.

5. Stop the MQSRRECV program by pressing CTRL+C in the first window.

See Also
Other Resources
Testing the Installation

https://msdn.microsoft.com/en-us/library/aa770552(v=bts.10).aspx

How to Send Test Messages from MQSeries to Message
Queuing

On the computer running Windows, perform the following procedure to send test messages.

To send test messages from MQSeries to Message Queuing

1. Open two MS-DOS windows. Go to the default installation directory (default is C:\Program Files\Host Integration
Server\System).

2. In the first window, start the Message Queuing receiver program.

3. Send from MQSeries with the following command:

4. Receive in Message Queuing with the following command:

See Also
Other Resources
Testing the Installation

 >MSMQRecv MSBRIDGE1\MSBRIDGE1.QUEUE

https://msdn.microsoft.com/en-us/library/aa770552(v=bts.10).aspx

Typical Configuration
The topics in this section detail the configuration of MSMQ-MQSeries Bridge.

In This Section

Typical Configuration Diagram

Typical Configuration Settings

https://msdn.microsoft.com/en-us/library/aa746033(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771486(v=bts.10).aspx

Typical Configuration Diagram
Examine the diagram for an overview of a typical configuration. The names in the diagram (such as MSBRIDGE1, IBMNT_CN,
and IBMNT) are arbitrary, but you must use the same name for the same entity at different locations in the configuration.

For example, if the MSMQ-MQSeries Bridge computer is called MSBRIDGE1, you must reference this same name in MSMQ-
MQSeries Bridge Manager and in MQSeries.

A typical configuration

Settings for a Typical Configuration

https://msdn.microsoft.com/en-us/library/aa771486(v=bts.10).aspx

Typical Configuration Settings
The following tables show settings for a typical configuration.

Define in Message Queuing
 Foreign Connected Network or Foreign Site IBMNT_CN

 Foreign computer IBMNT

 Foreign queue IBM.NT.QUEUE

Define in MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge properties MQI channel IBMNT_CN

 Transport type TCP/IP or LU6.2

Foreign Connected Network or Foreign Site properties CN name IBMNT_CN

 MQSeries QM IBMNT

 Reply to QM MSBRIDGE1

Message pipe properties MQSeries Message Queuing Normal

 MQSeries Message Queuing High

Transmission queue IBM.NT_CN.XMITQ IBMNT_CN.XMITQ.HIGH

Import or define in MQSeries
 Transactional Service Nontransactional Service

Transmission queue IBMNT_CN.XMITQ IBMNT_CN.XMITQ.HIGH

Queue manager alias MSBRIDGE1 MSBRIDGE1%

 Model queue Q2Q_SYNC_Q

 MQI channel MQS_CN

 Transport type TCP/IP or LU6.2

See Also
Concepts
Typical Configuration Diagram

https://msdn.microsoft.com/en-us/library/aa746033(v=bts.10).aspx

MSMQ-MQSeries Bridge Manager
For information about MSMQ-MQSeries Bridge Manager, see the following topics.

In This Section

MSMQ-MQSeries Bridge Manager Overview

MSMQ-MQSeries Bridge Manager Display

MSMQ-MQSeries Bridge Manager Properties

Icons for MSMQ-MQSeries Bridge Manager Objects

Column Display Options for MSMQ-MQSeries Bridge Manager

MSMQ-MQSeries Bridge Display

Connected Network Display

Message Pipe Display

How to Customize the Column Display

Shortcut Menu in MSMQ-MQSeries Bridge Manager

Status Bar

https://msdn.microsoft.com/en-us/library/aa746174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771513(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705773(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754241(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754262(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770465(v=bts.10).aspx

MSMQ-MQSeries Bridge Manager Overview
Using MSMQ-MQSeries Bridge Manager, you can control and monitor MSMQ-MQSeries Bridge operations. For example, you
can use MSMQ-MQSeries Bridge Manager to:

Start, stop, or pause the operation of an MSMQ-MQSeries Bridge, a CN, or a message pipe.

Observe the quantity and type of traffic between Message Queuing and MQSeries.

Determine how many messages are on MQSeries transmission queues or Message Queuing connector queues waiting
to be transmitted.

This topic explains how to use and customize MSMQ-MQSeries Bridge Manager for these purposes.

Note
You can also use MSMQ-MQSeries Bridge Manager to configure your MSMQ-MQSeries Bridge system. This is an essential st
ep in the MSMQ-MQSeries Bridge installation. For complete information, see MSMQ-MQSeries Bridge configuration.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

MSMQ-MQSeries Bridge Manager Display
Open MSMQ-MQSeries Bridge Manager. The MSMQ-MQSeries Bridge Manager window is divided into two panes. On the left,
in the console tree, a Manager tree displays the MSMQ-MQSeries Bridge installations in your network, and message pipes. The
details pane, on the right, lists detailed information about the status of an object that is selected in the tree.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

MSMQ-MQSeries Bridge Manager Properties
To set the properties of MSMQ-MQSeries Bridge components, right-click the Microsoft MSMQ-MQSeries Bridge Service
icon from the left pane in MSMQ-MQSeries Bridge Manager, and select the Properties option.

The Properties window displays several tabs. You should set the properties on the MQI Channels tab before you add a
connected network.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Icons for MSMQ-MQSeries Bridge Manager Objects
In MSMQ-MQSeries Bridge Manager, icons are used to designate items such as MSMQ-MQSeries Bridge installations,
connected networks (CNs), and message pipes.

Icon Description

Enterprise network

Computer (on which one or more MSMQ-MQSeries Bridge products are installed)

MSMQ-MQSeries Bridge (running)

MSMQ-MQSeries Bridge (stopped)

Connected Network

Message pipe (running)

Message pipe (paused)

Message pipe (pending)

Message pipe (recovering)

Message pipe (stopped)

Message pipe (error)

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Column Display Options for MSMQ-MQSeries Bridge Manager
The columns displayed in the details pane of MSMQ-MQSeries Bridge Manager change according to the object you have
selected in the console tree. You can customize the columns that MSMQ-MQSeries Bridge Manager displays for each type of
object.

Note
The Object Name column is always displayed.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

MSMQ-MQSeries Bridge Display
The following table shows the MSMQ-MQSeries Bridge Manager column name and description.

Column name Description
MQS H Threads Number of MQSeries to Message Queuing threads at nontransactional message pipe

MQS N Threads Number of MQSeries to Message Queuing threads at transactional message pipe

Message Queuing H Threads Number of Message Queuing to MQSeries threads at nontransactional message pipe

Message Queuing N Threads Number of Message Queuing to MQSeries threads at transactional message pipe

Lifetime Time since MSMQ-MQSeries Bridge started

Path Computer name

Status MSMQ-MQSeries Bridge status (running, paused, or stopped)

DLQ Depth Number of messages on the MSMQ-MQSeries Bridge non-transacted dead letter queue

XDLQ Depth Number of messages on the MSMQ-MQSeries Bridge transacted dead letter queue

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Connected Network Display
The following table shows the connected network (CN) column name and description.

Column name Description
QM Name Name of MQSeries Queue Manager to which the CN is connected

Startup CN is enabled or disabled at MSMQ-MQSeries Bridge startup

Status CN status (running, paused or stopped)

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Message Pipe Display
The following table shows the message pipe column name and description.

Column nam
e

Description

Acc Size Accumulated size (in bytes) of all messages transmitted since the message pipe started

Lifetime Time since the message pipe started

Messages Sen
t

Total number of messages that have been sent since the message pipe started

Msgs/Sec Messages per second (the current throughput of the pipe)

Q Depth Queue depth (number of messages in the queue) waiting to be transmitted

Q Name Name of the MQSeries transmission queue or Message Queuing connector queue associated with the message
pipe

Retries Number of times that MSMQ-MQSeries Bridge has tried to activate the message pipe

Startup Whether the message pipe is enabled or disabled at MSMQ-MQSeries Bridge startup

Status Message pipe status (running, paused, pending, recovering, stopped, or error)

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

How to Customize the Column Display
Use the following procedure to add or remove a column in the details pane of MSMQ-MQSeries Bridge Manager.

To customize the column display

1. From the View menu, select Columns.

2. Select the tab for the type of object (MSMQ-MQSeries Bridge, CN,or Message Pipe).

3. To add a column to the display, select its name in the Available Columns list, and click Add.

4. To remove a column, select its name in the Show the following list, and click Remove.

5. To change the sequence of the column display, select columns in the Show the following list, and click the UP ARROW
key or the DOWN ARROW key.

6. Click OK.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Shortcut Menu in MSMQ-MQSeries Bridge Manager
MSMQ-MQSeries Bridge Manager offers the standard Windows Explorer menu and toolbar. In addition, you can display a
shortcut menu by right-clicking:

New

Start

Stop

Refresh Cache

Pause

Resume

Delete

Export Server Definitions

Export Client Definitions

Properties

The options on the menu depend on the object and its current status.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Status Bar
The status bar at the bottom of the MSMQ-MQSeries Bridge Manager window displays status and error messages. For
example, the status bar displays an access denied message if an unauthorized user tries to start or stop Microsoft MSMQ-
MQSeries Bridge.

See Also
Other Resources
MSMQ-MQSeries Bridge Manager

https://msdn.microsoft.com/en-us/library/aa770661(v=bts.10).aspx

Controlling MSMQ-MQSeries Bridge
To control the operation of an object, right-click the object in MSMQ-MQSeries Bridge Manager, and select the appropriate
command. Some of the commands are also available on the main Manager menu.

For additional information, see the following topics.

In This Section

Starting, Stopping, or Pausing an Object

Refreshing the Cache

Configuration Backup

Additional Information About MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa705617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705514(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754245(v=bts.10).aspx

Starting, Stopping, or Pausing an Object
At MSMQ-MQSeries Bridge startup, the connected network (CN) and message pipes start automatically if you selected the
Startup Enabled option in the object properties.

To change the status of an object, right-click that object in MSMQ-MQSeries Bridge Manager. Select one of the following
options.

Option Description
Stop Stops the operation and resets the object's counters (lifetime, messages sent, and accumulated size).

Start Starts a stopped object.

Pause Pauses an operation, retaining the object's counters.

Resume Resumes operation after Pause.

The command affects the selected object and all objects below it on the tree. For example, starting a CN starts all its Enabled
message pipes.

See Also
Other Resources
Controlling MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa745820(v=bts.10).aspx

Refreshing the Cache
Occasionally, you may want to refresh the MSMQ-MQSeries Bridge cache memory. For example, you can do this to close
queues needed by other applications.

In MSMQ-MQSeries Bridge Manager, right-click a Microsoft MSMQ-MQSeries Bridge service or message pipe, and choose the
Refresh Cache option.

See Also
Other Resources
Controlling MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa745820(v=bts.10).aspx

Configuration Backup
MSMQ-MQSeries Bridge stores the MQSeries configuration and the MSMQ-MQSeries Bridge configuration in the registry. You
can back up those configurations by using Regedit.exe provided in your Windows Server 2003, Windows 2000, or
Windows NT system.

The registry location depends on whether you are running Windows NT in a cluster or non-cluster environment, as follows.

MSMQ-MQSeries configuration Registry key to backup

Non-cluster environment HKLM\Software\Microsoft\MQBridge\Server

Cluster environment HKLM\Cluster\Software\Microsoft\MQBridge\Server

See Also
Other Resources
Controlling MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa745820(v=bts.10).aspx

Additional Information About MSMQ-MQSeries Bridge
The following topics provide additional information about MSMQ-MQSeries Bridge.

In This Section

Using a Dash (-) in Message Queuing Computer Names

Using a Dot (.) in Remote MQSeries Queue Manager Names on Windows Server 2003 or Windows 2000

MSMQ-MQSeries Bridge Dead Letter Queue

Notes on the Current Release of MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa771875(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771741(v=bts.10).aspx

Using a Dash (-) in Message Queuing Computer Names
If a Message Queuing computer name contains the dash (-) character, IBM MQSeries will not be able to address it as a remote
queue manager because IBM MQSeries does not support queue manager names with dashes.

MSMQ-MQSeries Bridge provides a feature to resolve this problem through name replacement. In IBM MQSeries, you can
refer to the remote queue manager name with a dot (.) instead of a dash, and when the message arrives, MSMQ-MQSeries
Bridge changes the dot back to a dash.

To enable this option, see the Advanced Tab.

See Also
Other Resources
Additional Information About MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa704819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754245(v=bts.10).aspx

Using a Dot (.) in Remote MQSeries Queue Manager Names on
Windows Server 2003 or Windows 2000

Windows Server 2003 or Windows 2000 does not support computer names containing the dot (.) character. As a result, dots
cannot be used when naming a remote IBM MQSeries QM.

MSMQ-MQSeries Bridge provides a feature to resolve this problem through name replacement. In Windows Server 2003 or
Windows 2000, you can refer to the remote IBM MQSeries QM name with a dash (-) instead of a dot, and when the message
arrives, MSMQ-MQSeries Bridge changes the dash back to a dot.

This feature is enabled by default. To disable the feature, set the following registry value:

Key: HKLM\Software\Microsoft\MQBridge\Server

Value: DisableDash2DotTranslation(REG_DWORD) = 1

See Also
Other Resources
Additional Information About MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa754245(v=bts.10).aspx

MSMQ-MQSeries Bridge Dead Letter Queue
MSMQ-MQSeries Bridge creates two dead letter queues for storing messages that are not deliverable. MQBridge Dead Letter
Queue is for messages through the nontransactional message pipe, and MQBridge Xact Dead Letter Queue is for messages
through the transactional message pipe.

In Windows Server 2003 or Windows 2000, these two queues are located in Active Directory Users and Computers under
Domain Controllers or Computers\<MSMQ-MQSeries Bridge Computer>\msmq.

See Also
Other Resources
Additional Information About MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa754245(v=bts.10).aspx

Notes on the Current Release of MSMQ-MQSeries Bridge
The following are additional notes to support the current release of MSMQ-MQSeries Bridge in Host Integration Server.

MSMQ-MQSeries Bridge Manager Supports Queue Names in Uppercase Characters

MSMQ-MQSeries Bridge does not differentiate uppercase vs. lowercase foreign queue names and foreign queue manager
names. It converts them all to uppercase. MSMQ-MQSeries Bridge can only send messages to MQSeries queue managers and
queues that have uppercase names.

MSMQ-MQSeries Bridge Encryption Delays on Windows Server 2003 or Windows 2000

There is a noticeable delay for changes to take place when enabling or disabling MSMQ-MQSeries Bridge encryption. It is
recommended that you wait 5 to 15 minutes after changing the Enable/Disable option for encryption, before expecting
MSMQ-MQSeries Bridge to function correctly.

Converting an MSMQ-MQSeries Bridge Resource Into a Cluster Resource

In Windows Server 2003 or Windows 2000, clusters are Active-Active. You must perform the following steps after installation
to convert an MSMQ-MQSeries Bridge resource into a cluster resource:

1. In the Program Files\Host Integration Server\System directory by default, at the command line, type:

2. When the dialog box appears, click Add Bridge Resource.

3. In MSMQ-MQSeries Bridge Manager, right-click the Microsoft MSMQ-MQSeries Bridge Service cluster resource and
select Bring online.

In Windows Server 2003 or Windows 2000, you can also run the cluster on the local node only. To do this, run BCLUSTER as
described in the preceding procedure, and click Remove Resource.

When moving from local node to cluster node, it is necessary to stop Microsoft MSMQ-MQSeries Bridge on all local nodes
before you can bring the Microsoft MSMQ-MQSeries Bridge cluster resource online. This restriction only applies when running
on Windows Server 2003 or Windows 2000.

Granting Access for Users Created During Install

When installing MSMQ-MQSeries Bridge on a computer running Windows Server 2003 or Windows 2000, if you choose to
automatically create a user, that user will be denied access when attempting to start MSMQ-MQSeries Bridge.

You may also receive the following error in the event log: "Access to MSMQ connector queue is denied." While you should
have sufficient rights for the operation of Microsoft MSMQ-MQSeries Bridge, it may be necessary to manually configure the
Domain Administrators group security for the foreign site or sites to have full control.

To grant user access

1. In Active Directory, go to Active Directory Sites and Services.

2. Right-click the foreign site.

3. Click the Security tab, and click Domain Admins.

4. In the Permissions box, select the Full Control Allow box.

5. Click OK.

MSMQ-MQSeries Bridge Quick Setup for Windows Server 2003 or Windows 2000

Use the following steps to set up a foreign site in Windows Server 2003 or Windows 2000 (previously known as a foreign
connected network in Windows NT 4.0).

BCLUSTER

1. Install Message Queuing with routing.

2. Use Active Directory Sites and Service to create a new foreign site and new foreign computer. It is located in the
Services\MsmqServices folder (right-click).

3. Create a routing link between the foreign site and the default first site name by right-clicking the Services\MsmqServices
folder. Click New, and then click MSMQ Routing Link.

4. In Routing link cost, enter a number between 1-999, where 1 has the highest priority. Do not enter 0; it means no link.

5. Select Property, choose the Site Gates tab, and then add the MSMQ-MQSeries Bridge computer to be a member of the
routing link site gates.

6. In Active Directory Users and Computers, under Domain Controllers or Computers\<MSMQ-MQSeries Bridge
Computer>\msmq, select Property and then select the Sites tab. Add the computer to the foreign site created earlier.

7. Recycle Message Queuing on all domain controllers.

Testing the MQSeries Client/Server Connection Before Using Message Queuing Applications

The connection between the MQSeries Client and the MQSeries Server should be tested using the AMQSPUTC and AMQSGETC
tools from IBM. To perform this test, use the following procedure.

1. Configure the MQSeries Server by using the server and client definition files generated by MSMQ-MQSeries Bridge.

2. Place the .tab file (by default, Amqclchl.tab) in the client location.

3. Use AMQSPUTC and AMQSGETC to test the connection.

Enabling MSMQ-MQSeries Bridge Encryption

Before you can enable encryption, you must first run the Add Schema program.

1. Log on as Schema Administrator. (This is usually the same as a Domain Administrator.)

2. In the Program Files\Host Integration Server\System directory (by default), type the following at the command line:

3. In MSMQ-MQSeries Bridge Manager, expand Enterprise, expand Computers, and expand the computer name.

4. Right-click Microsoft MSMQ-MQSeries Bridge Service, click Properties, and then click the Advanced tab.

5. Select the Support MSMQ to Bridge Encryption box.

6. Click OK, click Yes, and then click OK.

7. Restart the Microsoft MSMQ-MQSeries Bridge.

To disable encryption, return to the Advanced tab and clear the Support MSMQ to Bridge Encryption box, and then recycle
Microsoft MSMQ-MQSeries Bridge.

MSMQ-MQSeries Bridge Rejects MSMQ Messages with MQMSG_AUTH_LEVEL_MSMQ20 Authentication

Windows Server 2003 or Windows 2000 Server Message Queuing 2.0 introduces a new authentication signature,

Addschma hiserver.schema

MQMSG_AUTH_LEVEL_MSMQ20, and is not supported for a connector queue. The result is that messages are rejected without
being processed.

See Also
Other Resources
Additional Information About MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa754245(v=bts.10).aspx

MSMQ-MQSeries Bridge Terminology
The following terms are used in MSMQ-MQSeries Bridge.

Term Definition

CN Foreign Connected Network in Windows NT 4.0, and Foreign Site in Windows Server 2003 or Windo
ws 2000.

DLQ and XDLQ MQBridge Dead Letter Queue and MQBridge Xact Dead Letter Queue. (For more information, see
MSMQ-MQSeries Bridge Dead Letter Queue.)

MCA Message Channel Agent. (For details, see IBM MQSeries documentation.)

MQI Message Queue Interface (For details, see IBM MQSeries documentation.)

MQS IBM MQSeries.

Message Queuing Also known as MSMQ. Formerly known as Microsoft Message Queuing, Message Queuing Services,
or Message Queue Server.

Nontransactional Mes
sage Pipe

Option allowing possible duplicate delivery of a message.

QM Queue Manager.

Transactional Messag
e Pipe

Option guaranteeing delivery of a message one time and only one time.

See Also
Other Resources
Additional Information About MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa754423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754245(v=bts.10).aspx

Security User's Guide
Enterprise Single Sign-On (SSO) provides services to enable single sign-on for end users in enterprise application integration
(EAI) solutions. The SSO system maps Microsoft Windows accounts to back-end credentials. SSO simplifies the management of
user IDs and passwords, both for users and administrators. It enables users to access back-end systems and applications by
logging on only one time to the Windows network.

Note
Performance monitoring is available in this release. If you are running Enterprise SSO on a 64-bit Windows computer, you m
ust also use the 64-bit Perfmon tool in order to use the ESSO Perfmon counters.

In This Section

Understanding Enterprise Single Sign-On

Installing Enterprise Single Sign-On

Using Enterprise Single Sign-On

Secure Deployment of Enterprise Single Sign-On

Password Synchronization

SSO Security Recommendations

See Also
Other Resources
Operations

https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705167(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771850(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754339(v=bts.10).aspx

Understanding Enterprise Single Sign-On
To understand Enterprise Single Sign-On (SSO), it is useful to look at the three types of Single Sign-On services available
today: Windows integrated, extranet, and intranet. These are described in the following sections, with Enterprise Single Sign-On
falling into the third category.

Windows Integrated Single Sign-On

These services enable you to connect to multiple applications within your network that use a common authentication
mechanism. These services request and verify your credentials after you log into the network, and use your credentials to
determine the actions that you can perform based on your user rights. For example, if applications integrate using Kerberos,
after the system authenticates your user credentials, you can access any resource in the network that is integrated with
Kerberos.

Extranet Single Sign-On (Web SSO)

These services enable you to access resources over the Internet by using a single set of user credentials. The user provides a set
of credentials to log on to different Web sites that belong to different organizations. An example of this type of Single Sign-On
is the Microsoft Passport Network for consumer-based applications. For federated scenarios, Active Directory Federation
Services enables Web SSO.

Server-Based Intranet Single Sign-On

These services enable you to integrate multiple heterogeneous applications and systems in the enterprise environment. These
applications and systems might not use common authentication. Each application has its own user directory store. For
example, in an organization, Windows uses Active Directory directory service to authenticate users, and mainframes use IBM's
Resource Access Control Facility (RACF) to authenticate the same users. Within the enterprise, middleware applications
integrate the front-end and back-end applications. Enterprise Single Sign-On enables users in the enterprise to connect to both
the front end and back end while using only one set of credentials. It enables both Windows Initiated Single Sign-On (in which
the initial request is made from the Windows domain environment) and Host Initiated Single Sign-On (in which the initial
request is made from a non-Windows domain environment) to access a resource in the Windows domain.

In addition, Password Synchronization simplifies administration of the SSO database, and keeps passwords in sync across user
directories. You can do this by using password synchronization adapters, which you can configure and manage using the
Password Synchronization tools.

Enterprise Single Sign-On System

Enterprise Single Sign-On provides services to store and transmit encrypted user credentials across local and network
boundaries, including domain boundaries. SSO stores the credentials in the Credential database. Because SSO provides a
generic single sign-on solution, middleware applications and custom adapters can take advantage of SSO to securely store and
transmit user credentials across the environment. End users do not have to remember different credentials for different
applications.

SSO System Components

The Single Sign-On system consists of a Credential database, a master secret server, and one or more Single Sign-On servers.

The SSO system contains affiliate applications that an administrator defines. An affiliate application is a logical entity that
represents a system or sub-system such as a host, back-end system, or line-of-business application to which you are
connecting using Enterprise Single Sign-On. Each affiliate application has multiple user mappings; for example, it has the
mappings between the credentials for a user in Active Directory and their corresponding RACF credentials.

The Credential database is the SQL Server database that stores the information about the affiliate applications, as well as all the
encrypted user credentials to all the affiliate applications.

The master secret server is the Enterprise Single Sign-On server that stores the master secret. All other Single Sign-On servers
in the system obtain the master secret from the master secret server.

The SSO system also contains one or more SSO servers. These servers do the mapping between the Windows and back-end
credentials and look up the credentials in the Credential database. Administrators use them to maintain the SSO system.

Note
You can have only one master secret server and only one Credential database in your SSO system. The Credential database c
an be remote to the master secret server.

Note
Enterprise Single Sign-On has limited functionality in a workgroup environment, supporting only config store scenarios. A d
omain environment is required for Single Sign-On scenarios, Password Sync scenarios, and ESSO Management Agent scenar
ios with MIIS.

In This Section

Enterprise Single Sign-On User Groups

SSO Components

SSO Server

Master Secret Server

SSO Affiliate Applications

SSO Mappings

SSO Tickets

Configuring Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745706(v=bts.10).aspx

Enterprise Single Sign-On User Groups
To configure and manage the Enterprise Single Sign-On (SSO) system, you must create certain Windows groups and accounts
for each of these roles. When configuring the access accounts in Enterprise SSO, you can specify more than one account for
each of these roles. This section describes these roles.

Important
It is strongly recommended that you use domain groups when configuring SSO.

Note
For security purposes, the SSO system does not allow for built-in accounts.

Single Sign-On Administrators

SSO administrators have the highest level user rights in the SSO system. They can do the following:

Create and manage the Credential database.

Create and manage the master secret.

Enable and disable the SSO system.

Create password synchronization adapters.

Enable and disable password synchronization in the SSO system.

Enable and disable host-initiated SSO.

Perform all administration tasks.

The SSO administrators account can be either a Windows group account or an individual account. The SSO administrators
account can also be either a domain or local group or individual account. When you use an individual account, you cannot
change it to another individual account. Therefore, it is recommended that you do not use an individual account. You can
change this account to a group account as long as the original account is a member of the new group.

Important
The service account that runs the Enterprise Single Sign-On service must be a member of this group. To help secure your env
ironment, ensure that no other service is using the same service account.

Single Sign-On Affiliate Administrators

The SSO affiliate administrator defines the affiliate applications that the SSO system contains. Affiliate applications are a logical
entity that represents the back-end system to which you are connecting using SSO. SSO affiliate administrators can do the
following:

Create and manage affiliate applications.

Specify the application administrators account for each affiliate application.

Perform all the administration tasks that the application administrators and application users can.

The SSO Affiliate Administrator account can be either a Windows group account or an individual account. The SSO Affiliate
Administrator account can also be either a domain or local group or account.

Application Administrators

There is one application administrators group per affiliate application.

Members of this group can do the following:

Change the application users group account.

Create, delete, and manage credential mappings for all users of the specific affiliate application.

Set credentials for any user in that specific affiliate application users group account.

Perform all the administration tasks that the application users can.

Application Users

There is one application users group account for each affiliate application. This group contains the list of end users in an
Enterprise SSO environment. Members of this group can do the following:

Look up their credentials in the affiliate application.

Manage their credential mappings in the affiliate application.

Note
Remember to be vigilant when assigning groups. It is possible, for example, to use a Host Integration Server security user gr
oup for the SSO application users group. Before you do this, be certain that all users need all access that will then be availabl
e to them.

See Also
Tasks
How to Update the Properties of an Affiliate Application
How to Update the Credential Database
Concepts
Understanding Enterprise Single Sign-On
Other Resources
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa771470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

SSO Components
The sub services of the Enterprise Single Sign-On (SSO) service are as follows:

Mapping. Maps the user account in the Windows system to the user accounts in the back-end systems (affiliate
applications).

Lookup. Looks up the user credentials in the Credential database in the back-end system. This is the SSO runtime
component.

Administration. Manages the affiliate applications and the mappings for each affiliate application.

Secret. Generates the master secret and distributes it to the other SSO servers in the system. It is only active on the
Single Sign-On server that is acting as the master secret server.

Password Synchronization. Simplifies administration of the SSO credential database, and keeps passwords in sync
across user directories.

See Also
Concepts
Understanding Enterprise Single Sign-On
SSO Server
Other Resources
Installing Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx

SSO Server
The Enterprise Single Sign-On (SSO) server can perform any of the following tasks:

Functions as the master secret server. The master secret server holds the master secret, or encryption key, used to
encrypt all the credentials in the SSO system. Though the master secret server can act as a server for lookups and
administration, it is recommended that you use this server to act only as a master secret server for security reasons. For
more information about the functions the master secret server performs, see Master Secret Server.

Performs administrative operations. SSO administrators can use any of the Single Sign-On Servers to perform
administrative tasks such as managing affiliate applications, setting user credentials, and managing user mappings.

Performs lookup operations. The SSO server uses the runtime component to look up the user credentials.

Issues and Redeems Tickets. The SSO server also issues and redeems SSO tickets, which applications can use to get
user credentials.

Password Synchronization. You can create and manage password synchronization adapters on the SSO Server.

See Also
Concepts
SSO Tickets
Master Secret Server
Other Resources
Using Enterprise Single Sign-On
Installing Enterprise Single Sign-On
Password Synchronization

https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771850(v=bts.10).aspx

Master Secret Server
The master secret server is the Enterprise Single Sign-On (SSO) server that stores the master secret (encryption key). The
master secret server generates the master secret when an SSO administrator requests it. The master secret server stores the
encrypted master secret in the registry. Only Single Sign-On administrators can access the master secret.

The other Single Sign-On servers check every 30 seconds to see whether the master secret has changed. If it has changed, they
read it securely; otherwise, they continue to use the master secret they already have cached in memory. The SSO service uses
the master secret to encrypt and decrypt the user credentials.

You cannot use the SSO system until an SSO administrator configures the master secret server and generates the master
secret. The master secret server generates the master secret during configuration. Only SSO administrators can generate the
master secret. An SSO administrator must configure the master secret server and the Credential database before an
application can use the SSO service.

Important
After you generate the master secret, it is strongly recommended that you back it up and store it in a secure location.

When an SSO administrator needs to regenerate the master secret, for example, if the SSO administrator wants to change the
master secret periodically, the master secret server stores both the old and new master secret. The master secret server then
goes through all the mappings, decrypts them using the old master secret, and encrypts them again using the new master
secret.

If the master secret server fails, all runtime operations that are already running continue to run, but SSO servers are not able to
encrypt new credentials.

Important
There can be only one master secret server in your SSO system. Therefore, it is strongly recommended you cluster the maste
r secret server. For more information, see How to Cluster the Master Secret Server.

See Also
Other Resources
Using Enterprise Single Sign-On
Managing the Master Secret

https://msdn.microsoft.com/en-us/library/aa704993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx

SSO Affiliate Applications
The Enterprise Single Sign-On (SSO) affiliate applications are logical entities that represent a system or sub-system such as a
host, back-end system, or line-of-business application to which you are connecting using SSO. An affiliate application can
represent a back-end system such as a mainframe or UNIX computer. It can also represent an application such as SAP, or a
subdivision of the system, such as the "Benefits" or "Pay stub" sub-systems.

When the SSO administrator or the SSO affiliate administrator defines an affiliate application, they must also determine who
will administer the affiliate application (the application administrator), who the users of the affiliate application are (the
application users), and what parameters the SSO system will use to authenticate the users of this affiliate application (the user
ID, passwords, PINs, and so on). For more information about application administrators and application users, see
Enterprise Single Sign-On User Groups.

Affiliate Application Types

Enterprise SSO defines several different application types. The different application types support different types of mappings
between the Windows account and the account on the non-Windows system.

The application types are as follows:

Individual Individual applications support one-to-one mappings between the Windows account and the non-Windows
account. In an Individual type application, one Windows account is mapped to one, and only one, non-Windows account. The
mapping can be used in either direction, from Windows to non-Windows, or from non-Windows to Windows, or both,
depending on the flags that have been set for this application. Thus, Individual applications can be used for Windows-initiated
SSO, Host-initiated SSO, or both.

Group Group applications support mappings between one Windows group to one single non-Windows account. The
Application Users account is used to define the Windows group that will be used for this Group application. Only one mapping
can be defined for a Group application, and that mapping must be between the Windows group and the single non-Windows
account that will be used by all members of this Windows group to access the non-Windows system. Group applications can
only be used for Windows initiated SSO.

Host Group Host Group applications are conceptually the reverse of Group applications. They support mappings between a
defined group of non-Windows accounts to a single Windows account. The single Windows account that will be used by the
non-Windows accounts is defined by the Application Users account for the application. The group of non-Windows accounts
that is allowed to access this application is defined by creating a mapping for each non-Windows account. Host Group
applications can only be used for Host initiated SSO.

Designing an Affiliate Application

Before creating an affiliate application, the SSO affiliate administrator or the SSO administrator must make the following
decisions:

1. What will this affiliate application represent? You must know the non-Windows application that the affiliate
application will represent in the SSO system. For example:

Application name: APP1

Description: Application for Pay stub department

Contact: administrator@companyname.com

2. Who will administer this affiliate application? You must determine who the administrators are for this affiliate
application. These form the Windows administrators group for this affiliate application; for example,
Domain\APP1AdminGroup.

3. Who will use this affiliate application? You must determine who the end users are for this affiliate application. These
users represent the Windows users group for this affiliate application; for example, Domain\DomainUsers. In the case of
the application for Pay stubs, you might want all users to access their pay stub information, so you can specify the
domain users group as the user group for this application.

4. What credentials does the affiliate application use to authenticate its users? Different applications use different
credentials to authenticate users. For example, some applications might use user IDs, passwords, PINs, or a combination

https://msdn.microsoft.com/en-us/library/aa771868(v=bts.10).aspx

of these. You must also determine whether the system needs to mask these credentials as the user provides them.

5. Will you use individual mappings or a group mapping for this affiliate application? Does each Windows user
have an account in the back-end system, or does the back-end system have one account for all Windows users? In the
case of the pay stub system, each user has an account to access individual pay stub information, and you would need to
use individual mappings.

After you create an affiliate application, you cannot modify the following properties:

Name of the affiliate application.

Fields associated with the affiliate application.

Affiliate application type (host group, individual, or configuration store).

Administration account same as affiliate administrators group. (If you select this property, the affiliate administrators
group is used as the application administrators account for this affiliate application.)

Affiliate Application Properties

The following table lists the properties that you must define for each affiliate application that you create.

Property Description

Application name Name of the affiliate application. You cannot change this property after you create the affiliate application.

Description Brief description of the affiliate application.

Contact The main contact for this affiliate application that users can use. (Can be an e-mail address.)

appUserAccount The Windows group that contains the user accounts of end users who will use this affiliate application.

appAdminAccount The Windows group that contains the administrator accounts that will manage this affiliate application.

Note
You do not need to define this property if you set the adminAccountSame to Yes.

Applicati
on Flag

Description

enableApp The status of this affiliate application.

groupApp Determines whether this application uses a group mapping (Yes) or individual mappings (No).

You cannot change this property after you create the application.

configStor
eApp

Determines whether this affiliate application is a Configuration Store type application (Yes).

You cannot change this property after you create the application.

hostInitiat
edSSO

Enable this if it is a host-initiated SSO type application. Default is No.

windowsIn
itiatedSSO

Enable this if it is a Windows initiated SSO type application. Default is Yes.

validatePa
ssword

This applies only to host-initiated SSO applications. When the application tries to retrieve credentials, it must provi
de the password in the Credential database, which is used for validation by SSO services. Default is Yes.

disableCre
dCache

The SSO server stores credentials in a cache to expedite access. Default is No.

allowTicke
ts

Determines whether the SSO system uses tickets for this affiliate application.

Note
You must be an SSO administrator to set this flag.

validateTic
kets

Determines whether the SSO system validates tickets when the user redeems them.

Note
You must be an SSO administrator to set this flag.

appTicketT
imeOut

Specifies a ticket time-out specific to the affiliate application. You can set this only when updating an affiliate applic
ation, not when creating it.

If ticketing is enabled for this application and this property is not, the time-out specified at the SSO System (Global)
level is used.

Note
You must be an SSO administrator to set this flag.

timeoutTic
kets

Determines whether tickets have an expiration time. Default is No.

Note
You must be an SSO administrator to set this flag.

allowLocal
Accounts

Determines whether you allow the use of local groups and accounts in the SSO system. You can only configure this
flag to Yes in single-computer scenarios.

adminAcc
ountSame

Determines whether to use the SSO affiliate administrator group as the application administrator group.

You cannot change this property after you create the application.

Note
You must be an SSO administrator to set this flag.

Applic
ation F
ields

Description Description

Field [0
]

<credential>:
Masked/Unm
asked

Determines the type of credential (user ID, password, smartcard) that end users must provide to connec
t to the affiliate application, and whether this credential is masked (that is, whether the characters that t
he user types are displayed on the screen).

You can enter as many fields as there are credentials for the affiliate application, but the first field must
be the user ID.

You cannot change this property after you create the application.

See Also
Concepts
SSO Mappings
Understanding Enterprise Single Sign-On
Other Resources
Managing Affiliate Applications
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

SSO Mappings
When an Enterprise Single Sign-On (SSO) administrator or an SSO affiliate administrator defines an affiliate application, the
administrator can define it either as an application that uses individual mappings, or as an application that uses a group
mapping.

Individual Mappings

SSO individual mappings enable administrators and users to create a one-to-one mapping between Windows users and their
corresponding non-Windows credentials. When individual mappings are used, users can manage their own mappings. The
SSO system maintains the one-to-one relation for the user's Windows account and the user's non-Windows account.

Windows end users can create and manage their own mappings for individual type applications. The same affiliate application
can act as a Windows-initiated SSO and a Host-initiated SSO type application.

Important
Mappings can be created only for Windows domain accounts. Local accounts cannot be mapped.

Note
Only individual users can obtain the credentials to their individual accounts when individual mappings are used.

Group Mapping

SSO group mapping consists of mapping a Windows group, which contains multiple Windows users, to a single account in the
affiliate application.

You can also specify multiple accounts for the SSO Application Users role. Each account that you specify can be associated with
an external account.

For example, it is possible to map a domain user (domain\userA) to one set of external credentials (ExternalUser1). The same
domain\userA could also be a member of Domain Group (domain\group1) and this group could be mapped to a different set
of external credentials (ExternalUser2). In this case, it is important that the administrator (who must be an Application
Administrator or above) specifies the correct order for the Application Users accounts.

The mapping for the first account (in the Order) of which the caller is a member is the one that will be used. In this case, if
mapping for domain\userA to ExternalUser1 is set to Order 0, SSO will return this set of credentials for domain\UserA.

Only an application administrator, SSO affiliate administrator, or SSO administrator can create a group mapping.

You cannot specify the same group application for Windows-initiated SSO and Host-initiated SSO.

Important
Mappings can be created only for Windows domain accounts. Local accounts cannot be mapped.

Important
When you use group mappings, the members of the group can obtain the credential information for the group mapping.

See Also
Concepts
SSO Affiliate Applications
Understanding Enterprise Single Sign-On
Other Resources
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

SSO Tickets
In an enterprise environment, where a user interacts with various systems and applications, it is very likely that the
environment does not maintain the user context through multiple processes, products, and computers. This user context is
crucial to providing single sign-on capabilities because it is necessary to verify who initiated the original request. To overcome
this problem, Enterprise Single Sign-On (SSO) provides an SSO ticket (not a Kerberos ticket) that applications can use to obtain
the credentials that correspond to the user who made the original request. By default, SSO tickets are not enabled. For more
information about enabling tickets, see How to Configure the Enterprise Single Sign-On Tickets.

The SSO system issues a ticket when requested by an authenticated Windows user. The SSO system can only issue a ticket for
the user making the request (you cannot request a ticket for other users). A ticket contains the encrypted domain and user
name of the current user, and the ticket expiration time. After the SSO system issues a ticket, the ticket expires in two minutes
by default. SSO administrators can modify the expiration time for tickets. For more information,
How to Configure the Enterprise Single Sign-On Tickets.

After an application verifies the identity of the original requester, the application redeems the ticket to obtain the credentials of
the user who initiated the request to the affiliate application. An application can redeem tickets from the SSO system in one of
three ways:

Redeem only. When an application initiates a request to redeem a ticket, the request must contain the name of the
affiliate application to connect to, and the ticket itself. Only application administrators for the specific affiliate application,
SSO affiliate administrators, or SSO administrators can redeem a ticket. You should use Redeem only when there is a
trusted sub-system between the application that issued the ticket and the application that is redeeming the ticket. Only
an application administrator for the specified affiliate application can redeem the ticket for a user.

Validate and redeem. Tickets contain information about the user for whom the SSO system is performing the
credential look-up. In this case, the SSO service verifies that the sender of the original message and the user of the ticket
are the same before the system redeems the ticket.

An SSO administrator can disable ticket time-outs on a per-affiliate application basis. However, this is not recommended, as
the ticket would never expire for this application. In scenarios that require that you disable ticket time-outs, ensure that there is
a secure end-to-end trusted sub-system maintained between the front-end where the SSO system issues the ticket to the
adapter where the SSO ticket redeems the ticket.

An SSO affiliate administrator can specify that tickets are allowed and that validation of the ticket is required on a per affiliate
application basis. However, if the SSO administrator specifies at the SSO system level that the validation of tickets is required,
the SSO affiliate administrator cannot turn off this option at the affiliate application level.

Important
When using SSO ticketing, you must ensure that the ticket time-out value is long enough to last between the time when the t
icket is issued to the time that it is redeemed.

See Also
Tasks
How to Configure the Enterprise Single Sign-On Tickets
Concepts
Understanding Enterprise Single Sign-On
Other Resources
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa771380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

Configuring Enterprise Single Sign-On
You can configure Enterprise Single Sign-On (SSO) using command-line utilities, user interface (UI) tools, or COM or Microsoft
.NET Framework interfaces.

SSO Command-line Utilities

You use three different command-line utilities to perform Enterprise Single Sign-On tasks:

SSOConfig. Enables an SSO administrator to configure the Credential database and to manage the master secret.

Note
The Configuration Wizard creates the Credential database and the master secret server.

SSOManage. Enables SSO administrators, SSO affiliate administrators, and application administrators to update the
Credential database to add, delete, and manage applications, to administer user mappings, and to set credentials for the
affiliate application users. Some operations can be performed only by the SSO administrators, or, only by the SSO
administrators and SSO affiliate administrators.

SSOClient. Enables Single Sign-On users to manage their own user mappings and set their credentials.

For more information about the SSO accounts, see Enterprise Single Sign-On User Groups.

SSO UI Tools

Enterprise SSO MMC Snap-in. Enables SSO administrators, SSO affiliate administrators, and application administrators to
update the SSO database, to add, delete, and manage applications, to administer user mappings, and to set credentials for the
affiliate application users. Some operations can be performed only by the SSO administrators, or only by the SSO
administrators and SSO affiliate administrators. All operations that can be performed by the application administrators can
also be performed by the SSO administrators and SSO affiliate administrators.

SSO Client Utility. Enables end users to manage their own mappings and set their credentials using the UI tool.

SSO COM and .NET interfaces

Enterprise Single Sign-On provides COM and Microsoft .NET Framework programmatic interfaces that enable you to create
custom components, and to create scripts to facilitate the administration of the SSO system.

See Also
Concepts
SSO Components
Understanding Enterprise Single Sign-On
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

Installing Enterprise Single Sign-On
The following sections contain information about the installation of the Enterprise Single Sign-On feature. Because of this
feature's complex relationships to other features and systems, and because of its importance to system security, you should
read this section carefully before you install Enterprise Single Sign-On.

It is also recommended that you review the latest software prerequisites for installing Enterprise Single Sign-On.

In This Section

Upgrading from Host Integration Server 2000 or SNA Server 4.0

Upgrading from an Earlier Version of SSO

Standard Installation Options

High-Availability Installation Options

How to Remove Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744908(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772009(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705181(v=bts.10).aspx

Upgrading from Host Integration Server 2000 or SNA Server
4.0

Older versions of Host Integration Server, such as Host Integration Server 2000 and SNA Server 4.0, provided both Single
Sign-On and password synchronization through their host security feature. This feature was based around the host security
domain, which contained user mappings to map credentials between Windows and host systems.

In Host Integration Server, the Enterprise Single Sign-On (SSO) feature replaces host security as the source of Single Sign-On
and password synchronization. Although some concepts are shared between the old and new features, there are important
differences. In addition to the increased functionality, there are two primary conceptual differences in the new features:

Host security domains are replaced by affiliate applications.

Security credential data is now stored in a SQL Server database.

To migrate your existing host security data into the new SSO environment, use the Migration Utility. This is a command-line
tool (hissomig.exe) that migrates all necessary data from the old version to the new, enabling you to continue using Single
Sign-On without modifying your applications.

The topics in this section walk you through the migration process. It is important to follow these steps in the order given.

In This Section

Back up the Existing Security Data

Export the Encryption Key

Install Enterprise Single Sign-On

Copy the Migration Utility to the Master Secret Server

Run the Migration Utility

https://msdn.microsoft.com/en-us/library/aa745163(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705449(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771266(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705645(v=bts.10).aspx

Back up the Existing Security Data
For safety purposes, you should back up your existing security data before you migrate to Enterprise Single Sign-On.

For information about how to do this, see the documentation for your particular product version (for example, Host Integration
Server 2000 or SNA Server 4.0).

See Also
Concepts
SSO Security Recommendations
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa705434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Export the Encryption Key
If you are migrating from Host Integration Server 2000, you must export the encryption key. The encryption key is a security
device that Host Integration Server 2000 uses to encrypt user passwords. It must be backed up because the migration utility
will need it as part of the migration process.

To export the encryption key

1. Click Start, click Run, and then type cmd.

2. Locate the Host Integration Server 2000 installation directory.

3. Type udbkey /showkey >hostseckey.bak to back up the key into a file.

4. Protect the file securely.

See Also
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Install Enterprise Single Sign-On
After you back up the security data and export the encryption key in preparation for upgrading, it is time to install Enterprise
Single Sign-On. You have several installation options. For more information, see Installing Enterprise Single Sign-On.

See Also
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Copy the Migration Utility to the Master Secret Server
The Migration Utility is not installed with the rest of Host Integration Server. You must manually copy it to the master secret
server.

To copy the Migration Utility

1. Click Start, click Run, and then type cmd and press Enter.

2. Type copy hisssomig.exe from <cddrive>\support\utilities\ to c:\hostsec\ and press Enter.

See Also
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Run the Migration Utility
You can migrate your existing host security data into the new Single Sign-On (SSO) environment by using the hissomig.exe
command-line utility. Migration is essentially a two-step process:

1. First, the tool exports data from the host security domain into an XML file. This file also contains validation data for the
migration process. If mappings or file names conflict, an administrator can resolve them before the next step.

2. Second, the tool imports data into the Single Sign-On (SSO) environment, and updates the Host Integration Server
credential database appropriately.

The Migration Utility has the following restrictions:

You must be an SSO administrator and have at least read privileges to the SNAUDB database to perform migration.

Both importing and exporting must be done on the master secret server.

Note
The XML file that is generated during migration is not deleted. Because this file contains security data, it is important that you
manually delete the file as soon as migration is finished.

To export from Host Integration Server

1. Stop the Host Account Cache service.

2. Click Start, click Run, and then type cmd and press Enter.

3. Type hissomig –export –servername <server> -output <XML file> where <server> is the fully qualified name,
NetBIOS name, or IP address of the Host Integration Server primary domain controller, and <XML file> is the full path of
the XML file to which the data will be exported.

For example:

hissomig –export –servername SERVER1 -output c:\hostsecdb.xml

4. Press Enter.

5. Restart the Host Account Cache service.

To export from SNA Server 4.0

1. Stop the Host Account Cache service.

2. Click Start, click Run, and then type cmd and press Enter.

3. Type hisssomig –export –dbfile <database file> -output <XML file> where <database file> is the full path of the
SNA 4.0 Host Security database file, and <XML file> is the full path of the XML file to which the data will be exported.

For example:

hisssomig –export –dbfile Y:\Program Files\SNA Server\hostsec\dbfile.dbs -output c:\hostsecdb.xml

4. Press Enter.

5. Restart the Host Account Cache service.

To import into Host Integration Server

1. Click Start, click Run, and then type cmd and press Enter.

2. Type hisssomig –import –key <key> -input <XML file> where <key> is the full path of the file that contains the
encryption key, and <XML file> is the full path of the XML file from which the data will be imported.

For example:

hisssomig –import –key Z:\hostseckey.bak -input c:\hostsecdb.xml

3. Press Enter.

Other commands for Migration Utility

The following is a list of commands for the Migration Utility. These commands are also displayed during migration if you
attempt to run the utility with incorrect data.

Command Comment

-servername Name of server that holds the Host Integration Server Host Security primary host account cache database.

-dbfile Full path of the SNA 4.0 Host Security database file.

-key Full path of the file that contains the encryption key.

-username User name that is used for encryption.

-password Password for the user name that is used for encryption.

-output Full path of the XML file to which the data will be exported.

-input Full path of the XML file from which the data will be imported.

-log Creates migration log in the directory specified. For example: -log c:SSO\log

See Also
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Upgrading from an Earlier Version of SSO
If you are installing the Enterprise Single Sign-on (SSO) feature, and you already have an earlier version deployed on your
computer (for example, from Host Integration Server CTP, or Microsoft BizTalk Server), you must follow these steps.

Back up the SSODB to a secure location.

Back up the master secret key on the master secret server.

Update the master secret server by running Host Integration Server Setup, selecting Custom Installation, and then
selecting Enterprise Single Sign-On. After selecting Enable Enterprise Single Sign-On on this computer, select
Join an existing SSO system.

You do not have to update the other SSO servers (non-master secret servers) from your BizTalk Server installation. However, if
you want the new Enterprise Single Sign-On features to be available on those servers, you must update them by using the
same procedures outlined earlier.

If you have a Beta version of Enterprise SSO installed as part of a Host Integration Server CTP release, you can use the same
mechanism to upgrade those servers.

Note
These considerations also apply if you are installing Microsoft BizTalk Server 2006 on a computer that has an existing installa
tion of Host Integration Server Enterprise Single Sign-On, and you want to update the servers.

See Also
Concepts
Using Host-Initiated SSO functionality in Enterprise Single Sign-On
Processing Servers for Enterprise Single Sign-On
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa754391(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Using Host-Initiated SSO functionality in Enterprise Single
Sign-On

Host Initiated Single Sign-On (SSO) uses the protocol transition feature of Windows Server 2003 to perform Single Sign-On
for the non-Windows user. This feature requires Windows Server 2003 and must be in a domain that has its Domain
Functional Level set to Windows Server 2003.

See Also
Concepts
Upgrading from an Earlier Version of SSO
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa744908(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Processing Servers for Enterprise Single Sign-On
In a multicomputer environment, after the master secret server and Single Sign-On (SSO) database have been created, you can
install Enterprise Single Sign-On on subsequent computers. These are typically the computers on which either BizTalk Server
or Host Integration Server is installed as well.

The initial installation process is the same as on the first computer. Configuration, however, becomes slightly different. Because
the master secret server and the SSO database are already in place, select Join when the Configuration Wizard asks the
question, Create a new SSO system or Join an existing system?

Note
During configuration, it is possible for a group on one computer to join an SSO database on a different computer that is not i
n the database configured for that group. Although this is possible, it is not recommended.

See Also
Other Resources
Upgrading from Host Integration Server 2000 or SNA Server 4.0

https://msdn.microsoft.com/en-us/library/aa745836(v=bts.10).aspx

Standard Installation Options
Host Integration Server takes advantage of the Enterprise Single Sign-On (SSO) capabilities for securely storing critical
information.

By default, Enterprise Single Sign-On is not installed with the rest of Host Integration Server. You can install it by using the
following procedure.

Note
When Enterprise Single Sign-on (Server component) is installed, configuration must be performed. The first step to set up an
SSO system is to configure the master secret server. It is recommended that you set up a stand-alone master secret server. Y
ou can do this by only selecting Enterprise Single Sign-On from the custom feature tree in Host Integration Server Setup.

It is also recommended that any computer that is running Enterprise Single Sign-On have a time synchronization service run
ning. This keeps the computer time in sync with the rest of the system. This is necessary for SSO ticketing services to function
correctly.

To install Enterprise Single Sign-On

1. Insert your Host Integration Server CD and run the Setup program again.

2. Select Custom Installation, and then select the appropriate option from the following list:

When you run the HIS Server package, you have the following options:

Enterprise Single Sign-On Master Secret Server ― Acts as the master secret server in the SSO system. This is
the first server in the SSO system that must be deployed. This enables you to create the SSO Credential Database.

Enterprise Single Sign-On Administration ― Administration and client tools for mapping and connecting to
Enterprise Single Sign-On services.

Server Runtime ― Core services to enable single sign-on and to store/access configuration data securely.

Enterprise Single Sign-On Services with Password Synchronization ― Services to enable the Password
Synchronization feature in the Enterprise SSO system. These services also integrate with the Microsoft Password
Change Notification Service. Once you have installed the core Enterprise Single Sign-On services, you can install
the Password Synchronization feature of Enterprise SSO from the Host Integration Server package by starting
Setup (\Platform\SSO\Setup.exe) and selecting the Password Synchronization feature.

Enterprise Single Sign-On Services ― Provides the core services to enable single sign-on and to store/access
configuration data securely. Can act as the master secret server in the SSO system.

Enterprise Single Sign-On Services with Password Synchronization ― Provides the services to enable the
Password Synchronization feature in the Enterprise SSO System. These services also integrate with the Microsoft
Password Change Notification Service.

Enterprise Single Sign-On Administration ― Administration and client tools for mapping and connecting to
Enterprise Single Sign-On services.

When you run the HIS Client package, you have the following options:

Enterprise Single Sign-On Administration ― Administration and client tools for managing and connecting to
Enterprise Single Sign-On services.

Enterprise Single Sign-On Client ― Client tools for end users to manage their mappings.

See Also
Tasks

How to Install the Enterprise Single Sign-On Administration Component
How to Install the Enterprise Single Sign-On Client Utility
How to Remove Enterprise Single Sign-On
Other Resources
High-Availability Installation Options

https://msdn.microsoft.com/en-us/library/aa705166(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772009(v=bts.10).aspx

How to Install the Enterprise Single Sign-On Administration
Component

You can install the Enterprise Single Sign-On (SSO) Administration component as a stand-alone feature. This is useful if you
need to administer the SSO system remotely. The hardware and software requirements are the same as for a typical Enterprise
SSO installation.

After you install the administration component, you must use either ssomanage.exe or the SSO Administration MMC Snap-In
to specify the SSO server that will be used for management. Both processes are included in the procedure that follows.

Note
While the SSO Administration feature in Host Integration Server is compatible with the server version of SSO in BizTalk Serv
er 2006, the administrative components of Enterprise SSO in BizTalk Server 2006 are not compatible with the server version
of Enterprise SSO in Host Integration Server.

Installing the SSO administrative utility (ssomanage.exe) does not create shortcuts on the Start menu that let you access the
command-line utilities. To run the SSO administrative utilities after installation, you must open a command prompt and
navigate to the SSO directory located at Program Files\Common Files\Enterprise Single Sign-On.

The Enterprise SSO Administration feature also includes an MMC Snap-in. The Snap-in is installed on Windows Server 2003
and Windows XP. It is not supported on Windows 2000. You must also have MMC 3.0 installed on your computer for the Snap-
in to function.

To open the Enterprise SSO MMC Snap-in, click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and
then click SSO Administration.

To install the Enterprise Single Sign-On administrative component

1. Perform a custom installation of Host Integration Server, selecting only the Enterprise Single Sign-On administration
component.

2. When the installation program finishes, click Start, click Run, and then type cmd.

3. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

4. Do one of the following:

Type ssomanage –server to specify the SSO server that you want to connect to when you perform administration
operations.

OR

Type ssomanage -serverall to specify the SSO server that all users of this computer will connect to when performing
administration operations.

OR

Open the ENTSSO Administration MMC Snap-In. The Select SSO Server dialog will appear. Enter or browse to the SSO
Server desired. To specify the SSO Server for all users on the machine, select Set SSO Server for all users.

See Also
Tasks
How to Install the Enterprise Single Sign-On Client Utility
Standard Installation Options
Concepts
Configuring Enterprise Single Sign-On
Other Resources
Installing Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa704695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx

How to Install the Enterprise Single Sign-On Client Utility
The stand-alone Single Sign-On (SSO) client utility (ssoclient.exe) enables end users to configure their client mappings in the
credential database. You can install the client utility from a self-extracting file (SSOClientInstall.exe), which is installed with the
SSO administration feature. Administrators can also make the installer package available to client users by placing a copy of
the installer package on a network share.

To install the SSO client utility, you must be running one of the following operating systems on the client computer:

Windows Server 2003

Windows 2000 Server with Service Pack 4, or Windows XP Professional with Service Pack 1

.NET Framework 2.0 (only necessary for the managed interoperability component of the SSO client utility)

Installing the SSO client utility does not create shortcuts on the Start menu for you to access the command-line utilities. To run
the SSO client utility after installation, you must open a command prompt and navigate to the SSO directory located at
Program Files\Common Files\Enterprise Single Sign-On.

To install the SSO client utility

1. Double-click the installer package, SSOClientInstall.

Note
Ask your Enterprise Single Sign-On administrator for the location of this file in your enterprise.

The WinZip Self-Extractor program appears.

2. Select the folder where you want to unzip the files, and then click Unzip.

It is recommended that you unzip the files in a temporary folder.

The Enterprise Single Sign-On Client Setup program appears.

3. On the Welcome to the Enterprise Single Sign-On Client page, click Next.

4. On the License Agreement page, click I accept the terms of this license agreement, and then click Next.

5. On the User Information page, type your user name, organization name, and then click Next.

6. On the Start Installation page, click Install.

7. On the Completing the Enterprise Single Sign-On Client Wizard page, click Finish.

8. Specify the SSO server by doing either of the following:

Type ssomanage –server to specify the SSO server that you want to connect to when you perform administration
operations. You can also type ssomanage -serverall to specify the SSO server that all users of this computer will
connect to when performing administration operations.

OR

Open the ENTSSO Administration MMC Snap-In. The Select SSO Server dialog will appear. Enter or browse to the
SSO Server desired. To specify the SSO Server for all users on the machine, select Set SSO Server for all users.

See Also
Tasks
How to Install the Enterprise Single Sign-On Administration Component
Concepts
Configuring Enterprise Single Sign-On
Other Resources
Installing Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa705166(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx

High-Availability Installation Options
Topics in this section describe installation focused on high availability of Enterprise Single Sign-On, such as multicomputer
deployment.

In This Section

How to Cluster the Master Secret Server

How to Cluster the SQL Server

How to Configure Enterprise Single Sign-On in a Multicomputer Scenario

https://msdn.microsoft.com/en-us/library/aa704993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771491(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705027(v=bts.10).aspx

How to Cluster the Master Secret Server
It is strongly recommended that you follow the instructions in this section to cluster the Enterprise Single Sign-On (SSO)
service on the master secret server successfully.

Before you start configuring SSO in a cluster environment, it is recommended that you understand how clustering works. For
more information, see http://go.microsoft.com/fwlink/?LinkId=33180.

When you cluster the master secret server, the Single Sign-On Servers communicate to the active clustered instance of the
master secret server. Similarly, the active clustered instance communicates with the Credential database.

You must be an SSO administrator to perform this procedure.

Caution
You cannot install the master secret server on a Network Load Balancing (NLB) cluster.

To cluster the master secret server

1. Perform a custom installation to install the master secret server on the first node of the cluster (for example,
ClusterNode1).

2. In the Configuration Wizard, on the Configuration Questions page, in the Is this the master secret server? list,
select Yes, and then click Next.

3. Specify the service account credentials for SSO service. This must be a member of the SSO Administrators group
account.

4. Specify the location of the SQL Server and SSO Credential database (SSODB).

5. Back up the master secret on the active node.

6. Perform a custom installation to install the master secret server on the second node of the cluster (ClusterNode2).

7. Use the Configuration Wizard to configure an Enterprise SSO Server on the second node of the cluster. This time,
however, select No when you reach the question in step 2, because this is not the initial installation of the master secret
server.

8. Click Next, and then complete the Configuration Wizard.

9. Stop the SSO service by typing net stop entsso at the command line.

10. Change the master secret server name in the SSO Credential database to the cluster name. For example, if the cluster is
named MSS_CLUSTER, change the name from ClusterNode1 to MSS_CLUSTER.

11. Use a text editor to copy and paste the following code into an .xml file (for example: MSS CLUSTER.xml) and save the file:

12. At the command line, navigate to the Enterprise Single Sign-On installation directory. The default is Program
Files\Common Files\Enterprise Single Sign-On.

13. Type ssomanage -updatedb <filename> where filename is the name of the .xml file in the previous step. This updates
the master secret server name in the database.

Ignore any run-time errors. The Microsoft Distributed Transaction Coordinator (DTC) was not configured to run on a
cluster, and may be unable to start.

14. Open a command prompt on master secret server 1 and type comclust -a.

15. From the Services console, right-click Distributed Transaction Coordinator, and then click Restart.

<sso>
 <globalInfo>
 <secretServer>MSS_CLUSTER</secretServer>
</globalInfo>
 </sso>

http://go.microsoft.com/fwlink/?LinkId=33180

16. Open a command line on master secret server 2 and type comclust -a.

17. From the Services console, right-click Distributed Transaction Coordinator, and then click Restart.

18. Open Cluster Administrator, and then click the cluster group that has the master secret server cluster.

19. On the File menu, point to New, and then click Resource.

The New Resource window opens.

Under Name, type the name of the SSO resource (for example, ENTSSO).

Under Resource Type, select Generic Service.

20. In the Possible Owners window, include each cluster node as a possible owner of the ENTSSO resource.

21. After you create the ENTSSO resource, right-click ENTSSO, and click Properties.

22. In the Cluster Properties dialog box, click the Security tab, and verify that the user under which the application is
running has sufficient user rights (not a local administrator) to access the cluster.

23. Open Cluster Administrator, right-click the cluster group that has the master secret server cluster, and then click Move
group.

This moves the master secret server resources from the first node to the second node.

24. Click Start, click Run, and then type cmd.

25. At the command prompt, navigate to the Enterprise Single Sign-On installation directory. The default is
<drive>:\Program Files\Common Files\Enterprise Single Sign-On.

26. Type ssoconfig -restoresecret <restore file>, where <restore file> is the path and name of the back-up file that
contains the master secret.

See Also
Concepts
Master Secret Server
Other Resources
Installing Enterprise Single Sign-On
High-Availability Installation Options

https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772009(v=bts.10).aspx

How to Cluster the SQL Server
For information about how to cluster the SQL server, see your SQL Server documentation.

See Also
Other Resources
High-Availability Installation Options

https://msdn.microsoft.com/en-us/library/aa772009(v=bts.10).aspx

How to Configure Enterprise Single Sign-On in a
Multicomputer Scenario

This section contains instructions for configuring Enterprise Single Sign-On (SSO) in a three-computer scenario.

In the following scenario, computer A is the master secret server, computer B is the Single Sign-On server, and computer C
holds the Credential database. Computer B can act as a runtime server, as an administration server (administration sub
services of SSO use this server for managing the Credential database), or as a mapping server (administration and client sub
services of SSO use this server to manage mappings).

If you want to add more SSO servers to your environment, follow the steps for configuring computer B. Any new SSO servers
will point to the existing Credential database, and cannot be the master secret server.

Note
It is recommended that you configure the master secret server on a different computer from the Single Sign-On server and t
he Credential database.

To configure the master secret server and create the Credential database on Computer A

1. Perform a custom installation of Host Integration Server, and install only the Enterprise Single Sign-On runtime
component.

2. Run the Configuration Wizard to configure SSO on the master secret server.

On the Configuration Questions page, in the Is this the master secret server list, select Yes, and then click Next.

3. On the Windows Accounts page, specify the service account credentials for the SSO service. This must be a member of
the SSO Administrators group.

4. On the Database Configurations page, specify the location of the SQL server (computer C) and the name of the
Credential database (SSODB).

5. Back up the master secret.

For more information, see How to Back Up the Master Secret.

To configure the SSO server on Computer B

1. Install Enterprise Single Sign-On on Computer B.

Note
This can be a Host Integration Server computer, or an SSO-only server (SSO runtime components).

2. Run the Configuration Wizard to configure SSO.

On the Configuration Questions page, in the Is this the master secret server list, select No, and then click Next.

3. On the Windows Accounts page, specify the service account credentials for the SSO service. This must be a member of
the SSO Administrators group.

4. On the Database Configurations page, point to the location of the SQL server (computer C) and the name of the
Credential database (SSODB).

See Also
Tasks
How to Cluster the Master Secret Server
Other Resources
Installing Enterprise Single Sign-On
High-Availability Installation Options

https://msdn.microsoft.com/en-us/library/aa745350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772009(v=bts.10).aspx

How to Remove Enterprise Single Sign-On
If you remove Host Integration Server, Enterprise Single Sign-On (SSO) is no longer configured, but it is not removed. You
must remove SSO separately. You can also restore configuration information including the master secret to reuse existing data.
For more information, see How to Restore the Master Secret.

To remove Enterprise Single Sign-On

1. Back up the master secret key.

For more information, see How to Back Up the Master Secret.

2. Uninstall Host Integration Server.

3. Click Start, point to Settings, and then click Control Panel.

4. Click Add or Remove Programs.

5. In Add or Remove Programs, click Microsoft Enterprise Single Sign-On, and then click Remove.

6. Click Yes when you are prompted to confirm the removal of Microsoft Enterprise Single Sign-On.

See Also
Other Resources
Installing Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771499(v=bts.10).aspx

Using Enterprise Single Sign-On
You can use either the Microsoft Management Console (MMC) Snap-in or the command-line management utility (ssomanage)
to manage the Single Sign-On (SSO) system. This includes activities such as updating the SSO database, adding, deleting, and
managing applications, and administering user mappings.

Only Single Sign-On Administrators can perform these tasks.

In This Section

How to Set the Enterprise Single Sign-On Server

How to Enable Enterprise Single Sign-On

How to Change the Master Secret Server

How to Disable Enterprise Single Sign-On

How to Update the Credential Database

How to Display the Credential Database Information

How to Configure the Enterprise Single Sign-On Tickets

How to Audit Enterprise Single Sign-On

How to Enable SSL for Enterprise Single Sign-On

Managing the Master Secret

Specifying Single Sign-On Administrators and Affiliate Administrators Accounts

Managing Affiliate Applications

Managing User Mappings

Host Initiated Single Sign-On

How to Use the ENTSSO Management Agent

How to Use the Servers Snap-In

How to Use Direct Password Sync

How to Use the Mapping Wizard

How to Use Password Filters

https://msdn.microsoft.com/en-us/library/aa754383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705601(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771283(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771094(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754302(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745881(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745384(v=bts.10).aspx

How to Configure SSO Using the Configuration Wizard
Use the Enterprise Single Sign-On (SSO) page to configure your SSO settings.

Note
You will not be able to reconfigure SSO in the configuration manager after you have configured it.

Use this To do this

Enable Enterprise Sing
le Sign-On on this com
puter

Select Enable Enterprise Single Sign-On on this computer to configure this server with SSO setti
ngs.

Create a new SSO syste
m

Select Create a new SSO system if this is the first SSO server you are configuring in your SSO syste
m. This also creates and configures the SSO Credential database. You must also back up the secret o
n this secret server.

Caution
You should configure the master secret server as a stand-alone server. You must be an SSO admini
strator while performing this configuration task.

Note
Only one master secret server can be associated with one SSO group. Associating two master secre
t servers to the same SSO group is not supported.

Join an existing SSO sy
stem

Select Join an existing SSO system to connect to an existing SSO system.

Data stores The Data stores list provides an editable view of the data stores used for the SSO database.

Windows service The Windows service list provides an editable view of the account used to run the Enterprise Single
Sign-On service.

Windows accounts The Windows accounts list provides an editable view of the SSO Administrators and SSO Affiliate
Administrators Windows groups.

Use the Enterprise Single Sign-On Secret Backup page to save the master secret to an encrypted backup file in the event
that disaster recovery is needed.

Use this To do this

Secret backup pa
ssword

Type the password for the backup file.

Confirm passwor
d

Confirm the password for the backup file.

Password remin
der

Type a reminder for the password you enter.

Backup file locat
ion

Provide a file name and file path to the secret backup file. By default it is stored at <drive>:\Program Files\
Common Files\Enterprise Single Sign-On\.

Considerations for Configuring SSO

When you configure Enterprise SSO, consider the following:

When configuring the SSO Windows accounts using local accounts, you must specify the account name without the

computer name.

When using a local SQL Server named instance as data store, you must use LocalMachineName\InstanceName instead of
LocalMachineName\InstanceName, PortNumber.

It is possible to configure the Enterprise SSO service account as the Network Service account. To do so, you must first
add the Network Service account to the SSO Administrators group and reboot the computer for the change to take effect.

Important
While it is possible to do this, it is not a good security practice, as the Network Service account is a low privilege account.

How to Set the Enterprise Single Sign-On Server
Every time that you use the command line management utility, ssomanage, you must first point the user to the Single Sign-On
(SSO) server that you want to connect to.

You can do this in one of two ways:

Individual users can point themselves to the correct Single Sign-On server.

A local computer administrator for the Single Sign-On server can point all the members of the Single Sign-On Users
account to this server.

To set the Enterprise Single Sign-On server using the MMC Snap-In

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the MMC Snap-In under the Console Root, right-click Enterprise Single Sign-On, and then click Select.

3. Browse to the desired server.

4. If appropriate, select the Set SSO Server for all users check box.

5. Click OK.

To set the Enterprise Single Sign-On server for a single user

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –server <Single Sign-On Server>, where <Single Sign-On Server> is the computer name of the
Single Sign-On server that the user wants to connect to.

To set the Enterprise Single Sign-On server for all users

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –serverall <Single Sign-On Server>, where <Single Sign-On Server> is the computer name of the
Single Sign-On server that all members of the Single Sign-On Users account will be pointed to.

To determine the Enterprise Single Sign-On Server to which a user is connected

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –showserver.

Note
This command displays the settings for the current user and also for other users if they exist.

See Also
Tasks
How to Enable Enterprise Single Sign-On
How to Disable Enterprise Single Sign-On
How to Display the Credential Database Information
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705601(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Enable Enterprise Single Sign-On
The enabling command enables the entire Enterprise Single Sign-On (SSO) system. After you run the enabling command, there
is a short delay before all Single Sign-On servers are enabled, because each server polls the Credential database for the latest
global information.

If you want to configure affiliate applications and mappings in the SSO system, you must also create an affiliate application.
After an SSO affiliate administrator creates an affiliate application, an application administrator can make changes to it, and
application users (end users) can create their own mappings. For more information, see Managing Affiliate Applications and
Managing User Mappings.

To enable the SSO system using the MMC Snap-In

1. Click Start, click Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Enable.

To enable the SSO system using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –enablesso.

To enable SSO to create affiliate applications and mappings

1. Log on as an SSO administrator or SSO affiliate administrator to the SSO Server, or on a computer that has the SSO
administration sub services of SSO.

2. Click Start, click Run, and then type cmd.

3. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

4. Type ssomanage -enablesso to enable the Enterprise Single Sign-On service.

5. Log on as an SSO affiliate administrator.

6. Type ssomanage -createapps <application file> to create an affiliate application, where <application file> is the XML
file that contains definitions for the affiliate applications.

See Also
Tasks
How to Set the Enterprise Single Sign-On Server
How to Disable Enterprise Single Sign-On
How to Update the Credential Database
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Change the Master Secret Server
After you set up the master secret server and configure the Credential database, you can change the master secret server if the
original master secret server fails and cannot be recovered. To change the master secret server, you must promote a Single
Sign-On (SSO) server to become the master secret server.

To change the master secret server using the MMC Snap-in

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane, right-click System, and then click Properties.

The master secret server is displayed on the General tab of the SSO System Properties dialog box.

3. Click Change to select a new master secret server.

To promote a Single Sign-On server to master secret server

1. Create an XML file that includes the name of the SSO server that you want to promote to master secret server. For
example:

2. Click Start, click Run, and then type cmd.

3. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

4. Type ssomanage –updatedb <update file>, where <update file> is the name of the XML file that you create in step 1.

5. Restart the master secret server.

6. Type ssoconfig –restoresecret <restore file>, where <restore file> is the path and name of the file where the master
secret is stored.

See Also
Tasks
How to Cluster the Master Secret Server
How to Update the Credential Database
Concepts
Master Secret Server
Other Resources
Using Enterprise Single Sign-On

<sso>
 <globalInfo>
 <secretServer>SSO Server name</secretServer>
 </globalInfo>
</sso>

https://msdn.microsoft.com/en-us/library/aa704993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Disable Enterprise Single Sign-On
The disabling command disables the entire Single Sign-On system.

There will be a short delay before all Single Sign-On servers are disabled, because they poll the Credential database for the
latest global information.

To disable Enterprise Single Sign-On using the MMC Snap-In

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Disable.

To disable Enterprise Single Sign-On using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –disablesso.

See Also
Tasks
How to Enable Enterprise Single Sign-On
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Update the Credential Database
You use the commands described here to change the global information in the Credential database, such as the master secret
server identification, the account names, auditing in the database, ticket time-out, credential cache time-out, and so on.

Changing Time-outs for the SSO System

You can modify two time-outs at the Enterprise Single Sign-On (SSO) system level:

Ticket timeout. This property specifies the length of time for which a ticket that SSO issues is valid. To satisfy most of the
scenarios in an enterprise that use SSO, the default ticket time-out is two minutes. The SSO administrator can change this
based on the application requirements.

Credential Cache timeout. This property specifies the credential cache time-out for all SSO servers. SSO servers cache the
credentials after the first lookup. By default, the credential cache time-out is 60 minutes. The SSO administrator can change this
to an appropriate value based on the security requirements.

You change both of these time-outs by updating the Credential database.

The following is an example XML file for updating the Credential database:

To change time-outs using the Microsoft Management Console (MMC) Snap-In

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Properties.

4. On the SSO System Properties dialog box, click the General tab.

5. Enter the appropriate settings, and then click OK.

To update the SSO database using the MMC Snap-In

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Update.

To update the Credential database using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –updatedb <update file>, where <update file> is the path and name of the file.

See Also
Tasks
How to Configure the Enterprise Single Sign-On Tickets

<sso>
<globalnfo>
<ssoAdminAccount>Domain\Accountname</ssoAdminAccount>
<ssoAffiliateAdminAccount>Domain\Accountname</ssoAffiliateAdminAccount>
<secretServer>ComputerA</secretServer>
<auditDeletedApps>1000</auditDeletedApps>
<auditDeletedMappings>1000</auditDeletedMappings>
<auditCredentialLookups>1000</auditCredentialLookups>
<ticketTimeout>2</ticketTimeout>
<credCacheTimeout>60</credCacheTimeout>
</globalInfo>
</sso>

https://msdn.microsoft.com/en-us/library/aa771380(v=bts.10).aspx

Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Display the Credential Database Information
You can view Single Sign-On (SSO) credential database information by using the ssomanage command.

To display the SSO database information using the Microsoft Management Console (MMC) Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Properties.

4. Click the tabs in the SSO System Properties dialog box to view SSO database information.

To display the Credential database information using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –displaydb.

To display the Credential database that the SSO server is connected to

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –showdb.

The following table describes the values that are displayed.

Property Value

SQL Server <SQL Server name>

SQL Server database <SQL Server database name>

Single Sign-On Secret Server name <Single Sign-On Server name>

Single Sign-On Administrators account Domain\account name

Single Sign-On Affiliate Administrators account Domain\account name

Size of audit table for deleted applications (number of audit entries) 1000 (default)

Size of audit table for deleted user mappings (number of audit entries) 1000 (default)

Size of audit table for external credential lookups (number of audit entries) 1000 (default)

Ticket timeout (in minutes) 2 (default)

This value can be an integer between 1 to 525600

Credential cache timeout (in minutes) 60 (default)

Single Sign-On Status Enabled/disabled

Tickets allowed Yes/No (default)

Validate tickets Yes (default)/No

See Also
Tasks
How to Configure the Enterprise Single Sign-On Tickets
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Configure the Enterprise Single Sign-On Tickets
You can use the Microsoft Management Console (MMC) Snap-In or the command line to control ticket behavior for the entire
Single Sign-On (SSO) system, including whether to allow tickets, and whether the system must validate the tickets. You can use
Yes, No, On, or Off to indicate whether to allow or validate tickets. These words are case independent, and they must be used
regardless of your language settings.

If you have the SSO Administration feature installed on a remote computer, you can perform remote IssueTicket operation.
Note that all traffic between the SSO Administration module and the Runtime module (ENTSSO service) is encrypted.

By using the command-line utility, ssomanage.exe, you can specify the ticket time-out at the affiliate application level only
when an update of the application is performed, not at creation time. Only an SSO Administrator can configure tickets at the
SSO system level and at the affiliate application level. If ticketing is disabled at the system level, it cannot be used at the affiliate
application level either. You can enable tickets at the system level and disable them at the affiliate application level. If validation
is enabled at the system level, validation of tickets is required at the affiliate application level also. You can disable validation at
the system level and enable it at the affiliate application level.

If ticket time-out is specified both at the system level and the affiliate application level, the one specified at the affiliate
application level is used to determine the ticket expiry time.

For more information about tickets and ticket validation, see SSO Tickets.

To configure the SSO tickets using the MMC Snap-In for the Affiliate Application

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Affiliate Applications node.

3. Right-click Affiliate Application, and then click Properties.

4. Click the Options tab.

5. Select Allow Tickets and configure the ticket time-out as appropriate.

To configure the SSO system-level tickets using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –tickets <allowed yes/no> <validate yes/no>, where <allowed yes/no> indicates whether tickets
will be allowed or not, and <validate yes/no> indicates whether tickets must be validated after they are redeemed.

Note
You can use yes, no, on, or off to indicate whether to allow or validate tickets. These words are case independent, and t
hey must be used regardless of your language settings.

See Also
Concepts
Understanding Enterprise Single Sign-On
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa754727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Audit Enterprise Single Sign-On
Use this command to set both the positive and negative auditing levels. Single Sign-On (SSO) administrators can set the
positive and negative audit levels that suit their corporate policies. You can set positive and negative audits to one of the
following levels:

0 = None

1 = Low

2 = Medium

3 = High - This level issues as many audit messages as possible.

The default value for positive auditing is 0 (none), and the default value for negative auditing is 1(low).

To change the database-level auditing, you must update the Credential database using an XML file. The following is an example
XML file that is used for updating the Credential database:

To audit Single Sign-On using the Microsoft Management Console (MMC) Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Properties.

4. In the SSO System Properties dialog box, click the Audits tab.

5. Enter the appropriate settings, and then click OK.

To audit Single Sign-On using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoconfig –auditlevel < positive level> <negative level>, where <positive level> is the level of auditing when
actions succeed, and <negative auditing> is the level of auditing when actions fail.

To audit the Credential database

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –updatedb <update file>, where <update file> is the path and name of the file.

See Also
Tasks
How to Update the Credential Database
Other Resources

<sso>
<globalnfo>
<auditDeletedApps>1000</auditDeletedApps>
<auditDeletedMappings>1000</auditDeletedMappings>
<auditCredentialLookups>1000</auditCredentialLookups>
</globalInfo>
</sso>

https://msdn.microsoft.com/en-us/library/aa705742(v=bts.10).aspx

Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Enable SSL for Enterprise Single Sign-On
Use the following command to enable Secure Sockets Layer (SSL) between all the Enterprise Single Sign-On (SSO) servers and
the Credential database.

To enable SSL for Enterprise Single Sign-On

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –setssl <yes/no>, where <yes/no> indicates whether you want to enable SSL in the SSO system.

See Also
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

Managing the Master Secret
The master secret is the key that is used to encrypt all the information stored in the Credential database. If the master secret
server crashes and you lose the secret, you cannot retrieve the information stored in the Credential database. Therefore, it is
very important to back up the master secret as soon as you generate it.

In This Section

How to Generate the Master Secret

How to Back Up the Master Secret

How to Restore the Master Secret

https://msdn.microsoft.com/en-us/library/aa770994(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771267(v=bts.10).aspx

How to Generate the Master Secret
You must have administrator rights on the master secret server in order to generate the master secret. In addition, you must
perform this task from the master secret server.

The first server where you install Enterprise Single Sign-On (SSO) becomes the master secret server.

Important
There can be only one master secret server in your SSO system.

Note
When Enterprise Single Sign-On is installed as part of the Host Integration Server installation, the master secret is generated
as part of the Configuration Wizard. You only need to perform this task if you want to generate a new master secret.

To generate the master secret using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO Microsoft Management Console (MMC) Snap-In, expand the Enterprise Single Sign-
On node.

3. Right-click System, and then click Generate Master Secret.

To generate the master secret using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoconfig –generatesecret <backup file>, where <backup file> is the name of the file that contains the master
secret.

You will be prompted to enter a password to protect the file you just created.

See Also
Tasks
How to Back Up the Master Secret
Concepts
Master Secret Server
Other Resources
Managing the Master Secret

https://msdn.microsoft.com/en-us/library/aa745350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx

How to Back Up the Master Secret
You can back up the master secret from the master secret server onto an NTFS file system or removable media, such as a
floppy disk.

You must be a Single Sign-On administrator and a Windows administrator to perform this task. The Single Sign-On (SSO)
system will prompt you for a password. To restore the secret later, you must specify the same password.

Caution
If the master secret server crashes and you lose the key, or if the key becomes corrupted, you will not be able to retrieve data
stored in the Credential database. You must back up the master secret, or you risk losing data from the Credential database.

To back up the master secret using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO Microsoft Management Console (MMC) Snap-In, expand the Enterprise Single Sign-
On node.

3. Right-click System, and then click Back up Master Secret.

To back up the master secret using the command line

1. On the Start menu, click Programs, and then click Accessories. Right-click Command Prompt, and then click Run
As….

2. Select the appropriate Administrator, and then click OK.

3. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

4. Type ssoconfig –backupsecret <backup file>, where <backup file> is the path and name of the file where the master
secret will be backed up, for example, A:\ssobackup.bak.

5. Provide a password to help protect this file.

You will be prompted to confirm the password and to provide a password hint to help you remember this password.

Important
You must save and store the backup file in a secure location.

See Also
Tasks
How to Generate the Master Secret
How to Restore the Master Secret
Concepts
Master Secret Server
Other Resources
Managing the Master Secret

https://msdn.microsoft.com/en-us/library/aa770994(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx

How to Restore the Master Secret
As part of data recovery procedures, you might have to restore the master secret to reuse existing data. To perform this task,
you must log on to the master secret server by using an account that is both a Windows administrator and a Single Sign-On
(SSO) administrator.

To restore the master secret using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO Microsoft Management Console (MMC) Snap-In, expand the Enterprise Single Sign-
On node.

3. Right-click System, and then click Restore Master Secret.

To restore the master secret using the command line

1. On the Start menu, click Programs, and then click Accessories. Right-click Command Prompt, and then click Run
As….

2. Select the appropriate Administrator, and then click OK.

3. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

4. Type ssoconfig –restoresecret <restore file>, where <restore file> is the path and name of the file where the master
secret is stored.

See Also
Tasks
How to Generate the Master Secret
How to Back Up the Master Secret
Concepts
Master Secret Server
Other Resources
Managing the Master Secret

https://msdn.microsoft.com/en-us/library/aa770994(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx

Specifying Single Sign-On Administrators and Affiliate
Administrators Accounts

The Enterprise Single Sign-On (SSO) Administrators and Affiliate Administrators accounts can be host group or individual
accounts. You must create these accounts before you configure the SSO system. When you are using domain accounts, you
must create the SSO Administrators and SSO Affiliate Administrators accounts as domain global security groups in the domain
controller. You must be a domain administrator to create these accounts.

You must specify the Single Sign-On Administrators and Affiliate Administrators accounts in the Credential database. The
following example shows XML code that can be used to update the Credential database:

Note
The Configuration Wizard automatically specifies the SSO Administrator and SSO Affiliate Administrator groups in the Crede
ntial database.

Before you update the Credential database with the SSO Administrators group, you must disable the Single Sign-On system.
You can use the Microsoft Management Console (MMC) Snap-In or the command line to do this.

To disable the Enterprise Single Sign-On system using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Disable.

To disable the Enterprise Single Sign-On system using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory. The default installation directory is
<drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –disablesso.

To update the SSO database using the MMC Snap-In

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Update.

To update the Credential database using the command line

1. Click Start, click Run, and then type cmd.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –updatedb <update file>, where <update file> is the path and name of the XML file.

To enable the Enterprise Single Sign-On system using the MMC Snap-In

1. Click Start, point to Programs, point to Microsoft Enterprise Single Sign-On, and then click SSO Administration.

<sso>
<globalInfo>
<ssoAdminAccount>Domain\Accountname</ssoAdminAccount>
<ssoAffiliateAdminAccount>Domain\Accountname</ssoAffiliateAdminAccount>
</globalInfo>
</sso>

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Enable.

To enable the Enterprise Single Sign-On system using the command line

1. Click Start, click Run, and then type cmd.

2. At the command line, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –enablesso.

See Also
Concepts
Enterprise Single Sign-On User Groups
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa771868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

Managing Affiliate Applications
This section provides information on how to create and configure affiliate applications.

In This Section

How to Create an Affiliate Application

How to Delete an Affiliate Application

How to Update the Properties of an Affiliate Application

How to Enable an Affiliate Application

How to Disable an Affiliate Application

How to List Affiliate Applications

How to List the Properties of an Affiliate Application

How to Clear the Application Cache

How to Set the Enterprise SSO Server Using the Client Utility

How to Display the Enterprise SSO Server Using the Client Utility

How to Set Credentials for the Affiliate Application Using the Client Utility

https://msdn.microsoft.com/en-us/library/aa744316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745236(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754671(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754324(v=bts.10).aspx

How to Create an Affiliate Application
You can use the MMC Snap-In or the createapps command to create one or more applications, as specified by the XML file.
The following is an example XML file for Windows-Initiated Single Sign-On (SSO):

After you create an affiliate application, you cannot modify the following properties:

Name of the affiliate application.

Fields associated with the affiliate application.

Affiliate application type (host group, individual, or configuration store).

Administration account same as affiliate administrators group. (Specifying this flag will always use the affiliate
administrators group as the administrator account for this affiliate application.)

Important
You can use local accounts for the administration account and user account by setting the allowLocalAccounts flag to yes. Ho
wever, you should only use this flag in single-computer scenarios.

Security Note
You must be an SSO administrator or SSO affiliate administrator to perform this task.

Note
If you are performing the configuration on a Domain Controller, and the Domain Local scope groups are specified for Applic
ation Administrators or Application Users while creating Affiliate Applications, it is recommended that you enable the local ac
count flag. To do this:

In the MMC Snap-in, select Allow local accounts for access accounts during the creation process.

From the command line, specify allowLocalAccounts=yes in the XML file for Affiliate Application creation.

After you create the affiliate application, you must enable it. For more information, see How to Enable an Affiliate Application.

To create an affiliate application using the Microsoft Management Console (MMC) Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click Affiliate Applications, and then click New.

<sso>
<application name="SAP">
<description>The SAP application</description>
<contact>someone@example.com</contact>
<appuserAccount>domain\AppUserAccount</appuserAccount>
<appAdminAccount>domain\AppAdminAccount</appAdminAccount>
<field ordinal="0" label="User Id" masked="no" />
<field ordinal="1" label="Password" masked="yes" />
<flags groupApp="no" configStoreApp="no" allowTickets="no" validateTickets="yes" allowLocal
Accounts="no" timeoutTickets="yes" adminAccountSame="no" enableApp="no" />
</application>
</sso>

https://msdn.microsoft.com/en-us/library/aa705426(v=bts.10).aspx

4. Follow the instructions in the Create New Affiliate Application wizard.

To create an affiliate application using the command line

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –createapps <application file name>, where <application file name> is the XML file.

See Also
Tasks
How to Enable an Affiliate Application
How to Delete an Affiliate Application
Concepts
SSO Affiliate Applications
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa705426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745236(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Delete an Affiliate Application
Use the MMC Snap-In or the deleteapps command to delete the specified affiliate application from the Credential database.

Important
When you delete an affiliate application, the SSO system automatically deletes all mappings associated with it.

Security Note
You must be an SSO administrator or SSO affiliate administrator to perform this task.

To delete an affiliate application using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click the affiliate application, and then click Delete.

To delete an affiliate application using the command line

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –deleteapp <application name>, where <application name> is the name of the affiliate application
you want to remove from the Credential database.

See Also
Tasks
How to Enable an Affiliate Application
Concepts
SSO Affiliate Applications
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa705426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Update the Properties of an Affiliate Application
Use the MMC Snap-In or the updateapps command to update one or more application properties, as specified by the XML
file. You must be an affiliate administrator to perform this task. The following is an example XML file that lists the fields you can
update.

After you create an affiliate application, you cannot modify the following properties:

Name of the affiliate application.

Fields associated with the affiliate application.

Affiliate application type (host group, individual, or configuration store).

Administration account same as affiliate administrators group. (Specifying this flag will always use the affiliate
administrators group as the administrator account for this affiliate application).

Important
You can use local accounts for the administration account and user account by setting the allowLocalAccounts flag to y
es. However, you can only use this flag in single-computer scenarios.

Note
You must be an SSO administrator, SSO affiliate administrator, or application administrator to perform this task.

Note
You must be an SSO administrator to modify the ticketing flags (validateTickets and timeoutTickets).

Note
You must be an SSO administrator or an SSO affiliate administrator to modify the application administration account.

To update the properties of an affiliate application using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click the affililate application, and then click Update.

To update the properties of an affiliate application using the command line

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory. The default installation directory is
<drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –updateapps <application file name>, where the application file name is the XML file.

<SSO>
<application name="SSOApplication">
<description>An SSO Application</description>
<contact>someone@companyname.com</contact>
<appUserAccount>DomainName\AppUserGroup</appUserAccount>
<appAdminAccount>DomainName\AppAdminGroup</appAdminAccount>
<flags allowTickets="no" validateTickets="yes" timeoutTickets="yes" enableApp="no" />
</application>
</SSO>

See Also
Tasks
How to Enable an Affiliate Application
Concepts
SSO Affiliate Applications
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa705426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Enable an Affiliate Application
You can use the MMC Snap-In or the enableapp command to enable the specified affiliate application.

To enable an affiliate application using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click the affililate application, and then click Enable.

To enable an affiliate application using the command line

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –enableapp <application name>, where <application name> is the name of the affiliate
application you want to enable.

See Also
Tasks
How to Create an Affiliate Application
Concepts
SSO Affiliate Applications
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa744316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Disable an Affiliate Application
Use the MMC Snap-In or the disableapp command to disable the specified affiliate application.

To disable an affiliate application using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click the affiliate application, and then click Disable.

To disable an affiliate application using the command line

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –disableapp <application name>, where <application name> is the name of the affiliate
application you want to disable.

See Also
Tasks
How to Enable an Affiliate Application
Concepts
SSO Affiliate Applications
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa705426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to List Affiliate Applications
Use the listapps command to list all the affiliate applications. If the user is a member of the Application Administrators
account, this command only displays the application for which the user is an administrator.

To list affiliate applications using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On (SSO) installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -listapps [all] where all is an optional parameter that will also display applications using the
Configuration Store feature.

If the user who runs this command is an Application administrator, it only lists the applications for which that user is an
administrator. If the user who runs this command is an Affiliate Administrator or an SSO Administrator, it lists all the
affiliate applications.

To list affiliate applications using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –listapps to list the affiliate applications.

This lists only the affiliate applications that the user who is performing this task is a member of. That is, the user must
belong to the application user group account for that affiliate application.

See Also
Tasks
How to Create an Affiliate Application
Concepts
SSO Affiliate Applications
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa744316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to List the Properties of an Affiliate Application
The displayapp command shows the following information about the affiliate application. For more information about the
properties for an affiliate application, see SSO Affiliate Applications.

The Single Sign-On (SSO) system obtains this information from the XML file that you used to update the affiliate application.
For more information, see How to Update the Properties of an Affiliate Application.

To display the properties of an affiliate application using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –displayapp <application name>, where <application name> is the name of the affiliate
application that you want to display the properties for.

To display the properties of an affiliate application using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <install drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –displayapp <application name>, where <application name> is the name of the affiliate application
that you want to display the properties for.

See Also
Other Resources
Managing User Mappings
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Clear the Application Cache
Use the MMC Snap-In or the purgecache command to remove the contents of the credential cache (all the information that is
associated with the affiliate application) for the specified application on all Single Sign-On (SSO) servers.

To clear the cache using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Click Affiliate Applications.

4. In the results pane, right-click the affiliate application, and click Clear.

To clear the cache using the command line

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –purgecache <application name>, where <application name> is the name of the affiliate
application that you want to purge the cache for.

See Also
Concepts
SSO Affiliate Applications
Other Resources
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Set the Enterprise SSO Server Using the Client Utility
Each time you use ssoclient, you must first point the user to the correct Single Sign-On (SSO) server that contains their
configuration information.

To set the SSO Server for a user using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –server <Single Sign-On Server>, where <Single Sign-On Server> is the name of the Single Sign-On
server that the user wants to connect to.

See Also
Concepts
SSO Affiliate Applications
Other Resources
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Display the Enterprise SSO Server Using the Client
Utility

Use the showserver command to display the Single Sign-On (SSO) server to which the user is currently pointing.

To display the SSO server using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –showserver.

See Also
Concepts
SSO Affiliate Applications
Other Resources
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

How to Set Credentials for the Affiliate Application Using the
Client Utility

Use the setcredentials command to set the credentials for a user so that the user can access a specific application.

This command does not display the password as you type it.

If the user mapping already exists, this command sets the credentials for the existing mapping. If you have not created the user
mapping, the Single Sign-On (SSO) system prompts you for the user ID for the application.

To set credentials for the affiliate application using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –setcredentials <application name>, where <application name> is the specific application for which
you want to set the credentials.

4. When prompted for the user credentials, enter the user password for this application.

5. If you have not created the user mapping, the SSO system prompts you for the user ID for the application.

See Also
Concepts
SSO Affiliate Applications
Other Resources
Managing Affiliate Applications

https://msdn.microsoft.com/en-us/library/aa754070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx

Managing User Mappings
This section provides information about how to create and configure the Enterprise Single Sign-On (SSO) mappings.

Administrators use the ssomanage utility to manage mappings, and the application users use the ssoclient utility to manage
their mappings.

Note
Application administrators can manage mappings associated with affiliate applications for which they are an administrator,
while SSO affiliate administrators and the SSO administrators can manage all mappings associated with all affiliate applicati
ons.

In This Section

How to List User Mappings

How to Create User Mappings

How to Delete User Mappings

How to Set Credentials for a User Mapping

How to Enable a User Mapping

How to Disable a User Mapping

https://msdn.microsoft.com/en-us/library/aa754752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704860(v=bts.10).aspx

How to List User Mappings
Use the listmappings command to list all the existing mappings for the specified user. You must be a Single Sign-On (SSO)
Administrator, Application Administrator, SSO Affiliate Administrator, or user to do this task.

Enabled user mappings appear as (E) <domain>\<username>, whereas disabled user mappings appear as (D) <domain>\
<username>.

To list user mappings using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. To list all the mappings that a given user has in the affiliate applications that the user belongs to, type:

ssomanage –listmappings <domain>\<username>

where <domain> is the Windows domain for the user account, and <username> is the Windows user name for which
you want to list the user mappings. If the user is an Affiliate Administrator or an SSO Administrator, this command lists
all the mappings for that user in all the affiliate applications.

Or

4. To list all the user mappings for a given application, type ssomanage –listmappings <application name>.

Or

5. If you are an application administrator, and you want to list all the mappings a given user has in the affiliate applications
for which you are an administrator, type ssomanage –listmappings <domain>\<username> <application name>.

To list user mappings using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –listmappings to list all the mappings you have.

See Also
Tasks
How to Create User Mappings
Concepts
SSO Mappings
Other Resources
Managing Affiliate Applications
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa770819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

How to Create User Mappings
Use the createmappings command to create one or more user mappings, as specified in the XML file. The following is an
example XML file.

If a user account is changed, you must use this command to create a mapping for the new user account. You should also
remove the old user mapping. For more information about removing a mapping, see How to Delete User Mappings.

After you create a user mapping, you must enable it before you can use this mapping in the Single Sign-On (SSO) system. For
more information, see How to Enable a User Mapping.

Important
Only domain groups are supported for user mappings.

To create user mappings using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –createmappings <mappings file name>, where <mappings file name> is the name of the file that
contains the user mappings that you want to create.

To create user mappings using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –setcredentials <application name >, where <application name > is the name of the affiliate
application that the user wants to create a mapping for.

See Also
Concepts
SSO Mappings
Other Resources
Managing Affiliate Applications
Managing User Mappings

<sso>
<mapping>
<windowsDomain>domain</windowsDomain>
<windowsUserId>WindowsUserName</windowsUserId>
<externalApplication>Application name1</externalApplication>
<externalUserId>App1UserName</externalUserId>
</mapping>
<mapping>
<windowsDomain>domain</windowsDomain>
<windowsUserId>WindowsUserName</windowsUserId>
<externalApplication>Application name2</externalApplication>
<externalUserId>App2UserName</externalUserId>
</mapping>
</sso>

https://msdn.microsoft.com/en-us/library/aa745383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

How to Delete User Mappings
Use these commands to delete one or more user mappings, as specified in the XML file. The following is an example XML file.

If a user is not a member of the Application Users account, or does not exist in Active Directory, you should use this command
to remove the user mapping from the Credential database.

If a user account is changed, you must use this command to remove the old user mapping, and then create a new user
mapping for the new user account. For more information about creating a mapping, see How to Create User Mappings.

To delete user mappings using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –deletemappings <mappings file name>, where <mappings file name> is the name of the file that
contains the user mappings that you want to delete.

To delete a specific user mapping using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –deletemapping <domain>\<username> <application name>, where <domain> is the
Windows domain for the user account, <username> is the Windows user name, and <application name> is the specific
application for which you want to remove the user mapping.

To delete a user mapping using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –deletemapping <application name>, where <application name> is the name of the affiliate
application for which you want to remove the user mapping.

See Also
Concepts
SSO Mappings
Other Resources
Managing Affiliate Applications
Managing User Mappings

<sso>
<mapping>
<windowsDomain>domain</windowsDomain>
<windowsUserId>WindowsUserName</windowsUserId>
<externalApplication>Application name1</externalApplication>
<externalUserId>App1UserName</externalUserId>
</mapping>
<mapping>
<windowsDomain>domain</windowsDomain>
<windowsUserId>WindowsUserName</windowsUserId>
<externalApplication>Application name2</externalApplication>
<externalUserId>App2UserName</externalUserId>
</mapping>
</sso>

https://msdn.microsoft.com/en-us/library/aa770819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

How to Set Credentials for a User Mapping
Use the setcredentials command to set the credentials for a user to access a specific application.

This command does not display the password as you type it.

If the user mapping already exists, this command sets the credentials for the existing mapping. If you have not created the user
mapping, the SSO system prompts you for the user ID for the application.

To set credentials for an user mapping

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –setcredentials <domain>\<username> <applicationname>, where <domain> is the Windows
domain for the user account, <username> is the Windows user name, and <applicationname> is the specific application
for which you want to set the credentials.

4. When the SSO system prompts you for the user credentials, enter the user password for this application.

5. If you have not created the user mapping, the SSO system prompts you for the user ID for the application.

To set credentials for a user mapping from client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient -setcredentials <application name>,where <application name> is the name of the affiliate
application for which you want to remove the user mapping.

See Also
Tasks
How to Create User Mappings
Concepts
SSO Mappings
Other Resources
Managing Affiliate Applications
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa770819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

How to Enable a User Mapping
You must enable a user mapping before it you can use the mapping in the Single Sign-On (SSO) system.

When you enable a user mapping, it appears as (E) <domain>\<username> when you list the user mappings.

To enable a user mapping using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –enablemapping <domain>\<username> <application name>, where <domain> is the
Windows domain for the user account, <username> is the Windows user name for which you want to enable the
credentials, and <application name> is the name of the affiliate application for which you want to remove the user
mapping, and then press ENTER.

To enable a user mapping using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –enablemapping <application name>, where <application name> is the name of the affiliate
application for which you want to remove the user mapping.

See Also
Tasks
How to Create User Mappings
Concepts
SSO Mappings
Other Resources
Managing Affiliate Applications
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa770819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

How to Disable a User Mapping
You can disable a user mapping when you want to turn off all operations associated with a given mapping. You must disable a
user mapping before you can remove it.

When you disable a user mapping, it will appear as (D) <domain>\<username> when you list the user mappings.

To disable a user mapping using the administration utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –disablemapping <domain>\<username><application name>, where <domain> is the
Windows domain for the user account, <username> is the Windows user name for which you want to disable the
credentials, and <application name> is the name of the affiliate application for which you want to remove the user
mapping.

To disable a user mapping using the client utility

1. Click Start, click Run, type cmd, and then press ENTER.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default installation directory is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoclient –disablemapping <application name>, where <application name> is the name of the affiliate
application for which you want to remove the user mapping.

See Also
Concepts
SSO Mappings
Other Resources
Managing Affiliate Applications
Managing User Mappings

https://msdn.microsoft.com/en-us/library/aa770479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745174(v=bts.10).aspx

Host Initiated Single Sign-On
Host-initiated Single Sign-On (SSO) enables a request from the host system to access a resource on a Windows system. The
host system (for example, an RACF account) exists in a non-Windows environment and under the context of a non-Windows
user. The Single Sign-On Credential Store maps host accounts to Windows accounts, enabling this access.

The following topics describe configuration that is specific to Host-initiated SSO.

In This Section

Configuration Requirements for Host Initiated SSO

Enabling and Disabling Host Initiated SSO

Creating Affiliate Applications for Host Initiated SSO

Validating Passwords for Host Initiated SSO

Managing User Mappings for Host Initiated SSO

Troubleshooting Host Initiated SSO

https://msdn.microsoft.com/en-us/library/aa770937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770963(v=bts.10).aspx

Configuration Requirements for Host Initiated SSO
Although Enterprise Single Sign-On (SSO) and host-initiated SSO have certain aspects in common, certain platform and Active
Directory requirements are unique to host-initiated SSO. This topic discusses those requirements, and lists the steps to check
or create them on your system.

Host-initiated SSO can be executed only on a native Windows Server 2003 domain environment.

The service account for SSO Service that is performing host-initiated SSO must be configured to have Trusted
Computing Base (TCB) privileges. (You can configure this for the service account in the domain security policy.)

In addition, certain requirements are necessary when using Transaction Integrator for Host-Initiated Processing (TI for HIP). TI
for HIP uses host-initiated SSO to achieve Single Sign-On for non-Windows users.

For example, a service account for TI for HIP service runs under a service account domainname\hipsvc. This service can host
applications that want to access remote or local resources on Windows with the Windows account that corresponds to the
non-Windows account.

The domainname\hipsvc account must belong to the Application Administrator group account for the affiliate application that
is being used for Single Sign-On.

The domainname\hipsvc account must have constrained delegation privileges to use host-initiated Single Sign-On. This can be
configured by the domain administrator in Active Directory. Delegation can be configured for accounts that have registered
service principal names (SPN). Constrained delegation allows the service account to access only components that are specified
by the administrator.

To check your domain function level

1. In the Active Directory Domains and Trusts Microsoft Management Console (MMC) snap-in, right-click the Active
Directory Domains and Trusts node, and then click Raise Forest Functional Level.

2. Verify that the functional level is Windows Server 2003. If it is not, refer to your Active Directory documentation before
you attempt to change the setting.

To create an SPN

1. Download the setspn utility from the following location: http://go.microsoft.com/fwlink/?LinkId=148820

2. Click Start, click Run, type cmd, and then click OK.

3. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

4. Type setpsn -a hipsvc\computername.domain.com domain\hissvc

where hipsvc\computername.domain.com is the service that will perform the operation and the computer it is running
on, and domain\hissvc is the service account for hipsvc.

After you do this, you can configure constrained delegation in Active Directory for this service account (domain\hissvc) to
access the appropriate resource in the network.
To give TCB privileges for the SSO service account

1. Under Domain Security Policy - Local Policies - User Rights Assignment, add the SSO Service account to the Act as
part of operating system policy.

For more information about Kerberos Protocol Transition and Constrained Delegation, visit
http://go.microsoft.com/fwlink/?LinkId=148816.

See Also
Other Resources
Host Initiated Single Sign-On

http://go.microsoft.com/fwlink/?LinkId=148820
http://go.microsoft.com/fwlink/?LinkId=148816
https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx

Enabling and Disabling Host Initiated SSO
By default, host initiated Single Sign-On (SSO) is not enabled in the Single Sign-On system, and must be enabled by the SSO
Administrator.

To enable host initiated SSO using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Properties.

4. Click the Options tab.

5. Select the Enable host initiated SSO box, and click OK.

To enable host initiated SSO using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -enable hisso.

Disabling SSO applies to the entire SSO system, and all operations related to host initiated SSO are turned off.
To disable host initiated SSO using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click System, and then click Properties.

4. Click the Options tab.

5. Clear the Enable host initiated SSO box, and click OK.

To disable host initiated SSO using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -disable hisso as appropriate.

See Also
Other Resources
Host Initiated Single Sign-On

https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx

Creating Affiliate Applications for Host Initiated SSO
You can define two types of applications:

Individual There is a one-to-one relationship between Windows users and non-Windows users.

Host Group Multiple non-Windows users can be mapped to the same Windows account.

To create an affiliate application using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. Right-click Affiliate Applications, and then click New to start the Create New Affiliate Application Wizard.

4. Use the wizard to select the properties of your affiliate application.

To create an individual type affiliate application using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –createapps <AffApp.xml>, where AffApp.xml is the name of the xml file.

The following is a sample file:

To create a host group type affiliate application

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –createapps <AffApp.xml>, where AffApp.xml is the name of the xml file.

The following is a sample file:

<?xml version="1.0"?>
<SSO>
 <application name="SSOApp_Host1">
 <description>An Individual Type Affiliate Application for Host Initiated SSO</desc
ription>
 <contact>someone@companyname.com</contact>
 <appUserAccount>DomainName\AppUserGroup_HISSO</appUserAccount>
 <appAdminAccount>DomainName\AppAdminGroup_HISSO</appAdminAccount>
 <field ordinal="0" label="User ID" masked="no" />
 <field ordinal="1" label="Password" masked="yes" />
 <flags windowsInitiatedSSO="no" enableApp="yes" />
 </application>
</SSO>

<?xml version="1.0"?>
<SSO>
 <application name="SSOApp_HostGroupApp1">
 <description>A Group Type Affiliate Application for Host Initiated SSO associating
multiple non-Windows user to a single Windows user account(DomainName\WindowsUserAccou
nt1)</description>

To create an affiliate application supporting both Windows initiated SSO and host initiated SSO

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –createapps <AffApp.xml>, where AffApp.xml is the name of the XML file.

The following is a sample file:

See Also
Other Resources
Host Initiated Single Sign-On

 <contact>someone@companyname.com</contact>
 <windowsAccount>DomainName\WindowsUserAccount1</windowsAccount>
 <appAdminAccount>DomainName\AppAdminGroup_HISSO</appAdminAccount>
 <field ordinal="0" label="User ID" masked="no" />
 <field ordinal="1" label="Password" masked="yes" />
 <flags enableApp="yes" />
 </application>
</SSO>

<?xml version="1.0" ?>
- <SSO>
- <application name="SSOApp1">
 <description>An Individual Type Affiliate Application for both Host Initiated SSO an
d Windows Initiated SSO</description>
 <contact>someone@companyname.com</contact>
 <appUserAccount>DomainName\AppUserGroup</appUserAccount>
 <appAdminAccount>DomainName\AppAdminGroup</appAdminAccount>
 <field ordinal="0" label="User ID" masked="no" />
 <field ordinal="1" label="Password" masked="yes" />
 <flags enableApp="yes" />
 </application>
 </SSO>

https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx

Validating Passwords for Host Initiated SSO
When an affiliate application for host initiated Single Sign-On (SSO) is created, password validation for the non-Windows user
is enabled by default. This means that when applications call SSO to obtain the Windows user token to access resources, they
must provide the non-Windows user account and the non-Windows password. If the password does not match the password
in the SSO credential database for that non-Windows user, access is denied. If necessary, the password validation feature can
be disabled for the affiliate application. The password validation feature applies to both individual and host group type affiliate
applications for host initiated SSO.

The following is an example XML file for individual type host initiated SSO affiliate applications:

In the case of individual applications for host initiated SSO, the appUserAccount is a group account that contains the list of
Windows domain account users that have a one-to-one mapping with their corresponding non-Windows accounts.

The following is an example XML file for host group type host initiated SSO affiliate application:

In group applications for host initiated SSO, the appUserAccount must be an individual user account. It is this account that all
non-Windows accounts are mapped to.

See Also
Other Resources
Host Initiated Single Sign-On

<sso>
<application name="SAP">
<description>The SAP application</description>
<contact>someone@example.com</contact>
<appuserAccount>domain\AppUserGroupAccount</appuserAccount>
<appAdminAccount>domain\AppAdminGroupAccount</appAdminAccount>
<field ordinal="0" label="User Id" masked="no" />
<field ordinal="1" label="Password" masked="yes" />
<flags groupApp="no" configStoreApp="no" allowTickets="no" validateTickets="yes" allowLoca
lAccounts="no" timeoutTickets="yes" adminAccountSame="no" enableApp="no" />
</application>
</sso>

<sso>
<application name="SAP">
<description>The SAP application</description>
<contact>someone@example.com</contact>
<appuserAccount>domain\AppUserAccount</appuserAccount>
<appAdminAccount>domain\AppAdminGroupAccount</appAdminAccount>
<field ordinal="0" label="User Id" masked="no" />
<field ordinal="1" label="Password" masked="yes" />
<flags configStoreApp="no" allowTickets="no" validateTickets="yes" allowLocalAccounts="no"
timeoutTickets="yes" adminAccountSame="no" enableApp="no" />
</application>
</sso>

https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx

Managing User Mappings for Host Initiated SSO
Use the following procedures to create mappings, set credentials (whenever the Validate Password feature is enabled for the
affiliate application), and enable/disable mapping.

To manage user mappings for host initiated SSO using the MMC Snap-In

1. Click Start, point to Programs, click Microsoft Enterprise Single Sign-On, and then click SSO Administration.

2. In the scope pane of the ENTSSO MMC Snap-In, expand the Enterprise Single Sign-On node.

3. In the scope pane, click Affiliate Applications.

4. In the details pane, right-click the affiliate application, and then select the appropriate menu item for your action.

To create mappings in host initiated SSO using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage –createmappings <mapping file>, where <mapping file> is the name of the XML file.

The following is a sample mapping file:

To set credentials for individual type affiliate applications using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory. The default is <drive>:\Program
Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -setcredentials <Windows account name> <application name>.

To set credentials for host group type affiliate applications using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command line, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -setcredentials <external account name> <application name>.

To enable mappings for individual type affiliate applications using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -enablemapping <Windows account name> <application name>.

<SSO>
 <mapping>
 <windowsDomain>DomainName</windowsDomain>
 <windowsUserId>UserA</windowsUserId>
 <externalApplication>SSOApplication</externalApplication>
<externalUserId>ExternalUserID that corresponds to UserA</externalUserId>
 </mapping>
</SSO>

To disable mappings for individual type affiliate applications using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -disablemapping <Windows account name> <application name>.

To enable mappings for host group type affiliate applications using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -enablemapping <external account name> <application name>.

To enable mappings for individual type affiliate applications using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -disablemapping <external account name> <application name>.

See Also
Other Resources
Host Initiated Single Sign-On

https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx

Troubleshooting Host Initiated SSO
The primary method of troubleshooting host initiated Single Sign-On (SSO) is tracing.

Tracing

Use the Trace command-line utility to enable tracing in SSO.

Note
For the trace command to function, the file tracelog.exe must be in the following directory:

<drive>:\Program Files\Common Files\Enterprise Single Sign-On.

You can download this file from the following location:

http://go.microsoft.com/fwlink/?LinkId=33023

To use the trace utility

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type Trace –start –high to set the tracing level to high and begin the trace.

4. Run the scenario with host initiated SSO.

5. Type Trace –stop to end the trace.

6. A .bin file is generated in the directory above, which you can send to Microsoft for analysis.

See Also
Other Resources
Host Initiated Single Sign-On

http://go.microsoft.com/fwlink/?LinkId=33023
https://msdn.microsoft.com/en-us/library/aa746213(v=bts.10).aspx

How to Use the ENTSSO Management Agent
This version of Enterprise Single Sign-On (SSO) contains a Management Agent (MA) for Microsoft Identity Integration Server
(MIIS), which integrates Enterprise SSO with the account synchronization capabilities of MIIS. This enables an MIIS
administrator to manage SSO mappings in the SSO Credential Database.

In Enterprise SSO, mappings are created between Windows Domain accounts (domainname\username) and external
credentials. If you have an Active Directory Management Agent, and the Management Agent for the external Data Source
(example: RACF MA), you can use the Enterprise SSO MA (ENTSSO MA) to manage mappings in the SSO Credential Database.
ENTSSO MA is a Call-Based Export Management Agent only.

You configure the Management Agent in three separate parts:

A configuration file (ENTSSO.xml)

The MIIS user interface

The ENTSSO user interface

The topics in this section describe the configuration process.

In This Section

How to Configure the XML File

How to Configure MIIS for ENTSSO MA

How to Configure ENTSSO for MIIS Password Sync

See Also
Other Resources
Security User's Guide

https://msdn.microsoft.com/en-us/library/aa745536(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745601(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754312(v=bts.10).aspx

How to Configure the XML File
When you install Enterprise Single Sign-On (SSO), an XML file named ENTSSO.xml is installed in your Extensions directory. By
editing the file, you define the configuration for all instances of the ENTSSO Management Agent (MA).

The file is similar to the following:

XML Elements and Attributes

The following list describes the elements and attributes that you define in the XML file. Note that all element and attribute
names in this file are case sensitive.

Element: ENTSSO - Defines the configuration of a single ENTSSO MA instance. Multiple ENTSSO elements are allowed.

Attribute: name - Defines the instance name of the ENTSSO Management Agent, and must match the name of the ENTSSO
Management Agent instance in Microsoft Identity Integration Server (MIIS).

Attribute: adma - Defines the instance name of the Active Directory Management Agent that will be used by this ENTSSO
Management Agent instance. The Active Directory Management Agent provides the Windows domain name and Windows
user name for the mapping. This Active Directory Management Agent instance name must match the name of an Active
Directory Management Agent instance in MIIS.

Attribute: deleteAll - Optional; default is true. If this is set to true, and a Windows identity is deleted, all mappings with that
Windows identity are deleted from all ENTSSO applications.

Element: Application - Defines the relationship between an SSO affiliate application and an external Management Agent.
Multiple Application elements are allowed.

Attribute: name - Defines the name of the SSO affiliate application. This application must already exist within the ENTSSO
system.

Attribute: sourceMA - Defines the instance name for the source (external) Management Agent that will be used to provide
the external UserId in the mapping for this application. This external Management Agent instance name must match the name
of an external MA instance in MIIS.

Attribute: create - Optional; default is true. Defines whether mappings should be created for this application.

Attribute: delete - Optional; default is true. Defines whether mappings should be deleted for this application.

Element: SourceMA - Optional. Identifies the object type and attribute names for a specific source (external) Management
Agent instance. If this element is not present for a specific Management Agent, then the default object type (“person”) and
attribute names (“uid”) are assumed. Multiple SourceMA elements are allowed.

Attribute: name - The name of the source (external) Management Agent. This name must match at least one of the
sourceMA attribute names from the Application elements.

Attribute: objectType - Optional; default is person. If the object type name that provides the external UserId is not person, it
should be specified here.

Attribute: attribute - Optional; default is uid. If the attribute name that provides the external UserId is not uid, you can
specify it here.

<?xml version="1.0" encoding="utf-8"?>
<sso>

 <SourceMA name="RACFMA1" objectType="person" attribute="uid"/>
 <SourceMA name="ACF2" objectType="person" attribute="uid"/>

 <ENTSSOMA name ="ENTSSOMA1" adma="ADMA1" deleteAll="true">
 <Application name="AppForRACF1A" sourceMA="RACFMA1" create="true" delete="true"/>
 <Application name="AppForRACF1B" sourceMA="RACFMA1" create="true" delete="false"/>
 </ENTSSOMA>

 <ENTSSOMA name ="ENTSSOMA2" adma="ADMA1" deleteAll="true">
 <Application name="AppForACF2" sourceMA="ACF2"/>
 </ENTSSOMA>

</sso>

See Also
Concepts
How to Use the ENTSSO Management Agent
Other Resources
Security User's Guide

https://msdn.microsoft.com/en-us/library/aa754302(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754312(v=bts.10).aspx

How to Configure MIIS for ENTSSO MA
When you install the Enterprise Single Sign-On (SSO) Administration feature (either the full version or the Admin-only version)
on a computer running Microsoft Identity Integration Server (MIIS), the ENTSSO Management Agent is automatically installed.
This means that when you open MIIS, nearly all of the configuration has already been done. The only part missing is the
connection information.

Before starting this procedure, make sure you have the following information available:

ENTSSO Server name.

UserId and password of the Windows account under which the ENTSSO Management Agent will communicate with the
SSO Server.

To configure the Management Agent within MIIS

1. Open MIIS, and open the Identity Manager.

2. Open the Create Management Agent dialog box.

3. Select Enterprise Single Sign-On in the list.

This starts the Create Management Agent Wizard.

4. On the Configure Connection Information page, in the Connect To: field, enter the name of the SSO Server.

5. Enter the name of the ENTSSO Management Agent. This name must match the name specified in your ENTSSO.xml file.

6. In the User field, specify the domain account that the ENTSSO Management Agent uses to manage mappings in the SSO
Credential Database.

This account should be either a member of the SSO Affiliate Administrators or SSO Administrators accounts within the
SSO System.

7. In the Password field, enter the password for that user.

8. Click Next, accepting the defaults until you reach the Configure Extensions page.

9. Near Connection information for password extension, click Settings.

The Connection Settings dialog box appears.

10. In the Connect To box, enter the appropriate account. This account must be the same as the service account for the
ENTSSO service running on the computer specified.

11. In the User and Password fields, enter the user name and password for the account.

12. Click OK.

13. In the MIIS Create Management Agent, click Finish.

14. While still in the Identity Manager, click the Tools menu, and then click Options.

The Options dialog box appears.

15. Select Enable metaverse rules extension.

16. In the Rules extension name field, enter Microsoft.EnterpriseSingleSignOn.ManagementAgent.dll.

17. Click OK and close MIIS.

Example

If you already have a Metaverse rules extension that you want to use, you can copy the following code example and edit it
appropriately.

// <copyright file=”MVWrapper.cs” company=”Microsoft”>
// Microsoft Enterprise Single Sign-On

See Also
Concepts
How to Use the ENTSSO Management Agent

// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.EnterpriseSingleSignOn.ManagementAgent;
using Microsoft.MetadirectoryServices;
using System.Diagnostics;

// This sample code illustrates how to call the Enterprise
// Single Sign-On (ENTSSO) MV rules
// extension from your own MV rules extension.
// A reference is required to
// Microsoft.EnterpriseSingleSignOn.ManagementAgent.dll.

namespace MVWrapper
{
 public class MVWrapper : IMVSynchronization
 {
 MVSync mvSync = null;

 public void Initialize()
 {
 Debug.WriteLine("IMVSynchronization.Initialize");

 mvSync = new MVSync();

 mvSync.Initialize();
 }

 public void Provision(MVEntry mventry)
 {
 Debug.WriteLine("IMVSynchronization.Provision");

 mvSync.Provision(mventry);
 }

 public bool ShouldDeleteFromMV(CSEntry csentry, MVEntry mventry)
 {
 Debug.WriteLine("IMVSynchronization.ShouldDeleteFromMV");

 return mvSync.ShouldDeleteFromMV(csentry, mventry);
 }

 public void Terminate()
 {
 Debug.WriteLine("IMVSynchronization.Terminate");

 mvSync.Terminate();

 mvSync = null;
 }
 }
}

https://msdn.microsoft.com/en-us/library/aa754302(v=bts.10).aspx

How to Configure ENTSSO for MIIS Password Sync
After configuring the XML file and Microsoft Identity Integration Server (MIIS), the remaining configuration steps take place in
the Enterprise Single Sign-On (ENTSSO) system.

To allow Password Sync from MIIS

1. In Enterprise Single Sign-On, click the Servers node.

2. Right-click the appropriate server, and click Properties.

3. Click the Password Sync tab.

4. Select Allow password sync from MIIS.

5. Click OK.

To enable Password Sync on the system level

1. In Enterprise Single Sign-On, right-click the System node.

2. Click Properties.

The Properties dialog box appears.

3. Click the Options tab.

4. In the Enable Password Sync field, select From Windows to Adapters.

Additional Configuration

Finally, you must configure one of the following:

A Password Sync Adapter that accepts Windows Password Sync.

Direct Password Sync enabled on at least one application.

For information about how to do this, refer to your Password Sync documentation.

To configure the EntSSO MA for MIIS Password Sync

1. On the ENTSSO Management Agent Properties page, click Configure Extensions.

2. In the Connection information for password extension field, click Settings.

3. In the Connect To field enter the name of the computer that will receive the password changes.

The computer name must be in the same format that was used when creating the Service Principal Name (SPN) for the
ENTSSO service on the domain.

For example:

Short format - SPN = ENTSSO/ABCD1411, then enter ABCD1411

Long format - SPN = ENTSSO/ABCD1411.CompanyName.com then enter ABCD1411.CompanyName.com

Additional Configuration Steps

1. Click Start, point to All Programs, point to Microsoft Identity Integration Server, and then click Identity Manager.

2. On the Tools menu, click Options.

3. Select Enable Password Synchronization.

4. In the Management Agents view, select ADMA.

5. In the Action pane, select Properties.

6. On the Properties page, select Configure Directory Partitions, and then select Enable this partition as a password
synchronization source.

7. Click Targets, and then select ENTSSOMA2 to enable it to receive password changes from MIIS. Deselect ENTSSOMA.
Click OK, and then click OK again.

8. In the Management Agent view, select ENTSSOMA2. In the right-hand pane, select Properties. On the Properties
page, click Configure Extensions.

9. Confirm that Enable password management is selected, and then click Settings.

10. In the Connection Settings dialog, specify the following:

Connect To: INTSVR1.fabrikam.com

User: fabrikam\ssosvcact

Password: ssosvcact

Note
This account should match the ENTSSO service account configured on INTSVR1.fabrikam.com.

11. Click OK, and then click OK again.

12. You can also disable password sync for MIIS. To do this, in Identity Manager, click the Tools menu, click Options, and
then deselect Enable Password Synchronization.

The following restrictions will apply:

For Password Sync to function properly, SPN must be configured on the ENTSSO service account that the ENTSSO
Management Agent will communicate with.

Communication between MIIS and the ENTSSO server requires Kerberos.

When configuring Password Extension in the MIIS connection configuration for the ENTSSO Management Agent,
the account specified must match the service account for the ENTSSO server that will receive passwords from MIIS.

See Also
Concepts
How to Use the ENTSSO Management Agent

https://msdn.microsoft.com/en-us/library/aa754302(v=bts.10).aspx

How to Use the Servers Snap-In
This version of Enterprise Single Sign-On (SSO) includes the ENTSSO Servers Snap-In, which allows you to view, monitor, and
perform certain actions on your ENTSSO Server through the Windows interface.

Note
If your system has a firewall and your server name uses the FQDN format, you may not be able to contact the server. Instead,
you must specify the NetBIOS name or the associated IP address.

To use the ENTSSO Servers Snap-In

1. Open Enterprise Single Sign-On.

2. In the Scope pane, click the Servers node.

The following information is displayed in the Results pane.

Name: Name specified.

Status: Status of the ENTSSO service (Online, Offline, Pending, Started, Stopped, Start Pending, Stop Pending).

Date: Date when information was obtained.

Time: Time when information was obtained.

SSO Server: Fully qualified name of server.

Service Account: ENTSSO service account.

SSO Database: ENTSSO Credential Database with which this server is communicating.

Secret Server: Indicates whether the Secret Server module is running.

Password Sync: Indicates whether Password Sync is installed.

Computer: NETBIOS name of computer.

Event counts: Info/Warning/Errors event count. Resetting this will start the counter from 0.

Version of SSO installed: Version number of ENTSSO.exe. Also indicates whether this is 32-bit (x86) or 64-bit
(x64).

To start or stop the server service

In the ENTSSO Servers Snap-In, right-click the server and click Start or Stop.

To display information for one server

In the Server tree, click the server.

The information is displayed in the results pane.

To add a server

Right-click in the Scope pane, and then click Add Server.

The Add Server dialog box appears. Type or browse to the server you want to add.

In certain Workgroup environments, clicking the Browse button will cause this dialog box to close. Instead of using the
Browse button, simply type the server name in the box.

To view or change server properties

In the Server tree, right-click the server, and click Properties.

The Server Properties dialog box appears. You can view or change information in the following tabs:

Audit Levels

SSO Database

SSO Service

Password Sync

Advanced

See Also
Other Resources
Security User's Guide

https://msdn.microsoft.com/en-us/library/aa754312(v=bts.10).aspx

How to Use Direct Password Sync
This version of Enterprise Single Sign-On includes the Direct Password Sync from Windows feature. This enables you to bypass
a Password Sync Adapter and update the password in the ENTSSO Credential Database directly from Windows.

Direct Password Sync from Windows is useful in the following situations:

Your enterprise system requires Windows to Windows mapping.

You need to update the External User’s password in the Credential Database directly when a password change occurs for
the Windows user. You can change the password on the back-end system (that corresponds to the external user) by
using other mechanisms. For example, you can use Microsoft Identity Integration Server to update passwords in
Resource Access Control Facility (RACF) on an IBM Mainframe using the RACF Management Agent.

To enable Direct Password Sync

1. Open Enterprise Single Sign-On.

2. In the scope pane, click Affiliate Applications.

3. Right-click the appropriate Affiliate Application.

4. Click Properties.

The Affiliate Applications Properties dialog box appears.

5. Click the Options tab.

6. Select the Direct Password Sync from Windows check box.

7. Click OK.

How to Use the Mapping Wizard
This version of Enterprise Single Sign-On includes the Mapping Wizard, which allows you to easily create mappings for affiliate
applications.

Note
You can only use the Mapping Wizard if the External UserID is based on the Windows domain account.

To start the Mapping Wizard

1. Open Enterprise Single Sign-On.

2. In the scope pane, click Affiliate Applications.

3. Right click the appropriate affiliate application.

4. Click Create Mappings.

The Mapping Wizard appears.

To use the Mapping Wizard

1. Welcome to the Mapping Wizard

Verify that this is the correct affiliate application, and click Next.

2. Mappings File Option page

ENTSSO manages mappings through an XML file. You can choose to create a new file or use an existing one.

3. Files Location page

Select the files to be used.

You must click Validate to validate the files before proceeding. The validation status appears in the Status
window.

4. Accounts page

Choose one or more accounts to generate the new mappings file, and click Validate.

5. External User Name page

Define how the external user name is generated from the Windows user account. As you make selections in the
boxes, you can see how the names will appear in the Example box.

6. Generate page

Click Start to generate the mappings file. (You will have an opportunity on the next page to view or edit the file as
necessary before mappings are created.) Results are displayed in the three windows below.

The Number of mappings in selected accounts is an approximation, because accounts may be nested in other
accounts.

Click View Log File to examine any errors or warnings that might have occurred.

7. Options page

Your file has been created. Click View/Edit Mappings File if desired.

Click Enable mappings if you want the mappings to be automatically enabled. (If you do not click this, you will
have to enable them manually.)

Click Set Password to automatically set the password for these mappings.

8. Create page

Before creating the mappings, click View Mappings File if desired.

When you are ready, click Start to perform the mapping operation. Your status is displayed in the three boxes
below.

Click View Log File to examine any errors or warnings that might have occurred.

9. Completing the Mapping Wizard screen

Select any options desired, and then click Finish.

See Also
Concepts
SSO Security Recommendations
Other Resources
Using Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa705434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771028(v=bts.10).aspx

How to Use Password Filters
The ENTSSO Password Synchronization feature synchronizes passwords between Microsoft Windows Active Directory and
non-Windows systems. However, many external systems have password policy requirements which differ from those in Active
Directory. (For example, an IBM system may require a password to be upper case and limited to 8 characters.) This forces
ENTSSO to use the “lowest common denominator” between the two systems, limiting password security.

The ENTSSO Password Filter feature addresses this limitation. A Password Filter is merely a Password Sync Adapter with
additional properties defined. These additional properties (such as maximum or minimum length, case, and character
restrictions) serve to filter the passwords so that they meet the criteria of the external system.

Note that when you create a Password Filter, the Administrator group specified is automatically used as the SSO
Administrators account. If you change the SSO Administrator group, you will need to make sure the Password Filter is also
updated with the new SSO Administrators account.

Note
As with all elements of the ENTSSO system, Password Filters contain highly sensitive information and should be exposed to t
he minimum number of people possible.

To Create a Password Filter

1. In the SSO Management Console, right-click the Password Management node, and then click Create Filter.

The Password Filter Wizard appears.

2. Follow the directions on the Wizard to create the Password Filter.

To Assign an Affiliate Application to a Password Filter

1. Right-click the appropriate filter, and then click Assign….

2. Select the appropriate Affiliate Application.

Secure Deployment of Enterprise Single Sign-On
This section outlines a typical scenario for secure deployment of Enterprise Single Sign-On (SSO). For detailed procedures on
the actions to take in SQL Server, see your SQL Server documentation.

In This Section

Deployment Overview

Deployment Process

https://msdn.microsoft.com/en-us/library/aa745594(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770630(v=bts.10).aspx

Deployment Overview
The system in this example is deployed over three domains, and contains the following computers:

Domain ORCH.com

ORCH domain controller

HIS1, the HISSO server

HIS2, the master secret server

HIS3, the Admin database

Domain SQL.com

SQL domain controller

SQL2, the SSO database

Domain HIS.com

HIS domain controller

HIS4 database

The key points defining this deployment are as follows:

Domain ORCH.com and domain SQL.com have a two-way selective trust relationship.

Domain ORCH.com is configured as native Windows Server 2003 server functional level.

All SSO services are running on an ORCH.com domain user account (Orch\SSOSvcUser). The user is configured to have
access permission on the SQL2 machine in the SQL.com domain. The user is configured for protocol transition and
constrain delegation within the ORCH.com domain.

Another ORCH.com domain user (Orch\TestAppUser) is set for running test programs. This user is also configured for
protocol transition and constrain delegation.

For a description of the deployment process, see Deployment Process

See Also
Concepts
Deployment Process
Other Resources
Secure Deployment of Enterprise Single Sign-On

https://msdn.microsoft.com/en-us/library/aa770630(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770630(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705167(v=bts.10).aspx

Deployment Process
The following steps give a high-level overview of secure deployment of Enterprise Single Sign-On (SSO). For detailed
procedures on the actions to take in SQL Server, see the SQL Server documentation.

1. On the SQL Server domain controller, use the New Trust Wizard to create a trust with the following properties:

Name: ORCH.com

Direction: Two-way

Sides: This domain only

Outgoing Trust Authentication Level - Local Domain: Selective authentication

Password: Choose a password

Confirm Outgoing Trust: Yes

Confirm Incoming Trust: No

2. On the ORCH.com domain controller, use the New Trust Wizard to create a trust with the following properties:

Name: SQL.com

Direction: Two-way

Sides: This domain only

Outgoing Trust Authentication Level - Local Domain: Selective authentication

Password: Must be the same as password for ORCH.com

Confirm Outgoing Trust: Yes

Confirm Incoming Trust: No

3. On the ORCH.com domain controller, set the domain-wide trust for Incoming from SQL.COM.

4. On the SQL.com domain controller, set the domain-wide trust for Outgoing from ORCH.COM.

5. On the ORCH.com domain controller, raise the domain functional level to Windows Server 2003.

6. In the ORCH domain, create the following new users:

ORCH\SSOSvcUser

ORCH\TestAppUser

ORCH\AffAppUser

7. Add Act as part of the operating system to SSOSvcUser and TestAppUser.

8. Add Allowed to Authenticate privilege to ORCH\TestAdmin.

9. Add ORCH\SSOSvcUser to SQL2 in the SQL domain. This step requires using Advanced View in Active Directory
Microsoft Management Console (MMC).

10. On the SQL2 computer, create the following two new logons:

ORCH\TestAdmin

ORCH\SSOSvcUser

11. On the SQL2 domain, create two domain global groups:

ORCH\SSOAdminGroup

ORCH\SSOAffAdminGroup

12. Add Allowed to Authenticate privilege to the ORCH\SSOAdminGroup group.

13. On the SQL2 database, create the following new logon:

ORCH\SSOAdminGroup

14. Install the master secret server as follows:

Log onto NTS5 using ORCH\TestAdmin.

Install Enterprise SSO, using SQL2 as the master secret server.

15. Log on to HIS1 using ORCH\TestAdmin, and install Enterprise Single Sign-On. Configure ESSO as SSO join HIS2, using
database server name SQL2.

16. Install the Enterprise Single Sign-On Admin utility on HIS3 using ORCH\TestAdmin.

17. Add the following users to the following groups:

Add ORCH\TestAppUser to ORCH\SSOAdminGroup

Add ORCH\AffAppUser to ORCH\TestAffUserGroup

18. Install SQL Server 2000a Enterprise on HIS3, and add logon ORCH\AffAppUser.

19. On the HIS1 machine, open a command prompt and use the following commands to set constrain delegation and
protocol transition:

setspn -A MSSQLSvc/HIS3.ORCH.com:1433 ORCH\SSOSvcUser

setspn -A MSSQLSvc/HIS3.ORCH.com:1433 ORCH\TestAppUser

20. On the ORCH\SSOSvcUser and ORCH\TestAppUser property pages, set the proper delegation for both user accounts
by selecting the following options:

Trust this user for delegation to specified services only

Use any authentication protocol

21. Using ORCH\TestAdmin on the HIS1 computer, perform the following:

Add ORCH\TestAppUser to Remote Desktop User Group.

Grant Impersonate after authenticated privilege to ORCH\SSOSvcUser.

Grant Impersonate after authenticated privilege to ORCH\TestAppUser.

22. Verify your deployment by logging on to HIS1 using ORCH\TestAppUser and running the following application
configuration:

Run LogonExternalUser Test.

See Also
Concepts
Deployment Overview

<SSO>
 <application name="TestApp">
 <description>An SSO Test Affiliate Application</description>
 <contact>AffAppUser@ESSOV2.EBiz.Com</contact>
 <appUserAccount>ORCH\TestAffAdminGroup</appUserAccount>
 <appAdminAccount>ORCH\TestAffUserGroup</appAdminAccount>
 <field ordinal="0" label="User ID" masked="no" />
 <field ordinal="1" label="Password" masked="yes" />
 <flags
 groupApp="no"
 configStoreApp="no"
 allowTickets="no"
 validateTickets="yes"
 allowLocalGroups="yes"
 ticketTimeout="yes"
 adminGroupSame="no"
 enableApp="yes"
 hostInitiatedSSO="yes"
 validatePassword="yes"/>
 </application>
</SSO>

https://msdn.microsoft.com/en-us/library/aa745594(v=bts.10).aspx

Password Synchronization
The purpose of Password Synchronization is to simplify administration of the Single Sign-On (SSO) credential database, and to
keep passwords in sync across user directories. You can accomplish these two tasks by using password synchronization
adapters. The topics in this section describe the command-line utility for creating and managing those adapters.

There are three types of password synchronization sub-features.

The first type is Windows to External (for example, Active Directory to RACF). In this scenario, a Windows user's password
change is captured and sent to the Enterprise SSO server that is assigned to receive password changes from domain
controllers. This server then forwards the password change to an external system, and the mapping in the SSO credential
database is kept in sync with the change made on the external system.

The second type is External to Windows - Full synchronization. In this scenario, a password is captured on the External
system and sent to the Enterprise Single Sign-On server that is assigned for Password Synchronization. It then updates the
password in the SSO credential database, and also updates the Windows user's password in Active Directory.

The third type is External to Windows - Partial synchronization. In this scenario, a password is captured on the External
system and sent to the Enterprise Single Sign-On server that is assigned for Password Synchronization. It then updates the
password in the SSO credential database.

In This Section

Installing Password Synchronization

Administering Password Synchronization

Configuring Password Synchronization

Managing Password Synchronization

https://msdn.microsoft.com/en-us/library/aa704972(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705412(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746093(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772072(v=bts.10).aspx

Installing Password Synchronization
As with the other Single Sign-On (SSO) features, Password Synchronization is not installed in the default Host Integration
Server installation, and must be specifically selected during Setup.

To install Password Synchronization

1. Run the Host Integration Server Setup program, and select Custom Installation.

2. Under the Security Integration feature, select the Enterprise Single Sign-On Password Synchronization sub
feature.

3. Complete the installation.

You also need Password Synchronization adapters to send and receive password changes to the external system. Other topics
in this section describe how to configure your own adapters. For more information, see
Administering Password Synchronization. You can also view a list of currently available adapters at the following location:
http://go.microsoft.com/fwlink/?LinkId=68145. You can contact support aliases to obtain information about these Password
Synchronization adapters.

Finally, to capture password changes made in Active Directory, in addition to installing the ENTSSO Password Sync feature, you
must install components on the domain controllers to capture password changes. Both the Windows Password Capture
component and Password Change Notification Service (PCNS) must be installed on all domain controllers from which you will
be capturing passwords. You can find these components in the following location:

http://www.microsoft.com/downloads/details.aspx?FamilyID=C0964F2E-FA9F-4FC7-AC13-C43928EFEE9D&displaylang=en

Read the accompanying documentation before you proceed with the installation on the domain controller.

See Also
Other Resources
Password Synchronization

https://msdn.microsoft.com/en-us/library/aa705412(v=bts.10).aspx
http://go.microsoft.com/fwlink/?LinkId=68145
https://msdn.microsoft.com/en-us/library/aa771850(v=bts.10).aspx

Administering Password Synchronization
You can administer Password Synchronization in Enterprise Single Sign-On (SSO) through either the Microsoft Management
Console (MMC) Snap-In or the command line. This topic describes how to perform various administration tasks with adapters.

The MMC Snap-In displays a list of adapters and their properties. You can right-click an adapter and use the menu to perform
the following commands:

Create adapters

Set properties

Update

Delete

Enable

Disable

Add applications to an adapter

Delete applications from an adapter

Reset notification

Add an adapter to an adapter group

Delete an adapter from an adapter group

You can also use the SSOPS command-line utility to administer your password synchronization. Most of the commands in this
section are intended for use by an administrator only.

For many commands, the command output is displayed on the screen in two columns. Because certain screen settings could
cause truncation of data, for best results you should change the screen buffer size/Windows size to 120 characters.

The following table lists the SSOPS commands. Procedures and additional explanation are located throughout the rest of this
topic.

Command Function

-list Lists existing adapters.

-display Displays adapter information.

-create Creates new adapters.

-setprops Sets properties for adapter.

-update Updates existing adapters.

-delete Deletes an existing adapter.

-enable Enables adapter.

-disable Disables adapter.

-addapp Adds application for adapter.

-deleteapp Deletes application for adapter.

-reset Resets notification or damping queues.

-addtogroup Adds adapter to adapter group.

-deletefromgroup Deletes adapter from adapter group.

To list existing adapters

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -list and press ENTER.

Adapters and descriptions are listed. (E) denotes that the adapter is enabled, (D) denotes that it is disabled.

To display adapter information

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -display <adapter name> and press ENTER.

The screen output displays information for the specified adapter.

In addition to name, type, description, computer, and accounts, the following information is displayed.

Adapt
er Flag

Details

Adapte
r enabl
ed

Determines whether the adapter is enabled.

Flag: SSO_FLAG_ENABLED

Attribute Name: enableApp

Default: No

Allow l
ocal ac
counts

Determines whether the App Admin or App Users accounts can be local accounts.

Flag: SSO_FLAG_APP_ALLOW_LOCAL

Attribute Name: allowLocalAccounts

Default: No

Receiv
e pass
word c
hanges
from a
dapter

Determines whether the adapter is allowed to receive external password changes.

Flag: SSO_FLAG_PARTIAL_SYNC_FROM_EXTERNAL_TO_DB

Attribute Name: syncFromAdapter

Default: No

Verify
old pas
sword

Determines whether the adapter will verify the old password when an external password change is received. If th
is flag is set, when an external password change is received, the external adapter must supply the old external pa
ssword in addition to the new external password. The old external password is then compared with the existing e
xternal password in the SSO database for that external account. If they match, the password change is accepted. I
f they do not match, the password change is rejected.

Flag: SSO_FLAG_SYNC_VERIFY_EXTERNAL_CREDS

Attribute Name: verifyOldPassword

Default: Yes

Chang
e Wind
ows pa
ssword

Determines whether the Windows password will also be changed when an external password change is received
(full sync). ENTSSO always uses the old Windows password stored in the SSO database to change the Windows
password to the new value (Windows requires both the old and new password to change a user's password). Th
erefore, this must be initialized before the Windows password change can succeed. If password sync is configure
d for a particular mapping, when the external credentials are set via administrative tools (ssomanage or ssoclient
-setcredentials), the Windows password that is stored in the SSO database is also set.

Flag: SSO_FLAG_FULL_SYNC_FROM_EXTERNAL_TO_WINDOWS

Attribute Name: changeWindowsPassword

Default: No

Send
Windo
ws pas
sword
change
s to ad
apter

Determines whether Windows password changes are sent to the external adapter.

Flag: SSO_FLAG_FULL_SYNC_FROM_WINDOWS_TO_EXTERNAL

Attribute Name: syncToAdapter

Default: No

Send o
ld pass
word t
o adap
ter

If Yes, the old password value (from the SSO database) is also sent to the external adapter in addition to the new
password value. Some external systems might require both the old and new password values to change the pass
word.

Flag: SSO_FLAG_SYNC_PROVIDE_OLD_EXTERNAL_CREDS

Attribute Name: sendOldPassword

Default: No

Allow
mappi
ng con
flicts

Determines whether the adapter will allow mapping conflicts.

A mapping conflict occurs when mappings are not unique. In a single SSO Individual application, mappings are a
lways one-to-one: one Windows account is mapped to exactly one external account and vice versa.

However, it is possible to assign more than one application to an adapter. Thus, it is possible to have a mapping i
n one application that conflicts with a mapping in the other.

The purpose of this flag is to prevent this from occurring. It is more secure to not allow mapping conflicts unless
there is a specific, well understood requirement for this behavior.

Flag: SSO_FLAG_SYNC_ALLOW_MAPPING_CONFLICTS

Attribute Name: allowMappingConflicts

Default: No

Adapter Description Details

Notification retry count Default is 1.

Notification retry delay (in mins) Default is 5.

Maximum pending notifications Default is 8.

Store notifications (when offline) True/False.

Server name Server name.

Port number Port number.

Applications for this adapter List of applications currently assigned to the adapter.

To create new adapters

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -create <adapter file> and press ENTER.

The screen output displays information for the newly created adapter.

To set properties for an adapter

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -setprops <adapter name> and press ENTER.

The screen output displays the properties for the specified adapter. You can edit them if necessary, but new values are
not validated.

To update existing adapters

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -update <adapter file> and press ENTER.

Use this command to update the settings and flags for a specified adapter. Do not use this command to set properties;
use the -setprops command instead.

To delete an existing adapter

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -delete <adapter name> and press ENTER.

The specified adapter is deleted.

To enable an adapter

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -enable <adapter name> and press ENTER.

The specified adapter is enabled.

To disable an adapter

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -disable <adapter name> and press ENTER.

The specified adapter is disabled.

To add an application to an adapter

1. Click Start, click Run, type cmd, and then click OK.

2. At the command line, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -addapp <adapter name> <application name> and press ENTER.

The specified SSO application is assigned to the specified adapter. This means that the passwords for the mappings in
that application are now synchronized using this adapter.

Although multiple applications can be assigned to one adapter, any given application can only be assigned to one
adapter.

To delete an application from an adapter

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -deleteapp <application name> and press ENTER.

The specified SSO application is removed from an adapter. (Because an application can only be assigned to one adapter,
you do not have to specify the adapter name.)

To reset notification

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -reset <adapter name | all | damping> and press ENTER.

This command clears the damping table and/or notification queues for a single adapter or all adapters, as specified. The
damping table stores a 10-minute history of password changes. Before the Enterprise SSO system accepts or sends a
password change, it checks the damping table to see whether it has performed the same change recently. If it has, the
new change is discarded.

To add an adapter to an adapter group

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -addtogroup <adapter name> <adapter group> and press ENTER.

This command adds the specified adapter to the specified adapter group. Although an adapter can belong to only one
adapter group, an adapter group can contain multiple adapters.

To delete an adapter from an adapter group

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssops -deletefromgroup <adapter name> <adapter group> and press ENTER.

This command deletes the specified adapter from the specified adapter group.

See Also
Other Resources
Password Synchronization

https://msdn.microsoft.com/en-us/library/aa771850(v=bts.10).aspx

Configuring Password Synchronization
Use the SSOCONFIG command-line utility to configure your password synchronization settings. You can use this tool to
specify directories for replay files and also change maximum password synchronization age.

To specify the directory for replay files

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoconfig -replayfiles <replay files directory> | -default and press ENTER.

Note Replay files are not deleted when you change the service account. If you change this account, you must delete the replay
files manually.
To display or change maximum password synchronization age

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssoconfig -syncage <maximum password age in hours> and press ENTER.

Note
The SSOCONFIG utility uses the time on the computer that is running SQL Server as its system time. Remember this when y
ou are using any commands related to time.

See Also
Other Resources
Password Synchronization

https://msdn.microsoft.com/en-us/library/aa771850(v=bts.10).aspx

Managing Password Synchronization
Use the SSOMANAGE command-line utility to enable or disable Single Sign-On (SSO) features, and to display current SSO
database settings.

To manage features or display settings using the MMC Snap-In

1. Right-click the appropriate feature or database.

2. Click the appropriate command.

To enable SSO features using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -enable and press ENTER.

To disable SSO features using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -disable and press ENTER.

To display current database settings using the command line

1. Click Start, click Run, type cmd, and then click OK.

2. At the command prompt, go to the Enterprise Single Sign-On installation directory.

The default is <drive>:\Program Files\Common Files\Enterprise Single Sign-On.

3. Type ssomanage -displaydb and press ENTER.

See Also
Other Resources
Password Synchronization

https://msdn.microsoft.com/en-us/library/aa771850(v=bts.10).aspx

SSO Security Recommendations
This section contains recommendations for how to help secure your Enterprise Single Sign-On (SSO) system.

With the Enterprise Single Sign-On (SSO) system, users can connect to different systems by using only one set of credentials.
Host Integration Server uses the SSO system as a store for sensitive information. Although it automatically installs whenever
you install the Host Integration Server runtime, you can also install Enterprise Single Sign-On as a stand-alone component,
independent of your Host Integration Server environment. It is recommended you follow these guidelines for securing and
deploying the Enterprise SSO services and resources in your environment.

General Deployment Recommendations for SSO

You must have a time server in your environment to ensure all SSO servers are synchronized. If the clocks on the SSO
servers are not synchronized, this could compromise the security of your environment.

Considering there is only one master secret server in your entire environment, it is recommended that you use an active-
passive cluster configuration for the master secret server. For more information about clustering the master secret
server, see How to Cluster the Master Secret Server.

The master secret server holds the encryption key the SSO system uses to encrypt the information in the SSO database. It
is recommended that you do not install or configure any other products or services on this computer.

Note
The computer where you install and configure the master secret server does not have to be a server.

The master secret server should have access to a removable media or NTFS file system folder in order to back up and
restore the master secret. If you use removable media, ensure that you take appropriate measures to protect the
removable media. If you back up the master secret to an NTFS file system, ensure that you protect the file and the folder.
Only the SSO Administrator should have access to this file.

You should back up the master secret as soon as the master secret server generates it. This is so that you can recover the
data in the SSO database in the event the master secret server fails. For more information about backing up the master
secret, see Managing the Master Secret.

Back up your current secret, or generate a new secret regularly, for example, once a month. Without the secret, you
cannot retrieve information from the SSO database. For more information about backing up and restoring the master
secret, see Managing the Master Secret.

Security Recommendations for SSO Groups and Accounts

It is recommended that you use Windows groups, and not single user accounts, especially for the SSO Administrator and
SSO Affiliate Administrator groups. These groups must have at least two user accounts as members of the group at all
times.

The SSO runtime service accounts and the SSO administrator user accounts should be different accounts, even when
they are members of the same SSO Administrators group. The SSO Administrator users who perform administrative
tasks such as generating and backing up the secret must be Windows administrators, whereas the SSO runtime service
accounts do not need to be Windows administrators.

Security Note
Windows administrator user rights do not supersede the user rights of the SSO administrator. To perform any SSO ad
ministration-level task, you must be a member of SSO Administrators group even if you already are a Windows admini
strator.

If you use the SSO ticketing feature, you must use domain accounts that the computers in the processing domain
(domain where the SSO servers are) recognize.

https://msdn.microsoft.com/en-us/library/aa704993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771728(v=bts.10).aspx

It is recommended that you use a unique service account for the SSO service corresponding to the master secret server.

The SSO Administrator account is a highly privileged account in the SSO system, which is also the SQL Server
administrator account for the SQL server that has the SSO database. You should have dedicated accounts for SSO
administrators, and should not use these accounts for any other purposes. You should limit the membership to the SSO
Administrators group only to those accounts responsible for running and maintaining the SSO system.

Security Recommendations for an SSO Deployment

If your network supports Kerberos authentication, you should register all SSO servers. When you use Kerberos
authentication between the master secret server and the SSO database, you must configure Service Principal Names
(SPN) on the SQL server where the SSO database is located. For more information about configuring Service Principal
Names, see the Microsoft Download Web site at http://go.microsoft.com/fwlink/?LinkId=20797.

When you are running Windows Server 2003, if the master secret server is on a different domain from the other SSO
servers and from the SSO database, you must disable RPC security (as used for Data Transaction Coordinator (DTC)
authentication between computers) on the master secret server, on the SSO servers (processing computers in the
processing domain), and on the SSO database. RPC security is a new DTC feature in Windows Server 2003. When you
disable RPC security, the DTC authentication security level for RPC calls goes back to one available in Microsoft Windows
2000 Server. For more information about disabling RPC security, see the Microsoft Help and Support Web site at
http://go.microsoft.com/fwlink/?LinkId=24774.

SSO administrators should regularly monitor the event log in the master secret server and the SSO server for SSO
auditing events.

In addition to firewalls, it is recommended that you use Internet Protocol security (IPsec) or Secure Sockets Layer (SSL)
between all the SSO servers and the SSO database. For more information about SSL, see the Microsoft Help and Support
Web site at http://go.microsoft.com/fwlink/?LinkId=16731.

Perimeter Network

When running Internet Information Services (IIS) and Enterprise Single Sign-On, follow these recommendations:

If IIS is in a perimeter network (also known as demilitarized zone, DMZ, and screened subnet), provide another server
running IIS behind the firewall to connect to the SSO system.

Do not open the remote procedure calls (RPC) port on IIS.

SQL Server Access

All SSO servers access the SQL Server Credential database. For more information about how to help secure SQL Server
databases, see http://go.microsoft.com/fwlink/?LinkId=33175.

It is recommended that you use Secure Sockets Layer (SSL) and/or Internet Protocol security (IPsec) to help secure the
transmission of data between the SSO servers and the Credential database. For more information about using SSL, see
http://go.microsoft.com/fwlink/?LinkId=33176.

To enable SSL for only the connection between the SSO server and the Credential database, you can set SSL support on every
SSO server using the ssoconfig utility. This option enables SSO to always use SSL when accessing the Credential database. For
more information, see How to Enable SSL for Enterprise Single Sign-On.

Strong Passwords

It is very important that you use strong passwords for all accounts, especially the accounts that are members of the SSO
Administrators group, because these users have control over the entire SSO system.

SSO Administrator Accounts

It is recommended that you use different service accounts for the SSO services running on different computers. You should not
use the SSO administrator account that performs administration operations such as generating and backing up the secret for

http://go.microsoft.com/fwlink/?LinkId=20797
http://go.microsoft.com/fwlink/?LinkId=33175
http://go.microsoft.com/fwlink/?LinkId=33176
https://msdn.microsoft.com/en-us/library/aa771283(v=bts.10).aspx

the SSO service. Although the SSO service accounts should not be local administrators on that computer, the SSO
administrator who is performing administration operations must be a local administrator on the computer for some
operations.

Master Secret Server

It is highly recommended that you secure and lock down the master secret server. You should not use this server as a
processing server. The only purpose of this server should be to hold the master secret. You should ensure the physical security
of this computer and only SSO Administrators should have access to this computer.

Kerberos

SSO supports Kerberos, and it is recommended that you set up Kerberos for SSO. To set up Kerberos with SSO, you must
register a Secure Principal Name (SPN) for the SSO service. By default, when you set up Kerberos, SSO uses that SPN to
authenticate the components using the SSO Service. It is recommended you set up Kerberos authentication between the SSO
administrative sub services and the SSO server. You can also user Kerberos authentication between the SSO servers and
between the SSO servers and the SQL Server where the Credential database is.

To set up and verify Kerberos, you use the utilities setspn and kerbtray. For more information about these utilities, see
http://go.microsoft.com/fwlink/?LinkId=33178 and http://go.microsoft.com/fwlink/?LinkId=33179.

Delegation

When you are using Windows Server 2003, you can use constrained delegation, but it is recommended that you do not use
delegation to perform the tasks of the Single Sign-On administrator. Similarly, it is recommended that you do not delegate
additional tasks or user rights to the Single Sign-On administrator.

Auditing

Auditing is a critical mechanism for tracking information in your environment. Enterprise Single Sign-On (SSO) audits all
operations performed in the Credential database. SSO uses event logs and audit logs of the database itself. SSO provides two
audit levels for the Single Sign-On servers:

Positive auditing levels audit successful operations.

Negative auditing levels audit operations that fail.

SSO administrators can set the positive and negative audit levels that suit their corporate policies.

You can set positive and negative audits to one of the following levels:

0 = None - This level issues no audit messages.

1 = Low

2 = Medium

3 = High - This level issues as many audit messages as possible.

The default value for positive auditing is 0 (none), and the default value for negative auditing is 1(low). You may want to
change these values depending on the level of auditing you want for your SSO system.

Important
Enterprise Single Sign-On auditing issues messages that are generated by the Single Sign-On service. This is not a security a
udit, and the SSO system does not save the information in the Security log of the Event Log. The SSO system saves the SSO a
udit messages directly to the Application Event Log.

Database-Level Auditing

For database-level auditing, the SSO system tracks the operations performed on the Credential database in the audit tables in
the database. The size of these audit tables are defined at the SSO system level. You can audit for affiliate applications that are
deleted, for mappings that are deleted, and for credential look-ups that are performed. By default, the audit size is set to 1000
entries. SSO administrators can change this size to meet their corporate policies.

http://go.microsoft.com/fwlink/?LinkId=33178
http://go.microsoft.com/fwlink/?LinkId=33179

Using Enterprise Single Sign-On Accounts

This section contains best practices when you are using domain and local groups and individual accounts in the Enterprise
Single Sign-On (SSO) system.

Domain Windows Groups and Accounts

When you are working with domain Windows groups, the following recommendations apply:

Use domain groups and domain accounts.

Use a domain group for SSO administrators. You should not specify an individual domain account as the SSO
administrator, because you cannot change this account from one individual account to another individual account.

Although you can specify an individual domain account as the SSO affiliate administrator, you should use a domain
group.

Although you can specify an individual domain account as the application administrator, you should use a domain group.

You must use domain groups for the application users account. The SSO applications users account does not support an
individual account.

See Also
Tasks
How to Audit Enterprise Single Sign-On
How to Update the Credential Database

https://msdn.microsoft.com/en-us/library/aa771234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705742(v=bts.10).aspx

Transaction Integrator User's Guide
This section contains information about using Transaction Integrator (TI). Transaction Integrator is the synchronous COM+ or
.NET Framework application integration solution in Host Integration Server. TI enables you to integrate mainframe-based
transaction programs (TP) and AS/400 transactions with component-based Windows Server System applications when the
following conditions are true:

A synchronous or transactional solution is needed.

Both the client and server systems are running at the time the call is made.

If you need an application integration solution that does not require the client and server systems to be running at the time the
call is made, use an asynchronous messaging solution such as the MSMQ-MQSeries Bridge instead of TI. In an asynchronous
solution, the middle-tier queuing system is running at the time the client issues a request message, the server retrieves the
message and sends back the reply, and then the client receives the reply back from the middle tier.

With TI, you can integrate existing mainframe-based TPs with Windows-based COM, distributed COM (DCOM), or applications
built on the .NET Framework. You might not even have to modify your TP if you have separated the business logic from the
presentation logic. The wizards in TI guide you through the modification process, step by step.

With TI, you can preserve existing CICS and IMS TPs as you move to a three-tier client/server or Web-to-host computing
environment. By using TI to invoke mainframe transactions, you can program in the visual object-oriented environments and
programming languages that you know while you maintain access to host transactions.

TI supports both SNA connectivity and TCP/IP connectivity without requiring a host footprint or costly host transaction
rewrites. You can choose SNA connectivity if you need two-phase commit (2PC), or choose TCP/IP connectivity if you need
direct throughput. IBM has not implemented 2PC for the TCP/IP protocol, but for those cases where 2PC is not necessary,
TCP/IP can give you direct connectivity.

True integration of online transaction processing (OLTP) with COM- or .NET-compliant systems means the integration of CICS
and IMS with Windows-based solutions. CICS and IMS are widely used in the mainframe arena to create distributed OLTP
solutions such as customer tracking and order entry. TI integrates CICS and IMS with COM by creating COM interfaces or .NET
interfaces to the CICS and IMS transactions and then running the CICS and IMS transactions on the mainframe from Windows.

A TI component in a COM+ application works in concert with the TI run-time environment, Microsoft Distributed Transaction
Coordinator (MS DTC), and the associated remote environment (RE) to drive a CICS or IMS TP. Together, they accomplish these
tasks:

Activate the host (mainframe) TP.

Pass the parameters specified by the TI component to the TP.

Run the TP.

Return the results to the TI component.

When you deploy a TI component (a type library .tlb file) in a COM+ application, that COM+ application becomes a TI
Automation server. When a client application invokes a method in that TI Automation server, Windows automatically starts the
TI run-time environment in the associated remote environment to invoke the mainframe transaction that is associated with
that TI method. Component Services in Windows 2000 automatically handles any class factory, early or late binding, or other
internal operations needed. The invoked mainframe transaction can call other transactions on the mainframe before it returns
the result to the COM-based client application through the TI Automation server.

In This Section

Getting Started with TI

Using Windows-Initiated Processing

Using Host-Initiated Processing

Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Getting Started with TI
This section explains some of the basics of using Transaction Integrator.

In This Section

Getting Started with TI

Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Remotely Administering Transaction Integrator
Transaction Integrator (TI) does not support remote installation or configuration, and it does not support remote
administration of Windows-initiated processing (WIP) except through use of the Windows Remote Desktop. TI does support
remote administration of host-initiated processing through the use of TI Manager and the Remote Desktop. TI also supports
the use of remote SQL Server databases.

Remote Installation and Configuration

TI must be installed and configured locally, and it does not support remote installation or configuration. The only way to install
TI Manager and the TI runtime is by using the Host Integration Server Installation Wizard, and selecting Application
Integration on the options page. You cannot install TI Manager or the TI runtime programmatically.

Remote Administration of Windows-Initiated Processing

You can administer Windows-initiated processing only from the local computer, and TI does not support remote
administration for WIP. Each computer that has TI installed and configured and that is used for WIP is administratively separate
from any other computer that also has TI installed. If you need to administer WIP when you are away from the local computer,
you must use the Windows Remote Desktop feature to access TI Manager and the TI runtime.

Remote Administration of Host-Initiated Processing

You can administer the host-initiated processing remotely, but only from a computer that also has TI installed on it and uses
the same HIP configuration database. For example, if three servers each have TI installed on them, and all three are configured
to use the same HIP database, then you can remotely administer any of the three servers from either of the other two servers.
You cannot remotely administer the TI runtime from another server that has TI installed but uses a different HIP configuration
database. For example, if you have a fourth server that also has TI installed but uses a different HIP configuration database
from the three servers in the previous example, you cannot remotely administer the TI runtime on any of the three other
servers. Neither can you remotely administer the fourth server from any of the other three servers.

If you need to administer HIP when you are away from a computer that is configured to use the same HIP configuration
database, you must use the Windows Remote Desktop feature to access TI Manager and the TI runtime.

Use of Remote Databases

You can also configure TI to use a remote SQL Server database. The SQL Server database is used to store TI host-initiated
processing (HIP) configuration data. Use the Microsoft Host Integration Server Configuration Wizard to specify the
database server to use.

To configure a remote database

1. Click Start, point to Programs, point to Microsoft Host Integration Server, and then click Configuration Wizard.

2. Follow the directions on the screen.

3. On the Database configurations wizard page, select Transaction Integrator Configuration Database.

4. Click Edit.

5. In the Transaction Integrator Configuration Database Properties dialog box, select the remote server and database
to be used.

6. Click OK, and then click Next.

7. Continue to follow the directions on the screen.

After you click Finish in the Wizard, TI installs the HIP database on the designated remote server.

See Also
Concepts
Getting Started with TI
Other Resources
Using Windows-Initiated Processing
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

Transaction Integrator Manager Console
Transaction Integrator is administered through the Transaction Integrator (TI) Manager management console. Microsoft
Management Console (MMC) is a framework for hosting administrative tools called snap-ins. In general, a console can contain
tools, folders or other containers, Web pages, and other administrative items. These items are displayed in the left pane of the
console, or the console tree. MMC provides a single user interface for integrating various Microsoft and third-party
management tools. You can create custom consoles combining your choice of the various registered snap-ins; for example,
you might put the SNA Manager and Transaction Integrator snap-ins together in a single console.

The TI Manager management console consists of a left pane that displays the console tree and a right pane that displays the
properties of the objects in the left pane. The topmost node in the console tree is the Console Root, and as you add snap-ins
to MMC, they appear under the Console Root.

Console Root Nodes

When you first open TI Manager, the console root has three major nodes (or snap-ins):

Transaction Integrator. This node is the entry point to the TI Manager administrative tool.

Component Services. This node is the entry point to the Component Services administrative tool. The Component
Services administrative tool enables you to configure and administer COM components and COM+ applications,
including installing and configuring COM+ applications, setting security at the application level, and creating and
maintaining COM+ partitions. The Component Services administrative tool is designed both for system administrators
and for developers. For example, developers can configure routine component and application behavior, such as
participation in transactions and object pooling.

Internet Information Services. This node appears in the console only if Internet Information Services (IIS) is installed
on the computer. The Internet Information Services node is the entry point to the IIS administrative tool.

Transaction Integrator Node

The Transaction Integrator node contains two major subnodes:

Host-Initiated Processing. You can use this node to view the major elements that are used in a host-initiated
processing (HIP) environment.

Windows-Initiated Processing. You can use this node to view the major elements that are used in a Windows-initiated
processing (WIP) environment.

See Also
Reference
Transaction Integrator (mode) Node
Host-Initiated Processing Node
Windows-Initiated Processing Node
Other Resources
Transaction Integrator Manager Help

https://msdn.microsoft.com/en-us/library/aa771932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705502(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745657(v=bts.10).aspx

Using Windows-Initiated Processing
The following topics explain how to use Windows-initiated processing (WIP) over TCP/IP and over SNA.

In This Section

Where to Begin

Creating a Remote Environment

Creating an Object

Creating and Managing Remote Environments Using TI Manager

Managing Transaction Integrator with TI Manager

Creating and Managing TI Components

How to Run TI Over TCP/IP

How to Run TI over SNA (APPC/LU 6.2)

Defining an SNA Remote Environment

Meeting Specific Real-World Needs

https://msdn.microsoft.com/en-us/library/aa705070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754286(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745598(v=bts.10).aspx

Where to Begin
Transaction Integrator (TI) enables you to integrate mainframe-based transaction programs (TP) with COM-based client
applications by creating and using a TI Automation server to invoke a TP on a mainframe from a COM-based client application.

To learn TI and to design and plan your first TI system, complete the following tasks:

Learn the basics

Learn about each of the elements in a TI system and how they interoperate. You can use this understanding to determine
whether you need to make any changes to your mainframe-based TP or to your COM-based client application. The TI
Automation server (a TI component deployed in a COM+ application) is the software that forms the bridge between the
mainframe transactions and the client application. For more information, see Learning the Basics.

Install TI

Install TI when you install Host Integration Server Server on the computers that you will use to create, deploy, and
manage TI components.

Configure an SNA or TCP/IP connection

Configure an SNA connection from your computer to the mainframe by using Host Integration Server, or configure a
TCP/IP connection. Even though Host Integration Server is not required to configure a TCP/IP connection, you must have
Host Integration Server to install TI.

Create LUs and an APPC Mode for an SNA connection

Create local and remote logical units (LU) and an Advanced Program-to-Program Communications (APPC) Mode for all
SNA connections.

Note
If you use .NET to access the remote server, the .NET Auto Web Proxy feature may cause a significant reduction in throughput
. To disable this feature and achieve maximum throughput, add the following line to your WIP client code:

System.Net.WebRequest.DefaultWebProxy = null;

To start using TI to connect COM-based applications with mainframe-based TPs, complete the following general steps:

To start using TI to connect COM-based applications with mainframe-based TPs

1. In TI Manager, create an appropriate Customer Information Control System (CICS) or Information Management Systems
(IMS) remote environment (RE) and configure its properties.

For help, see Creating a Remote Environment.

2. In Host Integration Server Designer, create a TI component for a specific RE.

For help, see Creating TI Components.

3. Deploy the TI component by adding it to a COM+ application.

This process creates the TI Automation server that any COM-based application can use to invoke the TP. For help, see
How to Deploy a TI Component.

4. Test the new TI automation server by calling its methods from the Automation client application.

This action will run the appropriate transactions in the TP on the mainframe. For help, see Testing a TI Automation Server.

5. Put the new, fully-tested TI Automation server into production; use TI Manager to reconfigure and manage the TI
Automation server, its associated RE, and the TI run-time environment settings as needed.

https://msdn.microsoft.com/en-us/library/aa745621(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754341(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771037(v=bts.10).aspx

See Also
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Learning the Basics
Before you implement Transaction Integrator (TI), scan the topics in this section to gain a basic understanding of TI. This
information is necessary to properly plan your TI implementation and make any necessary modifications.

TI System Elements

A TI system includes the following elements:

A region on a mainframe computer and the COBOL transaction programs (TP) that run in that region. You do not need
knowledge of COBOL, but you do need to understand what each of the component transactions in a mainframe-based TP
does, as well as how TPs interact with each other and the total system. Each transaction in a Customer Information
Control System (CICS) or Information Management Systems (IMS) TP on the mainframe can be invoked by a method
defined in a TI component. Because after a mainframe transaction in a TP is invoked, it can call transactions in other TPs,
it is important to know precisely what each transaction in the TP does. To be precise, each method in a TI Automation
interface calls a single mainframe TP. It is the TP that determines which mainframe transaction to call. The mainframe TP
makes this determination based on the information passed to it by the TI method.

Component Object Model (COM) distributed COM (DCOM), and Component Services (COM+) in Windows 2000. For
information about these elements, see Introduction to COM and COM+.

CICS or IMS, remote and local independent logical units (LU), and APPC modes associated with the mainframe. See IBM
documentation for information about these elements.

Windows 2000 or later services, including the System Monitor and Event Viewer. Refer to the Windows Help for
information about the Windows operating system.

Host Integration Server server with which you connect your Windows computer to the mainframe. Review the Help file
for this information.

SNA or TCP/IP protocols. These are the IBM protocols that are supported by TI. See IBM documentation for this
information.

A remote environment (RE) associated with each TI component to define the mainframe environment that the TI
component will use. To create and modify REs, use TI Manager.

Transaction Integrator, which includes three tools: Host Integration Server Designer (HIS Designer), TI Manager, and the
TI run-time environment. Both HIS Designer and TI Manager have context-sensitive Help that you can consult.

A COM-based client application that calls the methods of a TI Automation server (a TI component deployed in a COM+
application) to interoperate with mainframe TPs.

A TI component. This component wraps COM around the TP's data definition section. To create a new TI component or
modify an existing one, use HIS Designer. To deploy a TI component in a COM+ application, use TI Manager.

A COM+ application in which a TI component is deployed. After the TI component is deployed in a COM+ application,
that COM+ application becomes a TI Automation server. The COM+ application provides the Automation interface for
your TI Automation server. A client application can use the services of the new TI Automation server by way of the
Automation interface.

Microsoft Distributed Transaction Coordinator (DTC) included in and used internally by Component Services (COM+).
You have to know that Microsoft DTC is the actual transaction manager, but you do not have to understand how it works.

Additional Information Sources

In addition to exploring the TI documentation, you can obtain other useful information, such as the Win32 Platform SDK
documentation, from these Microsoft Web sites:

https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

The MSDN Online Library at http://go.microsoft.com/fwlink/?LinkId=12768 provides the Platform SDK, other SDK
documentation, DDK documentation, Windows resource kits, technical programming information, sample code, technical
articles, backgrounders, specifications, and reference guides.

The MSDN Online home page at http://go.microsoft.com/fwlink/?LinkId=12768.

The MSDN Online Web Workshop at http://go.microsoft.com/fwlink/?LinkId=12768 provides the latest information
about Internet technologies, including reference material and in-depth articles on all aspects of Web site design and
development.

The Microsoft COM site at http://go.microsoft.com/fwlink/?LinkId=12800 gives you the latest information about
Microsoft Component Object Model (COM), distributed COM (DCOM), and other COM-based technologies. You will find
white papers, presentations, case studies, files to download, samples, the COM and DCOM specifications, a list of training
courses, a list of other helpful sites, and a list of useful books. The covered technologies include COM, DCOM, COM+, and
ActiveX.

See Also
Tasks
Where to Begin

http://go.microsoft.com/fwlink/?LinkId=12768
http://go.microsoft.com/fwlink/?LinkId=12768
http://go.microsoft.com/fwlink/?LinkId=12768
http://go.microsoft.com/fwlink/?LinkId=12800
https://msdn.microsoft.com/en-us/library/aa705070(v=bts.10).aspx

How to Create a Remote Environment
A remote environment (RE) holds the information about a particular mainframe region that the Transaction Integrator (TI) run-
time environment needs to interact effectively with the mainframe environment. Use TI Manager to create the remote
environments that you need.

The following are the RE types that you can create in TI Manager:

Customer Information Control System (CICS) and Information Management System (IMS) using TCP/IP

CICS LINK, using LU 6.2

CICS (non-LINK), using LU 6.2

Diagnostic Capture

Diagnostic Playback

IMS using LU 6.2

IMS using IMS Connect or OTMA over TCP/IP

Note that there is no support for 3270-oriented transaction programs (TP).

You must associate every TI component that you create in Host Integration Server Designer (HIS Designer) with an RE of one of
the following types (classes):

CICS and IMS using TCP/IP

CICS LINK using LU 6.2

CICS (non-LINK) using LU 6.2

IMS using LU 6.2

IMS using IMS Connect or OTMA for TCP/IP

Once you create an instance of the RE, you can associate one or more TI components with that RE.

After you create the RE in TI Manager and create the TI component in HIS Designer, you are ready to deploy the TI component
in a COM+ application by dragging the file from Windows Explorer and dropping it into a COM+ application in TI Manager.
When you deploy a TI component, TI Manager automatically assigns that TI component to the default RE for the RE type
specified in the TI component. If there is no default RE, TI Manager places the component in the Unassigned Components
folder. For more information see How to Deploy a TI Component.

Before creating a new RE, you will need some information from the network administrator.

To create a Diagnostic Capture RE or a Diagnostic Playback RE, you need to know which of the following RE types your TI
component is designed to use:

CICS and IMS using TCP/IP

CICS LINK using LU 6.2

CICS (non-LINK) using LU 6.2

IMS using LU 6.2

https://msdn.microsoft.com/en-us/library/aa754341(v=bts.10).aspx

IMS using IMS Connect or OTMA for TCP/IP

In the case of the Diagnostic Playback RE, you also need to know the name and location of the .rcd file that contains the
recording.

To create any of the TCP/IP-based REs, you need to know the IP address and the TCP ports list number of the IBM
Listener for the CICS or IMS region in which the transaction program is deployed.

To create any of the SNA (APPC/LU 6.2)-based REs, you need to know the local LU alias, the remote LU alias, and the
APPC mode name.

To create a new RE for a TI component built in HIS Designer

1. Start TI Manager.

2. Expand the Transaction Integrator folder.

3. Right-click the Remote Environments folder, point to New, and then click Remote Environment.

4. Click one of the following RE types, and then click Next.

a. CICS and IMS using TCP/IP

b. CICS LINK using LU 6.2

c. CICS (non-LINK) using LU 6.2

d. IMS using LU 6.2

e. IMS using IMS Connect or OTMA for TCP/IP

5. Enter the requested information in the pages that follow, and then click Finish.

See Also
Concepts
Creating a Remote Environment
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Creating TI Components
Although you can create and test a Transaction Integrator (TI) component even before you have a connection to the
mainframe, it is preferable to create and test your TI component after you have established a connection.

Use Host Integration Server Designer (HIS Designer) to build the TI component. While you are building the component, you are
asked to associate it with an appropriate remote environment (RE). The wizards in HIS Designer guide you through the process,
step-by-step. In the Object Creation Wizard, you are asked to select whether the component you are creating is Windows
initiated or host initiated. As shown in the following graphic, select Windows Initiated.

Use HIS Designer to define a TI component to use a specific kind of environment for each TI component that you create.

Supported Programming Models

HIS Designer supports the following TCP/IP and SNA (APPC/LU 6.2) mainframe programming models:

CICS Concurrent Server (TCP/IP)

CICS MS Link (TCP/IP)

IMS Implicit (TCP/IP)

IMS Explicit (TCP/IP)

IMS using IMS Connect or OTMA (TCP/IP)

CICS LINK (APPC/LU 6.2)

CICS non-LINK (APPC/LU 6.2)

IMS (APPC/LU 6.2)

In HIS Designer, you can create TI components (type library .tlb files) that use each of these environments. The first four types
listed are all associated with a CICS and IMS using TCP/IP RE that you created in TI Manager. The more detailed definition is
needed in HIS Designer so that the data buffer can be laid out properly, and so that various checks that HIS Designer makes
can be completed successfully.

In addition, in HIS Designer, you can specify whether or not a CICS LINK RE should allow 32 KB in each direction (in and out). If
you do not specify each direction, 32 KB is the maximum for the sum of both directions (in and out); for example, you could
have 16 KB in and 16 KB out, or 1 KB in and 31 KB out. This applies only when you are creating a component; you do not need
to specify this when you are defining an RE in TI Manager. It matters for the TI component definition for two reasons:

It affects how the data is laid out in the buffer.

It affects how much data you can have in the method.

By configuring a TI component to use one of the eight supported environments, you can choose to communicate directly over
TCP/IP or use LU 6.2, an SNA protocol. TI supports two-phase commit (2PC) for ACID (atomic, consistent, isolated, and durable)
distributed transaction processing only over SNA LU 6.2networks. On the mainframe, 2PC is done with Sync Level 2 support.
IBM does not yet support 2PC over the TCP/IP protocol, except for CORBA using the IIOP protocol. Therefore, for those TPs
where you need to maintain distributed transactional integrity, use the APPC/LU 6.2 protocol.

See Also
Concepts
Creating and Managing TI Components
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

How to Deploy a TI Component
To deploy a Transaction Integrator (TI) component, add it to a COM+ application. A TI component consists of a type library (.tlb
file) that is created with Host Integration Server Designer (HIS Designer). Typically, you will deploy all TI components that you
need for your Automation server application in a single COM+ application. You do not have to deploy other files, such as
associated DLLs, together with a TI component library. When you add the TI component library in a COM+ application, that
COM+ application becomes an Automation server that is automatically associated with the generic TI run-time environment
code (tagen.dll).

After you deploy a TI component, you can view the component's interfaces and methods. To check the deployed component's
property settings to verify that it is associated with the correct remote environment, right-click the component name, and then
click Properties.

Use any of the following three methods to deploy a TI component. To use these procedures, you must have administrator
privileges.

To deploy a TI component from HIS Designer

1. In HIS Designer, click the interface for the component you want to deploy.

2. On the Tools menu, click Add To Package or Application.

3. Click the appropriate package or application.

4. Click the appropriate remote environment for the TI component that is being deployed, and then click OK.

To deploy a TI component from TI Manager

1. Start TI Manager.

2. In the console tree, double-click the Component Services (or Microsoft Transaction Server) folder, double-click the
Computers folder, double-click the folder for the computer in which you want to deploy the component, and then
double-click that computer's COM+ Applications folder.

3. In the console tree, double-click the specific COM+ application in which you want to deploy the TI component.

If you have not yet created a COM+ application for the component, right-click the COM+ Applications folder in the
console tree, point to New, and then click Application to start the wizard. Follow the instructions to create the new
COM+ application.

4. In the console tree, click the Components folder under the folder for the target COM+ application.

5. On the Action menu, point to New, and then click Component to start the wizard.

(If you are using Windows 2000, the wizard asks you if you want to install a component, import a component that is
already registered, or install a new event class; click the button next to Install new component(s). You cannot import a
TI component; you must install it (that is, deploy it). Finish deploying your TI component (.tlb file) by specifying its path
and file name.)

To deploy a TI component by dragging it from Windows Explorer

1. Start TI Manager.

2. In the console tree, double-click the Component Services (or Microsoft Transaction Server) folder, double-click the
Computers folder, double-click the folder for the computer where you want to deploy the component, and then double-
click that computer's COM+ Applications folder.

3. In the console tree, double-click the COM+ application in which you want to deploy the TI component.

If you have not yet created a COM+ application for the component, click the COM+ Applications folder in the console
tree. Then right-click that folder, point to New, and click Application to start the wizard. Follow the instructions to create
the new COM+ application.

4. In the console tree, click the Components folder for the target COM+ application.

At this point, you will see the contents of the folder (if any) displayed in the details pane.

5. Resize or reposition the TI Manager window so that you have room on the desktop to open and use Windows Explorer.

6. Open Windows Explorer and locate the folder that contains the TI component (.tlb file) that you want to deploy.

7. Drag the .tlb file from Windows Explorer, and drop it into the details pane of TI Manager.

See Also
Tasks
Where to Begin
Concepts
Creating and Managing TI Components

https://msdn.microsoft.com/en-us/library/aa705070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx

Testing a TI Automation Server
You can test your Transaction Integrator (TI) Automation server by calling the methods on its Automation interface from a
COM-based client application.

See Also
Tasks
Where to Begin

https://msdn.microsoft.com/en-us/library/aa705070(v=bts.10).aspx

Creating a Remote Environment
Remote environment (RE) definitions are created and managed from the Remote Environments folder. When the WIP
(Windows-initiated processing) Console is first started, the remote environment folder is empty.

A remote environment defines the network, hardware, and software characteristics of the non-Windows host that will be
receiving requests from the Windows operating system. For example, a CICS host that uses the TCP/IP protocol to receive
requests from Windows is identified to WIP through an RE that contains the IP address of the Host, the Port Number being
listened on, and the code page that the host uses to represent its data.

In This Section

Windows-Initiated Processing Console

Starting the New Remote Environment Wizard

How to View All Remote Environments

Adding a Remote Environment

See Also
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745538(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704675(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Windows-Initiated Processing Console
The Windows-initiated processing (WIP) console supports the COM, .NET Framework, TCP/IP, and SNA environments, with
COM objects and .NET Framework assemblies having similar capabilities and functioning.

There are two primary configuration elements for the WIP environment:

Remote environments. The remote environments folder contains the definitions, called remote environments or REs,
for the non-Windows host computers that receive requests from the WIP components.

Objects. The objects folder contains the metadata definitions for the client proxy objects that were created through the
Host Integration Server Designer (HIS Designer).

The Component Services node is used to configure COM+ packages for WIP COM objects. The Internet Information Services
node is used to configure the virtual directories used by WIP .NET Framework objects.

In This Section

Remote Environments

Objects

Relationships

See Also
Concepts
Creating a Remote Environment
Creating and Managing Remote Environments Using TI Manager

https://msdn.microsoft.com/en-us/library/aa744994(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771477(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx

Remote Environments
The Remote Environments folder contains definitions for the non-Windows host computers that will receive requests from the
Windows-initiated processing (WIP) components. These host definitions are referred to as remote environments or REs.

The RE is used by the WIP Runtime for the following primary purposes:

Define the code page used by the host.

Define the data conversion object that will be used by the WIP Runtime.

Properties on each RE define the characteristics of the host that will be receiving requests.

REs Supported by WIP

WIP supports multiple types of REs (for backward compatibility reasons, there are not just two, as in host-initiated processing).

The following is a minimum set of REs that is supported:

CICS and IMS using TCP/IP

CICS LINK using LU6.2

CICS using LU6.2

IMS Connect

IMS using LU6.2

Each of the previous RE types has a (possibly) unique collection of properties, some of which are in conjunction with the Host
Security functionality.

TCP/IP RE Properties

The basic TCP/IP RE properties contain the following:

IP Address or Host Name

Port List

Receive timeout value

Locale and Code Page

Windows Security Context to be used (User or Package)

SNA RE Properties

The basic SNA RE properties contain the following:

Local and Remote LU Aliases, Mode Name

Receive timeout value

Support for Sync Level 2

Locale and Code Page

Windows Security Context to be used (User or Package)

See Also
Tasks
How to View All Remote Environments
Concepts
Windows-Initiated Processing Console
Creating a Remote Environment

https://msdn.microsoft.com/en-us/library/aa754278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704824(v=bts.10).aspx

Objects
The Objects folder contains the metadata definitions for the Client Proxy objects that were created through the Application
Integrator Designer. These metadata definitions contain the following:

The COM ProgID of the callable COM object (in the form of a type library).

The .NET Framework qualified namespace of the callable .NET Framework class (in the form of a .NET Framework
assembly containing a type library)

Conversion annotations used by the Windows-initiated processing (WIP) Runtime to interoperate with the host
application program environment.

A representation of the callable COM or .NET Framework object

The metadata definition files are Transaction Integrator metadata files (*.tlb or *.dll) generated by the Application Integrator
Designer. The folder contains information about finding these metadata files and their relationships with remote environments
and COM+ Packages (COM) or IIS Virtual Directories (.NET).

See Also
Concepts
Windows-Initiated Processing Console

https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx

Relationships
A configured Windows-initiated processing (WIP) environment is established by defining a set of WIP elements and then
relating them in a manner that enables the client/client program, COM+ / .NET Framework remoting and the WIP Runtime to
do the following:

Write a program against a COM (type library) or .NET proxy (assembly).

Locate the Proxy (in a COM+ Package or IIS Virtual Directory).

Make a client call.

Transform the incoming parameters from COM or .NET formats to wire format data streams.

Select the correct Transport protocols and destination for the call.

Transfer data to and from the host application

Transform the data stream to a COM or .NET reply (parameters, return values, in the format expected, for example,
RecordSets vs. DataTables)

Return to the calling application.

The Object is the entity that the client “sees” as executed. Methods on the object are executed on a particular host based on any
Selection Hint given or their associated remote environment (RE). There is a one-to-many relationship between an RE and an
Object that allows for multiple Objects to be executed via the same Host definitions given by an RE.

The WIP Microsoft Management Console (MMC) Administrative Console enables these relationships to be established by using
wizards or through manual configuration. After these relationships are established, client calls that result in host processing
can be initiated.

See Also
Concepts
Windows-Initiated Processing Console

https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx

Starting the New Remote Environment Wizard
You can use the New Remote Environment Wizard to define the characteristics of the environment that receives request
from the Windows system.

The remote environment definition includes:

Remote Environment Name

Network Transport type

Host identification

Host Software Environment

Code Page

See Also
Concepts
Windows-Initiated Processing Console

https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx

How to View All Remote Environments
Follow these steps to view all remote environments (RE):

To view the names and properties of the remote environments

1. In the left pane, click the Remote environments folder, and then click an RE name.

2. In the right pane, view the name and properties of each application running on the computer.

Remote Environment

Type

To view the operations available on a remote environment

1. In the left pane, click the remote environment name.

2. In the right pane, click the desired action:

New

View displays a list of menu items:

Add/Remove Columns enables you to choose which properties are displayed in the list view. All properties of the
remote environment are viewable as a column.

Large Icons displays larger icons for items in the right pane.

Small Icons displays smaller icons for items in the right pane.

List displays only the smaller icons and the names of the applications in the right pane.

Detail displays the smaller icons and the properties of the applications in the right pane.

Customize enables you to change the options to show or hide items displayed in the right pane.

Delete deletes the remote environment from the computer. The deleted item is removed from the specific
computer that it was defined on and from the administrative data store.

Rename renames the highlighted remote environment. The new name must be unique and is reflected across all
elements of the host-initiated processing (HIP) console. The Rename operation does not affect the operation of
Objects that have references to the remote environment. After the Rename operation is completed, any Objects
that reference the remote environment continue to maintain their reference to the renamed remote environment.

Refresh redraws the screen to show any updates.

Export List enables you to save the list of remote environments as a separate file.

Properties enables you to view and change the properties of a remote environment.

Help displays an online Help topic explaining the items that appear in the Transaction Integrator (TI) Manager
console and the actions you can take.

See Also
Concepts
Creating a Remote Environment

https://msdn.microsoft.com/en-us/library/aa704824(v=bts.10).aspx

Adding a Remote Environment
You can use the Remote Environment Wizard to define the characteristics of the environment that receives request from the
Windows system.

The remote environment definition includes the following:

Remote Environment Name

Network Transport type

Host identification

Host Software Environment

Code Page

See Also
Concepts
Windows-Initiated Processing Console

https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx

Creating an Object
Objects in the Windows-initiated processing (WIP) environment represent the “Servers” that can be called by a client. As a
result of this call, a request is sent to a host. The Object is defined by a Transaction Integrator Metadata file that is generated by
the development-time tool (Application Integrator Designer).

You can use the Object Wizard to create new objects.

See Also
Concepts
Objects
Windows-Initiated Processing Console
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa745243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Viewing All Objects
Click View All to display the entire list of objects with their corresponding properties.

See Also
Concepts
Creating an Object
Objects
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa705501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Creating and Managing Remote Environments Using TI
Manager

Use Transaction Integrator (TI) Manager to create and manage remote environments (RE) for each mainframe region.

In This Section

How to Start TI Manager

How to Define an SNA CICS or SNA IMS Remote Environment

How to Define a Transactional SNA CICS or SNA IMS Remote Environment

Specifying SNA Attributes for Remote Environments

How to Assign a TI Component to a Remote Environment

Working with Unassigned Components

How to Set a Default Remote Environment

How to Move a TI Component to Another Remote Environment

How to Locate a TI Component

How to Activate or Deactivate a Remote Environment

How to Delete a TI Component from a Remote Environment

How to Delete a Remote Environment

How to Set or View Remote Environment Properties

Supporting Two-Phase Commit in a Remote Environment

https://msdn.microsoft.com/en-us/library/aa772092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745354(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705767(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704832(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772038(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746245(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705390(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705665(v=bts.10).aspx

How to Start TI Manager
You can start TI (Transaction Integrator) Manager many different ways:

Use the Start menu

Start Microsoft Management Console (MMC), and then add the appropriate snap-in consoles

Double-click a saved MMC configuration file (.msc file)

Enter a command line at a command prompt

Use the Run command on the Start menu

You can also start TI Manager from MMC. Then you can save your MMC configuration as an .msc file, so that later you can just
double-click the .msc file to start it. This technique can be useful when you are adding other snap-ins to MMC in addition to the
TI Manager snap-ins.

To start TI Manager from the Start menu

Click Start, point to Programs, point to Host Integration Server, point to Application Integration, and then click TI
Manager.

To start TI Manager from MMC

1. Start MMC by doing one of the following:

a. Click Start, click Run, type mmc, and then click OK.

b. Type mmc at a command prompt, and then press ENTER.

2. On the Console menu, click Add/Remove Snap-in.

3. In the Add/Remove Snap-in dialog box, click Add.

4. In the Add Standalone Snap-in dialog box, double-click TI Manager.

5. In the Specify machine to administer dialog box, click Local computer.

6. Click Finish.

7. In the Add Standalone Snap-in dialog box, double-click Component Services (or Microsoft Transaction Server).

8. In the Add Standalone Snap-in dialog box, click Close.

9. In the Add/Remove Snap-in dialog box, click OK.

If you save the configuration as, for example, MyCOMTI.msc, you can run it again later by double-clicking the file name.

To start TI Manager from the command

1. Click Start, and then click Run.

2. Type the following:

MMC "c:\Program Files\Host Integration Server\System\ComtiComPlus.msc"

3. Click OK.

Make sure that you include the quotation marks because the path contains spaces.

Starting TI Manager from the Command Line

You can also start TI Manager from a command line. Include the path and file name of the .msc file when you use the Run
command or from a command prompt. Microsoft has included two .msc files (ComtiComPlus.msc and ComtiMTS.msc) for you

in the Host Integration Server\System folder. The following procedure is an example.

If you previously added TI Manager to a remote computer, you can use the command line to start TI Manager for the remote
computer if you know the name of that computer. However, you must have enabled the following option at the time that you
added the console for the remote computer: Allow the selected computer to be changed when launching from the command
line. For example, if you created a file named MyOtherCOMTI.msc on another computer in a Windows 2000 network, you can
run it on your local computer by using the following procedure.

To start a remote TI Manager from the command line

1. Click Start, and then click Run.

2. Type the following:

MMC "C:\Program Files\Host Integration Server\System\MyOtherCOMTI.msc" /computer=computername

3. Click OK.

Adding the /computer=computername option lets you configure and otherwise manage all your TI environments
from a single computer.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx

How to Define an SNA CICS or SNA IMS Remote Environment
An SNA CICS or SNA IMS remote environment (RE) is an RE of the CICS Using LU 6.2, CICS LINK Using LU 6.2, or IMS Using LU
6.2 RE type.

To define an SNA CICS or SNA IMS RE

1. Start TI Manager.

2. Double-click Transaction Integrator in the console tree.

3. Right-click Remote Environments, point to New, and then click Remote Environment.

4. In the Add Remote Environment dialog box, click an RE type (CICS Using LU 6.2, CICS LINK Using LU 6.2, or IMS Using
LU 6.2), and then click OK.

5. Specify the SNA attributes for the RE, and then click Next.

6. Enter a name for the new RE instance, or accept the default.

The name can be a maximum of 255 characters.

7. Enter an optional comment to describe any distinguishing characteristics of this RE.

8. Click Next, and then click Finish.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Define a Transactional SNA CICS or SNA IMS Remote
Environment

A transactional SNA CICS or SNA IMS remote environment (RE) is one that supports Sync Level 2 to enable two-phase commit
(2PC). Note that none of the TCP/IP REs support 2PC because TCP/IP does not support Sync Level 2 or any other 2PC
mechanism.

Note that IMS version 6.0 and IBM Resource Recovery Service (RRS) are required on the mainframe system for IMS sync level
2 support.

To define a transactional SNA CICS or SNA IMS RE

1. Start TI Manager.

2. Create a new CICS Using LU 6.2, CICS LINK Using LU 6.2, or IMS Using LU 6.2 RE, or click an existing SNA RE in the
console tree.

To create a new RE, double-click Transaction Integrator in the console tree, right-click Remote Environments, point to
New, and then click Remote Environment.

3. Right-click CICS Using LU 6.2, CICS LINK Using LU 6.2, or IMS Using LU 6.2 RE, and then click Properties.

4. Click the LU 6.2 tab.

5. Select the Supports Sync Level 2 Protocols check box.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

Specifying SNA Attributes for Remote Environments
To determine the attributes that are required by Transaction Integrator (TI) when you are creating a new remote environment,
see your Host Integration Server configuration. To obtain the required attribute values, open Host Integration Server SNA
Manager or contact your Host Integration Server system administrator.

Note
To use two-phase commit, each local and remote logical unit (LU) must have SyncPoint support enabled in the SNA server n
ode in which it is defined and should point to the computer that is running Resync services. For more information, see
Providing a Fail-Safe Environment for ACID Transactions.

Local LU Alias

Enter the LU alias for the local APPC LU defined for the TI remote environment. From Host Integration Server SNA Manager,
select the Host Integration Server computer that provides the required host connectivity. Then open the Local APPC LUs folder
to obtain a list of configured local APPC LU aliases. Use a name from the list to specify this attribute.

Remote LU Alias

Enter the LU alias for the remote APPC LU defined for the TI remote environment. From Host Integration Server SNA Manager,
select the computer running Host Integration Server that provides the required host connectivity. Then open the Remote APPC
LUs folder to obtain a list of configured remote APPC LU aliases. Use a name from the list to specify this attribute.

Mode Name

Enter the APPC mode used for the connection. From Host Integration Server SNA Manager, open the APPC Modes folder to
obtain a list of configured modes. Use a name from the list to specify this attribute.

To use two-phase commit, the APPC mode must be Sync Level 2 capable.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager

https://msdn.microsoft.com/en-us/library/aa704719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx

How to Assign a TI Component to a Remote Environment
Each TI component is associated with a remote environment (RE) type. As you add multiple REs of the same type, verify that
each component is assigned to an RE of the type for which it is configured.

To assign a component to a specific RE of the appropriate type, you can use one of the following methods:

Set a default RE for the Transaction Integrator (TI) components you create. When you deploy the TI component in a
COM+ application , the component is automatically associated with the default RE of the appropriate type. Unless you
specifically set the default RE, the default RE is the first RE of that type (or class) that you defined.

Manually move components from one specific instance of an RE type to another specific instance of the same type. This
action applies to TI components that you have already deployed in a COM+ application. You can use TI Manager to move
components from one RE to another.

Deploy the TI component by using HIS Designer. In HIS Designer, you are asked to associate the TI component with a
specific RE. For more information about this option, see How to Deploy a TI Component.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754341(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

Working with Unassigned Components
Before a Transaction Integrator (TI) component appears in the console tree of TI Manager, it must be deployed in a COM+
application. Before you can successfully run an application that calls the component, you must associate the component with a
remote environment (RE) that describes the region on the mainframe where the host transaction program resides. Any TI
component that is not associated with an RE appears in the Unassigned Components folder of TI Manager. Such
components are valid COM+ components. However, they cannot be used by your application until they are assigned to the
proper RE.

A TI component appears in the Unassigned Components folder if you do not set the default registration RE. This can happen
for either of the following reasons:

You created the TI component and added it to a COM+ application, but you have not yet created an instance of an RE of
the RE type required by the TI component.

The default registration RE is set to <none> on the Registrar tab of the Transaction Integrator properties. This setting is
useful, for example, if you do not want to assign components to an RE until the mainframe is fully configured, or until
you are ready to test or deploy your TI application.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Set a Default Remote Environment
Each Transaction Integrator (TI) component must be associated with a remote environment (RE) type. When you register a TI
component by adding it to a COM+ application , the component is associated with the first instance of the same type that you
defined using TI Manager. For example, if you create an instance of a CICS using LU 6.2 RE with the default name of CICS1, any
component created for use with a CICS using LU 6.2 RE will be associated with CICS1. If you define more REs of the same type
(for example, CICS2 and CICS3), you can specify the default RE for associated components that you later deploy.

If you want to associate a component with an RE at a later time, you can specify a default RE of none. Registered components
with no RE specified are shown in the Unassigned Components folder in TI Manager.

To set a default RE

1. Start TI Manager.

2. Right-click Transaction Integrator in the console tree, and then click Properties.

3. Click the Registrar tab.

4. Click an RE type, and then click Change.

5. In the list, click the name of the RE that you want to be the default RE instance for that RE type.

6. Click OK.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Move a TI Component to Another Remote Environment
Each Transaction Integrator (TI) component is associated with a specific remote environment (RE), such as CICS Using LU 6.2,
when you create the component in HIS Designer. Windows automatically registers a TI component with its appropriate RE
when you add the TI component to a COM+ application to create a TI Automation server.

You can move a component to another RE when, for example, you want to move the component to a different region of a
mainframe as your application goes through the cycle of development, testing, and deployment. TI components are designed
for a certain type of RE, so you can only move a TI component to another RE of that identical type. However, you can move any
component into the Unassigned Components folder to save it. Later, you can associate a component in the Unassigned
Components folder with an appropriate RE. Use TI Manager to move TI components from one RE to another or to the
Unassigned Components folder.

Note
You cannot move components across computer boundaries. For example, if you have two TI Manager consoles open on your
computer, one for your computer and the other for a remote computer where TI is also installed, you cannot move a compon
ent from a RE on one console into a RE on the other console.

To move a TI component in TI Manager

1. Start TI Manager.

2. Under Transaction Integrator in the console tree, find the component that you want to move in either its current RE
folder or in the Unassigned Components folder.

3. Click the component name, and on the Action menu, click Move.

4. In the Move Component dialog box, click a new RE instance name in the list. (The list only displays those currently
defined REs that the selected component can be moved into.)

5. Click OK.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Locate a TI Component
The more remote environments (RE) that you have configured, the more difficult it can be to locate a specific Transaction
Integrator (TI) component in TI Manager's console tree. You can, however, easily locate a specific component without
expanding all the REs in the console tree.

To locate a specific TI component

1. Start TI Manager, right-click Transaction Integrator in the console tree, and click Find Component.

2. In the list, click the name of the component that you want to locate, and then click OK.

The console tree shows the remote environment with which the component is associated.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Activate or Deactivate a Remote Environment
When a region on a mainframe fails or is taken offline for administrative maintenance, any method invocation for components
associated with the remote environment (RE) that describes that region will fail. Therefore, when a mainframe region is
unavailable, you should deactivate the RE that is supported by that region. You can then temporarily move the affected
Transaction Integrator (TI) components to another RE (for example, a back-up region for the offline one) so that your TI
applications can continue to run. When the mainframe region is restored, you can once again activate the RE for that region.
Deactivating an RE for an offline region on a mainframe also reduces the number of error messages that are sent to the
Windows Event Log.

You can check the status of REs by clicking the Remote Environments folder in the TI Manager console tree. The details pane
shows icons for all the remote environments contained in the folder. These icons indicate whether a remote environment is
active or inactive.

Note
If a transaction is in progress at the time that the region on the mainframe is taken offline, the transaction finishes. However,
subsequent method invocations will fail.

To activate or deactivate a Remote Environment

Use one of the following methods to activate or deactivate an RE:

Start TI Manager, right-click the remote environment (RE) for the mainframe region that you want to activate or
deactivate, and click Activate or Deactivate.

-or-

Start TI Manager, click the remote environment (RE) for the mainframe region that you want to activate or deactivate, and
then click the green arrow on the tool bar to activate an inactive RE, or click the red arrow to deactivate an active RE.

If you click the Remote Environments folder in the console tree, the details pane lists all of the REs and indicates the current
state of each RE.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Delete a TI Component from a Remote Environment
Deleting a Transaction Integrator (TI) component from a remote environment (RE) deletes that component from the COM+
application. You can delete only one component at a time.

To delete a TI component from an RE

1. Start TI Manager.

2. In the console tree, double-click Transaction Integrator for the appropriate computer, double-click Remote
Environments, and then double-click the RE that contains the component to be deleted.

3. Right-click the component to be deleted, and click Delete.

4. Click Yes to delete the selected component.

To reinstate the component, add it back into the COM+ application.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Delete a Remote Environment
You can delete a remote environment (RE) when, for example, you need to move a mainframe transaction program (TP) from
one region of the mainframe to another. When you delete an RE, all Transaction Integrator (TI) components assigned to that RE
are placed in the Unassigned Components folder in TI Manager.

To delete a remote environment

1. Start TI Manager, and right-click the RE that you want to delete.

2. Click Delete.

3. Click Yes to confirm the deletion.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Set or View Remote Environment Properties
Basic information about a remote environment (RE) is displayed on an item's property sheet. Property sheets are available for
the following items:

The Transaction Integrator (TI) folder

An RE of any type

Any component associated with an RE

Any component present in the Unassigned Components folder

In addition, Context-sensitive Help is available for all properties.

Note
By default, no time-out value is specified when you create REs that use LU 6.2 or TCP/IP protocols. The TI run-time environm
ent waits indefinitely for the mainframe transaction program to return output parameters. While waiting, the TI run-time envi
ronment also blocks the calling client application until a response is received. This behavior is typical for APPC applications. T
o avoid indefinite blocking, you can set a time-out value (in seconds) for REs using LU 6.2 or TCP/IP protocols. You set the val
ue on the LU 6.2 or TCP/IP tab of the RE's properties page.

To view or set an item's properties

1. In TI Manager, right-click the item whose properties you want to view or set.

2. Click Properties.

3. If the property sheet has more than one tab, click the tab that contains the properties you want to set or view.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

Supporting Two-Phase Commit in a Remote Environment
Only the SNA protocols support two-phase commit (2PC). The TCP/IP protocol does not support 2PC. For an SNA remote
environment (RE) to support 2PC, it must be set to support ACID (atomic, consistent, isolated, durable) transactions. To
accomplish this, you must set the RE to support the Sync Level 2 protocol.

Transaction Integrator (TI) supports Sync Level 2 for CICS Using LU 6.2, for CICS LINK Using LU 6.2, and for IMS Using LU 6.2
REs. Sync level 2 is the default for all CICS REs but not for IMS REs where IMS version 6.0 and IBM's Resource Recovery
Services (RRS) are required for Sync Level 2 support.

To activate Sync Level 2 support, follow the procedure in
How to Define a Transactional SNA CICS or SNA IMS Remote Environment.

Note
The Host Integration Server LU 6.2 Resync TP Service only compares logs with CICS and IMS regions when the RE has been s
et to support Sync Level 2.

See Also
Concepts
Creating and Managing Remote Environments Using TI Manager
Creating and Managing TI Components
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa771270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

Managing Transaction Integrator with TI Manager
Use TI (Transaction Integrator) Manager to create and manage remote environments (RE) for each mainframe region.

In This Section

How to Add or Remove TI Manager for a Remote Computer

How to Create Multiple Views of a Single TI Manager Console

Refreshing the TI Manager Display

https://msdn.microsoft.com/en-us/library/aa705131(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744361(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745845(v=bts.10).aspx

How to Add or Remove TI Manager for a Remote Computer
You can use TI (Transaction Integrator) Manager to administer remote environments (RE) on your local client computer if you
installed Host Integration Server Server on that computer. However, TI cannot reside on a computer that has Host Integration
Server Administrator Client or Host Integration Server End-User Client installed instead of Host Integration Server Server.

Once you install Host Integration Server Server on the computer, you can use TI Manager to deploy TI components in COM+
applications on the local computer.

You can display a TI Manager on your local computer for your local computer and for up to nine remote computers that are
currently running TI. This means that, from a single computer, you can administer the remote environment configurations on a
maximum of 10 computers.

To add TI Manager consoles for remote computers to your local computer

1. Open Microsoft Management Console (MMC) by doing one of the following:

a. Click Start, click Run, type mmc, and then click OK.

b. Type mmc at a command prompt, and then press ENTER.

2. On the Console menu, click Add/Remove Snap-in.

3. In the Add/Remove Snap-in dialog box, click Add.

4. In the Add Standalone Snap-in dialog box, double-click TI Manager.

5. In the Specify computer to administer dialog box, click Another Computer and type the name of that computer (for
example, mycomputer2).

6. If needed, select the Allow the selected computer check box so that in the future, you can specify a different computer
when you start TI Manager from the command line. To learn how to do this, see How to Start TI Manager.

7. Click Finish.

8. Repeat steps 4–7 for each remote computer that you want to administer from your local computer. You can add a
maximum of nine.

9. In the Add Standalone Snap-in dialog box, click Close.

10. In the Add/Remove Snap-in dialog box, click OK.

To remove a TI Manager console

1. On the TI Manager master menu, click Console.

2. Click Add/Remove Snap-in.

3. Click the TI console that you want to remove, click Remove, and then click OK.

See Also
Concepts
Managing Transaction Integrator with TI Manager
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa772092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754286(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

How to Create Multiple Views of a Single TI Manager Console
Each instance of a TI (Transaction Integrator) Manager console shows the remote environments configured for a single
computer. You cannot load more than one TI Manager console for a single computer. However, you can create multiple views
of a single TI Manager console, and then display each view in a separate window. Typically, you can use this feature to display
the different details for different selected items in the console tree. To save space on the screen, you can hide the console tree
on each window.

When you add a new window, that window is superimposed on the original window. To make them all visible, cascade or tile
the windows. You can then resize or reposition the windows.

To create multiple views of a TI console

1. Start TI Manager for the computer.

2. On the Action menu, click New Window from Here.

3. Repeat step 2 for the number of windows that you want to add.

4. On the Window menu, click either Cascade or Tile Horizontally, depending on how you want to configure the
windows.

5. For each window, select the item in the console tree that you want to display.

To hide the console tree for a window

On the window's View menu, click Customize.

Clear the Console tree check box, and select the Description bar check box, and then click OK.

The description bar describes the content of the remaining pane, so you no longer need the console tree.

See Also
Concepts
Managing Transaction Integrator with TI Manager
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754286(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

Refreshing the TI Manager Display
The contents of TI (Transaction Integrator) Manager are automatically refreshed as new TI-related entries are written to the
Windows Registry. For example, TI Manager refreshes if you add a TI component to, or delete one from, a COM+ application.
An automatic refresh, however, does not sort the updates that it makes to the display. For example, if you create a new remote
environment (RE), the new remote environment is added to the bottom of the RE tree, rather than inserted alphabetically
within the tree. You can manually refresh the display to resort its contents. Manually refreshing the display is also the best way
to ensure that TI Manager shows current data from the Windows Registry.

You can refresh the TI Manager display in either of two ways:

On the Action menu, click Refresh.

-or-

On the MDI toolbar, click Refresh.

See Also
Concepts
Managing Transaction Integrator with TI Manager

https://msdn.microsoft.com/en-us/library/aa754286(v=bts.10).aspx

Creating and Managing TI Components
The topics in this section give you the information you need for creating and managing Transaction Integrator (TI) components.

In This Section

Reserved Words

How to Create a New TI Component

How to Import COBOL into a TI Component

How to Export COBOL from a TI Component

Adding TI Components to COM+ Applications

How to Remove a TI Component from a COM+ Application

How to Set or View Component Properties

How to Set a TI Component's Transaction Property

Managing TI Calls Using Status and Timeout Properties

How to Print a Component Description

https://msdn.microsoft.com/en-us/library/aa770540(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746196(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770644(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754307(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705382(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772018(v=bts.10).aspx

Reserved Words
When Host Integration Server Designer (HIS Designer) asks you to supply a name (for example, a method or parameter name),
do not use any of the following reserved words. Words on this list are not case sensitive; for example, Byte, byte, and BYTE are
all reserved words.

Boolean

BSTR

Byte

Currency

CurrentRE

Date

Decimal

Double

enum

Float

IDispatch

Int

Integer

Interface

LastSM

Long

LPSTR

LPWSTR

module

NewRecordset

Password

RECollection

REStatus

SelectionHint

ServerPID

Short

Single

String

Struct

typedef

UserID

VARIANT

Void

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Create a New TI Component
Use Host Integration Server Designer (HIS Designer) to create a new Transaction Integrator (TI) component and populate it
with methods.

To create a new TI component

1. Start HIS Designer.

2. On the File menu, click New.

3. Type a library name for the new TI component library.

4. Type a name for the TI component library's interface.

5. Type a version number for the component library.

The number to the left of the decimal point is the major version number. The number to the right of the decimal point is
the minor version number.

6. Click the type of remote environment (RE) that your component will use.

7. Click the component library's Transaction support property.

In this case, you are deciding whether the component will support ACID (atomic, consistent, isolated, durable)
transactions that each support two-phase commit (2PC). If you click Does not support transactions, your TI component
will still support mainframe transactions in mainframe transaction programs (TP).

8. If you are providing Help for your application, type the context ID for the first topic in the Starting Help Context ID box.

9. Click OK.

You will now see folders and icons for Interface, Methods, Recordsets, and User-Defined Types.

To add a method to the interface

In the console tree of HIS Designer, right-click Methods, point to Insert Method, and then click a data type that
represents the return value.

To add a parameter to a method

In the console tree of HIS Designer, right-click the name of the method, point to Insert Parameter, and then click a
data type.

To add a recordset to the interface

In the console tree of HIS Designer, right-click Recordsets, and then click Insert Recordset.

To add a member to the recordset

In the console tree of HIS Designer, right-click the name of the recordset, point to Insert Recordset Member, and
then click a data type.

To add a user-defined type to the interface

In the console tree of HIS Designer, right-click User-Defined Types, and then click Insert User-Defined Type.

To add a member to the user-defined type

In the console tree of HIS Designer, right-click the name of the User-Defined Type, point to Insert User-Defined
Type Member, and then click a data type.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Import a TI Component
You can import the methods, recordsets, and user-defined types from an existing component library to another component
library. This is useful, for example, if you want to build a new component library based on an existing one.

Imported methods, recordsets and user-defined types are added to those of the library into which they are imported. If
duplicate method names exist between the two libraries, you are asked to supply a new name for a method before it is
imported. Duplicate recordset names are allowed unless columns within the recordsets do not match, or Automation data
types and associated COBOL data types within a column do not match. In this case, you are asked to supply a new name for a
recordset before it is imported.

To Import a TI Component

1. In the console tree of HIS Designer, right-click the icon for your component library's interface.

2. Point to Import, and then click Component Library.

3. In the Insert Component Library dialog box, locate and click the TI component library (the .tlb file) that you want to
import.

4. Click Open.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Import COBOL into a TI Component
You can import COBOL source code to define the Automation interface of a new Transaction Integrator (TI) component library.
To do so, use the TI COBOL wizard to create one method at a time. The COBOL wizard initially imports an entire source file for
a mainframe transaction program (TP). As you step through the wizard, you extract the data declarations that describe input
sent to, and output received from, the mainframe TP. These data declarations are used to define your TI component library. All
other content in the source file is ignored.

As you develop your TI application, you can continue to use the COBOL wizard to make adjustments to a component definition.
For example, you can add a parameter to a method to incorporate updates that have been made to the COBOL source code on
the mainframe. To adjust a component definition, you can re-run the COBOL wizard to replace a method or a recordset in your
component definition. Before replacing an existing method or recordset, you must unlock the method or recordset. Component
definitions are locked by default to protect against unintended changes.

To import COBOL into a TI component

1. In the console tree of Host Integration Server Designer (HIS Designer), right-click the icon for your component library's
interface.

2. Point to Import, and click COBOL Wizard.

3. Follow the instructions on the screen.

The COBOL wizard steps you through the process of importing the COBOL source code that you want.

To unlock a method or record set

1. Start HIS Designer, and right-click the method or recordset.

2. Click Unlock.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Export COBOL from a TI Component
You can use a component definition to generate COBOL syntax for the data declarations that describe input sent to, and output
received from, the mainframe transaction program (TP). The generated COBOL syntax is saved in a text file. The file's contents
are not an actual program, but data declarations. The file contains data only, not logic, and is intended to serve as a guideline,
for example, for code that can be incorporated into a mainframe TP.

To export COBOL from a TI Component

1. In the console tree of HIS Designer, right-click the icon for your component library's interface.

2. Point to Export, and then click Generate COBOL Declarations.

If you are exporting from a new (unsaved) component library, you are prompted to save the library.

3. Click OK.

The Save File As dialog box appears.

4. Fill in the dialog box and then click Save.

Transaction Integrator (TI) displays the text file in Notepad for you to view.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

Adding TI Components to COM+ Applications
To deploy a Transaction Integrator (TI) component, add it to a COM+ application.

A TI component consists of a type library (.tlb file) that is created by using Host Integration Server Designer (HIS Designer).
Typically, you deploy all components that are required for your Automation server application in a single COM+ application.
There are no other files (such as associated DLLs) that you must have to deploy together with a TI component library. When
you add the TI component library in a COM+ application , that COM+ application becomes an Automation server that is
automatically associated with the generic TI run-time environment code (tagen.dll).

You can deploy a TI component using one of these methods:

Using HIS Designer.

Using TI Manager.

Just dragging and dropping the component.

To use any of these methods, you must have administrative privileges.

After you deploy a TI component, you can view the component's interfaces and methods. Check the deployed component's
property settings to verify that it is associated with the correct remote environment. To do this, right-click the component's
name in the console tree, and then click Properties.

See Also
Concepts
Creating and Managing TI Components

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx

How to Remove a TI Component from a COM+ Application
To remove a TI component from a COM+ application

1. Start TI Manager.

2. In the console tree, double-click Component Services (or Microsoft Transaction Server).

3. Double-click Computers, and then double-click the computer where the component you want to remove is located.

4. Double-click COM+ applications, double-click the COM+ application that contains the component, and then double-
click its Components folder.

5. Right-click the component that you want to remove, and then click Delete.

6. Click Yes to confirm that you want to delete the selected component.

When you remove a TI component from a COM+ application , you also remove the entry for the component from the
Windows Registry. In addition, the representation of the component is removed from TI Manager. You can no longer use
that component.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Set or View Component Properties
A property sheet displays basic information about a Transaction Integrator (TI) component. Property sheets are available in
Host Integration Server Designer (HIS Designer) for the following:

Interface.

Each method in an interface.

Each parameter of a method.

Each recordset in an interface.

Each column of a recordset.

Each user-defined type in an interface.

Each member of a user-defined type.

To view or set an item's properties

1. In HIS Designer, right-click the item, and then click Properties.

Note
After you deploy a TI-created component in a COM+ application, that component acquires additional properties. For a
complete view of a component's properties, use TI Manager to view the properties for the component and the properti
es for the COM+ application where the component is located.

Some properties are informational only, so you cannot change them. However, there are many properties that you can change.
When you are viewing properties in HIS Designer, you can protect against inadvertently changing a component definition by
locking the definition. Doing so makes property settings read-only until you unlock them.

To lock or unlock a component definition in HIS Designer

1. Start HIS Designer, and open a TI component.

2. In the console tree, right-click the component's interface, and then click Lock or Unlock.

Context-sensitive Help is available for all properties.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Set a TI Component's Transaction Property
Set a Transaction Integrator (TI) component's Transaction support property to tell COM+ whether that TI component supports
COM-based ACID (atomic, consistent, isolated, durable) transaction processing. When an instance of a TI component is created,
COM+ always checks the component's transaction property to determine whether the instance should run in a COM-based
ACID transaction.

Note
The term transaction can be confusing because it can mean different things depending on the context. A mainframe transacti
on program can contain one or more mainframe transactions. However, a mainframe transaction is not necessarily an ACID t
ransaction.

Not all components are designed to support COM-based ACID transaction processing. If your component is not designed to
participate in an existing COM+ transaction or start a new COM+ transaction, be sure to set the component's Transaction
support property to Does not support transactions in Host Integration Server Designer (HIS Designer) or to Not supported
in TI Manager. This does not mean that the TI component does not support mainframe transactions; it means that the
component does not support COM-based ACID transaction processing.

The application developer initially sets a component's transaction property in HIS Designer. After a TI component is deployed
in a COM+ application , an administrator can change a TI component's transaction property to accommodate changing needs
by using TI Manager or HIS Designer.

In HIS Designer, you can set the Transaction support property to one of the following values:

Requires a transaction This TI component is to be used in an application that executes within a COM+ ACID transaction.
This TI component's methods are called by client applications that must automate mainframe transaction programs (TP)
that support sync level 2 requests (also known as two-phase commit). If a transaction is in progress, the application is
enlisted in the transaction. Otherwise, COM+ starts a new transaction. None of the TCP/IP-based remote environments
(RE) support this property because TCP/IP does not support two-phase commit. For an IMS Using LU 6.2 RE to support
this property, you must be using IMS version 6.0 or later. The CICS LINK Using LU 6.2 RE type supports this property. The
CICS Using LU 6.2 RE type requires mainframe ACID transaction processing support.

Requires a new transaction This TI component is to be used in an application that executes within a COM+ ACID
transaction. This TI component's methods are called by client applications that must automate mainframe transaction
programs (TPs) that support sync level 2 requests (also known as two-phase commit). By setting this property, you are
telling COM+ to always start a new ACID transaction, regardless of whether or not an existing ACID transaction is already
in progress. None of the TCP/IP-based remote environments (RE) support this property because TCP/IP does not support
two-phase commit. For an IMS Using LU 6.2 RE type to support this property, you must be using IMS version 6.0 or later.
The CICS LINK Using LU 6.2 RE type supports this property. The CICS Using LU 6.2 RE type requires mainframe ACID
transaction processing support.

Supports transactions This TI component is to be used in an application that may or may not execute within a COM+
ACID transaction. This TI component's methods are called by client applications that must automate mainframe
transaction programs (TPs) that support both sync level 0 (nontransactional) mainframe transactions and sync level 2
(transactional two-phase commit) mainframe transactions. For a sync level 2 transaction, if a transaction is in progress,
the client application is enlisted in the transaction. Otherwise, COM+ starts a new transaction. None of the TCP/IP-based
remote environments (REs) support sync level 2 because TCP/IP does not support two-phase commit. For an IMS Using
LU 6.2 RE to support sync level 2, you must be using IMS version 6.0 or later. The CICS LINK Using LU 6.2 RE type
supports this property. For the CICS Using LU 6.2 RE type to support sync level 2, the mainframe must support ACID
transaction processing.

Does not support transactions This TI component is to be used in an application that does not execute within a COM+
transaction. This component's methods are called by applications used with mainframe TPs that support sync level 0
mainframe transactions. All of the TCP/IP and SNA remote environment (RE) types support this property.

In TI Manager, in addition to these four possible transaction properties, you can disable transaction support for a TI component.
The five values for the Transaction support property in TI Manager are as follows:

Disabled Click this to eliminate ACID transaction-related overhead for objects that will never need access to a resource
manager. This attribute simulates the transactional behavior of an undeployed component (a COM component that has
not been installed in a COM+ application).

Not Supported Click this to prevent an object from participating in an ACID transaction, regardless of the transactional
status of its caller. Declaring this value guarantees that an object will not vote in its caller's ACID transaction or begin an
ACID transaction of its own. This is the default value for all components. This is equivalent to the Does not support
transactions setting in HIS Designer.

Supported Click this to allow an object to participate in an ACID transaction if one exists. Declaring this value causes an
object to share in its caller's ACID transaction but prevents it from initiating an ACID transaction of its own. This is
equivalent to the Supports transactions setting in HIS Designer.

Required Click this to specify that all objects created from the component will be transactional (that is, all must meet the
ACID test). This is the preferred setting for a object that performs resource activities because it guarantees transaction
protection for those activities. This is equivalent to the Requires a transaction setting in HIS Designer.

Requires New Click this to require that an object be the root of a new transaction, regardless of the transactional status
of the caller. COM+ automatically initiates a new transaction, which is distinct from the caller's transaction. This is
equivalent to the Requires a new transaction setting in HIS Designer.

Use the following procedures to set or change the transaction property for a TI component.

To set the transaction property for a new TI component

To change an undeployed TI component's transaction property in HIS Designer

To change a deployed TI component's transaction property in TI Manager

To set the transaction property for a new TI component

1. Start HIS Designer.

2. On the File menu, click New.

3. Click the transaction property value that you want under Transaction Support in the New Component Library dialog
box.

To change an undeployed TI component's transaction property in HIS Designer

1. Open the TI component in HIS Designer.

2. In the console tree, right-click the TI component's interface, and then click Properties.

3. Under Transaction support, click the value you want to assign to the component, and then click OK.

To change a deployed TI component's transaction property in TI Manager

1. Start TI Manager.

2. In the console tree, under the Component Services (or Microsoft Transaction Server) folder, browse to the COM+
application where the TI component is located.

3. Right-click the name of the TI component, and the click Properties.

4. Click the Transactions tab, click one of the five options under Transaction support, and then click OK.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

Managing TI Calls Using Status and Timeout Properties
A client application can manage its calls to a Transaction Integrator (TI) Automation server by checking the TI component's
remote environment (RE) Status property and the Timeout property.

Status Property

TI provides a read-only RE Status property in each component library created by Host Integration Server Designer (HIS
Designer). A client application can use this property to inquire about the current state of the RE with which a TI component is
associated. It returns whether the RE is enabled, disabled, or blocked by a communications difficulty.

Timeout Property

All RE types supported by TI include a Timeout property. Set the Timeout property value on the LU 6.2 or TCP/IP tab of the
remote environment's properties page in TI Manager.

By default, an RE has no initial Timeout property value. Therefore, unless you use TI Manager to set a Timeout value, the TI
run-time environment waits indefinitely for the mainframe transaction program (TP) to return output parameters. Meanwhile,
the TI run-time environment blocks the calling client application until this response is received. This blocking behavior is typical
for APPC applications.

For example, with LU 6.2, if an IMS program is disabled, request messages continue to be placed successfully on the IMS
message queue without network errors being reported. This occurs even when these messages are not being processed.

Set the Timeout value to free a blocked client application after the time-out interval expires. After the time-out period expires,
the client application is notified that a time-out error occurred when attempting to execute the IMS program. However, because
the requests are successfully stored in the IMS message queue, the requests can still be processed later if the IMS program is
enabled without first emptying the IMS queue.

Use TI Manager to specify a Timeout value, in seconds, for a given remote environment. Right-click the RE, and then click
Properties.

Handling Time-out Errors

When sending messages to the CICS or IMS region described by a specific RE, the TI run-time environment measures the
amount of elapsed time that occurs from when a request is sent to when a response is received. If the time-out interval elapses
before receiving a response, the TI Automation server object is terminated, and the associated COM+ transaction stops the
transaction and reports the error to the client application. A message describing this error is also written to the Windows Event
Log.

To handle a time-out error, the TI run-time environment unbinds the LU 6.2 session established with the CICS or IMS region.
This means that the TI run-time environment must reestablish a new LU 6.2 session before another message can be sent to this
region. If the time-out error occurs over a TCP/IP connection, TI shuts down the TCP/IP connection.

Time-out errors can adversely affect the performance of TI. Therefore, you should set time-out values high enough to signal a
significant failure in the remote CICS or IMS region.

Note
For TCP/IP, the time-out value set on an RE's properties page is significant only to the sending and receiving of data. In contr
ast, the time-out value for establishing the connection itself is defined by the implementation of the underlying TCP transport
.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Print a Component Description
Use the Print command in Host Integration Server Designer (HIS Designer) to print a description of the current component.
This printed description includes the following:

A description of the component's interface properties.

A description of each method, its parameters, and its properties.

A description of each recordset, its columns, and its properties.

To use the Print command

In HIS Designer, click Print on the File menu.

See Also
Concepts
Creating and Managing TI Components
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa771861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Run TI Over TCP/IP
You can install and run Transaction Integrator (TI) over TCP/IP without installing or using any of the SNA services of Host
Integration Server.

Use the following procedure to run a TI application over TCP/IP.

To run a TI application over TCP/IP

1. Configure the mainframe (CICS or IMS) for TCP/IP, and establish a connection with your Windows-based Host
Integration Server Server computer.

For more information, see the following:

Configuring CICS for TCP/IP

Configuring IMS for TCP/IP.

Configure Host Environment and Programming Model Wizard Page in the New Remote Environment Wizard

Enhanced Listener CICS Administration

2. Install the COBOL programs within the CICS or IMS region that receives TI-initiated calls.

3. Define an appropriate TCP/IP remote environment for the CICS or IMS region that receives TI-initiated calls.

4. Build the TI component with a method for each transaction in the transaction program (TP).

5. Deploy the TI component in a COM+ application to create a TI Automation server.

6. Run the client application that calls the new TI Automation server to automate the TP.

See Also
Concepts
Configuring CICS for TCP/IP
Configuring IMS for TCP/IP
Defining a TCP/IP Remote Environment
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa771436(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770529(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771436(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Configuring CICS for TCP/IP
CICS TCP/IP Platform Requirements

TCP/IP version 3R2

CICS version 3.3 or later

Connections to CICS using TCP/IP

CICS uses the IBM-supplied Concurrent Listener (program EZACIC02, transaction ID CSKL) to establish an interaction with
TCP/IP. The Listener is a transaction that automatically starts when CICS TCP/IP is started and enabled. When the Listener
starts, it obtains a socket on which it can "listen" for connection requests from TCP/IP. The Listener binds the socket to a
specified port, and then waits for a client request on that port. TCP/IP maintains a relationship of a port number to a CICS job.
When a client makes a request on a port associated with CICS, TCP/IP forwards the connection request to the Listener in that
CICS job.

For additional details about the CICS MS LINK communication model, see CICS MS LINK (TCP/IP).

TCP/IP-to-CICS Configuration

A TCP/IP port number is associated with a CICS region in the TCP/IP profile data set (hlq.PROFILE.TCPIP). The port statement is
used to define this relationship. For example, the following is a port statement that associates port 3000 with CICS region
CICSRG:

CICS-to-TCP/IP Configuration

The following sample host definition shows configuration parameters for CICS-to-TCP using the EZAC transaction:

The following sample host definition shows configuration parameters for the CICS Concurrent Listener using the EZAC
transaction:

3000 TCP CICSRG

EZAC,DEFINE
ENTER ONE OF THE FOLLOWING
CICS ===> yes Enter Yes|No
LISTENER ===> Enter Yes|No
EZAC,DEFINE,CICS
ENTER ALL FIELDS
APPLID ===> CICSRG APPLID of CICS System
EZAC,DEFINE,CICS
OVERTYPE TO ENTER
APPLID ===> CICSRG APPLID of CICS System
TCPADDR ===> TCPIP Name of TCP Address Space
NTASKS ===> 020 Number of Reusable Tasks
DPRTY ===> 000 DPRTY value for ATTACH
CACHMIN ===> 015 Minimum Refresh Time for Cache
CACHMAX ===> 030 Maximum Refresh Time for Cache
CACHRES ===> 010 Maximum number of Resolvers
ERRORTD ===> CSMT TD Queue for Error Messages

EZAC,DEFINE
ENTER ONE OF THE FOLLOWING
CICS ===> Enter Yes|No
LISTENER ===> yes Enter Yes|No
EZAC,DEFINE,LISTENER
ENTER ALL FIELDS
APPLID ===> CICSRG APPLID of CICS System
NAME ===> CSKL TRANSACTION NAME OF LISTENER
EZAC,DEFINE,LISTENER
OVERTYPE TO ENTER
APPLID ===> CICSRG APPLID of CICS System

Before you attempt to use the TCP/IP connection, do the following:

Verify that you have a TCP address space running on the host. (You should be able to PING the host at its IP address or
DNS name.) Record the IP address; you will need to know it later when you use Transaction Integrator (TI) Manager to
define a TCP/IP remote environment for the CICS region.

Check that the CICS region supports TCP/IP, and that the IBM-supplied Listener (program EZACIC02, transaction ID CSKL)
is defined. These procedures are described in chapter 5 of TCP/IP V3R2 for MVS: CICS TCP/IP Socket Interface Guide (IBM
Document #SC31-7131). Note that this is a CICS TS version 1.2 document, but the configuration is also supported in
CICS version 4.1.

Determine the IP port number of the Listener (EZAC DISPLAY LISTENER); you will need to know it when you use TI
Manager to define a TCP/IP remote environment for the CICS region.

Start the IBM-supplied Listener (EZAO START) and check the CICS view of the Listener status (execute the CEMT INQUIRE
TASK command, and verify that CSKL is running).

See Also
Tasks
How to Run TI Over TCP/IP

TRANID ===> CSKL Transaction Name of Listener
PORT ===> 03000 Port Number of Listener
IMMEDIATE ===> YES Immediate Startup Yes|No
BACKLOG ===> 010 Backlog Value for Listener
NUMSOCK ===> 050 Number of Sockets in Listener
MINMSGL ===> 004 Minimum Message Length
ACCTIME ===> 060 Timeout Value for ACCEPT
GIVTIME ===> 030 Timeout Value for GIVESOCKET
REATIME ===> 000 Timeout Value for READ
FASTRD ===> YES Read Immediately Yes|No
TRANTRN ===> YES Translate TRNID Yes|No
TRANUSR ===> YES Translate User Data Yes|No
SECEXIT ===> Name of Security Exit

https://msdn.microsoft.com/en-us/library/aa744914(v=bts.10).aspx

Configuring IMS for TCP/IP
This section describes the necessary steps in configuring IMS for TCP/IP. It may also be necessary to set up and configure the
Host Web Service. See your IBM documentation for information on this.

IMS TCP/IP Platform Requirements

TCP/IP version 3R2

IMS version 4 or later

Connections to IMS using TCP/IP

IMS uses a Listener (program EZAIMSLN) to establish an interaction with TCP/IP. The Listener in an IMS Batch Message
Processing (BMP) helps facilitate the connection process. When the Listener starts, it obtains a socket on which it can "listen"
for connection requests from TCP/IP. The Listener binds the socket to a specified port, and then waits for a client request on
that port.

TCP/IP maintains a relationship of a port number to an IMS Listener BMP. When a client makes a request on a port associated
with IMS, TCP/IP forwards the connection request to the Listener in that BMP.

Implicit mode

Implicit mode uses the IMS Assist Module to translate conventional IMS communication into corresponding socket calls. The
Implicit mode is dependent on the IBM-supplied default Listener (EZAIMSLN) that runs in a BMP region.

The host server application model processes input data using the IMS message queue. The Listener puts the TRANID and the
input data into the queue. The IMS control region schedules the transaction in a Message Processing Region. The Transaction
Program reads the request from the queue using GU and GN commands. All response data is delivered to the client by way of
the ISRT command. The IBM-supplied Assist Module delivers the data directly to the client through socket API calls.

The Assist Module uses the DBLADLI API for Implicit mode. Host applications are written using CBLADLI or CBLTDLI APIs. If you
want existing IMS applications to use Implicit Mode TCP/IP, you must change to the CBLADLI API and recompile the program.

Explicit mode

The IMS Explicit (TCP/IP) model requires the installation, within IMS, of the IBM-supplied default Listener (EZAIMSLN) that runs
in a BMP region. This host server application model processes data without using the IMS message queue. The Listener places
only a single segment (the Transaction Initiation Message) into the message queue. The IMS control region schedules the
execution of the transaction into a Message Processing Region. The transaction then communicates directly with the client
through socket API calls.

All IMS host server programs must be administered by IMS as no-response transactions.

For additional details about the IMS communication models, see IMS Implicit and IMS Explicit.

TCP/IP-to-IMS Configuration

A TCP/IP port number is associated with an IMS Batch Processing Region (BPR) in the TCP/IP profile data set
(hlq.PROFILE.TCPIP). The port statement is used to define this relationship. For example, the following is a port statement
associating port 3000 with an IMS batch region with a job name of WNWIBR1:

IMS-to-TCP/IP Configuration

You can start an IMS Message Processing Program by specifying the program name of the IBM-supplied Listener program
(EZAIMSLN). The Listener reads a configuration file identified by the DD statement LSTNCFG. This configuration data set
contains one or more of the following startup parameter statements (one set for each transaction defined for at least one
Command Region):

TCPIP statement. Identifies the job name for the TCP/IP address space that manages the connection for the Listener

LISTENER statement. Specifies the port number that the Listener will use. This statement also specifies other port-related

3000 TCP WNWIBPR1

https://msdn.microsoft.com/en-us/library/aa771844(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771723(v=bts.10).aspx

parameters, such as backlog, time-out values, and so on.

TRANSACTION statement. Defines a list of transactions that the Listener can start. It also defines whether the Implicit or
Explicit connection mode is used.

The Listener uses the three previously listed parameter statements to inform TCP/IP which port to use and which transactions
can be accessed through TCP/IP.

The following is a sample of an IMS-to-TCP/IP host definition:

See Also
Tasks
How to Run TI Over TCP/IP

TCPIP ADDRSPC=WNWTCP31
LISTENER PORT=4000 BACKLOG=50
TRANSACTION NAME=TRANIMPL TYPE=IMPLICIT
TRANSACTION NAME=TRANEXPL TYPE=EXPLICIT

https://msdn.microsoft.com/en-us/library/aa744914(v=bts.10).aspx

Defining a TCP/IP Remote Environment
The following table shows how you can define a TCP/IP remote environment (RE) to fit each of the five mainframe-based
programming models even though there are only two Transaction Integrator (TI) RE types.

TI Remote Environment Type Mainframe Programming Model

CICS and IMS using TCP/IP CICS Concurrent Server (TCP/IP)

CICS and IMS using TCP/IP CICS MS Link (TCP/IP)

CICS and IMS using TCP/IP IMS Implicit (TCP/IP)

CICS and IMS using TCP/IP IMS Explicit (TCP/IP)

IMS Connect or OTMA IMS Connect or OTMA (TCP/IP)

Use TI Manager to define either TCP/IP RE.

See Also
Tasks
How to Run TI Over TCP/IP
Concepts
Transaction Integrator User's Guide

https://msdn.microsoft.com/en-us/library/aa744914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx

How to Run TI over SNA (APPC/LU 6.2)
If you have a distributed network, use Transaction Integrator (TI) over an SNA (APPC/LU 6.2) network connection to take
advantage of its support for two-phase commit (2PC) in ACID (atomic, consistent, isolated, and durable) transaction processing.
To support ACID transactions, your COBOL transaction program (TP) must support Sync Level 2. The TCP/IP protocol has no
default support for 2PC, so TCP/IP is not appropriate in a distributed network.

To run a TI application over an SNA network

1. Configure the mainframe (CICS or IMS) for SNA, and establish a connection with your Windows-based Host Integration
Server computer.

2. Install the COBOL transaction programs within the CICS or IMS region that receives TI-initiated calls.

3. Define an appropriate SNA remote environment for the CICS or IMS region that receives TI-initiated calls.

4. Build the TI component with a method for each transaction in the TP.

5. Deploy the TI component in a COM+ application to create a TI Automation server.

Run the client application that calls the new TI Automation server to automate the TP.

See Also
Tasks
How to Run TI Over TCP/IP
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa744914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Defining an SNA Remote Environment
You can define an SNA (APPC/LU 6.2) remote environment (RE) instance to fit each of the following three mainframe-based
programming models:

CICS Link Using LU 6.2

CICS Using LU 6.2

IMS Using LU 6.2

Use TI Manager to define instances for any of these RE types.

See Also
Tasks
How to Run TI over SNA (APPC/LU 6.2)
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa705710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Meeting Specific Real-World Needs
The topics in this section show you how to use Transaction Integrator (TI) together with COM+ to meet specific real-world
application integration needs.

In This Section

Determining Who Initiated a Transaction

Providing a Fail-Safe Environment for ACID Transactions

Using TI in a Non-DPL Environment

See Also
Other Resources
Using Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa754314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771674(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745532(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745239(v=bts.10).aspx

Determining Who Initiated a Transaction
You can easily determine who initiated a specific transaction. This is helpful, for example, when you need to track down the
history of a transaction failure. You can also use this technique to implement resource or transaction-level, per user, security.

When you select either user-level or package-level security on the Security tab of the Transaction Integrator (TI) Remote
Environment (RE) properties page, TI sends security information in the session request to the host. You can deploy the Host
Account Mapping database known as the Host Account Cache (HAC), and set up a mapping between each Windows user and
the corresponding host user ID, and that is what TI will send. Or you can use the Allow application to override security
option on the Security tab, and have the application return any host user ID (and password).

Whether the host will do anything with the different user IDs depends mostly on the ATTACHSEC setting for the CICS
connection; this corresponds to the APPC LU that TI uses. The default ATTACHSEC setting is local, meaning that CICS does not
validate the user ID in the session, and CICS runs the transaction in a default host credential. But if you set the ATTACHSEC
setting, CICS uses Resource Access Control Facility (RACF) to validate the user ID in the session, and CICS then attaches that
user ID to the trusted computing base (TCB) for the transaction as it runs through the Mirror transaction into the target
mainframe transaction program.

See Also
Concepts
Meeting Specific Real-World Needs

https://msdn.microsoft.com/en-us/library/aa745598(v=bts.10).aspx

Providing a Fail-Safe Environment for ACID Transactions
ACID (atomic, consistent, isolated, and durable) transaction processing using two-phase commit (2PC) generally requires a fail-
safe environment. This is an environment that ensures continuation despite hardware failures. This is often called 2PC failover
or hot backup.

Host Integration Server includes enhancements to the SNA LU 6.2 Resync transaction program (TP) generally referred to as the
Resync service together with enhancements to the configuration and APPC DLL to make 2PC failover work through two or
more redundantly configured Host Integration Server SNA servers (computers). In the event of a failure of one of the servers
(computers), a separate Host Integration Server computer running either Transaction Integrator (TI) or the DB2 Provider can
continue to initiate transactions through an alternate server (computer).

Configuring 2PC Failover

To configure 2PC failover to work with Host Integration Server, complete the following tasks:

Configure two Host Integration Server servers to support the same SyncPoint-enabled local APPC LU alias but with
different LU names. Have these local APPC LUs point to the same computer name where Microsoft Distributed
Transaction Coordinator (DTC) service and the Resync service are running (that is, a separate Host Integration Server
computer that supports TI or an application that uses the DB2 Provider). Also, have both servers support the same
remote APPC LU alias and name.

In the applicable TI remote environment (RE), configure the local and remote LU aliases, and select transactional support.
If the application is using the DB2 Provider, configure the Universal Data Link with the local and remote APPC LU aliases,
and set the Units of Work property to DUW.

When the Resync service starts, it searches all SyncPoint-enabled local APPC LUs that specify the computer name where the
Resync service is running. Resync then initiates an Exchange Log Names request over every found local APPC LU with all
SyncPoint-enabled remote APPC LUs.

When a TI Automation server (application) or the DB2 Provider invokes a transaction program (TP) on the mainframe and
initiates a conversation, the APPC DLL locates any available Host Integration Server server (computer) that supports the LU/LU
pair. In this way, a TI Automation server (application) or the DB2 Provider gains fault tolerance by getting a conversation
through any Host Integration Server server (computer) that supports the LU/LU pair. The Resync service then coordinates the
DTC transaction log reconciliation when a Host Integration Server SNA server (computer) comes back online, if a server
(computer) failure occurs during a transaction. Note that this configuration does not provide fault tolerance for the Host
Integration Server server (computer) that is running only TI or the DB2 Provider, not the SNA service.

Note that clustering the servers (computers) that are running the SNA service is not recommended. Instead of using Windows
Clustering, use the configuration recommendations described in this topic. In addition, 2PC works only when you are using the
SNA (APPC/LU 6.2) protocol to communicate with the host system. Neither TI nor the DB2 Provider support 2PC over the
TCP/IP transport, so there is no 2PC failover solution for TCP/IP-based systems.

See Also
Concepts
Meeting Specific Real-World Needs

https://msdn.microsoft.com/en-us/library/aa745598(v=bts.10).aspx

Using TI in a Non-DPL Environment
A non-linked environment (that is, a non-DPL environment) is one that does not use IBM Distributed Program Link (DPL). You
can use Transaction Integrator (TI) to invoke a mainframe transaction program (TP) that uses the EXEC CICS RECEIVE INTO
and EXEC CICS SEND FROM COBOL commands. These two COBOL commands are useful when you want a CICS TP to take on
SNA (APPC/LU 6.2) conversation responsibilities and therefore bypass the Mirror TP. In other words, the EXEC CICS RECEIVE
INTO and EXEC CICS SEND FROM COBOL commands are most often used in a non-linked environment to transfer data to
and from a logical unit (LU) of type 6.2 (APPC).

TI supports the LU 6.2 model for both linked and nonlinked environments. You can create the following remote environment
(RE) types to support each model:

CICS Link using LU 6.2 Use this in an IBM DPL environment that uses the Mirror TP.

CICS using LU 6.2 Use this in a non-DPL environment that bypasses the Mirror TP.

Separating Business Logic from Presentation Logic

Many customers use TI in a non-DPL environment. The only concern is whether terminal logic is embedded with the business
logic. When a COBOL TP supports IBM DPL, the presentation logic has already been separated from the business logic, so you
probably will not need to modify the COBOL. However, if the TP was written to communicate with a terminal, it is likely that
you will need to modify the COBOL code to separate the business logic from the presentation logic.

For example, the following sample COBOL code shows how to handle unbound recordsets by using the EXEC CICS RECEIVE
INTO and EXEC CICS SEND FROM COBOL commands:

* Example showing how to send unbounded recordsets
* to a client application.

 IDENTIFICATION DIVISION.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

* INPUT AREA
 01 CUSTOMER-INPUT-NUMBER PIC 9(9).

* OUTPUT AREA
 01 CUSTOMER-DATA.
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).

* ONE ROW IN A DATABASE TABLE
 01 INVOICES.
 05 INVOICE-NUMBER PIC 9(10).
 05 INVOICE-DATE PIC 9(7) COMP-3.
 05 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
 05 INVOICE-DESCRIPTION PIC X(40).

 LINKAGE SECTION.

 PROCEDURE DIVISION.
*
* Get the input customer account number from the
* client applicaton:
*
 MOVE LENGTH OF CUSTOMER-INPUT-NUMBER TO RECEIVE-LENGTH
 EXEC-CICS RECEIVE INTO(CUSTOMER-INPUT-NUMBER)
 LENGTH(RECEIVE-LENGTH)
 END-EXEC.

See Also
Concepts
Meeting Specific Real-World Needs

*
* Do some work; then send the first and last name back:
*
 MOVE LENGTH OF CUSTOMER-DATA TO SEND-LENGTH
 EXEC-CICS SEND FROM(CUSTOMER-DATA)
 LENGTH(SEND-LENGTH)
 END-EXEC.
*
* Follow regular data with unbounded table data that
* the client application sees as a recordset:
*
 MOVE LENGTH OF INVOICES TO SEND-LENGTH
 PERFORM UNTIL NO-MORE-INVOICES
*
* Do some work to get the next row:
*
 MOVE DB-INVOICE-NUMBER TO INVOICE-NUMBER
 MOVE DB-INVOICE-DATE TO INVOICE-DATE
 MOVE DB-INVOICE-AMOUNT TO INVOICE-AMOUNT
 MOVE DB-INVOICE-DESC TO INVOICE-DESCRIPTION
*
* Send the row:
*
 EXEC-CICS SEND FROM(INVOICES)
 LENGTH(SEND-LENGTH)
 END-EXEC.
 END-PERFORM.

https://msdn.microsoft.com/en-us/library/aa745598(v=bts.10).aspx

Using Host-Initiated Processing
The topics in this section explain how to use host-initiated processing.

In This Section

Creating a Local Environment

Creating a Host Environment

Creating a Security Policy

Defining New Objects

Creating an Object View

How to Modify Objects

Creating a New Application

https://msdn.microsoft.com/en-us/library/aa704834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746238(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704831(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704657(v=bts.10).aspx

Creating a Local Environment
A local environment (LE) is a set of end points that the host-initiated processing (HIP) runtime uses to listen for incoming
requests from the host. If communication with the host uses the TCP/IP network protocol, the endpoints are either port
numbers or service names. If communication with the host uses the SNA network protocol, the endpoint is the local logical unit
(LU) alias.

Use the New Local Environment Wizard to create a new local environment.

See Also
Other Resources
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

Creating a Host Environment
A host environment (HE) defines the network and hardware characteristics of the non-Windows host that will initiate requests
to the Windows operating system. For example, a host that uses the TCP/IP protocol to initiate requests to Windows is
identified to host-initiated processing (HIP) through an HE that contains the IP address of the host and the code page that the
host uses to represent its data.

You can use the New Host Environment Wizard to create a new host environment.

See Also
Other Resources
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

Creating a Security Policy
You can create and manage security policy definitions in the Security Policies node in the HIP (host-initiated processing)
Console.

When the HIP Console is first started, the Security Policies node is empty. The Security Policies node contains definitions for
how Windows security credentials are established before the execution of the server object. The source of the security
credentials can be the following:

Based on User IDs and Passwords delivered to HIP by the client application program.

Based on User IDs and Passwords delivered to HIP by well-defined host protocol standards (SNA attach header: FMH5).

Default host-based User ID and Password.

Windows credentials that the HIP application runs under

When host-based credentials are used, the Windows credentials are obtained by using the Single Sign-On (SSO) feature. This
feature translates host-based User ID, Password and SSO Affiliated Application ID to a security identification number (SID) that
is representative of the Window credentials. The server object is then executed with the translated security credentials.

You can create a new security policy by using the Security Policy Wizard.

See Also
Other Resources
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

Defining New Objects
Objects in the host-initiated processing (HIP) environment represent the Windows Server that will be started after a request is
received from a host. The object is defined by a Transaction Integrator Metadata (TIM) file that is generated by the
development-time tool in Microsoft Visual Studio.

See Also
Other Resources
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

Creating an Object View
Object views in host-initiated processing (HIP) provide different ways to view and manage Windows Server objects in the HIP
environment. During the definition of an object view, all methods or a subset of the Objects methods can be defined in the
view. This helps provide a level of security by limiting the number of methods available for execution.

When a host environment (HE) is associated with an object view, the level of security is elevated. With the HE association, only
certain hosts can execute specific methods of an Object.

When the object view is finally associated with a local environment, the security is enhanced further by restricting the
execution of a method on an object to a request from a specific host that made a request to a specific transport endpoint on
the Windows operating system.

You can create new object views by using the New Object View Wizard. This wizard helps you construct the following
administrative entities:

A view of an object.

One or more methods in the object to be defined on the view.

A local environment association.

Host environment association.

Method resolution information.

See Also
Other Resources
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

How to Modify Objects
After an object has been created and assigned to an application within the host-initiated processing environment, you must be
careful when making changes to the object or its Transaction Integrator metadata (TIM) file.

To safely modify a TIM file for an existing object

1. In the TI Manager console tree, right click the object to be changed, and then click Delete.

2. Exit TI Manager.

3. Modify the TIM file and save it.

4. Start TI Manager.

5. In the TI Manager console tree, right-click Objects, point to New, and then click Object.

6. Follow the instructions in the Object Wizard to re-create the object.

7. In the TI Manager console tree, right-click the re-created object, point to New, and then click View.

8. Follow the instructions in the New Object View Wizard to re-create the object views.

Creating a New Application
Host-initiated processing (HIP) applications represent the execution environment for Windows Server objects that are initiated
or driven from host requests. The HIP application execution environment is hosted in and synonymous with a Windows
service.

A HIP application can host more than one server object. A HIP application can also have more than one listening endpoint
associated with it.

Application definitions are created and managed in the Computers node on a specific computer. When the HIP Console is first
started, the Computers node has only a single computer defined. That single computer is the computer where the HIP
administrative console is running. When the Console is first started, no applications are defined on that computer.

You can add a new application to the Transaction Integrator (TI) Manager without specifying the local environment, host
environment, objects, and object views used by the application.

See Also
Other Resources
Using Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704349(v=bts.10).aspx

Transaction Integrator Performance Guide
To ensure excellent performance out of the box, Microsoft has run performance tests on Transaction Integrator (TI) to
determine its performance and scalability in various deployment situations. This section discusses what was learned about TI.

Many factors can affect performance:

Security.

Whether you are using two-phase commit.

Sharing the server with other Microsoft BackOffice applications.

Sizing the server initially.

Planning for future growth.

This section will help you handle various load conditions and help you tune your system to give the best possible TI
performance while avoiding performance pitfalls, especially with transactions that run for a long time.

In This Section

Major Elements Affecting Overall Performance

Performance Monitoring Counters

Windows Server Tuning

SNA Communication Tuning

SNA vs. TCP/IP

System Sizing

Load Balancing and Hot Backup

Security Implications

Transaction Size vs. Transaction Throughput

Transaction Programs that Run for a Long Time

Two-Phase Commit Performance Considerations

Data Conversion Cost

ADO Recordsets vs. User-Defined Types in Structured Data Tests

Remote Environment Selection Using the SelectionHint Property

Performance Improvements in Host Integration Server

https://msdn.microsoft.com/en-us/library/aa771930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770812(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771978(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704836(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746177(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771996(v=bts.10).aspx

Major Elements Affecting Overall Performance
Several factors contribute to the total user response time, often called the response time budget. To analyze the total system
response time more easily, divide the response time into the parts of the system that play a major role in the total response
time budget. The following figure shows the main divisions.

Three main divisions -- host, application server, and client --showing how response time is affected by at least
three levels within each division and by the network response time between divisions

When you are benchmarking the interactive performance of computers executing a transaction program (TP) on the host,
several response time and resource figures are of primary value. These include the host internal response time, external
computer response time, network delays, and the true user response time, CPU use, and transaction rates.

In This Section

Host Internal Response Time

External Computer Response Time

Network Delay

True User Response Time

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa705014(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Host Internal Response Time
The host internal response time is the time that the transactions spend inside the host system processing the transaction
requests from Transaction Integrator (TI). These include components such as processing the business logic, disk and database
I/O, and handling the two-phase commit (2PC) processing.

One way to get an indication of the host internal transaction processing performance is to run the transactions under load
without the TI and computer components. A typical goal for an interactive transaction is to keep the response time at 500 ms
and less than one second for most part of the daily load conditions. This is a tough goal, and many systems under ordinary
operational loads have hard times maintaining this. There is a section dedicated to analyzing the effects on the application
server in case the response times get longer.

See Also
Other Resources
Major Elements Affecting Overall Performance

https://msdn.microsoft.com/en-us/library/aa771930(v=bts.10).aspx

External Computer Response Time
External computer response time is sometimes referred to as end-user response time or end-to-end response time. It is the
actual response time that the client application that is running on the computer sees.

When you are using the "FAT-client" architecture, it includes all processing and network delays incurred to the transaction from
the time DCOM call was sent to the TI server until the time the reply for the transaction comes back. For "thin client"
application architecture, additional delays are incurred because Internet Information Services (IIS) converts the ASP requests to
DCOM calls, and delivers the DCOM replies back to the ASP pages for the client on the intranet or Internet.

See Also
Other Resources
Major Elements Affecting Overall Performance

https://msdn.microsoft.com/en-us/library/aa771930(v=bts.10).aspx

Network Delay
Network delay is the difference between what the host measures as the internal transaction response time and what the client
computer sees as external response time, excluding the processing time on the application server. On a high-speed local area
network (LAN) deployment, the contribution from the network delay can be very small, but when wide area networks (WAN),
satellite hops, or modems are involved, they can be major contributors to poor end-user response times.

See Also
Other Resources
Major Elements Affecting Overall Performance

https://msdn.microsoft.com/en-us/library/aa771930(v=bts.10).aspx

True User Response Time
The true user response time is the time that the whole transaction takes to process. This is measured on the user-interface
level. The difference in the true user response time and the external computer response time for Transaction Integrator (TI)
transactions depends on how much of the processing is done on the client itself. For the FAT client approach, the opportunities
to have "business logic" on the client side are greater than that of the thin client. The thin client processing typically involves
just screen presentation processing delays.

The response time for FAT client transactions through TI, when the host processing time is virtually zero, is at maximum
approximately 50 milliseconds for a small transaction (481 KB in/out). This is measured by the VCperform client application,
and represents very closely the true end-user response time, missing only the screen presentation processing time. The
amount of data conversion, heavy or light, and also using selection hints and UDTs did not affect the response time.

This response time includes the LAN delays for both TI processing and the backend host simulation processing; it is as close as
possible to the optimum possible performance.

Response Time Contributors

On a properly tuned system, TI processing generally contributes less than 50 ms to the overall user response time. Two-phase
commit (2PC) adds approximately 100 ms to this as a result of the disk I/O for the Microsoft Distributed Transaction
Coordinator (DTC) logging.

The most significant contributor to the overall response time is naturally the host, where most of the work is done (business
logic and database access). So the area to focus first in optimizing the performance is the host. To get a better idea of the
response time and transaction volumes, use the TI performance counters.

See Also
Other Resources
Major Elements Affecting Overall Performance

https://msdn.microsoft.com/en-us/library/aa771930(v=bts.10).aspx

Performance Monitoring Counters
Transaction Integrator (TI) has 24 basic performance monitoring counters that you can add to the Windows System Monitor to
analyze performance and find out where the bottlenecks are in your system. You can select any of the counters, and then click
Explain to get information about that counter.

The 24 TI performance monitoring counters are as follows:

Active Clients

Displays the total number of active clients, which are those clients that have created an instance of a TI object but have
not yet released that instance.

Average method call time

Measures the average number of seconds of elapsed time that TI uses to process method calls made by the client
application. The time begins when TI receives the request from the client application (the Invoke call). The time ends
when TI returns control to the client application. This counter includes the host response time, and it is not specific to any
TI programming model. Consider the following two facts when you are using this counter:

Special TI properties, such as GetNewRecordsSet, have been omitted from the calculation.

Two-phase commit (2PC) response time is not considered and is omitted from the calculation.

Note
Host response times for CICS, CICS Non-LINK, and IMS can be subtracted from the average method call time to calculat
e the amount of time TI spends processing methods. For example, assume a transaction takes one minute to complete.
The host response time is 48 seconds and the average method call time is 60 seconds. Subtracting the host response ti
me from the average method call time leaves 12 seconds that TI uses to process the methods. The host uses most of th
e transaction time.

Bytes recv'd from a TCP host / sec

Displays the number of bytes per second received from the mainframe by TI over the TCP/IP protocol. This counter is not
specific to any TI TCP/IP programming model. For the CICS MSLink model, the number reported will be slightly more
than the amount of user data due to the Link model protocol header data. Bytes received from the host represent all data
traffic, including user data.

Bytes recv'd from an SNA host / sec

Displays the number of bytes per second received from the mainframe by TI over the SNA protocol (APPC/LU 6.2). This
counter is not specific to any TI SNA (APPC/LU 6.2) programming model. For the CICS Link model, the number reported
will be slightly more than the amount of user data due to Link model protocol header data. Bytes received from the host
represents all data traffic, including user data and two-phase commit (2PC) flows.

Bytes sent to a TCP host / sec

Displays the number of bytes per second sent from TI to the mainframe over the TCP/IP protocol. This counter is not
specific to any TI TCP programming model. For the CICS MS Link model, the number reported will be slightly more than
the amount of user data due to Link model protocol header data. Bytes sent to the host represent all data traffic over
TCP/IP, including user data.

Note

To determine the TI load on the Host Integration Server computer, you can compare the average number of bytes sent
and received by TI with the corresponding performance counters for Host Integration Server. For example, if the averag
e number of bytes sent to the host from TI is 20 and the average number of bytes sent to the host by Host Integration S
erver is 100, Host Integration Server traffic is responsible for most of the load. Consequently, the amount of informatio
n coming back from the host could be less than that going to the host. That is why two counters are available, one for t
he number of bytes sent and one for the number of bytes received.

Bytes sent to an SNA host / sec

Displays the number of bytes per second sent from TI to the mainframe over the SNA (APPC/LU 6.2) protocol. This
counter is not specific to any TI SNA (APPC/LU 6.2) programming model. For the CICS Link model, the number reported
will be slightly more than the amount of user data due to Link model protocol header data. This number is represented in
terms of bytes per second.

Calls currently executing

Displays the number of method calls that are currently being executed.

Cumulative calls

Displays the total number of method calls that have occurred since the COM+ application was started.

Host resp time CICS Link

Measures the average time the host spends processing the transaction program's unit of work when the CICS Link model
is in use. In other words, this counter measures how long the host takes to respond to a request. The time starts after TI
sends the final data buffer and ends when the first response buffer is received by TI. This counter is represented in terms
of seconds of elapsed time. Consider the following two facts when you are using this counter:

Two-phase commit (2PC) response time is not considered and is omitted from the calculation.

Multiple receives might be contained in the first response buffer sent to TI. Therefore, the response time ends
when TI has obtained all receives to the first response buffer.

Host resp time CICS Non-link or IMS

Measures the average time the host spends processing the transaction program's unit of work when either the CICS
Non-LINK or IMS models is in use. In other words, this counter measures how long the host takes to respond to a
request. The time starts after TI sends the final data buffer and ends when the first response buffer is received by TI. This
counter is represented in terms of seconds of elapsed time. Consider the following two facts when you are using this
counter:

Two-phase commit (2PC) response time is not considered and is omitted from the calculation.

Multiple receives might be contained in the first response buffer sent to TI. Therefore, the response time ends
when TI has obtained all receives to the first response buffer.

Host resp time TCP Concurrent Server

Measures the average time the host spends processing the transaction programs unit of work when the TCP/IP CICS
Concurrent Server model is being used. This average time counter measures the time the host takes to respond to a
request sent to it. The time starts after TI sends the final data buffer and ends when the first response buffer is received
by TI. This counter is represented in terms of seconds of elapsed time.

Host resp time TCP Explicit

Measures the average time the host spends processing the transaction programs unit of work when the TCP/IP IMS
Explicit model is being used. This average time counter measures the time the host takes to respond to a request sent to
it. The time starts after TI sends the final data buffer and ends when the first response buffer is received by TI. This
counter is represented in terms of seconds of elapsed time.

Host resp time TCP Implicit

Measures the average time the host spends processing the transaction programs unit of work when the TCP/IP IMS
Implicit model is being used. This average time counter measures the time the host takes to respond to a request sent to
it. The time starts after TI sends the final data buffer and ends when the first response buffer is received by TI. This
counter is represented in terms of seconds of elapsed time.

Host resp time TCP MS Link

Measures the average time the host spends processing the transaction programs unit of work when the TCP/IP CICS
MSLink model is being used. This average time counter measures the time the host takes to respond to a request sent to
it. The time starts after TI sends the final data buffer and ends when the first response buffer is received by TI. This
counter is represented in terms of seconds of elapsed time.

Host resp time TCP IMS Connect or OTMA

Measures the average time the host spends processing the transaction programs unit of work when the TCP/IP IMS
Explicit model is being used. This average time counter measures the time the host takes to respond to a request sent to
it. The time starts after TI sends the final data buffer and ends when the first response buffer is received by TI. This
counter is represented in terms of seconds of elapsed time. IMS Connect or OTMA enables customers to connect to
existing IMS transactions without linking listeners to the transaction programs (TP), so you do not have to recompile your
IMS TP.

Link calls / sec

Displays the number of method calls that use the CICS LINK programming model. This number represents of calls per
second.

Non-link calls / sec

Displays the number of method calls that use the CICS Non-LINK or IMS programming model. This number represents
calls per second.

TCP Concurrent Server calls / sec

Displays the number of method calls that use the TCP/IP CICS Concurrent Server programming model. This number
represents calls per second.

TCP Explicit calls / sec

Displays the number of method calls that use the TCP/IP IMS Explicit programming model. This number represents calls
per second.

TCP Implicit calls / sec

Displays the number of method calls that use the TCP/IP IMS Implicit programming model. This number represents calls
per second.

TCP MSLink calls / sec

Displays the number of method calls per second that use the TCP/IP CICS MS Link programming model.

TCP OTMA calls / sec

Displays the number of method calls that use the TCP/IP OTMA programming model. This number represents calls per
second.

Total calls / sec

Displays the total number of method calls per second that TI has processed. This counter is not specific to any TI
programming model.

Total errors / sec

Displays the total number of method calls per second that have returned a non-zero HRESULT to the client application.
This counter is not specific to any TI programming model.

Note
Comparing method call errors with CICS LINK calls and CICS Non-LINK calls shows the severity of a given situation. Fo
r example, if the Method call errors counter reports two errors per second and LINK calls or CICS Non-LINK calls are re
porting 50 method calls per second, it may indicate that one client application has trouble with a specific host applicati
on. Consequently, if the Method call errors counter reports 50 errors per second and CICS LINK calls or CICS Non-LINK
calls are reporting 50 method calls per second, this indicates that a connection to the host might have been terminated.

In This Section

How to Add TI Performance Counters to Windows 2000 System Monitor

Method Calls per Second

Average Method Call Time

Errors Per Second

Host Response Time

Bytes Sent Per Second

Bytes Received Per Second

https://msdn.microsoft.com/en-us/library/aa770478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704828(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772114(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754453(v=bts.10).aspx

How to Add TI Performance Counters to Windows 2000 System
Monitor

Follow these steps to add Transaction Integrator (TI) performance counters to Windows 2000 System Monitor.

To add TI performance counters to Windows 2000 System Monitor

1. Click Start, point to Programs, point to Administrative Tools, and then click Performance.

2. Click + at the top of the details pane.

3. In the Add Counters dialog box, move to the top of the Performance object box, and then click COM Transaction
Integrator.

4. Select all the TI performance counters that you want from Select counters from list, and then click Add.

5. Click Close to close the Add Counters dialog box.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Method Calls per Second
The counter reports the method call volume going through the Transaction Integrator (TI) server. There are actually three
counters implemented:

Method calls using the CICS LINK mode.

Method calls using the CICS non-LINK or calls to IMS.

Total method calls.

Assuming that the system is in somewhat stable condition, that is, the calls are returning at the same rate that they are made,
these counters represent the transactions per second throughput number for TI.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Average Method Call Time
The average method call time performance counter represents the response time the transaction has from the time
Transaction Integrator (TI) receives the method call, until the time it sends the reply back to the client. This does not include the
LAN/WAN delays between the client and TI server.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Errors Per Second
The errors per second performance counter indicates whether the method calls are failing on errors. Under normal operation,
this value should remain at zero or very close to zero.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Host Response Time
The host response time indicates the response time observed by the Transaction Integrator (TI) transport component,
measuring the time from the call to the server computer, or TCP/IP stack, until the reply from the host. This includes some
networking overhead. In a typical well-tuned high bandwidth LAN environment, this response time should be very close to the
actual host processing time.

You should consider some important tuning issues, especially with SNA Link, in order to declare this to be the representative
figure for the host. For more information, see SNA Link Tuning. For the host response time, TI again separates the CICS LINK
mode, and the CICS non-LINK or IMS mode into two separate counters.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa705712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Bytes Sent Per Second
The bytes sent per second performance counter reports the total data flow in bytes from the Transaction Integrator (TI) server
to the host per second. This becomes a useful counter when TI transactions become large, and communication links can
become the bottleneck in the system. This is particularly important when WANs are used.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Bytes Received Per Second
The bytes received per second counter reports the total bytes received from the host per second. The bytes received together
with the bytes sent represent the total data transfer on the communications links between the Transaction Integrator (TI) server
and the host computer.

See Also
Other Resources
Performance Monitoring Counters

https://msdn.microsoft.com/en-us/library/aa754472(v=bts.10).aspx

Windows Server Tuning
Use the topics in this section to help reach optimum operating system performance for Windows 2000 Server.

In This Section

Adjusting Application Priority

Reducing Context Switching

Streamlining Authentication

How to Optimize Network Throughput in Windows

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa754026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745205(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Adjusting Application Priority
Under ordinary loads, there is no need to adjust the Windows tasking priorities. However, you can increase server task
performance out of the system to cover peak loads by adjusting the balance between background and foreground applications.
An even balance between the two gives background applications a better response time, but still gives more processor time to
the foreground application.

To adjust the balance between background and foreground applications in Windows 2000

1. Open System in Control Panel.

2. Click the Advanced tab.

3. Click Performance Options, click Background services under Optimize performance for, and then click OK.

See Also
Other Resources
Windows Server Tuning

https://msdn.microsoft.com/en-us/library/aa770812(v=bts.10).aspx

Reducing Context Switching
Context switching reduces server performance on any operating system: Windows 2000 is no exception. If a system is doing
50,000+ context switches per second (unlikely, but possible), it does not have time to do actual work. Instead, it is spending all
its time switching various code and data pages in and out of its memory to L2 cache, RAM, or even to the disk drive; in other
words, the system is thrashing.

Adjusting Thread Count

You can reduce the amount of context switching by reducing the total number of active threads. The topics in the
Transaction Programs that Run for a Long Time section describe two registry entries that can increase the thread counts for a
COM+ application and Transaction Integrator (TI) two-phase commit (2PC) transactions. Be sure to adjust the thread counts to
gain optimum performance. Always track the context switching per second when making adjustments to these two registry
entries.

In addition to adjusting the COM+ and TI threading, you can also adjust the Host Integration Server asynchronous I/O
threading model. These threads serve the Host Integration Server client traffic only, and are designed to handle the full 30,000
sessions hitting Host Integration Server with over 1,000 transactions per second (TPS). Performance testing in the Microsoft
lab environment has shown no reason for adjusting these values, but if you need to minimize the thread count in your system,
you can make adjustments because TI represents only one client to Host Integration Server.

Use the following information to calculate the thread count:

The Host Integration Server I/O thread count is equal to the base thread count plus the additional threads per CPU
multiplied by the number of CPUs.

The base thread count is five.

By default, there are an additional four threads per CPU.

To adjust the thread count, specify the number of additional threads per CPU by adding a DWORD value NumberofIOthreads
to the \parameter registry location. You can have up to 64 I/O threads per system.

See Also
Other Resources
Windows Server Tuning

https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770812(v=bts.10).aspx

Streamlining Authentication
Transaction Integrator (TI) users are typically authenticated for both the Windows domain and the host domain on a
transaction-by-transaction basis. Host Integration Server provides the necessary security integration between these systems.

You can set the Already verified parameter to streamline the authentication on the host side. Both TI and the Host Integration
Server node maintain a cache of verified domain/user IDs in a secured location. To guarantee fast access to the Windows
authentication, install the primary or backup Windows 2000 domain controllers, TI, and Host Integration Server all in the same
LAN segment. Installing these helps to eliminate delays caused by bridging or routing.

See Also
Concepts
Transaction Integrator User's Guide
Other Resources
Windows Server Tuning

https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770812(v=bts.10).aspx

How to Optimize Network Throughput in Windows
For Windows 2000 and Windows Server 2003, you can adjust networking priority to guarantee the best possible networking
throughput.

To optimize network throughput in Windows

1. Click Start, point to Settings, and then click Network and Dial-up Connections.

2. Right-click a connection, and then click Properties.

3. Do one of the following:

If this is a local area connection, on the General tab, in Components checked are used by this connection, click
File and Printer Sharing for Microsoft Networks, and then click Properties.

If this is a dial-up, VPN, or incoming connection, on the Networking tab, in Components checked are used by
this connection, click File and Printer Sharing for Microsoft Networks, and then click Properties.

4. Click Maximize data throughput for network applications.

See Also
Other Resources
Windows Server Tuning

https://msdn.microsoft.com/en-us/library/aa770812(v=bts.10).aspx

SNA Communication Tuning
The topics in this section describe the major factors that affect Transaction Integrator (TI) throughput over the APPC/LU 6.2
SNA transport.

In This Section

LU 6.2 Contention Winner Limit

Pre-Activation of the LU 6.2 Sessions

SNA Link Tuning

Host (VTAM, CICS or IMS) Response Time

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa771937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705162(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

LU 6.2 Contention Winner Limit
Transaction Integrator (TI) uses only LU 6.2 contention winner sessions. The number of sessions negotiated with the host
system determines the number of sessions available for concurrent TI client requests. The parallel session limit and contention
winner limit should be set to the same value within the Host Integration Server APPC mode definition used by TI.

Note
Other APPC applications can share the same Local APPC LU, Remote APPC LU, and Mode used by TI. If they do, you must defi
ne sufficient sessions to handle the needs of all applications.

In addition, the Request/Response Unit (RU) size should be sufficiently large to hold the standard message size sent between TI
and the host application. For example, if the host response is expected to exceed 2 KB, set the Max Send and Receive RU size to
4096 within the Host Integration Server APPC mode definition. The session level pacing values will not likely affect transaction
performance because a transaction may only involve a single request and single (under 4 KB) response. In this case, an APPC
mode send and receive window of two or more should be sufficient. However, if a large host response is expected, it is
recommended to use a larger RU size to reduce SNA-level message acknowledgements.

Troubleshooting Suggestions

Before starting a connection, enable Host Integration Server data link control (DLC) and LU 6.2 message traces of the
connection startup and initial TI component use. Provide the traces to an SNA support engineer. This engineer can decode the
DLC trace to determine the parallel session limit and contention winner limits negotiated in the Change Number of Sessions
(CNOS) exchange for the LU/LU/mode used by TI.

See Also
Other Resources
SNA Communication Tuning
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa754778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Pre-Activation of the LU 6.2 Sessions
Activating LU 6.2 sessions in advance will automatically prevent a short delay in establishing new LU 6.2 sessions as
Transaction Integrator (TI) conversation allocation requests are made. In addition, pre-activating sessions keeps idle sessions
active during the SESTIMEOUT period (approximately 20 seconds).

Host Integration Server honors its APPC mode automatic activation limit setting for any APPC LU/LU partnership defined
within the APPC mode when the connection is initially activated. Partnerships are defined in the APPC-mode Partners tab.

For more information about the SesTimeout registry parameter, search the Host Integration Server online Help.

See Also
Other Resources
SNA Communication Tuning

https://msdn.microsoft.com/en-us/library/aa754778(v=bts.10).aspx

SNA Link Tuning
If you are using token-ring, Ethernet, or FDDI to communicate with your host system, investigate data link control (DLC) tuning.
The following 802.2 connection default settings should be sufficient:

Unacknowledged Send limit is 8 by default.

Receive ACK threshold is 2 by default. However, some hosts are set to a Send Window of 1, so they require an ACK from
Host Integration Server for every frame they send; whereas with the default of 2, the host can stop sending until the ACK
has been received. The DLC will then go through the time-out and recovery, but the performance will be decreased
significantly. It is important that you set each node's send window to be larger than its partner's receive window.

Maximum BTU length: 1929 for token-ring, 1493 for Ethernet. If a 16-Mbps token-ring is being used, and the TI request
or host response will exceed this BTU length, increase the maximum BTU length to 4105 (or 8192 for the maximum
possible) within the Host Integration Server connection.

Troubleshooting Suggestions

Capture a Network Monitor or Sniffer trace of Host Integration Server computer-to-host traffic, and provide it to an SNA
support engineer. The engineer can use this trace to observe the Send Window and Receive ACK threshold being used by both
ends by looking at the LLC traffic.

See Also
Other Resources
SNA Communication Tuning

https://msdn.microsoft.com/en-us/library/aa754778(v=bts.10).aspx

Host (VTAM, CICS or IMS) Response Time
The host response time, also called the unit of work (UOW) or host processing time, for each transaction affects the number of
transactions that can be performed given the number of LU 6.2 sessions that are used.

If CICS is used, investigate the CICS region definitions for parallel session limit and contention winner limit. These values are
configured in the Maximum parameter in the CICS region SESSION PROPERTIES:

SESSION PROPERTIES Maximum==>100, 000

The first value is the parallel session limit and the second value is the CICS contention winner limit. For Transaction Integrator
(TI) use, Host Integration Server should be configured as the contention winner for all sessions, so you should set the CICS
contention winner limit to zero (0). Also, verify that the CICS region maximum tasks value is sufficient to handle the concurrent
client requests.

If you are using IMS, verify that IMS has sufficient message processing regions to handle the expected load.

Troubleshooting Suggestions

Capture a Host Integration Server data link control (DLC) message trace of the throughput test and analyze the host response
time observed on the LU 6.2 sessions.

Within a Host Integration Server DLC message trace, a unique LU 6.2 session is distinguished by a unique Originating Address
Field (OAF), Destination Address Field (DAF), and OAF/DAF Assignor Indicator (ODAI) values. The OAF and DAF specified in a
Host Integration Server session request will alternate on the host response.

Note
Either end can deallocate the conversation, although this is often done by TI. However, it is possible for the host data respons
e to contain the Conditional End Bracket (CEB).

See Also
Other Resources
SNA Communication Tuning

https://msdn.microsoft.com/en-us/library/aa754778(v=bts.10).aspx

SNA vs. TCP/IP
TCP/IP is not as scalable as SNA with Transaction Integrator (TI), but TCP/IP is more effective in other areas such as file transfer
and data access (about 10-15% better on OLEDB tests). In addition, the IBM endorsement of TCP/IP simplifies the corporate
networking infrastructure and enables easier interoperability to the Internet.

To study the performance differences for TI with TCP/IP as the up-stream link protocol versus SNA, Microsoft performed a
stress test where the only change to the setup was the up-link protocol. The SNA test was set to use the SelectionHint
property setting because this is the same process performed by the TCP/IP up-link. For more information about the effects of
the SelectionHint property, see Remote Environment Selection Using the SelectionHint Property.

Analyzing the average response time as a function of transactions performed, Microsoft found that TCP/IP is as fast as SNA. In
fact, TCP/IP is faster than SNA when the load is below 100 transactions per second (tps). For some deployments, that is the
typical operating range. As the load increases, the connectionless TCP/IP up-link starts to slow down the response time and
clips the top performance at 500 tps. The SNA up-link enables stable response times throughout the load range, and therefore
achieves higher scalability.

To analyze the superior scalability of SNA compared to TCP/IP, Microsoft charted the frames per second over the backbone
LAN. Whereas SNA maintains its sessions from transaction to transaction, TCP/IP must establish and destroy the TCP/IP
connection for each transaction. This results in more frames transmitted over the up-link compared to SNA. In our tests, the
100baseT Ethernet LAN did not become a bottleneck, but this can become the critical issue if the link speed between the TI
server and the host is slower. In any case, the TCP/IP connections and disconnections generate some additional interrupts for
both ends.

Additional analysis shows an advantage that the TCP/IP up-link has over the SNA up-link that might become the deciding
factor in a real-world deployment. When you are using the SNA up-link, the TI Automation server must endure almost twice
the amount of context switching compared to the TCP/IP up-link case. This is because with SNA, the messages are passed from
TI first to the SNA server node and then to the SNA link service. These are separate processes, so there is process-to-process
communication and context switching. With TCP/IP this does not occur; TI passes the messages directly to the NDIS driver. On
a server where additional processing of business logic is occurring, so much context switching may occur that throughput and
scalability are affected.

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa705658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

System Sizing
System sizing affects performance. By using the tips in this section you can achieve optimal system sizing.

In This Section

LAN Throughput

Escon Channel Throughput

Windows 2000 Services

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa771466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746075(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

LAN Throughput
The 100baseT alternative to connect the Transaction Integrator (TI)/Host Integration Server computer to your host system is
the most popular and currently the most available. This topic explains the bandwidth offered by 100baseT, and the amount of
that bandwidth that you can actually start using productively.

Calculating the Maximum for 100baseT

You can calculate the theoretical maximum in the following way for the 100baseT Ethernet:

100BASE-T is clocked at 100 MHz, with a 25-MHz crystal multiplied by 4. The coding is 8/10, meaning one byte is packaged
into 10 bits. Therefore, you can at most transfer 100/10=10 million bytes per second. To convert this number to megabytes
per second (MBps), divide it in the following way:

10,000,000/(1024*1024)=9.5 MBps

Then there is the question of efficiency. Ethernet provides up to 90-95% efficiency (CSMA-CD). There is a maximum payload of
about 1500 bytes per frame, and some minimum inter-frame spacing. Also, if you use half-duplex cabling, the ACK packets
must take the bus sooner or later, making it almost impossible to reach the maximum.

The frame format for 802.2 over Ethernet is at maximum 1487 bytes, or 1484 depending on the Ethernet standard used IEEE,
or DIX. The following figure shows the maximum RU and BTU sizes over an Ethernet.

Data flow control showing maximum sizes over an Ethernet: 1487/1484 bytes for RU, 1490/1487 bytes for BIU,
1496/1493 for BTU, and 1500 bytes for Ethernet data

The format for TCP/IP over Ethernet is 14-byte Ethernet layer+20 IP+20 TCP+12 (TCP-timestamp)+1448 data. For each packet,
the header overhead is 54/66 bytes. Of course, there are the ACK packets, one every two packets in TCP/IP. Therefore, the
header overhead is three headers for two data packets, which is around 7-8%.

For 802.2 data link control (DLC) traffic, the acknowledged frequency is controlled by each end negotiating with its partner. For
more information, see SNA Communication Tuning.

For the 90–95% efficiency referred to previously, the throughput is affected by various other factors, such as the size of the
broadcast domain, whether the LAN is on a switch or a hub, the number of servers sharing the segment causing possible
collisions, and whether your network has other protocols such as IPX, whose broadcasts can consume some of the available
bandwidth.

Looking at the LAN usage levels in lab tests on an isolated switched 100baseT, with only a few servers on the segment, we
should be getting close to the theoretical maximum minus the known overhead. Can TI push the LAN to the maximum
performance?

The test results show that when sending 32000 bytes, and receiving 32,001 bytes back, TI can drive the 100baseT close to its
maximum performance if there is only minimal data conversion and no other "business logic" or processing competing with TI
on the server. This is, of course, with an isolated optimized network. The backbone network in the real world must endure a lot
more overhead without becoming the bottleneck for the system. To be on the safe side, a prudent design criterion for
100baseT LAN would be to keep the planned load as follows:

Less than 4 MBps for systems that mainly move data.

Less then 3 MBps for systems with short interactive transaction messages.

https://msdn.microsoft.com/en-us/library/aa754778(v=bts.10).aspx

The reason for designing the interactive LAN load to a lower limit is due to the higher number of frames per MBps. Observing
these criteria will set the peak LAN load to a safe 50% of the LAN's capacity.

See Also
Other Resources
System Sizing

https://msdn.microsoft.com/en-us/library/aa754462(v=bts.10).aspx

Escon Channel Throughput
Although the 100baseT LAN can operate with 3–5 MBps throughput range on a heavily loaded system, the Escon channel
specified at 17 MBps can reach very close to its maximum specified throughput. Tests done with Host Integration Server on a
channel-attached quad PP200 were able to reach 12 MBps against a large mainframe using LU 6.2 doing straight memory-to-
memory transfer. This rate is not typically reached except during system backup procedures or database distribution.

To place this result in the right context for a large online transaction processing (OLTP) system doing 500 TPS with transactions
typically consisting of 200-byte input and 1900-byte reply, the Escon overall data rate would be 1 MBps plus some overhead.
The Escon channel rarely becomes the system bottleneck because one adapter can support multiple 17-MBps channels using
the Escon Multiple Image Facility (EMIF).

See Also
Other Resources
System Sizing

https://msdn.microsoft.com/en-us/library/aa754462(v=bts.10).aspx

Windows 2000 Services
The topics in this section discuss ways in which Windows 2000 services affect your planning and deployment.

In This Section

Normal Load

Preparing for Running in Degrade Mode

Considering System Growth

Estimating the System Load

See Also
Other Resources
System Sizing

https://msdn.microsoft.com/en-us/library/aa754243(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753882(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754462(v=bts.10).aspx

Normal Load
To size the Windows 2000 applications server, you must review system behavior over the course of a day, and also over the
course of a longer period of time (typically matching the accounting period to capture the month-end processing).

Analyzing Load Patterns

Analyzing these load patterns gives a more accurate view of the requirements for the system sizing. The following chart
illustrates a hypothetical business system load on a typical business day. If you make the effort to capture the daily load spread,
Mondays or Fridays typically give the most information about the daily swings on the load. The chart shows an average
workload of 60 TPS over 24 hours, and 100 TPS over 12 hours—a business day. If you used the daily averages for the system
sizing, (peak loads at 8:00 AM, right before lunch, and close of business at 5:00 PM), the result is system overload and poor
performance. This poor performance would irritate users daily and cause them to change their work patterns, yielding less
efficient operations.

The following figure shows a typical system load.

Graph displaying transactions per second on the vertical axis and hour of the day on the horizontal axis

Additionally, at less frequently occurring high peaks, such as month-end processing, the required peak load handling is
increased if the processing overlaps with the daily peak loads. If the extra processing can be scheduled during low load time
periods, for example, 10:00 PM to 1:00 AM, no extra capacity is needed.

See Also
Other Resources
Windows 2000 Services

https://msdn.microsoft.com/en-us/library/aa770562(v=bts.10).aspx

Preparing for Running in Degrade Mode
Because Transaction Integrator (TI) is a combination of application server and transactional gateway between COM
applications and CICS and IMS applications, some level of fault tolerance is required. On large OLTP systems, for example,
serving a company's order entry, shipping, and inventory management, system uptime is an essential requirement for success.
Levels of fault tolerance can be achieved as described in Load Balancing and Hot Backup.

When sizing the system to match the throughput requirements, you must provide enough processing power on the remaining
servers if one server in the cluster fails. For load balancing two servers under ordinary conditions, each server should be able
to handle the daily peak loads alone—not necessarily at 60% CPU load, but not exceeding the 90% limit either. For three server
systems, any two should be able to handle the daily peaks at 60-90% CPU levels. If you size close to 90% CPU on a degraded
operation, a slight response time impact can be expected. This is acceptable, if the recovery from the failure does not last more
than a day or two. This usually means that a spare server is available locally and that it can be easily configured for service.

You should also study the excess load caused by the recovery process, its duration, and impact on the system responsiveness
during that time.

See Also
Other Resources
Windows 2000 Services

https://msdn.microsoft.com/en-us/library/aa704836(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770562(v=bts.10).aspx

Considering System Growth
Estimating system growth can be difficult. Careful study of the functional requirements, business plans, market growth, and
user community might not provide the exact answers, but it can provide a rough estimate of the growth potential for the
system. For a successful company, this growth rate can be as high as 25% per year, and usually during the first year from the
deployment even as high as 50% per year. If our projection for the system growth follows these lines, we must deploy with
50% extra capacity at hand, either as larger servers, or as additional servers available for load balancing. Looking at a 5-year
growth path, the plan can include changing to more powerful servers, adding more SMP CPUs to the servers, or adding more
servers into the cluster.

The following tables show an example where a typical system with daily peaks of 160 TPS first grow at 50%, with 25% growth
after that. The first table shows the server rating at various CPU% based on the applications used and tested.

Server TPS at 60% TPS at 90%

Dual Xeon 400 110 160

Quad Xeon 400 220 320

The following table shows the growth projections.

First year Second year Third y
ear

Fourth year Fifth ye
ar

Sixth year

Growth % 50% 25% 25% 25% 25%

Daily peak
TPS

160 240 300 375 468 585

Deployme
nt

Two dual 400s in a
cluster.

Three dual 400s in a cl
uster.

No upgr
ade

One dual two quad 400s i
n a cluster.

No upgr
ade.

Three quad 400s in a cluste
r.

Action Add a dual server to t
he cluster.

 Add two CPUs to two serv
ers.

 Add two CPUs to one serve
r.

Reason Dual 400 maxes out at
160 TPS.

 Two dual 400s max out at
320 TPS.

 A dual and a quad max out
at 480.TPS

Best practi
ce

Two quad 400s in
a cluster.

No upgrade. No upgr
ade.

Three quad 400s in a clust
er.

No upgr
ade.

No upgrade.

Creating a Plan for Growth

Creating a plan for future growth can be a time-consuming and difficult task. You can spend a lot of time testing and creating
load scenarios for the future. Also, the continuing development of the hardware and software will affect your planning. Future
computer systems are likely to outperform the currently available models with many 100% increase in dollars/throughput,
thus causing the plan to be less accurate and outdated. To avoid this, a few rules of thumb can be helpful:

Plan at least two growth scenarios with the hardware available today, with easily available performance data. Plan one
scenario for aggressive growth, and one for minimal growth.

For the initial purchase of the hardware/software, consider such factors as architecture, hardware availability, networking
options.

Revisit your plan annually, updating your projections and growth plans.

Consider your growth plan in light of the future roles of the other computing systems in the enterprise: How is inventory
control going to evolve? How are customer orders handled and which system is handling them? Are customer orders
going to migrate from one system to another?

See Also
Other Resources
Windows 2000 Services

https://msdn.microsoft.com/en-us/library/aa770562(v=bts.10).aspx

Estimating the System Load
The following table can help you collect the transactional load information you need for appropriate system sizing.

Element Sample Comments

Transaction name MD481

Input buffer size 481 Data that user/client application sends to CICS/IMS.

Data Conversion; L/M/H m Light= mostly char, Medium= 1/3 Char, 1/3 Float, 1/3 Packed Decimal.

Structured data; NO/UDT/ADO RS no UDT=user-defined data types, ADO RS= disconnected recordsets

Reply buffer size 481 Reply buffer size from CICS/IMS.

Data conversion; L/M/H m Heavy= No char data, mix of floats, date-times, packed dec.

Structured data; NO/UDT/ADO RS no

Transactional; YES/NO no YES= two-phase commits are used with CICS/IMS and other forks.

Security; NO/User/Pkg no Type of integrated security in use.

Client type; ASP/DCOM asp ASP= Web-based client, DCOM= client using DCOM to invoke pkg.

Package: Lib/Svr svr Library= inprocess COM pkg, Server=COMTI pkg is on its own process.

Number of users 3000

Total average daily load; TPS 30

Total daily peak load; TPS 70

Minimum Host Unit of Work time in ms 350 Milliseconds spent from processing input to sending user reply.

Minimum Host prepare time in ms Two-phase commit only.

Minimum Host commit time in ms Two-phase commit only.

Expected user response time 800

Maximum allowed response time 1600 Maximum acceptable response time.

Creating a System Load Spreadsheet

This table provides all the detailed information you need including the type of transactions, the load levels, and the acceptable
response times. In your spreadsheet, create a "Sample" column to represent each type of transaction. For example, you might
have five columns, one for each of the following transactions:

Order header entry

Order line item

Inventory move

Shipping header

Shipment line

As you can see, on a large-scale system, with many different transactions, the number of columns can become unmanageable.
In that case, you might want to flip the spreadsheet clockwise 90 degrees so that you can list the elements in the columns of
the first row, and then place each transaction in a row.

Adding the columns to illustrate the amount of server, LAN, and host resources will complete the estimation. These will remain
the real challenge, because each transaction and implementation is different, and cannot be standardized. Thus, all the test
cases illustrated in this table are without any business logic processing included. They remain a task for the system designer to
estimate.

See Also
Other Resources
Windows 2000 Services

https://msdn.microsoft.com/en-us/library/aa770562(v=bts.10).aspx

Load Balancing and Hot Backup
Load balancing and hot backup allow for scalable applications and increased performance on enterprise systems. Deploying
multiple servers increases application throughput by distributing the load based on rules that are defined by the load
balancing engine. Load balancing services also increase availability by detecting connection failures and providing redundant
resources for client applications.

Transaction Integrator (TI) can be deployed taking advantage of several load balancing and hot backup solutions. The topics in
this section describe the various load balancing and hot backup methods that TI supports today.

In This Section

Host Integration Server Load Balancing

Web-to-Host Load Balancing

TI TCP/IP Load Balancing

https://msdn.microsoft.com/en-us/library/aa745876(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745539(v=bts.10).aspx

Host Integration Server Load Balancing
Transaction Integrator (TI) can use Host Integration Server load balancing and hot backup capability by deploying multiple
Host Integration Server End-User Client and Host Integration Server Server computers in a single subdomain. Redundant APPC
session pairs can be configured across multiple Host Integration Server computers to provide load balancing and hot backup.
When a communication failure occurs, hot backup reroutes sessions to other host connections. For information about how to
set up a hot backup system for two-phase commit and TI, see Providing a Fail-Safe Environment for ACID Transactions.

Autoactivating Sessions

For sessions to be spread across several servers, you must configure the mode definition to autoactivate sessions. When an
APPC application (such as TI) requests a conversation, the APPC library sends a non-forced open LU 6.2 request to every node
(SNA Server), which has the required Local logical unit (LU) (or a Local LU in the default pool if no LU name is specified). The
node returns an error that indicates the best connection to use. The APPC library then chooses the response that has the lowest
error number and issues a forced open LU 6.2 request.

LU 6.2 Errors

The errors for LU 6.2 are as follows:

0804 = Connection is disabled.

0604 = Session limits reached for LU/LU/mode.

0404 = Dependent LU - Connection active, but no LU-SSCP session active.

0204 = Dependent LU - LU-SSCP active, and PLU-SLU session already in-use.

0008 = Connection is pending.

0004 = Connection is inactive, no LU-SSCP session active.

0003 = If dependent LU, no LU-SSCP or PLU-SLU session active. If independent LU, CNOS not done yet for this LU/LU/mode.

0002 = Independent LU - CNOS done but no sessions currently active.

If the connection has an active session available (in other words, it is a bound session without a conversation established), the
non-forced open LU 6.2 is processed by the node and returns a positive response to the APPC library (assuming it was
successful in its request to the host).

For load balancing to work correctly, all connections must have active sessions available. If this is not the case, the first
connection to establish a conversation is always chosen by the APPC library because it will return a lower error than the other
connections. You can configure connections to autoactivate sessions by setting the autoactivation limit and LU partnering in
the mode definition.

Configuring TI and Host Integration Server for Load Balancing

TI must also be installed on its own server independent of the two Host Integration Servers that have connections to the host. If
TI is installed on either of the two servers that have connections to the host, load balancing will not function.

The Host Integration Server client process (the SnaBase service on Windows 2000) opens a sponsor connection to the SnaBase
service on a Host Integration Server computer in the subdomain. This sponsor connection remains active while the Host
Integration Server client process is running. When the Host Integration Server client process first starts, the client receives a list
of all Host Integration Server computers in the subdomain. After that, only server changes are sent.

Host Integration Server

To configure Host Integration Server for APPC Load Balancing, define redundant local LU and remote LU aliases across Host
Integration Server computers by using SNA Manager. For example:

Server 1

Local APPC LU alias=COMTI

Local APPC LU network name=APPN and LU name=SERVER1

Select the Member of default outgoing Local APPC LU pool check box

Remote APPC LU alias=CICS

https://msdn.microsoft.com/en-us/library/aa704719(v=bts.10).aspx

Remote APPC LU network name=APPN and LU name=CICS

Server

Local APPC LU alias=COMTI

Local APPC LU network name=APPN and LU name=SERVER2

Select the Member of default outgoing Local APPC LU pool check box

Remote APPC LU alias=CICS

Remote APPC LU network name=APPN and LU name=CICS

Server

Local APPC LU alias=COMTI

Local APPC LU network name=APPN and LU name=SERVER3

Select the Member of default outgoing Local APPC LU pool check box

Remote APPC LU alias=CICS

Remote APPC LU network name=APPN and LU name=CICS

Required Parameters

The following table references the required Host Integration Server, VTAM, and CICS parameters.

Host Integration Server VTAM CICS

Local Node ID—First 3 Digits IDBLK in PU definition Not applicable

Local Node ID—Last 5 Digits IDNUM in PU definition Not applicable

Control Point Name CPNAME in PU definition Not applicable

Max BTU Length MAXDATA in the PU Not applicable

Local APPC LU Name Name in LU definition Sessions

APPC Mode DLOGMOD in the LU definition Mode name

Remote APPC LU Name Not applicable APPLID

Transaction Integrator

To configure TI to use the Host Integration Server load balancing capability, you must do the following:

Configure the "CICS Link using LU 6.2," "CICS using LU 6.2," or "IMS using LU 6.2" remote environments for the same
local LU alias and remote LU alias defined on the Host Integration Server computer.

Create a unique Local Node ID on each Host Integration Server computer, configured for hot backup to occur across Host
Integration Server computers to a single host. (LOCADDR in the VTAM definition must be set to 0 to support
independent LU 6.2.)

Define the following registry entry on the Host Integration Server End-user client:

KEY_LOCAL_MACHINE\System\CurrentControlSet\Services\SnaBase\Parameters\Client\ ResLocFlags:
REG_DWORD: 0x8001

In mode definition, set the autoactivation limit and LU partnering limits. This configures your connections to autoactivate
sessions.

See Also
Concepts
Transaction Integrator User's Guide
Other Resources
Load Balancing and Hot Backup

https://msdn.microsoft.com/en-us/library/aa705608(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704836(v=bts.10).aspx

Web-to-Host Load Balancing
Internet Information Services (IIS) can use Windows 2000 Network Load Balancing (NLB) to provide load balancing and fail-
over support for incoming HTTP requests. NLB is a TCP/IP-based load balancing solution that load balances incoming TCP/IP
packets to all nodes in a cluster or to a single node in a cluster. NLB distributes the load across identical servers.

The Host Integration Server clients and Web browsers go through IIS to gain access to the Active Server Pages (ASP) that
invoke the Transaction Integrator (TI) methods that call the CICS or IMS transaction program (TP).

NLB provides high availability on enterprise systems. It detects connection failures and automatically redirects requests to
other nodes in the server farm. NLB also improves performance when all incoming packets are load balanced between various
nodes in the server farm based on server load.

You can configure NLB to balance the load on multiple servers that use single affinity, no affinity, or Class C. No affinity
distributes all incoming TCP/IP requests across any node in the NLB server farm, which can increase the number of requests
that need to be redirected because there is no concept of a session state. We recommend that you use IIS to distribute HTTP
requests configured for single affinity. When the server is configured for single affinity, all incoming packets using the NLB
virtual IP address are locked to a specific node in the server farm. Every packet that is sent from the client using the cluster IP
address will connect to that node.

Note
NLB cannot detect whether the TI Automation server fails to respond. It can only detect if the server fails, for example if TCP/I
P does not respond.

See Also
Other Resources
Load Balancing and Hot Backup

https://msdn.microsoft.com/en-us/library/aa704836(v=bts.10).aspx

TI TCP/IP Load Balancing
Transaction Integrator (TI) can load balance TCP/IP ports when you have configured TI for CICS and IMS TCP/IP remote
environments. To enable load balancing, supply multiple TCP port numbers when you create the remote environment; this
enables connections to redundant CICS or IMS regions on a single host system. The following figure shows the TI TCP port
load balancing solution.

Transaction Integrator receiving a TCP/IP address and sending it to CICS ports 3000 and 3001

The first TCP port is used by the first transaction and will take turns going through all the configured ports for each transaction
that is invoked.

Additional host configuration details for CICS and IMS are included in the following sections.

CICS TCP/IP Platform Requirements

The version dependencies for CICS include the following:

TCP/IP version 3R2

CICS version 3.3 or later

Connections to CICS Using TCP/IP

CICS uses the IBM-supplied Concurrent Listener (program EZACIC02, transaction ID CSKL) to establish an interaction with
TCP/IP. The Listener runs as a CICS task to help facilitate the connection process. The Listener transaction starts automatically
when CICS TCP/IP is started and enabled. When the Listener starts, it obtains a socket on which it can listen for connection
requests from TCP/IP. The Listener binds this socket to a specified port, and then it waits for a client request on that port.
TCP/IP maintains a relationship of a port number to a CICS job. When a client makes a request on a port associated with CICS,
TCP/IP forwards the connection request to the Listener in that CICS job.

TCP/IP-to-CICS Configuration

A TCP/IP port number is associated with a CICS region in the TCP/IP profile data set (hlq.PROFILE.TCPIP). The port statement is
used to define this relationship. An example of a port statement that associates port 3000 with CICS job CICSRG follows:

CICS to TCP/IP Configuration

The following sample host definition shows configuration parameters for CICS-to-TCP using the EZAC transaction. The items in
bold type are CICS transactions.

3000 TCP CICSRG

ENTER ONE OF THE FOLLOWING

CICS ===> yes Enter Yes|No
LISTENER ===> Enter Yes|No

The following sample host definition shows configuration parameters for the CICS Concurrent Listener using the EZAC
transaction. The items in bold type are CICS transactions.

IMS TCP/IP Platform Requirements

The version dependencies for IMS include the following:

TCP/IP version 3R2

IMS version 4 or later

Connections to IMS using TCP/IP

IMS uses a Listener to establish an interaction with TCP/IP. A Listener in an IMS Batch Message Processing (BMP) helps
facilitate the connection process. When the Listener starts, it obtains a socket on which it can listen for connection requests
from TCP/IP. The Listener binds this socket to a specified port, and then waits for a client request on that port.

ENTER ALL FIELDS

APPLID ===> CICSRG APPLID of CICS System

EZAC,DEFINE,CICS
OVERTYPE TO ENTER

APPLID ===> CICSRG APPLID of CICS System
TCPADDR ===> TCPIP Name of TCP Address Space
NTASKS ===> 020 Number of Reusable Tasks
DPRTY ===> 000 DPRTY value for ATTACH
CACHMIN ===> 015 Minimum Refresh Time for Cache
CACHMAX ===> 030 Maximum Refresh Time for Cache
CACHRES ===> 010 Maximum number of Resolvers
ERRORTD ===> CSMT TD Queue for Error Messages

EZAC,DEFINE
ENTER ONE OF THE FOLLOWING

CICS ===> Enter Yes|No
LISTENER ===> yes Enter Yes|No

ENTER ALL FIELDS

APPLID ===> CICSRG APPLID of CICS System
NAME ===> xyz TRANSACTION NAME OF LISTENER

EZAC,DEFINE,LISTENER
OVERTYPE TO ENTER

APPLID ===> CICSRG APPLID of CICS System
TRANID ===> XYZ Transaction Name of Listener
PORT ===> 03000 Port Number of Listener
IMMEDIATE ===> YES Immediate Startup Yes|No
BACKLOG ===> 010 Backlog Value for Listener
NUMSOCK ===> 050 Number of Sockets in Listener
MINMSGL ===> 004 Minimum Message Length
ACCTIME ===> 060 Timeout Value for ACCEPT
GIVTIME ===> 030 Timeout Value for GIVESOCKET
REATIME ===> 000 Timeout Value for READ
FASTRD ===> YES Read Immediately Yes|No
TRANTRN ===> YES Translate TRNID Yes|No
TRANUSR ===> YES Translate User Data Yes|No
SECEXIT ===> Name of Security Exit

TCP/IP maintains a relationship of a port number to an IMS Listener BMP. When a client makes a request on a port associated
with IMS, TCP/IP forwards the connection request to the Listener in that BMP.

Implicit Mode

Implicit mode uses the IMS Assist Module to translate conventional IMS communication into corresponding socket calls. It is
dependent on the IBM-supplied default Listener (EZAIMSLN) that runs in a BMP region.

This host server application model processes input data using the IMS message queue. The Listener places the TRANID and the
input data into queue. The IMS control region schedules the transaction in a Message Processing Region. The transaction
program reads the request from the queue using GU and GN commands. All response data is delivered to the client by way of
the ISRT command. The IBM-supplied Assist Module delivers the data directly to the client through socket API calls.

Host applications are written using CBLADLI or CBLTDLI APIs. The Assist Module uses DBLADLI API for Implicit mode. If you
want an existing IMS transaction programs (TPs) to use Implicit Mode TCP/IP, you must change to the CBLADLI API and
recompile the TP.

Explicit Mode

The IMS explicit (TCP/IP) model requires installation, within IMS, of the IBM-supplied default Listener (EZAIMSLN) that runs in a
BMP region. This host server application model processes data without using the IMS message queue. The Listener places only
a single segment (the Transaction Initiation Message) into the message queue. The IMS control region schedules the execution
of the transaction into a Message Processing Region. The transaction then communicates directly with the client through
socket API calls.

All IMS host server programs must be administered to IMS as no-response transactions.

TCP/IP to IMS Configuration

A TCP/IP port number is associated with an IMS Batch Processing Region (BPR) in the TCP/IP profile data set
(hlq.PROFILE.TCPIP). The port statement is used to define this relationship. An example of a port statement that associates port
3000 with IMS batch region with a job name of WNWIBPR1 is:

3000 TCP WNWIBPR1

IMS to TCP/IP Configuration

An IMS MPP is started specifying the program name IMS IBM supplied Listener program (EZAIMSLN). This Listener reads a
configuration file identified by the DD statement LSTNCFG. This configuration data set contains one or more the following
startup parameter sets (one set for each transaction defined for least one CR):

TCPIP statement

LISTENER statement

TRANSACTION statement

The TCPIP statement is used to identify the job name for the TCP/IP address space that will manage connection for this
listener.

The LISTENER statement is used to specify the port number that this Listener will be using. This statement also specifies other
port-related parameters such as backlog, time out values, and so on.

The TRANSACTION statement defines a list of transaction that this Listener can start. In addition, this statement defines
whether the implicit or explicit connection mode is used.

The Listener uses these three parameter statements to inform the Listener which TCP/IP port to use and which transactions can
be accessed through TCP/IP.

Here is a sample of an IMS-to-TCP/IP host definition:

TCPIP ADDRSPC=WNWTCP31
LISTENER PORT=4000 BACKLOG=50
TRANSACTION NAME=TRANIMPL TYPE=IMPLICIT
TRANSACTION NAME=TRANEXPL TYPE=EXPLICIT

See Also
Other Resources
Load Balancing and Hot Backup

https://msdn.microsoft.com/en-us/library/aa704836(v=bts.10).aspx

Security Implications
Transaction Integrator (TI) can provide user ID and password credentials for authentication on the mainframe. They are
provided in compliance with existing IBM standards, and mainframe authentication is completed by standard IBM procedures
such as Resource Access Control Facility (RACF), Top Secret, and so on. All mainframe authentication is completed in a manner
transparent to the developer.

When LU 6.2 is used for connectivity, credentials are transmitted to the mainframe in an SNA LU 6.2 Function Management
Header Type 5 (FMH-5) ATTACH message. For more information, refer to the IBM manual,
Systems Network Architecture Formats, Document Number GA27-3136-16, Section 11.1.5 FM Header 5: Attach (LU 6.2).

When TCP/IP is used for connectivity, credentials are transmitted in the Transaction Request Message (TRM) sent from TI to the
Listener. There are some additional coding requirements on the mainframe for TCP/IP to provide user exits for authentication.
For information about CICS, refer to
IBM TCP/IP for MVS CICS TCP/IP Socket Interface Guide and Reference, Document Number SC31-7131-
03, Section 6.6.3 Writing Your Own Security Link Module for the Listener. For information about IMS, refer to
IBM TCP/IP for MVS IMS TCP/IP Application Development Guide and Reference, Document Number SC31-7186-
03, Section 3.4.4 The IMS Listener Security Exit. Prior to TCP/IP version 3R2, the CICS exit module required the name, EZACICSE.
However, you can choose any name when you are using TCP/IP version 3R2. For IMS, the exit module must be named
IMSLSECX.

There are three alternative sources of mainframe credentials.

The identity of the COM+ application that contains the TI component.

The identity of the Windows user of the TI application.

The optional explicit security override feature of TI.

Use of the explicit override feature dissociates mainframe security from Windows 2000 security; therefore, its use is not
recommended over the first two alternatives. Using either of the first two alternatives integrates mainframe security with
Windows 2000 security by using Host Integration Server Host Security Integration (HSI), or Single Sign-On functionality. (You
do not need to install software on the mainframe for HSI unless you also want Host Password Synchronization.)

By default, passing credentials to the mainframe for authentication is not enabled. You must activate the TI remote
environment (RE) security properties by selecting the Set security on check box. You must click either Authenticate with
package credentials or Authenticate with user credentials even if you plan to use the explicit security override feature.

To select the explicit security override, select the Allow application override check box. This option is the least recommended
of the three. If Allow application override is selected but not implemented by the application, the security mechanism
reverts to whichever of the other two security options you selected.

Note
Explicit security override is not the preferred method of specifying credentials for a client. If possible, you should use the Clie
nt Context USERID and PASSWORD override keywords. For more information, see the COMTIContext Keywords.

In This Section

How to Use Optional Explicit-Level Override Authentication

Level of Security

Using Host Security Integration

How to Use Already Verified Authentication

Mainframe Authentication for CICS LINREs

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705381(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704843(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771377(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771078(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770564(v=bts.10).aspx

How to Use Optional Explicit-Level Override Authentication
Clicking the Allow application override check box enables applications to supply credentials at run time through a callback
mechanism supplied by Transaction Integrator (TI). Using application override does not require the installation and use of Host
Integration Server Host Security Integration (HSI). Instead, the client application supplies TI with a pointer to a callback object
that can be used to request credentials when they are needed at run time. A utility component is provided so that customers
can add their callback pointer to the context, and create new COM+ objects that inherit from the modified context. The security
callback component is automatically installed.

Note
Explicit-Level Override Authentication is not the preferred method of specifying credentials for a client. If possible, you shoul
d use the Client Context USERID and PASSWORD override keywords. For more information, see the
COMTIContext Keywords.

To use explicit security, the client application must follow these steps:

To use explicit security

1. Create an instance of an object that implements IHostSecurityCallback.

This object is created in the client application and is implemented by the developer.

2. Create an instance of the TI utility object COMTI.HostSecurityContext.

3. Call SetCallbackObject on the utility object, and pass it the IHostSecurityCallback pointer on the callback object.

4. Create instances of its TI component by using the CreateInstance method on the security utility object.

When the TI component instance created in step 4 establishes a conversation with the host, it calls the ReturnSecurityInfo
method on the callback object. TI passes this method the name of the remote environment being contacted. The output
parameters provide the logon and password as clear text.

As an additional aid to developers, TI provides the type information for the IHostSecurityCallback interface inside the
component library for the TI security component. This enables Visual Basic developers to set a reference to this component and
then use the Implements keyword to implement the callback class.

See Also
Other Resources
Security Implications

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746177(v=bts.10).aspx

Level of Security
Application-level (or package-level) security and user-level security are the two preferred means of authentication because
they integrate security on the mainframe with Windows 2000 security. The Transaction Integrator (TI) run-time environment
obtains credentials from either the Windows identity of the COM+ application or from the identity of the client application that
invoked the TI Automation server that contains the TI component.

In both cases, the facilities of Host Integration Server Host Security Integration (HSI) are required. The Windows 2000
credentials are replicated, unchanged, or mapped to another set of credentials specific to the mainframe. The credentials are
then sent to the mainframe for authentication.

Internally, the mechanism functions as follows. For COM+ application identity credentials, TI sets the user ID and password
fields in the MC_ALLOCATE verb to MS$SAME, and sets the security field to AP_PGM. This informs HSI to derive host
credentials for the owner of the currently executing process.

For user credentials, TI sets the security field in the MC_ALLOCATE verb to AP_PGM OR'd with AP_PROXY, and fills in the
domain and account name fields in the verb ctl block with the values it obtained from LookupAccountSid (in the Win32 API).
This informs HSI to derive host credentials corresponding to that Windows account, regardless of the running process. In other
words, the run process acts as a proxy for the real user and passes the real user's credentials.

See Also
Other Resources
Security Implications

https://msdn.microsoft.com/en-us/library/aa746177(v=bts.10).aspx

Using Host Security Integration
When you create a Host Integration Server Host Security Domain (HSD), two Windows 2000 local user groups are created. For
example, if you name the HSD OURHOST, the two user groups created are named OURHOST and OURHOST_PROXY. There
is also a Host Account Cache that is used to maintain user credential mappings. These mappings are used by Host Integration
Server Host Security Integration (HSI) to map (or replicate) the original Windows 2000 credentials to host credentials.

Host Integration Server Credential Settings

The following table shows the Host Integration Server credential settings that you must specify in a given Windows 2000 user
group and in the Host Account Cache when using one of the authentication options.

TI Authentication Option OURHOST OURHOST_PROXY Host Account Cache

User Credentials User COM+ Application* User

COM+ Application Credentials COM+ Application COM+ Application

Application Override Not applicable Not applicable Not applicable

*The reason that you must add the COM+ application identity in the PROXY user group is because you are allowing a process
(your TI component) to run under an identity other than the identity that Windows 2000 has authenticated. This group
assignment specifies that you are allowing the COM+ application to run host transaction programs on your behalf.

Note
If Application Override is not implemented correctly by the client application, the mechanism for supplying credentials to t
he mainframe falls back to one of the other two methods.

COM+ application identity defines the Component Services computer process that is running. The process can run either as an
Interactive User or as a specified Windows user account. It is typical for server processes to run as Interactive User during
development; however, in production, a Windows user account is usually used.

Host Account Cache

Host Integration Server maintains the Host Account Cache. For any Windows 2000 domain user, the Host Account
configuration specifies whether Windows credentials are replicated to the mainframe or mapped to other credentials to be
sent to the mainframe.

See Also
Other Resources
Security Implications

https://msdn.microsoft.com/en-us/library/aa746177(v=bts.10).aspx

How to Use Already Verified Authentication
You can set the Use Already Verified or Persistent Verification authentication option on the remote environment (RE)
Security property page in Transaction Integrator (TI) Manager.

To view or modify the Security properties for an RE

1. Start TI Manager.

2. Right-click the RE, and then click Properties.

3. Click the Security tab, and then select the Set security on check box.

When you select the Use Already Verified or Persistent Verification authentication check box, only a user ID is sent to the
mainframe; that is, no password is sent, provided the mainframe partner allows it. The mainframe relies on the assumption
that this user ID has already been authenticated and does not require a password. The SNA mode on the mainframe must
specify this type of authentication. For CICS applications, the mode setting is determined by the ATTACHSEC=IDENTIFY
parameter of the Sessions definition used for the connection.

See Also
Other Resources
Security Implications

https://msdn.microsoft.com/en-us/library/aa746177(v=bts.10).aspx

Mainframe Authentication for CICS LINREs
If you use a CICS LINK LU 6.2 remote environment (RE), you must use resource-level authentication.

Because of a restriction imposed by the IBM Distributed Program Link (DPL) protocol, a user ID and password transmitted from
the workstation by Transaction Integrator (TI) are ignored and not used for transaction-level authentication. The target CICS
region expects, under the circumstances, that authentication was completed by the TI application that initiates the IBM DPL call.
(Traditionally, the application that initiates an IBM DPL call is a program in another CICS region.) Instead of using credentials
from the FMH-5 ATTACH, for transaction-level authentication, the target CICS region associates the default user ID for the
region with the transaction ID of the CICS task (the mirror transaction).

As a result of this behavior, any attempt to secure the mirror transaction can cause an application malfunction because of a
failure to authenticate.

See Also
Other Resources
Security Implications

https://msdn.microsoft.com/en-us/library/aa746177(v=bts.10).aspx

Transaction Size vs. Transaction Throughput
When looking at the transactions per second (TPS) rates that the server might be capable of sustaining, you must consider the
amount of data moved and processed for each transaction. It is generally understood that the more data that you transfer for
each transaction, the fewer TPS you can push through. For Transaction Integrator (TI), this also holds true. The following figure
shows the rate at which the TPS decrease as transaction sizes increase on the Quad Xeon 400 test server.

Chart displaying transactions per second on the vertical axis and percent CPU on the horizontal axis

The best TPS rate is produced by the test transaction, which returns only 1 byte of data. This return value only sets the high bar
to 1093 TPS. The Char481 (simple application screen) can maintain close to the maximum possible rate. The data transfer test
of 32k, which moves 64000 bytes of data per transaction, cannot maintain the same TPS rate as the others. In this case, the
latencies on the LAN, memory allocations, and copies begin to really show.

In This Section

Transaction Size vs. Data Throughput

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa744294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Transaction Size vs. Data Throughput
As a result of the transaction throughput test shown in Transaction Size vs. Transaction Throughput, the question of what the
best message size for these transactions arises. We captured the actual user data transferred with these transactions and
looked at the MB/sec throughput versus message size. The following figure shows that if the data throughput is the objective
of optimization, the larger the message size, the higher the throughput. Additional considerations can influence the selections
of the message size, such as the maximum frame size on the LAN or WAN. For example, Ethernet 802.2 frames can fit 1484
bytes of user data per frame; token-ring can go up to 8186 bytes.

Chart displaying megabytes per second on the vertical axis and percent CPU on the horizontal axis

See Also
Concepts
Transaction Size vs. Transaction Throughput
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa745673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Transaction Programs that Run for a Long Time
Several special considerations apply when a transaction program (TP) runs for a long time. The topics in this section address
these considerations.

In This Section

Scalability and Long-Running TPs

Processing Two-Phase Commit Transactions

Component Services User Thread Pool

TI 2PC Thread Pool

SNA Parallel Sessions

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa746202(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705615(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771090(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Scalability and Long-Running TPs
When the transaction processing times (unit of work and commit times) become longer because of the nature of the
transactions or an excessive load on the host, the behavior of the middle-tier software might change the throughput and end-
user response time. This occurs because the number of active concurrent transactions increases and the middle-tier server is
doing some level of transaction caching. For example, in a system that processes 200 TPS (transactions per second) at an
average transaction response time of one second, the concurrent active transaction count at any give time is around 200. If the
response time grows to five seconds, the concurrently active transactions grow to approximately 1000.

Transaction Caching

When sizing the middle-tier server, you must consider queries and batch jobs that run from seconds to hours. You can allow
more transaction requests in COM+ waiting for the host responses, but excessive transaction caching might not be a good idea
because it increases thread count, context switching, and memory usage. This burdens the middle-tier server and can cause
performance degradation. Therefore, use COM+ or Transaction Integrator (TI) pooling capabilities cautiously; pooling does not
help in the actual transaction processing, and it does not improve the response times or throughput.

In some cases, this shows real advantages. However, when transactions run against multiple host systems and databases
(multi-forked transactions), the transaction caching in the middle-tier enables each transaction in the fork to start processing
immediately, with the slowest fork determining the overall response time. If the transaction is not cached, all the work is
blocked, until the prior transactions are completed, thus yielding lower performance. The two thread pools that are transferred
when the number of active transactions grows on the middle-tier server are the COM+ user thread pool and the TI 2PC thread
pool.

See Also
Other Resources
Transaction Programs that Run for a Long Time
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Processing Two-Phase Commit Transactions
This topic discusses what happens with the two-phase commit (2PC) transaction while it is being processed by Microsoft
Distributed Transaction Coordinator (DTC) in COM+, Transaction Integrator (TI), and CICS.

The process begins when the client application invokes a method on the TI Automation server (the COM+ application that
contains the TI component). COM+ then allocates a thread for the transaction from its user thread pool, begins the transaction,
and passes the method's input parameters to the TI run-time environment. This thread is blocked for the transaction until the
response comes back from the CICS host. This is the unit of work time, which consists mostly of time it takes the CICS
application to process the transactions business logic and gain access to the database as needed (assuming that the
transmission speeds keep up with the LAN speed). When the method's output parameters are sent back to COM+ from the
host, the commit message is sent to DTC. The output data is stored waiting for the commit complete message from DTC. If the
unit of work time grows longer, more transactions are kept active by COM+, with each transaction occupying a thread from
the COM+ user thread pool.

DTC activates the prepare phase for the transactions, causing TI to allocate a thread from its 2PC thread pool and keep it
blocked until the request commit message arrives from the host. After all the forks of the transactions are prepared, DTC sends
a commit complete message to COM+, and COM+ then sends the method's output parameters and return values back to the
calling client application and releases the thread.

This completes the transaction for the user, but the transaction monitors (DTC and CICS) still must complete the second phase
of the commit, and again, a thread from the TI 2PC thread pool is allocated for each transaction doing the second phase of the
commit.

See Also
Other Resources
Transaction Programs that Run for a Long Time
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Component Services User Thread Pool
A thread from the Component Services user thread pool is allocated to a transaction as long as the host is processing the
transaction (unit of work time). This occurs for both transactional (two-phase commit transactions), and nontransactional
processing. If you have slow host or communication lines, or your transactions take a long time to process, you might have to
adjust a registry entry to enable more threads for this pool. The default is 100 threads per COM+ application.

See Also
Other Resources
Transaction Programs that Run for a Long Time
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

TI 2PC Thread Pool
The Transaction Integrator (TI) two-phase commit (2PC) thread pool is different from the COM+ user thread pool. The TI 2PC
thread pool is used only for 2PC transactions. The threads are precreated, and a single process interacts with Microsoft
Distributed Transaction Coordinator (DTC) to handle prepare and commit transactions. This improves the performance by
eliminating thread creation and destruction for every 2PC transaction.

Default Maximum Thread Settings

You do not have to worry about overburdening this pool unless large numbers of 2PC transactions are processed. Only when
prepare or commit times for the transactions become very long can queuing to interact with DTC occur.

Default maximum threads for each CPU is 20.

Default maximum active threads for each CPU is 19.

Default maximum total threads for each system is 80.

You can adjust the default amounts by adding a TEXT string value to the registry location:

HKLM\Software\Microsoft\Cedar\Defaults\Threads

IOPortPoolFactor=20

IOPortActive=19

ThreadPoolMax=80

Rules for Specifying Values

The following rules apply for specifying values:

All values must be greater than zero.

IOPortPoolFactor must be >= IOPortActive + 1.

ThreadPoolMax must be >= IOPortPoolFactor.

Caution
Allocating too many threads can cause Windows to run out of resources, and that can cause unpredictable behavior in COM
+ and in Windows.

See Also
Other Resources
Transaction Programs that Run for a Long Time
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

SNA Parallel Sessions
Each active transaction allocates one parallel session to interact with the host when SNA is used instead of TCP/IP. This session
is activated when the transaction sends the attach message (allocate conversation) and released after the forget message
(TpEnded). When you configure too few parallel sessions for the SNA connection, the transactions that are waiting for the
active ones to release can start queuing up. To avoid this queuing problem, configure enough sessions for the worst-case
scenario.

Note
SNA Server 4.0 SP3 required the use of a contention winner session, but Host Integration Server does not. Host Integration S
erver can use any session as it becomes available.

Host Integration Server can handle large numbers of parallel sessions. The maximum is 30,000 parallel sessions for each LU-
LU pair, after which another LU-LU pair must be configured. The CICS system is a bit more sensitive to the amount of parallel
sessions configured. Contact your CICS systems experts for the appropriate session count.

See Also
Other Resources
Transaction Programs that Run for a Long Time

https://msdn.microsoft.com/en-us/library/aa770563(v=bts.10).aspx

Two-Phase Commit Performance Considerations
When a Transaction Integrator (TI) component executes within a transaction, the TI run-time environment sends a message to
Microsoft Distributed Transaction Coordinator (DTC) in the COM+ environment, enlisting itself on the transaction as a special
type of LU 6.2 resource manager. After TI sends its data buffer to the host and receives the reply, it calls the SetComplete
method and returns control to COM+. At this point, the client application, or other component driving TI, can perform other
work also included in the same transaction. When all resource managers have made their updates and issued SetComplete,
the transaction's creator (which can be COM+ itself for an Auto-Transaction) sends the Commit method to DTC. DTC sends
the first-phase (Prepare) message to all the resource managers, including the TI run-time environment. TI generates the
Prepare PS Header defined in the SNA Formats, and sends it to the host. It receives a RequestCommit in reply, which
indicates that the host updates are valid and can be committed, and passes this information back to DTC. DTC collects the votes
from all the resource managers, and if all prepared okay, it force-writes a Commit record to the log and sends the Committed
message. Again, TI translates this into an SNA PS Header, receives the reply, and translates this back to DTC. If everything
works as planned, DTC rolls back the transaction and the APPC/LU 6.2 conversation is deallocated.

Note
Neither TI nor the AP need be concerned about an APPC or CPI/C SYNCPT verb. The decision to "take a SyncPoint" is made b
y the transaction creator, is expressed in the semantics of OLE transactions, and involves all participants in the transaction, no
t just the TI LU 6.2 branches. The role of TI is at a lower level; TI acts as a resource manager to DTC. It translates between the
COM interfaces used by DTC, and the SNA protocols understood by the host, to perform the two phases of the protocol and
enable DTC to make the Commit decision between phase one and phase two.

From a performance standpoint, guaranteeing the atomicity of the host updates adds significant, unavoidable overhead. There
are two additional round-trip message flows to the host for the two-phase commit (2PC), plus the Windows message flows to
enlist, and the transaction logging (forced disk writes) by DTC and on the host. Transactions that do not require a great deal of
business logic processing can take twice as long or more to complete when you compare it to the same transaction without
2PC.

The only time you should configure a TI component to support ACID transactions is when the associated host transaction
program (TP) modifies a mission critical resource that must be kept consistent with resources on the Windows 2000 operating
system. If the TP will not modify any resource for which consistency must be guaranteed, configure the TI component as Does
Not Support Transactions, so that 2PC is not attempted. Then you are also free to use the TCP/IP protocol. The TCP/IP
protocol does not support 2PC.

TI components should never be configured as Requires a New Transaction. This means that you are managing the
transaction remotely for the host, and it would incur the overhead of creating a new transaction, enlisting on it, and performing
the 2PC exchanges with the host, but the TI method would be a transaction unto itself. It is more efficient to enable CICS and
IMS to manage their own transactions. Any updates on the Windows operating system would not be part of that transaction,
so they would commit or roll back independently.

Note
Additional business logic processing on the same server lowers the throughput limits, stealing some of the CPU. However, th
e cost can be relatively small in the scope of the overall response time budget.

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Data Conversion Cost
The following list provides advice on selecting the data types that convert most efficiently between Automation and COBOL.

If the source and destination data types are not strictly dictated, you can decrease the amount of CPU resource consumed
by Transaction Integrator (TI) by appropriately selecting the data conversions that are performed (that is, selecting the
source and destination data types wisely).

The most efficient way to pass data is to select an Automation type of VT_BYTE and a COBOL data type of PIC X
untranslated. There is no conversion performed and the data is copied as is.

The Automation type VT_BSTR (a UNICODE character string) converts efficiently to COBOL PIC X. Be aware that a BSTR
is not the same as a C character data type; it is a Visual Basic String.

The most efficient numeric data type conversions are VT_I2 (Visual Basic Integer or C short) to COBOL PIC S9(4)
COMP, and VT_I4 to PIC S9(8) COMP.

If the data type you want is a COBOL packed decimal, the best choice for data conversion performance is one of the
Automation integer data types. If fractional parts are required (that is, a COBOL picture like PIC S9(5)V99 COMP-3), the
best choice for the Automation type is VT_DECIMAL (Decimal) or VT_CY (Currency).

When the COBOL data type is zoned decimal (that is, a COBOL picture similar to PIC S9(7)V99 DISPLAY), the same
considerations as for packed decimal apply. It is slightly more work to convert Automation data types to and from zoned
decimal than it is to perform the conversions to packed decimal. If the data is used in calculations on the mainframe
system, it is more efficient to use packed decimal instead of zoned decimal.

Converting floating point data types (Automation types VT_R4 and VT_R8) is, in most cases, the most expensive.
Converting VT_R4 to a COBOL COMP-1, or VT_R8 to a COBOL COMP-2 (a COBOL floating point number) data type is
the most efficient conversion involving floating-point numbers.

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

ADO Recordsets vs. User-Defined Types in Structured Data
Tests

Tests on structured data transfer show that user-defined types outperformed ADO recordsets in CPU usage, transactions per
second, and response time.

Tests were conducted using six Pentium 300 MHz clients, one quad-processor Xeon p2-400 system as a gateway, and four
SNA host server computers to emulate the CICS region of a mainframe. When transferring user-defined types, the clients were
under less stress, and there was much better throughput overall. User-defined types were also much less stressful to the
server.

The overall response times for the user-defined types are also much less because of the metadata that recordsets contain. The
metadata inside the recordsets increases the size of the data marshaled back and forth across the DCOM connection. In
addition to the increased size, the metadata increases processing overhead.

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Remote Environment Selection Using the SelectionHint
Property

Developers can use the SelectionHint property to specify a remote environment (RE) programmatically.

By setting the SelectionHint property, applications can specify which CICS or IMS RE should be used when servicing
Transaction Integrator (TI) requests. The algorithm used by an application in selecting an RE is determined by the application
code. For example, a business enterprise can use separate CICS or IMS regions when handling requests from different
branches. In this case, the application chooses the RE that identifies the region suitable for the current branch.

To specify an RE in an application, set the SelectionHint property to the name of the RE you want to use. TI Designer
automatically adds the write-only SelectionHint property to each TI component.

Before you can use the SelectionHint property to specify a remote environment (RE) programmatically, the following must be
in place:

Host Integration Server must be installed on all computers running the TI run-time environment or TI Designer.

The TI component must be assigned to an RE even though RE selection is in use. The RE assigned to the component is
used when an application that has a TI component does not explicitly set the SelectionHint property.

To assign a TI component to an RE, use TI Manager and follow the instructions provided in the TI online Help.

In This Section

Guidelines for Using Remote Environment Selection

Writing Code that Specifies a Remote Environment

Cost of Remote Environment Selection

https://msdn.microsoft.com/en-us/library/aa754743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771312(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745731(v=bts.10).aspx

Guidelines for Using Remote Environment Selection
Consider these guidelines when you are using the SelectionHint property to specify a remote environment (RE)
programmatically:

Avoid hard-coding RE names into applications. Instead, load RE names from a file or database.

Ensure that applications are structured to handle failures when they are attempting to set the SelectionHint property.

Ensure that procedures for adding and configuring REs include a mechanism to update REs referenced in the application
code.

Confirm that administrative and operational tasks do not interfere with application code that uses the RE selection.
Specifically, review when and how REs are deactivated and deleted.

See Also
Other Resources
Remote Environment Selection Using the SelectionHint Property

https://msdn.microsoft.com/en-us/library/aa705658(v=bts.10).aspx

Writing Code that Specifies a Remote Environment
Applications can set the SelectionHint property to specify a remote environment (RE) programmatically. By specifying the RE,
the application identifies the CICS or IMS region where transaction programs are carried out when the Transaction Integrator
(TI) run-time environment handles calls to the TI component's methods.

The following Visual Basic code demonstrates how to set the SelectionHint property:

This example shows how the application can explicitly instruct the TI run-time environment to use the RE named
MyRemEnvName when handling the call to method1. In this example, MyRemEnvName is the first string in the file
MyREList.txt. Any method calls made after method1 that follow the SelectionHint assignment are handled using the original
RE that was assigned to the component, not the new one. In other words, the programmatic override of the default RE does not
continue past a single method call.

If an application attempts to set the SelectionHint property to a string that does not correspond to the name of an RE, an
error is reported, and the original RE is used.

The SelectionHint property can be set to a deactivated RE. However, the next method call to the object will fail because a
deactivated RE was selected.

The SelectionHint property is optional. If the SelectionHint property does not specify an RE, the TI run-time environment
uses the original RE.

See Also
Other Resources
Remote Environment Selection Using the SelectionHint Property

Dim objExample As Object
Dim Store As String
Set objExample = CreateObject("MyComponent.MyInterface")
Open "My REList.txt" for Input as #1
Line Input #1, strRE
Close #1

objExample.SelectionHint = strRE
RtrnVal = objExample.method1(parm1, , parmN) 'Use RE named "MyRemEnvName"

https://msdn.microsoft.com/en-us/library/aa705658(v=bts.10).aspx

Cost of Remote Environment Selection
The following figure shows the transaction throughput against the CPU load on the middle tier (the business-logic tier). Each
data point represents the number of stress clients, and the total amount of time that it takes for the clients to finish their
transactions. (For example, eight clients simultaneously perform transactions at a collective rate of approximately 200 TPS.)
Both requests and responses consist of 481 bytes of mixed data (text and numeric).

Chart displaying transactions per second on the vertical axis and percent CPU on the horizontal axis

The arrow in the graph shows the last level of CPU use at which transactions using SelectionHint and transactions not using
SelectionHint ran at a similar number of TPS. Pushing the load beyond this level causes a drop in throughput. Up to the 85%
CPU load level, you will see the same response time for both types of transactions. Using the SelectionHint property provides
additional flexibility with only a very small cost in maximum throughput level (15%). On the other hand, when pushing 680
TPS through the server, not using SelectionHint drops the CPU from above 80% to a comfortable 60% level. These CPU
cycles can be used to process the business logic on the middle tier.

See Also
Other Resources
Remote Environment Selection Using the SelectionHint Property

https://msdn.microsoft.com/en-us/library/aa705658(v=bts.10).aspx

Performance Improvements in Host Integration Server
The Windows-initiated processing (WIP) feature of Host Integration Server, when installed on Windows Server 2003, shows
the following performance improvements when compared to Host Integration Server 2000 SP1 installed on Windows 2000
Server:

CICS over SNA performance is higher by up to 12%.

CICS and IMS over TCP performance is higher by up to 30%.

Performance for methods that contain RecordSets is higher by up to 77%.

Enhanced Listener Message (ELM) performance is higher by up to 5% than Transaction Request Message (TRM)
performance.

Performance for persistent connection calls is higher than for the non-persistent calls by up to 56%.

WIP .NET performance is generally about 17% of WIP COM; numbers for the .NET Framework methods that contain
DataTables are within 30% of the COM methods that contain RecordSets

The TCP ELM Link Persistent model delivers the best performance, with 1900 calls/sec for the light conversion methods.

The performance tests were conducted on a Fujitsu 4-processor server running Windows Server 2003, with all computers on a
private 100-megabit network. The performance monitor was running on a separate computer.

See Also
Other Resources
Transaction Integrator Performance Guide

https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Technical Reference
The Technical Reference section contains areas that will aid your understanding of the Host Integration Server documentation
terminology, and some specific help for issues you may encounter as you use Host Integration Server.

In This Section

Glossary

UI Help

Administrators Reference

https://msdn.microsoft.com/en-us/library/aa744296(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745445(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704936(v=bts.10).aspx

Glossary
 

3270

The information display system for IBM hosts (mainframes). The system includes terminals, printers, and controllers that
enable a user to access host functions.

5250

The information display system for IBM AS/400 computers.

802.2

The logical link control protocol used for communication over a Token Ring or Ethernet network. The 802.2 protocol is an
IEEE standard.

1-byte unsigned Integer

An integer data type that has a positive value ranging from 0 to 255.

2-byte signed Integer

An automation integer data type that can be either positive or negative. The most significant bit is the sign bit, which is 1 for
negative values and 0 for positive values. The storage size of the integer is 2 bytes. A 2-byte signed integer can have a range
from -32,768 to 32,767.

2PC

See two-phase commit (2PC).

4-byte Real

Also referred to as a single-precision floating-point or Single. Single variables are stored as IEEE 32-bit (4-byte) floating-
point numbers, ranging in value from –3.402823E38 to –1.401298E-45 for negative values and from 1.401298E-45 to
3.402823E38 for positive values. The type-declaration character for Single is an exclamation point (!).

4-byte signed Integer

An Automation integer data type that can be either positive or negative. The most significant bit is the sign bit, which is 1 for
negative values and 0 for positive values. The storage size of the integer is 4 bytes. A 4-byte signed integer can have a range
from -2,147,483,648 to 2,147,483,647.

8-byte Real

Also referred to as a double-precision floating-point or Double. Double data type variables are stored as 64-bit (8-byte)
numbers. A Double variable is stored as a 64-bit (8-byte) number ranging in value from 1.79769313486232E308 to –
4.94065645841247E-45 for negative values, from 4.94065645841247E-324 to 1.79769313486232E308 for positive values,
and 0. The type-declaration character is a number sign (#).

3270 emulator

Software that enables a microcomputer to act as a 3270 terminal, displaying information from a host system (mainframe).
Emulator software can also enable a desktop computer to send print jobs from a host system to a printer connected to the
microcomputer.

3270 terminal emulation

The use of software that enables a microcomputer to act as a 3270 terminal, displaying information from a host system
(mainframe). Emulation software can also enable a microcomputer to send print jobs from a host system to a printer
connected to the microcomputer.

5250 emulator

Software that enables a microcomputer to act as a 5250 terminal interacting with an AS/400 system.

5250 terminal emulation

The use of software that enables a microcomputer to act as a 5250 terminal interacting with an AS/400 system.

-A-

A3270

The server transaction program for the APPC 3270 Terminal Emulator facility.

abend

Short for abnormal end. The premature ending of a program because of program error or system failure.

ACID

See atomic, consistent, isolated, and durable (ACID).

acknowledgment required (ACKRQD)

A field in the header of a Status-Control message. If a Status-Control request has ACKRQD set in the message header, the
recipient must supply a Status-Control response before the sender sends further messages or further Status-Control requests.

ACKRQD

See acknowledgment required (ACKRQD).

ActiveX® Data Objects (ADO)

A data access interface that communicates with OLE DB-compliant data sources to connect to, retrieve, manipulate, and
update data.

ACTLU

SNA command sent by the system services control point (SSCP) to a logical unit (LU) to activate a session and establish
session parameters.

ACTPU

SNA command sent by the system services control point (SSCP) to activate a physical unit (PU), so that any logical units
(LUs) controlled by this PU are available to the SNA network.

adapter

Refers to a circuit board, network card, and similar expansion devices with a specialized function, such as controlling a video
display monitor or accessing a communications line. Not the same as a driver.

administration access

The level of access available to a user. The user may be granted or denied the right to use the interfaces (Host Integration
Server Setup, SNA Manager, or the snacfg command) to read and change the configuration file, to start and stop services
and connections, or to reset LUs.

ADO

See ActiveX® Data Objects (ADO).

Advanced Peer-To-Peer Networking (APPN)

An extension to SNA that features (a) greater distributed network control that avoids critical hierarchical dependencies,
thereby isolating the effects of single points of failure; (b) dynamic exchange of network topology information to foster ease
of connection, reconfiguration, and adaptive route selection; (c) dynamic definition of network resources; and (d) automated
resource registration and directory lookup. APPN extends the LU 6.2 peer orientation for end-user services to network
control and supports multiple LU types, including LU 2, LU 3, and LU 6.2.

Advanced Program-to-Program Communications (APPC)

A means of enabling programs to communicate directly with each other, across a network or within a single system. APPC
uses a type of logical unit called LU 6.2, and enables transaction programs (TPs) to engage in peer-to-peer communications
in an SNA environment.

(1) The general term that characterizes the LU 6.2 architecture and its various implementations in products. (2) Refers to the
LU 6.2 architecture and its product implementations as a whole or to an LU 6.2 product feature in particular, such as an APPC
application programming interface. (3) A method for enabling programs to communicate directly with each other across a
network or within a single system. APPC uses a type of LU called LU 6.2, and enables TPs to engage in peer-to-peer
communications in an SNA environment.

AFTP

See APPC File Transfer Protocol (AFTP).

AFTPD

The server transaction program for the APPC File Transfer Protocol facility.

aggregation

A composition technique for implementing component objects whereby a new object can be built using one or more existing
objects that support some or all of the required interfaces of the new object.

alert

A message that indicates an abnormal event or a failure.

allocate

(1) The process that an operating system uses to respond to a request from a program to reserve memory for use by the
program. (2) In Advanced Program-to-Program Communications (APPC), a verb that assigns a session to a conversation.
Contrast withdeallocate.

American Standard Code for Information Interchange (ASCII)

A coding scheme that assigns numeric values to letters, numbers, punctuation marks, and certain other characters.

API

See application programming interface (API).

APING

(1) The APPC Connectivity Tester facility. (2) The client transaction program for the APPC Connectivity Tester facility.

APINGD

The server transaction program for the APPC Connectivity Tester facility.

APPC

See Advanced Program-to-Program Communications (APPC).

APPC File Transfer Protocol (AFTP)

(1) The client transaction program for the APPC File Transfer Protocol facility. (2) An interactive full-screen environment with
a specific set of commands used to manage and transfer files between a client and server computer. (3) An API that provides
APPC file transfer capabilities.

APPC mode

A collection of session properties used by LU 6.2-type logical units (LUs) as they carry on a session. A mode can be used by
many LU pairs at the same time.

APPC mode name

The name used to represent a set of characteristics to be used in an APPC LU-LU session.

APPC verb

The mechanism by which a program accesses APPC. Each verb supplies parameters to APPC. See alsoAdvanced Program-
to-Program Communications (APPC).

application programming interface (API)

The set of programming language constructs or statements that can be coded in an application program to invoke the
specific functions and services provided by an underlying operating system or service program.

application requester (AR)

(1) The source of a request to a remote relational database management system (DBMS). (2)The ODBC driver to DB2
connector that enables C and C++ applications to issue dynamic SQL queries and call DB2 stored procedures.

application TP

An application program that uses Advanced Program-to-Program Communications (APPC) to accomplish tasks for end-
users and exchange data with other transaction programs (TPs) in an SNA environment.

APPN

See Advanced Peer-To-Peer Networking (APPN).

See Advanced Peer-To-Peer Networking (APPN).

AR

See application requester (AR).

array

A set of sequentially indexed elements which have the same intrinsic data type. Each element of an array has a unique
identifying index number. A changes made to one element of an array does not affect the other elements.

ASCII

See American Standard Code for Information Interchange (ASCII).

assembly

A collection of functionality built, versioned, and deployed as a single implementation unit (one or multiple files). An
assembly is the primary building block of a .NET Framework application. All managed types and resources are marked either
as accessible only within their implementation unit or as exported for use by code outside that unit. In the common language
runtime, the assembly establishes the name scope for resolving requests and the visibility boundaries are enforced. The
runtime can determine and locate the assembly for any running object because every type is loaded in the context of an
assembly.

assembly cache

A machine-wide code cache used for side-by-side storage of assemblies. There are two parts to the cache. First, the global
assembly cache contains assemblies that are explicitly installed to be shared among many applications on the computer.
Second, the download cache stores code downloaded from Internet or intranet sites, isolated to the application that triggered
the download so that code downloaded on behalf of one application or page does not impact other applications. See
alsoglobal assembly cache (GAC).

asynchronous verb completion

Processing of an SNA verb where the initial API call returns immediately, so that the normal operation of the program is not
blocked while processing completes. When the verb completes, the application is notified through a Microsoft® Windows®
message or event. Contrast withsynchronous verb completion.

atomic, consistent, isolated, and durable (ACID)

An acronym that describes the four key properties required of any Windows-based transaction:

Atomic. Each transaction must execute completely or not at all.

Consistent. The structural integrity of the transaction database must be maintained.

Isolated. A transaction cannot access data that is already involved in a transaction.

Durable. The TP data must be stored securely to enable recovery of the transaction results.

Note
A mainframe-based transaction program (TP) differs from a Windows-based transaction. A mainframe-based TP is a COBO
L program that exists in the CICS or IMS environment and contains one or more mainframe transactions. A mainframe tran
saction might or might not meet the ACID properties.

atomicity

A feature of a transaction that indicates that either all actions of the transaction happen or none happens.

auditing

Tracking the activities of administrators and users by recording selected types of events (for example, the changing of the
configuration file) in the security log of a computer running Host Integration Server.

authentication

The process of determining the identity of a user attempting to access a system. For example, passwords are commonly used
to authenticate users.

automatic partnering

A setting for APPC LUs and modes that enables LU-LU pairs (with assigned modes) to be generated automatically by Host
Integration Server. Each time a new APPC LU or mode is created with automatic partnering enabled, Host Integration Server
searches for existing LUs and modes that also have automatic partnering enabled. Host Integration Server then uses all
available automatic partners to create as many unique LU-LU pairs as possible, each pair containing a remote LU, local LU,
and assigned mode. Disabling an automatic partner setting after an LU or mode has been created does not remove that LU
or mode from LU-LU pairs already generated.

automatic transaction

A transaction that is created by the COM+ run-time environment for an object based on the transaction attribute of a
component.

Automation

Automation is COM-based technology that enables dynamic binding to COM objects at run time.

Automation client

Also called an Automation controller. An application that manipulates the objects, methods, and properties of another
application (the Automation server) through Automation.

Automation object

An object that is exposed to other applications or programming tools through Automation interfaces.

Automation server

An application that enables its objects, methods, and properties to be controlled by other applications through Automation.

-B-
backup configuration file

An extra copy of the configuration file, saved by using the File menu BackupConfiguration command in SNA Manager. The
default extension for backup configuration file names is .SNA.

backup server

A computer running Host Integration Server, and designated as a backup server, on which the configuration file is replicated
by Host Integration Server. Host Integration Server loads the copy of the configuration file located on a backup server if the
primary server goes down. One or more computers running Host Integration Server can operate as backup servers.

Base

A part of each Host Integration Server component that provides the operating environment for the core functions of that
component. The Base passes messages between components and provides functions common to all components, such as
diagnostic tracing.

base client

A client that runs outside the COM+ run-time environment, but that instantiates COM+ objects.

base process

An application process in which a base client executes. A base client runs outside the COM+ run-time environment and
instantiates COM+ application objects.

basic conversation

In APPC, a conversation type generally used by applications that provide services to other local applications. Basic
conversations provide a greater degree of control over the transmission and handling of data than mapped conversations.
See alsomapped conversation.

basic transmission unit (BTU)

A standard unit of information transmitted over an SNA network. A BTU consists of the transmission header (TH), the
request/response header (RH), and the request/response unit (RU). The maximum size of the BTU is controlled in VTAM by
the MAXDATA= parameter and in Host Integration Server by the Max BTU Length parameter.

batch job

A predefined sequence of programs that can be run through the Job Entry Subsystem or through an automated scheduling

system. Each program that runs as part of the sequence is considered a batch step. Typically data is passed from one step to
the next through temporary or permanent files on the file system.

batch step

An application program that is executed as part of a larger batch job. Typically, data is read from and written to temporary or
permanent files on the files systems.

BBI

See begin bracket indicator (BBI).

BBIUI

See begin basic information unit indicator (BBIUI).

BCI

See begin chain indicator (BCI).

begin basic information unit indicator (BBIUI)

Bit 5 of Flag 2 of a Status-Control message. BBIUI is set on a Status-Control message corresponding to an outbound SNA
request with BBIU (begin basic information unit). It is supplied solely for the use of SNA server components. Your application
should not attempt to use it.

begin bracket indicator (BBI)

Bit 4 of Flag 1 of a Status-Control message. BBI is set if the chain carries BB (begin bracket). Note that this does not
necessarily indicate that the bracket has been initiated.

begin chain indicator (BCI)

Bit 1 of Flag 1 of a Status-Control message. BCI is set if the message starts a chain.

blocking

A method of operation in which a program that issues a call does not regain control until the call completes. See
alsosynchronous verb completion.

Boolean expression

An expression that can be evaluated either true (nonzero) or false (0). You can use the keywords True and False to supply the
values of -1 and 0, respectively. The field data type Yes/No is Boolean and has the value of -1 for Yes and 0 for No.

bounded

Refers to recordsets or arrays. The last input parameter or the last output parameter in a method can be bounded. This
means its actual size can vary from zero to the maximum number of elements (in an array) or rows (in a recordset) specified
at design time.

bracket

A chained set of RUs and their responses, which together make up a transaction between two LUs. One bracket must be
finished before another can be started.

BTU

See basic transmission unit (BTU).

business rule

The combination of validation edits, logon verifications, database lookups, policies, and algorithmic transformations that
constitute an enterprise's way of doing business. Also known as business logic.

byte

A unit of information consisting of eight bits. A byte, or binary term, is the smallest collection of bits that can be accessed
directly. The integer value of a byte can range from 0 to 255.

-C-
caller

A client that invokes a method of an object. The caller of an object is not necessarily the creator of an object. For example,
client A could create object X and pass this reference to client B, and then client B could use that reference to call a method of

object X. In this case, client A is the creator, and client B is the caller. See alsocreator.

catalog

In Windows 2000 and later, the catalog is the COM+ application data store that maintains configuration information for
components, COM+ applications, and roles. You can administer the catalog by using TI Manager.

CDI

See change direction indicator (CDI).

CEI

See chain ending indicator (CEI).

chain

A series of related messages or data packets that are transmitted consecutively and are treated as a single entity forming a
complete message.

change direction indicator (CDI)

Bit 6 of Flag 1 of a Status-Control message. CDI is set if chain carries change direction (CD).

Channel

A channel-attached connection to a host system.

characteristics

A set of internal values maintained by CPI-C for each conversation. They can affect the operation of the entire conversation
or of specific calls.

CICS

See Customer Information Control System (CICS).

class

A type that defines the interface of a particular type of object. A class defines the properties of the object and the methods
used to control the behavior of an object.

class factory

An object that implements the IClassFactory interface, which enables it to create objects of a specific class.

class ID (CLSID)

A universally unique identifier (UUID) that identifies a COM component. Each COM component has its CLSID in the Windows
registry so that it can be loaded by other applications.

client

A computer or a software component using services available through Host Integration Server. To run applications such as a
3270 emulator, the client uses the Host Integration Server computer to gain access host or peer systems on the SNA or
TCP/IP network.

client/server

A distributed application model in which client applications request services from a server application. A server can have
many clients at the same time, and a client can request data from multiple servers. An application can be both a client and a
server.

CLSID

See class ID (CLSID).

coaxial cable

A cable that consists of a conductor within another conductor, with insulation between the two conductors. The inner
conductor is usually a small copper tube or wire, and the outer conductor is usually copper tubing or copper braid. It is the
common medium used to connect LANs and 3270 devices. The maximum distance that a coaxial cable can be run between a
3270-type cluster controller and peripheral devices is 5,000 feet (1,500 meters).

code page

A table that associates specific ASCII or EBCDIC values with specific characters.

COM

See Component Object Model (COM).

COM+

See Component Services (COM+) component; Component Services (COM+) object.

COMMAREA

An area of memory in the mainframe used for communications and accessible to various programs. It is similar to a data
structure that contains both input parameters and return data.

Common Programming Interface for Communications (CPI-C)

A set of C-language routines that applications distributed across an SNA network can use to work together. Through CPI-C,
distributed applications on computers communicating as peers can exchange data to accomplish a processing task, such as
querying a remote database or copying a remote file.

An evolving application programming interface (API), embracing functions to meet the growing demands from different
application environments and to achieve openness as an industry standard for communications programming. CPI-C
provides access to interprogram services such as (a) sending and receiving data, (b) synchronizing processing between
programs, and (c) notifying a partner of errors in the communication.

Common Service Verb (CSV)

An application programming interface (API) that provides ways of tracing, translating characters, and sending network
management information to a host. Each verb supplies parameters to CSV.

communications controller

A device that directs the transmission of data over a network (for example, the IBM 3725 front-end processor).

COMP-1

Specified for internal floating-point items (single precision). The items are four bytes long. The sign is contained in the first
bit of the leftmost byte, and the exponent is contained in the remaining seven bits of that byte. The last three bytes contain
the mantissa.

COMP-2

Specified for internal floating-point items (double precision). The items are eight bytes long. The sign is contained in the first
bit of the leftmost byte, and the remaining seven bits of that byte contain the exponent. The remaining seven bytes contain
the mantissa.

COMP-3

Specified for internal decimal items. In storage, these items appear in packed decimal format. There are two digits for each
character position (byte), except for the trailing character position (byte), which is occupied by the low-order digit and sign.
The item can contain only the digits 0 through 9, plus a sign (in the last position), representing a value not exceeding 29
decimal digits (15 bytes).

component

A discrete unit of code built on ActiveX® controls that deliver a well-specified set of services through well-specified
interfaces. Components provide the objects that clients request at run time.

Component Object Model (COM)

An open architecture for cross-platform development of client/server applications based on object-oriented technology.
Clients have access to an object through the interfaces implemented on the object. COM is language-neutral, so any
language that produces COM components can also produce COM applications.

Component Services (COM+) component

A Component Object Model (COM) component that executes in the COM+ run-time environment. A COM+ component is
commonly known as a COM+ application. A COM+ component must be a dynamic-link library (.dll) file that implements a
class factory to create objects and that describes all of the interfaces of the component in a type library to facilitate standard
marshaling.

Component Services (COM+) object

A Component Object Model (COM) object that executes in the COM+ run-time environment.

concurrency

The appearance of simultaneous execution of processes or transactions by interleaving the execution of multiple pieces of
work.

configuration file

A file containing setup and configuration information for Host Integration Server. It defines servers, connections, LUs, users,
and other items. The configuration file that is loaded when SNA Manager starts is called COM.CFG.

connection

The data communication path between a workstation or server and other computers on the SNA network. Host Integration
Server offers a variety of connection types:

802.2 (Token Ring or Ethernet)

Synchronous Data Link Control (SDLC)

X.25

Distributed function terminal (DFT)

Channel

Twinax

connection object

In AFTP, a connection (not necessarily active) to a partner computer.

connectivity

(1) The capability of a system or device to be attached to other systems or devices without modification. (2) The capability to
attach a variety of functional units without modifying them.

connectivity option

A type of connection hardware and software through which one computer communicates with other computers.

consistency

A state in which durable data matches the state expected by the business rules that modified the data.

constructor

In C, a special initialization function that is called automatically whenever an instance of a class is declared. This function
prevents errors that result from the use of uninitialized objects. The constructor has the same name as the class itself and
cannot return a value.

contention loser

In an APPC LU-LU session, the LU that cannot start a conversation with its partner LU (the contention winner) without first
requesting permission of the partner LU. See alsocontention winner.

contention winner

In an APPC LU-LU session, the LU that can start a conversation with its partner LU (the contention loser). If parallel sessions
between the two LUs are being used, each LU may be the contention winner for some sessions and the contention loser for
other sessions. See alsocontention loser.

context

The state that is implicitly associated with a given COM+ object. The context contains information about the execution
environment of an object, such as the identity of the creator of an object and, optionally, the transaction encompassing the
work of the object. The context of an object is similar in concept to the process context that an operating system maintains
for an executing program. The COM+ run-time environment manages a context for each object.

control point

A node or other SNA component that controls network resources and coordinates the activation of sessions.

controller

A device that directs the transmission of data over a network (for example, the IBM 3725 front-end processor).

conversation

The process used by network-based applications to communicate with each other and to exchange data to accomplish
processing tasks. (1) A logical connection between two transaction programs using an LU 6.2 session. Conversations are
delimited by brackets to gain exclusive use of a session. (2) The interaction between TPs carrying out a specific task. Each
conversation requires an LU-LU session. A TP can be involved in several conversations simultaneously. See also basic
conversation; mapped conversation.

conversation characteristics

Internal API values that define the overall operation for a conversation or for a specific call. See alsoapplication
programming interface (API); conversation.

conversation ID

A unique identifier for a conversation between two transaction programs (TPs).

CPI-C

See Common Programming Interface for Communications (CPI-C).

creator

A client that creates an object provided by a component (using CreateObject, CoCreateInstance, or the CreateInstance
method). When a client creates an object, it is given an object reference that can be used to call the methods of that object.
See alsocaller.

CSV

See Common Service Verb (CSV).

Currency

An 8-byte, fixed-point data type that is useful for calculations involving money or for fixed-point calculations in which
accuracy is extremely important. This data type is used to store numbers with up to 15 digits to the left of the decimal point
and 4 digits to the right. The type-declaration character in Microsoft® Visual Basic® is an at sign (@). Currency can range
from –922,337,203,685,477.5808 to 922,337,203,685,477.5807.

current directory

The first directory in which the operating system looks for programs and data files and stores files for output.

Customer Information Control System (CICS)

An IBM transaction processing program that provides an environment on IBM mainframes in which applications can
communicate with terminals or other applications.

-D-
DACTLU

An SNA command that is sent to deactivate the session between the system services control point (SSCP) and a logical unit
(LU).

DACTPU

An SNA command that is sent to deactivate the session between the system services control point (SSCP) and a physical unit
(PU).

data link control (DLC)

In SNA, the protocol stack layer that transmits messages across links and manages link-level flow and error recovery.

data set members

Members of partitioned data sets that are individually named elements of a larger file that can be retrieved by name.

data source name (DSN)

The name that applications use to request a connection to an ODBC data source. DSN also means Data Set Name on the
mainframe.

database

(1) A collection of data with a given structure for accepting, storing, and providing on demand data for multiple users. (2) A
collection of interrelated data organized according to a database schema to serve one or more applications. (3) A collection
of data fundamental to a system. (4) A collection of data fundamental to an enterprise.

Date

An 8-byte, real data type used to store dates and times as a real number. Variables are stored as 64-bit numbers. The value
to the left of the decimal represents a date, and the value to the right of the decimal represents a time. The Date data type can
range from January 1, 1000 to December 31, 9999.

DCOM

See distributed COM (DCOM).

DDM

See distributed data management (DDM).

deallocate

(1) The process an operating system uses to free memory that has been previously allocated by a program. (2) In Advanced
Program-to-Program Communications (APPC), a verb that ends a conversation. Contrast withallocate.

Decimal

A data type that stores a signed, exact numeric value described as the number of digits appearing before and after the
decimal point, with a maximum of 29 total digits. All possible digits cannot be represented if you are using the maximum
number of digits.

default

The value that is automatically used if nothing is specified.

dependent local APPC LU

A local logical unit (LU) that enables Advanced Program-to-Program Communications (APPC) with a peer system, but only
through a host (mainframe) system. The type of LU used in dependent APPC is LU 6.2.

DFT

See distributed function terminal (DFT).

digit

In COBOL, any of the numerals from 0 through 9 not used in reference to any other symbol.

direct caller

The identity of the process (base client or server process) calling into the current server process.

direct creator

The identity of the process (base client or server process) that directly created the current object.

directory

(1) A list of files that are stored on a disk or diskette. A directory also contains information about the files such as size and
date of last change. (2) A named grouping of files in a file system.

display emulation

A feature that enables a personal computer to emulate an IBM 3278 or 3279 terminal. See alsoemulation.

display model

One of several different sizes of display:

Model 2 is 24 lines by 80 characters

Model 3 is 32 lines by 80 characters

Model 4 is 43 lines by 80 characters

Model 5 is 27 lines by 132 characters

display session

A 3270 emulation session between a networked personal computer and a host. The session is used to emulate a 3278 or
3279 display. Also called a host display session.

DISPLAY verb

An APPC verb that returns configuration information and current operating values for a computer running Host Integration
Server.

distributed COM (DCOM)

An object protocol that enables COM components to communicate directly with each other across a network. Because DCOM
is language-neutral, any language that uses COM components can also produce DCOM applications.

distributed data management (DDM)

A function of the operating system that enables an application program or user on one system to use database files stored
on remote systems. A communications network must connect the systems, and the remote systems must also be using DDM.

distributed function terminal(DFT)

A type of intelligent terminal supported by IBM 3270 control units, in which some of the terminal's functions are controlled
by the terminal and some by the control unit. Enables multiple sessions, and connects to host systems or to peer systems
through host systems. DFT terminals are often connected using coaxial cable.

distributed processing

A form of information processing in which the work is performed by separate computers that are linked through a local or
wide area network, using data-transfer mechanisms that enable different programs to use and share data.

distributed program call (DPC)

An AS/400 remote communication model.

Distributed Query Processor (DQP)

Enables queries to access multiple data sources on multiple servers, even SQL and DB2, and combine views, create data
warehouses, and so on. DQP supports an extended version of the SQL language that permits users to qualify table names
with the databases in which they exist. This gives users the capability to formulate queries that span multiple distributed
databases.

Distributed Relational Data Architecture (DRDA)

A connection protocol for distributed relational database processing that is used by IBM relational database products. The
DRDA protocol comprises protocols for communication between an application and a remote database, and communication
between databases. The DRDA protocol provides the connections for remote and distributed processing. The DRDA protocol
is built on the Distributed Data Management Architecture.

Distributed Transaction Coordinator (DTC)

A transaction manager that coordinates transactions spanning multiple resource managers. Work can be committed as an
atomic transaction even if it spans multiple resource managers, even on separate computers.

distributed unit of work (DUW)

In DB2 UDB for AS/400, this is a method of accessing distributed relational data in which a user or application can, within a
single unit of work, read and update data on multiple database management systems (DBMSs). The user or application
directs each SQL statement to a particular DBMS for execution at the DBMS. Each SQL statement may access only one DBMS.

DL-BASE

The type of Base used by Host Integration Server 3270 emulation programs. It supports a single Host Integration Server
component or a single user application and has entry points for initialization, sending messages, receiving messages, and
termination. See alsoBase.

DLC

See data link control (DLC).

DLL

See dynamic-link library (DLL).

DMOD

See Dynamic Access Module (DMOD).

document type definition (DTD)

Can accompany a document, essentially defining the rules of the document, such as which elements are present and the
structural relationship between the elements. It defines what tags can go in your document, what tags can contain other tags,
the number and sequence of the tags, the attributes your tags can have, and optionally, the values those attributes can have.

DTDs help to validate the data when the receiving application does not have a built-in description of the incoming data. The
DTD is declared within the document type declaration production of the XML file. With XML, however, DTDs are optional.

downstream connection

A connection that enables a computer running Host Integration Server to support communication between hosts and clients.
Even though such clients do not use the Host Integration Server client/server interface, with a downstream connection they
can access host connections available through a computer running Host Integration Server.

Host Integration Server offers several types of downstream connection:

802.2 (Token Ring or Ethernet)

SDLC

X.25

downstream LU

A logical unit (LU) used by clients to access a host connection through a computer running Host Integration Server. Such
clients do not use the Host Integration Server client/server interface, but by using a downstream LU, can receive access to
connections on a computer running Host Integration Server. A downstream LU uses a downstream connection, and passes
information between the client and the host.

downstream system

A client such as an IBM Communications Manager/2 system that can access host connections available on a computer
running Host Integration Server. Even though such clients do not use the Host Integration Server client/server interface, they
can use a downstream connection and a downstream LU to communicate with the host through Host Integration Server.
Host Integration Server passes the information between the downstream system and the host. With Host Integration Server,
downstream systems appear to the host as logical units, not physical units.

DPC

See distributed program call (DPC).

DPL-enabled

Compatible with the IBM Distributed Program Link (DPL) protocol.

DQP

See Distributed Query Processor (DQP).

DRDA

See Distributed Relational Data Architecture (DRDA).

DSN

See data source name (DSN).

DTC

See Distributed Transaction Coordinator (DTC).

DTD

See document type definition (DTD).

duplex

Capable of simultaneously transmitting and receiving data. Also called full-duplex or 4-wire. Contrast withhalf-duplex.

durability

A state that survives failures.

DUW

See distributed unit of work (DUW).

Dynamic Access Module (DMOD)

An SNA component that provides the communications facilities needed to pass messages between the Bases.

dynamic-link library (DLL)

A binary file that contains one or more functions that are compiled, linked, and stored separately from the processes that use
them. The operating system maps a DLL to the address space of the calling process when the process starts or while it is
running. It uses the .dll file extension.

-E-
EBCDIC

See Extended Binary Coded Decimal Interchange Code (EBCDIC).

EBI

See end bracket indicator (EBI).

EBIUI

See end basic information unit indicator (EBIUI).

ECI

See end chain indicator (ECI).

ELM

See enhanced listener message (ELM).

emulation

A process whereby one device imitates another; for example, a personal computer can emulate a 3278 terminal. See
alsodisplay emulation.

end bracket indicator (EBI)

Bit 5 of Flag 1 of a Status-Control message. Set if chain carries end bracket (EB). Note that this does not indicate that the
bracket has terminated.

end chain indicator (ECI)

Bit 2 of Flag 1 of a Status-Control message. Set if this message ends a chain.

enhanced listener message (ELM)

A streamlined, application-level protocol exchange sequence that sends to and receives from the host application a single
data stream composed of a header followed by the application data.

ERI

See exception response indicator (ERI).

Ethernet

An IEEE 802.3 standard for contention networks. Ethernet uses a bus or star topology and relies on the form of access known
as Carrier Sense Multiple Access with Collision Detection (CSMA/CD) to regulate communication line traffic. Network nodes

are linked by coaxial cable, by fiber-optic cable, or by twisted-pair wiring. Data is transmitted in variable-length frames
containing delivery and control information and up to 1,500 bytes of data. The Ethernet standard provides for baseband
transmission at 10 megabits per second.

event log

Host Integration Server records events involving communications hardware (for example, communications adapters) or
software in the Windows Event Log. Events can include attempts to establish communication, successful establishment of
sessions, failures of system components, attempts to use files that are damaged or missing, configuration problems, and
responses from remote systems.

exception

An abnormal condition or error that occurs during the execution of a program and that requires the execution of software
outside the normal flow of control.

exception request (EXR)

A request in which an intermediate component has detected an error and modified the request so the final destination is also
aware of the error.

exception response indicator (ERI)

A specified response for a request. The response should be issued only if the request cannot be processed or if an error was
encountered during processing.

exchange identification (XID)

An identifier that is exchanged between nodes on an SNA network, and that enables the nodes to recognize each other and
to establish link and node characteristics for communicating. With Host Integration Server, there are two possible kinds of
XIDs that can be exchanged: Format 0 XIDs (containing only basic information such as Node ID) and Format 3 XIDs
(containing more detailed information such as Network Name and Control Point Name). See alsoFormat 0 XID; Format 3
XID.

EXR

See exception request (EXR).

Extended Binary Coded Decimal Interchange Code (EBCDIC)

A coding scheme developed by IBM for use with its mainframe and AS400 computers as a standard method of assigning
binary (numeric) values to alphabetic, numeric, punctuation, and transmission-control characters.

Extensible Markup Language (XML)

A specification developed by the World Wide Web Consortium (W3C) that enables designers to create customized tags
beyond the capabilities of standard Hypertext Markup Language (HTML). While HTML uses only predefined tags to describe
elements within the page, XML enables tags to be defined by the developer of the page. Tags for virtually any data item, such
as a product or an amount due, can be used for specific applications. This enables Web pages to function as database
records.

Extensible Stylesheet Language (XSL)

A style sheet format for Extensible Markup Language (XML) documents. XSL is used to define the display of XML in the same
way that cascading style sheets (CSS) are used to define the display of Hypertext Markup Language (HTML).

-F-
fault isolation

Containing the effects of a fault within a component, rather than propagating the fault to other components in the system.

fault tolerance

The ability of a system to recover from an error, a failure, or a change in environmental conditions (such as loss of power).
True fault tolerance provides for fully automatic recovery without disruption of user tasks or files, in contrast to manual
means of recovery such as restoring data loss with backup files.

file transfer

The process of sending and receiving data files to and from computers.

fill type

A value that indicates whether programs will receive data in the form of logical records or as a specified length of data.

flow

A verb flows from one LU to another.

FMHI

See function management header indicator (FMHI).

FMI

See function management interface (FMI).

Format 0 XID

A type of XID that supplies minimal information about the node. Format 0 XIDs have a fixed length. They can be used for
3270 and LUA communication, and cannot be used for Advanced Program-to-Program Communications (APPC). See
alsoexchange identification (XID), Format 3 XID.

Format 3 XID

A type of XID that supplies more detailed information about the node than a Format 0 XID. Format 3 XIDs have a variable
length. They can be used for 3270 and LUA communication, and are the only type of XID that can be used for Advanced
Program-to-Program Communications (APPC). See alsoexchange identification (XID); Format 0 XID.

full-duplex

Capable of simultaneously transmitting and receiving data. Also called duplex or 4-wire. Contrast withhalf-duplex.

full-duplex transmission

Two-way electronic communication that takes place in both directions simultaneously. Also called duplex transmission or
4-wire transmission. Contrast withhalf-duplex transmission.

fully qualified LU name

The two-part network address (network.lu) that uniquely identifies a destination (typically a user) in the network.

function management header indicator (FMHI)

Headers inserted into requests containing end-user data to convey control information.

function management interface (FMI)

An interface that provides applications with direct access to SNA data flow and information about SNA control flows by
means of status messages. It is particularly suited to the requirements of 3270 emulation applications.

-G-
GAC

See global assembly cache (GAC).

global assembly cache (GAC)

A machine-wide code cache that stores assemblies specifically installed to be shared by many applications on the computer.
Applications deployed in the global assembly cache must have a strong name.

group

A set of one or more Windows 2000 or later user accounts.

-H-
half-duplex

Capable of only one direction of communication at a time, either receiving data or transmitting data, but not doing both at
the same time. Also called 2-wire. Contrast withfull-duplex.

half-duplex transmission

Two-way electronic communication that takes place in only one direction at a time. Also called 2-wire transmission.
Contrast withfull-duplex transmission.

HCD

See host column description (HCD).

HE

See host environment (HE).

high-level language application programming interface (HLLAPI)

An API that enables you to develop and run programmer-operator applications on IBM personal computers (or compatibles)
that communicate with IBM mainframes using 3270 emulation.

HIP

See host-initiated processing (HIP).

HLLAPI

See high-level language application programming interface (HLLAPI).

host column description (HCD)

Maps AS/400 flat file data types to OLE DB data types. The HCD is an external file stored on the computer that enables
administrators to describe the host record format. At run time, the OLE DB Provider for AS/400 and VSAM transparently
converts the host data to computer data using the local HCD information.

host environment (HE)

An object that defines the network and hardware characteristics of the non-Windows software platform that initiates
requests to the Windows platform. The host environment consists of the host environment name, host identification,
network transport type, data conversion information, default method resolution criteria, and security credential mapping.

Host Integration Server

A Microsoft® software program that enables a personal computer to communicate with remote computers such as IBM
mainframes, AS/400s, or other personal computers on a TCP/IP or SNA network.

host response time

The amount of time that a host computer takes to reply to a message sent to it by a client computer. Host response time is
measured from the moment that the personal computer sends the message until one of the following events: the client
computer receives data back from the host, the host unlocks the client computer's keyboard, or the host enables the client
computer to send more data.

host system

A computer system (usually a mainframe) that controls interactions between it and the computers connected to it. A host
system makes operating systems and applications available by way of Host Integration Server to computers running
software for terminal emulation or for APPC.

In SNA terminology, a host is capable of sending an ACTPU command to Host Integration Server and sets up a PU-SSCP
session with Host Integration Server.

host-addressable printer

A printer that is defined as a device associated with a logical unit (LU) configured as LU type 1 or 3 and that can support host
printing as well as local printing.

host-initiated processing (HIP)

A non-Microsoft software platform (usually a mainframe or mid-range computer such as the AS/400) that can access and
integrate its programs with the programs on a Windows server platform.

hot backup

(1) The ability to take systems online and offline without disrupting service. (2) A configuration in which one resource (such
as a server running Host Integration Server software) can automatically handle sessions if another cannot. Such servers can
provide hot backup for 3270, LUA, or downstream sessions through pools containing LUs from multiple servers. Servers
running Host Integration Server software can provide hot backup for 5250 terminal emulation through the use of LU names
that are the same on multiple servers.

-I-
I-frame

See Information frame (I-frame).

identity

A COM+ application property page that specifies the user accounts authorized to use that application. You can set it to
Interactive user (to authorize the current logged on user), to a specific user account, or to a group of users within a
Windows domain.

IEEE

See Institute of Electrical and Electronics Engineers (IEEE).

implicit incoming mode

A mode that defines the properties to use when Host Integration Server receives a request to start a session, and the mode
named in the request is not recognized by Host Integration Server. An implicit incoming mode enables greater flexibility in
starting sessions with remote systems.

For a session to be established, the incoming local LU name must be recognized by Host Integration Server. Then, the
incoming remote LU must either be recognized explicitly or handled implicitly (if an implicit incoming remote LU has been
configured). If the remote LU is recognized explicitly, but the mode is not recognized (as part of an LU-LU pair), Host
Integration Server internally creates a new mode definition with the correct name, using the properties of the implicit
incoming mode. Alternatively, if the remote LU is handled implicitly, Host Integration Server also handles the mode implicitly,
by internally creating a mode, as described.

Note that an implicit incoming mode must be configured for any remote LU that will be used as an implicit incoming remote
LU. An implicit incoming mode can be (but does not have to be) configured for remote LUs that will only be used explicitly.

implicit incoming remote LU

A remote APPC LU that defines the properties to use when Host Integration Server receives a request to start a session with a
local LU, and the remote LU named in the request is not recognized by Host Integration Server. An implicit incoming remote
LU that enables greater flexibility in starting sessions with remote systems.

Note that for a session to be established, the local LU name must be recognized by Host Integration Server. If the local LU
name is recognized, but the remote LU name is not recognized as a partner for the local LU, Host Integration Server
internally creates a new remote LU definition with the correct name, using the properties of the implicit incoming remote LU.

In SNA Manager, before a remote APPC LU can be used as an implicit incoming remote LU, an implicit incoming mode must
be configured for it.

IMS

See Information Management Systems (IMS).

independent local APPC LU

A local logical unit (LU) that enables Advanced Program-to-Program Communications (APPC) with a peer system without
involving a host (mainframe) system. The type of LU used in independent APPC is LU 6.2. An independent LU does not
require a host system, but can work through one.

IND$FILE

IBM file transfer program that enables files to be transferred from a personal computer to the host and from the host to the
personal computer. It operates in three host environments: CICS, VM/CMS, and MVS/TSO.

Information frame (I-frame)

A standard unit of information transmitted over an SNA network. For 802.2 or SDLC communication, an I-frame is equivalent
to a BTU. See alsobasic transmission unit (BTU).

Information Management Systems (IMS)

A transaction processing monitor created and sold by IBM Corporation.

in-process component

A component that runs in a client's process space. This is typically a dynamic-link library (DLL).

instance

An object of a particular component class. Each instance has its own private data elements or member variables. A
component instance is synonymous with object.

Institute of Electrical and Electronics Engineers (IEEE)

An organization that maintains the standards for the 802.x protocols used in communications on local area networks.

Integer

A fundamental Automation data type that holds integer numbers. An integer variable is stored as a 16-bit (2-byte) number
ranging in value from –32,768 to 32,767. The type-declaration character is a percent sign (%) (ANSI character 37). In
Microsoft® Visual Basic®, you can use integers to store Boolean (True/False) values.

interface

A group of logically related operations or methods that provides access to a component object.

Internet Packet Exchange/Sequenced Packet Exchange (IPX/SPX)

A set of protocols used by Novell NetWare networking software for communication across a network.

Internet Protocol (IP) routed network

A TCP/IP wide area network in which IP packets are propagated across the network through devices called IP routers.

invokable

Indicates the capability of a program to be started by another program. For example, an invokable APPC transaction program
(TP) can be started in response to a request from another TP (the invoking TP).

invoked program

A program that has been activated by a call or verb. See alsoinvoking program.

invoked TP

A host transaction program (TP) started by:

Another (the invoking) TP.

A Transaction Integrator Automation server working in conjunction with the TI run-time environment and Microsoft
Distributed Transaction Server (DTS) included in COM+.

invoking program

A program that uses a call or verb to activate another program. Also known as the calling program or the client. See
alsoinvoked program.

invoking TP

A TP that initiates a conversation with another TP. The invoking TP starts the other TP by instructing the remote node to load
the invokable TP.

IP routed network

See Internet Protocol (IP) routed network.

IPX/SPX

See Internet Packet Exchange/Sequenced Packet Exchange (IPX/SPX).

isolation

A characteristic whereby two transactions running in parallel produce the illusion that there is no concurrency. It appears that
the system is running one transaction at a time.

-J-

No terms.

-K-

No terms.

-L-
LAN

See local area network (LAN).

LE

See local environment (LE).

leased SDLC line

A dedicated telecommunications line using SDLC. See alsoSynchronous Data Link Control (SDLC).

link service

The software component of Host Integration Server that communicates with the device driver for a particular communication
adapter (802.2, SDLC, X.25, DFT, Channel, or Twinax).

listener

A local environment associated with an application, where the local environment monitors the TCP/IP or SNA network for
requests to the application.

load balancing

Distribution of the processing load among several servers carrying out network tasks to increase overall network
performance.

local account

An account provided in a local domain for a user whose regular account is not in a trusted domain. Local accounts cannot be
used to log on interactively. Local accounts created in one domain cannot be used in trusted domains.

local area network (LAN)

A high-speed communication system consisting of hardware (computers and peripherals) and software (programs and data
files) that are interconnected by cable in a way that enables these resources to be shared. The connected devices are located
within a limited geographic area such as a building or campus.

local environment (LE)

An object that defines the endpoint on a Windows computer that accepts incoming requests from a non-Windows software
platform. The local environment consists of the local environment name, network transport type, network transport class,
and endpoint identification.

local LU

In an APPC or CPI-C conversation, the logical unit (LU) on the local end. Contrast withpartner LU and remote LU.

local LU alias

The name by which a local logical unit (LU) is known to the local transaction program (TP).

local node

The software component of Host Integration Server that interacts with clients and other nodes on the SNA network.

local printer

A printer that is attached directly to a personal computer.

local program

In CPI-C, the program on the local end of the conversation. Contrast with partner program.

local TP

In an Advanced Program-to-Program Communications (APPC) or Common Programming Interface for Communications
(CPI-C) conversation, the transaction program (TP) on the local end. Contrast withpartner TPs and remote transaction
program. See alsolocal LU.

locality

A base and the components within it; that is, a Host Integration Server executable program.

locality, partner, index (LPI)

An LPI address that is used to identify each end of a connection. It has three components: locality (L), partner (P), and index
(I).

logical unit (LU)

(1) A type of network-accessible unit that enables users to gain access to network resources and communicate with each
other. (2) A preset unit containing all of the configuration information needed for a user, program, or downstream system to
establish a session with a host or peer computer. See alsoLU alias; LU name; LU pool.

logical unit application (LUA)

A conventional LU application, or the interface that these applications use. LUA enables workstations to communicate with
host applications using LU 0, 1, 2, or 3 protocols.

LPI

See locality, partner, index (LPI).

LPI address

Used to identify each end of a connection between two partners. It can have three components: L identifies the locality, P
identifies the partner within the locality, and I identifies a logical entity within the partner. See alsolocality; partner.

LU

See logical unit (LU).

LU alias

A string that identifies an APPC or CPI-C logical unit (LU) to transaction programs (TPs) in the same organizational unit (OU).
An LU alias is used only locally by Host Integration Server, but it also can be used by any program in the OU of the host
mainframe system. See alsoLU name.

LU name

For 3270 or LUA communication, a name that identifies a logical unit (LU). For independent APPC or CPI-C, a name that
(when used with the network name) identifies an LU to other components on an SNA network. For dependent APPC or CPI-
C, a name that identifies an LU to local software, such as the Windows Event Viewer. See alsoLU alias.

LU pool

A number of logical units (LUs) of the same type that are made available as a group. A user or LU application addressing the
pool will connect to the next available LU in the pool for that session only. See alsological unit (LU).

LU type

Logical unit type. A subset of the SNA protocol that characterizes the communication between two LUs.

LU type 0

A logical-unit protocol with minimal constraints, on which special applications can be built for SNA.

LU type 1

A logical-unit protocol used by a host application communicating with a printer, sending data that conforms to the 3270
SNA Character String (SCS) definition.

LU type 2

A logical-unit protocol used by a host application communicating with a 3270-type display terminal, using the SNA 3270
data stream.

LU type 3

A logical-unit protocol used by a host application communicating with a printer, sending data that is 3270 data stream
compatible (DSC).

LU type 6.2

A logical-unit protocol used by two applications or transaction programs (TPs) communicating as peers in an SNA
environment. LU 6.2 works in combination with node type 2.1 to provide Advanced Program-to-Program Communications
(APPC) using independent LUs. LU 6.2 also works with node type 2.0 to provide APPC with dependent LUs.

LU-LU session

A logical, two-way exchange between two logical units (LUs) over a specific connection for a specific amount of time.

LUA

See logical unit application (LUA).

-M-
MAC address

A 12-byte hexadecimal address used by the media access control (MAC) layer of an 802.2 connection. It corresponds to the
VTAM MACADDR= parameter and to the Remote Network Address parameter for an 802.2 connection with Host Integration
Server.

management object

A TI component that manages or provides access to administration information. Typically, management objects are visible
only when errors or messages are reported or placed in the Windows Event Log.

mapped conversation

A conversation in which the sending program sends one logical record at a time and the receiving program receives one
record at a time. See also conversation.

marshaling

The process of packaging and sending interface method parameters across thread or process boundaries.

member server

A server that does not contain a configuration file. One or more servers can operate as member servers. The other types of
servers are the primary server and backup servers.

method

A procedure (function) that acts on an object.

Microsoft .NET

Microsoft® .NET is a set of software technologies for connecting information, people, systems, and devices. This new
generation of technology is based on Web services—small building-block applications that can connect to each other as well
as to other, larger applications over the Internet.

mode

A collection of session properties used by LU 6.2-type logical units (LUs) as they carry on a session. A mode can be used by
many LU pairs at the same time.

mode name

The name used by the initiator of a session to designate the characteristics desired for the session, such as traffic pacing
values, message-length limits, Sync Point and cryptography options, and the class of service within the transport network.

model

One of several different sizes of display:

Model 2 is 24 lines by 80 characters

Model 3 is 32 lines by 80 characters

Model 4 is 43 lines by 80 characters

Model 5 is 27 lines by 132 characters

Messaging-oriented middleware

Messaging-oriented middleware (MOM) is a set of products that connects applications running on different systems by
sending and receiving application data as messages. Examples are RPC, CPI-C, and message queuing.

multidrop

A connection in which one primary node communicates with multiple secondary nodes concurrently over the same physical
transmission medium.

multiple sessions

In CPI-C, two or more concurrent sessions with different partner LUs. SeealsoLU-LU session.

Multiple Virtual Storage (MVS)

An operating system for large IBM mainframe computers. Implies MVS/370, the MVS/XA product, and the MVS/ESA product.

MVS

See Multiple Virtual Storage (MVS).

-N-
NAU

See network addressable unit (NAU).

NC

See network control (NC).

NCP

See Network Control Program (NCP).

.NET Framework

An integral Microsoft® Windows® component for building and running the next generation of applications and XML Web
services.

NetView

A reporting system that runs on an IBM host (mainframe), forwarding alerts and other information back and forth between
the host and personal computers, and other network addressable units that connect to the host.

NetView alert

A message sent to the NetView reporting system, indicating an abnormal event or a failure.

NetView user alert

A message sent by a 3270 user to a host system operator through NetView, requesting an action such as mounting a tape or
changing forms on a printer. Also called user alert.

NetWare

A collection of networking software products from Novell, Inc.

network

Computer systems, controllers, terminals, and software connected in a way that enables them to communicate with each
other.

network addressable unit (NAU)

The basic functional entities in an SNA environment that are the source or destination of all information flowing within the
SNA network. The NAU can be a logical unit (LU), a physical unit (PU), or a system services control point (SSCP).

network control (NC)

A set of SNA-defined requests and responses used to control explicit and virtual routing.

Network Control Program (NCP)

An IBM program that supports communication controllers in single-domain, multiple-domain, and interconnected networks.

Network Management Vector Transport (NMVT)

SNA message containing network or system management information.

network name

A name identifying an SNA network. The network name is used in combination with other identifiers, either a control point
name (to identify a control point or node) or an LU name (to identify an APPC LU, particularly an independent local APPC
LU). The combination of a network name with a control point name is sometimes called a network qualified control point
name. The combination of a network name with an LU name is sometimes called a fully qualified network name.

NMVT

See Network Management Vector Transport (NMVT).

node

(1) A server, controller, workstation, printer, or other processor that implements SNA functions. SNA defines three kinds of
nodes: the host subarea node, which functions to control and manage a network; the communication controller subarea
node, which routes and controls data flow through the network; and peripheral nodes, which include printers, workstations,
cluster controllers, and distributed processors.

(2) A branch on a navigation tree.

node type 2.1

An SNA component, such as an intelligent terminal or a personal computer, that works together with LU type 6.2 to support
peer-to-peer communications, allowing the logical units (LUs) to function independently from the host.

null

A value that indicates missing or unknown data.

-O-
object

A run-time instance of a Component Object Model (COM) component. An object is created by a component's class factory.
Object is synonymous with instance.

object variable

A variable that contains a reference to an object.

OCCURS DEPENDING ON

Code syntax that specifies variable-length tables. This is the COBOL version of an array that contains a variable number of
elements.

OCCURS fixed times

Code syntax that specifies fixed-length tables. This is the COBOL version of an array.

ODBC

See open database connectivity (ODBC).

ODBC resource dispenser

A resource dispenser that manages pools of database connections for COM+ components that use the standard open
database connectivity (ODBC) programming interfaces.

open database connectivity (ODBC)

A set of standards that enables universal access to relational data, including Microsoft relational databases and mainframe
databases.

open transaction management architecture (OTMA)

A high-performance, connectionless protocol used by IMS to communicate efficiently with Multiple Virtual Storage (MVS)
applications without using the SNA protocol.

operator-loaded TP

An invokable transaction program (TP) that is manually loaded and started by an operator.

original caller

The identity of the base client that initiates an activity.

original creator

The identity of the base client that created the current object. The original caller and original creator are different only if the
original creator passed the object to a different base client. See alsooriginal caller.

OS/390

The IBM operating system for the IBM S/390 family of enterprise servers and that includes and integrates functions
previously provided by other IBM software products such as the MVS operating system.

OS/400

The IBM operating system for the IBM AS/400.

OTMA

See open transaction management architecture (OTMA).

out-of-process component

A component that runs in a separate process space from its client.

-P-
pacing receive count

The maximum number of frames for the local logical unit (LU) to receive from the partner LU before the local LU sends a
response.

pacing send count

The maximum number of frames for the local logical unit (LU) to send without receiving an SNA pacing response from the
partner LU.

packet

A transmission unit of fixed maximum size, used as the basic unit on a packet-switching network. A packet contains both a
header and data.

In data communication, a sequence of binary digits, including data and control signals, that is transmitted and switched as a
composite whole. The data, control signals, and possibly error control information are arranged in a specific format.

packet switching

A message-delivery technique in which small units of information (packets) are relayed through stations in a computer
network along the best route currently available between the source and the destination. Packet-switching networks are
considered to be fast and efficient. The protocol used on packet-switching networks is X.25. See also X.25.

parallel sessions

Multiple concurrent sessions between a pair of LU 6.2-type logical units (LUs), allowing multiple operations to be performed
simultaneously.

parameter

A variable used as input to a program, operating system, or API to govern how systems, programs, or functions perform.

partitioned data set (PDS)

A data set in direct access storage that is divided into partitions, called members, each of which can contain a program, part
of a program, or data.

partner

An addressable component of a locality; that is, code to which messages can be sent. See alsolocality.

partner LU

In an APPC or CPI-C conversation, the LU on the far end. The partner LU serves the partner Transaction Processor. Contrast
withlocal LU; see alsoremote LU.

partner LU alias

A name that identifies a partner logical unit (LU) to partner transaction programs (TPs).

partner LU name

A name that identifies a partner logical unit (LU) to other LUs on the LU 6.2 session.

partner program

For CPI-C, the program receiving the CPI-C call.

partner TPs

Two transaction programs (TPs), residing on the same or separate nodes that are configured to communicate with each
other. Partner TPs use partner LUs.

password

A string of characters that a user, a program, or a computer operator must specify to meet security requirements before
gaining access to a system and to the information stored within it.

path

(1) In SNA, the series of nodes and communications links over which data must travel from one LU to another. (2) A
sequence of folders that identify the location of a file. (3) A path exists between two localities when the DMODs in the
localities can successfully pass messages between them. A path must exist between two localities before a connection can
exist between partners in these localities. See alsoDynamic Access Module (DMOD); locality.

pattern-matching character

A special character such as an asterisk (*) or a question mark (?) that can be used to represent one or more characters. Any
character or set of characters can replace a pattern-matching character. Synonymous with wildcard character.

PC Support

A set of IBM programs that helps personal computer users access, share, and store information on an AS/400.

PDS

See partitioned data set (PDS).

peer system

A mainframe, midrange, or personal computer that communicates with another computer as an equal partner, with both
computers sharing control over the communication.

peer-to-peer

A type of communication in which two systems communicate as equal partners sharing the processing and control of the
exchange, as opposed to host-terminal communication in which the host does most of the processing and controls the
exchange.

permanent virtual circuit (PVC)

A type of circuit used by an X.25 connection, in which the circuit is constantly active, and the destination address is preset.

permissions

Settings that grant or deny a particular kind of access to a particular file, folder, or other object. For example, granting read
permission but denying write permission for File1.ext for Domain Admins means that the members of Admins group can
read but not change File1.ext.

physical unit (PU)

A network-addressable unit that provides the services needed to use and manage a particular device, such as a
communications link device. A PU is implemented with a combination of hardware, software, and microcode.

PIC S9(4) COMP Integer

A 16-bit COBOL data type that represents signed arithmetic operations occupying 2 bytes of storage. This is normally
analogous to an Integer data type in Microsoft® Visual Basic® and a Short Integer in C when referring to 32-bit. It can take
on values from –9999 to +9999 or –32768 to +32767. It is similar to a Short in C.

PIC S9(9) COMP Integer

A 32-bit COBOL assignment statement to represent signed arithmetic operations that occupy 4 bytes of storage. It can take
on values from –999999999 to +999999999 or –2147483648 to +2147483647 depending on compiler options. It is similar
to a Long Integer in C.

PIC X

Specifies a single COBOL EBCDIC character.

PIC X No Translation

A character string handled like binary data. There is no translation from EBCDIC to Unicode or from Unicode to EBCDIC.

PICTURE clause

Specifies the general characteristics and editing requirements of an elementary item. The PICTURE character string is made
up of COBOL characters used as symbols and can contain a maximum of 30 characters.

pipe

A portion of memory that can be used by one process to pass information along to another.

PLU

See primary logical unit (PLU).

pool

See LU pool.

pooling

A performance optimization based on using collections of pre-allocated resources, such as objects or database connections.
Pooling results in more efficient resource allocation.

primary logical unit (PLU)

On an SNA session, the LU on the node that sent the session activation request.

primary server

The server designated to contain the primary configuration file. There can be only one primary server active in a subdomain.
See alsobackup server.

printer emulation

The ability of a personal computer-type printer to emulate a 3287 or 4224 printer to print host data.

printer session

A 3270 emulation session between a host and a local area network printer connected to a personal computer. The printer
emulates the type of printer normally used by a host system.

private assembly

An assembly that is available only to clients in the same directory structure as the assembly. See alsoassembly.

ProgID

See programmatic identifier (ProgID).

programmatic identifier (ProgID)

A name that identifies a COM component. For example, a ProgID could be Bank.MoveMoney.

programmatic security

Procedural logic provided by a component to determine if a client is authorized to perform the requested operation. See
alsodeclarative security.

protocol

(1) A set of semantic and syntactic rules that determine the behavior of functional units in achieving communication. (2) In
Open Systems Interconnection architecture, a set of semantic and syntactic rules that determine the behavior of entities in
the same layer in performing communication functions. (3) In SNA, the meanings of, and the sequencing rules for, requests
and responses used for managing the network, transferring data, and synchronizing the states of network components.

proxy

An interface-specific object that provides the parameter marshaling and communication required for a client to call an
application object that is running in a different execution environment, such as on a different thread or in another process.
The proxy is located with the client and communicates with a corresponding stub that is located with the application object
that is being called. In the case of TI, the TI run-time environment serves as the proxy to the mainframe transaction program
(TP).

PU

See physical unit (PU).

PU 2.0

In an SNA network, the component that defines controller and terminal-type resources similar to an IBM 3274 Control Unit.

PU 2.1

In an SNA network, a component such as an intelligent terminal or a personal computer that works together with logical unit
(LU) type 6.2 to support peer-to-peer communications, allowing the LUs to function independently from the host.

PVC

See permanent virtual circuit (PVC).

-Q-
QLLC

See qualified logical link control (QLLC).

qualified logical link control (QLLC)

A protocol that permits SNA sessions to occur over X.25 networks.

queued TP

An invokable transaction program (TP) that can be started by only one incoming allocate command at a time. Incoming
allocate commands that arrive while the queued TP is running do not start the program again, but are queued until the
program issues another RECEIVE_ALLOCATE or until it finishes execution.

-R-
race condition

A condition in which a feedback circuit interacts with the internal circuit processes in a way that produces chaotic output
behavior.

RE

See remote environment (RE).

Record Level Input/Output (RLIO)

A protocol of IBM Distributed Data Management architecture.

remote component

Components used by a client on a different computer.

remote environment (RE)

A collection of properties that describes a region on the mainframe, or in the case of diagnostic tools such as Capture and
Playback, a simulated region. You can view and change these properties by using TI Manager.

remote LU

In an APPC or CPI-C conversation, the logical unit (LU) on the remote end. Contrast withlocal LU. See alsoremote
transaction program.

remote network address

For an 802.2 connection, a 12-digit hexadecimal address that identifies a remote host, peer, or downstream system. The
Remote Network Address in Host Integration Server corresponds to the VTAM MACADDR= parameter in the PORT
definition.

remote node

(1) The node at the other end of a connection. (2) The node that contains the logical unit (LU) at the other end of a session. (3)
The node that contains the transaction program (TP) at the other end of a conversation.

remote node ID

One of the types of identifiers that can be used to identify a remote node. The remote node ID is an 8-digit hexadecimal
number. The first three digits are called the block number, and correspond to the VTAM parameter IDBLK. The last five digits
are called the node number, and correspond to the VTAM parameter IDNUM.

remote procedure call (RPC)

A standard that enables one process to make calls to functions that are executed in another process. The processes can be on
the same computer or on different computers in the network.

remote transaction program

In an Advanced Program-to-Program Communications (APPC) or Common Programming Interface for Communications

(CPI-C) conversation, the transaction program (TP) on the remote end. Contrast withlocal TP. See alsoremote LU.

remote unit of work (RUW)

(1) The form of SQL distributed processing in which the application is on a system different from the relational database, and
a single application server services all remote unit-of-work requests within a single logical unit of work. (2) A unit of work
that allows for the remote preparation and execution of SQL statements.

Report Program Generator (RPG)

A column-oriented programming language designed for writing application programs for business data processing. RPG
requires that certain information, such as control codes and field names, must be placed into specific columns of the
program statements.

Request Unit Interface (RUI)

A basic interface that enables programs to acquire and release control of conventional LUs. The RUI also reads and writes
request/response headers (RHs), transmission headers (THs), and request/response unit (RU) data. Contrast withSession
Level Interface (SLI).

request/response unit (RU)

Under SNA, a message that controls the session, data flow, and function management aspects of the SNA protocol.

resource dispenser

A service that synchronizes and manages nondurable resources within a process. This service provides for efficient sharing
by COM+ objects. For example, the ODBC resource dispenser manages pools of database connections.

Resource Dispenser Manager

A dynamic-link library (.dll) file that coordinates work among a collection of resource dispensers.

resource manager

A system service that manages durable data. Server applications use resource managers to maintain the durable state of the
application, such as the record of inventory on hand, pending orders, and accounts receivable. The resource managers work
in cooperation with the transaction manager to provide the application with a guarantee of atomicity and isolation (using the
two-phase commit protocol). Microsoft® SQL Server™ is an example of a resource manager.

Response Time Monitor (RTM)

A 3270 and NetView facility that monitors the amount of time it takes for a host to respond during 3270 display sessions.

RLIO

See Record Level Input/Output (RLIO).

role

A symbolic name that defines a class of users for a set of components. Each role defines which users are allowed to invoke
interfaces on a component.

root

The topmost node in a directory structure.

root directory

The first directory on a drive in which all other files and subdirectories exist.

RPC

See remote procedure call (RPC).

RPG

See Report Program Generator (RPG).

RTM

See Response Time Monitor (RTM).

RU

See request/response unit (RU).

RUW

See remote unit of work (RUW).

-S-
SAA

See Systems Application Architecture (SAA).

safe reference

A reference to the current object that is safe to pass outside the context of the current object.

SAP address

See service access point (SAP) address.

SC

See session control (SC).

schema

The definition of the structure of an XML file. A schema contains property information as it pertains to the records and fields
within the structure. See alsodocument type definition (DTD).

SDLC

See Synchronous Data Link Control (SDLC).

security ID (SID)

A unique name that identifies a logged-on user to the security system. SIDs can identify one user or a group of users.

security key

An identifier used by two APPC logical units (LUs) to validate security when a session is activated. The security key performs
a function similar to that of a password, but at the LU-LU session level rather than at the TP-conversation level.

security log

The location in which events related to security are recorded when auditing is set up for such events. For example, auditing
can be set up to create a security log entry every time the configuration file is changed on a server. See alsoevent log.

security password

The password that is required, along with the security user ID, to gain access to an invoked program when using
conversation security.

security user ID

The user ID (also known as user name) that is required, along with the security password, to gain access to an invoked
program when using conversation security.

semaphore

A flag variable that is used to govern access to shared system resources.

server

(1) A functional unit that provides shared services to workstations over a network; for example, a file server, a print server, or
a mail server. (2) In a network, a data station that provides facilities to other stations; for example, a file server, a print server,
or a mail server.

server process

A process that hosts COM+ application components in Windows 2000 or later. For example, to use TI, you can drop a TI
component (type library) into a COM+ application to create an Automation server that a client application can call. When a
client application calls a method on the TI Automation server, the Windows 2000 or later run-time environment loads the TI
Automation server along with the TI run-time environment into a surrogate server process that automates the mainframe
transaction and passes the results back to the client application.

service access point (SAP) address

A value that codes for access to certain services on an 802.2 connection within an SNA network. The Remote SAP Address

parameter is used for 802.2 connections in Host Integration Server, and corresponds to the VTAM parameter called
SAPADDR= in the PU definition.

service TP

A transaction program (TP) that uses APPC to perform services related to SNA functionality. See alsoapplication TP;
transaction program (TP).

session

(1) A period of time when a connection is active and communication can take place. (2) A set of resources that when
activated allow communication to take place. (3) In network architecture, for the purpose of data communication between
functional units, all the activities that take place during the establishment, maintenance, and release of the connection. (4) A
logical connection between two network-accessible units (NAUs) that can be activated, tailored to provide various protocols,
and deactivated as requested. Each session is uniquely identified in a transmission header (TH) accompanying any
transmissions exchanged during the session. See alsoLU-LU session.

session control (SC)

A subcomponent of a transmission control component of a half-session, responsible for activating and deactivating the
session and data flow and for receiving the data flow following an error.

Session Level Interface (SLI)

A higher-level interface that facilitates the opening and closing of SNA sessions with host LU 0, LU 1, LU 2, and LU 3
application programs. The SLI permits application programs to control the data traffic at a logical message level. Contrast
withRequest Unit Interface (RUI).

session limit

The maximum number of parallel sessions that can be active between two APPC LUs. When an LU-LU session is established,
the session limit is negotiated between the two LUs.

severity level

A number that indicates the severity of an audit or error message. Audit messages provide information and have severity 6,
8, or 10. Error messages have severity 12 or 16, indicating a problem that needs to be corrected.

shared assembly

An assembly that can be referenced by more than one application. An assembly must be explicitly built to be shared by
giving it a cryptographically strong name. See alsoassembly; private assembly.

SID

See security ID (SID).

side information table

In CPI-C, a table that stores the initialization information required for two programs to communicate. The table resides in the
operating systems memory and the system administrator maintains it by accessing a symbolic destination name. The table is
derived from the configuration file for Host Integration Server.

single session

A limit of one session between a pair of Advanced Program-to-Program Communications (APPC) logical units (LUs), which
limits the associated transaction programs (TPs) to one operation at a time.

SLI

See Session Level Interface (SLI).

SNA

See Systems Network Architecture (SNA)

SNA service TP

A transaction program (TP) that uses APPC to perform services related to SNA functionality.

SNA subdomain

With SNA Server version 2.11 and SNA Server version 3.0 or later, you can have several SNA subdomains in a
Windows 2000 Server or later domain.

A Windows 2000 Server or later domain:

Can contain several SNA subdomains.

Can contain several primary servers, provided that each one is set up in its own subdomain.

With regard to Host Integration Server, each subdomain:

Contains one primary server.

Can contain up to 14 backup servers.

Cannot contain computers running Host Integration Server from other Windows 2000 Server or later domains.

Host Integration Server Setup requires you to specify the name of the subdomain to which the server will belong. One of the
SNA subdomains can have the same name as that of the Windows 2000 Server or later domain in which all the servers
operate.

Because each subdomain can have only one primary server, it is not advisable to implement an SNA subdomain across slow
bridges or routers. Multiple servers in a single subdomain can produce unwanted traffic on the wide-area network.

SnaBase

The SNA Workstation Process. It is present at all times on personal computers whose users want to participate in the SNA
network and on personal computers where dynamic loading is to be performed.

SNALink

Link support software that integrates hardware components into a Host Integration Server system. An SNALink is defined
when a Host Integration Server system is installed. An SNALink can support only one physical connection from the server.

source TP Name

The host system attempts to identify the source of a request for monitoring, reporting, and so on. The source must be a TP
name. MSTX is the default, because it is usually an MS Transaction Server process.

SSCP

See system services control point (SSCP).

string expression

Any expression that evaluates to a sequence of contiguous characters.

stub

An interface-specific object that provides the parameter marshaling and communication required for an application object to
receive calls from a client that is running in a different execution environment, such as on a different thread or in another
process. The stub is located with the application object and communicates with a corresponding proxy that is located with
the client that calls it. In the case of TI, the TI run-time environment serves as the proxy.

subdirectory

A directory contained within another directory in a file system hierarchy.

subdomain

A collection of computers running Host Integration Server that share a single configuration. A subdomain contains one
primary server and can also contain one or more backup servers. All servers in a subdomain must belong to the same
Windows domain. See alsobackup server; primary server.

SVC

See switched virtual circuit (SVC).

switched SDLC line

A standard telephone line used for SDLC connections on an SNA network. The line is dialed in one of three ways: manually,
by a modem that stores the phone number, or by a modem that accepts a phone number string from the software.

switched virtual circuit (SVC)

A type of circuit used by an X.25 connection, in which the circuit is not constantly active, but is called and cleared dynamically.
The destination address is supplied when the circuit is called.

Synchronous Data Link Control (SDLC)

A type of link service used for managing synchronous data transfer over standard telephone lines (switched lines) or leased
lines.

synchronous transmission

Transmission in which the data characters and bits are transmitted at a fixed rate, with the transmitter and receiver being
synchronized. This eliminates the need for individual start and stop bits surrounding each byte. Both SDLC and X.25 use
synchronous transmission.

synchronous verb completion

Processing of an SNA verb where the operation of the program is blocked until processing completes. Contrast
withasynchronous verb completion.

system administrator

A person who configures, maintains the configuration of, helps users diagnose problems with, and manages a computer
system. With Host Integration Server, this person can also be the LAN administrator or a TI developer.

system services control point (SSCP)

(1) A host system network component that provides network services for dependent nodes. (2) An SNA network component
that helps control and maintain communication flow between PUs and LUs on the network. Multiple SSCPs can work
together to coordinate communications.

Systems Application Architecture (SAA)

Guidelines created by IBM to help developers standardize applications so they function in different operating environments
with minimal program modification and retraining of users.

Systems Network Architecture (SNA)

The description of the logical structure, formats, protocols, and operational sequences for transmitting information units
through, and controlling the configuration and operation of, networks

-T-
TCP/IP

See Transmission Control Protocol/Internet Protocol (TCP/IP).

terminal

A device that can send or receive data over a data communications channel. Host Integration Server includes emulation of
3278 and 3279 terminals.

TH

See transmission header (TH).

thread

The basic entity to which the operating system allocates CPU time. A thread can execute any part of the application's code,
including a part currently being executed by another thread. All threads of a process share the virtual address space, global
variables, and operating system resources of the process.

TI

See Transaction Integrator (TI).

Token Ring

A type of LAN using the 802.2 protocol, in which a token is passed in a ring around the network, permitting a computer on
the network to transmit data only when that computer has the token.

TP

See transaction program (TP).

trace file

A file containing records of internal activities on the SNA network, including calls made to APIs, the activities of APIs, and the
activities of communication links and internal flows.

trace message

A message that includes the current status of various COM+ activities, such as startup and shutdown.

tracing

The action of tracking the activities of an application programming interface (API), communication links, and internal flows,
including the calls made to APIs. Tracing stores a history of activity in trace files.

transaction

Data entered into a system (such as a customer deposit to a bank account) triggering a certain action (such as updating an
account balance).

An atomic unit of work in COM-based systems that either succeeds or fails as a whole or a section of a mainframe COBOL
transaction program (TP). A mainframe-based transaction is a section of COBOL code within a transaction program (TP) that
completes a certain task or set of tasks.

A mainframe transaction may or may not be an ACID (atomic, consistent, isolated, and durable) transaction. A mainframe-
based TP is the actual COBOL program file that contains one or more transactions (sections of COBOL code). A Windows-
based transaction is always an ACID transaction that is coordinated by the Microsoft Distributed Transaction Coordinator
(DTC).

Data entered into a system (such as a customer deposit to a bank account) triggers a certain action or set of actions (such as
updating an account balance) that must all occur or that must all not occur; that is, they act as a unit. That unit is called a
transaction in Windows-based terminology.

Each method in a TI component invokes a single mainframe transaction in a mainframe TP. After being invoked, a mainframe
transaction can call other transactions in the same or in a different TP.

transaction context

An object used to allow a client to dynamically include one or more objects in one transaction.

transaction ID

The identifier used to invoke a particular CICS or IMS application (transaction program); in CICS, it is the name of the
transaction. A transaction ID (TRANID) can be up to four characters in length. The acceptable characters are A-Z, a-z, 0-9,
dollar sign ($), at sign (@), period (.), slash mark (/), hyphen (-), underscore (_), percent sign (%), ampersand (&), question
mark (?), exclamation point (!), colon (:), vertical bar (|), quotation mark ("), equal sign (=), caret (^), comma (,), semicolon (;),
less than sign (<), and greater than sign (>).

Transaction Integrator (TI)

A Windows server-based program that enables you to integrate mainframe or midrange computer transaction programs
with component-based and .NET Framework applications.

transaction manager

The transaction manager creates transaction objects and manages their atomicity and durability. Applications request the
creation of a transaction object by calling the transaction manager's BeginTransaction method.

transaction program (TP)

A COBOL-based mainframe transaction program file. An application program that uses Advanced Program-to-Program
Communications (APPC) to exchange data with another TP on a peer-to-peer basis. Within the context of TI, a TP is the
mainframe-based CICS or IMS program file that a TI Automation server automates. A TP can contain one or more
transactions that are managed on the mainframe side. Each method in a single TI Automation server invokes a single TP. That
TP then uses the information passed into it by the TI Automation server to determine which mainframe transaction to run
within the TP. Each mainframe transaction within a TP can call other transactions. It is dependent upon how the mainframe
COBOL application developer has designed the system.

(1) An application program that uses APPC or CPI-C to exchange data with another TP on a peer-to-peer basis. (2) A program
that processes transactions in an SNA network. There are two kinds of transaction programs: application transaction
programs and service transaction programs. See also conversation.

Transmission Control Protocol/Internet Protocol (TCP/IP)

The transport protocol in use by many academic, military, scientific, and commercial organizations to provide
communication across wide area networks (WANs). TCP/IP provides communication across interconnected networks that
include a variety of different operating systems (such as VMS, UNIX, and Windows 2000 or later).

transmission header (TH)

A header prefix to a message unit flowing within the Path Control Network (PCN), and containing PCN-specific data about
routing, sequencing, blocking, and route pacing.

Twinax

A twinaxial connection to a peer system.

twisted-pair cable

Two paired wires, with each wire twisted two or more times per inch to help cancel out noise.

two-phase commit (2PC)

A protocol that ensures that transactions that apply to more than one server are completed on all the servers or none at all.
Two-phase commit is coordinated by the transaction manager and supported by resource managers.

type library

A file (or component within another file) that contains Automation descriptions of exposed objects, properties, and methods.
Object library (.olb) files contain type libraries. Type libraries that are shipped as stand-alone files use the file extension .tlb. A
TI component is an example of a type library (.tlb file).

-U-
UDA

See universal data access (UDA).

UDT

See user-defined type (UDT).

unbounded

Refers to recordsets or arrays. In TI, the rows in a recordset or the elements in an array are transmitted one at a time.
Therefore, the mainframe application program must issue multiple receives or sends until all data is transmitted.

This type of parameter or return value can be defined as unbounded for the CICS Using LU 6.2 and IMS Using LU 6.2
models only. The number of rows in a recordset or the number of elements in an array is not determined (that is, bounded)
before run time. Unbounded parameters or return values can occur anywhere in the Automation method. However, a
parameter or return value of this type is always transmitted to and from the mainframe after all other data. TI supports, at
most, a single unbounded input parameter and a single unbounded output parameter or a single unbounded in/out
parameter.

universal data access (UDA)

A Microsoft data access method which supplies access to information across the enterprise. Universal data access provides
high-performance access to a variety of information sources, including relational and non-relational, and an easy to use
programming interface that is tool and language independent.

user alert

A message sent by a 3270 user to a host system operator by way of NetView, requesting an action such as mounting a tape
or changing forms on a printer.

user identifier

A string of characters that uniquely identifies a user to a system.

user name

The name (also known as user ID) that identifies a Windows user account.

user-defined type (UDT)

A data type that is defined in a program. User-defined data types generally contain many different data types that are
defined by the programming language being used. In COBOL, UDTs are called RECORDS (that is, any declaration containing
lower-level numbers).

-V-
variable-length string

A fundamental data type that holds character information. A String variable can contain approximately 65,535 bytes (64 KB),
and it is either fixed-length or variable-length. Strings usually have one character per byte; however, TI supports Unicode
BSTR strings that occupy 16 bits per character. Fixed-length strings are declared to be a specific length, and variable-length
strings can be any length up to 64 KB, less a small amount of storage overhead.

VCB

See verb control block (VCB).

verb

Command from one LU to another to exchange data and perform tasks. See alsoAPPC verb.

verb control block (VCB)

A structure made up of variables, which identifies the verb to be executed, supplies information to be used by the verb, and
contains information returned by the verb when execution is complete.

VINES

See VIrtual NEtworking System (VINES).

VIrtual NEtworking System (VINES)

A collection of networking software products from Banyan Systems, Inc. VINES includes an addressing system called
StreetTalk.

Virtual Telecommunications Access Method (VTAM)

A set of IBM mainframe programs that control communications between mainframe applications and the terminals and
computers that connect to the mainframe.

VTAM

See Virtual Telecommunications Access Method (VTAM).

-W-
WAN

See wide area network (WAN).

wide area network (WAN)

A high-speed communication system, consisting of hardware (computers and peripherals) and software (programs and
files), that provides communications services and enables resources to be shared over a larger geographic area than that
served by a LAN. Contrast withlocal area network (LAN).

wildcard character

Synonym for pattern-matching character.

Windows-initiated processing (WIP)

A Windows server platform can access and integrate its programs with the programs on a non-Microsoft server platform
(usually a mainframe or mid-range computer such as the AS/400).

WIP

See Windows-initiated processing (WIP).

-X-
X.25

The CCITT standard used for communication over a packet-switching network. X.25 uses the protocol called qualified logical
link control (QLLC).

XID

See exchange identification (XID).

XML

See Extensible Markup Language (XML).

XML Schema Definition (XSD)

A language proposed by the W3C XML Schema Working Group for use in defining schemas. Schemas are useful for
enforcing structure and constraining the types of data that can be used validly within other XML documents. Unlike DTD,
which requires its own language and syntax, XSD uses XML syntax for its language. XSD closely resembles and extends the
capabilities of XDR. The W3C now recommends the use of XSD as a standard for defining XML schemas.

XSD

See XML Schema Definition (XSD).

XSL

See Extensible Stylesheet Language (XSL).

-Y-

No terms.

-Z-

No terms.

UI Help
This section contains the user interface (UI) Help that appears when you press the F1 key or click Help in the Host Integration
Server or Microsoft Visual Studio UI.

In This Section

Installation Help

Configuration Wizard Help

SNA Manager Help

Visual Studio Help

Transaction Integrator Manager Help

Enterprise Single Sign-On Help

Data Integration Help

Network Integration Help

Messaging Help

Trace Utility Help

3270 Client Help

5250 Client Help

https://msdn.microsoft.com/en-us/library/aa704808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745436(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771514(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745804(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745739(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770527(v=bts.10).aspx

Installation Help
Use the topics in this section to navigate through the setup user interface.

In This Section

Welcome Screen

License Agreement Screen

User Information Screen

Select Features Screen

Services Account Screen

Begin Installation Screen

Finish Installation Screen

https://msdn.microsoft.com/en-us/library/aa745187(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771364(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705540(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770986(v=bts.10).aspx

Welcome Screen
Be sure to read the Welcome screen because it contains important information.

Setup cannot install system files or update shared files if the files are in use. Before continuing, close all open applications.

Important
Stopping existing SNA Server or Microsoft Host Integration Server services will immediately disconnect users from the Host
computer and terminates all sessions.

Viewing the Welcome Screen

1. Click Cancel if you would like to quit Setup.

-or-

Click Next to continue setup.

Note
You can click Cancel at any screen to quit the Setup program. If you need to make changes to information you have entered
in a previous screen, you can click Back.

License Agreement Screen
Read the End-User License Agreement to become familiar with the terms of the Host Integration Server license.

Note
You must accept the License Agreement to complete the server installation.

To accept the End-User License Agreement

1. Select I accept the License Agreement.

2. Click Next.

User Information Screen
Enter the Full Name and Organization information.

The Full Name is mandatory and the Organization is optional.

To enter the user information

1. Enter the Full Name and Organization information.

2. Click Next.

Select Features Screen
From the Select Features dialog box, you can select from several options.

Browse allows you to select the location where Host Integration Server will be installed.

Disk Cost displays the disk space requirements for installed components.

Reset sets all features back to the default setting of all components getting installed.

Make Features Unavailable removes features from your current installation option.

To accept features

1. Either accept all of the Host Integration Server features or make options that you do not want to install unavailable.

2. Click Next to continue.

Folder Installation Location

For new installations, Setup displays the current location where Host Integration Server software will be installed. The default
location is C:\Program Files\Host Integration Server\.

For upgrades, the existing folder where the Host Integration Server or a previous version of SNA Server is installed will be
displayed.

Current folder location

1. To change the current folder location where Host Integration Server will be installed, click Browse.

2. You will be prompted to enter the new folder name. Click OK.

Checking Disk Cost

To view the disk cost for installed components, click Disk Cost on the Select Features dialog box.

This dialog box shows the current disk volumes with the disk size, amount of available space, the amount of space required for
selected components, and the difference available.

To check disk cost

1. View the Disk Cost information.

2. Click OK to close the Disk Cost dialog box.

Resetting Installation Features

You can reset the selected features back to the original settings by clicking Reset on the Select Features dialog box.

To reset the install features

1. Click Reset to verify that you want Setup to reset all features to be installed.

All features that were marked as unavailable will now be available to Setup.

Make Features Unavailable

To make a Host Integration Server feature unavailable, click the feature icon. One of the two menu options will appear,
depending on the item you are selecting. If you make all of the features under SNA Application Support unavailable to
Setup, the basic SNA Service (SNABASE.EXE) will still be installed. If you make the parent item, SNA Service unavailable, all
services under SNA Service will be unavailable to Setup.

The choices for Setup include:

Will be installed on local hard disk

Entire feature will be installed on local hard disk

Entire feature will be unavailable

Note
You will see a red "X" when a feature is marked unavailable.

To make a feature unavailable

1. Click the Host Integration Server feature that you want to make unavailable.

2. Select the Install option.

Services Account Screen
Setup installs a number of services that must be able to log on to the Windows 2000 domain. This requires Setup to create a
domain user account and to assign the account the privileges that the services require to operate properly.

You must provide a domain and user name (domain/user) along with the password for the account. If the account does not
exist, Setup will create it.

Services Account Configuration screen

1. Type the domain and user name (domain/user).

2. Type and confirm the password.

3. Click Next.

Begin Installation Screen
All required information for the installation process to start has been entered.

Setup will copy all required files and make all configurations to your system.

Note
If you need to make any changes to information you have entered, click Back and make the appropriate changes.

To start the installation and configuration process

1. Click Next to start the Setup process.

2. Setup will now copy all required files to your hard disk.

Finish Installation Screen
 

To finish the installation and configuration process

1. If you installed components that require SNA support, the Configuration Wizard will start when you click Finish.

2. After Setup is completed, click Finish to complete the installation process.

Configuration Wizard Help
Use these topics to navigate through the Configuration Wizard.

This section contains:

Common Settings Page

Advanced Client Page

Advanced Client Configuration Page

Network Integration Page

Network Integration Advanced Page

Data Integration Page

Transaction Integrator Page

Session Integrator Page

MSMQ-MQSeries Bridge Page

Start Page

Overview Page

Service Accounts Page

Database Accounts Page

Service Accounts View

Database View Page

Summary Page

Progress Page

Finish Page

Unconfigure Page

https://msdn.microsoft.com/en-us/library/aa754403(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754388(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744375(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745395(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770980(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754675(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754471(v=bts.10).aspx

Common Settings Page
Enable the Common Settings for this HIS Group

Select to configure the settings in the Security Group field.

Security Group

Click Edit to edit the HIS Runtime Users and HIS Administrators groups.

Enable Support for 3270, APPC and LUA Applications

Select to configure the settings in the Resource Location field.

(Only displayed when the SNA Gateway is not installed.)

Resource Location

Select Sponsor Server Support and enter the Sponsor Server name, or select Active Directory Support and enter the
Organizational name.

(Only displayed when the SNA Gateway is not installed.)

Advanced

Click to configure advanced settings.

(Only displayed when the SNA Gateway is not installed.)

Windows Service

View or change the current Windows Service accounts.

(Only displayed when the SNA Gateway is not installed.)

Advanced Client Page
Configure the following settings as desired:

Terminate Sponsor

Timeout

Update Random Sponsor list Dynamically

Select Random Sponsors

Accept Backup Sponsors

Run resource location component as an application

Allow per user settings

Use the Credentials of

Logged on User

This account

Advanced Client Configuration Page
Configure the following settings as desired:

Terminate Sponsor

Timeout

Update Random Sponsor list Dynamically

Select Random Sponsors

Accept Backup Sponsors

Run resource location component as an application

Allow per user settings

Use the Credentials of

Logged on User

This account

Network Integration Page
Use this page to configure Network Integration.

Enable the Network Integration for this HIS Group

You must select this to make any changes on this page.

Subdomain

If you select the role of Primary Configuration Server, enter the Subdomain Name.

If you select the role of Secondary Configuration Server, enter the Primary Server Name and also the Subdomain
Name.

Services

Select the services you want to have configured.

Advanced

Click to configure Client Protocol Support and Active Directory Support.

Windows Service

View or change the current Windows Service accounts.

Network Integration Advanced Page
Client Protocol Support

Select TCP/IP, Microsoft Networking (Named Pipes), or both.

Active Directory Support

Select Support Active Directory Clients to make changes in this field. Then enter a valid Active Directory Name and
Organizational Unit.

Data Integration Page
Select Enable Data Integration Feature to make configuration changes on this page.

Enable DB2 Distributed Transactions

Select to configure DB2 Distributed Transactions properties, or accept the defaults.

Enable Host Files component (DDM) as a service

Select as desired.

Windows Service

View or change the current Windows Service accounts.

Transaction Integrator Page
Enable Host Initiated Processing

Select this option to make changes on this page.

Then specify a Server Name and Database Name for the Database Store.

Session Integrator Page
Select Enable Session Integrator Feature, and then view or change the current Windows Service accounts as desired.

MSMQ-MQSeries Bridge Page
Use this page to configure the MSMQ-MQSeries Bridge.

Start Page
Choose either Basic or Custom configuration.

Basic Configuration

Recommended for first-time users. This configures your system with default settings.

In the Service Credential field, enter a Username and Password.

In the Network Integration field, select either Primary or Secondary Configuration Server.

In the Database field, enter the Database Server Name.

In the Data Integration field, enter the Partner DB2 Resource Managers (optional).

Click Configure to begin the configuration process.

Custom Configuration

Recommended only for advanced users. This allows you to enable and disable features, and to customize the values for each
database and service account.

In the Service Credential field, enter a Username and Password.

In the Network Integration field, select either Primary or Secondary Configuration Server.

In the Database field, enter the Database Server Name.

In the Data Integration field, enter the Partner DB2 Resource Managers (optional).

Click Configure to begin the configuration process.

Overview Page
The Overview page displays the features you have selected to configure, and the status of each.

Click a feature on the left side of the pane to begin configuration.

Service Accounts Page
Use this page to edit the selected service account.

User Name

Type the user name for this service account.

Password

Type the password for this account.

Database Accounts Page
Use this page to edit the server name and database name for the selected feature.

Database server name

Type the name of the database server that will host this feature.

Database name

Type the name of the database for this feature.

Service Accounts View
Use this page to view a list of features and the accounts used to run the services used in your configuration.

Edit

Edit the service account name of the selected features.

You can select multiple features to edit by pressing CTRL and clicking the mouse.

Database View Page
Use the Consolidated Databases View page to view a list of features, servers, databases, and data stores used in your
configuration.

Edit

Edit the database server name and database name of the selected features.

You can select multiple features to edit by pressing CTRL and clicking the mouse.

Summary Page
Before beginning the configuration process, you can review the selections you have made. Click Back to make any changes.

Progress Page
Displays the progress of your configuration.

Finish Page
Review your errors or log file if necessary, and then click Finish.

Unconfigure Page
Select the features you want to unconfigure on this computer, and then click OK.

SNA Manager Help
Use these topics to navigate through the SNA Manager user interface.

In This Section

Link Service Adapter

Configure a DLC 802.2 Link Service

Demo SDLC Link Service

Distributed Link Service Properties

APPC Mode Properties

3270 LU Properties: General

3270 LU Properties: LUA

3270 LU Properties: Down Stream

Pool Properties: General

User Properties

TN3270 Properties: General

Connection Properties: SDLC

Connection Properties: DLC 802.2

Connection Properties: X.25

Connection Properties: Channel

Local LU Properties: General

Remote LU Properties: General

Server Configuration Properties

Server Configuration

Workstation Properties: General

TN5250 Properties

Domain Properties

AS400 Definition Properties: General

Active Users

LUA LU Properties: General

CPI-C Symbolic Name: General

CPI-C Symbolic Name: Security Settings

Host Integration Server 2009 Folder

SNA Service Folder

Link Services Folder

Connections Folder

Local APPC LUs Folder

Remote APPC LUs Folder

Microsoft SNA Manager

AS/400 Definitions

https://msdn.microsoft.com/en-us/library/aa745560(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745587(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745850(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770467(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746241(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770518(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771455(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705226(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771907(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746079(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771833(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771520(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746182(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771366(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705009(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705228(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745435(v=bts.10).aspx

Active TN5250 Sessions

AS/400 Definition Properties

APPC Modes Folder

CPI-C Symbolic Names Folder

https://msdn.microsoft.com/en-us/library/aa771983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745577(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745685(v=bts.10).aspx

Link Service Adapter
Link service allows Host Integration Server to communicate with host, peer, or downstream computers over token ring and
Ethernet Local Area Networks.

Configure a DLC 802.2 Link Service
A DLC 802.2 link service allows Host Integration Server to communicate with host, peer, or downstream computers over token
ring and Ethernet Local Area Networks.

Title

The default title is DLC 802.2 Link Service #1. To change the default title, delete the title and enter a new title for this link
service. You can use up to 40 characters for the title.

Adapter

Select the adapter card you are using for this service.

Local Service Access Point (SAP)

Enter the local SAP. This number must be a multiple of 4, ranging from 4 through 252. In most cases, the SAP for Host
Integration Server is 4.

Select Use Fixed SAP to use a fixed SAP address.

Select Allow Link Service to be Distributed to allow this service to be distributed.

Demo SDLC Link Service
Configure a demonstration SDLC link service. This service uses a script file to simulate an SDLC link service.

Title
The default title is Demo SDLC Link Service #1. To change the default title, delete the title and enter a new title for this link
service. You can use up to 40 characters for the title.

Script File
Select a demonstration script file from the drop-down list.

Select Allow Link Service to be Distributed to allow this service to be distributed.

Distributed Link Service Properties
Service Title

The default title is Distributed Link Service #1. To change the default title, delete the title and enter a new title for this link
service. You can use up to 40 characters for the title.

Link Type

Select the type of link service represented by this Distributed Link Service from the drop-down list.

Primary Remote Link Services

Enter the name of the remote link service used by this service.

Alternate Remote Link Services

Enter the name of an alternate remote link service used by this service.

Select Compression used if data compression is to be used on this link service.

APPC Mode Properties
The following tabs are available on the APPC Mode Properties Sheet:

APPC Mode Properties: General
Mode Name

Enter a Mode Name.

Comment

Optionally, type a comment of not more than 25 characters.

APPC Mode Properties: Limits
Parallel Session Limit

Specify the maximum number of sessions allowed with this mode. To allow only a single session, specify 1. To allow parallel
sessions, specify a value greater than 1. If the local APPC LU to be used with this mode is dependent, specify 1; dependent
local APPC LUs cannot have parallel sessions. One of the key mode properties is the Parallel Session Limit. This limit
determines whether an LU-LU pair can carry on only one interaction at a time (a parallel session limit of 1), or multiple
concurrent interactions (a parallel session limit greater than 1). If parallel sessions are to be allowed with an LU-LU pair, the
local LU must be independent, and the remote LU in the pair must support parallel sessions.

If the LU-LU pair can carry on multiple parallel sessions, other mode properties, such as minimum contention winner limit,
determine to what extent each LU can initiate interactions.

Minimum Contention Winner Limit

Specify the Minimum Contention Winner Limit. The sum of the Minimum Contention Winner Limit and the Partner Min
Contention Winner Limit must be less than or equal to the Parallel Session Limit.

Partner Min Contention Winner Limit

Specify the Partner Min Contention Winner Limit. The sum of the Partner Min Contention Winner Limit and the Minimum
Contention Winner Limit must be less than or equal to the Parallel Session Limit.

Automatic Activation Limit

Specify the number of contention winner sessions to be activated for the local LU whenever the connection for this mode is
started. In a local contention winner session, the local LU can initiate conversations without permission from the partner LU.

This does not apply for single-system APPC (communication between two local LUs on the same system).

APPC Mode Properties: Characteristics
Pacing Send Count

Specify the maximum number of frames for the local LU to send without an SNA pacing response from the partner LU. If you
specify 0, the local LU can send an unlimited number of frames without receiving a response; in this case, the partner LU can
negotiate and set a limit on the count.

Pacing Receive Count

Specify the maximum number of frames for the local LU to receive from the partner LU before the local LU sends an SNA
pacing response. If you specify 0, the local LU can receive an unlimited number of frames without sending a response.

Max Send RU Size

Specify the maximum size for RUs sent by the TP(s) on the local system.

It is not necessary to set a minimum send RU size, which is 256 on Host Integration Server.

Max Receive RU Size

Specify the maximum size for RUs received from the TP(s) on the remote system.

It is not necessary to set a minimum receive RU size, which is 256 on Host Integration Server.

High-Priority Mode

Select to give preference to communication with this mode over communication with a low-priority mode.

APPC Mode Properties: Partners

This tab allows you to Add or Remove APPC LU partnerships from the Host Integration Server configuration file. The mode
name appears in the title. The list box shows the Server, Local LU Alias, Remote LU Alias, Connection, and which LUs are
partnered with the APPC mode in the title.

Remove

Click Remove to delete APPC LU partnerships from the Host Integration Server configuration file.

Add

1. Click Add to add APPC LU partnerships from the Host Integration Server configuration file. The Add Partnerships dialog
box appears.

2. Select a Server name from the subdomain by clicking the DOWN arrow in the drop down list.

3. After the server is selected, a list box showing Local LUs and a list box showing Partner LU and Connection are filled.
Make selections from each list to establish partnerships.

4. Click Apply to add pairs to the APPC Mode Properties: Partners page while keeping the Add Partnerships dialog
active.

5. When you finish selecting partnerships, click OK on the Add Partnerships dialog to return to the APPC Mode
Properties: Partners page.

6. Click OK on the APPC Mode Properties: Partners page to commit the changes to the Host Integration Server
configuration file.

Note
You can select multiple modes for partnerships using the same LUs. Press the SHIFT key and the CTRL key and click to
select non-contiguous modes.

Note
The Host Integration Server configuration file is updated dynamically. There is no need to stop and restart SNA service.

APPC Mode Properties: Compression
Maximum Send Compression

Select the maximum compression desired from the drop down list. The valid values are: None, Run Length Encoding
(RLE), and LZ9. These options offer progressively better compression, but at a progressively higher CPU usage.

Maximum Receive Compression

Select the maximum compression desired from the drop down list. The valid values are: None, Run Length Encoding
(RLE), and LZ9. As with Maximum Send Compression, these options offer progressively better compression, but at a
progressively higher CPU usage cost.

Allow LZ and RLE Compression

If LZ9 is used, this option controls whether data is compressed using RLE before being further compressed using LZ9.

Endpoint Only Compression

This option controls whether intermediate nodes may use compression if one of the endpoints does not support or
otherwise does not use compression.

3270 LU Properties: General
LU Number
Enter the LU Number for LUs on 802.2, SDLC, or X.25.

Enter an appropriate LU Number.

LU Name

Type the LU Name.

Connection

The connection for this LU is shown. The connection cannot be changed from this dialog box.

Pool

If the LU has already been assigned to a pool, the pool name appears here.

Comment

Optionally, enter a comment of not more than 25 characters.

Use Compression

Select this option to enable 3270 LU data stream compression. This option must also be set in the host VTAM configuration
for the LU.

User Workstation Secured

Select this option to enable a higher level of security. When the option is selected the user can only acquire an LU if:

the user's User Record is assigned to this LU, and

the user's workstation has been defined with a Workstation Definition.

3270 Display LU Properties: Associated Printer LU
Display LU

Shows the display LU name if you have already created a display LU; otherwise, this will be filled in when you complete the
configuration of this display LU.

Associated Printer LU

Click the DOWN arrow to display the list of available printer LUs on this connection. Choose a printer LU to associate with
this display LU. If you have not created any printer LUs on this connection, you must do so before they will appear in the list.

3270 LU Properties: LUA
The following tabs are available on the 3270 LUA Properties Sheet:

3270 LU Properties: LUA General Tab
LU Number

Enter the LU Number for LUs on 802.2, SDLC, or X.25.

Enter an appropriate LU Number.

LU Name

Type the LU Name.

Connection

The connection for this LU is shown. The connection cannot be changed from this dialog box.

Pool

If the LU has already been assigned to a pool, the pool name appears here.

Comment

Optionally, enter a comment of not more than 25 characters.

Use Compression

Select this option to enable 3270 LU data stream compression. This option must also be set in the host VTAM configuration
for the LU.

User Workstation Secured

Select this option to enable a higher level of security. When the option is selected the user can only acquire an LU if:

the user's User Record is assigned to this LU, and

the user's workstation has been defined with a Workstation Definition.

High Priority Mode

Select this option to increase the priority for this LU.

Note
Two additional property pages appear when the LU is assigned to a TN3270. These are the TN3270 property page and the IP
Address List page.

3270 LU Properties: TN3270 Tab
Type

Select from the list the display or printer type.

Generic Display

This is the default pool type. The display LU or pool will be assigned to a client computer that either does not specify a
particular LU or Pool, or that requests this LU or Pool by name.

Specific Display

The LU or pool configured as specific will only be assigned to client systems that request this LU or pool, and not to clients
making generic requests.

Generic Printer

The printer LU or pool will be assigned to a client computer that either does not specify a particular LU or pool, or that
requests this LU or pool by name. When this option is checked, the terminal name will default to IBM-3287-1.

Specific Printer

The printer LU or pool configured as specific will only be assigned to client computers that request this LU or pool, and not to
client computers making generic requests. When this option is checked, the terminal name will default to IBM-3287-1.

Associated Printer

Printer LUs can be marked as associated instead of generic or specific. To associate a printer LU with a terminal LU, select this
option and choose the Associated LU from the drop-down list box. When this option is checked, the terminal name will
default to IBM-3287-1.

Sessions

This is the number of TN3270 sessions allowed for the selected LU or pool. The number of TN3270 sessions must not exceed
the number of LUs listed under Host Integration Server Resource Information.

If you reduce the TN3270 Sessions limit to 0 (zero) TN3270 service will not assign the LU or pool.

Associated Printer

When the Type option Associated Printer is selected, choose an Associated Printer from the drop-down list. In this case,
the printer LU is partnered with one terminal LU. A client computer accesses that printer LU by sending in an "associate"
request and giving the name of the terminal LU with which the printer LU is partnered.

Terminal types

TN3270 service will default to IBM Terminal Model 2. To add a different terminal model to this LU, click the corresponding
number (2, 3, 4, or 5) to the left of the list of terminal names. After a Terminal Model is selected, Terminal Names are
automatically assigned. You can remove selection of individual terminal names that do not apply to your network
configuration by clearing the checkbox opposite the name, or you can clear all terminal names by clicking Clear.

Note
The terminal name strings selected must be compatible with the host logmode entry for the LU. For printer LUs, the Termina
l Name will default to IBM-3287-1.

Port

Select Default port to use the port number configured with the service (on the Service Properties page), or select a port
from the list. The list displays all of the defined TN3270 ports along with their Security setting (High, Medium, Low, None, or
Unsecured).

Note
TN services listen on multiple ports simultaneously. You can set a default number for the TN service and override this numbe
r on a per session basis, allowing a single client computer to connect to multiple host computers.

Note
TN3270 client systems can only access LUs that are configured as generic terminal LUs. TN3270 client systems can access ge
neric, specific, and associated LUs.

Note
Configuration changes are apparent only to users who establish a connection after the configuration changes are saved. User
s who were connected at the time the configuration changes were made will not be affected.

3270 LU Properties: IP Address List

You can associate this LUA to a specific IP address or server name.

Add Address

Click to specify the IP Address and Subnet Mask of the client workstation to which you are granting access.

IP Address

Click an entry in the IP Address column to edit the IP address for a client workstation.

Subnet Mask

Click an entry in the Subnet Mask column to edit the subnet mask for a client workstation.

Add Name

Click to add a workstation name to the IP Address list box. The workstation name identifies that a client workstation whose

Click to add a workstation name to the IP Address list box. The workstation name identifies that a client workstation whose
address resolves to that name can connect to the service.

Remove

Click to remove an entry that is currently highlighted in the IP Address list box.

Clear All

Click to remove all entries in the IP Address list box. The service will then be configured to allow access from any client
workstation.

Note
The IP address must be changed from the default value of 0.0.0.0 if you want to assign a specific IP address. If you try to add t
he default IP address with the default subnet mask value, you will receive a message indicating an Invalid IP Address/Subnet
Mask.

Note
The IP address of an incoming connection is compared to each of the available LUs or pools in turn. Each resource has an ass
ociated list of IP address patterns and subnet masks. The IP address from the incoming connection is masked (by bit and by t
he resource's subnet mask), then compared to the resource's IP address pattern masked by the resource's subnet mask. If th
e result is equal, the connection is allocated to this resource.

3270 LU Properties: Down Stream
Enter the LU Number for LUs on 802.2, SDLC, or X.25.

Enter an appropriate LU Number.

LU Name

Type the LU Name.

Connection

The connection for this LU is shown. The connection cannot be changed from this dialog box.

Pool

If the LU has already been assigned to a pool, the pool name appears here.

Comment

Optionally, enter a comment of not more than 25 characters.

Pool Properties: General
Pool Name

Enter a name for this pool.

Comment

Optionally, enter a comment of not more than 25 characters.

Pool contains Display LUs with Associated Printers

This option is intended for users whose host applications have a direct relationship between display LUs and printer LUs (i.e.,
this applies to display-type pools only). With this option selected, all display LUs in the pool will be treated as though they
have associated printer LUs. Also configure the display and printer LUs with the LU numbers that the host application is
expecting.

Pool Properties: Display Model
Display Model

If you select Display for the LU Type, you can select a Display Model.

When an LU is assigned to a pool, the display model setting for the pool overwrites the setting of the LU, and the setting
displayed in the 3270 LU Properties dialog box is dimmed.

Some emulators can only emulate certain display models. For more information, see your emulator documentation. If there
is a conflict between the Display Model setting for the pool and the Display Model setting for an LU in the pool, a message
box appears. You can configure the individual LU setting to change or exclude the LU from the pool.

Model can be overridden

Select this check box to allow the user to override the display model type by using a 3270 terminal emulation program.

User Properties
User Name

Provided for information only. This field cannot be changed here.

Domain

Provided for information only. This field cannot be changed here.

Comment

Optionally, type a comment of up to 25 characters.

Use Client/Server Encryption

Check this box to enable encryption between the client system and Host Integration Server.

Allow Access To Dynamically Created Remote APPC LUs

Check this box to let this user or group use dynamically created APPC LUs.

APPC Defaults
Local APPC LU

If this user will be using APPC programs (TPs, 5250 emulators, or APPC applications), you can choose a default local APPC LU
to be used when the user starts such programs.

Avoid assigning a default local APPC LU to the group "Everyone". Instead, to make a local APPC LU available to any user,
when configuring the local LU, select the check box labeled Member of Default Outgoing Local APPC LU Pool on the
Advanced tab of Local LU Properties.

Remote APPC LU

If this user will be using APPC programs (TPs, 5250 emulators, or APPC applications), you can choose a default remote APPC
LU to be used when the user starts such programs.

To accept the settings, click OK; to exit the dialog box without accepting the settings, click Cancel.

When you assign default APPC LUs to user and group accounts with overlapping memberships, some of these assignments
override others.

TN3270 Properties: General
Name

Displays the name of the server running the TN3270 service. This field cannot be edited here.

Comment

Optionally, type a comment of up to 25 characters.

Use Name Resolution

Name Resolution should only be selected if you are running a domain name resolver. A domain name resolver catalogs IP
addresses and corresponding network names of connected computers. The domain name resolver allows you to enter the
name of a computer rather than the IP address when an IP address is required.

TN3270 Mode only

The TN3270 service also supports TN3270E, an enhancement to TN3270. When a client computer first connects to a
computer running TN3270 service it negotiates which functions they both support. TN3270 emulators should be able to
negotiate with TN3270 service, if only to state that they do not support TN3270. However, some TN3270 emulators are
unable to negotiate properly with TN3270 service, causing the negotiation to fail. For this reason the TN3270 service has an
option to default to TN3270 mode and not to use TN3270 features, so that these TN3270 negotiation problems do not occur.

Printer Flow Control

If a TN3270 service adheres strictly to the specification described in RFC 1647, there is no way of implementing flow control
between a computer running TN3270 service and a TN3270 client. In practice this causes no problems for display emulators,
but it does cause a problem for printer emulators, which can be overloaded with data and have no way of notifying the
TN3270 service that they cannot process any more messages. If this option is turned on, the TN3270 service sends all
messages to a TN3270 printer client as RESPONSE-REQUIRED, and does not send any messages until it has received a
response for the previous message.

Close Listen Socket

By default the TN3270 service always has a socket open to listen for incoming requests. If this option is turned on, the
TN3270 service stops listening on this socket after all of its defined LUs are in use. The purpose of this is to work with
emulators that can try to connect to a number of computers running TN3270 service and that connect to whichever
computer accepts their connection attempt. In this case it is useful if a computer with no LUs available is not listening.

Log Normal Audit Events

If this is set, audit messages are logged. These are messages that log successful client connection and successful client
termination.

Use SNA Event Log

If this is selected, all TN3270 service event messages are written to the event log being used by the Host Integration Server
system. If this is not set, all TN3270 service event messages are written to the Windows event log on the local machine.

TN3270 Properties: Port/Security

This property page contains two groups.

The Defined ports group displays information pertaining to the currently configured 3270 Server ports.

The Configure ports group consists of controls for adding, editing, and deleting port configurations.

Defined ports
Port

Lists all ports and corresponding Security settings. On a new installation, setup automatically defines Port 23 as the Default
Port.

Security

Displays the level of encryption/authentication assigned to that port. Values are High (168), Medium (128), Low (40), and
Unsecured (TLS/SSL not enabled). Default is Unsecured.

Client certificate

Displays status: Required or Not required. Default is Not Required.

Comment

Displays a comment.

Port configuration
Port

Enter a valid port number from 1-65535.

Security

Choose a setting from the list: High (168), Medium (128), Low (40), or Unsecured. Default is Unsecured.

Comment

This is optional. Maximum length allowed is 25 characters.

Verify client certificate

If selected, the client will have to provide a valid certificate to make the connection. Default is not selected. If Security level is
set to Unsecured, this option is unavailable.

The client requires a valid Certificate with the following properties:

Type X509

Client Authentication

Associated private key

These certificate settings may match some of those you would not choose to grant access to. It is therefore recommended that
you check the list of default Trusted Root Certification Authorities in the TN3270 Service Store, and remove any you do not
want to be there.

TN services listen on multiple ports simultaneously. You can set a default port number for the TN service (assign the port
number to the server) and override this number on a per session basis (assign the port number to the LU session), allowing a
single client computer to connect to multiple host computers.

You can also add the TN3270 port by using the SnaCfg tool, with the command and parameters shown below:

The properties of the command are described in the following table:

Property or Method Description Validation

/COMMENT:Text The comment field 0 – 25 characters

/SECURITY:Type Security level None, Low, Medium or High

/CLIENTCertVAL:YesNo Indicates whether the client certificate verification is enabled No – disabled

Yes - enabled

Default Port

On a new installation, setup automatically defines Port 23 as Default Port. There can only be one default port at a time. After
a port has been designated Default Port, it cannot be deleted until another Default Port has been selected. The default is Not
Selected.

Adding Ports and Security

TN3PORT tn3270Server:PortNumber /ADD
 /COMMENT:"comment"
 /SECURITY:{ None | Low | Medium | High }
 /CLIENTSertVALAUTH:{ Yes | No }

This property page allows increased security through support for Secure Sockets Layer (SSL) and TLS for all network transport-
level services.

Although the Microsoft 3270 Client (emulator) does not support SSL or TLS, many third-party software vendors offer 3270
emulators that support this functionality, including Attachmate, IBM, NetManage, and WRQ.

To add a new port

1. On the TN3270 Properties: Port/Security page, click New.

2. Enter the port number and select a security level (default is Unsecured). You can also add a comment and make this the
default TN3270 Server port.

3. For maximum security, check the Client Certificate checkbox.

To edit the properties of an existing port

1. On the TN3270 Properties: Port/Security page, highlight the port.

2. Click Edit.

3. When you are finished, click Save.

TN3270 Properties: Settings
Idle Timeout

Specify time limits. If the session is inactive for this length of time, then TN3270 service disconnects the client system.

Init Status Delay

Specify time limits. This is the delay between the time when TN3270 service connects to a host session and the time the
TN3270 service starts updating the client screen. There are often a large number of startup messages when the TN3270
service first connects to a host session, and this option gives the user the opportunity not to receive them all.

Message Close Delay

Specify time limits. When TN3270 service forces a client computer to disconnect (for example, when the Host Integration
Server session to the host has been lost), it sends the client computer an error message to be displayed on the screen. This
value specifies the time between sending the message to the client computer and closing the socket with the client computer
(which causes some client computers to clear the screen, and so erase the message).

Refresh Cycle Time

Specify time limits. This is the delay between updates of the status on the display.

Default RU Sizes - Inbound and Outbound

This controls the RU size (SNA message size) used by the TN3270 service for logon messages to and from the host. The
minimum value for inbound or outbound RU size is 256 bytes. If the host application sends large logon screens, these values
should be increased.

Certificate CN

The common name of the certificate used if TLS/SSL is enabled.

Connection Properties: SDLC
The following tabs are available on the SDLC Connection Properties sheet:

Connection Properties: General
Name

Enter a Name.

Link Service

Select a link service from the drop down list. If the link service you want is not in the list, click Cancel.

Comment

Optionally, enter a comment of not more than 25 characters.

Remote End

Select the type of remote system for this connection:

Host System

Peer System

Downstream

PU Passthrough

If this connection will be used for 3270 or LUA LUs, then select Host System.

If you will be using dependent APPC, which relies on a host system for communications, then select Host System, not Peer
System.

Allowed Directions

Select the allowed call direction(s), Outgoing Calls and/or Incoming Calls.

Selecting Outgoing Calls causes Host Integration Server to initiate the link-level connection to the remote system or host. If
a remote system tries to initiate a connection, Host Integration Server will not accept the connection attempt.

Selecting Incoming Calls causes Host Integration Server to accept connection attempts from remote systems or hosts.

If both are selected, Host Integration Server will both initiate a connection and accept connection attempts by other systems.

When multiple SDLC connections all use the same link service, and the connections accept incoming calls, the encoding
(NRZ/NRZI) settings for all the connections must match.

Activation

If Outgoing Calls are included in Allowed Directions, select an Activation setting:

On Server Startup. Select this option if you want the connection to be readily available whenever the server is started.

On Demand. Select this option if you want the connection to be started when needed, and stopped when not in use.

By Administrator. Select this option if you want the administrator to control the connection on a case-by-case basis.

Passthrough via Connection

Displays a list of available (unpaired) PU Passthrough Connections. Connections that have already been paired are not
available. Choose a connection that will route you to your destination PU. If PU Passthrough is not selected in the Remote
End field, this list is unavailable.

Supports Dynamic Remote APPC LU Definition

Automatically configures the APPC Remote LUs as users request them. This feature requires that an APPN End Node or Net
Node be available on the connection. This feature is for convenience, and should not be used in situations of restricted
access. If Host System or Peer System is not selected in the Remote End field, this option is unavailable.

With dynamic APPC configuration, if a user requests a session with a valid remote LU, the connection will be established
even if the remote LU has not been configured in SNA Manager. If a connection is designated to support dynamic APPC
configuration, Host Integration Server will automatically define a remote LU and partner it with a local LU when needed.
However, to take advantage of session status and other features of Host Integration Server, it is recommended that
administrators configure commonly used remote LUs.

Connection Properties: Address
Dial Data

If this connection uses a switched line and the phone number is not stored in the modem, enter the dial data. With a leased
SDLC line, this field is unavailable.

For ways to supply a phone number to the modem, see Phone Number Storage and Modem Types below.

Poll Address

Type a two-digit hexadecimal number. Contact the administrator of the remote system to determine the appropriate value. If
the remote system is a host, the local poll address should match the VTAM PU definition for the ADDR= parameter.

If the remote system is a peer, the poll address can be any value except the reserved values 00 and FF. When the connection
is used, the link roles will be negotiable; the system that takes on the primary role uses the poll address of the other system,
so that the poll addresses match during the session.

Note
Do not use 00 or FF. These values are reserved.

Encoding

Select the encoding scheme for your modem to use.

Your modem must use the same encoding scheme as the modem at the remote computer.

One of two encoding methods for modems:

NRZ — Non-return to zero

NRZI — Non-return to zero inverted

For connections to host systems, the encoding scheme must match the NRZI setting in the LINE/GROUP definition in VTAM.
Obtain this setting from the host administrator. If VTAM does not specify an NRZI setting, it defaults to NRZI=YES.

When multiple SDLC connections all use the same link service, and the connections accept incoming calls, the encoding
(NRZ/NRZI) settings for all the connections must match.

Phone Number Storage and Modem Types

Host Integration Server can store a phone number and then send the number (in ASCII) to a modem, which dials the number.
This requires that the modem be attached to an SDLC adapter with a built-in serial (COM) port (for example, the SDLC
adapters from MicroGate).

Several connection parameters must be set to work with your modem: Dial Data the duplex setting, half-duplex or full-
duplex, and the encoding scheme.

Changing the Host Integration Server Dialing Method

To change the Host Integration Server dialing method for a modem, use the Host Integration Server Link Service Setup
program to modify the link service. Restart SNA Manager and, from the File menu, choose Save Configuration.

Modem Requirements for Accepting a Phone Number from Host Integration Server

To accept a phone number from Host Integration Server, your modem must be set up so that it will do the following:

Accept dial commands in ASCII (eight data bits, no parity bit, one stop bit).

Not dial when the DTR signal is raised.

Set Clear to Send (CTS) and Data Set Ready (DSR) to On when ready to accept dial commands.

Set DSR to Off after accepting a dial command.

Set DSR to On again when (and only when) the dialed connection is made.

Change to Synchronous mode after the dial-up has completed.

Change back to Dial-command mode if Data Terminal Ready (DTR) is dropped and raised again.

Host Integration Server Actions When Sending a Phone Number

When Host Integration Server is sending a phone number to a modem, it ignores modem responses and holds the modem
interface signals Select Standby and DTR to Off.

The dialing attempt initiated by Host Integration Server is assumed to have failed if one of the following occurs:

DSR stays on after the dial string has been sent.

The connection time-out expires before DSR comes on to indicate that the call is connected.

When Host Integration Server creates a dial string to send to a modem, it uses the outgoing command string supplied in
Setup as a base, and then appends the Dial Data (phone number) configured in SNA Manager, followed by a carriage-return
line-feed sequence.

Affiliate Application

If you selected Single Sign-On, choose an Affiliate Application from the list. The Enterprise Single Sign-On (SSO) Affiliate
applications are logical entities that represent a system or sub-system such as a host, back-end system, or line of business
application to which you are connecting using SSO. An affiliate application can represent a back-end system such as a
mainframe or UNIX computer. It can also represent an application such as SAP, or a subdivision of the system, such as the
"Benefits" or "Pay stub" sub-systems.

Connection Properties: System ID
Local Node Name
Network Name

If you are instructed by the administrator of a remote host, peer, or downstream system, and if you are using Format 3 XIDs,
type the Network Name of the remote system. Format 3 is the default XID type.

The Network Name works with the Control Point Name to identify a system. If either of these parameters is supplied, the
other should also be supplied.

Control Point Name

If you are instructed to by the administrator of a remote host, peer, or downstream system, and if you are using Format 3
XIDs, type the Control Point Name of the remote system. Format 3 is the default XID type.

The Control Point Name works with the Network Name to identify a system. If either of these parameters is supplied, the
other should also be supplied.

Local Node ID

If this connection uses a switched SDLC line (standard telephone line) to connect to a host system, type the Local Node ID.
Use the same Local Node ID for all connections and link services on a particular server.

If this connection uses a leased SDLC line, you can use the default for the Local Node ID.

Note
Do not use 000 or FFF for the first three digits; these values are reserved.

XID Type

Select the XID Type. Most systems use Format 3.

If you want to use independent APPC LUs on this connection, you must select Format 3.

When Host Integration Server is configured to use Format 0 over a host connection, the host treats it as a PU type 2.0, and so
Host Integration Server exercises only its PU type 2.0 capabilities. When Host Integration Server establishes a host or peer
connection using Format 3 and independent LUs, Host Integration Server exercises its PU type 2.1 capabilities.

For configuration changes to take effect, restart the server.

Remote Node Name
Network Name (Remote Node)

If you are instructed by the administrator of a remote host, peer, or downstream system, and if you are using Format 3 XIDs,
type the Network Name of the remote system. Format 3 is the default XID type.

The Network Name works with the Control Point Name to identify a system. If either of these parameters is supplied, the
other should also be supplied.

Control Point Name (Remote Node)

If you are instructed to by the administrator of a remote host, peer, or downstream system, and if you are using Format 3
XIDs, type the Control Point Name of the remote system. Format 3 is the default XID type.

The Control Point Name works with the Network Name to identify a system. If either of these parameters is supplied, the
other should also be supplied.

Remote Node ID

If instructed to by the administrator of a remote host, peer, or downstream system, type the Remote Node ID.

Note
Do not use 000 or FFF for the first three digits; these values are reserved.

Peer DLC Role

Select the DLC role for this connection. The options are:

Primary

Secondary

Negotiable

Connection Properties: SDLC
Max BTU Length

Specify the Maximum Basic Transmission Unit (BTU) Length.

The range is from 265 through 16393; the default is 265.

With an IBM SDLC adapter, set the Max BTU Length to 521 or less.

Maximum Basic Transmission Unit length. The maximum number of bytes that can be transmitted in a single data-link
information frame. A BTU is sometimes called an I-frame.

For downstream connections, specify a Max BTU Length less than or equal to the maximum value supported by software on
the downstream system.

For host connections, specify a Max BTU Length less than or equal to the VTAM PU definition for the MAXDATA= parameter.

Data Rate

Select the Data Rate.

The data rate for transmissions between the Host Integration Server communications adapter and the modem:

Low gives more reliable transmissions and prevents the transmission errors sometimes caused by poor-quality lines at
the high rate. If a fall-back line speed setting is supported by your modem and communications adapter, and you want
to enable it, select Low.

High gives faster transmissions. If you select High, the CCITT line 111 on the V24 interface of your modem is set to on.

Check your adapter and modem manuals to find out if the data rate can or must be set for your equipment.

Duplex

Select the setting that matches your modem:

For a half-duplex modem, select Half. If none of your adapters were installed with the Constant RTS option set, you can
only choose half-duplex.

For a full-duplex modem, select Full. If you want to use the full-duplex setting, one or more of your adapters must have
the Constant RTS option set (at installation).

Most servers will use the default, Half.

Idle Timeout (for host or peer connections)

Specify the length of time, in tenths of a second, for the local system to wait for a response to a transmission before trying
again. Too small of a timeout can cause connection problems. This parameter affects sessions in which the server has a link
role of secondary; therefore, it affects all sessions with a host system and some sessions with a peer system (where the link
role is negotiable).

The range is from 1 (one-tenth of a second) through 300 (30 seconds). The default is 300 (30 seconds).

Idle Retry Limit (for host or peer connections)

Specify the number of times for the local system to try to send data to the remote system if there is no response. This
parameter affects sessions in which the server has a link role of secondary; therefore, it affects all sessions with a host system
and some sessions with a peer system (where the link role is negotiable).

The range is from 1 through 255; the default is 10.

Poll Rate

If the remote system is a peer or downstream system, specify the Poll Rate (in polls per second).

The range is from 1 through 50 polls per second; the default is 5.

Poll Timeout (for peer or downstream connections)

Specify the length of time, in tenths of a second, for the local system to wait for a response to a poll before trying again. Too
small of a timeout can cause connection problems. This parameter affects sessions in which the server has a link role of
primary; therefore, it affects all sessions with a downstream system and some sessions with a peer system (where the link
role is negotiable).

The range is from 1 (one-tenth of a second) through 300 (30 seconds). The default is 10 (1 second).

Poll Retry Limit (for peer or downstream connections)

Specify the number of times for the local system to poll the remote system if there is no response. This parameter affects
sessions in which the server has a link role of primary, therefore, it affects all sessions with a downstream system and some
sessions with a peer system (where the link role is negotiable).

The range is from 1 through 255; the default is 10.

Select Standby

If you want your modem's Standby line to be set to on, select this check box.

Check your adapter and modem manuals to find out if standby can be set for your equipment.

Multidrop Primary

If this is a leased SDLC line to downstream systems, and this server will be the primary station for a multidrop connection,
then select this box.

This is a connection through which one primary computer simultaneously communicates with multiple secondary
computers. Host Integration Server supports multidrop connections to peer or downstream systems on leased SDLC lines.

Contact Timeout

Specify the length of time, in tenths of a second, which the SDLC link service waits for an XID or SNRM response before
resending the XID or SNRM.

This parameter is ignored for incoming calls.

The range is from 5 (five-tenths of a second) through 300 (30 seconds).

The default for a host connection is 300 (30 seconds). The default for a peer or downstream connection is 10 (1 second).

Contact Retry Limit

Specify the maximum number of times the link service will resend an XID or SNRM before declaring an outage to Host
Integration Server.

This parameter is ignored for incoming calls.

The range is from 1 through 20; the default is 10.

Connection Dialing Timeout

If this connection uses a switched SDLC line (standard telephone line), specify the number of seconds that will be allowed for
the user or modem to dial and make a connection to the remote computer. If the dialing will be done manually, be sure to
allow enough time for the user to dial, wait for an answer, and make the connection.

The range is from 10 through 500 seconds; the default is 300.

This parameter is ignored by incoming calls.

To exit the dialog box without accepting the configuration settings, click Cancel. To accept the settings, click OK.

To put configuration changes into effect, restart the server.

Connection Retry Limits

Supply activation limits for the connection.

Maximum Retries

Select the number of attempts for Host Integration Server to make when trying to establish the connection. After making this
number of attempts, Host Integration Server makes an entry in the event log and stops trying. The range is from 1 through
No Limit; the default is No Limit.

Delay After Failure

Select the length of time for Host Integration Server to wait between attempts to establish the connection. The range is from
5 seconds through 255 seconds; the default is 10 seconds.

Connection Properties: DLC 802.2
The following tabs are available on the DLC 802.2 Connection Properties sheet:

General Tab

The following information must be entered on the General tab for the 802.2 connection:

Connection Name

Link Service

Comment (optional)

Remote End

Host System

Peer System

Downstream

PU Passthrough

Allowed Directions

Outgoing Calls

Incoming Calls

Both Directions

Activation

On Server Startup

On Demand

By Administrator

Passthrough via Connection

Supports Dynamic Remote APPC LU Definition

Address Tab

The following information must be entered on the Address tab for the 802.2 connection:

Remote Network Address

Remote SAP Address

Local SAP Address

System Identification Tab

The following information must be entered on the System tab for the 802.2 connection:

Local Node Name

Network Name

Control Point Name

Local Node ID

XID Type

Remote Node Name

Network Name

Control Point Name

Remote Node ID

Peer DLC Role

Compression Type

DLC 802.2 Tab

The following information must be entered on the DLC 802.2 tab for the 802.2 connection:

Max BTU Length

Receive ACK Threshold (frames)

Unacknowledged Send Limit (frames)

Retry Limit

XID Retries

802.2 Timeouts

Response (t1)

Receive Ack (t2)

Inactivity (ti)

Connection Retry Limits

Maximum Retries

Delay After Failure

Connection Properties: Address
Remote Network Address

A 12-digit hexadecimal network address. Contact the remote system's administrator or the network administrator for the

correct value.

The default is 400000000000.

The value is determined as follows:

For connections to a 3174 controller, use the value in the configuration response 900 of the controller's customization
program.

For connections to a 3720, 3725, or 3745 front-end processor, use the value in the MACADDR= parameter in the NCP
configuration.

For connections to an IBM 9370 host, use the value in the VTAM PORT definition for the MACADDR= parameter.

For connections to another Host Integration Server system, the network address can be found through the net config
server command. When this command is typed at the command prompt of the other Host Integration Server system,
the resulting display shows the network address of that system, in the line labeled Server is Active On.

Remote Service Access Point (SAP) Address

A two-digit hexadecimal number that is a multiple of 04, between 04 and EC. See your token ring or Ethernet manual for
more information.

The default is 04.

You can also contact the remote system's administrator for information about the following:

For connections to a 3174 controller, use the value in the configuration response 940 of the controller's customization
program.

For connections to an IBM 9370 host, use the value in the VTAM PU definition for the SAPADDR= parameter.

Local Service Access Point (SAP) Address

A two-digit hexadecimal number that is a multiple of 04, between 04 and EC. See your token ring or Ethernet manual for
more information.

The Default is 04.

You can also contact the remote system's administrator for information about the following:

For connections to a 3174 controller, use the value in the configuration response 940 of the controller's customization
program.

For connections to an IBM 9370 host, use the value in the VTAM PU definition for the SAPADDR= parameter.

Affiliate Application

If you selected Single Sign-On, choose an Affiliate Application from the list. The Enterprise Single Sign-On (SSO) Affiliate
applications are logical entities that represent a system or sub-system such as a host, back-end system, or line of business
application to which you are connecting using SSO. An affiliate application can represent a back-end system such as a
mainframe or UNIX computer. It can also represent an application such as SAP, or a subdivision of the system, such as the
"Benefits" or "Pay stub" sub-systems.

Connection Properties: DLC 802.2
Max BTU Length

Specify the Maximum Basic Transmission Unit (BTU) Length.

The range is from 265 through 16393; the default is 265.

With an IBM SDLC adapter, set the Max BTU Length to 521 or less.

This is the maximum number of bytes that can be transmitted in a single data-link information frame. A BTU is sometimes
called an I-frame.

For downstream connections, specify a Max BTU Length less than or equal to the maximum value supported by software on
the downstream system.

For host connections, specify a Max BTU Length less than or equal to the VTAM PU definition for the MAXDATA= parameter.

Receive ACK Threshold (frames)

Specify the maximum number of frames that the local system can receive from the remote system before sending a
response. Set this to a value less than the Unacknowledged Send Limit, so that the local system acknowledges received
transmissions more frequently than it expects responses to sent transmissions.

Unacknowledged Send Limit (frames)

Specify the maximum number of frames that the local system can send without receiving a response from the remote
system. This parameter is sometimes called the Send Window Size.

Retry Limit

Specify the number of times that the local system should retransmit a frame if no response is received from the remote
system.

The range is from 0 through 255; the default is 10. A value of 0 means the system uses its internal default retry limit.

XID Retries

Specify the number of times that the local system should retransmit an XID (an identifying message) if no response is
received from the remote system.

The range is from 0 through 30; the default is 3.

Response (t1) Timeout

Select a value for the Response (t1) Timeout.

The amount of time that the local system should wait for the remote system to respond to a transmission before the local
system tries again.

The values used for Default for the Response Timeout are 400 milliseconds for a local ring and 2 seconds for a remote ring.

If you do not select Default, but instead select a specific value, the timer always waits the selected amount of time, regardless
of whether the remote system is on a local or remote ring.

Select a value greater than the total amount of time needed for the relaying of frames between the local system, the remote
system, and the network.

Select Default to allow for two timeout values — one for a remote system on a local ring, one for a remote system on a
remote ring. If you do not select Default, but instead select a specific value, the timer always waits the selected amount of
time, regardless of whether the remote system is on a local or remote ring.

Receive ACK (t2) Timeout

Select a value for the Receive ACK (t2) Timeout.

The maximum amount of time that should be allowed before the local system sends an acknowledgment of a received
transmission. An acknowledgment is sent at the end of the timeout, if some other process has not already triggered it.

Select a value less than the Response Timeout, so that the local system takes less time to acknowledge received
transmissions than it takes to seek responses to sent transmissions.

Select Default to allow for two timeout values — one for a remote system on a local ring, one for a remote system on a
remote ring. If you do not select Default, but instead select a specific value, the timer always waits the selected amount of
time, regardless of whether the remote system is on a local or remote ring.

The values used for default for the Receive ACK Timeout are 80 milliseconds for a local ring and 800 milliseconds for a
remote ring.

Inactivity (ti)

Select a value for the Inactivity (ti) Timeout.

The amount of time that the link can be inactive before the local system treats it as nonfunctioning and shuts it down.

Select Default to allow for two timeout values — one for a remote system on a local ring, one for a remote system on a
remote ring. If you do not select Default, but instead select a specific value, the timer always waits the selected amount of

time, regardless of whether the remote system is on a local or remote ring.

The values used for default for the Inactivity Timeout are 5 seconds for a local ring and 25 seconds for a remote ring.

Connection Retry Limits

Supply activation limits for the connection.

Maximum Retries

Select the number of attempts for Host Integration Server to make when trying to establish the connection. After making this
number of attempts, Host Integration Server makes an entry in the event log and stops trying. The range is from 1 through
No Limit; the default is No Limit.

Delay After Failure

Select the length of time for Host Integration Server to wait between attempts to establish the connection. The range is from
5 seconds through 255 seconds; the default is 10 seconds.

Connection Properties: X.25
The following tabs are available on the X.25 Connection Properties sheet:

Connection Properties: Address
Remote X.25 Address

Select the type of virtual circuit used by the connection.

Switched Virtual Circuit Address

Enter the Switched Virtual Circuit Address of the host.

Permanent Virtual Circuit Alias

Enter the Permanent Virtual Circuit Alias of the host. This is a number that identifies the channel: 1 for the first channel, 2 for
the second, and so on. The default is 1.

Affiliate Application

If you selected Single Sign-On, choose an Affiliate Application from the list. The Enterprise Single Sign-On (SSO) Affiliate
applications are logical entities that represent a system or sub-system such as a host, back-end system, or line of business
application to which you are connecting using SSO. An affiliate application can represent a back-end system such as a
mainframe or UNIX computer. It can also represent an application such as SAP, or a subdivision of the system, such as the
"Benefits" or "Pay stub" sub-systems.

Connection Properties: X.25
Max BTU Length

Specify the Maximum Basic Transmission Unit (BTU) Length.

The range is from 265 through 16393; the default is 265.

With an IBM SDLC adapter, set the Max BTU Length to 521 or less.

This is the maximum number of bytes that can be transmitted in a single data-link information frame. A BTU is sometimes
called an I-frame.

For downstream connections, specify a Max BTU Length less than or equal to the maximum value supported by software on
the downstream system.

For host connections, specify a Max BTU Length less than or equal to the VTAM PU definition for the MAXDATA= parameter.

Facility Data

For an SVC channel, specify the codes for any Facility Data required by your network provider or by the administrator of the
remote system. You can specify as many as 126 Hexadecimal characters (63 Hexadecimal bytes).

User Data

For an SVC channel, specify the codes for any User Data required by your network provider. Type an even number of
hexadecimal characters of 32 characters or fewer.

Packet Size

For a PVC channel, select the maximum number of data bytes (not header bytes) to be sent in a frame. Obtain this value from
your network provider.

Window Size

For a PVC channel, select the maximum number of frames that the local system can send without receiving a response from
the remote system. Obtain this value from the administrator of the remote host or peer system.

Connection Retry Limits

Supply activation limits for the connection:

Maximum Retries

Select the number of attempts for Host Integration Server to make when trying to establish the connection. After making this
number of attempts, Host Integration Server makes an entry in the event log and stops trying. The range is from 1 through
No Limit; the default is No Limit.

Delay After Failure

Select the length of time for Host Integration Server to wait between attempts to establish the connection. The range is from
5 seconds through 255 seconds; the default is 10 seconds.

See Also
Reference
X.25 Connection Parameters

https://msdn.microsoft.com/en-us/library/aa770955(v=bts.10).aspx

Connection Properties: Channel
The following tabs are available on the Channel Connection Properties sheet:

Connection Properties: Address
Channel Address

Type a two-digit hexadecimal number identifying the channel. The range is from 00 through FF; the default is FF.

Control Unit Image Number

Type a value for the control unit image number. The range is 0 through F; the default is 0.

Affiliate Application

If you selected Single Sign-On, choose an Affiliate Application from the list. The Enterprise Single Sign-On (SSO) Affiliate
applications are logical entities that represent a system or sub-system such as a host, back-end system, or line of business
application to which you are connecting using SSO. An affiliate application can represent a back-end system such as a
mainframe or UNIX computer. It can also represent an application such as SAP, or a subdivision of the system, such as the
"Benefits" or "Pay stub" sub-systems.

Connection Properties: Channel
Max BTU Length

Specify the Maximum Basic Transmission Unit (BTU) Length.

The range is from 265 through 16393; the default is 265.

With an IBM SDLC adapter, set the Max BTU Length to 521 or less.

This is the maximum number of bytes that can be transmitted in a single data-link information frame. A BTU is sometimes
called an I-frame.

For downstream connections, specify a Max BTU Length less than or equal to the maximum value supported by software on
the downstream system.

For host connections, specify a Max BTU Length less than or equal to the VTAM PU definition for the MAXDATA= parameter.

Connection Retry Limits

Supply activation limits for the connection.

Maximum Retries

Select the number of attempts for Host Integration Server to make when trying to establish the connection. After making this
number of attempts, Host Integration Server makes an entry in the event log and stops trying. The range is from 1 through
No Limit; the default is No Limit.

Delay After Failure

Select the length of time for Host Integration Server to wait between attempts to establish the connection. The range is from
5 seconds through 255 seconds; the default is 10 seconds.

Local LU Properties: General
Local APPC LUs can be independent or dependent.

LU Alias

Enter the LU Alias.

Network Name

Type the Network Name. Obtain the correct name from the host or peer administrator if you will be connecting to a host
system with VTAM,

The Network Name for an APPC LU that communicates with a host should match the NETID parameter in the VTAM Start
command for the VTAM system.

If this server communicates with several different hosts over several connections, use the name of the subarea of the host
with which the LU will communicate.

For independent LUs, the Network Name is required. For dependent LUs, the Network Name is recommended but not
required, since it is used only by local software, such as the Windows event log software.

LU Name

Enter the LU Name. For independent APPC, the LU Name identifies the LU to other components on the SNA network, and
therefore is required. For dependent APPC, the LU Name identifies the LU to local software, such as the Windows event log
software, and is recommended but not required.

The LU Name and LU Alias for an APPC LU can be the same.

Comment

Optionally, enter a comment of no more than 25 characters.

Local LU Properties: Advanced
Member of Default Outgoing Local APPC LU Pool

If you want this LU to be available for use by a 5250 user or invoking TP not specifying a local LU, select this check box.

When a request comes from an invoking TP, and the request does not specify a local LU for the invoking TP to use, Host
Integration Server first checks the user record of the user who started the TP, and tries to use the default local APPC LU
assigned to that user or group. If this does not succeed, Host Integration Server tries to find a free LU in the pool of Default
Outgoing Local APPC LUs. If this in turn does not succeed, the request is rejected.

Local LUs only support the number of sessions configured for the mode being used. The default for QPCSUPP is 64 sessions.
If you need more than that number of sessions, then you need to configure multiple local LUs or increase the session limits
in the mode definition for each mode used. To simplify user configuration, you can make all of these local APPC LUs part of
the default pool by checking the Member of Default Outgoing Local LU Pool. This allows any user who does not specify
a local APPC LU to get an available session from any local APPC LU in the default pool. This also enables load balancing
among local APPC LUs. In addition, to ensure proper load balancing, do not specify a Default Local LU Alias for users or
groups. However, if you want to have certain users or groups default to a certain local APPC LU, then you should specify that
local APPC LU as the Default Local LU Alias in the user or group properties.

This default pool differs from, and should not be confused with, the 3270, LUA, and downstream LU pools.

Timeout for Starting Invokable TPs

If the Invokable TP is started manually by an operator, specify a value greater than 60 seconds to give the operator
sufficient time.

Implicit Incoming Remote LU

To specify an Implicit incoming remote LU, choose an existing remote LU name from the list.

LU 6.2 Type

Select Independent or Dependent.

LU Number

For dependent LUs, enter the LU Number.

For independent LUs, this field is unavailable.

Connection

For Dependent LUs, choose the connection from the drop-down list.

For Independent LUs, this field is unavailable.

LU 6.2 Resync Service
Computer

Type the IP Address or the Name of the client computer. The client computer specifies a system that is dedicated in that the
LU routes incoming connections to that client computer.

Check the Enable box if you have a very specialized transaction program (TP) that requires Resync Service. Resync Service
or SyncPoint support is used by some database management systems (DBMS) for commit and rollback procedures. If you
enable this service, the Local LU alias must be unique.

If you have multiple local and remote LUs using two-phase commit, you may want to explicitly partner the LUs. This will
prevent the Resync Service from attempting to bind invalid LU pairs.

To explicitly partner LUs

1. In SNA Manager, click the APPC Modes folder.

2. Right-click RSYNPRTN, and then click Properties.

3. Select the Partner tab.

4. Click Add, and then follow the directions in the dialog box.

If you would like the Resync Service to use a different mode name, you can specify a new name with the following registry
key:

HKLM\Software\Microsoft\Host Integration Server\UN2

REG_SZ: modename

Remote LU Properties: General
Connection

From the drop-down list, choose the connection that will be used to access this remote LU.

LU Alias

Enter an LU Alias

Network Name

Enter a Network Name. Obtain the correct name from the host or peer administrator. If you will be connecting to a host
system with VTAM, the Network Name for an APPC LU that communicates with a host should match the NETID parameter in
the VTAM Start command for the VTAM system.

LU Name

Enter the LU Name.

A name identifying an LU. The name can be from one through eight characters long and can contain alphanumeric
characters and the special characters $, #, and @. Lowercase letters are converted to uppercase. The name cannot be the
same as any other LU name or pool name (except for APPC LU names) on the server.

For communication with an AS/400, make the remote LU name the same as the name of the AS/400.

Uninterpreted LU Name

If this LU will be paired with a dependent local APPC LU, type the Uninterpreted LU Name.

Comment

Optionally, enter a comment of not more than 25 characters.

Remote LU Properties: Options
Supports Parallel Sessions

If this LU will be used with an independent local LU, and parallel sessions will be used, select this check box. If this LU will be
used with a dependent local APPC LU, do not select this box.

If a remote LU supports parallel sessions, it can only be used with a mode that has a value greater than 1 for the parallel
session limit.

Implicit Incoming Mode

To designate a mode as the Implicit Incoming Mode for this LU, select a mode from the list.

If this remote LU will be used as an Implicit Incoming Mode be sure to select a mode from the list.

No Session-Level Security

Select this option to turn off Session-Level Security.

Security Key in Hex

For a security key in hexadecimal, select this option, then type a 16-digit hexadecimal number.

Security Key in Characters

For a security key in characters, select this option, then type an eight-character string. The string can include uppercase and
lowercase alphanumeric characters, and the special characters $, @, #, and the period (.).

Enable SyncPoint

If you enable SyncPoint, the Local LU alias must be unique.

Server Configuration Properties
Name

Displays the current server name. Click Change to change the server name.

Properties

The properties display the current configuration. These properties are display only. To change any of the following
configuration items, click Change.

Subdomain

The Subdomain displays the current SNA subdomain.

Server Role

The server can be either a primary, backup, or member. The current role of the server is displayed.

Network Transports

Network Transports shows the transport currently in use.

Support Active Directory Clients

If selected, this server supports client computers using Active Directory and displays the current Active Directory Domain
Name/Organization Unit.

Server Configuration
 

Subdomain Name
Displays the SNA subdomain that this server is a member of. To change the subdomain name, enter a new subdomain name
and click Save.

Active Directory Client Support
If selected, this server is part of the Active Directory Organizational Unit (OU) as shown in the Active Directory OU Name:
field. To change the OU, enter a new OU name and click Save.

Role
Select how this server will be configured, either as a Primary Configuration Server or a Backup Configuration Server.

Network Transports
Select all network transport protocols that this server will use on the network.

Services
The Services box shows the status of the MngAgent and SnaBase services. If these services are running, you must restart
them before changes to the subdomain, server role, or network transports will take effect.

Restart
Click Restart to restart services required for changes to the subdomain, server role, or network transports to take effect.
Restart is active only if you change the configuration of another server. If you want to change the configuration of the server
on which you are currently working, Restart is unavailable. For changes to take effect on your server, close SNA Manager,
open Control Panel, open Services, and then Stop and StartSNA MngAgent and SnaBase.

Save
Click Save to save your server configuration changes.

Important
Changing server configuration parameters can have serious consequences. Restarting the server will cause all connections a
nd sessions to be disconnected. Notify all users prior to restarting.

Workstation Properties: General
Workstation ID

The workstation ID is usually the workstation name.

Workstation ID Type

Click the type of workstation ID:

Name is the workstation name.

Address is the IP address. An IP Address specifies one server for a network address (for example, IP, IPX, or Vines).

IP Subnet is the IP Subnet address. An IP Subnet address specifies several servers with the same network address.
Subnetting enables host administrators to distribute the hostids for a given netid to several subnetworks. Without
subnetting, an IP address is interpreted in two parts: netid + hostid (network + node). With subnetting, an IP address is
interpreted in three parts: netid + subnetid + hostid (network + subnetwork + node). Subnetting is a mechanism for using
some bits in the hostid as a subnetid.

IP Mask

If you select IP Subnet, you must specify the IP Mask as well. The IP Mask refers to the netid + subnetid. You must know the
IP Mask. For example, an IP Mask might be: "255.255.248.0."

Comment

Optionally, enter a comment of no more than 25 characters.

Allow access to both workstation and user resources

Select this option to allow users logged on to this computer to see the LUs assigned both to the workstation and to that user.

Allow access to workstation resources only

Selecting this option provides a higher degree of security by restricting resources available on this computer to the LUs
assigned to this workstation. Users will not be able to access LUs assigned to them unless the LU is also assigned to the
workstation. This feature will be useful for secure workstations, such as those used to print checks.

Allow access to Dynamically Created Remote APPC LUs

Select this check box to allow users access to remote APPC LU as they are created.

TN5250 Properties
Name

Displays the name of the server running the TN5250 service. This field cannot be edited here.

Comment

Optionally, type a comment of up to 25 characters.

Use Default

Select Use Default to use the port number associated with telnet (as set in \\DRIVERS\ETC\SERVICES).

Use

You can override the default value for a given server by selecting Use and typing another port number. You can also
override this port number for a given session. TN services listen on multiple ports simultaneously. You can set a default port
number for the TN service (assign the port number to the server) and override this number on a per session basis (assign the
port number to the LU session), allowing a single client computer to connect to multiple host computers.

Host Integration Server, VTAM, and NCP Parameters for X.25 Connections

The following table shows how Host Integration Server parameters for X.25 connections correspond to VTAM or NCP
parameters. Asterisks (*) indicate required parameters.

Properties
Tab

SNA Parameter VTAM or NCP Parameter

System Ide
ntification

Local Node ID,* first three digits (block number) IDBLK= parameter in the PU definition

System Ide
ntification

Local Node ID,* last five digits (node number) IDNUM= parameter in the PU definition

System Ide
ntification

Network Name (Remote Node) Note: Network Name fo
r local and remote nodes is generally the same

NETID= parameter in the VTAM Start command for th
e remote SSCP (VTAM system)

System Ide
ntification

Control Point Name (Remote Node) SSCPNAME= parameter in the VTAM Start command
for the remote SSCP (VTAM system)

Address Virtual Circuit Type or Remote X.25 Address DIALNO= parameter in the PORT definition

X.25 Max BTU Length MAXDATA= parameter in the PU definition (set Max B
TU Length less than or equal to MAXDATA)

Required parameter in Host Integration Server.

Domain Properties
The following tabs are available for the SNA Subdomain Properties sheet:

Domain Properties: NetView

NetView sends alerts back and forth between a host system and the Host Integration Server and associated client computers.

Send NetView Management Data to this Connection

Select a connection to which NetView data should be sent. This can be any host connection.

Domain Properties: Display Verb
Default Connection for Display

Select a connection for use by Display Verbs. When the Display Verb is used but does not specify a connection, Host
Integration Server uses the connection you specify in Display Verb Properties. If you do not specify a default Display
connection, Host Integration Server randomly selects a connection for the verb to use.

Domain Properties: Server Broadcasts

Servers communicate with each other using server broadcasts.

Mean Time between Server Broadcasts

The interval at which server broadcasts are repeated. Broadcasts of state changes (such as the activation of a server) do not
wait for this interval; instead, broadcasts are repeated at this interval to ensure reception (since broadcasts by definition are
not guaranteed to be received).

Specifying a larger value causes less demand on the network (since broadcasts occur less often). However, a smaller value
compensates better for loss of broadcast messages.

The range is from 45 through 65535 seconds; the default is 60 seconds.

Network Transport for server Broadcasts

Choose only the protocols you need, because sending unneeded broadcasts can significantly decrease network efficiency.

Domain Properties: Security

An administrator can adjust the subdomain security settings, including user permissions, configuration file ownership, and
subdomain security events to audit.

LU Types

Select the LU Types (3270, LUA, or APPC) to which the security settings will apply. If security for an LU type is off, anyone
who knows the LU name can use it. If security is on, only users to whom the LU is assigned can use it. The default setting is
on for 3270, and off for LUA and APPC.

Configuration File

To view or change user permissions on the configuration file, click Permissions.

To view or change audited events, click Auditing.

To view or change configuration file ownership, click Take Ownership.

Domain Properties: Client Backup Configuration
Disable Sending Client Backup Information

The server sends no information to the client computer.

Backup Domain

The server updates the client computer with the backup SNA subdomain name specified in the box.

Backup Sponsor Servers

The server updates the client computer with all of the SNA Sponsor Server names (shown in the box). The maximum is 15.

Domain Properties: Error / Audit Logging

You can use information from the Windows 2000 event logs as you test a configuration or to diagnose a problem.

Centralized Event Log Server

Select the name of the server on which Windows 2000 event logs for this server installation should be stored.

Route All Popup Messages to

Select the name of the server to which pop-up error messages should be routed.

Default Audit Log Level

Select a level

Detailed problem analysis: To record all events that can be recorded, select this option.

General information messages: To record general activity but not all events, select this option.

Significant system events: To record only major events, select this option.

Audit logging disabled: To turn off audit logging, select this option.

Domain Properties: Response Time Monitor (RTM)

Response Time Monitor tracks the time it takes a host to respond to 3270 session requests. RTM is supported only by certain
emulators. You should configure RTM only if the emulators you are using support RTM.

RTM Data Sent at

Select one or both of the following:

Counter Overflow:

To cause RTM data to be sent to the host when the number of host responses in a given time period overflows the size of the
available counter, select this box.

End of Session:

To cause RTM data to be sent to the host at the end of each LU-to-LU session, select this box.

RTM Timers Run Until

Select the point at which RTM will register that a host has responded; this is when RTM stops the timers. (The timers are
started when the local system sends data.)

First Data Reaches Screen:

To stop timing when data reaches the local screen, select this option.

Host Unlocks Keyboard:

To stop timing when the host unlocks the local keyboard, select this option.

Host Lets User Send:

To stop timing when the host lets the local computer send more data, select this option.

RTM Thresholds

Specify the cutoff times, in tenths of a second, at which RTM saves its count of host responses, and then restarts the count.
For example, you could specify 5, 10, 20, and 50, to save the count of host responses during the intervals from 0.0 to 0.5
seconds, from 0.5 to 1.0 seconds, from 1.0 to 2.0 seconds, and from 2.0 to 5.0 seconds.

AS400 Definition Properties: General
AS/400 Remote LU Alias

Click the drop-down list box arrow and select an AS/400 Remote LU Alias, which contains addressing information for the
AS/400.

Local LU Alias

Click the drop-down list box arrow and select a Local LU Alias. The Local LU Alias maps to the LU the client computer will
use.

Mode

You must select the QPCSUPP mode.

AS/400 User Name

Enter your AS/400 User Name, which is required information.

AS/400 Password

Enter your AS/400 Password, which is required information.

Confirm Password

Enter your password again to confirm.

Comment

Optionally, enter a comment of not more than 25 characters long.

Active Users
This folder displays the users that are currently actively using this server.

LUA LU Properties: General
After assigning or viewing an LUA LU, in the LUA LU Properties box, supply information according to the following list.

LU Number (for LUs on 802.2, SDLC, or X.25)
Type the LU Number.

LU Name
Type the LU Name.

Connection
The connection for this LU is shown. The connection cannot be changed in this dialog box.

Pool
If the LU has already been assigned to a pool, the pool name appears here.

Comment
Optionally, type a comment of 25 characters or fewer.

CPI-C Symbolic Name: General
Name

Type the Symbolic Destination Name.

Comment

Optionally, enter a comment of not more than 25 characters.

Conversation Security

Select a Conversation Security option:

None turns off conversation security.

Same requires the same user ID and password as that of the Remote Partner LU.

Program specifies the user ID and password, select Program, and then click User ID.

Mode Name

Select a mode name from the drop-down list.

CPI-C Symbolic Name: Partner Information
Partner TP Name

Application TP: For an Application TP, select this option, and type the Application TP Name.

SNA service TP (in hex): For an SNA service TP select this option, and type the SNA service TP Number.Partner LU Name

Alias: To identify the Partner LU by Alias, select this option, and type the alias.

Fully Qualified: To identify the partner LU by a Fully Qualified name, select this option, and type the name.

To accept the settings, click OK; to exit the dialog box without accepting the settings, click Cancel.

CPI-C Symbolic Name: Security Settings
Specify a User ID and Password

User ID
The User ID can contain from 1 through 10 characters.

Password
The Password can contain from 1 through 10 characters.

Verify Password
Type the password again.

Host Integration Server 2009 Folder
Expand the Servers folder to show the Host Integration Server assigned to this SNA Domain.

SNA Service Folder
This folder contains the SNA service installed on this Host Integration Server computer. Each Host Integration Server computer
can have a maximum of four SNA services installed and active at one time.

Select SNA Service, then right-click to perform various tasks, including:

Save the current configuration.

Stop the service.

Pause the service.

Start the service.

Create a new service.

Display additional service properties.

Link Services Folder
This folder contains the link services that are configured on this Host Integration Server.

To create a new link service, select the Link Services folder, right-click, point to New and then select Link Service.

Connections Folder
This folder contains the connections configured on this Host Integration Server.

To create a new connection, select the Connections folder, right-click, point to New and then select the type of connection you
want to make.

Local APPC LUs Folder
This folder contains the Local APPC LUs configured for this server.

Remote APPC LUs Folder
This folder contains the Remote APPC LUs configured for this server.

Microsoft SNA Manager
Host Integration Server Microsoft Management Console application is also called the SNA Manager.

AS/400 Definitions
This folder displays the AS/400 definitions that are currently being used on this server.

Active TN5250 Sessions
This folder displays the active TN5250 sessions that are using this server.

AS/400 Definition Properties
The following tabs are available on the AS/400 Definition Properties:

AS/400 Definition Properties: General
AS/400 Remote LU Alias

Click the drop-down list box arrow and select an AS/400 Remote LU Alias, which contains addressing information for the
AS/400.

Local LU Alias

Click the drop-down list box arrow and select a Local LU Alias. The Local LU Alias maps to the LU the client computer will
use.

Mode

You must select the QPCSUPP mode.

System 36, AS/36

Select if connection to a System 36 or AS/36 computer system.

AS/400 User Name

Enter your AS/400 User Name, which is required information.

AS/400 Password

Enter your AS/400 Password, which is required information.

Confirm Password

Enter your password again to confirm.

Comment

Optionally, enter a comment of not more than 25 characters long.

AS/400 Definition Properties: Terminal Types
Terminal Names

Terminal names are displayed. You can remove selection of individual terminal names that do not apply to your network
configuration by clearing the checkbox opposite the name

Port

Use Default

Select Use Default to use the port number configured with the service (on the Service Properties page).

Use

You can override the default value for a given session by selecting Use and typing another port number.

Note
TN services listen on multiple ports simultaneously. You can set a default number for the TN service and override this numbe
r on a per session basis, allowing a single client computer to connect to multiple host computers.

Note
Configuration changes are apparent only to users who establish a connection after the configuration changes are saved. User
s who were connected at the time the configuration changes were made will not be affected.

AS/400 Definition Properties: IP Address List

You can associate this LUA to a specific IP address or server name.

Add Address

Click to specify the IP Address and Subnet Mask of the client workstation to which you are granting access.

IP Address

Click an entry in the IP Address column to edit the IP address for a client workstation.

Subnet Mask

Click an entry in the Subnet Mask column to edit the subnet mask for a client workstation.

Add Name

Click to add a workstation name to the IP Address list box. The workstation name identifies that a client workstation whose
address resolves to that name can connect to the service.

Remove

Click to remove an entry that is currently highlighted in the IP Address list box.

Clear All

Click to remove all entries in the IP Address list box. The service will then be configured to allow access from any client
workstation.

Note
The IP address must be changed from the default value of 0.0.0.0 if you want to assign a specific IP address. If you try to add t
he default IP address with the default subnet mask value, you will receive a message indicating an Invalid IP Address/Subnet
Mask.

Note
The IP address of an incoming connection is compared to each of the available LUs or pools in turn. Each resource has an ass
ociated list of IP address patterns and subnet masks. The IP address from the incoming connection is masked (by bit and by t
he resource's subnet mask), then compared to the resource's IP address pattern masked by the resource's subnet mask. If th
e result is equal, the connection is allocated to this resource.

APPC Modes Folder
This folder contains the APPC Modes configured for this server.

CPI-C Symbolic Names Folder
This folder contains the CPIC Symbolic Names configured for this server.

Visual Studio Help
Microsoft Visual Studio provides a graphical user interface for creating, viewing, and editing the objects used by the host-
initiated processing (HIP) and Windows-initiated processing (WIP) environments in Transaction Integrator (TI). TI objects are
created and edited within a TI Project, one of several project types supported by the Visual Studio design environment.

The user interface for a TI Project includes a tree view in the Solution Explorer window, wizards, dialog boxes, and properties
displayed in the Properties window. The tree view presents a two-pane design tool. The left pane displays a hierarchical
representation of the components of a type library or .NET assembly. The right pane displays a list of details about the
properties associated with the contents of the library or assembly selected in the left pane. You can customize the details view
to display other types of information, for example, a COBOL, RPG, or IDL source code. You can display Help topics about the
individual user interface controls by highlighting a control or node and pressing the F1 key.

The TI wizards in a project have Help buttons on each wizard page. Clicking Help on the page takes you to the relevant Help
topic in this section. You can display Help topics about the individual user interface controls by clicking Help on the Visual
Studio wizard page or dialog box or by highlighting a control or node and pressing the F1 key. All of the TI Project Help topics
are combined in this section for easy reference and review.

In This Section

COM Library Nodes

.NET Framework Library Nodes

Wizards and Dialog Boxes (TI Project)

Properties (TI Project)

https://msdn.microsoft.com/en-us/library/aa770707(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705437(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745831(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770959(v=bts.10).aspx

COM Library Nodes
When you view a COM type library (.tlb for client and .tim for server) from within a TI Project, the Visual Studio design
environment displays the objects in the library in a tree view in the left pane and a details view in the right pane. Double-click
the node to expand the node and right-click the node to display a shortcut menu.

The topics in this section describe the functionality of each menu and each command in the navigation tree.

In This Section

Library Name Node

Interface Name Node (COM)

Method Name Node (COM)

Parameter Name Node (COM)

Recordsets Node

Recordset Name Node

Recordset Column Name Node

User-Defined Types Node

User-Defined Type Name Node

User-Defined Type Member Name Node

https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745397(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705164(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771910(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770704(v=bts.10).aspx

Library Name Node
Use the library name node to support Microsoft Visual Basic 6.0, transactions, and select the remote environment class.

Double-click the library name node to expand it. The right pane displays the following information about the node's children:

Name.The object name.

Right-click the library name node to display the following nine options:

Import. Displays a menu with two options:

Host Definition. Starts the Import COBOL Wizard or RPG Import Wizard to help you import COBOL or RPG to
the interface definition.

Library. Starts the Import Library open file dialog box to help you to import an existing type library or assembly
to the interface definition.

Export Host Definition. Starts the Export Host Definition file save dialog box to help you generate a COBOL or RPG
copy book equivalent to the current library.

Lock. Marks the library as read-only. The library is automatically marked as locked if it is registered in a COM+
application or IIS virtual directory.

Rename. Renames the library.

Properties. Displays the Properties window.

See Also
Reference
Library Properties
Interface Name Node (COM)
Recordsets Node
User-Defined Types Node

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745397(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705164(v=bts.10).aspx

Interface Name Node (COM)
Use the interface name node to set the name of the interface in a component.

Double-click the interface name node to expand it. The right pane displays the following information about the interface
methods:

Method Name. The method name.

Return Type. The method return type.

Host Data Type. The COBOL or RPG equivalent of the method's return type.

Array Size(s). If the return type is an array, this column will contain the number of dimensions and their sizes. For
example, a single dimension of size 10 will be displayed as (10); a 3-dimensions array with sizes 2, 4, and 6 will be
displayed as (2, 4, 6).

Rows. The number of recordset rows if the return type of the method is a recordset.

Link-to-Program Name. The name of an executable running under the host environment that will be linked to by this
method and passed a COMMAREA. It is valid only for link models.

TP Name. The name of the transaction program (TP) used by the method to locate a program to be executed. In the case
of link models, it identifies the mirror transaction identifier which parses the distributed program link (DPL) header and
identifies the link-to-program name.

Meta Data. Indicates whether the host is sent no metadata, only the name of the method, or all metadata.

Right-click the interface name node to view the following seven options:

Add Method. Adds a new method .

Paste. Inserts a method into the current interface definition.

Rename. Renames the interface.

Properties. Displays the Properties window.

See Also
Reference
Interface Properties
Method Name Node (COM)
Library Name Node

https://msdn.microsoft.com/en-us/library/aa770922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx

Method Name Node (COM)
Use the method name node to define the conditions for interacting with the host environment, including the value for the
initial buffers, whether to include all information.

Double-click the method name node to expand it. The right pane displays the following information about the method
parameters:

Parameter Name. The name of the parameter.

Type. The data type of the parameter.

Direction. The direction of the parameter: in only, in and out, or out only.

Host Data Type. The COBOL or RPG data type that best describes the parameter type.

Array Size(s). The size and number of the dimensions of the parameter, if it is an array.

Rows. The number of recordset rows if the parameter type is a recordset.

Right-click the method name node to view the following seven options:

Add Parameter. Adds a new In\Out integer parameter to the method.

Cut. Copies the selected method to the Clipboard and deletes it.

Copy. Copies the selected method to the Clipboard.

Paste. Inserts a parameter from the Clipboard into the current method definition.

Delete. Deletes the method.

Rename. Renames the method.

Properties. Displays the Properties window.

See Also
Reference
Method Properties
Parameter Name Node (COM)
Interface Name Node (COM)

https://msdn.microsoft.com/en-us/library/aa770746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771324(v=bts.10).aspx

Parameter Name Node (COM)
Use the parameter name node to define the information passed as a parameter and what precision and scale is to be used.

Double-click the parameter name node to expand it. The right pane does not display any additional information.

Right-click the parameter name node to view the following eight options:

Move Up. Moves a parameter up in the list.

Move Down. Moves a parameter down in the list.

Cut. Copies the selected parameter to the Clipboard and deletes it.

Copy. Copies the selected parameter to the Clipboard.

Paste. The paste command is disabled because parameters do not have any child elements.

Delete. Deletes the selected parameter.

Rename. Renames the selected parameter.

Properties. Displays the Properties window.

See Also
Reference
Parameter Properties

https://msdn.microsoft.com/en-us/library/aa705063(v=bts.10).aspx

Recordsets Node
Use the recordsets node to define the table passed as a parameter or return value.

Double-click the recordsets node to expand it. The right pane displays the following information about the defined recordsets:

Name. The name of each recordset.

Right-click the recordsets node to view the following seven options:

Add Recordset. Adds a new recordset definition.

Paste. Inserts a recordset column from the Clipboard into the current folder.

Properties. Displays the Properties window.

See Also
Reference
Recordset Properties
Recordset Name Node
Library Name Node

https://msdn.microsoft.com/en-us/library/aa705195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx

Recordset Name Node
Use the recordset name node to define the name of the recordset.

Double-click the recordset name node to expand it. The right pane displays the following information about the recordset
columns:

Recordset Column Name. The name of the recordset column.

Type. The data type of the recordset column.

Host Data Type. The COBOL or RPG data type that best describes the recordset column type.

Right-click the recordset name node to view the following seven options:

Add Recordset Column. Adds a new integer column to the selected recordset.

Cut. Copies the contents of the recordset to the Clipboard and deletes it.

Copy. Copies the contents of the recordset to the Clipboard.

Paste. Inserts the column from the Clipboard into the current recordset definition.

Delete. Deletes the current recordset.

Rename. Renames the recordset.

Properties. Displays the Properties window.

See Also
Reference
Recordset Properties
Recordset Column Name Node

https://msdn.microsoft.com/en-us/library/aa705195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754316(v=bts.10).aspx

Recordset Column Name Node
Use the recordset column name node to define the recordset column.

Double-click the recordset column name node to expand it. No information is displayed in the right pane.

Right-click the recordset column name node to view the following eight options:

Move Up. Moves a column up in the list.

Move Down. Moves a column down in the list.

Cut. Copies the selected recordset column to the Clipboard and deletes it.

Copy. Copies the selected recordset column to the Clipboard.

Paste. The paste command is disabled because recordset columns do not have child elements.

Delete. Deletes the recordset column.

Rename. Renames the recordset column.

Properties. Displays the Properties window.

See Also
Reference
Recordset Column Properties

https://msdn.microsoft.com/en-us/library/aa770697(v=bts.10).aspx

User-Defined Types Node
Use the User-Defined Types (UDT) node to define a structure that contains the pieces of data.

Double-click the User-Defined Types node to expand it. The right pane displays the following information about the defined
UDTs:

Name. The name of each user-defined type.

Right-click the User-Defined Types node to view the following seven options:

Add User-Defined Type. Adds a new user-defined type.

Paste. Inserts the UDT from the Clipboard into the current library definition.

Properties. Displays the Properties window.

See Also
Reference
User-Defined Type Properties
User-Defined Type Name Node
Library Name Node

https://msdn.microsoft.com/en-us/library/aa705454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771910(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx

User-Defined Type Name Node
Use the user-defined type name node to define the type of data the user-defined type (UDT) is carrying.

Double-click the user-defined type name node to expand it. The right pane displays the following information about the UDT
members:

User-Defined Type Member Name. The name of the user-defined member.

Type. The data type of the user-defined member.

Host Data Type. The COBOL or RPG data type that best describes the user-defined member type.

Array Size(s). The size and number of the dimensions of the user-defined member, if it is an array.

Rows. The number of recordset rows, if the user-defined member type is a recordset.

Right-click the user-defined type name node to view the following seven options:

Add User-Defined Type Member. Adds a new integer member.

Cut. Copies the contents of the user-defined type to the Clipboard and deletes it.

Copy. Copies the contents of the user-defined type to the Clipboard.

Paste. Inserts the member from the Clipboard into the user-defined type definition.

Delete. Deletes the current user-defined type.

Rename. Renames the user-defined type.

Properties. Displays the Properties window.

See Also
Reference
User-Defined Type Properties
User-Defined Type Member Name Node
User-Defined Types Node

https://msdn.microsoft.com/en-us/library/aa705454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705164(v=bts.10).aspx

User-Defined Type Member Name Node
Use the user-defined type member name node to view information about the UDT member.

Double-click the user-defined type member name node to expand it. No information is displayed in the right pane.

Right-click the user-defined type member name node to view the following eight options:

Move Up. Moves a user-defined type (UDT) member up in the list.

Move Down. Moves a user-defined type member down in the list.

Cut. Copies the selected user-defined type member to the Clipboard and deletes it.

Copy. Copies the selected user-defined type member to the Clipboard.

Paste. The paste menu item is disabled because user-defined type members do not have child elements.

Delete. Deletes the user-defined type member.

Rename. Renames the user-defined type member.

Properties. Displays the Properties window.

See Also
Reference
User-Defined Type Member Properties
User-Defined Type Name Node

https://msdn.microsoft.com/en-us/library/aa772021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771910(v=bts.10).aspx

.NET Framework Library Nodes
When you view a .NET library (.dll for client and .tim for server) from within a TI Project, the Visual Studio design environment
displays the objects in the library in a tree view in the left pane and list view in the right pane. Double-click the node to expand
the node and right-click the node to display a shortcut menu.

The topics in this section describe the functionality of each menu and each command in the navigation tree.

In This Section

Interface Name Node (.NET)

Method Name Node (.NET)

Parameter Name Node (.NET)

Data Tables Node

Data Table Name Node

Data Table Member Name Node

Structures Node

Structure Name Node

Structure Member Name Node

https://msdn.microsoft.com/en-us/library/aa705436(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704354(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705545(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705141(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771702(v=bts.10).aspx

Interface Name Node (.NET)
Use the interface name node to view the list of all the methods in a component.

Double-click the interface name node to expand it. The right pane displays the following information about the methods:

Method Name. The method name.

Return Type. The method return type.

Host Data Type. The COBOL or RPG equivalent of the method's return type.

Array Sizes. If the return type is an array, this column will contain the number of dimensions and their sizes. For
example, a single dimension of size 10 will be displayed as (10); a 3-dimensions array with sizes 2, 4, and 6 will be
displayed as (2, 4, 6).

Rows. The number of rows, if the return type of the array is a data table.

Link-to-Program Name. The name of an executable running under the host environment that will be linked to by this
method and passed a COMMAREA. It is valid only for link models.

TP Name. The transaction program (TP) name used by the method to locate a program to be executed. In the case of link
models, it identifies the mirror transaction identifier which parses the distributed program link (DPL) header and
identifies the link-to-program name.

Meta Data. Indicates whether the host is sent no metadata, only the name of the method, or all metadata.

Right-click the interface name node to view the following seven options:

Add Method. Adds a new method with no return type.

Paste. Inserts the method from the Clipboard into the current interface definition.

Properties. Displays the Properties window.

See Also
Reference
Interface Properties
Method Properties
Library Name Node
Method Name Node (.NET)

https://msdn.microsoft.com/en-us/library/aa770922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754473(v=bts.10).aspx

Method Name Node (.NET)
Use the method name node to view the list of all the methods parameters.

Double-click the method name node to expand it. The right pane displays the following information about the parameters:

Parameter Name. The name of the parameter.

Type. The data type of the parameter.

Direction. The direction of the parameter: in only, in and out, or out only.

Host Data Type. The COBOL or RPG data type that best describes the parameter type.

Array Size(s). The size and number of dimensions of the parameter, if it is an array.

Rows. The number of rows, if the parameter type is a data table.

Right-click the method name node to display the following seven options:

Add Parameter. Adds a new integer parameter to the method.

Cut. Copies the contents of the method to the Clipboard and marks it as deleted.

Copy. Copies the contents of the method to the Clipboard.

Paste. Inserts the parameter from the Clipboard into the current method definition.

Delete. Deletes the current method.

Rename. Renames the current method.

Properties. Displays the Properties window.

See Also
Reference
Parameter Name Node (.NET)

https://msdn.microsoft.com/en-us/library/aa704354(v=bts.10).aspx

Parameter Name Node (.NET)
Use the parameter name node to change the name of the parameter or view its properties.

Double-click the parameter name node to expand it. No information is displayed in the right pane.

Right-click the parameter name node to display the following eight options:

Move Up. Moves a parameter up in the list.

Move Down. Moves a parameter down in the list.

Cut. Copies the contents of the parameter to the Clipboard and deletes it.

Copy. Copies the contents of the parameter to the Clipboard.

Delete. Deletes the current parameter.

Rename. Renames the current parameter.

Properties. Displays the Properties window.

See Also
Reference
Parameter Properties
Method Name Node (.NET)

https://msdn.microsoft.com/en-us/library/aa705063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754473(v=bts.10).aspx

Data Tables Node
Use the Data Tables node to view a list of all the Data Tables in the assembly.

Double-click the Data Tables node to expand it. The right pane displays the following information about the data tables:

Name. Name of the individual data tables.

Right-click the Data Tables node to view the following seven options:

Add Data Table. Adds a new data table to the assembly.

Paste. Inserts the data table from the Clipboard into the current data table definition.

Properties. Displays the Properties window.

See Also
Reference
Data Table Name Node
Library Name Node

https://msdn.microsoft.com/en-us/library/aa770825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx

Data Table Name Node
Use the data table name node to view a list of the data table column names and their properties.

Double-click the data table name node to expand it. The right pane displays the following information about the data table
columns:

Data Table Column Name. The name of the table column.

Type. The data type of the data table.

Host Data Type. The COBOL or RPG data type that best describes the data table type.

Right-click the data table name node to display the following seven options:

Add Data Table Column. Adds a new column to the data table.

Cut. Copies the contents of the data table to the Clipboard and deletes it.

Copy. Copies the contents of the data table to the Clipboard.

Paste. Inserts the column from the Clipboard into the current data table definition.

Delete. Deletes the current data table.

Rename. Renames the current data table.

Properties. Displays the Properties window.

See Also
Reference
Data Table Member Name Node
Data Tables Node

https://msdn.microsoft.com/en-us/library/aa704673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770676(v=bts.10).aspx

Data Table Member Name Node
Use the data table member name node to change the name of the data table member or view its properties.

Double-click the data table member name node to expand it. No information is displayed in the right pane.

Right-click the data table member name node to display the following six options:

Cut. Copies the contents of the data table to the Clipboard and marks it as deleted.

Copy. Copies the contents of the data table to the Clipboard.

Paste. Inserts the contents of the Clipboard into the current data table column definition.

Delete. Deletes the current data table .

Rename. Renames the current data table .

Properties. Displays the Properties window.

See Also
Reference
Data Tables Node

https://msdn.microsoft.com/en-us/library/aa770676(v=bts.10).aspx

Structures Node
Use the Structures node to view a list of all the Structures in an assembly.

Double-click the Structures node to expand it. The right pane displays the following information about the structures:

Name. Name of the individual structures.

Right-click the Structures node to display the following seven options:

Add Struct. Adds a new structure to the assembly.

Paste. Inserts the structure from the Clipboard into the current assembly definition.

Properties. Displays the Properties window.

See Also
Reference
Structure Name Node
Library Name Node

https://msdn.microsoft.com/en-us/library/aa705141(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx

Structure Name Node
Use the structure name node to view a list of structure member names and their properties.

Double-click the structure name node to expand it. The right pane displays the following information about the structure
members:

Structure Member Name. The name of the structure member.

Type. The data type of the data table.

Host Data Type. The COBOL or RPG data type that best describes the data table type.

Array Size(s). The size and number of dimensions of the data table, if it is an array.

Rows. The number of rows, if the data table type is a data table.

Right-click the structure name node to view the following seven options:

Add Structure Member. Adds a new structure member.

Cut. Copies the contents of the structure to the Clipboard and deletes it.

Copy. Copies the contents of the structure to the Clipboard.

Paste. Inserts the member from the Clipboard into the current structure definition.

Delete. Deletes the current structure.

Rename. Renames the current structure.

Properties. Displays the Properties window.

See Also
Reference
Structure Member Name Node
Structures Node

https://msdn.microsoft.com/en-us/library/aa771702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705545(v=bts.10).aspx

Structure Member Name Node
Use the structure member name node to change the name of the structure member or view its properties.

Double-click the structure member name node to expand it. No information is displayed in the right pane.

Right-click the structure member name node to display the following six options:

Cut. Copies the contents of the structure member to the Clipboard and deletes it.

Copy. Copies the contents of the structure member to the Clipboard.

Delete. Deletes the current structure member.

Rename. Renames the current structure member.

Properties. Displays the Properties window.

See Also
Reference
Structures Node

https://msdn.microsoft.com/en-us/library/aa705545(v=bts.10).aspx

Wizards and Dialog Boxes (TI Project)
In This Section

New COM Client Library Wizard

New COM Server Library Wizard

New .NET Client Library Wizard

New .NET Server Library Wizard

Import COBOL Wizard

Import RPG Wizard

Name Conflict Dialog Box

Array Dimension Dialog Box

Map Remote Environment Class Dialog Box

Select Convert Prim Dialog Box

https://msdn.microsoft.com/en-us/library/aa745391(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771130(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744992(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705663(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754344(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746086(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704934(v=bts.10).aspx

New COM Server Library Wizard
The New COM Server Library Wizard collects information about the type library information and about the host
environment (HE). The wizard generates a Transaction Integrator metadata (TIM) file and adds it to the current TI Project
displayed in the Solution Explorer.

In This Section

Welcome to the New COM Server Library Wizard Page

Library Wizard Page (COM Server Wizard)

Host Environment Wizard Page (COM Server Wizard)

Completing the New COM Server Library Wizard Page

https://msdn.microsoft.com/en-us/library/aa705567(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746125(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745031(v=bts.10).aspx

Welcome to the New COM Server Library Wizard Page
Use the Welcome to the New COM Server Library Wizard page to view the definition of a COM server library and to
control whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Library Wizard Page (COM Server Wizard)

https://msdn.microsoft.com/en-us/library/aa744911(v=bts.10).aspx

Library Wizard Page (COM Server Wizard)
Use the Library wizard page to identify the COM server library you are creating.

Use this To do this
Interface name Type the name for the interface in the type library. The name of the interface, when combined with the

major version number and the library name (ProgID), cannot exceed 39 Unicode characters.

Version Type the major version information for the type library. The major version number, when combined w
ith name of the interface and the library name (ProgID), cannot exceed 39 Unicode characters.

Component ProgID Displays the program identifier to be associated with the CoClass in the type library. The format is Libr
ary.Interface.MajorVersion. The ProgID cannot exceed 39 Unicode characters.

Description Type the description to be associated with the interface .The description can be a maximum of 256 Un
icode characters.

Support Visual Basic
6.0 decimal data type

Select this option if you want the component to allow application programs written with Visual Basic
6.0 and reference decimal data types.

See Also
Reference
Library Properties
Host Environment Wizard Page (COM Server Wizard)

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746125(v=bts.10).aspx

Host Environment Wizard Page (COM Server Wizard)
Use the Host Environment (HE) wizard page to select the HE that defines the network and hardware characteristics of the
non-Windows software platform initiating requests to the Windows platform. The HE consists of the host environment name,
host identification, network transport type, data conversion information, default method resolution criteria, and security
credential mapping.

Use this To do this
Host environment Select the host environment (HE). The available HEs are:

Transaction Integrator - ConvertPrim for OS390 (default)

Transaction Integrator - ConvertPrim for AS400

See Also
Reference
Completing the New COM Server Library Wizard Page
Library Properties

https://msdn.microsoft.com/en-us/library/aa745031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx

Completing the New COM Server Library Wizard Page
Use the Completing the New COM Server Library Wizard page to review the choices and settings you made in the
previous wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this
Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Other Resources
New COM Server Library Wizard

https://msdn.microsoft.com/en-us/library/aa771130(v=bts.10).aspx

New COM Client Library Wizard
The New COM Client Library Wizard collects information about the type library information and about the remote
environment (RE). The wizard generates an annotated Windows-initiated processing (WIP) COM type library (.tlb) and adds the
library to the current TI Project displayed in the Solution Explorer.

In This Section

Welcome to the New COM Client Library Wizard Page

Library Wizard Page (COM Client Wizard)

Remote Environment Wizard Page 1 (COM Client Wizard)

Remote Environment Wizard Page 2 (for OS400) (COM Client Wizard)

Remote Environment Wizard Page 2 (for LU 6.2 Link) (COM Client Wizard)

Completing the New COM Client Library Wizard Page

https://msdn.microsoft.com/en-us/library/aa745194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771654(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745377(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705156(v=bts.10).aspx

Welcome to the New COM Client Library Wizard Page
Use the Welcome to the New COM Client Library Wizard page to view the definition of a COM client library and to control
whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not sho
w this welco
me page ag
ain

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Library Wizard Page (COM Client Wizard)

https://msdn.microsoft.com/en-us/library/aa705072(v=bts.10).aspx

Library Wizard Page (COM Client Wizard)
Use the Library wizard page to identify the COM client library you are creating.

Use this To do this
Interface name Type the name for the interface in the type library. The name of the interface, when combined with the

major version number and the library name (ProgID), cannot exceed 39 Unicode characters.

Version Type the major version information for the type library. The major version number, when combined w
ith the name of the interface and the library name (ProgID), cannot exceed 39 Unicode characters.

Component ProgID View the program identifier to be associated with the CoClass in the type library. The format is Library.
Interface.MajorVersion. The ProgID cannot exceed 39 Unicode characters.

Description Type the description to be associated with the interface. The description can be a maximum of 256 Uni
code characters.

Support Visual Basic
6.0 decimal data type

Select this option if you want the component to allow application programs written with Visual Basic 6
.0 and reference decimal data types.

See Also
Reference
Remote Environment Wizard Page 1 (COM Client Wizard)
Remote Environment Wizard Page 2 (for OS400) (COM Client Wizard)
Remote Environment Wizard Page 2 (for LU 6.2 Link) (COM Client Wizard)
Completing the New COM Client Library Wizard Page
Library Properties

https://msdn.microsoft.com/en-us/library/aa771654(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745377(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx

Remote Environment Wizard Page 1 (COM Client Wizard)
Use the Remote Environment wizard page to define the remote environment (RE). A remote environment identifies an
application execution environment running on a remote host system. The remote environment can have a data communication
protocol and a programming model associated with it.

Use t
his

To do this

Vend
or

Select the name of the vendor supplying the remote environment.

Proto
col

Select the data communication protocol to be used to connect to the remote environment. The available communicatio
n protocols are:

TCP/IP (default)

LU 6.2

Targe
t envi
ronm
ent

Select the application environment running on the remote host system. The available environments are:

CICS (default)

IMS

OS400 (TCP/IP only)

Progr
amm
ing
mod
el

Select the programming model associated with the remote environment. The available models for the TCP/IP CICS targ
et environment are:

TRM User Data (default)

TRM Link

ELM User Data

ELM Link

The available models for the LU 6.2 CICS target environment are:

CICS User Data

CICS Link

The available models for the TCP/IP IMS target environment are:

IMS Connect

Implicit

Explicit

The only available model for the LU 6.2 IMS target environment is IMS User Data.

The only available model for the OS400 target environment is Distributed Program Call.

Allo
w 32
K in/
out

Select this option if you want TI to treat the input DFHCOMMAREA independently from the output DFHCOMMAREA. TI t
ypically combines the input DFHCOMMAREA and the output DFHCOMMAREA area. The combined areas cannot exceed
32 KB of data. When this option is selected, TI treats the input DFHCOMMAREA independently from the output DFHCO
MMAREA. Each input and output area uses up to 32 KB of data.

See Also
Reference
Library Properties
Completing the New COM Client Library Wizard Page
Concepts
TCP Transaction Request Message Link
TCP Enhanced Listener Message Link
TCP Transaction Request Message User Data
TCP Enhanced Listener Message User Data

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx

Remote Environment Wizard Page 2 (for OS400) (COM Client
Wizard)

Use the Remote Environment wizard page to define the default date and time separators for the remote environment (RE).

Use this To do this
Program library Type the name of the program library.

Date separator Select the character used to separate the parts of the date. The available separators are:

(none) (default)

/

-

.

,

&

Time separator Select the character used to separate the parts of time. The available separators are:

(none) (default)

:

.

,

&

See Also
Reference
Library Properties
Completing the New COM Client Library Wizard Page
Concepts
OS/400 Distributed Program Calls

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771713(v=bts.10).aspx

Remote Environment Wizard Page 2 (for LU 6.2 Link) (COM
Client Wizard)

Use the Remote Environment wizard page to define the default values for the remote environment (RE).

Use t
his

To do this

Tran
sacti
on I
D

Type the transaction program (TP) name or the link mirror transaction ID of the remote environment. The name or ID ca
n be a maximum of 4 alphabetic characters. The format of the name must conform to the IBM SNA Transaction Program
Names convention. The default is CSMI.

Sour
ce T
P na
me

Type the name of the transaction program used by the method to locate a program to be executed. In the case of link m
odels, the name identifies the mirror transaction identifier, which parses the distributed program link (DPL) header and i
dentifies the link-to-program name. The name can be a maximum of 250 Unicode characters. The default is MSTX.

See Also
Reference
Library Properties
Completing the New COM Client Library Wizard Page
Concepts
TCP Transaction Request Message Link
TCP Enhanced Listener Message Link
TCP Transaction Request Message User Data
TCP Enhanced Listener Message User Data

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx

Completing the New COM Client Library Wizard Page
Use the Completing the New COM Client Library Wizard page to review the choices and settings you made in the previous
wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this
Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Other Resources
New COM Client Library Wizard

https://msdn.microsoft.com/en-us/library/aa745391(v=bts.10).aspx

New .NET Client Library Wizard
The New .NET Client Library Wizard collects information about the assembly information and about the remote
environment (RE). The Wizard generates an annotated .NET assembly and adds the assembly to the current TI Project displayed
in the Solution Explorer.

In This Section

Welcome to the New .NET Client Library Wizard Page

Library Wizard Page (.NET Client Wizard)

Remote Environment Wizard Page 1 (.NET Client Wizard)

Remote Environment Wizard Page 2 (for OS400) (.NET Client Wizard)

Remote Environment Wizard Page 2 (for LU 6.2 Link) (.NET Client Wizard)

Completing the New .NET Client Library Wizard Page

https://msdn.microsoft.com/en-us/library/aa745627(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745345(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704844(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705635(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705424(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771256(v=bts.10).aspx

Welcome to the New .NET Client Library Wizard Page
Use the Welcome to the New .NET Client Library Wizard page to view the definition of a .NET client library and to control
whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not sho
w this welco
me page ag
ain

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Library Wizard Page (.NET Client Wizard)

https://msdn.microsoft.com/en-us/library/aa745345(v=bts.10).aspx

Library Wizard Page (.NET Client Wizard)
Use the Library wizard page to identify the .NET client library you are creating.

Use this To do this
Interface
name

Type the full name for the class in the .NET assembly. The name of the interface, when combined with the major ver
sion number and the namespace name, cannot exceed 39 Unicode characters.

Version Type the version information for the .NET assembly in the form major.minor. The major version number, when com
bined with the name of the interface and the namespace name, cannot exceed 39 Unicode characters.

Compon
ent class
name

View the component class name to be associated with the managed class in the .NET assembly. The format is Name
space.Interface.MajorVersion. The namespace name, when combined with the major version number and the name
of the interface, cannot exceed 39 Unicode characters.

Type Res
trictions

Select the type appopriate to your library. As you continue to develop your project, appropriate restrictions will be a
pplied based on this selection.

This step will help prevent you from creating a library that contains types that are not supported by the applications
that will be using them (for example, ASMX or BizTalk Server).

Selecting None will result in no restrictions.

Selecting Web Service will allow access to data sets, but restrict access to data tables and multi-dimensional arrays.

Selecting BizTalk Adapter for Host Applications will allow access to arrays only, and restrict access to data tables
, data sets, and multi-dimensional arrays.

Descripti
on

Type the description to be associated with the interface. The description can be a maximum of 256 Unicode characte
rs.

See Also
Reference
Library Properties
Remote Environment Wizard Page 1 (.NET Client Wizard)

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704844(v=bts.10).aspx

Remote Environment Wizard Page 1 (.NET Client Wizard)
Use the Remote Environment wizard page to define the remote environment (RE). An RE identifies an application execution
environment running on a remote host system. The RE can have a data communication protocol and a programming model
associated with it.

Use t
his

To do this

Vend
or

Select the name of the vendor supplying the remote environment.

Proto
col

Select the data communication protocol to be used to connect to the remote environment. The available communicatio
n protocols are:

TCP/IP (default)

LU 6.2

Targe
t envi
ronm
ent

Select the application environment running on the remote host system. The available environments are:

CICS (default)

IMS

OS400 (TCP/IP only)

Progr
amm
ing
mod
el

Select the programming model associated with the remote environment. The available models for the TCP/IP CICS targ
et environment are:

TRM User Data (default)

TRM Link

ELM User Data

ELM Link

The available models for the LU 6.2 CICS target environment are:

CICS User Data

CICS Link

The available models for the TCP/IP IMS target environment are:

IMS Connect

Implicit

Explicit

The only available model for the LU 6.2 IMS target environment is IMS User Data.

The only available model for the OS400 target environment is Distributed Program Call.

Allo
w 32
K in/
out

Select this option if you want TI to treat the input DFHCOMMAREA independently from the output DFHCOMMAREA. TI t
ypically combines the input DFHCOMMAREA and the output DFHCOMMAREA area. The combined areas cannot exceed
32 KB of data. When this option is selected, TI treats the input DFHCOMMAREA independently from the output DFHCO
MMAREA. Each input and output area uses up to 32 KB of data.

See Also
Reference
Library Properties
Remote Environment Wizard Page 2 (for OS400) (.NET Client Wizard)
Remote Environment Wizard Page 2 (for LU 6.2 Link) (.NET Client Wizard)
Completing the New .NET Client Library Wizard Page
Concepts
TCP Transaction Request Message Link
TCP Enhanced Listener Message Link
TCP Transaction Request Message User Data
TCP Enhanced Listener Message User Data

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705635(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705424(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771256(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753942(v=bts.10).aspx

Remote Environment Wizard Page 2 (for OS400) (.NET Client
Wizard)

Use the Remote Environment wizard page to define the default values for the remote environment (RE).

Use this To do this
Program library Type the name of the program library.

Date separator Select the character used to separate the parts of the date. The available separators are:

(none) (default)

/

-

.

,

&

Time separator Select the character used to separate the parts of time. The available separators are:

(none) (default)

:

.

,

&

See Also
Reference
Library Properties
Completing the New .NET Client Library Wizard Page

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771256(v=bts.10).aspx

Remote Environment Wizard Page 2 (for LU 6.2 Link) (.NET
Client Wizard)

Use the Remote Environment wizard page to define the default values for the remote environment (RE).

Use t
his

To do this

Tran
sacti
on I
D

Type the transaction program (TP) name or the link mirror transaction ID of the remote environment. The name or ID ca
n be a maximum of 4 alphabetic characters. The format of the name must conform to the IBM SNA Transaction Program
Names convention. The default is CSMI.

Sour
ce T
P na
me

Type the name of the transaction program used by the method to locate a program to be executed. In the case of link m
odels, the name identifies the mirror transaction identifier, which parses the distributed program link (DPL) header and i
dentifies the link-to-program name. The name can be a maximum of 4 Unicode characters. The default is MSTX.

See Also
Reference
Library Properties
Completing the New .NET Client Library Wizard Page

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771256(v=bts.10).aspx

Completing the New .NET Client Library Wizard Page
Use the Completing the New .NET Client Library Wizard page to review the choices and settings you made in the previous
wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this
Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Other Resources
New .NET Client Library Wizard

https://msdn.microsoft.com/en-us/library/aa704722(v=bts.10).aspx

New .NET Server Library Wizard
The New .NET Server Library Wizard collects information about the type library information and about the host
environment (HE). The wizard generates a Transaction Integrator metadata (TIM) file and adds it to the current TI Project
displayed in the Solution Explorer.

In This Section

Welcome to the New .NET Server Library Wizard Page

Library Wizard Page (.NET Server Wizard)

Host Environment Wizard Page (.NET Server Wizard)

Completing the New .NET Server Library Wizard Page

https://msdn.microsoft.com/en-us/library/aa754061(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704852(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705518(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746226(v=bts.10).aspx

Welcome to the New .NET Server Library Wizard Page
Use the Welcome to the New .NET Server Library Wizard page to view the definition of a .NET server library and to control
whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not sho
w this welco
me page ag
ain

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Library Wizard Page (.NET Server Wizard)

https://msdn.microsoft.com/en-us/library/aa704852(v=bts.10).aspx

Library Wizard Page (.NET Server Wizard)
Use the Library wizard page to identify the .NET server library you are creating.

Use this To do this
Interface
name

Type the full name for the class in the .NET assembly. The name of the interface, when combined with the major ver
sion number and the namespace name, cannot exceed 39 Unicode characters.

Version Type the version information for the .NET assembly in the form major.minor. The major version number, when com
bined with name of the interface and the namespace name, cannot exceed 39 Unicode characters

Compon
ent class
name

View the component class name to be associated with the managed class in the .NET assembly. The format is Name
space.Interface.MajorVersion. The namespace name, when combined with the major version number and the name
of the interface, cannot exceed 39 Unicode characters

Descripti
on

Type the description to be associated with the interface. The description can be a maximum of 256 Unicode characte
rs.

See Also
Reference
Library Properties
Host Environment Wizard Page (.NET Server Wizard)

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705518(v=bts.10).aspx

Host Environment Wizard Page (.NET Server Wizard)
Use the Host Environment (HE) wizard page to select the HE that defines the network and hardware characteristics of the
non-Windows software platform initiating requests to the Windows platform. The HE consists of the host environment name,
host identification, network transport type, data conversion information, default method resolution criteria, and security
credential mapping.

Use this To do this
Host environment Select the host environment (HE). The available HEs are:

Transaction Integrator - ConvertPrim for OS390 (default)

Transaction Integrator - ConvertPrim for AS400

See Also
Reference
Completing the New .NET Server Library Wizard Page
Library Properties

https://msdn.microsoft.com/en-us/library/aa746226(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx

Completing the New .NET Server Library Wizard Page
Use the Completing the New .NET Server Library Wizard page to review the choices and settings you made in the previous
wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this
Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Other Resources
New .NET Server Library Wizard

https://msdn.microsoft.com/en-us/library/aa744992(v=bts.10).aspx

Import COBOL Wizard
The Import COBOL Wizard allows you to select a COBOL copy book and use it for designing the component in the designer.
This wizard is rather complex, as there are multiple options and paths to follow.

In This Section

Welcome to the Import COBOL Wizard Page

Import COBOL Source File Wizard Page

Item Options Wizard Page

DFHCOMMAREA Wizard Page

DFHCOMMAREA Direction Wizard Page

Input Area Wizard Page

Output Area Wizard Page

Return Value Wizard Page

Recordsets (COBOL) & UDT Wizard Page

LL Field Wizard Page

ZZ Field Wizard Page

TRANCODE Field Wizard Page

Recordset Columns Wizard Page

User-Defined Type Members Wizard Page

Completing the Import COBOL Wizard Page

https://msdn.microsoft.com/en-us/library/aa772022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745190(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744308(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705803(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754308(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771739(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745637(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746236(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771357(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753943(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754451(v=bts.10).aspx

Welcome to the Import COBOL Wizard Page
Use the Welcome to the Import COBOL Wizard page to view the procedure for importing a COBOL copy book and to
control whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not sho
w this welco
me page ag
ain

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Import COBOL Source File Wizard Page

https://msdn.microsoft.com/en-us/library/aa745190(v=bts.10).aspx

Import COBOL Source File Wizard Page
Use the Import COBOL Source File wizard page to identify the COBOL source file.

Use this To do this
COBOL copy book Select the full path to the COBOL copy book to be imported.

COBOL source View the COBOL source code contained in the file identified in COBOL copy book.

See Also
Reference
Item Options Wizard Page

https://msdn.microsoft.com/en-us/library/aa744308(v=bts.10).aspx

Item Options Wizard Page
Use the Item Options wizard page to specify the type of component to create. Select and identify the type of component to be
created.

Use this To do this
Type of item View the group of component types:

Method

Recordset

User-defined type

Select or type t
he name of the
item to import

View the identifying information for the new component.

Name Select or type the name of the component. The name can be a maximum of 250 Unicode characters.

Use Link progr
amming model

Type the name of an executable program that, running under the host environment (HE), will be linked to by
this method and passed a COMMAREA. This option is available only for Link models. The name can be a max
imum of 8 Unicode characters. This option is displayed only for host-initiated processing (HIP).

Exclude LL, ZZ,
and TRANCOD
E fields

Select to exclude the LL, ZZ, and TRANCODE fields from the transaction if the host environment is IMS. This o
ption is available only for HIP server components.

Link-to-Progra
m

The name of an executable running under the host environment that will be linked to by this method and pas
sed a COMMAREA. The name can be a maximum of 8 Unicode characters. This option is available only for Wi
ndows-initiated processing (WIP) Link server components.

Source TP Nam
e

The name of the mirror transaction identifier, which parses the distributed program link (DPL) header and id
entifies the link-to-program name. The name can be a maximum of 4 Unicode characters. This option is avail
able only for WIP Link server components.

See Also
Reference
DFHCOMMAREA Wizard Page

https://msdn.microsoft.com/en-us/library/aa705803(v=bts.10).aspx

DFHCOMMAREA Wizard Page
Use the DFHCOMMAREA wizard page to select the COBOL group that represents the DFHCOMMAREA parameters.

Use this To do this
COBOL group Select the group or parameter to include.

See Also
Reference
DFHCOMMAREA Direction Wizard Page

https://msdn.microsoft.com/en-us/library/aa754308(v=bts.10).aspx

DFHCOMMAREA Direction Wizard Page
Use the DFHCOMMAREA Direction wizard page to view the default direction for the DFHCOMMAREA and to change the
direction of a group item. To change the direction, click the icon to the left of the item, and then select the appropriate direction.

Use this To do this
DFHCOMMAREA Select the item to change.

See Also
Reference
Input Area Wizard Page

https://msdn.microsoft.com/en-us/library/aa771739(v=bts.10).aspx

Input Area Wizard Page
Use the Input Area wizard page to select the input parameters for the new method in a non-link programming model.

Use this To do this
Input area Select or clear input parameters.

See Also
Reference
Output Area Wizard Page

https://msdn.microsoft.com/en-us/library/aa745637(v=bts.10).aspx

Output Area Wizard Page
Use the Output Area wizard page to select the output parameters for the new method in a non-link programming model.

Use this To do this
Output area Select or clear output parameters.

See Also
Reference
Return Value Wizard Page

https://msdn.microsoft.com/en-us/library/aa745175(v=bts.10).aspx

Return Value Wizard Page
Use the Return Value wizard page to set the return value for the new non-link method.

Use this To do this
Return value Select or clear return value.

See Also
Reference
Recordsets (COBOL) & UDT Wizard Page

https://msdn.microsoft.com/en-us/library/aa754037(v=bts.10).aspx

Recordsets (COBOL) & UDT Wizard Page
Use the Recordsets & UDT wizard page to specify whether any of the parameters are represented by recordsets or UDTs. To
change a group item, click the icon to the left of the group, and then select the definition.

Use this To do this
COBOL Group Select whether the group is defined as a recordset or UDT type. Select Unset to clear the definition.

See Also
Reference
LL Field Wizard Page

https://msdn.microsoft.com/en-us/library/aa745997(v=bts.10).aspx

LL Field Wizard Page
Use the LL Field wizard page to select the LL fields to exclude from the transaction if the host environment (HE) is IMS.

Use this To do this
LL field Select or clear LL fields.

See Also
Reference
ZZ Field Wizard Page

https://msdn.microsoft.com/en-us/library/aa746236(v=bts.10).aspx

ZZ Field Wizard Page
Use the ZZ Field wizard page to select the ZZ fields to exclude from the transaction if the host environment (HE) is IMS.

Use this To do this
ZZ field Select or clear ZZ fields.

See Also
Reference
TRANCODE Field Wizard Page

https://msdn.microsoft.com/en-us/library/aa771357(v=bts.10).aspx

TRANCODE Field Wizard Page
Use the TRANCODE Field wizard page to select the TRANCODE fields to exclude from the transaction if the host environment
(HE) is IMS.

Use this To do this
TRANCODE field Select or clear TRANCODE fields.

See Also
Reference
Recordset Columns Wizard Page

https://msdn.microsoft.com/en-us/library/aa772035(v=bts.10).aspx

Recordset Columns Wizard Page
Use the Recordset Columns wizard page to select the COBOL structure that represents the recordset columns.

Use this To do this
COBOL group Select the COBOL group to include, or clear the check box to exclude the group.

See Also
Reference
User-Defined Type Members Wizard Page

https://msdn.microsoft.com/en-us/library/aa753943(v=bts.10).aspx

User-Defined Type Members Wizard Page
Use the User-Defined Type Members wizard page to select the COBOL structure that represents the user-defined type (UDT)
members.

Use this To do this
COBOL group Select the COBOL group to include, or clear the check box to exclude the group.

See Also
Reference
Completing the Import COBOL Wizard Page

https://msdn.microsoft.com/en-us/library/aa754451(v=bts.10).aspx

Completing the Import COBOL Wizard Page
Use the Completing the Import COBOL Wizard page to review the choices and settings you made in the previous wizard
pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this
Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Other Resources
Import COBOL Wizard

https://msdn.microsoft.com/en-us/library/aa705663(v=bts.10).aspx

Import RPG Wizard
The Import RPG Wizard allows you to import the definitions from Report Program Generator (RPG) source code written for
use by distributed program call (DPC) applications running on AS/400 computers.

In This Section

Welcome to the Import RPG Wizard Page

Import RPG Source File Wizard Page

Select Item Wizard Page

PLIST Direction Wizard Page

Recordsets and User-Defined Types (RPG) Wizard Page

Completing the RPG Import Wizard Page

https://msdn.microsoft.com/en-us/library/aa746168(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705597(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744910(v=bts.10).aspx

Welcome to the Import RPG Wizard Page
Use the Welcome to the Import RPG Wizard page to view the procedure for importing Report Program Generator (RPG)
source code and to control whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not sho
w this welco
me page ag
ain

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Import RPG Source File Wizard Page

https://msdn.microsoft.com/en-us/library/aa705253(v=bts.10).aspx

Import RPG Source File Wizard Page
Use the Import RPG Source File wizard page to identify the file that contains the Report Program Generator (RPG) source
statements. After being identified, the RPG source statements are displayed in the edit control. Select the RPG file to import.

Use this To do this
RPG source file Select or type the full path to the RPG file to import.

RPG source View the RPG source code contained in the file identified in RPG source file.

See Also
Reference
Select Item Wizard Page

https://msdn.microsoft.com/en-us/library/aa771912(v=bts.10).aspx

Select Item Wizard Page
Use the Select Item wizard page to create a new method or rewrite an existing method in your interface. Enter the identifying
information for the method.

Use thi
s

To do this

Metho
d nam
e

Select or type the name of the COM or .NET method. The name can be a maximum of 250 Unicode characters. If you a
re creating a new method, the name of the new method cannot be the same as the name of an existing method.

Progra
m nam
e

Select or type the name of the AS/400 Report Program Generator (RPG) program. The name can be a maximum of 10
Unicode characters.

Library
name

Select or type the name of the library on the AS/400 computer from which the named RPG program will be retrieved
for execution. The name can be a maximum of 10 Unicode characters.

See Also
Reference
PLIST Direction Wizard Page

https://msdn.microsoft.com/en-us/library/aa770752(v=bts.10).aspx

PLIST Direction Wizard Page
Use the PLIST Direction wizard page to select the direction of the PLIST parameters. By default, all parameters are set to
In/Out. To change the direction of a group item, click the icon to the left of the name, and then select the appropriate direction.

Use this To do this

PLIST Click the Report Program Generator (RPG) parameter to change, and then click the new direction.

See Also
Reference
Recordsets and User-Defined Types (RPG) Wizard Page
Other Resources
Import RPG Wizard

https://msdn.microsoft.com/en-us/library/aa705597(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754344(v=bts.10).aspx

Recordsets and User-Defined Types (RPG) Wizard Page
Use the Select Recordsets and User-Defined Types wizard page to specify whether a parameter is represented by
recordsets or user-defined types (UDTs). To change a group item, click the icon to the left of the group, and then select the
definition.

Use this To do this
Group Select whether the group is defined as a recordset or user-defined type. Select Unset to clear the definition.

See Also
Reference
Completing the RPG Import Wizard Page

https://msdn.microsoft.com/en-us/library/aa744910(v=bts.10).aspx

Completing the RPG Import Wizard Page
Use the Completing the RPG Import Wizard page to review the choices and settings you made in the previous wizard
pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this
Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Other Resources
Import RPG Wizard

https://msdn.microsoft.com/en-us/library/aa754344(v=bts.10).aspx

Properties (TI Project)
In This Section

Library Properties

Interface Properties

Method Properties

Parameter Properties

Recordset Properties

Recordset Column Properties

User-Defined Type Properties

User-Defined Type Member Properties

Unions Properties

Union Type Properties

Union Member Properties

https://msdn.microsoft.com/en-us/library/aa754716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772021(v=bts.10).aspx

Library Properties
Use the Library properties page to set design and remote environment (RE) properties on the component library or .NET
assembly.

Design Properties
Use this To do this

Component Ty
pe

View the type of library component. Possible values are:

COM Type Library (default)

.NET Assembly

Description Type a description of the component. The description can be a maximum of 250 Unicode characters.

Help Context I
D

Type the Help context ID associated with this method. It is used to connect to the Help topic for this method,
and returned when an exception occurs during invocation of this method.

Initiation Type View the location of the transaction program (TP) making the request. Possible values are:

Windows-initiated (default)

Host-initiated

Name Type the name of the component. The name can be a maximum of 250 Unicode characters. The name must
be different from any other component name in the same project. The default is Library(n).

Support Visual
Basic 6.0 Decim
al Type

Select this option to specify whether the component allows application programs written with Visual Basic 6.
0 that reference decimal data types. The possible values are:

True

False (default)

Visual Basic 6.0
Compatible

Select this option to require that the Visual Basic server use the Implements keyword within the Visual Basi
c server script. The server script then creates the Visual Basic interface to the Transaction Integrator metadata
(TIM) type library. The possible values are:

True. Use the Implements keyword.

False (default)

Note
This property is the same as the property Visual Basic Implements Compatible in Host Integration Serve
r.

Version Type the version information for the type library or the .NET assembly, expressed in the form of major.minor
.

Remote Environment Properties
Use t
his

To do this

Allow
32K I
n/Out

Select this option if you want TI to treat the input DFHCOMMAREA independently from the output DFHCOMMAREA. TI
typically combines the input DFHCOMMAREA and the output DFHCOMMAREA area. The combined areas cannot excee
d 32 KB of data. When this option is selected, TI treats the input DFHCOMMAREA independently from the output DFHC
OMMAREA. Each input and output area uses up to 32 KB of data. Changing this option affects the currently selected me
thod. Possible values are:

True

False (default)

Remo
te En
viron
ment
Class

Select the programming model associated with the remote environment. The available models for the TCP/IP CICS targ
et environment are:

TRM User Data (default)

TRM Link

ELM User Data

ELM Link

The available models for the LU 6.2 CICS target environment are:

CICS User Data

CICS Link

The available models for the TCP/IP IMS target environment are:

IMS Connect

Implicit

Explicit

The only available model for the LU 6.2 IMS target environment is IMS User Data.

The only available model for the OS400 target environment is Distributed Program Call.

Trans
actio
n Sup
port

The possible values are:

Required. The new TI component is used in applications that execute within COM+ transactions. The component'
s methods will be called by applications used with mainframe transaction programs that support Sync Level 2 req
uests. If a transaction is in progress, the application will enlist in the transaction. Otherwise, the application will sta
rt a new transaction.

Required New. The new TI component is used in applications that execute within COM+ transactions. The comp
onent's methods will be called by applications used with mainframe transaction programs that support Sync Leve
l 2 requests. The application will always start a new transaction, regardless of whether an existing transaction is al
ready in progress.

Supported. The new TI component is used in applications that might or might not execute within COM+ transact
ions. The component's methods will be called by applications used with mainframe transaction programs that su
pport both Sync Level 0 (non-transactional) and Sync Level 2 (transactional) requests. In the case of a Sync Level
2 transaction, the calling application will enlist in the transaction if the transaction is already in progress. Otherwis
e, the application will start a new transaction.

Not Supported. The new TI component is used in applications that do not execute within COM+ transactions. Th
e component's methods will be called by applications used with mainframe transaction programs that support on
ly Sync Level 0 requests. IMS transaction programs prior to IMS 6.0 support only Sync Level 0. CICS and IMS 6.0 t
ransaction programs support either Sync Level 0 or Sync Level 2 requests.

Warning
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference
Library Name Node

https://msdn.microsoft.com/en-us/library/aa745226(v=bts.10).aspx

Interface Properties
Use the Interface properties page to set design properties on the interface.

Design Properties
Use this To do this

Name Type the name of the library component. The name can be a maximum of 250 Unicode characters.

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference
Interface Name Node (COM)
Interface Name Node (.NET)

https://msdn.microsoft.com/en-us/library/aa771324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705436(v=bts.10).aspx

Method Properties
Use the Method properties page to set array, COBOL, design, host definition, and recordset properties on the method.

Array Properties
Use
this

To do this

Arra
y Di
men
sion
s

Select the array dimensions for the return value. The default is (none).

Is Ar
ray

Select whether the return value is an array. The possible values are:

True

False (default)

Occ
urs
Dep
endi
ng O
n

Select to indicate that a numeric data item preceding the table (recordset or array in Automation) indicates the actual nu
mber of rows or elements being sent or received. Equivalent to variable-length tables in COBOL.

Use the drop-down list to select the numeric data item that specifies this value. For CICS Link, the recordset or array and
the associated length specifier must be in/out. The data in the buffer that follows a variable length table immediately foll
ows the last data item in the table regardless of the maximum size specified for the table. Arrays with multiple dimensio
ns can only be used for the outermost loop (COBOL) or rightmost dimension (Microsoft® Visual C++® or Visual Basic).
The default is (none).

COBOL Properties
U
s
e
t
hi
s

To do this

H
o
st
D
at
a
T
y
p
e

Select the host data type.

Er
r
o
r
H
a
n
dl
in
g

Select the return value error handling. The possible values are:

Truncate. Select this option to set TI to truncate the value when an error occurs. (default)

Round. Select this option to set TI to round the value when an error occurs.

Error. Select this option to set TI to return an error when an error occurs.

Fi
ll
er

Type the return value filler. The default is 0.

Fr
o
m
H
o
st

Type the number of bytes of FILLER that follows this data item in the buffers that are received from the server. FILLER cause
s an untranslated gap in the buffer. FILLER is not visible on the Automation side. The default is 0.

T
o
H
o
st

Type the number of bytes of FILLER that follows this data item in buffers that are sent to the server. FILLER causes an untran
slated gap in the buffer. FILLER is not visible on the Automation side. The default is 0.

S
c
al
e

Type the return value scale.

Si
g
n
A
tt
ri
b
u
te

Select the return value sign attribute. The possible values are:

Trailing. For signed DISPLAY data type, indicates that the sign is trailing (default). This option indicates to the TI run-ti
me environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and
from the Automation data type.

Trailing Separate. For signed DISPLAY data type, indicates that the sign is separate. This option indicates to the TI ru
n-time environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to
and from the Automation data type.

Leading. For signed DISPLAY data type, indicates that the sign is leading. This option indicates to the TI run-time envir
onment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and from th
e Automation data type.

Leading Separate. For signed DISPLAY data type, indicates that the sign is separate.

Si
z
e

Type the return value size.

S
O
SI

Select this option to specifywhether a double-byte character set data is expected to begin with a shift-out (SO) and end with
a shift-in (SI) character. The possible values are:

True. The SO and SI characters are removed from the data when it is received from the host application, and the SO a
nd SI characters are added to the data when it is sent to the host application. In the length of the PIC G, it is not necess
ary to include the two bytes for the SO and SI characters because the TI run-time environment applies them.

False (default)

St
ri
n
g
D
el
i
m
it
in
g

Select the return value string delimiting. The possible values are:

Space-padded. Tells the TI run-time environment that the mainframe representation of the string is delimited by pad
ding the string definition with space characters. For example, if the mainframe's COBOL definition is PIC X(10) but onl
y three characters are in the string, the mainframe expects seven trailing spaces. Therefore, selecting this option tells t
he TI run-time environment to convert strings being sent to the mainframe to change the string's NULL termination c
haracter to the appropriate number of trailing spaces before sending it to the mainframe. For example, if the string is
defined on the mainframe as PIC X(10), TI will send a string of ABC followed by seven trailing spaces. Selecting this op
tion also tells the TI run-time environment to convert the output string being returned from the mainframe to the TI A
utomation server by converting the string's trailing spaces to a single null termination character. For more informatio
n, see Padding Mainframe Character Strings with Spaces. (default)

Null-terminated. Tells the TI run-time environment that the mainframe representation of the string is delimited by a
null character (EBCDIC 0x00). Selecting this option tells the TI run-time environment to add a single null character to t
he end of a string if there is room for the byte before sending a string to the mainframe, and it tells the TI run-time en
vironment to stop at the first null character encountered when receiving a string from the mainframe. Therefore, by se
lecting this option, you are telling TI to retain trailing spaces in output strings coming from the mainframe because TI
will not convert the trailing spaces to a single NULL terminator. For more information, see
Padding Mainframe Character Strings with Spaces.

Design Properties
Use t
his

To do this

Allo
w 32
K In/
Out

Select this option if you want TI to treat the input DFHCOMMAREA independently from the output DFHCOMMAREA. TI t
ypically combines the input DFHCOMMAREA and the output DFHCOMMAREA area. The combined areas cannot exceed
32 KB of data. When this option is selected, TI treats the input DFHCOMMAREA independently from the output DFHCOM
MAREA. Each input and output area uses up to 32 KB of data. Changing this option affects the currently selected method.
Possible values are:

True

False (default)

Note
You can use this property as an accessory to "Use Link Programming Model" in the Windows-initiated processing (WIP
) CICS programming model and in any host-initiated processing (HIP) programming models.

Note
This property is available only if the Is Link property is set to True.

Desc
ripti
on

Type a description of the method. The description can be a maximum of 250 Unicode characters.

Help
Cont
ext I
D

Type the Help context ID associated with this method. The ID is used to connect to Help for this method, and returned wh
en an exception occurs during invocation of this method. The default is 0.

https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx

Inclu
de C
onte
xt Pa
ram
eter

Select whether the client object method automatically includes context. The possible values are:

True. Visual Basic .NET automatically includes the context as an additional parameter in the argument. If you do no
t include COMTIContext parameter in your method call along with your other parameters, Visual Basic .NET retur
ns the error message An unhandled exception of type 'System.MissingMemberException' occurred in mic
rosoft.visualbasic.dll and informs you that the method cannot be called with the number of parameters you hav
e written. If you receive this message, verify that the Include Context Parameter is included as a parameter withi
n the list of parameters on the method.

False. Visual Basic .NET does not automatically include the context as an additional parameter in the argument. If y
ou set this property to False and include COMTIContext parameter in your method call along with your other par
ameters, Visual Basic .NET returns the error message An unhandled exception of type 'System.MissingMemb
erException' occurred in microsoft.visualbasic.dll and informs you that the method cannot be called with the
number of parameters you have written. If you receive this message, remove the COMTIContext parameter from
the method parameter list.

The default is True.

Initi
al Bu
ffer
Valu
e

Type the initial buffer value. The default is null.

Is Li
nk

Select whether the host object method uses the Link programming model. The possible values for Windows-initiated pr
ocessing (WIP) are:

True. Use the link model. The link programming model can be used only with CICS link protocols.

False. Do not use the link model.

The default is False.

The possible values for host-initiated processing (HIP) are:

Yes. Use the link model. The link programming model can be used with all protocols.

No. Do not use the link model.

Link using 32K In/Out. Use the link model and set the From Host and To Host properties.

The default is No.

Met
a Da
ta

Select how metadata is handled. The possible values are:

(none). By default no special data is sent to or received from the host application. Select this option button if you o
nly want to send and receive the data for the method.

Include Method Information. The name of this method to be sent to the host along with parameter data. The m
ethod name is sent as the first 32 bytes in the buffer. This option is useful if multiple method calls go to the same t
ransaction and you want to differentiate the data from the different calls.

Include All Information. All metadata available to be sent and received with your method data. For details of the
format of metadata, see description for "Optional Metadata".

Nam
e

Type the name of the method. The name can be a maximum of 250 Unicode characters. The name must be different fro
m any other method name in the same project. The default is null.

Posit
ion
Retu
rn V
alue
After

Type the Automation method return value that follows the selected data item when it is received from the host. This opti
on does not affect the Automation side. Use this option when the data item that you want to specify as the Automation r
eturn value is not the first data item field in the data declaration that describes the data received from the host.

Preli
min
ary F
iller

View the number of bytes of FILLER received from or sent to the host.

Fro
m H
ost

Type the number of bytes of FILLER that follows this data item in the buffers that are received from the server. FILLER ca
uses an untranslated gap in the buffer. FILLER is not visible on the Automation side.

To H
ost

Type the number of bytes of FILLER that follows this data item in the buffers that are sent to the server. FILLER causes an
untranslated gap in the buffer. FILLER is not visible on the Automation side.

Retu
rn Ty
pe

Select the return value type. The possible values are:

Void

Boolean

Byte

Date

Currency

Decimal

Integer

Long

Double

Single

String

User-defined type

Recordset

(none) (default)

Vari
able
Size
d Fin
al Fi
eld

Select this option when the last data item is a string to indicate that the size of the string varies. This option is also
used to define a datatable or recordset as being either bounded or as including all rows as defined as Maximum
Occurrence set on the parameter.

Fro
m H
ost

True

False (default)

To H
ost

True

False (default)

Host Definition Properties
Use this To do this

Link-to-P
rogram N
ame

Type the link-to-program name (CICS LINK/DPL).

Mirror Tr
ansaction
ID

Type the mirror TRANID that this method uses, if you want to override the mirror TRANID for the remote environm
ent (RE) that this component is associated with. Leaving this box blank causes the mirror TRANID in the remote env
ironment description to be used.

The TRANID can be up to four characters in length. Acceptable characters are A-Z a-z 0-9 $ @ # . / _ % & ? ! : | = , ;
< >.

Transaction names beginning with C are reserved for CICS and should not be used. The % and & characters may ca
use problems with Resource Access Control Facility (RACF) if transaction security is active.

TP Name Type a source transaction program (TP) name when the CICS application program must access a DB2 database. Th
e TP name is referenced in a CICS Resource Control Table (RCT) entry, which associates CICS transactions with DB2
plans.

Specifies the name of the host transaction program (IMS or CICS) or the link-to program name (CICS LINK/DPL).

Recordset Properties
Us
e t
his

To do this

Inc
lud
e A
ctu
al
Siz
e

The host program will not include or expect any information that indicates the actual number of rows (recordsets) or elem
ents (arrays) being sent or received. The possible values are:

True

False (default)

This property is read-only and will always be set to False unless it was set to True at the time the type library was created
with the first version of COM Transaction Integrator.

Ma
xi
mu
m
Oc
cur
ren
ce

Maximum row occurrence. Indicates the maximum number of rows to be sent to or received from the host. Equivalent to t
he OCCURS n TIMES keyword on a COBOL group item. The default is 1.

Oc
cur
s D
ep
en
din
g
On

Equivalent to variable-length tables in COBOL. Indicates that a numeric data item preceding the table (recordset or array in
Automation) indicates the actual number of rows or elements being sent or received. Use the drop-down list to select whic
h numeric data item specifies this value. For CICS Link, the recordset or array and the associated length specifier must be i
n/out. The data in the buffer that follows a variable length table immediately follows the last data item in the table regardl
ess of the maximum size specified for the table. For arrays with multiple dimensions, it can only be used for the outermost
loop (COBOL) or rightmost dimension (Visual C++ or Visual Basic). Return value recordset occurs depending on. The defa
ult is (none).

Un
bo
un
de
d

Indicates the recordset is unbounded. Indicates that any number of rows can be sent to or received from the host. You wo
uld select this option when the rows being sent or received are from a database and the maximum number of rows is not
known. The possible values are:

True. When the last data item is a string, this means that the size of the string varies.

False. When the last data item is an array, this means that the number of elements in the array varies. When the last
data item is a recordset, this means that the number of rows in the recordset varies. (default)

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference
Method Name Node (COM)
Method Name Node (.NET)
Concepts
Using Custom TRMs and ELMs with COMTIContext

https://msdn.microsoft.com/en-us/library/aa771317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx

Parameter Properties
Use the Parameter properties page to set the array, host, COBOL design, and recordset properties on a parameter.

Array Properties
Use
this

To do this

Arr
ay
Di
me
nsi
ons

Use this control to indicate how many dimensions (Visual C++ or Visual Basic) or nested OCCURS clauses (COBOL) that t
he array or table contains.

Is A
rra
y

Select this option to indicate whether the parameter is an array. The possible values are:

True. Parameter is an array.

False. The item is a simple data type including RDA recordset objects. (default).

Occ
urs
De
pe
ndi
ng
On

Select this option to indicate that a numeric data item preceding the table (recordset or array in Automation) indicates the
actual number of rows or elements being sent or received. Use the drop-down list to select which numeric data item speci
fies this value. For CICS Link, the recordset or array and the associated length specifier must be in/out. The data in the buff
er that follows a variable length table immediately follows the last data item in the table regardless of the maximum size s
pecified for the table. For arrays with multiple dimensions, it can only be used for the outermost loop (COBOL) or rightmo
st dimension (Visual C++ or Visual Basic).

The RPG language, unlike COBOL, does not directly support Occurs Depending On. TI provides a feature that replicates t
he Occurs Depending On action for the RPG language. A TI Project supports a single level of dimension applied as an Occ
urs Depending On associated with a array of records in RPG. An index parameter must be defined prior to defining the pa
rameter associated with a datatable or structure for the parameter to show as an Occurs Depending On selectable choic
e.

Host Properties
U
s
e
t
hi
s

To do this

H
o
st
D
at
a
T
y
p
e

Specifies the parameter host data type.

Er
r
o
r
H
a
n
dl
in
g

Parameter error handling. The possible values are:

Truncate. If selected and an error occurs, TI will truncate the value. (default)

Round. If selected and an error occurs, TI will round the value.

Error. If selected and an error occurs, TI will return an error.

Fi
ll
er

Indicates the number of bytes of FILLER that follow this data item in the buffers that are sent to or received from the host. FI
LLER causes an untranslated gap in the buffer. FILLER is not visible on the Automation side.

Fr
o
m
H
o
st

Indicates the number of bytes of FILLER that follows this data item in the buffers that are received from the server. FILLER ca
uses an untranslated gap in the buffer. FILLER is not visible on the Automation side.

T
o
H
o
st

Indicates the number of bytes of FILLER that follows this data item in the buffers that are sent to the server. FILLER causes a
n untranslated gap in the buffer. FILLER is not visible on the Automation side.

S
c
al
e

The parameter scale.

Si
g
n
A
tt
ri
b
u
te

Parameter sign attribute. The possible values are:

Trailing. For signed DISPLAY data type, indicates that the sign is trailing (default). This option indicates to the TI run-ti
me environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and
from the Automation data type.

Trailing Separate. For signed DISPLAY data type, indicates that the sign is separate. This option indicates to the TI ru
n-time environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to
and from the Automation data type.

Leading. For signed DISPLAY data type, indicates that the sign is leading. This option indicates to the TI run-time envir
onment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and from th
e Automation data type.

Leading Separate. For signed DISPLAY data type, indicates that the sign is separate.

Si
z
e

Specifies the length of the string.

S
O
SI

Specifies whether double-byte character set data is expected to begin with a shift-out (SO) and end with a shift-in (SI) chara
cter. When this check box is selected, the SO and SI characters are removed from the data when it is received from the host
application, and the SO and SI characters are added to the data when it is sent to the host application. In the length of the PI
C G, it is not necessary to include the two bytes for the SO and SI characters because the TI run-time environment applies th
em. The possible values are:

True

False (default)

St
ri
n
g
D
el
i
m
it
in
g

Return value string delimiting. The possible values are:

Space-Padded. Tells the TI run-time environment that the mainframe representation of the string is delimited by pad
ding the string definition with space characters. For example, if the mainframe's COBOL definition is PIC X(10) but onl
y three characters are in the string, the mainframe expects seven trailing spaces. Therefore, selecting this option tells t
he TI run-time environment to convert strings being sent to the mainframe to change the string's NULL termination c
haracter to the appropriate number of trailing spaces before sending it to the mainframe. For example, if the string is
defined on the mainframe as PIC X(10), TI will send a string of ABC followed by seven trailing spaces. Selecting this op
tion also tells the TI run-time environment to convert the output string being returned from the mainframe to the TI A
utomation server by converting the string's trailing spaces to a single null termination character. (default)

Null-terminated. Tells the TI run-time environment that the mainframe representation of the string is delimited by a
null character (EBCDIC 0x00). Selecting this option tells the TI run-time environment to add a single null character to t
he end of a string if there is room for the byte before sending a string to the mainframe, and it tells the TI run-time en
vironment to stop at the first null character encountered when receiving a string from the mainframe. Therefore, by se
lecting this option, you are telling TI to retain trailing spaces in output strings coming from the mainframe because TI
will not convert the trailing spaces to a single NULL terminator. For more information, see
Padding Mainframe Character Strings with Spaces.

Design Properties
Use this To do this

https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx

Data Type The possible values are:

Void

Boolean

Byte

Date

Currency

Decimal

Integer

Long

Double

Single

String

User-defined type

Recordset

(none) (default)

Name Name of the parameter. The name can be a maximum of 250 Unicode characters.

Parameter Direction The possible values are:

In

Out

In / Out (default)

Recordset Properties
Us
e t
his

To do this

Inc
lud
e A
ctu
al
Siz
e

Default option indicating that the host program will not include or expect any information that indicates the actual numbe
r of rows (recordsets) or elements (arrays) being sent or received. The possible values are:

True

False (default)

Ma
xi
mu
m
Oc
cur
ren
ce

Maximum row occurrence. Indicates the maximum number of rows to be sent to or received from the host. Equivalent to t
he OCCURS n TIMES keyword on a COBOL group item.

Oc
cur
s D
ep
en
din
g O
n

Parameter recordset occurs depending on. Equivalent to variable-length tables in COBOL. Indicates that a numeric data ite
m preceding the table (recordset or array in Automation) indicates the actual number of rows or elements being sent or re
ceived. Use the drop-down list to select which numeric data item specifies this value. For CICS Link, the recordset or array
and the associated length specifier must be in/out. The data in the buffer that follows a variable length table immediately f
ollows the last data item in the table regardless of the maximum size specified for the table. For arrays with multiple dime
nsions, it can only be used for the outermost loop (COBOL) or rightmost dimension (Visual C++ or Visual Basic).

Un
bo
un
de
d

Indicates the recordset is unbounded. Indicates that any number of rows can be sent to or received from the host. You wo
uld select this option when the rows being sent or received are from a database and the maximum number of rows is not
known. The possible values are:

True

False (default)

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Tasks
How to Pad Mainframe Character Strings with Spaces
Reference
Parameter Name Node (COM)
Parameter Name Node (.NET)

https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704354(v=bts.10).aspx

Recordset Properties
Use the Recordset properties page to set design and host definition properties on a recordset.

Design Properties
Use this To do this

Name Name of the recordset. The name can be a maximum of 250 Unicode characters.

Host Definition Properties
Use
this

To do this

Col
um
n Fil
ler

Recordset filler. Indicates for each row of data sent or received, the number of bytes of FILLER that precedes each row. FIL
LER causes an untranslated gap in the buffer. FILLER is not visible on the Automation side.

Vari
able
Size
d Ro
ws

Recordset variable sized rows. Use this option to indicate that the last data item or group item returned from the host var
ies from zero to the maximum size specified for the data item. When the last data item is character data, it refers to the n
umber of bytes (TI terminology is "variably sized"). When the last data item is an array, it refers to the number of element
s. When the last data item is a recordset, it refers to the number of rows. The last two are called "bounded" in TI terminol
ogy. The possible values are:

(none) (default)

Half-word binary (16 bits). Indicates that the length specifier for the actual size of a variably sized row will be a h
alf-word binary (16-bit) value. This is the default.

Full-word binary (32 bits). Indicates that the length specifier for the actual size of a variably sized row will be a ful
l word binary (32-bit) value.

Half Word (16 bits) Inclusive. If the value of the actual size of variably sized rows will include the length specifier
(the actual size of the row plus 2 or 4 bytes), select this check box. Verify that this check box is cleared if the value s
hould only specify the actual size of a row itself.

Full Word (32 bits) Inclusive.

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference
Recordset Column Properties
Recordsets Node
Recordset Name Node

https://msdn.microsoft.com/en-us/library/aa770697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745397(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771870(v=bts.10).aspx

Recordset Column Properties
Use the Recordset Column properties page to set COBOL and design properties on a recordset column.

COBOL Properties
U
s
e
t
hi
s

To do this

H
o
st
D
at
a
T
y
p
e

Specifies the recordset column host data type.

Er
r
o
r
H
a
n
dl
in
g

Recordset column error handling. The possible values are:

Truncate. If selected and an error occurs, TI will truncate the value. (default)

Round. If selected and an error occurs, TI will round the value.

Error. If selected and an error occurs, TI will return an error.

Fi
ll
er

Recordset column filler. The default is 0.

Fr
o
m
H
o
st

Indicates the number of bytes of FILLER that follows this data item in the buffers that are received from the server. FILLER ca
uses an untranslated gap in the buffer. FILLER is not visible on the Automation side.

T
o
H
o
st

Indicates the number of bytes of FILLER that follows this data item in buffers that are sent to the server. FILLER causes an un
translated gap in the buffer. FILLER is not visible on the Automation side.

S
c
al
e

Recordset column scale.

Si
g
n
A
tt
ri
b
u
te

Recordset column sign attribute. The possible values are:

Trailing. For signed DISPLAY data type, indicates that the sign is trailing (default). This option indicates to the TI run-ti
me environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and
from the Automation data type. For signed DISPLAY data type, indicates that the sign is not separate (default).

Trailing Separate. For signed DISPLAY data type, indicates that the sign is separate. This option indicates to the TI ru
n-time environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to
and from the Automation data type.

Leading. For signed DISPLAY data type, indicates that the sign is leading. This option indicates to the TI run-time envir
onment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and from th
e Automation data type. For signed DISPLAY data type, indicates that the sign is not separate (default).

Leading Separate. For signed DISPLAY data type, indicates that the sign is separate.

Si
z
e
/
P
re
ci
si
o
n

Recordset column size.

S
O
SI

Specifies whether double-byte character set data is expected to begin with a shift-out (SO) and end with a shift-in (SI) chara
cter. When this check box is selected, the SO and SI characters are removed from the data when it is received from the host
application, and the SO and SI characters are added to the data when it is sent to the host application. In the length of the PI
C G, it is not necessary to include the two bytes for the SO and SI characters because the TI run-time environment applies th
em. The possible values are:

True

False (default)

St
ri
n
g
D
el
i
m
it
in
g

Recordset column string delimiting. The possible values are:

Space-padded. Tells the TI run-time environment that the mainframe representation of the string is delimited by pad
ding the string definition with space characters. For example, if the mainframe's COBOL definition is PIC X(10) but onl
y three characters are in the string, the mainframe expects seven trailing spaces. Therefore, selecting this option tells t
he TI run-time environment to convert strings being sent to the mainframe to change the string's NULL termination c
haracter to the appropriate number of trailing spaces before sending it to the mainframe. For example, if the string is
defined on the mainframe as PIC X(10), TI will send a string of ABC followed by seven trailing spaces. Selecting this op
tion also tells the TI run-time environment to convert the output string being returned from the mainframe to the TI A
utomation server by converting the string's trailing spaces to a single null termination character. For more informatio
n, see Padding Mainframe Character Strings with Spaces.

Null-terminated. Tells the TI run-time environment that the mainframe representation of the string is delimited by a
null character (EBCDIC 0x00). Selecting this option tells the TI run-time environment to add a single null character to t
he end of a string if there is room for the byte before sending a string to the mainframe, and it tells the TI run-time en
vironment to stop at the first null character encountered when receiving a string from the mainframe. Therefore, by se
lecting this option, you are telling TI to retain trailing spaces in output strings coming from the mainframe because TI
will not convert the trailing spaces to a single NULL terminator. For more information, see
Padding Mainframe Character Strings with Spaces.

Design Properties
Use this To do this

Data Type The data type of the currently displayed column. Recordset column data type. The possible values are:

Void

Boolean

Byte

Date

Currency

Decimal

Integer

Long

Double

Single

String

Name Name of the recordset column. The name can be a maximum of 250 Unicode characters.

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference

https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx

Recordset Column Name Node

https://msdn.microsoft.com/en-us/library/aa754316(v=bts.10).aspx

User-Defined Type Properties
Use the User-Defined Type properties page to set design and host definition properties on user-defined types (UDTs).

Design properties
Use this To do this

Name Name of the user-defined type (UDT). The name can be a maximum of 250 Unicode characters.

Host Definition properties
Us
e t
his

To do this

Ind
ep
en
de
nt
UD
T

Independent user-defined type. An independent user-defined type (UDT) is a UDT that is not referenced by a method (dire
ctly or indirectly). When you use TCP/IP, the client sends the host a transaction request message (TRM) or enhanced listen
er message (ELM) containing the Transaction Program ID, User ID, Password, and other administrative data to be used by t
he host. The client sends a TRM or ELM reply containing additional administrative data. The data in the TRM or ELM is inde
pendent from the actual program data to be exchanged with the Transaction Program on the host.

You can use the independent UDT options and the naming convention of TRMIN, TRMOUT, ELMIN, or ELMOUT to control t
he data content and format in the TRM or ELM request and TRM or ELM reply. For TRMs or ELMs destined for the host, the
name of the UDT must begin with the characters TRMIN or ELMIN. For TRM or ELM replies from the host, the name of the
UDT must begin with the characters TRMOUT or ELMOUT. Examples of valid TRM names are: TRMINMyVeryOwn, ELMINS
tandard, TRMOUTMyVeryOwn, and ELMOUTStandard.

When you begin the UDT with the character TRMIN, TRMOUT, ELMIN, or ELMOUT, Visual Studio automatically formats the
first member as an Int or Long and the last members as a String or Array.

After an independent UDT has been defined, it can be referenced by the client application and passed to and from the TI ru
ntime (by using the COMTIContext object) as an optional parameter. The possible values are:

(none) (default)

Length Inclusive

Length Exclusive

Me
mb
er
Fill
er

User-defined type member filler. Type the number of bytes of FILLER that precedes each row of data sent or received. FILL
ER causes an untranslated gap in the buffer. FILLER is not visible on the Automation side. This option is not available if the
length specifier option to include or exclude itself is selected.

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference
User-Defined Types Node
User-Defined Type Name Node

https://msdn.microsoft.com/en-us/library/aa705164(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771910(v=bts.10).aspx

User-Defined Type Member Properties
Use the User-Defined Type Member properties page to set array, COBOL, host, design, and recordset properties on user-
defined type members.

Array Properties
Use this To do this

Array Dimensions User-defined type member array dimensions. The default is (none).

Is Array User-defined type member is an array. The possible values are:

True

False (default)

Occurs Depending On User-defined type member array occurs depending on.

Host Properties
U
s
e
t
hi
s

To do this

H
o
st
D
at
a
T
y
p
e

User-defined type member host data type.

Er
r
o
r
H
a
n
dl
in
g

User-defined type member error handling. The possible values are:

Truncate. If selected and an error occurs, TI will truncate the value. (default)

Round. If selected and an error occurs, TI will round the value.

Error. If selected and an error occurs, TI will return an error.

Fi
ll
er

User-defined type member filler.

Fr
o
m
H
o
st

Indicates the number of bytes of FILLER that follows this data item in the buffers that are received from the server. FILLER ca
uses an untranslated gap in the buffer. FILLER is not visible on the Automation side.

T
o
H
o
st

Indicates the number of bytes of FILLER that follows this data item in buffers that are sent to the server. FILLER causes an un
translated gap in the buffer. FILLER is not visible on the Automation side.

S
c
al
e

User-defined type member scale.

Si
g
n
A
tt
ri
b
u
te

User-defined type member sign attribute. The possible values are:

Trailing. For signed DISPLAY data type, indicates that the sign is trailing (default). This option indicates to the TI run-ti
me environment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and
from the Automation data type. For signed DISPLAY data type, indicates that the sign is not separate (default).

Trailing Separate. For signed DISPLAY data type, indicates that the sign is separate.

Leading. For signed DISPLAY data type, indicates that the sign is leading. This option indicates to the TI run-time envir
onment how a signed DISPLAY data type is formatted and affects how data from the host is converted to and from th
e Automation data type. For signed DISPLAY data type, indicates that the sign is not separate (default).

Leading Separate. For signed DISPLAY data type, indicates that the sign is separate.

Si
z
e

User-defined type member size.

S
O
SI

Specifies whether double-byte character set data is expected to begin with a shift-out (SO) and end with a shift-in (SI) chara
cter. When this check box is selected, the SO and SI characters are removed from the data when it is received from the host
application, and the SO and SI characters are added to the data when it is sent to the host application. In the length of the PI
C G, it is not necessary to include the two bytes for the SO and SI characters because the TI run-time environment applies th
em. The possible values are:

True

False (default)

St
ri
n
g
D
el
i
m
it
in
g

User-defined type member string delimiting. The possible values are:

Space-padded. Tells the TI run-time environment that the mainframe representation of the string is delimited by pad
ding the string definition with space characters. For example, if the mainframe's COBOL definition is PIC X(10) but onl
y three characters are in the string, the mainframe expects seven trailing spaces. Therefore, selecting this option tells t
he TI run-time environment to convert strings being sent to the mainframe to change the string's NULL termination c
haracter to the appropriate number of trailing spaces before sending it to the mainframe. For example, if the string is
defined on the mainframe as PIC X(10), TI will send a string of ABC followed by seven trailing spaces. Selecting this op
tion also tells the TI run-time environment to convert the output string being returned from the mainframe to the TI A
utomation server by converting the string's trailing spaces to a single null termination character. For more informatio
n, see Padding Mainframe Character Strings with Spaces.

Null-terminated. Tells the TI run-time environment that the mainframe representation of the string is delimited by a
null character (EBCDIC 0x00). Selecting this option tells the TI run-time environment to add a single null character to t
he end of a string if there is room for the byte before sending a string to the mainframe, and it tells the TI run-time en
vironment to stop at the first null character encountered when receiving a string from the mainframe. Therefore, by se
lecting this option, you are telling TI to retain trailing spaces in output strings coming from the mainframe because TI
will not convert the trailing spaces to a single NULL terminator. For more information, see
Padding Mainframe Character Strings with Spaces.

Design Properties
Use t
his

To do this

Data
Type

User-defined type member data type. The data type of the currently displayed user-defined type member. The possible
values are:

Void

Boolean

Byte

Date

Currency

Decimal

Integer

Long

Double

Single

String

User-defined type

Recordset

https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx

Nam
e

Name of the user-defined type member. The name can be a maximum of 250 Unicode characters. The name must be un
ique from any other user-defined type member name in the same project. The default is null.

Recordset Properties
Us
e t
hi
s

To do this

In
cl
ud
e
Ac
tu
al
Si
ze

Default option indicating that the host program will not include or expect any information that indicates the actual number
of rows (recordsets) or elements (arrays) being sent or received. The possible values are:

True

False (default)

M
ax
im
u
m
Oc
cu
rr
en
ce

Maximum row occurrence. Indicates the maximum number of rows to be sent to or received from the host. Equivalent to th
e OCCURS n TIMES keyword on a COBOL group item.

Oc
cu
rs
D
ep
en
di
ng
O
n

User-defined type member recordset occurs depending on. Indicates the maximum number of rows to be sent to or receiv
ed from the host. Equivalent to the OCCURS n TIMES keyword on a COBOL group item. Equivalent to variable-length tables
in COBOL. Indicates that a numeric data item preceding the table (recordset or array in Automation) indicates the actual nu
mber of rows or elements being sent or received. Use the drop-down list to select which numeric data item specifies this va
lue. For CICS Link, the recordset or array and the associated length specifier must be in/out. The data in the buffer that follo
ws a variable length table immediately follows the last data item in the table regardless of the maximum size specified for t
he table. For arrays with multiple dimensions, it can only be used for the outermost loop (COBOL) or rightmost dimension
(Visual C++ or Visual Basic).

U
nb
ou
nd
ed

Indicates that any number of rows can be sent to or received from the host. Set to true when the rows being sent or receiv
ed are from a database and the maximum number of rows is not known. The possible values are:

True

False (default)

Caution
The properties of a component are not intended to be set or changed programmatically. Setting or changing the properties p
rogrammatically might cause the component to function incorrectly.

See Also
Reference
User-Defined Type Member Name Node

https://msdn.microsoft.com/en-us/library/aa770704(v=bts.10).aspx

Unions Properties
Displays properties for the Unions folder.

Union Type Properties
Displays the name of the Union type.

Union Member Properties
Lists the properties of the Union Member. Depending on the Host Data Type, the list may include:

Array Dimensions

Data Types

Error Handling

Host Data Type

Is Array

Name

Precision

Scale

Size

String Delimiting

SOSI

Trailing Filler

Name Conflict Dialog Box
Use the Name Conflict dialog box to rename what you are copying.

Use this To do this
New na
me

Type a new name. The name can be a maximum of 256 Unicode characters. The new name cannot be the same as a
nd existing name.

See Also
Reference
Interface Properties

https://msdn.microsoft.com/en-us/library/aa770922(v=bts.10).aspx

Array Dimension Dialog Box
Use the Array Dimension dialog box to define the number of dimensions in an array and the number of elements in each
dimension.

Use this To do this
Number of Dimension
s

Type the number of dimensions in the array. The minimum number is 0, and the maximum is 7. The
default is 0.

Dimension/Number of
Elements

View the current number of elements defined for each dimension.

Number of Elements Type the number of elements in the selected dimension. The minimum number is 1, and the maximu
m number is 16777215. The default is 10.

See Also
Reference
Parameter Properties

https://msdn.microsoft.com/en-us/library/aa705063(v=bts.10).aspx

Map Remote Environment Class Dialog Box
Use the Map Remote Environment Class dialog box to update the definition of a remote environment (RE) class that is no
longer supported or does not conform to Transaction Integrator (TI) requirements.

Use this To do this
Remote environme
nt class

Type or select the COM type library or .NET assembly class of the remote environment.

Vendor Select the name of the vendor supplying the remote environment.

Protocol Select the data communication protocol to be used to connect to the remote environment. The available
communication protocols are:

TCP/IP (default)

LU 6.2

Target environmen
t

Select the application environment running on the remote host system. The available environments are:

CICS (default)

IMS

OS400 (TCP only)

Programming mod
el

Select the programming model associated with the remote environment. The available models for the T
CP/IP CICS target environment are:

TRM User Data (default)

TRM Link

ELM User Data

ELM Link

The available models for the LU 6.2 CICS target environment are:

CICS User Data

CICS Link

The available models for the TCP/IP IMS target environment are:

IMS Connect

Implicit

Explicit

The only available model for the LU 6.2 IMS target environment is IMS User Data.

The only available model for the OS400 target environment is Distributed Program Call.

See Also
Other Resources
Wizards and Dialog Boxes (TI Project)

https://msdn.microsoft.com/en-us/library/aa745831(v=bts.10).aspx

Select Convert Prim Dialog Box
Use the Select Convert Prim dialog box to provide a Convert PrimEx class that is missing from your server library.

Use this To do this
Convert prim class Select the conversion class to use with the host environment (HE). The available classes are:

Transaction Integrator - ConvertPrim for OS390 (default)

Transaction Integrator - ConvertPrim for AS400

Host Integration Server Designer UI
Host Integration Server Designer (HIS Designer) is a graphical user interface for creating Transaction Integrator (TI)
components, which are annotated type libraries or assemblies. You can use HIS Designer to export or import the COBOL data
declarations used in mainframe CICS and IMS programs. HIS Designer is a standalone program that does not need to have
connectivity to the mainframe.

HIS Designer is hosted within the Visual Studio environment. You can use it to generate both Windows-initiated processing
(WIP) and host-initiated processing (HIP) objects. It also supports COM type libraries and Microsoft .NET Framework
assemblies.

In This Section

Solution Explorer

Add New Item Dialog Box (Visual Studio)

New COM Client Library Wizard

New COM or .NET Server Library Wizard

Import Library Wizard

Welcome to the Import COBOL Wizard

Export Wizard

HIS Designer Options

HIS Designer Views

HIS Designer Menus

Discriminant Value Table Dialog Box

See Also
Concepts
Getting Started with TI

https://msdn.microsoft.com/en-us/library/aa754699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705585(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754389(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771068(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771279(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772064(v=bts.10).aspx

Solution Explorer
Visual Studio Solution Explorer provides an organized view of projects and their files, in addition to access to available
commands and toolbars. The following files are supported by the project:

COM Client-Initiated libraries, which are annotated COM type libraries (.tlb).

.NET Client-Initiated libraries, which are Microsoft .NET Framework assemblies with embedded annotated COM type
library.

Host-Initiated libraries, which are annotated COM type libraries (.tim).

To open Solution Explorer

On the View menu, click Solution Explorer.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

Add New Item Dialog Box (Visual Studio)
The Add New Item dialog box enables you to add an item to the currently selected project. There are two panes in the dialog
box:

The Categories pane lists the project item hierarchy.

The Templates pane lists the related project item types.

When you select an item from the Categories list, the appropriate files and references are added to your project. The type of
project selected determines the item choices that are displayed. The project items created for Transaction Integrator include the
following:

COM Server Library, which is an annotated COM type library that you must implement separately, and the implemented
object, which can be invoked from an IBM host.

COM Client Library, which is a COMTI classic type library that can call host applications.

.NET Server Library, which is an assembly with an embedded COM Server library. It is a managed version of the COM
Server library.

.NET Client Library, which is an assembly with an embedded COM Client library. It is a managed version of the COM
client library.

To add a new item

1. On the Project menu, click the type of library (COM client, COM Server, .NET Client, or .NET Server) you want to add.

2. On the Add New Item dialog box, confirm that the correct template is highlighted.

3. Next to Name, type the name that you want to use for the library.

4. Click Add, and follow the directions for the relevant Wizard.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

New COM Client Library Wizard
The New COM Client Library Wizard is a two-page wizard. The first page of the wizard collects library information, and the
second page collects remote environment information. There is a Welcome page and a Finish page that displays summary
information.

The generated client component is either an annotated COM type library (.tlb) or a Microsoft .NET Framework assembly with
the annotated type library embedded in it as resources; it depends on the platform that you select in the
Add New Item Dialog Box (Visual Studio).

When the file is created, it is added to the project and displayed in Solution Explorer.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa705585(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

New COM or .NET Server Library Wizard
Like the New COM or .NET Client Library Wizard, this wizard is a two-page wizard. The first page collects library
information, and the second page collects host environment information. In addition, there is a Welcome page, and a Finish
page that displays summary information.

The generated client component is either an annotated COM type library (.tlb) or a Microsoft .NET Framework assembly with
the annotated type library embedded in it as resources; it depends on the platform that you selected in the
Add New Item Dialog Box (Visual Studio). When the file is created, it is added to the project and displayed in Solution Explorer.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa705585(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

Import Library Wizard
The Import Library Wizard enables you to import an existing library, whether it is annotated or not, to the existing
component. The methods, recordsets, user-defined types, and unions from the imported library are inserted under the library
in the Host Integration Server (HIS) designer.

You can start this wizard by selecting Import Library on the Library top-level menu. This wizard does not have welcome and
finish page because it only selects a file to import. It is a single page dialog box, which is the standard Open File dialog box.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

Welcome to the Import COBOL Wizard
The Import COBOL Wizard enables you to select a COBOL copy book and use it for designing the component in the designer.
You can start this wizard by selecting Import COBOL on the Library top-level menu.

This is a rather complex wizard because there are multiple options and paths to follow. It is a multiple-page wizard that
contains Welcome and Finish pages.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

Export Wizard
The Export Wizard is used in exporting an equivalent COBOL definition for the current component. It is not really a wizard
because it does not contain any pages, such as a welcome or finish page. You can start this wizard by selecting Export on the
Library top-level menu. When you select the menu item, a text window opens under Visual Studio .NET, and the COBOL is
displayed in it. You can then save it, discard it, or add it to the project.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

HIS Designer Options
You can select the initial view to display when the Host Integration Server Designer (HIS Designer) starts. You can modify this
option through the standard Options dialog box in Visual Studio, which is extended to support the functionality of the HIS
Designer. You can open this dialog box by clicking Options on the Tools menu in Visual Studio.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

HIS Designer Views
The Host Integration Server Designer (HIS Designer) development tool uses a two-pane user interface. The left pane displays a
tree view, and the right pane displays a list view, or Details view. The tree view displays a hierarchical representation of the
contents of the library. The list view displays a compact subset of the selected type library component’s properties that are
displayed in the property browser. You might find it useful to customize the details view by using something other than a list.
For example, a COBOL, RPG, or IDL view might be more useful.

Tree View

The tree view displays a hierarchical view of the components in a type library or Microsoft .NET Framework assembly.

The tree view contains the following elements:

Type Library

Methods

Method1

Parameter1

Parameter2

…

Parameter(n)

Method2

…

Method(n)

Recordsets (Data tables for .NET Framework libraries)

Recordset1

Recordset Member1

Recordset Member2

…

Recordset Member(n)

Recordset2

…

Recordset(n)

User-Defined types (Structures for .NET Framework libraries)

UDT1

UDT Member1

UDT Member2

…

UDT Member(n)

UDT2

…

UDT(n)

Unions

Union1

Union Member1

Union Member2.

…

Member(n)

Union2

…

Union(n)

Details View

The details view displays context-sensitive information about the item that is selected in the tree view. The details view displays
a subset of the properties of that type library component. These properties are displayed in columns labeled in a context-
sensitive manner.

The detail views include the following:

Interface view

Method view

Parameter view

Recordsets view

Recordset view

Recordset column view

User-defined types view

User-defined type view

User-defined type member view

Unions view

Union view

Union member view

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

HIS Designer Menus
Host Integration Server Designer (HIS Designer) presents different menus for different contexts and operations. These menus
are in addition to the basic menus that are already included in Visual Studio.

In This Section

HIS Designer Main Menu

HIS Designer Shortcut Menus

Importing RPG

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa745394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705591(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

HIS Designer Main Menu
The main menu in Host Integration Server Designer (HIS Designer) presents two tabs, Edit and Library, which contain
individual commands.

Edit Tab

The following commands appear on the Edit tab of the main menu:

Undo: Undo the last operation.

Redo: Redo the last undo operation.

Cut: Cut the selected item.

Copy: Copy the selected item.

Paste: Paste the copied item to the selected one.

Rename: Rename the selected item.

Delete: Delete the selected item.

Select All: Select all items.

Find and Replace: Find and replace the specified text.

Move Up: Move a parameter up in the list.

Move Down: Move a parameter down in the list.

Library Tab

The following commands appear on the Library tab of the main menu:

Add Method: Add a new method with an integer return type.

Add Parameter: Add a new In\Out integer parameter to the selected method. This command is only visible if the current
selection in the tree view or the details view is a method.

Add Recordset: Add a new recordset with an integer column.

Add Recordset Column: Add a new integer recordset column to the selected recordset. This command is only visible if the
current selection in the tree view or the details view is a recordset.

Add User-Defined Type: Add a new user-defined type with an integer member.

Add Union: Add a new union with two integer members.

Add Union Member: Add a new integer union member.

Add User-Defined Type Member: Add a new integer user-defined member to the selected user-defined type. This command
is only visible if the current selection in the tree view or the details view is a user-defined type.

Import Host Definition: Invoke the Import COBOL Wizard, which enables you to import COBOL to the interface (Class)
definition.

Import Library: Invoke the Library Import Wizard, which enables you to import an existing type library or assembly to the
interface (Class) definition.

Export Host Definition: Invoke the Export Wizard, which enables you to generate a COBOL copy book equivalent to the
current library.

Definition: Display the definition of the current library in a new Visual Studio default editor window. With COM libraries, you
can display the IDL definition, and with .NET Framework assemblies, you can display the Cdefinition. When the definition is
available in Visual Studio, all standard file operations can be applied to it (for example, Save, Save As, and so on).

Host Data Definition:

See Also
Concepts
HIS Designer Menus

https://msdn.microsoft.com/en-us/library/aa771068(v=bts.10).aspx

HIS Designer Shortcut Menus
Host Integration Server Designer (HIS Designer) has two types of context-sensitive, or shortcut menus. The first type is context-
sensitive to the HIS Designer files in Visual Studio Solution Explorer. The second type is context-sensitive in the HIS Designer
itself.

Shortcut menus do not have context-sensitive Help available when you use them. Therefore, the topics in this section describe
the functionality of each menu and each command.

In This Section

Solution Explorer Shortcut Menu

Library Shortcut Menu

Interface Shortcut Menu

Method Shortcut Menu

Parameter Shortcut Menu

DataTables Shortcut Menu

DataTable Shortcut Menu

DataTable Column Shortcut Menu

Structures Shortcut Menu

Structure Shortcut Menu

Unions Shortcut Menu

Union Shortcut Menu

Union Member Shortcut Menu

https://msdn.microsoft.com/en-us/library/aa705019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771360(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746038(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745611(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754396(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705568(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705244(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744312(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745208(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771087(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745707(v=bts.10).aspx

Solution Explorer Shortcut Menu
When you select a Transaction Integrator-compatible file in Solution Explorer, the appropriate context-sensitive, or shortcut
menu commands are displayed.

Add: Adds a new item to the project.

Method: Adds a new method with an integer return type.

Parameter:

Recordset: Adds a new recordset with an integer column.

Recordset Member:

User-defined Type: Adds a new user-defined type with an integer member.

User-defined Type Member:

Import: Imports an existing item into the project.

COBOL: Starts the Import COBOL Wizard to help you import COBOL to the interface (Class) definition.

Library: Starts the Library Import Wizard to help you import an existing type library or assembly to the interface (Class)
definition.

Export: Starts the Export Wizard to help you generate a COBOL copy book equivalent to the current type library.

Generate Definition: Displays the definition of the current library. For COM libraries, it displays the IDL definition; for .NET
Framework assemblies, it displays the C# definition.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Library Shortcut Menu
When you select the Library node in the tree view of HIS Designer, the following shortcut menu commands appear.

Import: Displays the following commands:

Host Definition: Starts the Import COBOL Wizard to help you import COBOL to the interface (Class) definition.

HCD: Imports a Host Column descriptor. Usable only with a Host File Project.

Library: Starts the Library Import Wizard to help you import an existing type library or assembly to the interface (Class)
definition.

Export: Starts the Export Wizard to help you generate a COBOL copy book equivalent to the current library.

Lock: Marks the library as read-only. The library is automatically marked as locked if it is registered in a COM+ application, IIS
Virtual Directory, or is being used by a host-initiated processing (HIP) application.

Deploy: Deploys the library.

Undeploy: Undeploys the library.

Cut: Copies the content of the library to the clipboard and marks it as deleted.

Copy: Copies the content of the library to the clipboard.

Paste: Inserts the contents of the clipboard into the current library definition.

Delete: Deletes the current library.

Rename: Renames the library.

Properties: Displays the property browser (if it is not already visible) and displays the library properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Interface Shortcut Menu
When you select the Interface node in the tree view of HIS Designer, the following shortcut menu commands are available:

Add Method: Adds a method to the interface.

Cut:. Visible, but not available.

Copy: Visible, but not available.

Paste: Visible, but not available.

Rename: Renames the interface.

Delete: Visible, but not available.

Properties: Displays the property browser (if it is not already visible) and displays the interface properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Method Shortcut Menu
When you select a method in the tree view in HIS Designer, the following context menu commands are available.

Add Parameter: Adds a new In\Out integer parameter to the selected method.

Cut: Copies the selected method to the clipboard and marks it as deleted.

Copy: Copies the selected method to the clipboard.

Paste: Inserts a parameter from the clipboard into the current method.

Delete: Deletes the method.

Rename: Renames the method.

Properties: Displays the property browser (if it is not already visible) and displays the method properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Parameter Shortcut Menu
When you select a parameter in the tree view in HIS Designer, the following shortcut menu commands are displayed.

Move Up: Moves the selected parameter up in the tree list.

Move Down: Moves the selected parameter down in the tree list.

Cut: Copies the selected parameter to the clipboard and marks it as deleted.

Copy: Copies the selected parameter to the clipboard.

Paste: Not available because parameters do not have child elements.

Delete: Deletes the parameter.

Rename: Renames the parameter.

Properties: Displays the property browser (if it is not already visible) and displays the parameter properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

DataTables Shortcut Menu
When you select the DataTables node from the library tree, the following shortcut menu commands are displayed:

Add DataTable: Adds a DataTable to the DataTables node.

Cut: Visible, but not available.

Copy: Visible, but not available.

Paste: Visible, but not available.

Delete: Visible, but not available.

Rename: Visible, but not available..

Properties: Displays the property browser (if it is not already visible) and displays the DataTables properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

DataTable Shortcut Menu
When you select a DataTable node in the tree view, the following shortcut menu commands are displayed.

Add DataTablet Column: Adds a new integer column to the selected DataTable.

Cut: Copies the selected DataTable to the clipboard and marks it as deleted.

Copy: Copies the selected DataTable to the clipboard.

Paste: Inserts a DataTable column from the clipboard into the current DataTable.

Delete: Deletes the DataTable.

Rename: Renames the DataTable.

Properties: Displays the property browser (if it is not already visible) and displays the DataTable properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

DataTable Column Shortcut Menu
When you select the DataTable column in the tree view, the following shortcut menu items are displayed.

Move Up: Moves the selected column up in the tree list.

Move Down: Moves the selected column down in the tree list.

Cut: Copies the selected DataTable column to the clipboard and marks it as deleted.

Copy: Copies the selected DataTable column to the clipboard.

Paste: Not available because DataTable columns do not have child elements.

Delete: Deletes the DataTable column.

Rename: Renames the DataTable column.

Properties: Displays the property browser (if it is not already visible) and displays the DataTable column properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Structures Shortcut Menu
When you select the Structures node in the library tree, the following shortcut menu commands appear:

Add Struct: Adds a structure to the selected Structure node.

Cut: Visible, but not available.

Copy: Visible, but not available.

Paste: Visible, but not available.

Rename: Visible, but not available.

Delete: Deletes the recordset column.

Properties: Displays the property browser (if it is not already visible) and displays the Structure column properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Structure Shortcut Menu
When you select a structure type in the tree view in HIS Designer, the following shortcut menu commands are displayed.

Add Structure Member: Adds a new integer member to the selected structure.

Cut: Copies the selected structure to the clipboard and marks it as deleted.

Copy: Copies the selected structure to the clipboard.

Paste: Inserts a structure column from the clipboard into the current structure.

Delete: Deletes the structure.

Rename: Renames the structure.

Properties: Displays the property browser (if it is not already visible) and displays the structure properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Structure Member Shortcut Menu
When you select a member from one of the structures in the Structures node in HIS Designer, the following shortcut menu
commands are available:

Move Up: Moves the selected member up in the tree list.

Move Down: Moves the selected member down in the tree list.

Cut: Copies the selected member to the clipboard and marks it as deleted.

Copy: Copies the selected member to the clipboard.

Paste: Not available because members do not have child elements.

Delete: Deletes the member.

Rename: Renames the member.

Properties: Displays the property browser (if it is not already visible) and displays the member properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Unions Shortcut Menu
When you select the Unions node in the tree view in HIS Designer, the following shortcut menu commands are displayed.

Add Union: Adds a union to the Unions node.

Cut: Visible but not available.

Copy: Visible but not available.

Paste: Visible but not available.

Delete: Visible but not available.

Rename: Visible but not available.

Properties: Displays the property browser (if it is not already visible) and displays the Unions properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Union Shortcut Menu
When you select a union from the Union node in the Library tree, the following shortcut menu commands are available:

Add Union Member: Adds a union union to the selected union.

Cut: Copies the selected union to the clipboard and marks it as deleted.

Copy: Copies the selected union to the clipboard.

Paste: Not available because unions do not have child elements.

Delete: Deletes the union.

Rename: Renames the union.

Properties: Displays the property browser (if it is not already visible) and displays the union properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Union Member Shortcut Menu
When you select a union member from the Library tree, the following shortcut menu commands appear:

Move Up: Moves the selected union member up in the tree list.

Move Down: Moves the selected union member down in the tree list.

Cut: Copies the selected union member to the clipboard and marks it as deleted.

Copy: Copies the selected union member to the clipboard.

Paste: Not available because union members do not have child elements.

Delete: Deletes the union member.

Rename: Renames the union member.

Properties: Displays the property browser (if it is not already visible) and displays the union member properties.

See Also
Concepts
HIS Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771109(v=bts.10).aspx

Importing RPG
The Report Program Generator (RPG) is oriented to programs written for use by distributed program call (DPC). The
expectation is that the RPG source contains an *ENTRY PLIST operation statement. This statement leads the importer down
the path of explicitly understanding the exact parameter names. This eliminates the picking and choosing of data areas found
in the Import COBOL Wizard.

This implies that the RPG Importer is simple to use. It also implies that the RPG Importer is not designed to be used for raw
TCP and raw SNA programming models. The assumptions are as follows:

RPG DPC is the most likely programming model that will be used.

For those situations where raw TCP or SNA is required, you can still create RPG definitions through basic HIS Designer
functionality (not the Import Wizard)

Discriminant Value Table Dialog Box
Use the Discriminant Value Table dialog box to create the logic for determining which union member returns information to
the calling procedure. You can open the Discriminant Value Table dialog box by viewing the properties of an instanced
union member, clicking DVT, and then clicking the ellipsis (…) button.

Use this To do this

Discriminant
Variable

List the name of the selected union.

Discriminant
type

List the data type that the union will use to create the logic.

Discriminant
Value Table

Create the Discriminant Value Table. The Union Member column lists the union members that will be checked,
in order. The Condition column describes what to check for in order to use that member.

Move Up Move a union member and associated condition up in priority.

Move Down Move a union member and associated condition down in priority.

Delete Delete a union member and associated condition from the DVT. It does not delete the member from the union. Y
ou may add the union member back into the DVT at any time.

OK Save the additions you make to the DVT, and close the dialog box.

Cancel Close the dialog box without saving the changes you made to the DVT.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

Host File Designer UI
Host File Designer is a graphical user interface for creating Host File components, which are annotated type libraries or
assemblies. As with Host Integration Server (HIS) Designer, you can use Host File Designer export or import the COBOL data
declarations used in mainframe CICS and IMS programs. Host File Designer is a standalone program that does not need to
have connectivity to the mainframe.

Host File Designer is hosted within the Visual Studio environment. You can use it to generate both Windows-initiated
processing (WIP) and host-initiated processing (HIP) objects.

In This Section

Add New Item Dialog Box (Host File Designer)

Welcome to the Host Files Library Wizard

Host Environment (Host File Designer)

Completing the Host Files Library Wizard Page

Import HCD Source File Wizard Page

Schemas Wizard Page (Host Files Library)

Solution Explorer (Host File Designer)

Host File Designer Views

Host File Designer Menus

Discriminant Value Table Dialog Box (Host File Designer)

See Also
Other Resources
Visual Studio Help

https://msdn.microsoft.com/en-us/library/aa745989(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753875(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744958(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771865(v=bts.10).aspx

Add New Item Dialog Box (Host File Designer)
The Add New Item dialog box enables you to add a host file object the currently selected project. There are two panes in the
dialog box:

The Categories pane lists the project item hierarchy.

For Host File Designer, the only item in this pane is Host Integration Project Items.

The Templates pane lists the related project item types.

For Host File Designer, the only usable item in this pane is Host Files Library. A host files library is a .NET assembly that
describes the host file system to your application.

To add a new item

1. On the Project menu, click Add Host File Library or Add New Item….

For the purposes of a Host File Designer project, you can add only a Host File Library.

2. On the Add New Item dialog box, confirm that Host File Library is highlighted.

3. Next to Name, type the name that you want to use for the library.

4. Click Add, and follow the directions for the relevant Wizard.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Welcome to the Host Files Library Wizard
The Import Host Column Definition Wizard enables you to select an .hcd file and use it for designing the component in the
designer. You can start this wizard by selecting Import HCD on the Library top-level menu.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Host Environment (Host File Designer)
Use the Host Environment Wizard page to select the host environment for your host file application.

Use this To do this

Host environment Select the host environment. Your current choices are as follows:

Host Files for OS390

Host Files for AS400

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Completing the Host Files Library Wizard Page
Use the Completing the Host Files Library Wizard page to review the choices and settings you made in the previous wizard
pages. You can return to an earlier wizard page to change a setting by clicking Back.

Use this To do this

Run this wizard
again

Select this option to complete the current modification of the type library and automatically restart the wiza
rd to make new modifications.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Import HCD Source File Wizard Page
Use the Import COBOL Source File wizard page to identify the COBOL source file.

Use this To do this

HCD file Select the full path to the COBOL copy book to be imported.

HCD source View the host column description source code contained in the file identified in .hcd file.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Schemas Wizard Page (Host Files Library)
The Schemas wizard page allows you to select the schema(s) you would like to import from the .hcd file selected in the
previous wizard page.

Use this To do this

Schemas To select the schemas and associated schema members.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Solution Explorer (Host File Designer)
Visual Studio Solution Explorer provides an organized view of projects and their files, in addition to access to available
commands and toolbars. The following files are supported by the project:

Host File libraries, which are Microsoft .NET Framework assemblies that contain an interface description of the remote
server.

To open Solution Explorer

On the View menu, click Solution Explorer.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Host File Designer Views
The Host File Designer development tool uses a two-pane user interface. The left pane displays a tree view, and the right pane
displays a list view, or Details view. The tree view displays a hierarchical representation of the contents of the library. The list
view displays a compact subset of the selected type library component’s properties that are displayed in the property browser.
You might find it useful to customize the details view by using something other than a list. For example, a COBOL, RPG, or IDL
view might be more useful.

Tree View

The tree view displays a hierarchical view of the components in a type library, also known as a metadata assembly.

The tree view contains the following elements:

Library

Tables

Table1

Table Member1

Table Member2

…

Table Member(n)

Table2

…

Table(n)

Schemas

Schema1

Schema Member1

Schema Member2

…

Schema Member(n)

Schema2

…

Schema(n)

Unions

Union1

Union Member1

Union Member2.

…

Member(n)

Union2

…

Union(n)

Details View

The details view displays information about the item that is selected in the tree view. The Details view consists of three tabs,
each describing the information in the Tree view in a different fashion.

List Tab

The List tab displays a subset of the properties of the selected type library component.

The detail views include the following:

Tables view

Table Member view

Schemas view

Schema view

Unions view

Union view

Union member view

Definition Tab

The Definition tab displays the type library as a .NET interface.

HCD Tab

The HCD tab displays the host column description associated with the type library.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Host File Designer Menus
Host File designer presents different menus for different contexts and operations. These menus are in addition to the basic
menus that are already included in Visual Studio.

In This Section

Host File Designer Main Menu

Host File Designer Shortcut Menus

Host File Designer Shortcut Menus

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa772025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Host File Designer Main Menu
The main menu in Host File Designer presents the Edit tab, which contain the following commands:

Undo: Undo the last operation.

Redo: Redo the last undo operation.

Cut: Cut the selected item.

Copy: Copy the selected item.

Paste: Paste the copied item to the selected one.

Rename: Rename the selected item.

Delete: Delete the selected item.

Select All: Select all items.

Find and Replace: Find and replace the specified text.

Move Up: Move a parameter up in the list.

Move Down: Move a parameter down in the list.

See Also
Concepts
HIS Designer Menus

https://msdn.microsoft.com/en-us/library/aa771068(v=bts.10).aspx

Host File Designer Shortcut Menus
This section describes the Host File Designer Shortcut Menus for Visual Studio.

In This Section

Host File Designer Shortcut Menus

Library Shortcut Menu (Host File Designer)

Schema Member Shortcut Menu

Schema Shortcut Menu

Schemas Shortcut Menu

Solution Explorer Shortcut Menu (Host File Designer)

Table Member Shortcut Menu

Table Shortcut Menu

Tables Shortcut Menu

Union Member Shortcut Menu (Host File Designer)

Union Shortcut Menu (Host File Designer)

Unions Shortcut Menu (Host File Designer)

See Also
Concepts
Host File Designer Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746118(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705784(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744768(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771897(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744971(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744329(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771451(v=bts.10).aspx

Solution Explorer Shortcut Menu (Host File Designer)
When you select a Transaction Integrator-compatible file in Solution Explorer, the appropriate context-sensitive, or shortcut
menu commands are displayed.

Add: Adds a new item to the project.

Add Host File Library: Brings up the Add New Item dialog.

New Item…:Adds a new item to the project.

Existing Item…: Adds an existing item to the project.

Cut: Cuts the current object to the clipboard and marks the object for deletion.

Paste: Pastes the object currently in the clipboard to the current location.

Open: Opens the selected object using Visual Studio

Open With: Opens the selected object with the specified application.

Remove: Removes the selected object from the Solution.

Rename: Renames the selected object.

Properties: Displays the property browser (if it is not already visible) and displays the selected object properties.

Library Shortcut Menu (Host File Designer)
When you select the Library node in the tree view of Host File Designer, the following shortcut menu commands appear.

Import: Displays the following commands:

Host Definition: Starts the Import COBOL Wizard to help you import COBOL to the interface (Class) definition.

HCD: Imports a Host Column descriptor.

Library: Starts the Library Import Wizard to help you import an existing type library or assembly to the interface (Class)
definition.

Export HCD: Starts the Export Wizard to help you generate a COBOL copy book equivalent to the current library.

Cut: Visible but not available.

Copy: Visible but not available.

Paste: Visible but not available.

Delete: Deletes the current library.

Rename: Renames the library.

Properties: Displays the property browser (if it is not already visible) and displays the library properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Tables Shortcut Menu
When you select the Tables node from the Library tree, the following shortcut menu commands appear:

Add Table: Adds a table to the Tables node.

Cut: Visible but not available.

Copy: Visible but not available.

Paste: pastes a table from the clipboard into the Tables node.

Delete: Visible but not available.

Rename: Visible but not available.

Properties: Displays the property browser (if it is not already visible) and displays the Tables properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Table Shortcut Menu
When you select a table from the Table node in the Library tree, the following shortcut menu commands are available:

Move Up: Moves the selected table up in the tree list.

Move Down: Moves the selected table down in the tree list.

Cut: Copies the selected table to the clipboard and marks it as deleted.

Copy: Copies the selected table to the clipboard.

Paste: Visible but not available.

Delete: Deletes the table.

Rename: Renames the table.

Properties: Displays the property browser (if it is not already visible) and displays the table properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Table Member Shortcut Menu
When you select a table member from the Library tree, the following shortcut menu commands appear:

Move Up: Moves the selected table member up in the tree list.

Move Down: Moves the selected table member down in the tree list.

Cut: Copies the selected table member to the clipboard and marks it as deleted. Not available if there is only one member in
the table.

Copy: Copies the selected table member to the clipboard.

Paste: Not available because table members do not have child elements.

Delete: Deletes the table member. Not available if there is only one member in the table.

Rename: Renames the table member.

Properties: Displays the property browser (if it is not already visible) and displays the table member properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Schemas Shortcut Menu
When you select the Schemas node in the tree view in Host File Designer, the following shortcut menu commands are
displayed.

Add Schema: Adds a schema to the Schemas node.

Cut: Visible but not available.

Copy: Visible but not available.

Paste: Pastes a cut or copied schema into the Schemas node.

Delete: Visible but not available.

Rename: Visible but not available.

Properties: Displays the property browser (if it is not already visible) and displays the Schemas properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Schema Shortcut Menu
When you select a Schema from the Schemas node in the Library tree, the following shortcut menu commands are available:

When you select a union member from the Library tree, the following shortcut menu commands appear:

Move Up: Moves the selected schema up in the tree list.

Move Down: Moves the selected schema down in the tree list.

Cut: Copies the selected schema to the clipboard and marks it as deleted. Not available on schemas that were imported.

Copy: Copies the selected schema to the clipboard.

Paste: Pastes the cut or copied schema member.

Delete: Deletes the schema. Available only on schemas that are manually generated.

Rename: Renames the schema.

Properties: Displays the property browser (if it is not already visible) and displays the schema properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Schema Member Shortcut Menu
When you select a union member from the Library tree, the following shortcut menu commands appear:

Move Up: Moves the selected union member up in the tree list.

Move Down: Moves the selected union member down in the tree list.

Cut: Copies the selected union member to the clipboard and marks it as deleted.

Copy: Copies the selected union member to the clipboard.

Paste: Not available because union members do not have child elements.

Delete: Deletes the union member.

Rename: Renames the union member.

Properties: Displays the property browser (if it is not already visible) and displays the union member properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Unions Shortcut Menu (Host File Designer)
When you select the Unions node in the tree view in HIS Designer, the following shortcut menu commands are displayed.

Add Union: Adds a union to the Unions node.

Cut: Visible but not available.

Copy: Visible but not available.

Paste: Visible but not available.

Delete: Visible but not available.

Rename: Visible but not available.

Properties: Displays the property browser (if it is not already visible) and displays the Unions properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Union Shortcut Menu (Host File Designer)
When you select a union from the Union node in the Library tree, the following shortcut menu commands are available:

Add Union Member: Adds a union member to the selected union.

Cut: Copies the selected union to the clipboard and marks it as deleted.

Copy: Copies the selected union to the clipboard.

Paste: Not available because unions do not have child elements.

Delete: Deletes the union.

Rename: Renames the union.

Properties: Displays the property browser (if it is not already visible) and displays the union properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Union Member Shortcut Menu (Host File Designer)
When you select a union member from the Library tree, the following shortcut menu commands appear:

Move Up: Moves the selected union member up in the tree list.

Move Down: Moves the selected union member down in the tree list.

Cut: Copies the selected union member to the clipboard and marks it as deleted.

Copy: Copies the selected union member to the clipboard.

Paste: Not available because union members do not have child elements.

Delete: Deletes the union member.

Rename: Renames the union member.

Properties: Displays the property browser (if it is not already visible) and displays the union member properties.

See Also
Other Resources
Host File Designer Shortcut Menus

https://msdn.microsoft.com/en-us/library/aa771900(v=bts.10).aspx

Discriminant Value Table Dialog Box (Host File Designer)
Use the Discriminant Value Table dialog box to create the logic for determining which union member returns information to
the calling procedure. You can open the Discriminant Value Table dialog box by viewing the properties of an instanced
union member, clicking DVT, and then clicking the ellipsis (…) button.

Use this To do this

Discriminant
Variable

List the name of the selected union.

Discriminant
type

List the data type that the union will use to create the logic.

Discriminant
Value Table

Create the Discriminant Value Table. The Union Member column lists the union members that will be checked,
in order. The Condition column describes what to check for in order to use that member.

Move Up Move a union member and associated condition up in priority.

Move Down Move a union member and associated condition down in priority.

Delete Delete a union member and associated condition from the DVT. It does not delete the member from the union. Y
ou may add the union member back into the DVT at any time.

OK Save the additions you make to the DVT, and close the dialog box.

Cancel Close the dialog box without saving the changes you made to the DVT.

See Also
Concepts
Host File Designer UI

https://msdn.microsoft.com/en-us/library/aa771705(v=bts.10).aspx

Transaction Integrator Manager Help
Transaction Integrator (TI) Manager provides a graphical user interface for creating, viewing, and managing the host-initiated
processing (HIP) and Windows-initiated processing (WIP) environments. The user interface is accessible through the TI
Manager management console and appears in tree view, property pages, and wizards. You can display Help topics on the
individual user interface controls by clicking Help on the TI Manager wizard page or dialog box or by selecting a control or
node and pressing the F1 key. These individual Help topics are included in this section for easier reference and review.

In This Section

TI Manager Nodes

TI Manager Wizards and Dialog Boxes

TI Manager Properties

https://msdn.microsoft.com/en-us/library/aa771715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745571(v=bts.10).aspx

TI Manager Nodes
The Transaction Integrator (TI) Manager console provides a tree view of the primary configuration elements used in host-
initiated processing (HIP) and Windows-initiated processing (WIP). HIP enables an IBM mainframe program in CICS, IMS, or
MVS to call a COM or .NET object. WIP enables a Windows client application to access an IBM mainframe transaction program
in CICS, IMS, or MVS.

Each major element of the process is represented by a node on the tree in the left pane of the management console. Double-
clicking the node expands it; right-clicking the node displays a shortcut menu.

In This Section

Transaction Integrator (mode) Node

Host-Initiated Processing Node

Computers Node

Computer Node

Application [status] Node

Listener [status] Node

View Node (listener)

Local Environments Node

Local Environment Node

Host Environments Node

Host Environment Node

Security Policies Node

Security Policy Node

Objects Node (HIP)

Object Node (HIP)

View Node (object)

Windows-Initiated Processing Node

Remote Environments Node

Remote Environment Node

Objects Node (WIP)

Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa771932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705483(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771085(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705502(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Transaction Integrator (mode) Node
Use the Transaction Integrator (TI) node to view the basic grouping of elements within the host-initiated processing (HIP)
environment and the Windows-initiated processing (WIP) environment. You can also use the Transaction Integrator (TI)
node to control the operating mode of the TI Manager console.

All computers that have TI installed are able to share the same physical SQL Server configuration database, and TI Manager
allows you to edit the configuration of any computer registered in that database from any TI-enabled computer. In HIP, an
administrator could edit database entries such as the host environments, objects, or views that are shared among computers.
In WIP, an administrator can only edit local WIP settings.

Although multiple system administrators using the TI Manager console can concurrently view, start, or stop any application
and listener on any TI-enabled computer registered in the configuration database, only one authorized administrator at a time
can create or edit the configuration of the TI database.

As long as the TI Manager is not locked, the administrator can create or edit the following items on any TI-enabled computer:

Applications

Listeners on an application

Local environments

Host environments

Security policies

HIP objects

Object views

The administrator can also create or edit remote environments and WIP objects on the local computer, and can start, stop, or
refresh applications and listeners.

See Also
Reference
Host-Initiated Processing Node
Computers Node
Computer Node
Application
Listener

https://msdn.microsoft.com/en-us/library/aa705427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770500(v=bts.10).aspx

Host-Initiated Processing Node
Use the Host-Initiated Processing node to view the major elements used in host-initiated processing (HIP) environment. The
major HIP elements are:

Computers that have the HIP run-time environment installed. The run-time environment is responsible for accepting
incoming requests, instantiating a Microsoft Windows® server object, and returning a reply to the host program that
initiated the request.

Local environments (LEs) that a HIP runtime uses to listen for incoming requests. The LE definitions contain network-
transport specific endpoint identification.

Host environments (HEs) that represent the non-Windows host computers or host environments that deliver requests to
a HIP run-time environment. The HE is used by the HIP runtime to define the code page and the data conversion object to
be used by the HIP runtime when communicating with the host system identified by the HE.

Security policies that define how Windows security credentials are established before the server object is invoked.

Objects that represent the metadata for the server objects that were created through Microsoft Visual Studio®.

Views define the resolution criteria used by TI when directing the call made from a host environment to a server object.
Views restrict access to object methods based on the host environment calling the object and the local environment
receiving the call.

Double-click the Host-Initiated Processing node to expand the node. The right pane displays the following information about
the node:

Name. The name of the major HIP elements.

Right-click the Host-Initiated Processing node to display the following five options:

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of elements as a separate text or Unicode text file.

Properties. Displays the Host-Initiated Processing Properties dialog box and one tabbed property page:

Database. Displays the name of the database.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you

can take.

See Also
Reference
Computers Node
Local Environments Node
Host Environments Node
Security Policies Node
Objects Node (HIP)

https://msdn.microsoft.com/en-us/library/aa745421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746069(v=bts.10).aspx

Computers Node
Use the Computers node to view all the computers that have Transaction Integrator (TI) installed on them and are referenced
in the same TI Manager configuration database (MSHIS60_HIP).

Note
If the computer you are looking for does not appear in this list, the computer might be registered in a different configuration
database. After you have installed TI, run the Microsoft Host Integration Server Configuration Wizard and configure the
new computer to use the same Transaction Integrator configuration database as the other computers. You can select the sam
e configuration database by changing the Server and Database settings on the Database Configurations wizard page.

Double-click the Computers node to expand the node. The right pane displays the following information about the node:

Computer. Displays the name of the HIP-enabled computer.

Right-click the Computers node to display the following four options:

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of computers as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Computer Node

https://msdn.microsoft.com/en-us/library/aa772082(v=bts.10).aspx

Computer Node
Use the Computer node to view and manage the applications running on the computer that is selected in the left pane. An
application represents the execution environment for Windows server objects that are initiated by, or driven from, requests
from the host computer.

Double-click the Computer node to expand the Computer node. The right pane displays the following information about the
application:

Application. Displays the name of the application.

PID. Displays the process ID of the HIPService. 0 indicates that HIPService is not running.

Thread Count. Displays the minimum number of worker threads the runtime always has active.

Maximum Queue Depth. Displays the maximum number of requests that are stored in the queue waiting to be
processed before new requests are rejected.

Comment. Displays additional information about the application.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

The columns should now be in their original order.

Right-click the Computer node to display the following five options:

New.Displays the following menu items:

Empty Application. Launches the New Application dialog box, which allows you to define an application that
does not have executable objects associated with it.

Configured Application. Launches the New Application Deployment Wizard, which walks you through the
steps of creating the application, local environment, host environment, and objects.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of applications as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Application

https://msdn.microsoft.com/en-us/library/aa753925(v=bts.10).aspx

Application
Use the application [status] node to start or stop an application or to manage the listeners for an application. An application
represents the execution environment for Windows server objects that are initiated by, or driven from, requests from the host
computer. An application can host more than one server object and can have more than one listening endpoint associated with
it.

The term shown in brackets at the end of the node indicates status of the application:

Stopped. The execution environment and Windows Server 2003 service for the application and its objects are inactive.

Incomplete. The application is missing one or more objects and, therefore, is not available.

Starting. TI Manager is starting the execution environment and Windows Server 2003 service for the application and its
objects.

Active. The execution environment for the application is running and the listeners and local environments are active.

Double-click the applications [status] node to expand the node. The right pane displays the following information about the
listeners:

Listener.The name of the listener.

Type. The type of network (either TCP/IP or SNA).

Listening Address. For a TCP/IP network, the local host. For an SNA network, the local LU defined in the local
environment.

Endpoints. The endpoints used to communicate with the host.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

Note
If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Application node to view the following 12 options:

Tracing. Launches the application Trace Options dialog box. You can select one or more of the following categories for
tracing and select one or more options within a category:

General. Provides high-level information about the end-to-end application processing.

Transport. Provides detailed connection information about the activities on the SNA or TCP network.

Convert. Provides detailed information about the data conversion between COM and .NET data on the servers
and COBOL or Report Program Generator (RPG) data on the host.

Read Lib. Provides information about the contents of the type library; used to augment the information in the
Convert trace.

Flow Control Proxy. Provides detailed information about object instantiation, state transitions, and method
invocation.

Reload Definitions. Performs a dynamic refresh of the application listener's endpoints and resolution tables. An
application gets a snapshot of the configuration database at start-up. Any subsequent changes to the configuration do
not affect the application until the definitions are reloaded. When you select Reload Definitions, the application re-
reads all configuration information from the configuration database and applies it immediately. All new requests are
processed using the updated resolution information. Working requests that were in progress at the time Reload
Definitions was clicked are not affected by the update. The resolution information remains unchanged until the work
request is completely processed.

Start. Starts the host-initiated processing (HIP) environment for the selected application. Any listeners available for auto-
start, as defined on the application property page of a listener that is associated with the application, are started when the
application is started. After the application is started, Start is disabled and Stop is enabled.

Stop. Stops the HIP environment for the selected application. All listeners are stopped when the application is stopped.
All pending work is halted immediately and all listening activity is terminated immediately. After the application is
stopped, Stop is disabled and Start is enabled.

New. Displays a list of the following menu items:

Listener. Launches the Local Environment dialog box for you to define a new listening point.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Delete. Deletes the application from the computer. You can delete an application if it is stopped. The deleted item is
removed from the specific computer it was defined on and from the configuration database.

Rename. Renames the selected application. The new name is reflected across all elements of the HIP console.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of applications as a separate text or Unicode text file.

Properties. Displays the application Properties dialog box and three tabbed property pages:

General

Advanced

.NET assembly path

Use the property pages to view or change the properties of the application.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Application Properties)
Advanced Tab (Application Properties)
.NET Assembly Path Tab (Application Properties)

https://msdn.microsoft.com/en-us/library/aa771738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705193(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705531(v=bts.10).aspx

Listener
Use the listener [status] node to start or stop a listener and to determine what views are associated with the listener.

The term shown in brackets at the end of the node indicates status of the listener:

Stopped. The execution environment and Windows Server 2003 service for the listener and its views are inactive.

Incomplete. The listener is missing one or more views or determinants and, therefore, is not available.

Unavailable. The listener was defined after the application was started.

Starting. TI Manager is starting the execution environment and Windows Server 2003 service for the application and its
objects.

Active. The execution environment for the application is running and the listeners and local environments are active.

Double-click the listener [status] node to expand the node. The right pane displays the following information about the
listener:

View. The name of the view.

LE Name. The name of the local environment.

Method Count. The number of methods.

HE Count. The number of host environments.

Comment. Additional information about the listener.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

Note
If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click on Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the listener [status] node to display the following 10 options:

Start. Starts the host-initiated processing (HIP) service listening on all endpoints defined for the local environment. The
HIP application is then ready to receive incoming host requests and to execute methods in accordance with the method

resolution criteria. After the listener is started, Start is disabled and Stop is enabled. After the listener is started, [started]
appears to the right of the local environment name in the left pane.

Stop.Stops the HIP service listening on all endpoints defined for the local environment. The HIP application no longer
accepts, rejects, services, or queues incoming host requests. After the listener is stopped, Stop is disabled and Start is
enabled. After the listener is stopped, [stopped] appears to the right of the local environment name in the left pane.

Pause. Temporarily suspends the HIP service listening on all endpoints defined for the local environment. The application
continues to execute work in progress and work items queued for execution, but it no longer accepts or queues incoming
requests. A number of requests are queued internally by the low-level network transport components (for example, for
TCP, Windows XP stores up to 5 requests while Microsoft Windows Server™ 2003 stores up to 200 requests by default).
After the listener is resumed, the pending requests are delivered to the listener. Depending on the number of the
processing queue entries available, some of these requests might be finally rejected by the listener. After the listener is
paused, Pause is disabled, Resume is enabled, and [paused] appears to the right of the local environment name in the
left pane.

Resume. Starts the HIP service listening again on all endpoints defined for the local environment. The HIP application is
then ready to receive incoming host requests and to execute methods as defined by the method resolution criteria. After
the listener resumes, Resume is disabled, Pause is enabled, and [started] appears to the right of the local environment
name in the left pane.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Delete. Deletes the application from the computer. You can delete an application if it is stopped. The deleted item is
removed from the specific computer it was defined on and from the administrative data store.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of views as a separate text or Unicode text file.

Properties. Displays the listener Properties dialog box and three tabbed property pages:

General

Endpoints

Application

Note
When viewed from this node, the general and endpoint property pages are read-only. If you want to change a general or end
point property, right-click the specific local environment Node under the Local Environments Node, and then left-click P
roperties on the shortcut menu.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
View Node (listener)
General Tab (Listener Properties)
Endpoints Tab (TCP/IP Listener Properties)
Endpoints Tab (SNA Listener Properties)
Application Tab (Listener Properties)

https://msdn.microsoft.com/en-us/library/aa770472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754252(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746244(v=bts.10).aspx

View Node (listener)
Use the view node to determine what methods and host environments are associated with the view.

Double-click the viewnode to expand the node. The right pane displays either the host environments (HE) associated with the
object view or the methods on the view, depending on the choice you select on the shortcut menu.

Right-click the view node to display the following six options:

List.Displays the following menu items:

HE Associations.The host environments associated with the view on the application.

Methods.The methods associated with the view.

A view can have one or more host environments and one or more methods associated with it. To accommodate listing all
the properties of a view, this shortcut menu item allows you to select the properties to be visible in the list view.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of views as a separate text or Unicode text file.

Properties. Displays the view Properties dialog box and three tabbed property pages:

General

Host environments

Methods

Note
When viewed from this node, the property pages are read-only. If you want to change a property, right-click the view Node
under the object Node, and then left-click Properties on the shortcut menu. The properties viewed on those pages can be c
hanged.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Host Environment Associations Listing
Methods Listing
General Tab (View Properties)
Host Environments Tab (View Properties)
Methods Tab (View Properties)
View Node (object)

https://msdn.microsoft.com/en-us/library/aa770822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754053(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx

Local Environments Node
Use the Local Environments node to manage local environments. A local environment defines how a remote environment
contacts the host-initiated processing (HIP) runtime.

Double-click the Local Environments node to expand the node. The right pane displays the following information about the
local environments:

Local Environment. The name of the local environment.

Type. The type of network used to communicate with the host environment (either TCP/IP or SNA).

Transport Class. The class of the transport object.

Endpoint Manager. The IP address of the local host (for a TCP/IP network); the name of the LU alias (for an SNA
network).

Endpoints. The endpoints used to communicate with the host.

Comment. Additional information about the local environment.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

Note
If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click on Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Local Environments node to view the following five options:

New.Displays the following menu items:

Local environment. Launches the New Local Environment Wizard.

View. Displays the following menu item:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of local environments as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
New Local Environment Wizard
Local Environment Node

https://msdn.microsoft.com/en-us/library/aa705223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771447(v=bts.10).aspx

Local Environment Node
Use the local environment node to view and manage the endpoints provided by the local environment.

Double-click the local environmentnode to expand the node. The right pane displays the following information about the
local environment selected in the left pane:

Endpoint. The endpoints used to communicate with the host.

Right-click the local environment node to display the following five options:

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of local environments as a separate text or Unicode text file.

Properties. Displays the view Properties dialog box and three tabbed property pages:

General

Endpoints

Application

Use the property pages to view or change the properties of the local environment.

Note
You can also view the local environment Properties dialog from within the application node. However, all LE properties ar
e read-only when viewed from an application. The Application tab appears on the property page when the dialog box is vie
wed from an application.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Local Environment Properties)
Endpoints Tab (TCP/IP Local Environment Properties)
Endpoints Tab (SNA Local Environment Properties)

https://msdn.microsoft.com/en-us/library/aa771280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705614(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744947(v=bts.10).aspx

Host Environments Node
Use the Host Environments node to manage host environments. The host environment defines which host environments can
contact the HIP runtime.

Double-click the Host Environments node to expand the node. The right pane displays the following information about the
node:

Host Environment.The names of the host environments.

Type. The type of network used to communicate with the host environment (either TCP/IP or SNA).

Data Conversion. The data conversion routine used.

Send Time-out. The number of seconds the servicing HIP application waits before it terminates the request if the
expected data is not received.

Receive Time-out. The number of seconds the servicing HIP application waits before it terminates the receive function if
the expected data is not received.

Code Page. The number of the code page used to transform the incoming and outgoing data to a form that can be used
by the host application program to represent the character data.

Remote Endpoint Manager. The IP address of the host or the host name registered in the DNS (for a TCP/IP network);
the LU name associated with the host system (for an SNA network).

Comment. Additional information about the host environment.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click on Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Host Environments node to view the following five options:

New.Displays the following menu item:

Host environment. Launches the New Host Environment Wizard.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display

each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of host environments as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
New Host Environment Wizard

https://msdn.microsoft.com/en-us/library/aa770947(v=bts.10).aspx

Host Environment Node
Use the Host Environment node to manage the properties of a host environment.

Right-click the Host Environment node to view the following three options:

Refresh. Redraws the screen to show any updates.

Properties. Displays the host environment Properties dialog box and four tabbed property pages:

General

Network

Conversion

Default

Use these property pages to view or change the properties of the host environment.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Host Environment Properties)
Network Tab (Host Environment Properties)
Conversion Tab (Host Environment Properties)
Default Tab (Host Environment Properties)

https://msdn.microsoft.com/en-us/library/aa771278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746119(v=bts.10).aspx

Security Policies Node
Use the Security Policies node to view and manage security policies. Security policies define how Windows security
credentials are established before the server object is run. The security credentials can be based on the user IDs and passwords
delivered to HIP by either the client application program or ENTSSO.

Double-click the Security Policies node to expand the node. The right pane displays the following information about the
node:

Security Policy. The name of the security policy.

Credentials Source.Indicates whether the credentials used are host-based or application-based.

Group Application.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click on Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Security Policies node to display the following five options:

New.Displays the following menu item:

Security Policy. Launches the Security Policy Wizard.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of security policies as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
New Security Policy Wizard
Security Policy Node

https://msdn.microsoft.com/en-us/library/aa745018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771085(v=bts.10).aspx

Security Policy Node
Use the security policy node to manage the security policy.

Double-click the security policynode to expand the node. The right pane displays the following information about the security
policy selected in the left pane:

Affiliate application. The name of the SSO affiliate application to be queried for access to the Windows credentials
needed to execute methods on the server object.

Right-click the security policynode to display the following five options:

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of security policies as a separate text or Unicode text file.

Properties. Displays the security policy Properties dialog box and three tabbed property pages:

General

Credentials Source

Mapping

Use the property pages to view or change the properties of the security policy.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Security Policy Properties)
Credentials Source Tab (Security Policy Properties)

https://msdn.microsoft.com/en-us/library/aa772108(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745625(v=bts.10).aspx

Objects Node (HIP)
Use the Objects node to view and manage COM and .NET Framework objects accessible from a host. Objects contain the
metadata definitions for the server objects created as TI Projects in Visual Studio.

Double-click the Objects node to expand the node. The right pane displays the following information about the node:

Object. The name of the object entry. The default name is the ProgID (for COM) or Namespace.Interface (for .NET), but
you can change the name on the object context menu.

Type. The type of object.

Component. The programming identifier of the COM object or the interface name of the .Net object.

Method Count. The number of methods on the object.

Comment. Additional information about the object.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Colu
mns command on the shortcut menu, the order of the column headings might not be correct after you close and re-op
en TI Manager. The next time you open TI Manager, the values in the columns are displayed in the new order you set, b
ut the column headings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click on Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Objects node to display the following five options:

New.Displays the following menu item:

Object. Launches the HIP Object Wizard.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of objects as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Object Wizard (for HIP)
Object Node (HIP)

https://msdn.microsoft.com/en-us/library/aa705527(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705384(v=bts.10).aspx

Object Node (HIP)
Use the object node to create and manage object views. An object view is a representation of the server object itself. A view can
include one or more methods of an object, and not all methods have to be defined in a view. You can define one or more views
for an object, which enables you to restrict the methods of an object to specific endpoints and host environment pairs.

Double-click the objectnode to expand the node. The right pane displays the following information about the view selected in
the left pane:

View. The name of the view.

LE Name. The name of the local environment.

Security Policy. The name of the security policy.

Method Count. The number of methods.

HE Count. The number of host environments.

Comment. Additional information about the view.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the objectnode to display the following six options:

New. Displays the following menu item:

View. Launches the New Object View Wizard.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of objects as a separate text or Unicode text file.

Properties. Displays the object Properties dialog box and two tabbed property pages:

General

Methods

Use these property pages to view or change the properties of the object.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Object Properties)
Methods Tab (Object Properties)
New Object View Wizard

https://msdn.microsoft.com/en-us/library/aa744717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745176(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745428(v=bts.10).aspx

View Node (object)
Use the view node to restrict access to object methods based on the host environment calling the object and the local
environment receiving the call. You also use the view node to define the resolution criteria used to direct the call made from a
host environment to a server object.

Double-click the view node to expand the node. The right pane displays either the host environments (HE) associated with the
object view or the methods on the object view, depending upon the choice you select on the shortcut menu.

Right-click the view node to display the following seven options:

List.An object view can have one or more host environments and one or more methods associated with it. To
accommodate a list of all the properties of an object view, this shortcut menu item enables you to select which properties
are to be viewed in the list view.

HE Associations.Displays the host environments associated with the object view on the application.

Methods.Displays the methods associated with the object view.

Delete. Deletes the object view.

Rename. Renames the selected object view. The new name is reflected across all elements of the HIP console

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of views as a separate text or Unicode text file.

Properties. Displays the view Properties dialog box and three tabbed property pages:

General

Host environments

Methods

Use these property pages to view or change the properties of the object view.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Host Environment Associations Listing
Methods Listing
General Tab (View Properties)
Host Environments Tab (View Properties)
Methods Tab (View Properties)

https://msdn.microsoft.com/en-us/library/aa770822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754053(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705435(v=bts.10).aspx

Host Environment Associations Listing
Use the host environment associations listing to view the host environments associated with the view.

This listing displays the following information about the host environment:

Host Environment.The name of the host environment.

Type. The type of network used to communicate with the host environment (either TCP/IP or SNA).

Remote Endpoint Manager.The IP address of the host or the host name registered in the DNS (for a TCP/IP network);
the LU name associated with the host system (for an SNA network).

Comment.Additional information about the host environment.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the host environmentname to display the following four options:

Delete. Deletes the host environment association (not the host environment itself). You can delete the host environment
association anytime.

Refresh. Redraws the screen to show any updates.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Host Environment Properties)
View Node (object)
Methods Listing

https://msdn.microsoft.com/en-us/library/aa771278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746091(v=bts.10).aspx

Methods Listing
Use the methodslistingto view the properties of the methods on the object view.

This listing displays the following information about the method:

Method. The name of the method.

Endpoint. The endpoint used to communicate with the host.

Resolution Type. The type of conflict to be conducted in case of a conflict.

Msg Handler.

Resolution String.

Position. The starting point in the data stream where the TI runtime looks for the data defined in the resolution data field
to determine what method is to be executed.

Comment. Additional information about the view.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the methodname to view the following two options:

Refresh Redraws the screen to show any updates.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Host Environment Associations Listing
View Node (object)

https://msdn.microsoft.com/en-us/library/aa770822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx

Windows-Initiated Processing Node
Use the Windows-Initiated Processing node to view the major elements used in Windows-initiated processing (WIP)
environment. The major WIP elements are:

Remote environments

Objects

Double-click the Windows-Initiated Processing node to expand the node. The right pane displays the following information
about the node:

Name. The name of the major WIP elements.

Right-click the Windows-Initiated Processing node to view the following five options:

Tracing. Launches the Windows-Initiated Processing Trace Options dialog box. You can select one or more of the
following categories for tracing and select one or more options within a category:

General. Provides high-level information about the end-to-end global processing.

Transport. Provides detailed connection information about the activities on the SNA or TCP network.

Convert. Provides detailed information about the data conversion between COM and .NET data on the servers
and COBOL or RPG data on the host.

Read Lib. Provides information about the contents of the type library; used to augment the information in the
Convert trace.

Proxy. Provides detailed information about object instantiation, state transitions, and method invocation.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of elements as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

In This Section

Remote Environments Node

Remote Environment Node

Objects Node (WIP)

Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Remote Environments Node
Use the Remote Environments node to manager remote environments. A remote environment defines the characteristics of
the non-Windows host environment that receives requests from Windows-initiated processing (WIP) components.

Double-click the Remote Environments node to expand the node. The right pane displays the following information about
the node:

Remote Environment. The names of the remote environment.

Type. The type of remote environment.

Comment. Additional information about the remote environment.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Remote Environments node to display the following five options:

New. Displays the following menu items:

Remote Environment. Launches the New Remote Environment Wizard.

Capture RE.Launches the New Remote Environment Wizard to create a remote environment type that
captures responses and saves those responses in a recording file. After being saved, the responses can be played
back using the playback remote environment.

Playback RE.Launches the New Remote Environment Wizard to create a remote environment type that plays
back responses stored in a recording file.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of remote environments as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
New Remote Environment Wizard
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa744919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

Remote Environment Node
Use the remote environment node to view and manage a remote environment.

Double-click the remote environment node to expand the node. The right pane displays the following information about the
remote environment selected in the left pane:

Component. The name of the component.

Type.

Comment. Additional information about the remote environment.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the remote environment node to display the following nine options:

Activate.

Deactivate.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Delete. Deletes the remote environments selected in the remote environments node. The deleted item is removed from
the remote environments node and from the administrative data store. If an RE is deleted while it still has objects
assigned to it, the objects become unassigned.

Rename. Renames the selected remote environment. The new name is reflected across all the elements of the WIP
console.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of remote environments as a separate text or Unicode text file.

Properties. Displays the remote environment Properties dialog box and several tabbed property pages:

General

TCP/IP

LU 6.2

MQ Series

Target

Recording

Locale

Security

CICS

IMS

Use these property pages to view or change the properties of the remote environment.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Remote Environment Properties)
TCP/IP Tab (Remote Environment Properties)
LU6.2 Tab (Remote Environment Properties)
Target Tab (Remote Environment Properties)
Recording Tab (Remote Environment Properties)
Locale Tab (Remote Environment Properties)
Security Tab (Remote Environment Properties)

https://msdn.microsoft.com/en-us/library/aa745189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745613(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705772(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771891(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770330(v=bts.10).aspx

Objects Node (WIP)
Use the Objects node to view and manage the objects.

Double-click the Objects node to expand the node. The right pane displays the following information about the node:

Component. The name of the component.

Type. The type of component.

RE Type. The type of remote environment.

Application Host. The name of the COM+ application or IIS virtual directory the component is assigned to.

Remote Environment. The name of the remote environment.

Comment. Additional information about the component.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the Objects node to display the following five options:

New. Displays the following menu item:

Object. Launches the WIP Object Wizard.

View. Displays the following menu items:

Add/Remove Columns. Allows you to choose the properties that are displayed in the list view. You can display
each property as a separate column in the right pane.

Large Icons. Displays large icons for items in the right pane.

Small Icons. Displays small icons for items in the right pane.

List. Displays only the small icons and the names of the nodes in the right pane.

Detail. Displays the small icons and the properties of the nodes in the right pane.

Customize. Allows you to change the options to show or hide items displayed in the right pane.

Refresh. Redraws the screen to show any updates.

Export List. Allows you to save the list of objects as a separate text or Unicode text file.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
Object Wizard (for WIP)
Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa771289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Object Node (WIP)
Use the object node to manage an object.

Double-click the object node to expand the node. The right pane displays the following information about the node:

Method. The name of the methods on the object.

Transaction/Program.

Important
If you view the list in the right pane of TI Manager and change the order of the columns using the Add/Remove Columns c
ommand on the shortcut menu, the order of the column headings might not be correct after you close and re-open TI Manag
er. The next time you open TI Manager, the values in the columns are displayed in the new order you set, but the column hea
dings are in the their default order.

If you observe that the column headings are no longer in the order you set:

1. Right-click the node, point to View, and then click Add/Remove Columns.

2. On the Add/Remove Columns dialog box, click Restore Defaults.

3. Click a different node, then click the node you were just working on.

Note
The columns should now be in their original order.

Right-click the object node to display the following four options:

Delete. Deletes the selected object.

Refresh. Redraws the screen to show any updates

Properties. Displays the object Properties dialog box and two tabbed property pages:

General

Hosting

Use these property pages to view or change the properties of the object.

Help. Displays a Help topic (this topic) that explains the items that appear in the TI Manager console and the actions you
can take.

See Also
Reference
General Tab (Object Properties)
Hosting Tab (COM Object Properties)

https://msdn.microsoft.com/en-us/library/aa705526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705569(v=bts.10).aspx

TI Manager Wizards and Dialog Boxes
Transaction Integrator (TI) Manager provides wizards and special dialog boxes to help you complete various tasks.

The following wizards help you with host-initiated processing (HIP).

New Application Dialog Box

Credentials for Service <application name> Dialog Box

New Application Deployment Wizard

Define Implementation Characteristics for the .NET Object Wizard Page

New Local Environment Wizard

New Host Environment Wizard

New Security Policy Wizard

Object Wizard (for HIP)

New Object View Wizard

Local Environment Dialog Box

Reload TIMs Wizard

The following wizards help you with Windows-initiated processing (WIP):

New Remote Environment Wizard

Object Wizard (for WIP)

https://msdn.microsoft.com/en-us/library/aa771883(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754418(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770820(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705527(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745390(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771289(v=bts.10).aspx

New Application Dialog Box
Use the New Application dialog box to define an application that does not have executable objects associated with it.

Use this To do this
Compute
r name

View the name of the computer where the application runs.

Applicati
on

Type the name of the application. The name can be a maximum of 25 alpha-numeric characters. The first character i
n the name must be a letter, and the name cannot contain any embedded spaces.

Commen
t

Type a comment that provides additional information about the use of the application in the HIP environment. The c
omment can be a maximum of 259 alpha-numeric characters.

See Also
Other Resources
TI Manager Wizards and Dialog Boxes

https://msdn.microsoft.com/en-us/library/aa770737(v=bts.10).aspx

Credentials for Service <application name> Dialog Box
Use the Credentials for Service <application name> dialog box to identify the security credentials used by the application.

Use this To do this
User ID Type the user ID of the security credentials.

Password Type the password of the security credentials.

See Also
Other Resources
TI Manager Wizards and Dialog Boxes

https://msdn.microsoft.com/en-us/library/aa770737(v=bts.10).aspx

New Application Deployment Wizard
The New Application Deployment Wizard helps you add a new application by guiding you through the definitions of the
application, local environment, host environment, and objects. The wizard can be used to define additional local environments,
host environments, or objects and link them to existing definitions. You can access the Wizard from the shortcut menu on the
computer node in the TI Manager console tree.

In This Section

Welcome to the New Application Deployment Wizard Page

Create an Application Wizard Page

Configure a New Local Environment Wizard Page

Configure Local Environment Endpoints (TCP/IP) Wizard Page

Configure Local Environment Endpoints (SNA) Wizard Page

Configure a New Host Environment Wizard Page

Configure Host Environment Default Method Resolution Wizard Page

Configure a New Security Policy Wizard Page (in the New Application Deployment Wizard) (1)

Configure a New Security Policy Wizard Page (in the New Application Deployment Wizard) (2)

Specify or Locate an Object Wizard Page

Configure a New Object View Wizard Page

Configure the New View Wizard Page

Method Resolution Criteria Dialog Box (in the New Application Deployment Wizard)

Define Implementation Characteristics for the .NET Object Wizard Page

Completing the New Application Deployment Wizard Page

https://msdn.microsoft.com/en-us/library/aa705543(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745373(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745872(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770513(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753929(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770820(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704994(v=bts.10).aspx

Welcome to the New Application Deployment Wizard Page
Use the Welcome to the New Application Deployment Wizard page to view the definition of an application deployment
and to control whether the welcome page is displayed the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Create an Application Wizard Page

https://msdn.microsoft.com/en-us/library/aa705258(v=bts.10).aspx

Create an Application Wizard Page
Use the Create an Application wizard page to identify the application to be deployed and provide an additional description.
Type the name of the new application.

Use t
his

To do this

Appl
icati
on

Type the name for the application. The name can be a maximum of 25 alpha-numeric characters. The first character in th
e name must be a letter, and the name cannot contain any embedded spaces. The name cannot be the same as that of a
n existing application.

Com
men
t

Type any additional information about the application. The comment can be a maximum of 259 Unicode characters.

See Also
Reference
Configure a New Local Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745373(v=bts.10).aspx

Configure a New Local Environment Wizard Page
Use the Configure a New Local Environment wizard page to identify the basic characteristics of the new local environment.
Select an existing local environment from the dropdown list or type the name of the new local environment. To define its
characteristics, select a specific network type and transport class.

Use this To do this
Local envir
onment

Type the name for the local environment. The name can be a maximum of 259 alpha-numeric characters. The na
me cannot be the same as that of an existing local environment.

Network t
ype

Select the type of network used to communicate with the host.

Transport
class

Select the class of the transport object. The list changes according to the selected Network type.

Endpoint
manager

For a TCP/IP network, this is always set to the local host and disabled. For an SNA network, type the name of the L
U alias. In either case, the name can be a maximum of 259 Unicode characters.

See Also
Reference
Configure Local Environment Endpoints (TCP/IP) Wizard Page
Configure Local Environment Endpoints (SNA) Wizard Page

https://msdn.microsoft.com/en-us/library/aa772031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771285(v=bts.10).aspx

Configure Local Environment Endpoints (TCP/IP) Wizard Page
Use the Configure Local Environment Endpoints (TCP/IP)wizard page to define the endpoints used to communicate with
the host. To define the TCP/IP ports or service names for the local environment, type a port number or name, and then click
Add.

Use this To do this
Local e
nviron
ment

View the name of the local environment. The name was entered on a previous page of the wizard. To change the nam
e, click Back.

New po
rt or ser
vice na
me

Type the port number or service name of the local environment. The port number can be a maximum of 5 numeric c
haracters and must be greater than 0 and less than 32768. The service name can be a maximum of 259 alpha-numer
ic characters. The format of the name must conform to the WinSock Service Name convention. The port number or n
ame cannot be the same as that of an existing number or name in the Defined ports and service names.

Add Click to validate the port number or service name you typed. If the number or name is valid, it appears in Defined p
orts and service names.

Defined
ports a
nd servi
ce nam
es

View the existing valid ports and services names for the local environment.

Remov
e

Click to remove a selected port number or service name from the Defined ports or service names available for use
in the local environment.

See Also
Reference
Configure a New Host Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa704802(v=bts.10).aspx

Configure Local Environment Endpoints (SNA) Wizard Page
Use the Configure Local Environment Endpoints (SNA)wizard page to define the endpoints used to communicate with the
host. Type a transaction program name or mirror transaction ID, and then click Add.

Use this To do this
Local envi
ronment

View the name of the local environment. The name was entered on a previous page of the wizard. To change the n
ame, click Back.

New trans
action pro
gram nam
e

Type the transaction program (TP) name or the link mirror transaction ID of the local environment. The name or ID
can be a maximum of 64 alphabetic characters. The format of the name must conform to the IBM SNA Transaction
Program Names convention. The name or ID cannot be the same as that of an existing name or ID in the Defined
transaction program names.

Add Click to validate the transaction program (TP) name or the link mirror transaction ID you typed. If the TP name or t
he link mirror transaction ID is valid, it appears in Defined transaction program names.

Defined tr
ansaction
program n
ames

View the existing TP names or the link mirror transaction IDs for the local environment.

Remove Click to remove one or more TP names or link mirror transaction IDs selected from the Defined transaction pro
gram names available for use in the local environment.

See Also
Reference
Configure a New Host Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa704802(v=bts.10).aspx

Configure a New Host Environment Wizard Page
Use the Configure a New Host Environment wizard page to describe the basic host characteristics that are concerned with
data formats. Type the name of the host environment, and then type or select the attributes of the host.

Use th
is

To do this

Host e
nviro
nmen
t

Type the name for the host environment. The name can be a maximum of 259 alpha-numeric characters. The name ca
nnot be the same as that of an existing host environment.

Caution
If the host environment is located on the same computer as the HIP application, and the client program uses either ho
st name localhost or IP address 127.0.0.1 to connect to the HIP application, the host environment should also use lo
calhost or 127.0.0.1 instead of the real computer name or IP address. Failure to set the names or IP addresses identi
cal for the host and client prevents the HIP runtime from delivering calls between the two, and causes the application
to fail.

Data c
onver
sion

Select the data conversion routine used.

Host c
ode p
age

Select the code page used by the host. Each available code page is listed by its symbolic value.

Netw
ork ty
pe

Select the type of network used to communicate with the host. The choices are:

TCP/IP (default)

SNA

Remo
te end
point
mana
ger

The IP address of the host or the host name registered in the DNS (for a TCP/IP network); the LU name associated with
the host system (for an SNA network). In either case, the name can be a maximum of 259 alpha-numeric characters.

See Also
Reference
Configure Host Environment Default Method Resolution Wizard Page

https://msdn.microsoft.com/en-us/library/aa705748(v=bts.10).aspx

Configure Host Environment Default Method Resolution
Wizard Page

Use the Configure Host Environment Default Method Resolution wizard page to identify the default characteristics of the
typical interaction of the applications programs on the host with the application programs on the server. Select the default
method resolution criteria for the host.

Use th
is

To do this

Host e
nviron
ment

View the name of the host environment. The name was entered on a previous page of the wizard. To change the name,
click Back.

Defaul
t meth
od res
olutio
n crite
ria

View the definition of the default behavior for setting up the method resolution criteria for a new object view.

Type Select the type of resolution to be conducted:

Endpoint: The endpoint resolution type is the simplest means of resolving a request to a method. A data stream direct
ed to a port always executes a single method on a view. This model is considered "raw sockets," and represents a singl
e synchronous exchange of data. When a new view is created and associated with the HE, the method resolves to the fi
rst endpoint defined in the associated local environment. Selecting Endpoint disables the Object, Input format and
Output format boxes and clears their contents.

Transaction Request Message (TRM): The TRM resolution type is specific to the IBM CICS Concurrent Server
model and the Microsoft variant, MSLink model. It represents a double exchange sequence. The first exchange re
presents the transaction request; the second exchange represents the request and reply data. When a new view i
s created and associated with the HE, the method resolves to the first endpoint defined in the associated local en
vironment. Selecting Transaction Request Message (TRM) enables the Object, Input format, and Output for
mat boxes.

Enhanced Listener Message (ELM):

Data: Similar to Endpoint in that it adds the ability to identify a string in the data stream directed to a port that i
s used to associate the request with a specific method in the view. This model is considered "raw sockets." It repr
esents a single synchronous exchange of data. When a new view is created and associated with the HE, the meth
od resolves to the first endpoint defined in the associated local environment. Selecting Data disables the Object,
Input format, and Output format boxes and clears their contents.

Link to Program Name: Select Link to Program Name to resolve all the methods of a new object view using t
he data information specified when the object view was created. When a new view is created and associated with
the HE, the method resolves to the Link Tran ID field in the default HE resolution. Selecting Link to Program Na
me disables the Object, Input format, and Output format boxes and clears their contents.

Object Select the object. The list of objects is populated from the Help string in the interface definition of objects defined as TR
M resolution handlers. Microsoft provides three TRM resolution handlers:

Microsoft HIS - TRM Handler MS Link (default)

Microsoft HIS - TRM Handler MSCCS

Microsoft HIS - TRM Handler IBMCCS

Input f
ormat

Select the format of the data stream that represents the TRM sent by the client host application program. The list of TR
M input formats is determined by the user-defined type definitions in the MicrosoftTRMDef.tim file. The Input format
box is blank by default, but three input formats are defined that match the names of the resolution handler Object:

TRMINMSLink

TRMINMSCCS

TRMINIBMCCS

Outpu
t form
at

Select the format of the data stream that represents the reply to the TRM that was sent by the host application progra
m. TI formats a data stream that is returned to the host client application program in the form defined by the output T
RM. The list of TRM output formats is determined by the UDT definitions in the MicrosoftTRMDef.tim file. The Output
format box is blank by default, but three output formats are defined that match the names of the resolution handler O
bject:

MS Link Reply Format

IBM Listener Type 1 Reply Format

IBM Listener Type 2 Reply Format

Link Tr
an ID

View or select an existing TP name or the link mirror transaction ID for the local environment.

See Also
Reference
Configure a New Security Policy Wizard Page (in the New Application Deployment Wizard) (1)

https://msdn.microsoft.com/en-us/library/aa746242(v=bts.10).aspx

Configure a New Security Policy Wizard Page (in the New
Application Deployment Wizard) (1)

Use the first Confige a New Security Policy wizard page to identify the security policy and the source of the credentials. Type
the name of the security policy, and then select the source for the credentials.

Use this To do this
Security p
olicy

Type the name for the security policy. The name can be a maximum of 259 Unicode characters (alphabetic, numeri
c, space, and special). The name cannot be the same as the name of an existing security policy. The name for the n
ew security policy is a required field; you will receive an error message if you click Next without providing a name
. The name is used to associate the security policy with an object view in other wizard pages and dialog boxes.

Credential
s source us
ed to invo
ke the serv
er

Identify the type or source of credentials that host-initiated processing will associate with the thread when the met
hod on the server object is executed.

Host-initia
ted Single
Sign-on

Select this option to use host user ID and password. This option is automatically disabled if Single Sign-on (SSO) i
s not installed or not available.

Windows
credential
s of the HI
P applicati
on

Select this option to use Windows user ID and password specified on the HIP NT application service. This option is
automatically selected if SSO is not installed or not available.

See Also
Reference
Configure a New Security Policy Wizard Page (in the New Application Deployment Wizard) (2)

https://msdn.microsoft.com/en-us/library/aa745872(v=bts.10).aspx

Configure a New Security Policy Wizard Page (in the New
Application Deployment Wizard) (2)

Use the second Configure a New Security Policy wizard page to identify the source of the host user ID and password and
describe how they are translated into Windows-based credentials. This wizard page appears only if Host-initiated Single
Sign-on (SSO)is selected on the previous Configure a new security policy wizard page.

Use this To do this
Securit
y policy

View the name of the security policy.

Affiliat
e applic
ation

Select the SSO affiliate application to be queried to gain access to the Windows credentials needed to execute metho
ds on the server object. The list displays all the affiliate applications defined in the SSO. The display name of the affilia
te application is a concatenation of the affiliate application name and description, separated by a hyphen. The selecte
d application will be added to the security policy.

Note
The dropdown list and Next are disabled if SSO is not installed or is not available.

Single S
ign-on
mappin
g use

Specify the credentials to be used when mapping to Single Sign-on.

Default
credent
ials

Select this option to enter the user ID and password used if the request from the host does not contain a user ID and
password or the user ID and password are set to spaces or nulls. This option enables the Group application and Us
er boxes.

Group a
pplicati
on

The default user group provides the default user ID and password.

User Type or select the host user name used in the lookup call to SSO.

Note
The dropdown list and Next are disabled if SSO is not installed or is not available.

See Also
Reference
Specify or Locate an Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa746007(v=bts.10).aspx

Specify or Locate an Object Wizard Page
Use the Specify or Locate an Object wizard page to identify objects associated with the application. Select an object from the
list, or, to create a new object, type the new object name.

Use this To do this
Object Select the name of the object. To create a new object, type the new object name. If you select the Transaction Integrat

or metadata (TIM) file first, the name is populated with the ProgID or Namespace.Interface defined in the TIM.

Registe
red TIM
s

Type the full path name, including the *.tim extension, to a TIM file, select a recently used file from the list, or click Bro
wse and navigate to the file.

See Also
Reference
Configure a New Object View Wizard Page

https://msdn.microsoft.com/en-us/library/aa770513(v=bts.10).aspx

Configure a New Object View Wizard Page
Use the Configure a New Object View wizard page to identify the object view associated with the application. Select the
option to add a new object view or the option to use existing object views.

Use this To do this
Add a new view Select this option to create a new object view.

Use existing views associated
with the local environment na
me

Select this option to add all object views already associated with the specific local environm
ent. This option is disabled if there are no existing views associated with the local environm
ent.

See Also
Reference
Configure the New View Wizard Page

https://msdn.microsoft.com/en-us/library/aa753929(v=bts.10).aspx

Configure the New View Wizard Page
Use the Configure the New View wizard page to select the methods that are included in the object view. Type the name of
the view. To specify the methods to be included in the view, select the check box by the method name. Double-click the method
name to edit it.

Use
this

To do this

Vie
w

Type the name of the object view. The name can be a maximum of 259 alpha-numeric characters. The name cannot be th
e same as that of an existing view.

Obj
ect
met
hod
s

View all the methods that are defined in the object. Each row contains a summary of the resolution information for a sing
le method. Rows in the list cannot be deleted. The columns are:

Include Select this option to include the method in the object view.

Method View the name of the method. Double-click the method name displays the Method Resolution Criteria
dialog.

Endpoints View one of the endpoints defined in the local environment associated with the view. To change the co
ntent of this field, double-click on the Endpoints field for a specific method.

Resolution Type View one of the possible resolution types:

Endpoint

Transaction Request Message (TRM)

Enhanced Listener Message (ELM)

Data

Link to Program

To change the content of this field, double-click the Resolution Type field for a specific method.

Resolution Data Identifies the data used to select the method to be executed. To change the content of this field, d
ouble-click the Resolution Data field for a specific method.

Resolution Position View the resolution position. If Data Resolution is selected, this information is used by the T
I runtime to identify the starting point in the data stream in which to look for the data defined in the resolution data
field to determine what method is to be executed. To change the content of this field, double-click the Resolution
Position field for a specific method.

See Also
Reference
Method Resolution Criteria Dialog Box (in the New Application Deployment Wizard)

https://msdn.microsoft.com/en-us/library/aa771752(v=bts.10).aspx

Method Resolution Criteria Dialog Box (in the New Application
Deployment Wizard)

Use the Method Resolution Criteria dialog to provide detailed information about a specific method on the object view.

Use
this

To do this

Met
hod

View the name of the object's method for which the method resolution criteria are being set.

End
poi
nt

Select the endpoints on the local environment that are available for the type of resolution specified in Type. All endpoint
s in the LE are listed and available for selection. If an endpoint selected for one resolution type is already used with anoth
er resolution type then an error message will pop up when you click Apply. The error message explains which object and
view has this endpoint used with another resolution type.

Met
hod
reso
luti
on c
riter
ia

View a description of the behavior for the IT runtime when it resolves a request to a method. The sequence of data flow e
vents may require the TI to send and receive various amounts of data prior to obtaining the ability to make the connectio
n between the incoming request and the target method.

Typ
e

Select the type of resolution to be conducted:

Endpoint The endpoint resolution type is simplest means of resolving a request to a method. A data stream direct
ed to a port always executes a single method on a view. This model is considered "raw sockets," and it represents a
single synchronous exchange of data. When a new view is created and associated with the HE, the method resolves
to the first endpoint defined in the associated local environment. Selecting Endpoint disables Object Name, Inpu
t format and Output format and clears their contents.

Transaction Request Message (TRM) The TRM resolution type is specific to the IBM CICS Concurrent Server mo
del and the Microsoft variant MSLink model. It represents a double exchange sequence. The first exchange represen
ts the transaction request, and the second exchange represents the request and reply data. When a new view is crea
ted and associated with the HE, the method resolves to the first endpoint defined in the associated local environme
nt. Selecting Transaction Request Message (TRM) enables Object, Input format, and Output format. This opti
on is available only for TCP/IP local environment/host environment pairs.

Enhanced Listener Message (ELM):

Data Similar to Endpoint in that it adds the flexibility to identify a string in the data stream directed to a port that i
s used to associate the request with a specific method in the view. This model is considered "raw sockets." It repres
ents a single synchronous exchange of data. When a new view is created and associated with the HE, the method re
solves to the first endpoint defined in the associated local environment. Selecting Data disables Object, Input for
mat, and Output format and clears their contents.

Link to Program Name: Resolves all the methods of a new object view using the data information specified when
the object view was created. When a new view is created and associated with the HE, the method resolves to the Lin
k Tran ID field in the default HE resolution. Selecting Link to Program Name disables Object, Input format, and
Output format and clears their contents. This option is available only for SNA local environment/host environmen
t pairs.

Note
Only TRM-MSLink and Link to Program Name are available for Link methods. Methods can be defined as Link in Vis
ual Studio by setting the Is Link property to True.

Obj
ect
Na
me

Select the object. The list of objects is populated from the Help string in the interface definition of objects identified to the
resolution handler. Microsoft provides three TRM resolution handlers:

Microsoft HIS - TRM Handler MS Link (default)

Microsoft HIS - TRM Handler MSCCS

Microsoft HIS - TRM Handler IBMCCS

Inp
ut f
orm
at

Select the format of the data stream that represents the TRM sent by the client host application program. The list of TRM
input formats is determined by the UDT) definitions in the MicrosoftTRMDef.tim file in the installation TIMLibs directory.
The Input format box is blank by default, but three input formats are defined that match the names of the resolution ha
ndler Object:

MS Link Request Format

IBM Listener Type 1 Request Format

IBM Listener Type 2 Request Format

Out
put
for
mat

Select the format of the data stream that represents the reply to the TRM that was sent by the host application program.
TI formats a data stream that is returned to the host client application program in the form defined by the output TRM. T
he list of TRM output formats is determined by the UDT definitions in the MicrosoftTRMDef.tim file. The Output format
box is blank by default, but three output formats are defined that match the names of the resolution handler Object:

MS Link Reply Format

IBM Listener Type 1 Reply Format

IBM Listener Type 2 Reply Format

Link View the name of the program being linked to.

Pro
gra
m N
ame

Name of the TP program.

Res
olut
ion
Dat
a

View a definition of the data used by the IT runtime when it resolves a request to a method.

Dat
a

Type the method resolution criteria for a method on the object view. The criteria can be a maximum of 256 alpha-numeri
c characters. This control is enabled for resolution types Transaction Request Message (TRM) and Data. This control is
disabled for resolution type Endpoint.

Posi
tion

Type the resolution position. The position can be a maximum of nine numeric characters. This control is enabled for resol
ution type Data and disabled for resolution types Transaction Request Message (TRM) and Endpoint.

See Also
Reference
Define Implementation Characteristics for the .NET Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa770820(v=bts.10).aspx

Define Implementation Characteristics for the .NET Object
Wizard Page

Use the Define Implementation Characteristics for the .NET Object wizard page to identify a .NET assembly
implementing the interface defined in the Transaction Integrator metadata (TIM) file.

Use this To do this
Defer impleme
ntation identifi
cation

Select this option to identify the implementing assembly later through the object's Properties dialog.

Pick assembly Select this option to identify the implementing assembly now.

Path Type the full path name, including the .dll extension, to a .NET file, select a recently used file from the list, or c
lick Browse and navigate to the file.

Class Select the class containing the methods to be called by HIP runtime for the request processing. The list displ
ays classes from the selected assembly that implement the interface defined in the .TIM file. The first class is
selected in the list by default.

See Also
Reference
Completing the New Application Deployment Wizard Page

https://msdn.microsoft.com/en-us/library/aa704994(v=bts.10).aspx

Completing the New Application Deployment Wizard Page
Use the Completing the Application Deployment Wizard page to review the choices and settings you made in the
previous wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
New Application Deployment Wizard

https://msdn.microsoft.com/en-us/library/aa754418(v=bts.10).aspx

New Local Environment Wizard
The New Local Environment Wizard helps you define the network transport endpoints for the Windows operating system
environment. The wizard collects information about the following:

Local environment name.

Network transport type.

Network transport class.

Endpoint manager.

Endpoint identification.

In This Section

Welcome to the New Local Environment Wizard Page

Configure a New Local Environment Wizard Page

Configure Local Environment Endpoints (TCP/IP) Wizard Page

Configure Local Environment Endpoints (SNA) Wizard Page

Completing the New Local Environment Wizard

https://msdn.microsoft.com/en-us/library/aa704668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744935(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745191(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704599(v=bts.10).aspx

Welcome to the New Local Environment Wizard Page
Use the Welcome to the New Local Environment Wizard page to view the definition of a local environment and to control
whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Configure a New Local Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa744935(v=bts.10).aspx

Configure a New Local Environment Wizard Page
Use the Configure a New Local Environment wizard page to define the basic characteristics of the new local environment.
Type the name of the new local environment. To define its characteristics, select a specific network type and transport class.

Use t
his

To do this

Local
envir
onme
nt

Type the name for the local environment. The name can be a maximum of 259 Unicode characters (alphabetic, numeric,
space, and special). The name cannot be the same as that of an existing local environment. The name for the new local e
nvironment is a required field, and you will receive an error message if you click Next without providing a name.

Netw
ork ty
pe

Select the type of network used to communicate with the host. The choices are:

TCP/IP (default)

SNA

Trans
port c
lass

Select the class of the transport object. The list of choices changes according to the selected Network type. The default
transport class is TCPTransport Class.

Endp
oint
mana
ger

Select or type the local LU alias to manage the endpoint.

Note
The Endpoint manager edit box is set to localhost and disabled if the Network type is set to TCP/IP.

See Also
Reference
Configure Local Environment Endpoints (TCP/IP) Wizard Page
Configure Local Environment Endpoints (SNA) Wizard Page

https://msdn.microsoft.com/en-us/library/aa772063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745191(v=bts.10).aspx

Configure Local Environment Endpoints (TCP/IP) Wizard Page
Use the Configure Local Environment Endpoints (TCP/IP)wizard page to define the endpoints used to communicate with
the host. To define the TCP/IP ports or service names for the local environment, type a port number or name, and then click
Add.

Use this To do this
Local e
nviron
ment

View the name of the local environment. The name was entered on a previous page of the wizard. To change the nam
e, click Back.

New po
rt or ser
vice na
me

Type the port number or service name of the local environment. The port number can be a maximum of 5 numeric c
haracters and must be greater than 0 and less than 32768. The service name can be a maximum of 259 alpha-numer
ic characters. The format of the name must conform to the WinSock Service Name convention. The port number or n
ame cannot be the same as that of an existing number or name in the Defined ports and service names.

Add Click to validate the port number or service name you typed. If the number or name is valid, it appears in Defined p
orts and service names.

Defined
ports a
nd servi
ce nam
es

View the existing valid ports and services names for the local environment.

Remov
e

Click to remove a selected port number or service name from the Defined ports or service names available for use
in the local environment.

See Also
Reference
Completing the New Local Environment Wizard

https://msdn.microsoft.com/en-us/library/aa704599(v=bts.10).aspx

Configure Local Environment Endpoints (SNA) Wizard Page
Use the Configure Local Environment Endpoints (SNA)wizard page to define the endpoints used to communicate with the
host. Type a transaction program name or mirror transaction ID, and then click Add.

Use this To do this
Local envi
ronment

View the name of the local environment. The name was entered on a previous page of the wizard. To change the n
ame, click Back.

New trans
action pro
gram nam
e

Type the transaction program (TP) name or the link mirror transaction ID of the local environment. The name or ID
can be a maximum of 64 alphabetic characters. The format of the name must conform to the IBM SNA Transaction
Program Names convention. The name or ID cannot be the same as that of an existing name or ID in the Defined
transaction program names.

Add Click to validate the transaction program (TP) name or the link mirror transaction ID you typed. If the TP name or t
he link mirror transaction ID is valid, it appears in Defined transaction program names.

Defined tr
ansaction
program n
ames

View the existing TP names or the link mirror transaction IDs for the local environment.

Remove Click to remove one or more TP names or link mirror transaction IDs selected from the Defined transaction pro
gram names available for use in the local environment.

See Also
Reference
Completing the New Local Environment Wizard

https://msdn.microsoft.com/en-us/library/aa704599(v=bts.10).aspx

Completing the New Local Environment Wizard
Use the Completing the New Local Environment Wizard page to review the choices and settings you made in the previous
wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
New Local Environment Wizard

https://msdn.microsoft.com/en-us/library/aa705223(v=bts.10).aspx

New Host Environment Wizard
The New Host Environment Wizard helps you define the network and hardware characteristics of the non-Windows host
that will be initiating requests to the Windows operating system. The wizard collects information about the following:

Host environment name

Host identification

Network transport type

Data conversion information

Default method resolution

In This Section

Welcome to the New Host Environment Wizard

Configure a New Host Environment Wizard Page

Configure Host Environment Default Method Resolution Wizard Page

Completing the New Host Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa772086(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745349(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745196(v=bts.10).aspx

Welcome to the New Host Environment Wizard
Use the Welcome to the New Host Environment Wizard page to view the definition of a host environment and to control
whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Configure a New Host Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745349(v=bts.10).aspx

Configure a New Host Environment Wizard Page
Use the Configure a New Host Environment wizard page to identify the data format characteristics of the host. Type the
name of the host environment, and then type or select the attributes of the host.

Use th
is

To do this

Host e
nviro
nmen
t

Type the name for your host environment. The name can be a maximum of 259 Unicode characters (alphabetic, numer
ic, space, and special). The name cannot be the same as that of an existing host environment. The name for the new hos
t environment is a required field, and you will receive an error message if you click Next without providing a name.

Caution
If the host environment is located on the same computer as the HIP application, and the client program uses either ho
st name localhost or IP address 127.0.0.1 to connect to the HIP application, the host environment should also use lo
calhost or 127.0.0.1 instead of the real computer name or IP address. Failure to set the names or IP addresses identi
cal for the host and client prevents the HIP runtime from delivering calls between the two, and causes the application
to fail.

Data c
onver
sion

Select the data conversion routine to be used.

Host c
ode p
age

Select the code page used by the host. Each available code page is listed by its symbolic value.

Netw
ork ty
pe

Select the type of network used to communicate with the host. The choices are:

TCP/IP (default)

SNA

Remo
te end
point
mana
ger

The IP address of the host or the host name registered in the DNS (for a TCP/IP network); the LU name associated with
the host system (for an SNA network). In either case, the name can be a maximum of 259 alpha-numeric characters.

See Also
Reference
Configure Host Environment Default Method Resolution Wizard Page

https://msdn.microsoft.com/en-us/library/aa772030(v=bts.10).aspx

Configure Host Environment Default Method Resolution
Wizard Page

Use the Configure Host Environment Default Method Resolution wizard page to identify the default characteristics of the
typical interaction between applications programs on the host and the application programs on the server. Type or select the
default method resolution criteria for the host.

Use t
his

To do this

Host
envir
onme
nt

View the name of the host environment. The name was entered on a previous page of the wizard. To change the name,
click Back.

Defa
ult m
etho
d res
oluti
on cri
teria

View a definition of the default behavior for setting up the method resolution criteria for a new object view.

Type Select the type of resolution to be conducted:

Endpoint: The endpoint resolution type is the simplest means of resolving a request to a method. A data stream
directed to a port always executes a single method on a view. This model is considered "raw sockets," and represe
nts a single synchronous exchange of data. When a new view is created and associated with the HE, the method re
solves to the first endpoint defined in the associated local environment. Selecting Endpoint disables the Object, I
nput format, Output format, and Link Tran ID boxes and clears their contents.

Transaction Request Message (TRM): The TRM resolution type is specific to the TCP/IP transport and to the IB
M CICS Concurrent Server model and the Microsoft variant MSLink model. It represents a double exchange seque
nce. The first exchange represents the transaction request; the second exchange represents the request and reply
data.

Select Transaction Request Message (TRM) to resolve all the methods of a new object view using the resolutio
n handler information in the Object, Input format, and Output format boxes. When a new view is created and a
ssociated with the HE, the method resolves to the first endpoint defined in the associated local environment. Selec
ting one of the predefined Transaction Request Objects disablesthe Input format and Output format boxes; i
t also disables the Link Tran ID box and clears its contents. Selecting a custom object enables the Input format a
nd Output format boxes and sets their initial values to the Microsoft supplied TRM handlers items.

Enhanced Listener Message (ELM): A streamlined, application-level protocol exchange sequence that sends to
and receives from the host application a single data stream composed of a header followed by the application dat
a.

Data: Similar to the Endpoint type in that it enables you to identify a string in the data stream directed to a port t
hat is used to associate the request with a specific method in the view. This model is considered "raw sockets." It r
epresents a single synchronous exchange of data. When a new view is created and associated with the HE, the me
thod resolves to the first endpoint defined in the associated local environment. Selecting Data disables the Objec
t, Input format, Output format, and Link Tran ID boxes and clears their contents.

Link to Program Name: The Link resolution type is specific to the IBM CICS DPL model. The endpoint name is re
presentative of the TP name that is the CICS mirror transaction ID.

Select Link to Program Name to resolve all the methods of a new object view using the data information specifi
ed when the object view was created. When a new view is created and associated with the HE, the method resolve
s to the Link Tran ID field in the default HE resolution. Selecting Link disables the Object, Input format, and Out
put format boxes and clears their contents.

Objec
t

Select the object. The list of objects is populated from the Help string in the interface definition of objects identified to t
he resolution handler. Microsoft provides four TRM resolution handlers:

Microsoft HIS - TRM Handler MS Link (default)

Microsoft HIS - TRM Handler MSCCS

Microsoft HIS - TRM Handler IBMCCS

Microsoft HIS - Link Handler

Input
form
at

Select the format for the data stream that represents the TRM sent by the client host application program. The list of TR
M input formats is populated from the user-defined type definitions in the MicrosoftTRMDef.tim file. The Input format
box is disabled for standard TRM handlers and enabled for custom TRM handlers, but three input formats are defined t
hat match the names of the resolution handler Object:

TRMINMSLink

TRMINMSCCS

TRMINIBMCCS

Outp
ut for
mat

Select the format for the data stream that represents the reply to the TRM that was sent by the host application progra
m. TI formats a data stream to be returned to the host client application program in the form defined by the output TR
M. The list of TRM output formats is populated from the UDT definitions in the MicrosoftTRMDef.tim file. The Output f
ormat box is disabled for standard TRM handlers and enabled for custom TRM handlers, but three output formats are
defined that match the names of the resolution handler Object:

TRMOUTMSLink

IBM Listener Reply Format (TRMOUTCCS)

Link Tran ID: Select the TP name or Link Mirror Tran ID for the SNA local environment. This control is enabled on
ly when the Network Type is set to SNA and the Resolution Type is set to Link.

Link
Tran I
D

View or select an existing TP name or the link mirror transaction ID for the local environment.

See Also
Reference
Completing the New Host Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745196(v=bts.10).aspx

Completing the New Host Environment Wizard Page
Use the Completing the New Host Environment Wizard page to review the choices and settings you made in the previous
wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
New Host Environment Wizard

https://msdn.microsoft.com/en-us/library/aa770947(v=bts.10).aspx

New Security Policy Wizard
The New Security Policy Wizard helps you define how Windows security credentials are established prior to the execution of
the server object. The wizard collects information about the following:

Security policy name

Source of credentials

Requirements for host-supplied credentials

Single Sign-On affiliate applications

In This Section

Welcome to the New Security Policy Wizard Page

Configure a New Security Policy Wizard Page (in the New Security Policy Wizard) (1)

Configure a New Security Policy Wizard Page (in the New Security Policy Wizard) (2)

Completing the Security Policy Wizard Page

https://msdn.microsoft.com/en-us/library/aa746041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772119(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704682(v=bts.10).aspx

Welcome to the New Security Policy Wizard Page
Use the Welcome to the New Security Policy Wizard page to view the definition of a security policy and to control whether
the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Configure a New Security Policy Wizard Page (in the New Security Policy Wizard) (1)

https://msdn.microsoft.com/en-us/library/aa705273(v=bts.10).aspx

Configure a New Security Policy Wizard Page (in the New
Security Policy Wizard) (1)

Use the first Configure a New Security Policy wizard page to identify the security policy and the source of the credentials.
Type the name of the security policy, and then select the source for the credentials.

Use this To do this

Security p
olicy

Type the name for the security policy. The name can be a maximum of 259 Unicode characters (alphabetic, numer
ic, space, and special). The name cannot be the same as that of an existing security policy. The name for the new se
curity policy is a required field; you will receive an error message if you click Next without providing a name. The
name is used to associate the security policy with an object view in other wizard pages and dialog boxes.

Credential
s source us
ed to invo
ke the serv
er

Specify the type or source of credentials that host-initiated processing will associate with the thread when the met
hod on the server object is invoked.

Host-initia
ted Single
Sign-on

Select this option to use host user ID and password. This option is automatically selected if Single Sign-On (SSO) i
s not installed or not available.

Windows c
redentials
of the HIP
applicatio
n

Select this option to use Windows credentials that are specified on the HIP NT application service. This option is a
utomatically disabled if Single Sign-On (SSO) is not installed or not available.

See Also
Reference
Configure a New Security Policy Wizard Page (in the New Security Policy Wizard) (2)

https://msdn.microsoft.com/en-us/library/aa772119(v=bts.10).aspx

Configure a New Security Policy Wizard Page (in the New
Security Policy Wizard) (2)

Use the second Configure a New Security Policy wizard page to identify the source of the host user ID and password and
determine how they are translated into Windows-based credentials. This wizard page appears only if Host-initiated Single
Sign-on is selected on the Configure a new security policy wizard page.

Select the source of the credentials and the default user, and then select the credential mapping.

Use this To do this
Security poli
cy

View the name of the security policy.

Affiliate app
lication

Select the Single Sign-On affiliate application that manages the translation of host user ID and password creden
tials to Windows credentials.

Single Sign-
on mapping
use

Specify the credentials to be used when mapping to Single Sign-On.

Default cred
entials

Select to enter the user ID and password used if the request from the host does not contain a user ID and passw
ord or the user ID and password are set to spaces or nulls. When selected, enables the SSO affiliate applicatio
n and User boxes.

Note
This option is disabled if Use HIP application credentials is selected on the General tab.

Group applic
ation

Select the

User Type the user name or select a previously entered host user name to be used in the lookup call to SSO.

See Also
Reference
Completing the Security Policy Wizard Page

https://msdn.microsoft.com/en-us/library/aa704682(v=bts.10).aspx

Completing the Security Policy Wizard Page
Use the Completing the Security Policy Wizard page to review the choices and settings you made in the previous wizard
pages. You can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
New Security Policy Wizard

https://msdn.microsoft.com/en-us/library/aa745018(v=bts.10).aspx

Object Wizard (for HIP)
The HIP Object Wizard helps you define (or browse for) a Transaction Integrator metadata (.tim) file that is executed by
Transaction Integrator after a request is received from a host. The .tim file includes information about the following:

Windows server object interface, methods, and parameters

Characteristics of the host application program

Mappings between the host application program and the Windows server object

If the Windows server object is a .NET Framework object, the wizard also helps you define the assembly and class that
implements the interface in the .tim file.

In This Section

Welcome to the Object Wizard Page

Specify or Locate an Object Wizard Page

Define Implementation Characteristics for the .NET Object Wizard Page

Completing the Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa705410(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745638(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772026(v=bts.10).aspx

Welcome to the Object Wizard Page
Use the Welcome to the Object Wizard page to view the definition of an object and to control whether the welcome page is
displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Specify or Locate an Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa745692(v=bts.10).aspx

Specify or Locate an Object Wizard Page
Use the Specify or Locate an Object wizard page to identify objects associated with the application. Select an object from the
list, or to create a new object, type the new object name.

Use this To do this
Object Select the name of the object. To create a new object, type the new object name. If you select the TIM first, the name

is populated with the ProgID or Namespace.Interface defined in the TIM.

Registere
d TIMs

Type the full path name, including the *.tim extension, to a TIM file, select a recently used file from the list, or click B
rowse and navigate to the file.

See Also
Reference
Define Implementation Characteristics for the .NET Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa745638(v=bts.10).aspx

Define Implementation Characteristics for the .NET Object
Wizard Page

Use the Define Implementation Characteristics for the .NET Object wizard page to identify a .NET assembly
implementing the interface defined in the Transaction Integrator metadata (TIM) file.

Use this To do this
Defer impleme
ntation identifi
cation

Select this option to identify the implementing assembly later through the object's Properties dialog.

Pick assembly Select this option to identify the implementing assembly now.

Path Type the full path name, including the .dll extension, to a .NET file, select a recently used file from the list, or c
lick Browse and navigate to the file.

Class Select the class containing the methods to be called by HIP runtime for the request processing. The list disla
ys classes from the selected assembly that implement the interface defined in the .TIM file. The first class is s
elected in the list by default.

See Also
Reference
Completing the Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa772026(v=bts.10).aspx

Completing the Object Wizard Page
Use the Completing the Object Wizard page to review the choices and settings you made in the previous wizard pages. You
can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
Object Wizard (for HIP)

https://msdn.microsoft.com/en-us/library/aa705527(v=bts.10).aspx

New Object View Wizard
The New Object View Wizard helps you define the network transport endpoints for the Windows operating system
environment. The wizard collects information about the following:

Local environment name

Network transport type

Network transport class

Endpoint manager

Endpoint identification

In This Section

Welcome to the New Object View Wizard Page

Configure a New Object View Wizard Page

Configure the New View Wizard Page

Completing the New Object View Wizard Page

https://msdn.microsoft.com/en-us/library/aa745450(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744694(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754244(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705479(v=bts.10).aspx

Welcome to the New Object View Wizard Page
Use the Welcome to the New Object View Wizard page to view the definition of an object view and to control whether the
welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Configure a New Object View Wizard Page

https://msdn.microsoft.com/en-us/library/aa744694(v=bts.10).aspx

Configure a New Object View Wizard Page
Use the Configure a New Object View wizard page to select the methods that are included in the object view. Type the name
of the new object view, and then select the local environment that accepts requests on behalf of the view.

Use t
his

To do this

Obje
ct vi
ew

Type the name of the object view. The name can be a maximum of 259 alpha-numeric characters. The name cannot be t
he same as that of an existing view.

Loca
l env
iron
men
t

Select a local environment. The names appearing in the list are those local environments available in the Local Environ
ments node. The default is the first local environment that appears in the Local Environments node.

Host
envir
onm
ent

Select a host environment. The names appearing in the list are those host environments available in the Host Environm
ents node. Only those host environments that have a Network Type that matches the network type defined in the local
environments selected in the Local environment box are presented for selection. The default is the first local environm
ent that appears in the Host Environments node.

Secu
rity
polic
y

Select a security policy to be used for determining user credentials.

See Also
Reference
Configure the New View Wizard Page

https://msdn.microsoft.com/en-us/library/aa754244(v=bts.10).aspx

Configure the New View Wizard Page
Use the Configure the New View wizard page to select the methods that are included in the object view. Type the name of
the view. To select the methods to be included in the view, select the check box by the method name. Double-click the method
name to edit it.

Use
this

To do this

Vie
w

View the name of the object view.The name of the object view was entered on a previous page of the wizard. To change t
he name, click Back.

Obj
ect
met
hod
s

View all the methods that are defined in the object. Each row in the list contains a summary of the resolution information
for a single method. Rows cannot be deleted. The columns are:

Include: Select this option to include the method in the object view.

Method: Displays the name of the method. Double-click the method name to display the Method Resolution Crit
eria dialog box.

Endpoint manager: For a TCP/IP network, select or type the IP address or host name to manage the endpoint. For
an SNA network, type the name of the LU alias. In either case, the name can be a maximum of 259 alpha-numeric c
haracters.

Endpoint: Displays one of the endpoints defined in the local environment associated with the view. To change the
content of this field, double-click the Endpoint field for a specific method.

Resolution Type: Displays one of the possible resolution types:

Endpoint

If the local environment has all of its endpoints in use by object views, associated with the same host enviro
nment, that specify Endpoint Resolution, you will receive an error message.

If the local environment has all of its endpoints in use by object views, associated with the same host enviro
nment, that specify TRM or Data resolution, no endpoint is available for Endpoint resolution and TRM or
Data resolution must be supplied for the other methods.

If the local environment has one or more endpoints available for endpoint resolution, the first method of th
e view appears. The first method has its endpoint set to the first endpoint in the local environment that is av
ailable for endpoint resolution and the resolution type is set to Endpoint. All the remaining methods have t
he Endpoint, Resolution Type, Resolution Data, and Resolution Position boxes cleared.

Transaction Request Message (TRM)

If the local environment currently has all of its endpoints in use by object views, associated with the same h
ost environment, that specify Endpoint or Data resolution, the list control is not available.

If an endpoint is available for TRM resolution, Include is selected for all methods and their endpoint is set t
o the first endpoint associated with the endpoint that is available for TRM resolution.

All methods have resolution type set to Transaction Request Message (TRM); the Resolution Data and
Resolution Position boxes are cleared.

Enhanced Listener Message (ELM)

Data

If the local environment currently has all of its endpoints in use by object views, associated with the same h

ost environment that specified Endpoint or TRM resolution, the list control is not available.

If an endpoint is available for data resolution, Include is selected for all methods and their endpoint is set t
o the first endpoint associated with the endpoint that is available for data resolution.

All methods have resolution type set to Data, and the Resolution Data and Resolution Position boxes ar
e cleared.

Link to Program

To change the content of this field, double-click the Resolution Type field for a specific method.

Resolution Data Identifies the data used to select the method to be executed. To change the content of this field, d
ouble-click the Resolution Data field for a specific method.

Resolution Position View the resolution position. If Data Resolution is selected, this information is used by the TI
runtime to identify the starting point in the data stream in which to look for the data defined in the resolution data f
ield to determine what method is to be executed. To change the content of this field, double-click the Resolution P
osition field for a specific method.

See Also
Reference
Method Resolution Criteria Dialog Box (in the New Object View Wizard)

https://msdn.microsoft.com/en-us/library/aa770977(v=bts.10).aspx

Completing the New Object View Wizard Page
Use the Completing the New Object View Wizard page to review the choices and settings you made in the previous wizard
pages. You can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
New Object View Wizard

https://msdn.microsoft.com/en-us/library/aa745428(v=bts.10).aspx

Local Environment Dialog Box
Use the Local Environment dialog box to select a local environment that is used as a Listener for the application.

Use this To do this
Local Environment Select the local environment.

See Also
Other Resources
TI Manager Wizards and Dialog Boxes

https://msdn.microsoft.com/en-us/library/aa770737(v=bts.10).aspx

Reload TIMs Wizard
The Reload TIMs Wizard helps you add multiple Transaction Integrator metadata (TIM) files to the object view at one time.
The wizard collects information about the following:

Name and location of the .tim file

Availability of the .tim for reloading

In This Section

Welcome to the Reload TIMs Wizard Page

Specify or Locate Metadata Files to be Reloaded Wizard Page

Reloading of Metadata Files Wizard Page

Completing the Reload TIMs Wizard Page

https://msdn.microsoft.com/en-us/library/aa744321(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705399(v=bts.10).aspx

Welcome to the Reload TIMs Wizard Page
Use the Welcome to the Reload TIMs Wizard page to add one or more Transaction Integrator metadata (TIM) files to the
object view and to control whether the welcome page is displayed the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Specify or Locate Metadata Files to be Reloaded Wizard Page

https://msdn.microsoft.com/en-us/library/aa744975(v=bts.10).aspx

Specify or Locate Metadata Files to be Reloaded Wizard Page
Use the Specify or Locate Metadata Files to be Reloaded Wizard page to select the Transaction Integrator metadata (TIM)
files to be added.

Us
e t
hi
s

To do this

Pa
th

Type the full path name, including the .tim extension, to a TI metadata file, select a recently used file from the list, or click Br
owse and navigate to the file. Only .tim files that are not currently in use by other object views are displayed. The path can
be a maximum of 255 Unicode characters, and the name of the .tim file must be unique.

See Also
Reference
Reloading of Metadata Files Wizard Page

https://msdn.microsoft.com/en-us/library/aa772091(v=bts.10).aspx

Reloading of Metadata Files Wizard Page
Use the Reloading of Metadata Files Wizard page to view the Transaction Integrator metadata (TIM) files that will be
reloaded. The Wizard analyzes the .tim files selected on the previous page to verify the number of methods, as well as the
name and ID of each method.

Use t
his

To do this

Mess
ages

View the status of each .tim file. If a file is acceptable for reloading, the file name is followed by OK. If a file is not accepta
ble for reloading, the file name if followed by a message indicating the reason for being rejected.

Note
The files given an OK are not actually reloaded until you click Next.

See Also
Reference
Completing the Reload TIMs Wizard Page

https://msdn.microsoft.com/en-us/library/aa705399(v=bts.10).aspx

Completing the Reload TIMs Wizard Page
Use the Completing the Reload TIMs Wizard page to review the .tims you selected in the previous wizard pages. You can
return to an earlier wizard page to select a different .tim by clicking Back.

See Also
Reference
Reload TIMs Wizard

https://msdn.microsoft.com/en-us/library/aa705814(v=bts.10).aspx

New Remote Environment Wizard
In This Section

Welcome to the New Remote Environment Wizard Page

Configure a New Remote Environment Wizard Page

Configure Host Environment and Programming Model Wizard Page

Configure Endpoint TCP/IP Wizard Page

Port List Editing Dialog Box

Configure Endpoint SNA Wizard Page

Configure Endpoint IMS Connect Wizard Page

Configure Endpoint Diagnostic Capture Wizard Page

Configure Endpoint Playback Wizard Page

Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa770801(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771851(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746085(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745370(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Welcome to the New Remote Environment Wizard Page
Use the Welcome to the New Remote Environment Wizard page to view the definition of a remote environment and to
control whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Configure a New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa754332(v=bts.10).aspx

Configure a New Remote Environment Wizard Page
Use the Configure a New Remote Environment wizard page to identify the name and location of the remote environment.
To define the remote environment, type the name of the remote environment, and then select the network type.

Use t
his

To do this

Nam
e

Type the name for the remote environment. The name can be a maximum of 256 Unicode characters. The name cannot
be the same as that of an existing remote environment. The name for the new remote environment is a required field; yo
u will receive an error message if you click Next without providing a name.

Ven
dor

Select the vendor supplying the remote environment.

Net
work
type

Select the type of network used to communicate with the remote environment. The options are:

TCP/IP (default)

SNA

See Also
Reference
Configure Host Environment and Programming Model Wizard Page

https://msdn.microsoft.com/en-us/library/aa772098(v=bts.10).aspx

Configure Host Environment and Programming Model Wizard
Page

Use the Configure Host Environment and Programming Model wizard page to identify information about the target host
configuration and show where the host's programming model is defined.

Use this To do this
Target host Select a target host. For the TCP Network type, the available choices are:

CICS

IMS

OS400

For the LU 6.2 (SNA) for the network type, the available choices are:

CICS

IMS

Programming model Select a programming model. For the TCP network type, the available choices are:

For the CICS host

TCP TRM User Data

TCP ELM User Data

TCP TRM Link

TCP ELM Link

For the IMS host

IMS Connect

IMS Implicit

IMS Explicit

For the OS400 host

Distributed Program Call

For the LU 6.2 (SNA) network type, the available choices are:

For the CICS host

CICS LU 6.2 User Data

CICS LU 6.2 Link

For the IMS host

IMS LU 6.2 User Data

See Also
Reference
Configure Endpoint TCP/IP Wizard Page

https://msdn.microsoft.com/en-us/library/aa746063(v=bts.10).aspx

Configure Endpoint TCP/IP Wizard Page
Use the Configure Endpoint TCP/IP wizard page to set the IP address and port number for the host environment.

Use thi
s

To do this

IP/DN
S Addr
ess

Type the address or select from the drop-down list. The IP address can be defined either by name or numerical addres
s. The address can be a maximum of 256 alphanumeric characters. The drop-down list displays the most recently used
IP addresses.

Port lis
t

Select the port number from the drop down list. Click Edit to edit the selected port list, or create a new one by selectin
g <new port list> and clicking Edit.

See Also
Reference
Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Port List Editing Dialog Box
The Port List Editing dialog box allows you to create new TCP ports or edit existing ports.

To add a port to addition port list, select the port list on the previous panel, press edit.

The Defined ports will serially list the defined ports within the list. Highlight a port within the defined list, press remove to
remove the port from the list.

To add a new port to the list, type the port number within the new port text box, press add. The port number will be added to
the defined port list. Press OK, the new port will show up within the port list separated by semicolons within the port list.

To create a new port list, from the port list drop down menu, select <new port list>, press edit.

Use
this

To do this

New
port

Type the number of the new port. The port number can be a maximum of 256 positive numerals separated by semicolon
s. A port number can be defined with up to 5 positive digits, and more than one port can be defined to an address. The p
ort number cannot be larger than 32767. The port numbers cannot be repeated.

Add Click to add the new port number to the list of defined ports.

Rem
ove

Click to remove the selected port number from the list.

Defi
ned
port
s

View the port numbers already defined.

See Also
Reference
Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Configure Endpoint SNA Wizard Page
Use the Configure SNA Endpoint wizard page to set the local LU alias, the remote LU alias, and the APPC mode name for the
host environment.

Use this To do this
Local LU a
lias

Type the local LU alias. The alias can be a maximum of 256 alphanumeric characters. The drop-down list displays a
ll the Local APPC LUs defined to the SNA Manager.

Remote L
U alias

Type the remote LU alias. The alias can be a maximum of 256 alphanumeric characters. The drop-down list display
s all the remote APPC LUs defined to the SNA Manager.

Mode na
me

Type the APPC mode used for the connection. You can obtain a list of configured modes from Host Integration Ser
ver SNA Manager.

Note
To use two-phase commit, the APPC mode must be Sync Level 2 capable.

See Also
Reference
Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Configure Endpoint IMS Connect Wizard Page
Use the Configure Endpoint IMS Connect wizard page to set the IP address and port number for the host environment and
to identify the IBM-defined exit program on the host.

Use this To do this
IP/DNS
Address

Type the address or select from the drop-down list. The address can be a maximum of 256 alphanumeric characters.
The drop-down list displays the most recently used IP addresses.

Port list Type the TCP port number or select from the drop-down list. The number can be a maximum of 256 positive numeral
s separated by semicolons. The port numbers cannot be repeated. The dropdown list displays the most recently used
port numbers.

ITOC in
formati
on

Select either HWSIMSO0 or HWSIMSO1, the IBM-defined exit associated with IMS connect on the host.

Format
to use

View the choice of formats.

HWSIM
SO0

Select this option to use the HWSIMSO0 exit program.

HWSIM
SO1

Select this option to use the HWSIMSO1 exit program.

IMS sys
tem ID

Type the IMS system ID or select from the drop-down list. The ID can be a maximum of 8 alphanumeric characters. Th
e drop-down list displays the most recently used IMS system IDs.

ITOC ex
it name

Type the ITOC exit name or select from the drop-down list. The name can be a maximum of 8 alphanumeric character
s. The drop-down list displays the most recently used ITOC exit names.

See Also
Reference
Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Configure Endpoint Diagnostic Capture Wizard Page
Use the Configure Diagnostic Capture Endpoint wizard page to

Use this To do this
Recording file Type the name of the recording file or select from the drop-down list. The file name can be a maximum of

256 alphanumeric characters. The drop-down list displays the most recently used recording files.

Use responses fr
om the remote e
nvironment

Select this option to specify a remote environment. When the option is selected, the drop-down is enabled
and displays all the remote environments that have the same network type, host environment, and progra
mming model as the remote environment being defined.

Name Type the name of the remote environment or select from the drop-down list. The name can be a maximum
of 256 alphanumeric characters.

See Also
Reference
Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Configure Endpoint Playback Wizard Page
Use the Configure Playback Endpoint wizard page to

Use this To do this
Recordi
ng file

Type the name of the recording file or select from the drop-down list. The file name can be a maximum of 256 alphan
umeric characters. The drop-down list displays the most recently used recording files.

See Also
Reference
Completing the New Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa745674(v=bts.10).aspx

Completing the New Remote Environment Wizard Page
Use the Completing the New Remote Environment Wizard page to review the choices and settings you made in the
previous wizard pages. You can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
New Remote Environment Wizard

https://msdn.microsoft.com/en-us/library/aa744919(v=bts.10).aspx

Object Wizard (for WIP)
In This Section

Welcome to the Object Wizard Page

Specify or Locate an Object Wizard Page

Define Environment Characteristics for the COM Object Wizard Page

Define Environment Characteristics for the .NET Object Wizard Page

Define Remote Environment Wizard Page

Completing the Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa745802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771876(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705403(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754477(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771862(v=bts.10).aspx

Welcome to the Object Wizard Page
Use the Welcome to the Object Wizard page to view the definition of a metadata file (.tlb for COM, .dll for .Net) and to
control whether the welcome page is displayed again the next time the wizard is used.

Use this To do this
Do not show
this welcom
e page agai
n.

Select this option if you will be using the wizard more than once and do not want to read the introduction each t
ime the wizard is launched. Each time the wizard is launched, the welcome page will be hidden and the wizard w
ill begin with the second page. To view the welcome page again, click Back on the second page of the wizard.

See Also
Reference
Specify or Locate an Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa745797(v=bts.10).aspx

Specify or Locate an Object Wizard Page
Use the Specify or Locate an Object wizard page to specify or initiate a browse operation to locate the Transaction Integrator
metadata file that represents the server object. For COM based interfaces, the file extension is .tlb, for .Net the file extension is
.dll.

Use t
his

To do this

Path Type the full path name to a metadata file. If the file does not end with the .tlb or .dll extension, an error message will ap
pear. You can add more than one object at a time.

Brow
se

Launches the Open dialog box.

Rem
ove

Removes the selected objects from the list.

See Also
Reference
Define Environment Characteristics for the COM Object Wizard Page
Define Environment Characteristics for the .NET Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa771876(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705403(v=bts.10).aspx

Define Environment Characteristics for the COM Object Wizard
Page

Use the Define Environment Characteristics for the COM Object wizard page to define the COM+ application in which
Transaction Integrator should run.

Use thi
s

To do this

COM+
applic
ations

Select a COM application. The contents of this box are populated from enumerating the COM+ applications on the loc
al computer. To appear in this list, the application should have Server Activation type and be editable (that is, Disable
Changes should not be selected on the application's Advanced Properties).

See Also
Reference
Define Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa754477(v=bts.10).aspx

Define Environment Characteristics for the .NET Object Wizard
Page

Use the Define Environment Characteristics for the .NET Object wizard page to define the IIS Virtual Directory in which
Transaction Integrator should run.

Use this To do this
Self-hosted Select this to reference the TI assembly within the application itself. No IIS security will be available, and the ot

her options on this page will be unavailable.

ASP .NET wor
ker process

Select this to use IIS security.

Virtual direct
ories

Select an IIS virtual directory. The list is populated from enumerating the IIS Virtual Directories on the local co
mputer.

Note that if you do not choose an environment, an error appears when you click Next. If there is no environm
ent available, you must exit this wizard and define the appropriate environment.

Service Choose Remoting only, Remoting and Web Service, or Web Service only.

Key file for pr
oxy

Select the key (.snk) file that TI Manager uses to sign the proxy in the IIS virtual directory. The list is populated
with files used previously.

See Also
Reference
Define Remote Environment Wizard Page

https://msdn.microsoft.com/en-us/library/aa754477(v=bts.10).aspx

Define Remote Environment Wizard Page
Use the Define Remote Environment wizard page to select a remote environment (RE) that provides the connection
information to the host application. You can select the RE from the list of already defined remote environments that are of the
appropriate type (that is, the network, host environment, and programming model of the remote environment must agree with
those of the object).

Use this To do this
Remote en
vironments

Select a remote environment. The contents of this list are populated from an enumeration of the remote environ
ments already defined which match in network type, host environment and programming model.

See Also
Reference
Completing the Object Wizard Page

https://msdn.microsoft.com/en-us/library/aa771862(v=bts.10).aspx

Completing the Object Wizard Page
Use the Completing the Object Wizard page to review the choices and settings you made in the previous wizard pages. You
can return to an earlier wizard page to change a setting by clicking Back.

See Also
Reference
Object Wizard (for WIP)

https://msdn.microsoft.com/en-us/library/aa771289(v=bts.10).aspx

Import WIP Definitions Wizard
Use this wizard to import WIP definitions.

In This Section

Welcome to the Import WIP Definitions Wizard Page

Define Import Characteristics Page

Importing WIP Definitions Page

Import WIP Definitions Wizard Finish Page

https://msdn.microsoft.com/en-us/library/aa771129(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770476(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745665(v=bts.10).aspx

Welcome to the Import WIP Definitions Wizard Page
Click Next to continue.

Define Import Characteristics Page
Use this page to select a directory containing the exported definitions.

Duplicate Remote Environment Use

Select Original or Exported Definitions.

Import Directory Path

Type or browse to the desired directory.

Importing WIP Definitions Page
This page displays errors and other information during the import process.

Click Next when the process is complete.

Import WIP Definitions Wizard Finish Page
This page appears when the import process is complete.

Click Finish to close the wizard.

Export WIP Definitions Wizard
Use this wizard to export WIP definitions.

In This Section

Welcome to the Export WIP Definitions Wizard Page

Define Export Characteristics Page

Remote Environment Selection Page

WIP Object Selection Page

Exporting WIP Definitions Page

Export WIP Definitions Wizard Finish Page

https://msdn.microsoft.com/en-us/library/aa745599(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771062(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754739(v=bts.10).aspx

Welcome to the Export WIP Definitions Wizard Page
Click Next to continue.

Define Export Characteristics Page
Directory use

Select Use HIS Generated Directory to have Transaction Integrator create a target directory.

Select Use Specific Directory to browse to a directory of your choice.

Remote Environment Selection Page
Specify the Remote Environments to be exported, and for each one whether Connection Information should be retained.

WIP Object Selection Page
Specify the WIP Objects to be exported.

Exporting WIP Definitions Page
You can view any relevant information in the Messages box.

Export WIP Definitions Wizard Finish Page
Click Finish to close the wizard.

TI Manager Properties
Transaction Integrator (TI) Manager provides property pages for viewing and setting properties. The property pages include
the following:

Transaction Integrator (Configuration) Properties

Timeout Tab

Application Properties

General Tab (Application Properties)

Advanced Tab (Application Properties)

.NET Assembly Path Tab (Application Properties)

Listener Properties

General Tab (Listener Properties)

Endpoints Tab (TCP/IP Listener Properties)

Endpoints Tab (SNA Listener Properties)

Application Tab (Listener Properties)

Local Environment Properties

General Tab (Local Environment Properties)

Endpoints Tab (TCP/IP Local Environment Properties)

Endpoints Tab (SNA Local Environment Properties)

Host Environment Properties

General Tab (Host Environment Properties)

Network Tab (Host Environment Properties)

Conversion Tab (Host Environment Properties)

Default Tab (Host Environment Properties)

Security Policy Properties

General Tab (Security Policy Properties)

Credentials Source Tab (Security Policy Properties)

Object Properties

General Tab (Object Properties)

https://msdn.microsoft.com/en-us/library/aa771490(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705193(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754252(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746244(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705614(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771278(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746119(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772108(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745625(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744717(v=bts.10).aspx

Methods Tab (Object Properties)

.NET Implementation Tab (Object Properties)

Object View Properties

General Tab (View Properties)

Host Environments Tab (View Properties)

Methods Tab (View Properties)

Method Resolution Criteria Dialog Box (Object Properties)

Remote Environment Properties

General Tab (Remote Environment Properties)

TCP/IP Tab (Remote Environment Properties)

LU6.2 Tab (Remote Environment Properties)

Target Tab (Remote Environment Properties)

Recording Tab (Remote Environment Properties)

Locale Tab (Remote Environment Properties)

Security Tab (Remote Environment Properties)

CICS Tab (for LU6.2 Link Properties)

CICS Tab (for TCP/IP Properties)

IMS Tab

SSO tab (Security Policy Properties)

Object Properties

General Tab (Object Properties)

Hosting Tab (COM Object Properties)

Remote Environment Tab (Object Properties)

Security Tab (Remote Environment Properties)

https://msdn.microsoft.com/en-us/library/aa745176(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772095(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754053(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754283(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745189(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745613(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705772(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771891(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770330(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744299(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705395(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705140(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771928(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771025(v=bts.10).aspx

Timeout Tab
Use the Timeout tab to set the maximum number of minutes the TI Manager console is allowed to be inactive while it is in
Configuration mode.

Use this To do this
Write m
ode tim
eout

Type the maximum number of minutes the TI Manager console can remain in configuration mode without a keystro
ke or mouse movement that changes the configuration. At the end of this time, the console returns to View and op
erate mode. The default is 30 minutes.

Caution
The properties of the TI Manager console are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the console to function incorrectly.

See Also
Reference
Transaction Integrator (mode) Node

https://msdn.microsoft.com/en-us/library/aa771932(v=bts.10).aspx

General Tab (Application Properties)
The General tab allows you to set the general properties of the application.

Use this To do this
Application View the name of the application.

Computer View the name of the computer running the application.

Process ID View the process ID of the HIPService. 0 indicates that HIPService is not running.

Worker threa
ds

Type the number of processing threads to be used in the work of the application. The number of threads must
be greater than 0 and fewer than 257.

Queued requ
ests

Type themaximum number of requests that can be stored in the queue before new requests are rejected. The n
umber of queued requests must be equal to or greater than the number of worker threads, and must be less th
an 2049.

Comment Type additional information about the use of the object view in the HIP environment. The comment can be a ma
ximum of 259 alpha-numeric characters.

Service starts
automaticall
y

Select this option to start the HIPService automatically at startup. Clear the check box to require manual start up
.

Caution
The properties of an application are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the application to function incorrectly.

See Also
Reference
Application

https://msdn.microsoft.com/en-us/library/aa753925(v=bts.10).aspx

Advanced Tab (Application Properties)
The Advanced tab allows you to set the advanced properties of the application.

Use thi
s

To do this

Minim
um act
ive wor
ker thr
eads

Type or select the minimum number of worker threads that the HIP runtime maintains. The number of threads must b
e greater than 0 and fewer than 193. The number cannot exceed the number of Worker threads set on the General t
ab property page. The default is 8 threads.

Cleanu
p work
er thre
ads

The group of properties controlling thread cleanup.

When
no req
uests h
ave be
en que
ued for

Type or select the number of seconds the HIP runtime will wait after the last client request has been received before it
terminates the threads. The minimum wait is 1 second and the maximum wait is 3600 seconds. The default is 30 seco
nds.

Start a
n addit
ional w
orking
thread

The group of properties controlling when new threads are started.

When
more t
han nu
mber r
equest
s have
been q
ueued

Type or select the number of requests that must be received before additional worker threads are started. The minimu
m number of requests is 1, and the maximum number of requests is 99,999. The default is 15 requests. The number o
f requests cannot exceed the Maximum queued requests (set on the General tab) multiplied by the During the pr
evious number seconds (set on this tab).

During
the pre
vious n
umber
second
s

Type or select the number of seconds the HIP runtime must wait before starting additional worker threads. The minim
um number of seconds is 1, and the maximum number of seconds is 3600. The default is 5 seconds.

Increas
e conte
xt cach
e size

The group of properties controlling the size of the cache of incoming context requests over a period of time.

When
more t
han nu
mber c
ontext
s have
been cr
eated

Type or select the number of contexts that must be created before the HIP runtime increases the size of the cache. The
request context is needed to pass the parameters of the request from the listener to a worker thread. The initial cache
size is equal to the number of worker threads multiplied by 2, which is normally less than the maximum queue length.
If the cache is empty, a new context is created but will be destroyed at the end because there is no place in the cache t
o put it in. Increasing the cache size allows the HIP runtime to save the context for future reuse to eliminate expensive
operations of creating and releasing the context. The cache size can grow up to the maximum queue length. The mini
mum number of contexts is 1, and the maximum number of contexts is 192. The default is 30 contexts.

During
the pre
vious n
umber
second
s

Type or select the number of seconds the HIP runtime must wait before increasing the cache size. The minimum num
ber of seconds is 1, and the maximum number of seconds is 3600. The default is 5 seconds.

Caution
The properties of an application are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the application to function incorrectly.

See Also
Reference
Application

https://msdn.microsoft.com/en-us/library/aa753925(v=bts.10).aspx

.NET Assembly Path Tab (Application Properties)
The .NET Assembly Path tab allows you to set the way the application locates the implementation assemblies.

Use this To do this
Use GA
C

Select this option to search for the assemblies in the Global Assembly Cache.

Path Type the full path name of the folder that contains implementation assemblies, or select a recently used folder from t
he list.

Caution
The properties of an application are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the application to function incorrectly.

See Also
Reference
Application

https://msdn.microsoft.com/en-us/library/aa753925(v=bts.10).aspx

General Tab (Listener Properties)
The General tab displays the general properties of the application's local environment. The controls on the General tab are
read-only.

Use this To do this
Name View the name of the local environment. To change the name of the local environment, right-click the Local En

vironments node.

Network typ
e

View the type of network used to communicate with the host.

Transport cl
ass

View the class of the transport object.

Comment View a comment about the local environment. To change an existing comment, right-click the Local Environm
ents node.

Note
When viewed from the listener node, the general properties are read-only. If you want to change a general property, right-cli
ck the specific local environment Node under the Local Environments Node, and then left-click Properties on the shortc
ut menu. The properties on that page are read-write.

Caution
The properties of an listenerare not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the application to function incorrectly.

See Also
Reference
Listener

https://msdn.microsoft.com/en-us/library/aa770500(v=bts.10).aspx

Endpoints Tab (TCP/IP Listener Properties)
The Endpoints tab displays the defined endpoints in the local environment definition. The controls on the Endpoints tab are
read-only. To add or remove endpoints from the local environment, use the Properties shortcut menu item on the Local
Environments node.

Use this To do this
New port or service name Not used.

Defined ports or service names View the valid ports and services names for the local environment.

Note
When viewed from the listener node, the endpoint properties are read-only. If you want to change an endpoint property, rig
ht-click the specific local environment Node under the Local Environments Node, and then left-click Properties on the s
hortcut menu. The properties on that page are read-write.

Caution
The properties of an application are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the application to function incorrectly.

See Also
Reference
Listener

https://msdn.microsoft.com/en-us/library/aa770500(v=bts.10).aspx

Endpoints Tab (SNA Listener Properties)
The Endpoints tab displays the defined endpoints in the local environment definition. The controls on the Endpoints tab are
read-only. To add or remove endpoints from the local environment, use the Properties shortcut menu item on the Local
Environments node.

Use this To do this
New transaction program name View the transaction program (TP) name or the link mirror transaction ID of the local env

ironment.

Add Not available.

Defined transaction programs na
mes

View the existing TP names or the link mirror transaction IDs for the local environment.

Remove Not available.

Note
When viewed from the listener node, the endpoint properties are read-only. If you want to change an endpoint property, rig
ht-click the specific local environment Node under the Local Environments Node, and then left-click Properties on the s
hortcut menu. The properties on that page are read-write.

Caution
The properties of an listenerare not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the application to function incorrectly.

See Also
Reference
Listener

https://msdn.microsoft.com/en-us/library/aa770500(v=bts.10).aspx

Application Tab (Listener Properties)
The Application tab displays the local environment properties that are specific to the application. It allows you to specify
whether the application will begin listening on the local environment endpoints automatically when the application is started.

Use this To do this
Begin Listening on the local environ
ment at application startup

When this option is selected, the application will automatically start listening for inco
ming host requests on each port defined in the local environment.

Caution
The properties of an listener are not intended to be set or changed programmatically. Setting or changing the properties pro
grammatically might cause the application to function incorrectly.

See Also
Reference
Listener

https://msdn.microsoft.com/en-us/library/aa770500(v=bts.10).aspx

General Tab (Local Environment Properties)
Use the General tab to set the general local environment properties, including its name and basic information about its
network type.

Use
this

To do this

Loc
al e
nvir
on
me
nt

Type the name for the local environment. The name can be a maximum of 259 Unicode characters (alphabetic, numeric, s
pace, and special). The name cannot be the same as that of an existing local environment. You can change the name at an
y time, unless the local environment is an associated listener in an application that is active. The application must be stop
ped before the LE can be renamed. After the name is changed, the new name will appear in the Application, Local Envir
onments and Object nodes.

Net
wor
k ty
pe

Select the type of network used to communicate with the host. The choices are:

TCP/IP (default)

SNA.

Note
If the local environment is associated with any other configuration entity, you will receive an error when you attempt to
apply the change.

Tra
nsp
ort
clas
s

Select the class of the transport object. This list changes according to the selected Network type.

End
poi
nt
ma
nag
er

Select or type the local LU alias to manage the endpoint.

Note
The Endpoint manager edit box is set to Localhost and disabled if the Network type is set to TCP/IP.

Co
mm
ent

Type any additional information about the local environment. The comment can be a maximum of 259 Unicode character
s (alphabetic, numeric, space, and special).

Caution
The properties of a local environment are not intended to be set or changed programmatically. Setting or changing the prop
erties programmatically might cause the local environment to function incorrectly.

See Also
Reference
Local Environments Node
Local Environment Node

https://msdn.microsoft.com/en-us/library/aa744983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771447(v=bts.10).aspx

Endpoints Tab (TCP/IP Local Environment Properties)
Use the Endpoints tab to view, add, and delete endpoints in the local environment definition.

Use this To do this
New po
rt or ser
vice na
me

Type the port number or service name for the local environment. The port number can be a maximum of 5 numeric c
haracters and must be greater than 0 and fewer than 32768. The service name can be a maximum of 64 alpha-nume
ric characters. The format of the name must conform to the WinSock Service Name convention. The port number or
name cannot be the same as that of an existing number or name in Defined ports and service names.

Add Click to validate the port number or service name you typed. If the number or name is valid, it then appears in Defin
ed ports and service names. If the local environment is referenced by an application, the new port or service name
will not be available for use until all the applications that use the local environment are restarted.

Defined
ports a
nd servi
ce nam
es

View the valid ports and services names for the local environment.

Remov
e

Click to remove a selected port number or service name from Defined ports or service names.

Caution
The properties of a local environment are not intended to be set or changed programmatically. Setting or changing the prop
erties programmatically might cause the local environment to function incorrectly.

See Also
Reference
Local Environments Node
Local Environment Node

https://msdn.microsoft.com/en-us/library/aa744983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771447(v=bts.10).aspx

Endpoints Tab (SNA Local Environment Properties)
Use the Endpoints tab to view, add, and delete endpoints in the local environment definition.

Use this To do this
New trans
action pro
gram nam
e

Type the transaction program (TP) name or the link mirror transaction ID of the local environment. The name or I
D can be a maximum of 64 alphabetic characters. The format of the name must conform to the IBM SNA Transacti
on Program Names convention. The name or ID cannot be the same as that of an existing name or ID in the Defin
ed transaction programs names.

Add Click to validate the transaction program (TP) name or the link mirror transaction ID you typed. If the TP name or t
he link mirror transaction ID is valid, it appears in Defined transaction program names.

Defined tr
ansaction
programs
names

View the existing TP names or the link mirror transaction IDs for the local environment.

Remove Click to remove one or more TP names or link mirror transaction IDs selected from the Defined transaction pro
grams names available for use in the local environment.

Caution
The properties of a local environment are not intended to be set or changed programmatically. Setting or changing the prop
erties programmatically might cause the local environment to function incorrectly.

See Also
Reference
Local Environments Node
Local Environment Node

https://msdn.microsoft.com/en-us/library/aa744983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771447(v=bts.10).aspx

General Tab (Host Environment Properties)
The General tab defines the basic characteristics of the host environment that will initiate requests to the Windows platform.

Use th
is

To do this

Host e
nviro
nmen
t

Type the name for your host environment. The name can be a maximum of 259 Unicode characters (alphabetic, numeri
c, space, and special). The name cannot be the same as that of an existing host environment.

Time-
out in
secon
ds

The Send and Receive time-out values are used by the host-initiated processing (HIP) runtime environment when it c
ommunicates with the host environment. The time-out values are used on transport-specific application program interf
aces (APIs) to terminate the send and/or receive API functions if the expected data is not received in the specified amou
nt of time.

Send Type the number of seconds the HIP runtime should wait for an acknowledgement before it times out. The maximum n
umber of seconds is 3,600; the default is 30 seconds.

Recei
ve

Type the number of seconds the host should wait for a response before it times out. The maximum number of seconds
is 3,600; the default is 30 seconds.

Com
ment

Type any additional information about the host environment. The comment can be a maximum of 259 alpha-numeric c
haracters.

Caution
The properties of a host environment are not intended to be set or changed programmatically. Setting or changing the prope
rties programmatically might cause the host environment to function incorrectly.

See Also
Reference
Host Environments Node
Host Environment Node

https://msdn.microsoft.com/en-us/library/aa754419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705483(v=bts.10).aspx

Network Tab (Host Environment Properties)
The Network tab defines the network characteristics that the host uses to interact with the Windows environment and to
ensure that unauthorized requests are not inadvertently processed.

Use this To do this
Network ty
pe

Select the type of network used to communicate with the host environment. The choices are:

TCP/IP (default)

SNA

Remote en
dpoint man
ager

For a TCP/IP network, select or type the IP address of the host or the host name registered in the DNS. For an SN
A network, type the LU name associated with the host system. In either case, the name can be a maximum of 259
alpha-numeric characters.

Caution
The properties of a host environment are not intended to be set or changed programmatically. Setting or changing the prope
rties programmatically might cause the host environment to function incorrectly.

See Also
Reference
Host Environments Node
Host Environment Node

https://msdn.microsoft.com/en-us/library/aa754419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705483(v=bts.10).aspx

Conversion Tab (Host Environment Properties)
The Conversion tab defines the data type characteristics used by the host that makes requests to the Windows platform. The
code page and elemental data conversion object are used by host-initiated processing (HIP) to transform the incoming and
outgoing data to a form that can be used by the host application program.

Use this To do this
Data conversion Select the data conversion routine to be used.

Host code page Select the code page used by the host. Each available code page is listed by its symbolic value.

Caution
The properties of a host environment are not intended to be set or changed programmatically. Setting or changing the prope
rties programmatically might cause the host environment to function incorrectly.

See Also
Reference
Host Environments Node
Host Environment Node

https://msdn.microsoft.com/en-us/library/aa754419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705483(v=bts.10).aspx

Default Tab (Host Environment Properties)
The Default tab of the properties page of a specific host environment defines the manner in which the host typically
communicates with Transaction Integrator. These defaults are applied during the configuration for an object view.

Use t
his

To do this

Defa
ult m
etho
d res
oluti
on cr
iteria

View the definition of the default behavior for setting up the method resolution criteria for a new object view.

Type Select the type of resolution to be conducted:

Endpoint: The endpoint resolution type is the simplest means of resolving a request to a method. A data stream directe
d to a port always executes a single method on a view. This model is considered "raw sockets," and represents a single s
ynchronous exchange of data. When a new view is created and associated with the HE, the method resolves to the first e
ndpoint defined in the associated local environment. Selecting Endpoint disables the Object, Input format and Outpu
t format boxes and clears their contents.

Transaction Request Message (TRM): The TRM resolution type is specific to the IBM CICS Concurrent Server m
odel and the Microsoft variant, MSLink model. It represents a double exchange sequence. The first exchange repre
sents the transaction request; the second exchange represents the request and reply data.

When a new view is created and associated with the HE, the method resolves to the first endpoint defined in the as
sociated local environment. Selecting Transaction Request Message (TRM) enables the Object, Input format,
and Output format boxes. When a new view is created and associated with the HE, the method resolves to the fir
st endpoint defined in the associated local environment. Selecting one of the predefined Transaction Request Ob
jects disablesthe Input format and Output format boxes; it also disables the Link Tran ID box and clears its con
tents. Selecting a custom object enables the Input format and Output format boxes and sets their initial values t
o the Microsoft-supplied TRM handler items.

Data: Similar to Endpoint in that it adds the ability to identify a string in the data stream directed to a port, that is
used to associate the request with a specific method in the view. This model is considered "raw sockets." It represe
nts a single synchronous exchange of data. Selecting Data disables the Object, Input format, Output format, an
d Link Tran ID boxes and clears their contents.

Link: The Link resolution type is specific to the IBM CICS DPL model. The endpoint name is representative of the T
P name that is the CICS mirror transaction ID.

Select Link to resolve all the methods of a new object view using the data information specified when the object vi
ew was created. When a new view is created and associated with the HE, the method resolves to the Link Tran ID fi
eld in the default HE resolution. Selecting Link disables the Object, Input format, and Output format boxes and
clears their contents.

Obje
ct

Select the object. The list of objects is populated from the Help string in the interface definition of objects identified to th
e resolution handler. Microsoft provides three TRM resolution handlers:

Microsoft HIS - TRM Handler MS Link (default)

Microsoft HIS - TRM Handler MSCCS

Microsoft HIS - TRM Handler IBMCCS

Microsoft HIS - Link Handler

Inpu
t for
mat

Select the format for the data stream that represents the TRM sent by the client host application program. The list of TR
M input formats is populated from the user-defined type definitions in the MicrosoftTRMDef.tim file. The Input format
box is disabled for standard TRM handlers and enabled for custom TRM handlers, but three input formats are defined th
at match the names of the resolution handler Object:

TRMINMSLink

TRMINMSCCS

TRMINIBMCCS

Outp
ut fo
rmat

Select the format for the data stream that represents the reply to the TRM that was sent by the host application program
. TI formats a data stream to be returned to the host client application program in the form defined by the output TRM. T
he list of TRM output formats is populated from the UDT definitions in the MicrosoftTRMDef.tim file. The Output forma
t box is disabled for standard TRM handlers and enabled for custom TRM handlers, but three output formats are defined
that match the names of the resolution handler Object:

TRMOUTMSLink

IBM Listener Reply Format (TRMOUTCCS)

Link Tran ID: Select the TP name or Link Mirror Tran ID for the SNA local environment. This control is enabled onl
y when the Network Type is set to SNA and the Resolution Type is set to Link.

Caution
The properties of a host environment are not intended to be set or changed programmatically. Setting or changing the prope
rties programmatically might cause the host environment to function incorrectly.

See Also
Reference
Host Environments Node
Host Environment Node

https://msdn.microsoft.com/en-us/library/aa754419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705483(v=bts.10).aspx

General Tab (Security Policy Properties)
The General tab of the properties page of a security policy defines the name of the policy and the source of the security
credentials.

Use this To do this

Policy Type the name for the security policy. The name can be a maximum of 259 Unicode characters (alphabetic, numeri
c, space, and special). The name cannot be the same as the name of an existing security policy. The name for the n
ew security policy is a required field; you will receive an error message if you click Next without providing a name
. The name is used to associate the security policy with an object view in other wizard pages and dialog boxes.

Host-initia
ted Single
Sign-on

Select this option to use host user ID and password. This option is automatically disabled if Single Sign-On (SSO) i
s not installed or not available.

Windows
credential
s of the HI
P applicati
on

Select this option to use Windows user ID and password specified on the HIP NT application service. This option is
automatically selected if Single Sign-On (SSO) is not installed or not available.

Comment Type additional information about the security policy. The comment can be a maximum of 259 Unicode characters
.

Caution
The properties of a security policy are not intended to be set or changed programmatically. Setting or changing the propertie
s programmatically might cause the security policy to function incorrectly.

See Also
Reference
Security Policies Node
Security Policy Node

https://msdn.microsoft.com/en-us/library/aa771298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771085(v=bts.10).aspx

Credentials Source Tab (Security Policy Properties)
The Credentials Source tab of the properties page of a security policy defines the source of the host user ID and password
and describes how they are translated into Windows-based credentials.

Use this To do this
Securit
y policy

View the name of the security policy.

Affiliat
e applic
ation

Select the SSO affiliate application to be queried to gain access to the Windows credentials needed to execute metho
ds on the server object. The list displays all the affiliate applications defined in the SSO. The display name of the affilia
te application is a concatenation of the affiliate application name and description, separated by a hyphen. The selecte
d application will be added to the security policy.

Note
The dropdown list is disabled if SSO is not installed or is not available.

Single S
ign-on
mappin
g use

Specify the credentials to be used when mapping to Single Sign-on.

Default
credent
ials

Select this option to enter the user ID and password used if the request from the host does not contain a user ID and
password or the user ID and password are set to spaces or nulls. This option enables the Group application and Us
er boxes.

Group a
pplicati
on

The default user group provides the default user ID and password.

User Type or select the host user name used in the lookup call to SSO.

Note
The dropdown list is disabled if SSO is not installed or is not available.

Caution
The properties of a security policy are not intended to be set or changed programmatically. Setting or changing the propertie
s programmatically might cause the security policy to function incorrectly.

See Also
Reference
Security Policies Node
Security Policy Node

https://msdn.microsoft.com/en-us/library/aa771298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771085(v=bts.10).aspx

Method Resolution Criteria Dialog Box (in the New Object
View Wizard)

Use the Method Resolution Criteria dialog to provide detailed information about a specific method on the object view.

Use
this

To do this

Met
hod

View the name of the object's method for which the method resolution criteria are being set.

End
poi
nt

Select the endpoints on the local environment that are available for the type of resolution specified in Type. All endpoint
s in the LE are listed and available for selection. If an endpoint selected for one resolution type is already used with anoth
er resolution type then an error message will pop up when you click Apply. The error message explains which object and
view has this endpoint used with another resolution type.

Met
hod
reso
luti
on c
riter
ia

View a description of the behavior for the IT runtime when it resolves a request to a method. The sequence of data flow e
vents may require the TI to send and receive various amounts of data prior to obtaining the ability to make the connectio
n between the incoming request and the target method.

Typ
e

Select the type of resolution to be conducted:

Endpoint The endpoint resolution type is simplest means of resolving a request to a method. A data stream direct
ed to a port always executes a single method on a view. This model is considered "raw sockets," and it represents a
single synchronous exchange of data. When a new view is created and associated with the HE, the method resolves
to the first endpoint defined in the associated local environment. Selecting Endpoint disables Object Name, Inpu
t format and Output format and clears their contents.

Transaction Request Message (TRM) The TRM resolution type is specific to the IBM CICS Concurrent Server mo
del and the Microsoft variant MSLink model. It represents a double exchange sequence. The first exchange represen
ts the transaction request, and the second exchange represents the request and reply data. When a new view is crea
ted and associated with the HE, the method resolves to the first endpoint defined in the associated local environme
nt. Selecting Transaction Request Message (TRM) enables Object, Input format, and Output format. This opti
on is available only for TCP/IP local environment/host environment pairs.

Enhanced Listener Message (ELM):

Data Similar to Endpoint in that it adds the flexibility to identify a string in the data stream directed to a port that i
s used to associate the request with a specific method in the view. This model is considered "raw sockets." It repres
ents a single synchronous exchange of data. When a new view is created and associated with the HE, the method re
solves to the first endpoint defined in the associated local environment. Selecting Data disables Object, Input for
mat, and Output format and clears their contents.

Link to Program Name: Resolves all the methods of a new object view using the data information specified when
the object view was created. When a new view is created and associated with the HE, the method resolves to the Lin
k Tran ID field in the default HE resolution. Selecting Link to Program Name disables Object, Input format, and
Output format and clears their contents. This option is available only for SNA local environment/host environmen
t pairs.

Note
Only TRM-MSLink and Link to Program Name are available for Link methods. Methods can be defined as Link in Vis
ual Studio by setting the Is Link property to True.

Obj
ect
Na
me

Select the object. The list of objects is populated from the Help string in the interface definition of objects identified to the
resolution handler. Microsoft provides three TRM resolution handlers:

Microsoft HIS - TRM Handler MS Link (default)

Microsoft HIS - TRM Handler MSCCS

Microsoft HIS - TRM Handler IBMCCS

Inp
ut f
orm
at

Select the format of the data stream that represents the TRM sent by the client host application program. The list of TRM
input formats is determined by the UDT) definitions in the MicrosoftTRMDef.tim file in the installation TIMLibs directory.
The Input format box is blank by default, but three input formats are defined that match the names of the resolution ha
ndler Object:

MS Link Request Format

IBM Listener Type 1 Request Format

IBM Listener Type 2 Request Format

Out
put
for
mat

Select the format of the data stream that represents the reply to the TRM that was sent by the host application program.
TI formats a data stream that is returned to the host client application program in the form defined by the output TRM. T
he list of TRM output formats is determined by the UDT definitions in the MicrosoftTRMDef.tim file. The Output format
box is blank by default, but three output formats are defined that match the names of the resolution handler Object:

MS Link Reply Format

IBM Listener Type 1 Reply Format

IBM Listener Type 2 Reply Format

Link View the name of the program being linked to.

Pro
gra
m N
ame

Name of the TP program.

Res
olut
ion
Dat
a

View a definition of the data used by the IT runtime when it resolves a request to a method.

Dat
a

Type the method resolution criteria for a method on the object view. The criteria can be a maximum of 256 alpha-numeri
c characters. This control is enabled for resolution types Transaction Request Message (TRM) and Data. This control is
disabled for resolution type Endpoint.

Posi
tion

Type the resolution position. The position can be a maximum of nine numeric characters. This control is enabled for resol
ution type Data and disabled for resolution types Transaction Request Message (TRM) and Endpoint.

See Also
Other Resources
TI Manager Properties

https://msdn.microsoft.com/en-us/library/aa745571(v=bts.10).aspx

General Tab (Object Properties)
Use the General tab to view the properties of an object. All properties are read-only, except for the Object and
Comment fields.

Use this To do this
Object View the name of the object.

Metadat
a file

View the name of the Transaction Integrator metadata (.tim) file.

Method
count

View the number of methods that are contained in the object definition.

Help stri
ng

View the Interface Definition Help String that was part of the object's interface definition.

Commen
t

Type a comment that provides additional information about the use of the object in host-initiated processing. The c
omment can be a maximum of 256 alpha-numeric characters.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (HIP)
Object Node (HIP)

https://msdn.microsoft.com/en-us/library/aa746069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705384(v=bts.10).aspx

Methods Tab (Object Properties)
Use the Methods tab to view the methods on an object.

Use this To do this
Method View the name of the methods defined in the .tim file.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (HIP)
Object Node (HIP)

https://msdn.microsoft.com/en-us/library/aa746069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705384(v=bts.10).aspx

.NET Implementation Tab (Object Properties)
Use the .NET Implementation tab to view the properties of the .NET assembly implementing the interface defined in the
Transaction Integrator metadata (TIM) file.

Use th
is

To do this

Assem
bly pa
th

Type the full path name, including the .dll extension, to a .NET file, select a recently used file from the list, or click Brow
se and navigate to the file.

Class Select the class containing the methods to be called by HIP runtime for the request processing. The list displays classes
from the selected assembly that implement the interface defined in the .TIM file. The first class is selected in the list by
default.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (HIP)
Object Node (HIP)

https://msdn.microsoft.com/en-us/library/aa746069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705384(v=bts.10).aspx

General Tab (View Properties)
Use the General tab to view or change the basic information about the object view.

Use this To do this
Object vie
w

View the name of the object view.

Local envir
onment

Select a local environment (LE). The LE determines the network type associated with the object view.

If you are changing from one network type to another, be sure to remove all methods from the view before chan
ging the LE.

Note
Changing the current LE in the view removes the host environments (HEs) associated with the view and all relat
ed information. Use the Host Environments tab to associate a new HE.

Security po
licy

Select a security policy to be associated with the view.

Comment Type a comment that provides additional information about the use of the object view in the HIP environment. Th
e comment can be a maximum of 259 alpha-numeric characters.

Note
When viewed from the view node under the application listener node, the general properties are read-only. If you want to c
hange a general property, right-click the specific view Node under the object Node, and then left-click Properties on the sh
ortcut menu. The properties on that page are read-write.

Caution
The properties on an object view are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the application to function incorrectly.

See Also
Reference
View Node (listener)
View Node (object)

https://msdn.microsoft.com/en-us/library/aa770472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx

Host Environments Tab (View Properties)
Use the Host Environments tab to view or change detailed information about the host environments (HEs) associated with
the object view.

Use this To do this
Host environmen
t

Select the host environment to associate with the object view. This list includes all the HEs that have the sa
me network type as the local environment associated with the object view.

Configured host e
nvironments

View the HEs already associated with the object view.

Add Click to add the HE to the object view and move the name to Configured host environments.

Remove Click to remove the selected HE from the object view and from Configured host environments. The rem
oved HE is moved to the list in Host environment.

Note
When viewed from the view node under the application listener node, the host environment properties are read-only. If you
want to change a host environment property, right-click the specific view Node under the object Node, and then left-click P
roperties on the shortcut menu. The properties on that page are read-write.

Caution
The properties on an object view are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the object view to function incorrectly.

See Also
Reference
View Node (listener)
View Node (object)

https://msdn.microsoft.com/en-us/library/aa770472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx

Methods Tab (View Properties)
Use the Methods tab to view or change the methods associated with the object view and the method resolution details. You
can use this page to add and remove methods on the object view. Double-click a row in the grid to edit the resolution
information.

Use
this

To do this

Obj
ect
met
hod
s

View all the methods that are defined in the object. Each row contains a summary of the resolution information for a sing
le method. Rows in the list cannot be deleted. The columns are:

Include Select to include the method in the object view.

Method View the name of the method. Double-click the method name to launch the Method Resolution Criteria
dialog box.

Endpoint View one of the endpoints defined in the local environment associated with the view. To change the cont
ent of this field, double-click on the Endpoints field for a specific method.

Resolution Type Displays one of the possible resolution types:

Endpoint The endpoint resolution type is the simplest means of resolving a request to a method. A data str
eam directed to a port always executes a single method on a view. This model is considered "raw sockets,"
and represents a single synchronous exchange of data.

Transaction Request Message (TRM) The TRM resolution type is specific to the IBM CICS Concurrent Ser
ver model and the Microsoft variant, MSLink model. It represents a double exchange sequence.

Enhanced Listener Message (ELM):

Data Similar to Endpoint in that it adds the ability to identify a string in the data stream directed to a port
that is used to associate the request with a specific method in the view. This model is considered "raw socke
ts." It represents a single synchronous exchange of data.

Link to Program Name: Select Link to Program Name to resolve all the methods of a new object view u
sing the data information specified when the object view was created.

To change the content of this field, double-click the Resolution Type field for a specific method.

Resolution Data Identifies the data used to select the method to be executed. To change the content of this field, d
ouble-click the Resolution Data field for a specific method.

Resolution Position Displays the resolution position. If Data Resolution is selected, this information is used by t
he TI runtime to identify the starting point in the data stream in which to look for the data defined in the resolution
data field to determine which method is to be executed. To change the content of this field, double-click on the Res
olution Position field for a specific method.

Note
When viewed from the view node under the application listener node, the method properties are read-only. If you want to c
hange a method property, right-click the specific view Node under the object Node, and then left-click Properties on the s
hortcut menu. The properties on that page are read-write.

Caution

The properties on an object view are not intended to be set or changed programmatically. Setting or changing the properties
programmatically might cause the object view to function incorrectly.

See Also
Reference
View Node (listener)
View Node (object)

https://msdn.microsoft.com/en-us/library/aa770472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx

Method Resolution Criteria Dialog Box (Object Properties)
Use the Method Resolution Criteria dialog to provide detailed information about a specific method on the object view.

Use
this

To do this

Met
hod

View the name of the object's method for which the method resolution criteria are being set.

End
poi
nt

Select the endpoints on the local environment that are available for the type of resolution specified in Type. All endpoint
s in the LE are listed and available for selection. If an endpoint selected for one resolution type is already used with anoth
er resolution type then an error message will pop up when you click Apply. The error message explains which object and
view has this endpoint used with another resolution type.

Met
hod
reso
luti
on c
riter
ia

View a description of the behavior for the IT runtime when it resolves a request to a method. The sequence of data flow e
vents may require the TI to send and receive various amounts of data prior to obtaining the ability to make the connectio
n between the incoming request and the target method.

Typ
e

Select the type of resolution to be conducted:

Endpoint The endpoint resolution type is simplest means of resolving a request to a method. A data stream direct
ed to a port always executes a single method on a view. This model is considered "raw sockets," and it represents a
single synchronous exchange of data. When a new view is created and associated with the HE, the method resolves
to the first endpoint defined in the associated local environment. Selecting Endpoint disables Object Name, Inpu
t format and Output format and clears their contents.

Transaction Request Message (TRM) The TRM resolution type is specific to the IBM CICS Concurrent Server mo
del and the Microsoft variant MSLink model. It represents a double exchange sequence. The first exchange represen
ts the transaction request, and the second exchange represents the request and reply data. When a new view is crea
ted and associated with the HE, the method resolves to the first endpoint defined in the associated local environme
nt. Selecting Transaction Request Message (TRM) enables Object, Input format, and Output format. This opti
on is available only for TCP/IP local environment/host environment pairs.

Enhanced Listener Message (ELM):

Data Similar to Endpoint in that it adds the flexibility to identify a string in the data stream directed to a port that i
s used to associate the request with a specific method in the view. This model is considered "raw sockets." It repres
ents a single synchronous exchange of data. When a new view is created and associated with the HE, the method re
solves to the first endpoint defined in the associated local environment. Selecting Data disables Object, Input for
mat, and Output format and clears their contents.

Link to Program Name: Resolves all the methods of a new object view using the data information specified when
the object view was created. When a new view is created and associated with the HE, the method resolves to the Lin
k Tran ID field in the default HE resolution. Selecting Link to Program Name disables Object, Input format, and
Output format and clears their contents. This option is available only for SNA local environment/host environmen
t pairs.

Note
Only TRM-MSLink and Link to Program Name are available for Link methods. Methods can be defined as Link in Vis
ual Studio by setting the Is Link property to True.

Obj
ect
Na
me

Select the object. The list of objects is populated from the Help string in the interface definition of objects identified to the
resolution handler. Microsoft provides three TRM resolution handlers:

Microsoft HIS - TRM Handler MS Link (default)

Microsoft HIS - TRM Handler MSCCS

Microsoft HIS - TRM Handler IBMCCS

Inp
ut f
orm
at

Select the format of the data stream that represents the TRM sent by the client host application program. The list of TRM
input formats is determined by the UDT) definitions in the MicrosoftTRMDef.tim file in the installation TIMLibs directory.
The Input format box is blank by default, but three input formats are defined that match the names of the resolution ha
ndler Object:

MS Link Request Format

IBM Listener Type 1 Request Format

IBM Listener Type 2 Request Format

Out
put
for
mat

Select the format of the data stream that represents the reply to the TRM that was sent by the host application program.
TI formats a data stream that is returned to the host client application program in the form defined by the output TRM. T
he list of TRM output formats is determined by the UDT definitions in the MicrosoftTRMDef.tim file. The Output format
box is blank by default, but three output formats are defined that match the names of the resolution handler Object:

MS Link Reply Format

IBM Listener Type 1 Reply Format

IBM Listener Type 2 Reply Format

Link View the name of the program being linked to.

Pro
gra
m N
ame

Name of the TP program.

Res
olut
ion
Dat
a

View a definition of the data used by the IT runtime when it resolves a request to a method.

Dat
a

Type the method resolution criteria for a method on the object view. The criteria can be a maximum of 256 alpha-numeri
c characters. This control is enabled for resolution types Transaction Request Message (TRM) and Data. This control is
disabled for resolution type Endpoint.

Posi
tion

Type the resolution position. The position can be a maximum of nine numeric characters. This control is enabled for resol
ution type Data and disabled for resolution types Transaction Request Message (TRM) and Endpoint.

See Also
Reference
View Node (listener)
View Node (object)

https://msdn.microsoft.com/en-us/library/aa770472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744740(v=bts.10).aspx

General Tab (Remote Environment Properties)
Use the General tab to set the basic characteristics of the remote environment.

Use
this

To do this

Typ
e

View the type of remote environment, which describes the region on the mainframe with which your application is desig
ned to work

Stat
us

View the current state of the remote environment:

Active. The TI run-time environment accepts requests and attempts to communicate with the associated mainfram
e region.

Inactive. The TI run-time environment will not accept requests from client applications and returns an Inactive rem
ote environment error message without attempting to communicate with the associated mainframe region.

Disabled.

Iden
tifie
r

View the GUID for the remote environment. This identifier is useful when reviewing TI messages in the Windows Event L
og.

Crea
tor
nam
e

View the user ID of the user who created the remote environment.

Dat
e cr
eate
d

View the date the remote environment was created.

Com
men
t

Type or view a comment or description to help identify the new remote environment when its properties are displayed el
sewhere in the product. You can enter up to 259 Unicode characters in this field. Useful information includes the name a
nd location of the mainframe, and the name and telephone number of the system administrator.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

TCP/IP Tab (Remote Environment Properties)
Use the TCP/IP tab to define the network characteristics that the Windows environment uses to interact with the host.

Use this To do this
IP/DNS Add
ress

Type the address or select one from the drop-down list. The address can be a maximum of 256 alphanumeric ch
aracters. The drop-down list displays the most recently used IP addresses.

TCP ports lis
t

Type the TCP port number. The number can be a maximum of 256 positive numerals separated by semicolons.
The port numbers cannot be repeated. The drop-down list displays the most recently used port numbers.

Time-out if
no response
within num
ber seconds

Type the number of seconds. The send and receive time-out values are used by the WIP runtime environment w
hen it communicates with the host environment. The time-out values are used on transport-specific APIs to ter
minate the receive API function when no host data or acknowledgement is received in the specified amount of ti
me. The number of seconds can be a maximum of 3600 and a minimum of 0.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node
CICS Tab (for TCP/IP Properties)

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705395(v=bts.10).aspx

LU6.2 Tab (Remote Environment Properties)
Use the LU 6.2 tab to define the network characteristics that the Windows environment uses to interact with the host.

Use this To do this
Local L
U alias

Select a local LU alias from the drop-down list, or type the alias to be used by this remote environment when contacti
ng the mainframe. Create and configure this local LU alias through SNA Management (SNA Server)/SNA Manager (H
ost Integration Server) before you use the remote environment. The LU identified by the alias must correspond with
a VTAM independent LU on the mainframe.

The alias can be a maximum of 256 alphanumeric characters. The drop-down list displays all the local APPC LUs defi
ned to the SNA Manager.

Remote
LU alias

Select a remote LU alias from the drop-down list, or type the alias to be used by this remote environment when cont
acting the mainframe. Create and configure this remote LU alias through SNA Management before you use the remo
te environment. The partner LU identified by this alias must identify the ACBNAME of the CICS region, the partner LU
associated between APPCMVS and IMS to reach IMS.

The alias can be a maximum of 256 alphanumeric characters. The drop-down list displays all the remote APPC LUs d
efined to the SNA Manager.

Mode n
ame

Select a mode name from the drop-down list, or enter the mode name to be used by this remote environment for ses
sions established with the mainframe. Create and configure this mode name through Host Integration Server SNA M
anager before you use the remote environment. Ensure that a compatible mode has been defined on the mainframe.
You can also obtain a list of configured modes from Host Integration Server SNA Manager.

Note
To use two-phase commit, the APPC mode must be Sync Level 2 capable.

Support
s Sync L
evel 2 p
rotocol
s

Select this option to enable Sync Level 2 protocols for this remote environment.

Time-o
ut in se
conds

View the time-out information used by the WIP runtime environment when it communicates with the host environm
ent. The time-out values are used on transport-specific APIs to terminate the receive API function when no host data
or acknowledgement is received in the specified amount of time.

When a remote environment is first created, no timeout value is specified. The TI run-time environment will wait inde
finitely for the mainframe transaction program to return output parameters and simultaneously block the calling clie
nt application until this response is received. This blocking behavior is typical for APPC applications. To avoid indefini
te blocking, set a timeout value in the Receive box.

Receive Type the number of seconds. The number of seconds can be a maximum of 3600 and a minimum of 0.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node
CICS Tab (for LU6.2 Link Properties)

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744299(v=bts.10).aspx

Target Tab (Remote Environment Properties)
Use the Target tab to set the properties for the source of the captured data.

Use this To do this
Use responses from th
e following remote en
vironment

Select this option to specify a remote environment. A drop-down list appears containing all the remo
te environments that have the same network type, host environment, and programming model as th
e remote environment being defined.

Responses returned from the target remote environment are stored in the recording file associated
with this remote environment. If you choose this option, you must select a remote environment from
the list box.

Remote environment l
ist

Select the name of the remote environment that describes the mainframe from which you want to re
cord responses.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

Recording Tab (Remote Environment Properties)
Use the Recording tab to set the properties for the file of captured data.

Use this To do this
Recording sel
ection

View information about the recording file in which the TI run-time environment stores responses for the com
ponents assigned to this remote environment.

Name Type the name of the recording file. The file name can be a maximum of 256 alphanumeric characters. The dr
op-down list contains the most recently used recording files.

Browse Launches the Open File dialog box for selecting a new or different recording file.

Recording inf
ormation

View information about the recording.

Type View the type of remote environment.

Last updated View the data the remote environment was last updated.

Date created View the date the remote environment was created.

Creator name View the user ID of the user who created the remote environment.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

Locale Tab (Remote Environment Properties)
Use the Locale tab to define the computer data type characteristics used by the host that makes accepts requests from the
Windows platform.

Use this To do this
Locale Select the language locale you want to use in selecting the code page used by the TI run-time e

nvironment.

Use default code page for t
he selected locale

Select this option to have TI select the default code page suitable for the specified locale. If you c
lear this check box, you must explicitly select the code page.

Code page Select the code page used to transform the incoming and outgoing data to a form that can be u
sed by the host application program.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

Security Tab (Remote Environment Properties)
Use the Security tab to set the security properties of the remote environment for SNA.

Use thi
s

To do this

Enable
Single
Sign-o
n

Select this option to require that the TI run-time environment uses Single Sign-on (SSO). Clear this option to allow TI t
o communicate with the mainframe region without setting user ID and password information.

Affiliat
e appli
cation

Select the SSO affiliate application to be queried for credentials. The list displays all the affiliate applications defined in
the SSO. The display name of the affiliate application is a concatenation of the affiliate application name and descripti
on, separated by a hyphen.

COM+
Single
Sign-o
n map
ping us
e:

Identifies the source of the host user ID and password.

Important
This setting is for COM+ applications only. If you are using .NET applications, the credentials used by the TI runtime
are the same credentials set on the IIS virtual directory where the .NET objects are stored. You can set or change the .
NET credentials by using the "identity" element in the file web.config.

User cr
edenti
als

Select this option to have the TI run-time environment obtain the user ID and password information associated with t
he user logon in which the client application is executing.

Caution
For the COM server to impersonate the security credentials of the client application, the client application must grant
the COM server permission to impersonate it.

COM+
applica
tion cr
edenti
als

Select this option to have the TI run-time environment obtain the user ID and password information as defined for a c
omponent's COM+ application. To administer this security information, use Component Services (COM+) in Window
s Server 2003. This setting is ignored when a TI component is deployed in a COM+ application which itself is configur
ed as a Library application (instead of a Server application) on the Activation tab of the COM+ application property sh
eet. A Library application runs using the Windows user credentials of the process that invoked it, and TI attempts to m
ap this name to a corresponding host user name.

Allow a
pplicat
ion to
overrid
e select
ed aut
hentica
tion

Select this option to enable the TI run-time environment to use the application override mechanism for obtaining use
r ID and password information. The client application must be written to support the TI security override mechanism.
Clear this option to base the user ID and password solely on previously selected user or package credentials. This sec
urity option can be applied to a TI component deployed in a Library COM+ or ASP.NET application or in a Server CO
M+ or ASP.NET application.

This option appears only if Enable Single Sign-on is selected.

Requir
e client
provid
ed secu
rity

Select this option to require the client to provide the security credentials, either by using the client context or by maki
ng call-back security available.

This option appears only if Enable Single Sign-on is cleared.

Use alr
eady v
erified
or persi
stent v
erificat
ion aut
hentica
tion

Select this option to have the TI run-time environment use "Already Verified," "Persistent Verification" or "No authenti
cation," depending on the configuration of the mainframe region. "Already Verified" sends only the user ID and no pa
ssword. "Persistent Verification" sends a user ID and password on the first transaction from the given user and only th
e user ID thereafter. "No authentication" neither sends a user ID nor a password. The host configuration controls the a
ctual authentication to be used when this option is enabled. In a CICS region, for example, these settings correspond t
o the ATTACHSEC options Identify, Persistent, and None, respectively. This security option can be applied to a TI comp
onent deployed in a Library application or in a Server application. This security option can be applied to a TI compone
nt deployed in a Library COM+ application or in a Server COM+ application.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node
Concepts
How To Impersonate Client Application Security Credentials

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744328(v=bts.10).aspx

Security Tab (Remote Environment Properties)
Use the Security tab to set the security properties of the remote environment for TCP/IP.

Use this To do this
Enable Si
ngle Sig
n-on

Select this option to require that the TI run-time environment uses Single Sign-on (SSO). Clear this option to allow
TI to communicate with the mainframe region without setting user ID and password information.

Affiliate
applicati
on

Select the SSO affiliate application to be queried for credentials. The list displays all the affiliate applications defined
in the SSO. The display name of the affiliate application is a concatenation of the affiliate application name and desc
ription, separated by a hyphen.

COM+ Si
ngle Sig
n-on ma
pping us
e:

Identifies the source of the host user ID and password.

Important
This setting is for COM+ applications only. If you are using .NET applications, the credentials used by the TI runtim
e are the same credentials set on the IIS virtual directory where the .NET objects are stored. You can set or change
the .NET credentials by using the Identity tag in the file web.config.

User cred
entials

Select this option to have the TI run-time environment obtain the user ID and password information associated with
the user logon in which the client application is executing.

Note
This setting is ignored when a TI component is deployed in a COM+ application which itself is configured as a Libr
ary application (instead of a Server application) on the Activation tab of the COM+ application property sheet. A Li
brary application runs using the Windows user credentials of the process that invoked it, and TI attempts to map t
his name to a corresponding host user name.

Caution
For the COM server to impersonate the security credentials of the client application, the client application must gra
nt the COM server permission to impersonate it.

COM+ ap
plication
credenti
als

Select this option to have the TI run-time environment obtain the user ID and password information as defined for
a component's COM+ application. To administer this security information, use Component Services (COM+) in Win
dows Server 2003. This setting is ignored when a TI component is deployed in a COM+ application which itself is co
nfigured as a Library application (instead of a Server application) on the Activation tab of the COM+ application pro
perty sheet. A Library application runs using the Windows user credentials of the process that invoked it, and TI atte
mpts to map this name to a corresponding host user name.

Allow ap
plication
to overri
de select
ed authe
ntication

Select this option to enable the TI run-time environment to use the application override mechanism for obtaining u
ser ID and password information. The client application must be written to support the TI security override mechani
sm. Clear this option to base the user ID and password solely on previously selected user or package credentials. Th
is security option can be applied to a TI component deployed in a Library COM+ or ASP.NET application or in a Serv
er COM+ or ASP.NET application.

Note
This option appears only if Enable Single Sign-on is selected.

Require c
lient pro
vided sec
urity

Select this option to require the client to provide the security credentials, either by using the client context or by ma
king call-back security available.

Note
This option appears only if Enable Single Sign-on is cleared.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node
Concepts
How To Impersonate Client Application Security Credentials

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744328(v=bts.10).aspx

TCP/IP Tab (Remote Environment Properties)
Use the TCP/IP tab to set the IP address and port number for the host environment.

Use th
is

To do this

IP/DN
S addr
ess

Type the address or select from the drop-down list. The address can be a maximum of 256 alphanumeric characters. T
he drop-down list displays the most recently used IP addresses.

Port li
st

Type the TCP port number. The number can be a maximum of 256 positive numerals separated by semicolons. The po
rt numbers cannot be repeated. The drop-down list displays the most recently used port numbers.

Time-
out in
secon
ds

The Send and Receive time-out values are used by the TI runtime environment when it communicates with the host e
nvironment. The time-out values are used on transport-specific application program interfaces (APIs) to terminate the
send and/or receive API functions if no host acknowledgement is received in the specified amount of time.

Receiv
e

Type the number of seconds the host should wait for a response before it times out. The maximum number of seconds
is 3,600; the default is 30 seconds.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

CICS Tab (for LU6.2 Link Properties)
Use the CICS tab to set host-specific CICS properties.

Use this To do this
Transaction name Type or select the transaction name on CICS tied to CICS program DFHMIRS.

Allow use of explicit S
YNCPOINT commands
for non-transactional c
omponents

Select this option to allow a CICS transaction program that is accessed as a nontransactional compo
nent to call EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK commands.

Clear this option to make any CICS transactional component that calls SYNCPOINT commands fail w
ith an ADPL CICS ABEND.

LU 6.2 Resync services must be configured on the SNA Local LU. Enable Sync Point must be enabled
on SNA Remote LU. The Mode Table associated with the call must have sync level 2 enabled. The typ
elib must have transaction support properly set. The AppInt .Net model doesn't support Transaction
al nor does AppInt Com over TCP/IP.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
LU6.2 Tab (Remote Environment Properties)

https://msdn.microsoft.com/en-us/library/aa745613(v=bts.10).aspx

CICS Tab (for TCP/IP Properties)
Use the CICS tab to set host-specific CICS properties.

Use this To do this
Use IBM supplie
d CICS TCP/IP ex
it routine

When security is enabled, the default TCP/IP header contains the userid followed by the password. Selectin
g Use IBM supplied CICS TCP/IP exit routine,however, overrides the default behavior and causes the TC
P/IP header to put the password before the userid.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
TCP/IP Tab (Remote Environment Properties)

https://msdn.microsoft.com/en-us/library/aa771712(v=bts.10).aspx

IMS Tab
Use the IMS tab to identify the IBM-defined exit program on the host.

Use this To do this
ITOC infor
mation

View information about the ITOC exit name.

HWSIMSO
0

Select this option to use IMS Connect with exit HWSIMSO0.

HWSIMSO
1

Select this option to use IMS Connect with exit HWSIMSO1.

IMS syste
m ID

Type the IMS system ID or select from the drop-down list. The ID can be a maximum of 8 alphanumeric characters.
The drop-down list displays the most recently used IMS system IDs.

ITOC exit
name

Type the ITOC exit name or select from the drop-down list. The name can be a maximum of 8 alphanumeric charac
ters. The drop-down list displays the most recently used ITOC exit names.

Caution
The properties of a remote environment are not intended to be set or changed programmatically. Setting or changing the pr
operties programmatically might cause the remote environment to function incorrectly.

See Also
Reference
Remote Environments Node
Remote Environment Node

https://msdn.microsoft.com/en-us/library/aa771488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753898(v=bts.10).aspx

SSO tab (Security Policy Properties)
Use the SSO tab to set the security properties of the remote environment.

Use this To do this
SSO affilia
te applica
tion

Select the SSO affiliate application to be queried for credentials. The list displays all the affiliate applications define
d in the SSO. The display name of the affiliate application is a concatenation of the affiliate application name and d
escription, separated by a hyphen.

Caution
The properties of a security policy are not intended to be set or changed programmatically. Setting or changing the propertie
s programmatically might cause the security policy to function incorrectly.

See Also
Reference
Security Policies Node
Security Policy Node

https://msdn.microsoft.com/en-us/library/aa771298(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771085(v=bts.10).aspx

General Tab (Object Properties)
Use the General tab to define the basic characteristics of the object that will service requests from the Windows platform.

Use t
his

To do this

Obje
ct

View the ProgID that names the component. This ProgID is created by Visual Studio in Host Integration Server (Designe
r in SNA Server) using the type library name, the interface name, and the version information given for the component.

Type View the type of remote environment for which this component is designed. This type is specified in Visual Studio when
the component's type library is created.

Note
You cannot change the type of an object.

Descr
iptio
n

View the component description entered in Visual Studio when the component's type library was created.

File View the name of the component library.

CLSI
D

View the CLSID that uniquely identifies the component.

Com
ment

Type a comment that provides additional information about the use of the object. The comment can be a maximum of 2
59 Unicode characters.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (WIP)
Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa745827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Hosting Tab (COM Object Properties)
Use the Hosting tab to set the hosting properties of the object.

Use this To do this
COM+ applicatio
n

Select a COM application. This list is populated by enumerating the COM+ applications on the local comput
er.

Virtual directory Select an IIS virtual directory. This list is populated by enumerating the IIS Virtual Directories on the local co
mputer.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (WIP)
Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa745827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Hosting Tab (.NET Object Properties)
The Hosting tab allows you to set the hosting properties of the object.

Use this To do this
.NET assembl
y

Select a .NET assembly. This list is populated by enumerating the .NET assemblies on the local computer.

Virtual direct
ory

Select an IIS virtual directory. The list is populated from enumerating the IIS Virtual Directories on the local co
mputer.

Key file for pr
oxy

Select the key (.snk) file that TI Manager uses to sign the proxy in the IIS virtual directory. The list is populated
with files used previously.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (WIP)
Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa745827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Remote Environment Tab (Object Properties)
Use the Remote Environment tab to set the remote environment properties of the object.

Use this To do this
Remote
environ
ment

View the name of the remote environment to which this object is assigned. This list is populated by the remote envir
onments already defined and that agree in network type, host environment and programming model. You can select
a different remote environment for this object.

Caution
The properties on an object are not intended to be set or changed programmatically. Setting or changing the properties prog
rammatically might cause the object to function incorrectly.

See Also
Reference
Objects Node (WIP)
Object Node (WIP)

https://msdn.microsoft.com/en-us/library/aa745827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772047(v=bts.10).aspx

Enterprise Single Sign-On Help
This section provides instructions for the Enterprise Single Sign-On (SSO) user interface (UI) for Host Integration Server. You
access this information by using the F1 key or by clicking Help in the UI.

In This Section

Affiliate Applications Properties

Create New Affiliate Application Wizard

Create New Password Sync Adapter Wizard

Mapping Wizard

Enterprise Single Sign-On System

Password Sync Adapter Properties

Create Filter Wizard

Server Properties

https://msdn.microsoft.com/en-us/library/aa745572(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745424(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704963(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705586(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704816(v=bts.10).aspx

Affiliate Applications Properties
Use these property pages to manage your Affiliate Applications.

This section contains:

Affiliate Applications

Affiliate Applications Properties: Accounts

Affiliate Applications Properties: Fields

Affiliate Applications Properties: General

Affiliate Applications Properties: Options

https://msdn.microsoft.com/en-us/library/aa754695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705654(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771727(v=bts.10).aspx

Affiliate Applications
Use these menu commands to configure and manage Affiliate Applications.

Affiliate Applications Properties: Accounts
Use this dialog box to view or modify access accounts for the Affiliate Application.

Use this To do this

Application Administrators The Windows account that will manage this Affiliate Application.

Application Users The Windows account that will be used to access this Affiliate Application.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Affiliate Applications Properties: Fields
Use this dialog box to view or change fields for the Affiliate Application.

Use this To do this

Number of fi
elds

Determines the number and type of credentials (user ID, password, smart card) that users must provide to conn
ect to the affiliate application.

You can enter as many fields as there are credentials for the affiliate application, but the first field must be the u
ser ID.

Masked Determines whether this credential is masked (that is, whether the characters that the user types are displayed
on the screen).

You cannot change this property after you create the application.

Synchronize
d

Determines whether this field is synchronized (used with password synchronization). Only one field can be mar
ked as synchronized.

You cannot change this property after you create the application.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Affiliate Applications Properties: General
Use this dialog box to view or change general properties for the affiliate application.

Use this To do this

Application t
ype

Enterprise Single Sign-On (SSO) defines several different application types. The different application types supp
ort different types of mappings between the Windows account and the account on the non-Windows system.

The application types are:

Individual: Individual applications support one-to-one mappings between the Windows account and the non-
Windows account. In an Individual type application, one Windows account is mapped to one, and only one, non
-Windows account. The mapping can be used in either direction, from Windows to non-Windows, or from non-
Windows to Windows, or both, depending on the flags that have been set for this application. Thus, Individual a
pplications may be used for Windows initiated SSO, Host initiated SSO, or both.

Group: Group mapping consists of mapping a Windows group, which contains multiple Windows users, to a si
ngle account in the affiliate application.

You can also specify multiple accounts for the SSO Application Users role. Each account that you specify can be
associated with an external account.

For example, it is possible to map a domain user (domain\userA) to one set of external credentials (ExternalUse
r1). The same domain\userA could also be a member of Domain Group (domain\group1) and this group could
be mapped to a different set of external credentials (ExternalUser2). In this case, it is important that the administ
rator (who must be an Application Administrator or above) specifies the correct order for the Application Users
accounts.

The mapping for the first account (in the Order) of which the caller is a member is the one that will be used. In t
his case, if mapping for domain\userA to ExternalUser1 is set to Order 0, SSO will return this set of credentials f
or domain\UserA.

Only an application administrator, SSO affiliate administrator, or SSO administrator can create a group mappin
g.

You cannot specify the same group application for Windows-initiated SSO and Host-initiated SSO.

Host Group: Host Group applications are conceptually the reverse of Group applications. They support mappin
gs between a defined group of non-Windows accounts to a single Windows account. The single Windows acco
unt that will be used by the non-Windows accounts is defined by the Application Users account for the applicati
on. The group of non-Windows accounts that is allowed to access this application is defined by creating a mapp
ing for each non-Windows account. Host Group applications may only be used for Host initiated SSO.

Important
Mappings can be created only for Windows domain accounts. Local accounts cannot be mapped.

Important
When you use group mappings, the members of the group can obtain the credential information for the grou
p mapping.

Application
name

Name of the affiliate application. You cannot change this property after you create the affiliate application.

Description Brief description of the affiliate application.

Contact infor
mation

The main contact for this affiliate application that users can use. (Can be an e-mail address.)

Allow local a
ccounts for a
ccess accoun
ts

Determines whether you allow the use of local groups and accounts in the SSO system. You should select this o
ption only in single-computer scenarios.

Use SSO Affil
iate Admin A
ccounts for A
pplication A
dmin accoun
ts

Determines whether the Application Admin accounts will be the same as the SSO Affiliate Admin accounts. Def
ault is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Affiliate Applications Properties: Options
Use this dialog box to view or change options for the Affiliate Application.

Use this To do this

Enabled The status (enabled/disabled) of this affiliate application.

Allow Wi
ndows ini
tiated SS
O

Select if Windows initiated Enterprise Single Sign-On (SSO) is allowed.

Disable cr
edential c
ache

The SSO Server stores credentials in a cache to expedite access. Default is not checked.

Tickets all
owed

Determines whether the SSO system uses tickets for this affiliate application. You must be an SSO administrator to
select this option.

Validate t
ickets

Determines whether the SSO system validates tickets when the user redeems them. You must be an SSO administr
ator to select this option.

Timeout t
ickets

Determines whether tickets have an expiration time. Default is checked. Unless it is required, do not disable ticket ti
meouts. You must be an SSO administrator to set this option.

Ticket tim
eout (in
minutes)

Specifies a ticket timeout specific to the affiliate application. This can be set only when updating an affiliate applicat
ion, not when creating it. If ticketing is enabled for this application and this property is not, the timeout specified at
the SSO System (Global) level is used. You must be an SSO administrator to set this option.

Allow hos
t initiated
SSO

Select this if it is a host initiated SSO type application. Default is not checked.

Verify ext
ernal cred
entials

Select to verify external credentials.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Affiliate Application Wizard
Use this wizard to create a new Affiliate Application.

This section contains:

Create New Affiliate Application Wizard: Welcome

Create New Affiliate Application Wizard: Accounts

Create New Affiliate Application Wizard: Fields

Create New Affiliate Application Wizard: General

Create New Affiliate Application Wizard: Finish

Create New Affiliate Application Wizard: Accounts

https://msdn.microsoft.com/en-us/library/aa704716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704677(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705492(v=bts.10).aspx

Create New Affiliate Application Wizard: Welcome
Click Next to continue.

Create New Affiliate Application Wizard: Accounts
Specify the access accounts for the new Affiliate Application. You can specify one or more accounts for both Application
Administrators and Application Users.

Note
In certain Workgroup environments, clicking the Browse button will cause this screen to close. Instead of using the Browse
button, simply type the name of the required accounts in the box.

For group type Affiliate Applications, it is important to note that when specifying multiple accounts for Application Users, the
way in which the accounts are ordered is very important. This is because different ordering of accounts can result in different
credentials being returned, which could potentially result in an authentication failure.

For example, UserA could be a member of two groups: Group1 and Group2. Each of these groups could in turn be mapped to
an account as follows:

Group1 is mapped to ExternalCredentials1

Group2 is mapped to ExternalCredentials2

If the order specified for 'Application Users' is Group1;Group2, then when the credentials are requested for UserA, SSO returns
ExternalCredentials1.

However, if the order specified for 'Application Users' is Group2;Group1, then SSO returns ExternalCredentials2.

Application Administrators

The Windows account(s) that will manage this Affiliate Application.

Application Users

The Windows account(s) for which mappings can be created.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Affiliate Application Wizard: Fields
Specify fields for the new Affiliate Application.

Use this To do this

Number of fields Determines the number of fields that users must provide to connect to the affiliate application.

You can enter as many fields as there are credentials for the affiliate application, but the first fiel
d must be the external user ID.

Masked Determines whether this field is masked (that is, whether the characters that the user types are d
isplayed on the screen).

You cannot change this property after you create the application.

Synchronized Determines whether this field is synchronized (used with password synchronization). Only one fi
eld can be marked as synchronized.

You cannot change this property after you create the application.

Credentials are Windows c
redentials

Increases security by identifying credentials as Windows credentials; applies to individual applica
tions only.

Credentials are restricted Applies only to group applications. This option is only necessary when using Enterprise Single Si
gn-On with Microsoft Office 2007.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Affiliate Application Wizard: General
Specify general properties for the new Affiliate Application.

Use this To do this

Application t
ype

Enterprise Single Sign-On (SSO) defines several different application types. The different application types supp
ort different types of mappings between the Windows account and the account on the non-Windows system.

The application types are:

Individual: Individual applications support one-to-one mappings between the Windows account and the non-
Windows account. In an Individual type application, one Windows account is mapped to one, and only one, non
-Windows account. The mapping can be used in either direction, from Windows to non-Windows, or from non-
Windows to Windows, or both, depending on the flags that have been set for this application. Thus, Individual a
pplications may be used for Windows initiated SSO, Host initiated SSO, or both.

Group: Group applications support mappings between one or more Windows groups or users to one single no
n-Windows account. The Application Users account is used to define the Windows groups or users that will be
used for this Group application.

Host Group: Host Group applications are conceptually the reverse of Group applications. They support mappin
gs between a defined group of non-Windows accounts to a single Windows account. The single Windows acco
unt that will be used by the non-Windows accounts is defined by the Application Users account for the applicati
on. The group of non-Windows accounts that is allowed to access this application is defined by creating a mapp
ing for each non-Windows account. Host Group applications may only be used for Host initiated SSO.

Application
name

Name of the affiliate application. You cannot change this property after you create the affiliate application.

Description Brief description of the affiliate application.

Contact infor
mation

The main contact for this affiliate application that users can use. (Can be an e-mail address.)

Allow local a
ccounts for a
ccess accoun
ts

Determines whether you allow the use of local groups and accounts in the SSO system. You should only select t
his option in single-computer scenarios.

Use SSO Affil
iate Admin A
ccounts for A
pplication A
dmin accoun
ts

Determines whether the Application Admin Accounts will be the same as the SSO Affiliate Admin Accounts. Def
ault is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Affiliate Application Wizard: Options
Specify options for the new Affiliate Application.

Use this To do this

Enabled The status (enabled/disabled) of this affiliate application.

Allow Windows in
itiated SSO

Select if Windows initiated Enterprise Single Sign-On (SSO) is allowed. Default is selected.

Disable credential
cache

The SSO server stores credentials in a cache to expedite access. Default is not selected.

Tickets allowed Determines whether the SSO system uses tickets for this affiliate application. You must be an SSO admini
strator to select this option.

Validate tickets Determines whether the SSO system validates tickets when the user redeems them. You must be an SSO
Administrator to select this option.

Timeout tickets Determines whether tickets have an expiration time. Default is checked. Unless it is required, do not disabl
e ticket time-outs. You must be an SSO Administrator to set this option.

Ticket timeout (in
minutes)

Specifies a ticket time-out specific to the affiliate application. If ticketing is enabled for this application and
this property is not, the time-out specified at the SSO System (Global) level is used. You must be an SSO A
dministrator to set this option.

Allow host initiat
ed SSO

Select this if Host initiated SSO is allowed. Default is not selected.

Verify external cr
edentials

Select to verify external credentials.

Direct Password S
ync from Window
s

Select to allow Direct Password Sync for this application.

Application users
cannot create ma
ppings

Increases system security by allowing only administrators to create mappings.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Affiliate Application Wizard: Finish
Click Finish to close the Wizard.

Create New Password Sync Adapter Wizard
Use this wizard to create a new Password Sync Adapter.

This section contains:

Create New Password Sync Adapter Wizard: Welcome

Create New Password Sync Adapter Wizard: Accounts

Create New Password Sync Adapter Wizard: General

Create New Password Sync Adapter Wizard: Options

Create New Password Sync Adapter Wizard: Properties

Create New Password Sync Adapter: Finish

https://msdn.microsoft.com/en-us/library/aa771749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745411(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744360(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754096(v=bts.10).aspx

Create New Password Sync Adapter Wizard: Welcome
Click Next to continue.

Create New Password Sync Adapter Wizard: Accounts
Specify access accounts for the new Password Sync Adapter.

Use this To do this

Application Administrators The Windows account that will manage this adapter.

Application Users The Windows account that will be used to access this adapter.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Password Sync Adapter Wizard: General
Specify general properties for the new Password Sync Adapter.

Use this To do this

Adapter name Name of the adapter.

Description Brief description of the adapter.

Computer Name of the computer on which this adapter will run. Must be the fully qualified
computer name.

Group adapter Select if this adapter is a group adapter.

Allow local accounts for access accounts Determines whether the App Admin or App Users accounts can be local account
s. Default is not selected.

Use SSO Affiliate Admin Accounts for Ap
plication Admin Accounts

Determines whether the Application Admin Accounts will be the same as the SS
O Affiliate Admin Accounts. Default is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Password Sync Adapter Wizard: Options
Specify options for the new Password Sync Adapter.

Use this To do this

Enabled Determines whether the adapter is enabled.

Receive
passwor
d chang
es from
adapter

Determines whether the adapter is allowed to receive external password changes. Default is not selected.

Verify ol
d passw
ord

Determines whether the adapter will verify the old password when an external password change is received. If this o
ption is selected then with an external password change the external adapter must supply the old external password
as well as the new external password. The old external password is then compared with the existing external passwo
rd in the Enterprise Single Sign-On (SSO) database for that external account. If they match, the password change is
accepted. If they do not match, the password change is rejected. Default is selected.

Change
Window
s passwo
rd

Determines whether the Windows password in Active Directory will also be changed when an external password ch
ange is received (full sync). Default is not selected.

Send Wi
ndows p
assword
changes
to adapt
er

Determines whether Windows password changes made in Active Directory will be sent to the external adapter. Defa
ult is not selected.

Send old
passwor
d to ada
pter

If selected, the old password value (from the SSO database) will also be sent to the external adapter as well as the n
ew password value. Some external systems might require both the old and new password values to change the pass
word. Default is not selected.

Allow m
apping c
onflicts

Determines whether the adapter will allow mapping conflicts.

A mapping conflict occurs when mappings are not unique. In a single SSO Individual application, mappings are alwa
ys one-to-one: one Windows account is mapped to exactly one external account and vice versa.

However, it is possible to assign more than one application to an adapter. Thus, it is possible to have a mapping in o
ne application that conflicts with a mapping in the other.

This purpose of this option is to prevent this from occurring. It is more secure to not allow mapping conflicts unless
there is a specific, well understood requirement for this behavior.

Default is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Password Sync Adapter Wizard: Properties
Specify properties for the new Password Sync Adapter.

Use this To do this

Properties file The location of the file containing the adapter properties.

Notification Retry Count Default is 5.

Notification Retry Delay (in mins) Default is 1.

Maximum Pending Notifications Default is 8.

Store Notifications (when offline) Check to store notifications in a local replay file when the database cannot be contacted.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Create New Password Sync Adapter: Finish
Click Finish to close the Wizard.

Mapping Wizard
Use this wizard to create and configure mappings.

In This Section

Create New Mappings Wizard: Welcome

Create New Mappings Wizard: Mappings File Option

Create New Mappings Wizard: Files Location

Create New Mappings Wizard: Accounts

Create New Mappings Wizard: External User Name

Create New Mappings Wizard: Generate

Create New Mappings Wizard: Options

Create New Mappings Wizard: Password

Create New Mappings Wizard: Create

Create New Mappings Wizard: Finish

https://msdn.microsoft.com/en-us/library/aa705790(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771096(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745441(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746199(v=bts.10).aspx

Create New Mappings Wizard: Welcome
Use this page to enter basic information about the Affiliate Application.

Affiliate Application name

The name of the application to be mapped.

Description

A description (optional).

Create New Mappings Wizard: Mappings File Option
Use this page to determine whether a new or existing mappings file will be used.

Generate new mappings file

Select to generate a new file. Default is selected.

Use an existing mappings file

Select to use an existing file.

Create New Mappings Wizard: Files Location
Mappings file

If necessary, browse to a new file.

Log file

Use the default, or change if necessary.

Validate

Click to ensure that you have proper access and have not entered invalid information.

Create New Mappings Wizard: Accounts
Application Users Accounts

Select the appropriate accounts.

Validate

Click to see the results in the status window.

Create New Mappings Wizard: External User Name
This page collects information to generate an external account name based on the Windows account name.

Windows domain name using

Change or accept these domain name properties as appropriate.

Windows user name using

Change or accept these user name properties as appropriate.

Remove characters

Remove characters as necessary.

Prepend characters

Add characters to the beginning of the name.

Domain/user separator characters

Select separator characters.

Append characters

Add characters to the end of the name.

Limit the number of characters

Limit the number of characters for the name.

Example

Uses the data entered above to display the Windows domain name, Windows user name, and external user name.

Create New Mappings Wizard: Generate
Mappings file location

Displays the location entered previously.

Selected accounts

Displays the accounts specified previously.

Start

Click to generate mappings.

Stop

Click to pause mappings.

View log file

Click to open the mappings log file in Notepad.

Create New Mappings Wizard: Options
Mappings file location

Displays the location you entered previously.

View/Edit mappings file

Click to open the file for editing as necessary.

Enable mappings

Select to enable mappings after they are created. Default is selected.

Set password

Selecting this option allows you to choose one of the following:

Same as external name

Define from Windows user account

Fixed value (enter and confirm a new password)

Create New Mappings Wizard: Password
This page collects information to generate a password based on the Windows account name.

Windows domain name using

Change or accept these domain name properties as appropriate.

Windows user name using

Change or accept these user name properties as appropriate.

Remove characters

Remove characters as necessary.

Prepend characters

Add characters to the beginning of the name.

Domain/user separator characters

Select separator characters.

Append characters

Add characters to the end of the name.

Limit the number of characters

Limit the number of characters for the name.

Example

Uses the data entered above to display the Windows domain name, Windows user name, and password.

Create New Mappings Wizard: Create
Use this page to create the mappings file with all of the information that has been collected.

Mappings file location

Confirm location of the file.

View mappings file

Click to view as necessary.

Start

Click to generate the mappings file.

Stop

Click to pause.

Create New Mappings Wizard: Finish
View Log File

Click to show the log file generated in the mapping process.

When I click finish, delete the mappings file

Select if desired. Default is selected unless you used an existing mappings file.

When I click finish, delete the log file

Select if desired. Default is selected unless you used an existing file.

Done

Click to close the wizard and display the results of the mapping process.

Enterprise Single Sign-On System
Use these topics to view and change the Enterprise Single Sign-On system properties.

This section contains:

Enterprise Single Sign-On

SSO System Properties: Accounts

SSO System Properties: Audits

SSO System Properties: General

SSO System Properties: Options

System

System Main

System Main Menu

https://msdn.microsoft.com/en-us/library/aa772102(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770520(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754266(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745616(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745839(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771689(v=bts.10).aspx

Enterprise Single Sign-On
Use these menu commands to configure and run Enterprise Single Sign-On.

SSO System Properties: Accounts
This screen displays account properties for the overall Enterprise Single Sign-On (SSO) system.

Use this To do this

SSO Administrators The Windows account that will manage this SSO system.

SSO Affiliate Administrators The Windows accounts that define who can create and manage all Affiliate Applications.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

SSO System Properties: Audits
These properties define the sizes of the audit tables in the Enterprise Single Sign-On (SSO) database.

Use this To do this

Deleted applications Default is 1,000.

Deleted mappings Default is 1,000.

External credential lookups Default is 1,000.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

SSO System Properties: General
This screen displays general properties for the overall SSO system.

Use this To do this

Master secr
et server

The master secret server is the Enterprise Single Sign-On (SSO) server that stores the master secret (encryption
key). The master secret server generates the master secret when an SSO Administrator requests it. The master se
cret server stores the encrypted master secret in the registry. Only SSO Administrators can access the master sec
ret.

Ticket time
out (in min
utes)

This property specifies the length of time for which a ticket that SSO issues is valid. To satisfy most of the scenari
os in an enterprise that use SSO, the default ticket time-out is 2 minutes. The SSO Administrator can change this
based on the application requirements.

Credential c
ache timeo
ut (in minut
es)

This property specifies the credential cache time-out for all SSO servers. SSO servers cache the credentials after t
he first lookup. By default, the credential cache time-out is 60 minutes. The SSO Administrator can change this to
a suitable value based on the security requirements.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

SSO System Properties: Options
This screen displays options for the overall Enterprise Single Sign-On (SSO) system.

Use this To do this

Allow tickets Determines whether tickets are allowed at the system level. Only an SSO Administrator can configur
e tickets at the SSO system level and at the Affiliate Application level.

If ticketing is disabled at the system level, it cannot be used at the Affiliate Application level either. It i
s possible to enable tickets at the system level and disable them at the Affiliate Application level.

Allow host initiated SS
O

By default, host initiated Single Sign-On is not enabled in the Single Sign-On system, and must be en
abled by the SSO Administrator.

From Windows to ada
pters

Determines whether Windows password changes (in Active Directory) will be sent to password sync
adapters. Default is not selected.

From adapters to SSO
database (partial sync)

Determines whether external password changes received from password sync adapters will cause th
e password to be changed in the SSO database. Default is not selected.

From adapters to Win
dows (full sync)

Determines whether external password changes received from password sync adapters will cause th
e Windows password to be changed in Active Directory. Default is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

System
Use these menu commands to configure and run your Enterprise Single Sign-On system.

System Main
The information on this page applies to the overall Enterprise Single Sign-On (SSO) system.

Use this To do this

SSO Server Name of the SSO server that is currently being used by the snap-in.

SQL Server Name of the SQL server that the SSO server is using.

SSO database Name of the SSO database that the SSO server is using.

SSO secret server Name of the SSO master secret server.

SSO status Status of the SSO system (enabled/disabled).

SSO Administrators The accounts containing the Administrators for the SSO system.

SSO Affiliate Administrators The accounts containing the Affiliate Administrators for the SSO system.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

System Main Menu
Use the commands on this menu to manage the overall ESSO system.

Use this To do this

Create database Create a new database.

Upgrade Database Upgrade the current database.

Generate Secret Generate the Master Secret.

Back up Secret Back up the Master Secret.

Restore Secret Restore the Master Secret.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Password Sync Adapter Properties
Use these property pages to configure Password Sync Adapters.

This section contains:

Password Synchronization

Password Sync Adapter Properties: Accounts

Password Sync Adapter Properties: General

Password Sync Adapter Properties: Options

Password Sync Adapter Properties: Properties

Password Sync Adapter Properties: System

Password Sync Adapter Properties: Custom

https://msdn.microsoft.com/en-us/library/aa770504(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746112(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754248(v=bts.10).aspx

Password Sync Adapter Properties: Accounts
Use this dialog box to view or change the access accounts for the Password Sync Adapter.

Use this To do this

Application Administrators The Windows account that will manage this adapter.

Application Users The Windows account that will be used to access this adapter.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Password Sync Adapter Properties: General
Use this dialog box to view or change the general properties for the Password Sync Adapter.

Use this To do this

Adapter name Name of the adapter.

Description Brief description of the adapter.

Computer Name of the computer on which the adapter will run. Must be the fully qualified comp
uter name.

Group adapter Will be selected if this adapter is a group adapter.

Allow local accounts for access acco
unts

Determines whether the App Admin or App Users accounts can be local accounts. Def
ault is not selected.

Use SSO Affiliate Admin Accounts f
or Application Admin Accounts

Determines whether the Application Admin Accounts will be the same as the Enterpris
e Single Sign-On (SSO) Affiliate Admin Accounts. Default is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Password Sync Adapter Properties: Options
Use this dialog box to view or change options for the Password Sync Adapter.

Use this To do this

Enabled Determines whether the adapter is enabled.

Receive
passwor
d chang
es from
adapter

Determines whether the adapter is allowed to receive external password changes. Default is not selected.

Verify ol
d passw
ord

Determines whether the adapter will verify the old password when an external password change is received. If this o
ption is selected then with an external password change the external adapter must supply the old external password
as well as the new external password. The old external password is then compared with the existing external passwo
rd in the Enterprise Single Sign-On (SSO) database for that external account. If they match, the password change is
accepted. If they do not match, the password change is rejected. Default is selected.

Change
Window
s passwo
rd

Determines whether the Windows password will also be changed in Active Directory when an external password ch
ange is received (full sync). Default is not selected.

Send Wi
ndows p
assword
changes
to adapt
er

Determines whether Windows password changes will be sent to the external adapter. Default is not selected.

Send old
passwor
d to ada
pter

If selected, the old password value (from the SSO database) will also be sent to the external adapter as well as the n
ew password value. Some external systems might require both the old and new password values to change the pass
word. Default is not selected.

Allow m
apping c
onflicts

Determines whether the adapter will allow mapping conflicts.

A mapping conflict occurs when mappings are not unique. In a single SSO Individual application, mappings are alwa
ys one-to-one: one Windows account is mapped to exactly one external account and vice versa.

However, it is possible to assign more than one application to an adapter. Thus, it is possible to have a mapping in o
ne application that conflicts with a mapping in the other.

This purpose of this option is to prevent this from occurring. It is more secure to not allow mapping conflicts unless
there is a specific, well understood requirement for this behavior.

Default is not selected.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Password Sync Adapter Properties: Properties
Use this dialog box to view or change properties for the Password Sync Adapter.

Use this To do this

Properties file The location of the file containing the adapter properties.

Notification Retry Count Default is 5.

Notification Retry Delay (in mins) Default is 1.

Maximum Pending Notifications Default is 8.

Store Notifications (when offline) Select to store notifications in a local replay file when the database cannot be contacted.

See Also
Other Resources
Enterprise Single Sign-On Help

https://msdn.microsoft.com/en-us/library/aa754325(v=bts.10).aspx

Password Synchronization
Use these menu commands to configure and run Password Synchronization.

Password Sync Adapter Properties: System
Use this dialog box to view or change properties for the Password Sync Adapter.

Notification Retry Count

Default is 5.

Notification Retry Delay (in mins)

Default is 1.

Maximum Pending Notifications

Default is 8.

Store Notifications (when offline)

Select to store notifications in a local replay file when the database cannot be contacted.

Password Sync Adapter Properties: Custom
Use this screen to view or change the Properties file information for the Password Sync Adapter.

Properties file

The location of the file containing the adapter properties.

Create Filter Wizard
Use this wizard to create and configure Password Filters.

In This Section

Create Filter Wizard: Welcome

Create Filter Wizard: General

Create Filter Wizard: Basic

Create Filter Wizard: Advanced

Create Filter Wizard: Finish

Filter Properties: Basic

Filter Properties: Advanced

https://msdn.microsoft.com/en-us/library/aa746105(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745334(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744755(v=bts.10).aspx

Create Filter Wizard: Welcome
Click Next to continue.

Create Filter Wizard: General
Use this page to enter basic information.

Name

Enter a name.

Description

Enter a description

Create Filter Wizard: Basic
Set these properties according to any restrictions on your host system.

Format

Select upper case, lower case, or as is.

Remove these characters

Specify characters not supported on the host end.

Maximum length

Specify as needed.

Clear

Clears the options.

Filter results

Displays filtered results compared to original.

Create Filter Wizard: Advanced
Set these properties according to any restrictions on your host system.

Substitute

If the host system does not recognize certain characters, use this control to specify replacement characters.

Padding

If padding is required, specify for padding to be placed at the beginning or end of the password.

Minimum length

Set a minimum length.

Pad character

Enter a character to be used for padding.

Clear

Clears the options.

Filter results

Displays filtered results compared to the original.

Create Filter Wizard: Finish
Click Finish to close the wizard.

Filter Properties: Basic
Set these properties according to any restrictions on your host system.

Format

Select upper case, lower case, or as is.

Remove these characters

Specify characters not supported on the host end.

Maximum length

Specify as needed.

Clear

Clears the options.

Filter results

Displays filtered results compared to original.

Filter Properties: Advanced
Set these properties according to any restrictions on your host system.

Substitute

If the host system does not recognize certain characters, use this control to specify replacement characters.

Padding

If padding is required, specify for padding to be placed at the beginning or end of the password.

Minimum length

Set a minimum length.

Pad character

Enter a character to be used for padding.

Clear

Clears the options.

Filter results

Displays filtered results compared to the original.

Server Properties
Use these topics to view and configure Server properties.

In This Section

Server Properties: Audit Levels

Server Properties: SSO Database

Server Properties: SSO Service

Server Properties: Password Sync Properties

Server Properties: Advanced

https://msdn.microsoft.com/en-us/library/aa754076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746014(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771309(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754284(v=bts.10).aspx

Server Properties: Audit Levels
These properties reflect the server status as of the most recent refresh.

Positive Audit Level

Select High, Low, or Medium.

Negative Audit Level

Select High, Low, or Medium.

Status

Displays the online or offline status of the server.

Server Properties: SSO Database
This screen displays information about the SSO Database.

SQL Server

Name of the SQL Server.

SSO Database

Name of the SSO Database.

Use SSL when connecting to SQL Server

Select this to increase security.

Server Properties: SSO Service
Use this page to enter information for the SSO Service.

Service Account

Enter the name of the SSO Service Account.

Password

Enter a password.

Confirm password

Re-enter the password.

Server Properties: Password Sync Properties
Password Sync Age (in hours)

Specify the desired age.

Allow Password Sync from PCNS

Select if desired.

Allow Password Sync from MIIS

Select if desired.

Server Properties: Advanced
Allow Remote Lookup

Select to enable lookups from a remote computer.

Data Integration Help
Use the topics in this section to navigate through the Data Integration User Interface. Click a topic below for more information.

In This Section

Data Source Wizard

Data User Interface Elements

Configuring a Data Source

https://msdn.microsoft.com/en-us/library/aa754425(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770325(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744335(v=bts.10).aspx

Data Source Wizard
The Data Source Wizard guides you through the configuration process. The wizard dynamically adapts to both DB2 and VSAM
data sources and displays the appropriate screens.

In This Section

Welcome Screen

Data Source Screen

TCP/IP Network Connection Screen

APPC Network Connection Screen

DB2 Database Screen

Mainframe File System (VSAM) Screen

AS/400 File System Screen

Adding a Column

Options Property Page

DB2 Locale Screen

Mainframe and AS/400 Locale Screen

Security Screen

DB2 Validation Screen

Mainframe and AS/400 Validation Screen

DB2 Saving Information Screen

Mainframe and AS/400 Saving Information Screen

Advanced Options Screen

Finish Screen

https://msdn.microsoft.com/en-us/library/aa705536(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771998(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746099(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771969(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744899(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705506(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771368(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771287(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705248(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753891(v=bts.10).aspx

Welcome Screen
Click Next to continue.

Data Source Screen
Data source platform

Select the appropriate platform from the dropdown list.

Network type

Select either TCP/IP or SNA LU 6.2 (APPC).

TCP/IP Network Connection Screen
Address or alias

When TCP/IP Connection is selected as the network transport, this field indicates the IP address of the host DB2 server.

Port

When TCP/IP Connection is selected as the network port, this field indicates the TCP/IP port used for communication with the
target DB2 DRDA service. The default is IP port 446.

Distributed transactions

When this option is checked, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handled
using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the Host Integration Server TCP/IP
Resync service.

APPC Network Connection Screen
Local LU alias

When APPC Connection is selected, this field is the name of the local LU alias configured in Host Integration Server.

Remote LU alias

When APPC Connection is selected, this field is the name of the remote LU alias configured in Host Integration Server.

Mode name

When APPC Connection is selected, this field is the APPC mode and must be set to a value that matches the host configuration
and SNA Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security),
#IBMRDB (DB2 remote database access), and custom modes. The following modes that support bi-directional LZ89
compression are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal
routing security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

The default is typically QPCSUPP.

Distributed transactions

When this option is checked, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handled
using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync service. This
option works only with DB2 for OS/390 v5R1 or later.

DB2 Database Screen
Initial catalog

This field is the first entry in the Database section of the Connection properties.

This OLE DB property is used as the first part of a 3-part fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible
locations. To find the location of the DB2 to which you need to connect, ask the administrator to look in the TSO Clist
DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE
command from the console to the OS/400 system. If there is no RDBNAM value, one can be created using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

If the provider supports changing the catalog for an initialized data source, the consumer can specify a different catalog name
through the DBPROP_CURRENTCATALOG property in the DBPROPSET_DATASOURCE property set after initialization.

This is a required parameter.

This parameter is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.

Package collection

The name of the DRDA target collection (AS/400 library) where the Microsoft DAT should store and bind DB2 packages. This
could be same as the Default Schema.

The DAT will create packages dynamically in the location to which the user points using the Package Collection parameter. By
default, the DAT will automatically create one package in the target collection, if one does not exist, at the time the user issues
their first SQL statement. The package is created with GRANT EXECUTE authority to a single <AUTH_ID> only, where AUTH_ID
is based on the User ID value configured in the data source. The package is created for use by SQL statements issued under the
same isolation level based on the Isolation Level value configured in the data source.

A problem can arise in multi-user environments. For example, if a user specifies a Package Collection value that represents a
DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages to other
users (for example, PUBLIC), the package is created for use only by this user. This means that other users may be unable to
access the required package. The solution is for an administrative user, with package administrative rights (for example,
PACKADM authority in DB2 for OS/390), to create a set of packages for use by all users.

Default schema

The name of the Collection where the DAT looks for catalog information. The Default Schema is the "SCHEMA" name for the
target collection of tables and views. The DAT uses Default Schema to restrict results sets for popular operations, such as
enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, the OLE DB Provider uses the USER_ID provided at logon. For
DB2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. This default is inappropriate in
many cases, therefore it is essential that the Default Schema value in the data source be defined.

This parameter is equivalent to the DBPROP_DB2OLEDB_DEFAULTSCH OLE DB property ID.

Default qualifier

The name of the schema (collection/owner) with which to fully qualify unqualified object names. This attribute allows the user
to access database objects without fully-qualifying the objects using a collection (schema) qualifier. The DAT sends this value to
DB2 using a SET CURRENT SQLID statement, instructing the DBMS to use this value when locating unqualified objects (for
example, tables and views) referenced in SQL statements. If you do not set a value for default qualifier, no SET statement is
issued by the DAT. This OLE DB property is only valid when connecting to DB2 for MVS (OS/390, z/OS).

Mainframe File System (VSAM) Screen
Host column description file

The fully qualified file name of the Distributed Data Management (DDM) host column description (HCD) file. This parameter
can be an UNC string up to 256 characters in length. A path does not need to be included in the name if the HCD file is located
in the system directory where the Host Integration Server server or client software was installed. This parameter is required
when connecting to mainframe systems and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

AS/400 File System Screen
Location

The remote database name used for connecting to OS/400 systems. In DB2/400, this property is referred to as RDBNAM.

This parameter is not used when connecting to mainframe systems.

Default library

This parameter indicates the default AS/400 library to be accessed. This parameter is not required for mainframe access and is
optional when connecting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

Host file metadata assembly

The fully qualified file name of the Distributed Data Management (DDM) Host Column Description (HCD) file (created using the
Data Access tool), or the fully qualified file name of a Host File Metadata Assembly generated by the Host File Designer in
Visual Studio 2005.

This parameter can be a UNC string up to 256 characters in length.

This parameter is required when the data source information will be used with the BizTalk Adapter for Host Files or Managed
Provider for Host Files, and is optional when connecting to an AS/400 using SNAOLEDB.

Adding a Column
This command displays the Column Properties Dialog box. You can also access this dialog box by selecting a column and
clicking Properties from the context-sensitive menu.

To add a column

1. In the Data Source Browser window, click the Action menu.

2. Click Add Column. The Column properties: General tab appears.

3. Enter the Name, Alias, and Comment (optional). For more information on these properties, click the Help button. When
you are finished, click Apply.

4. Click the Host tab. Select the appropriate Type and CCSID, and enter the Length, Precision, and Scale. For more
information on these properties, click the Help button. When you are finished, click Apply.

5. Click the Local tab. Select the Type and check Use qualifier if appropriate. For more information on these properties,
click the Help button. When you are finished, click OK.

Column properties: General

Name

The name of the column.

Alias

The alias for the column.

Comment

A comment (optional).

Column properties: Host
Type

The host data type, which determines how data is stored on the host.

CCSID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is set to
true, character data is converted based on the DB2 column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

This parameter is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

Length

The length of the data type on the host.Precision

The precision (or number of digits in a numeric type), of the data type on the host.

Scale

The scale (or number of decimal digits in a numeric type), of the data type on the host.

Column properties: Local
Type

The data type presented (such as DBTYPE_STR). Data conversions take place from the host type to the local type.

Use qualifier

Determines whether or not a qualifier is to be used.

Table properties
Name

Type a name for your table.

Use table for file transfer

Selecting this option allows you to enter additional fields for your table, below.

Field delimiter

Enter the field delimiter for your table.

Record delimiter

Enter the record delimiter for your table.

Text qualifier

Enter the text qualifier for you table.

File creation type

Select Direct, Sequential, or Indexed from the list.

Sort

If you selected a File Creation Type of Indexed, you have the option of sorting in either Ascending or Descending order.

Key position

If you selected a File Creation Type of Indexed, you have the option of specifying a key position.

Key length

If you selected a File Creation Type of Indexed, you have the option of specifying a key length.

Options Property Page
The Data Access Tool configures the following default values at installation.

Files Location
OLE DB UDL files C:\My Documents\Host Integration Projects\Data Sources\

ODBC File DSNs C:\Program Files\Common Files\ODBC\Data Sources

Host column description files C:\My Documents\Host Integration Projects\Data Descriptions

Click any of the Browse buttons to select a new directory.

DB2 Locale Screen
Host CCSID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is set to
true, character data is converted based on the DB2 column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

This parameter is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

PC code page

This parameter indicates the code page to be used on the personal computer for character code conversion. This parameter
is required when processing binary data as character data. Unless the Process Binary as Character checkbox is selected
(value is set to true), character data is converted based on the default ANSI code page configured in Windows.

This parameter defaults to Latin 1 (1252).

This parameter is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Process binary as character

When this option is checked, it indicates that binary data fields should be processed as characters. This option treats binary
data type fields (with a CCSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and PC
Code Page values are required input and output parameters.

This parameter is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Mainframe and AS/400 Locale Screen
Host CCSID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is set to
true, character data is converted based on the DB2 column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

This parameter is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

PC code page

This parameter indicates the code page to be used on the personal computer for character code conversion. This parameter
is required when processing binary data as character data. Unless the Process Binary as Character checkbox is selected
(value is set to true), character data is converted based on the default ANSI code page configured in Windows.

This parameter defaults to Latin 1 (1252).

This parameter is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Process binary as character

When this option is checked, it indicates that binary data fields should be processed as characters. This option treats binary
data type fields (with a CCSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and PC
Code Page values are required input and output parameters.

This parameter is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Security Screen
Interactive sign-on

Authentication to a data source can be done using interactive sign-on or Single Sign-On. For interactive sign-on, the user
name and password must match host credentials.

User name

A valid user name and password are normally required to access data sources on a host. These values are case sensitive. Do
not select the Single Sign-On option if a specific user name and password are to be entered.

Password

A valid user name and password are normally required to access data sources on hosts. These values are case sensitive.

Allow saving password

You have the option of saving the password in the .udl file by selecting this check box. Users and administrators should be
warned that this option saves the authentication information (password) in plain text within the .udl file. For security
purposes, however, it is strongly recommended that you set these properties manually, instead of using a .udl. Note that if
you select this option when using the ODBC Driver for DB2, and then uninstall and reinstall Host Integration Server, the
password will be erased.

Single Sign-On

Select this check box to enable using the Host Integration Security features providing a Single Sign-On to access this data
source.

When this check box is selected, the User name and Password fields are dimmed and become inaccessible. The user name
and password fields are set based on the Windows 2000 logon.

When this check box is not selected, the User name and Password fields must normally contain appropriate values to
access data sources on hosts.

Affiliate Application

If you selected Single Sign-On, choose an Affiliate Application from the list. The Enterprise Single Sign-On (SSO) Affiliate
applications are logical entities that represent a system or sub-system such as a host, back-end system, or line of business
application to which you are connecting using SSO. An affiliate application can represent a back-end system such as a
mainframe or UNIX computer. It can also represent an application such as SAP, or a subdivision of the system, such as the
"Benefits" or "Pay stub" sub-systems.

DB2 Validation Screen
Use this screen to validate your configuration.

Click Connect to perform a test connection.

Click Packages to create the DB2 packages required for executing SQL statements.

Click Sample Query to retrieve a list of tables in the default database collection.

Mainframe and AS/400 Validation Screen
Use this screen to validate your configuration.

Click Connect to test the connection to the mainframe or AS/400 system.

Click Sample Query to retrieve a list of files in the default library.

DB2 Saving Information Screen
Use this screen to name and save your configuration.

Data source name
Enter a name of your choice. This name is used when saving the data source configuration to one or more data source types.

OLE DB or Managed group, ODBC group
Make the appropriate selection(s) for your data source.

Mainframe and AS/400 Saving Information Screen
Use this screen to name and save your configuration.

Data source name
Enter a name of your choice. This name is used when saving the data source configuration to one or more data source types.

Universal data linkand Initialization string file
Make the appropriate selection(s) for your data source.

Advanced Options Screen
The settings on this screen are optional.

Connection pooling
Selecting this option will cache connections for reuse.

Cache authentication
This parameter determines whether the OLE DB Provider for AS/400 and VSAM caches authentication information, such as a
password, in an internal cache. This parameter is not currently supported by the OLE DB Provider for AS/400 and VSAM and
defaults to false.

This parameter is equivalent to the DBPROP_CACHE_AUTHINFO OLE DB property ID.

Mode (Read/ReadWrite)
Determines whether the connection is read-only, or if it allows modifications to the database.

Repair host keys
This parameter provides for repair of invalid key offsets received from OS/400 when keys have been defined using the DDS
"RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values set in the
registry.

This parameter defaults to false. This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Read only
Selecting this option prevents a data source from being updated.

Alternate TP Name
This is the transaction program name on a DB2 DRDA application server.

Strict Validation
Select this option if desired.

Finish Screen
This screen displays a summary and status of your configuration. Click Finish to implement your actions.

Data User Interface Elements
The topics in this section describe the elements in the Data Integration User Interface.

In This Section

Data Source Browser

Data Source Folder

Data Source Item

Data Descriptions Folder

Data Description File

Data Description Table

Data Description Column

Table Properties

https://msdn.microsoft.com/en-us/library/aa771663(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705217(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771131(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744897(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744956(v=bts.10).aspx

Data Source Browser
The Data Source Browser is the window where you configure and manage your data sources.

The window is divided into three parts: a tree view containing the data sources and data descriptions, a list view containing
details of a selected node, and a result view containing the text results of an action (such as a package creation).

The procedures in the following topics describe how to manage data. Many commands are also accessible through a context-
sensitive menu which appears when you right-click any section of the Browser window. In addition, the F5 key refreshes the
tree view, the Delete key deletes the currently selected item, and the F1 key opens the online Help.

Data Source Folder
This folder contains data sources and groups of data sources.

Data Source Item
Right-clicking a data source allows you to view, edit, test, delete, or rename it.

Data Descriptions Folder
This folder displays the names of all configured data descriptions. Click the individual files to view their properties.

Data Description File
Right-click a data description to view its properties, or to edit or delete the file.

Data Description Table
A Data description table contains the meta-data describing a file or table on a mainframe, AS/400, or System 36 file system. A
table description holds information about the various columns in that table.

Data description tables are stored in "Host Column Description" files and can be found under the "Host Column Descriptions"
folder in the DAT browser.

Data Description Column
A Data description column contains the meta-data describing a field or column of a mainframe, AS/400, or System 36 file
system table or file. This meta-data includes the column name, its host type, and its local type.

Data description columns are stored in "Host Column Description" files and can be found under the "Host Column
Descriptions" folder in the DAT browser.

Table Properties
Displays the properties for the selected table.

Configuring a Data Source
The following sections contain information about configuring a data source.

In This Section

Configuring a Data Source for OLE DB Provider for AS/400 and VSAM

Configuring a Data Source for the ODBC Driver for DB2

Configuring a Data Source for OLE DB Provider for AS/400 and
VSAM

You must configure data source information for each AS/400 or mainframe system data source object that is to be accessed
using OLE DB Provider for AS/400 and VSAM. The default parameters for OLE DB Provider for AS/400 and VSAM are used
only when these parameters are not configured for each data source.

Microsoft Data Link, a core element of Microsoft Data Access Components (MDAC), provides a uniform method for creating
file-persistent OLE DB data source object definitions in the form of universal data link (.udl) files. The Data Source Wizard in the
Microsoft Data Access Tool can help define UDL files. OLE DB consumer applications, such as Data Transformation Services in
Microsoft SQL Server can use the UDL files to connect to IBM data sources, such as DB2 and the mainframe file system.

To configure a data source for OLE DB Provider for AS/400 or VSAM

You must create a data link to configure parameters for your OLE DB data source. You can create a new data link by clicking
the shortcut in the Host Integration Server program folder.

The properties of a universal data link file can be edited by opening the file from Windows Explorer.

The Provider tab lets you select the OLE DB provider (the provider name string) to be used in this .udl file from a list of
possible OLE DB providers. Select Microsoft OLE DB Provider for AS/400 and VSAM.

The Connection tab lets you configure the basic properties required to connect to a data source. For OLE DB Provider for
AS/400 and VSAM, the connection properties include the following values:

Proper
ty

Description

Data S
ource

This is an optional parameter that can be used to describe the data source.

Netwo
rk

This drop-down list allows for selecting the type of network connection to use. The options are TCP/IP Connection o
r SNA Connection.

If TCP/IP Connection is selected, click More Options, to open a dialog box for configuring TCP/IP network settings.
The parameters you can configure include the IP address of the remote host (or a host name alias for this computer) a
nd the Network Port (TCP/IP port) used to communicate with the host. The default value for the Network Port is 446.
The IP address of the host has no default value.

If SNA Connection is selected (using LU 6.2), click More Options to open a dialog box for configuring SNA network
settings. The parameters you can configure include the following: the APPC local LU alias, the APPC remote LU alias, a
nd the APPC mode used to communicate with the host. The default value for the APPC mode ordinarily uses QPCSUP
P. The local and remote LU alias fields do not have default values.

Single
Sign-O
n

This option enables using the Host Integration Security features providing a single sign-on to access this OLE DB data
source.

When this option is selected, the User name and Password fields are dimmed and become inaccessible. The User na
me and Password fields are set based on the Windows logon values.

When this option is not selected, the User name and Password fields ordinarily contain appropriate values to access
data sources on hosts.

User n
ame

A valid user name and password are ordinarily required to access data sources on hosts. These values are case sensiti
ve. The user must click the option button that requires a specific user name and password to be entered.

Passwo
rd

A valid user name and password are ordinarily required to access data sources on hosts. These values are case sensiti
ve. The user will have to clear the Blank password check box, if it is selected, to enter a password.

Optionally, the user can choose to save the password in the .udl file by selecting the Allow saving password check b
ox. Users and administrators should be warned that this option persists the authentication information in plain text wi
thin the .udl file.

Locatio
n

The remote database name used for connecting to OS/400 systems. In DB2/400, this property is referred to as RDBN
AM.

This parameter is not used when connecting to mainframe systems.

Defaul
t Librar
y

This parameter indicates the default AS/400 library to be accessed. This parameter is not required for mainframe acce
ss and is optional when connecting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

Host C
olumn
Descri
ption F
ile

The fully qualified file name of the Distributed Data Management (DDM) host column description (HCD) file. This para
meter can be a UNC string up to 256 characters long. A path does not must be included in the name if the HCD file is l
ocated in the system directory where the Host Integration Server server or client software was installed. This paramet
er is required when connecting to mainframe systems and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

The Connection tab also includes a Test Connection button that can be used to test the connection parameters. The
connection can only be tested after all the required parameters are entered. When this button is selected, a session will be
established to the host computer using OLE DB Provider for AS/400 and VSAM.

The Advanced tab exposes OLE DB standard properties. For OLE DB Provider for AS/400 and VSAM, the advanced
properties include the following values:

Propert
y

Description

Host CC
SID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The C
CSID property is required when processing binary data as character data. Unless the Process Binary as Character v
alue is set to true, character data is converted based on the DB2 column CCSID and default ANSI code page.

By default, this parameter uses U.S./Canada (37).

This parameter is equivalent to the SNAOLEDB_HOSTCCSID OLE DB property ID.

PC Code
Page

The PC Code Page parameter indicates the code page to be used on the personal computer for character code conve
rsion. This parameter is required when processing binary data as character data. Unless the Process Binary as Char
acter check box is selected (value is set to true), character data is converted based on the default ANSI code page con
figured in Windows.

By default, this parameter uses Latin 1 (1252).

This parameter is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Read on
ly

When the Read Only parameter is checked in the Advanced tab, the OLE DB Provider for AS/400 and VSAM creates
a read-only data source by setting the Mode parameter to Read (DB_MODE_READ). A user has read access to files an
d cannot do update operations.

Repair
Host Ke
ys

This parameter provides for repair of invalid key offsets received from OS/400 when keys have been defined using t
he DDS "RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values s
et in the registry.

By default, this parameter is false.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Process
Binary a
s Charac
ter

When this option is checked (property is set to true), the OLE DB Provider for DB2 treats binary data type fields (with
a CCSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and PC Code Page values
are required input and output parameters.

By default, this parameter is false.

This parameter is equivalent to the SNAOLEDB_BINASCHAR OLE DB property ID.

The All tab lets you configure additional properties used to connect to a data source. Some of the properties in the All tab are
required. These properties can be edited by selecting a property from the displayed list and selecting Edit Value. For Microsoft
OLE DB Provider for AS/400 and VSAM, these properties include the following values:

Proper
ty

Description

APPC
Local
LU Ali
as

The name of the local LU alias configured in the Host Integration Server computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_LOCALLU OLE DB property ID.

APPC
Mode
Name

When LU 6.2 (SNA) is selected for the Network Transport Library, this field is the APPC mode and must be set to a valu
e that matches the host configuration and Host Integration Server computer configuration.

Valid values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security
), #IBMRDB (DB2 remote database access), and custom modes.

The following modes that support bi-directional LZ89 compression are also valid: #INTERC (interactive with compressi
on), INTERCS (interactive with compression and minimal routing security), BATCHC (batch with compression), and BAT
CHCS (batch with compression and minimal routing security).

By default, this parameter ordinarily is QPCSUPP.

This parameter is equivalent to the DBPROP_SNAOLEDB_APPCMODE OLE DB property ID.

APPC
Remot
e LU A
lias

When LU 6.2 (SNA) is selected for the Network Transport Library, this field is the name of the remote LU alias configur
ed in the Host Integration Server computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_LOCALLU OLE DB property ID.

Cache
Authe
nticati
on

This parameter determines whether the OLE DB Provider for AS/400 and VSAM caches authentication information, suc
h as a password, in an internal cache. This parameter is not currently supported by the OLE DB Provider for AS/400 an
d VSAM and is false by default.

This parameter is equivalent to the DBPROP_CACHE_AUTHINFO OLE DB property ID.

Conne
ction
Timeo
ut

The time (in seconds) to wait for initialization to finish. This parameter is not currently supported by the OLE DB Provid
er for AS/400 and VSAM and is 0 by default.

This parameter is equivalent to the DBPROP_INIT_TIMEOUT OLE DB property ID.

Data S
ource

This is an optional parameter that can be used to describe the data source.

This parameter is equivalent to the DBPROP_INIT_DATASOURCE OLE DB property ID.

Defaul
t Libra
ry

This parameter indicates the default AS/400 library to be accessed. This parameter is not required for mainframe acces
s and is optional when connecting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

Encry
pt Pas
sword

This parameter determines whether special security mechanisms are used to ensure password privacy.

This parameter is not currently supported by the OLE DB Provider for AS/400 and VSAM and is false by default.

This parameter is equivalent to the DBPROP_AUTH_ENCRYPT_PASSWORD OLE DB property ID.

Exten
ded Pr
operti
es

This parameter is a string that contains provider-specific, extended connection information. Properties passed through
this parameter should be delimited by semicolons and are interpreted by the OLE DB provider's underlying network cli
ent.

The use of this property implies that the OLE DB consumer knows how this string will be interpreted and used by the
OLE DB provider. This parameter should be used only for provider-specific connection information that cannot be expli
citly described through the other property parameters.

This parameter is equivalent to the DBPROP_INIT_PROVIDERSTRING OLE DB property ID.

Host C
CSID

The character code set identifier (CCSID) matching the data as represented on the host. The CCSID property is required
when processing binary data as character data. Unless the Process Binary as Character value is set, character data is
converted based on the host column CCSID and default ANSI code page.

By default, this parameter is U.S./Canada (37).

This parameter is equivalent to the DBPROP_SNAOLEDB_HOSTCCSID OLE DB property ID.

Host C
olumn
Descri
ption
File

The fully qualified file name of the Distributed Data Management (DDM) host column description (HCD) file. This para
meter can be an UNC string up to 256 characters long. A path does not have to be included in the name if the HCD file
is located in the system directory where the Host Integration Server Server or Client software was installed. This param
eter is required when connecting to mainframe systems and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

Imper
sonati
on Lev
el

This parameter indicates the level of impersonation that the server can use when impersonating the client computer. T
his property applies only to network connections other than remote procedure call (RPC) connections; these imperson
ation levels are similar to those provided by RPC. The values of this property correspond directly to the levels of imper
sonation that can be specified for authenticated RPC connections, but can be applied to connections other than authen
ticated RPC.

This parameter can be set to one of the following values:

Anonymous — The client computer is anonymous to the server. The server process cannot obtain identification inform
ation about the client computer and cannot impersonate the client computer.

Delegate — The process can impersonate the client's security context while acting on behalf of the client. The server pr
ocess can also make outgoing calls to other servers while acting on behalf of the client.

Identity — The server can obtain the client's identity. The server can impersonate the client computer for access contro
l list (ACL) checking, but cannot access system objects as the client computer.

Impersonate — The server process can impersonate the client's security context while acting on behalf of the client co
mputer. This information is obtained when the connection is established, not on every call.

By default, this parameter uses Impersonate.

This parameter is equivalent to the DBPROP_INIT_IMPERSONATION_LEVEL OLE DB property ID.

Integr
ated S
ecurit
y

This parameter is a string that contains the name of the authentication service used by the server to identify the user u
sing the identity provided by an authentication domain. For example, for Microsoft® Windows 2000 Integrated Securit
y, this is Security Support Provider Interface (SSPI). If this parameter is a null pointer, the default authentication service
should be used. When this property is used, no other DBPROP_AUTH* properties are needed and, if provided, their val
ues are ignored.

This parameter is equivalent to the DBPROP_AUTH_INTEGRATED OLE DB property ID.

Locale
Identif
ier

This parameter specifies the locale to use. This parameter is not supported by the OLE DB Provider for AS/400 and VS
AM and is 437 by default.

This parameter is equivalent to the DBPROP_INIT_LCID OLE DB property ID.

Locati
on

This parameter indicates the remote database name used for connecting to OS/400 systems. In DB2/400, this property
is referred to as RDBNAM. This parameter is not used when connecting to mainframe systems.

This parameter is equivalent to the DBPROP_INIT_LOCATION OLE DB property ID.

Mask
Passw
ord

This parameter indicates whether the password should be sent to the data source or enumerator in a masked form. Thi
s parameter is not supported by the OLE DB Provider for AS/400 and VSAM and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_MASK_PASSWORD OLE DB property ID.

Mode After a connection is established, this parameter represents a bit mask of the access permissions that will be applied to
the data file. As implemented by the OLE DB Provider for AS/400 and VSAM, access permissions apply to host file lock
s and do not apply to record locks.

The allowable values include the following: Read, ReadWrite, Share Deny None, Share Deny Read, Share Deny Write, S
hare Exclusive, and Write. This parameter can be a combination of zero or more of the following:

DB_MODE_READ — Read-only.

DB_MODE_WRITE — Write-only.

DB_MODE_READWRITE — Read/write (DB_MODE_READ | DB_MODE_WRITE).

DB_MODE_SHARE_DENY_READ — Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE — Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE — Prevents others from opening in read/write mode (DB_MODE_SHARE_DENY_READ |
DB_MODE_SHARE_DENY_WRITE).

DB_MODE_SHARE_DENY_NONE — Neither read nor write access can be denied to others.

This parameter is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Netwo
rk Add
ress

When TCP/IP has been selected for the Network Transport Library, this parameter is used to locate the target host com
puter. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. T
he network address is required when connecting through TCP/IP.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETADDRESS OLE DB property ID.

Netwo
rk Port

When TCP/IP has been selected for the Network Transport Library, this parameter is used to locate the target DDM ser
vice access port when connecting through TCP/IP. This parameter represents the TCP/IP port used for communication
with the DDM service on the host. The default value is TCP/IP port 446.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETPORT OLE DB property ID.

Netwo
rk Tra
nsport
Librar
y

This parameter, which represents the dynamic-link library used for transport, designates whether the OLE DB provider
connects through SNA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCPIP
or SNA.

If TCPIP is selected, then values for Network Address and Network Port are required. TCP/IP connectivity to the mainfr
ame is not supported by the OLE DB Provider for AS/400 and VSAM.

If SNA is selected, then values for APPC Local LU Alias, APPC Mode Name, and APPC Remote LU Alias are required.

This value defaults to SNA.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETTYPE OLE DB property ID.

Passw
ord

A valid user name and password are normally required to access data sources on hosts. The password is case-sensitive
and is shown as asterisks in this dialog box for security purposes.

Optionally, you can choose to save the password in the .udl file by clicking the Allow saving password check box. Us
ers and administrators should be warned that this option persists the authentication information in plain text within th
e .udl file.

This parameter is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

PC Co
de Pa
ge

This parameter indicates the code page used for character code conversion. This property is required when processing
binary data as character data. Unless the Process Binary as Character value is set, character data is converted based
on the default ANSI code page configured in the Windows operating system.

If this parameter is set to Binary or 65535, then no character code conversions take place. This parameter defaults to L
atin 1 (1252).

This parameter is equivalent to the DBPROP_SNAOLEDB_PCCODEPAGE OLE DB property ID.

Persist
Securi
ty Info

This parameter indicates whether the data source object is allowed to persist sensitive authentication information such
as a password along with other authentication information.

Optionally, a user can choose to save the password in the .udl file by clicking the Allow saving password check box.
Users and administrators should be warned that this option persists the authentication information in plain text within
the .udl file.

This parameter defaults to false.

This parameter is equivalent to the DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO OLE DB property ID.

Proces
s Binar
y as C
haract
er

This parameter indicates whether to Process Binary as Character fields (CCSID of 65535) as character data type field
s on a per data source basis. The Host CCSID and PC Code Page values are required input parameters when this para
meter is true.

The default for this parameter is false. Do not process binary fields as character fields.

This parameter is equivalent to the DBPROP_SNAOLEDB_BINASCHAR OLE DB property ID.

Protec
tion L
evel

This parameter indicates the level of protection of data sent between client computer and server. The values of this pro
perty correspond directly to the levels of protection that can be specified for authenticated RPC connections. This para
meter can be set to one of the following values:

DB_PROT_LEVEL_NONE — Performs no authentication of data sent to the server.

DB_PROT_LEVEL_CONNECT — Authenticates only when the client computer establishes the connection with the serve
r.

DB_PROT_LEVEL_CALL — Authenticates the source of the data at the beginning of each request from the client compu
ter to the server.

DB_PROT_LEVEL_PKT — Authenticates that all data received is from the client computer.

DB_PROT_LEVEL_PKT_INTEGRITY — Authenticates all data received is from the client computer and that it has not bee
n changed in transit.

DB_PROT_LEVEL_PKT_PRIVACY — Authenticates all data received is from the client computer, that it has not been cha
nged in transit, and protects the privacy of the data by encrypting it.

This parameter is not supported by the OLE DB Provider for AS/400 and VSAM and defaults to the connect level of pro
tection.

This parameter is equivalent to the DBPROP_INIT_PROTECTION_LEVEL OLE DB property ID.

Read
only

When the Read Only parameter is checked in the Advanced tab, the OLE DB Provider for AS/400 and VSAM creates a r
ead-only data source by setting the Mode parameter to Read (DB_MODE_READ). A user has read access to files and ca
nnot do update operations.

Repair
Host K
eys

This parameter provides for repair of invalid key offsets received from OS/400 when keys have been defined using the
DDS "RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values set in
the registry.

This parameter defaults to false.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Strict
Valida
tion

This parameter indicates whether strict validation should be used and defaults to false.

This parameter is equivalent to the DBPROP_SNAOLEDB_STRICTVAL OLE DB property ID.

User I
D

A valid user name is normally required to access data sources on hosts. This value is case-sensitive.

This parameter is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

Configuring a Data Source for the ODBC Driver for DB2
To configure a data source for the ODBC Driver for DB2

1. In Windows, click Start, click Settings, and then click Control Panel.

2. Double-click the ODBC icon to display the ODBC Data Source Administrator dialog box.

3. If you are configuring an existing data source, select the data source name and click Configure to display the Microsoft
ODBC Driver for DB2 Configuration dialog box.

4. If you are configuring a new data source click either the User DSN tab, the File DSN tab, or the System DSN tab. Click
Add, select Microsoft ODBC Driver for DB2 Driver, and then click Finish to display the Microsoft ODBC Driver for
DB2 Configuration dialog box.

5. Type the appropriate values in the fields, and then click Apply.

The Microsoft ODBC Driver for DB2 Configuration dialog box contains the following five tabs:

The General tab contains the following fields:

Para
meter

Comments

Data
Sourc
e Na
me

A blank field for specifying the name of the data source. Enter a string that identifies this ODBC data source.

The data source is a required parameter that is used to define the data source. The ODBC driver manager uses this attri
bute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, thi
s field is used to name the DSN file, which is stored in C:\Program Files\Common Files\ODBC\Data Sources.

Descri
ption

A blank field to provide a comment describing this ODBC data source. The description is an optional parameter and ma
y be left blank.

The Connection tab allows the user to configure the basic attributes required to connect to a data source. For the Microsoft
ODBC Driver for DB2, the Connection tab has the following fields:

Parame
ter

Comments

APPC C
onnecti
on and
TCP/IP
Connec
tion

An option button (radio button) is used to select the network transport. Valid options are APPC Connection (SNA LU
6.2) or TCP/IP Connection.

For the default, APPC Connection, the values for APPC local LU alias, APPC remote LU alias, and APPC Mode Name ar
e required.

For TCP/IP Connection, the values for IP address and Network port are required.

APPC l
ocal LU
alias

When APPC Connection is selected, this field is the name of the local LU alias configured in Host Integration Server.

APPC r
emote
LU alias

When APPC Connection is selected, this field is the name of the remote LU alias configured in Host Integration Server
.

APPC
mode n
ame

When APPC Connection is selected, this field is the APPC mode and must be set to a value that matches the host confi
guration and SNA Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive
), #INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing secu
rity), #IBMRDB (DB2 remote database access), and custom modes. The following modes that support bi-directional LZ
89 compression are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and
minimal routing security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal ro
uting security).

The default is typically QPCSUPP.

IP addr
ess

When TCP/IP Connection is selected as the network transport, this field indicates the IP address of the host DB2 serve
r.

Networ
k port

When TCP/IP Connection is selected as the network port, this field indicates the TCP/IP port used for communication
with the target DB2 DRDA service.

The default is IP port 446.

The Connection tab also includes a Test connection button that may be used to test the connection parameters. A
connection can only be tested after all of the required parameters for the Connection tab and other ODBC data source
parameters are configured properly. When this button is clicked, a session is established with the remote DB2 system using
ODBC Driver for DB2.

The Security tab allows the user to configure optional attributes used to restrict connections to a data source. For the
Microsoft ODBC Driver for DB2, the Security tab has the following fields:

Paramet
er

Comments

Authenti
cation

An option button (radio button) is used to select the type of authentication. Valid options are Use this username or
Use Single Sign-On.

For the default Use this username option, the value for the user name is required.

Use this
usernam
e

When this option is selected, authentication is based on the user name entered in the textbox. A valid user name is n
ormally required to access data on DB2.

A user name can remain optionally in the DSN. The ODBC Driver for DB2 will prompt the user at run-time to enter a
valid password. Additionally, the prompt dialog box will enable the user to override the user name that is stored in t
he DSN.

Use Sing
le Sign-
On

An option button to select whether Single Sign-On or a specific user name should be used. Single Sign-On is an opti
onal Host Security feature.

Single Sign-On enables the administrator to create data source definitions that isolate the logon process from the e
nd user. The user context for Single Sign-On is the user context associated with the SNA DB2 service.

The AS/400 computer is case-sensitive with regard to user IDs and passwords. When connecting to DB2 for OS/400, user
names and passwords must be in uppercase. The AS/400 only accepts a DB2 for OS/400 user ID and password in uppercase. If
a DB2 for OS/400 connection fails due to incorrect authentication, the ODBC driver resends the authentication, forcing the user
ID and password into uppercase.

When connecting to DB2 on IBM mainframes, user names and passwords can be of mixed case; the mainframe is not case-
sensitive. The ODBC driver sends these values in uppercase.

DB2 Universal Database (UDB) is case sensitive. The user ID is stored in uppercase. The password is stored in mixed case and
users must enter the password in the correct case. The ODBC driver sends the password exactly in the case entered by the user.
The user ID should contain only the user name, not a combination of the Windows domain name and username.

The Target Database tab allows the user to configure required, as well as optional, attributes used to define the target DB2
system. For the ODBC Driver for DB2, the Target Database tab has the following fields:

Para
met
er

Comments

Initi
al ca
talo
g

This parameter is used as the first part of a three-part fully qualified DB2 table name. It is referred to by different names
depending on the DB2 platform.

In DB2 for OS/390 and DB2 for MVS, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all t
he accessible locations. To find the location of the DB2 that you need to connect to on these platforms, ask the administr
ator to look in the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel i
n the DB2 installation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the
WRKRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be creat
ed using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

Pack
age
coll
ecti
on

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bin
d DB2 packages. This can be the same as the default schema.

The ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue dynamic
and static SQL statements. The ODBC driver creates packages dynamically in the location that the user points to using th
e Package Collection parameter.

By default, the ODBC Driver for DB2 automatically creates one package in the target collection, if one does not exist, at th
e time the user issues their first SQL statement. The package is created with GRANT EXECUTE authority to a single <AUT
H_ID> only, where AUTH_ID is based on the user ID value configured in the data source. The package is created for use b
y SQL statements issued under the same isolation level based on the Isolation Level value configured in the data source.

Problems can arise in multi-user environments. For example, if a user specifies a Package Collection value that represent
s a DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages
to other users (for example, PUBLIC), then the package is created only for use by this user. This means that other users m
ay be unable to access the required package. The solution is for an administrative user, with package administrative right
s (for example., PACKADM authority in DB2 for OS/390), to create a set of packages for use by all users.

The ODBC Driver for DB2 ships with two utility programs for use by administrators to create packages. The crtpkg.exe to
ol is a command line utility for the administrator to create packages. The crtpkgw.exe tool is a Windows GUI utility used f
or the same purpose. Either of these utilities can be run using a privileged user ID to create packages in collections acces
sed by multiple users. These utilities will create sets of packages and grant EXECUTE privilege to PUBLIC for all (see descr
iptions under the Default Isolation parameter). The packages created are as follows:

AUTOCOMMIT package (MSNC001 is only applicable on DB2/400) READ_UNCOMMITTED package (MSUR001) REPEAT
ABLE_READ package, (MSRS001) READ_COMMITTED package, (MSCS001) SERIALIZABLE package (MSRR001).

After being created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.S
YSPACKAGE, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Defa
ult s
che
ma

The name of the Collection where the ODBC Driver for DB2 looks for catalog information. The Default schema is the SCH
EMA name for the target collection of tables and views. The ODBC driver uses Default Schema to restrict results sets for
popular operations, such as enumerating a list of tables in a target collection (for example, ODBC Catalog SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or owner).

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, the ODBC driver uses the USER_ID provided at logon. For DB2/4
00, the driver uses QSYS2 if no collection is found matching the USER_ID value. This default is inappropriate in many cas
es so it is essential that the Default Schema value in the data source be defined.

DB
MS
Platf
orm

The target DB2 platform property value is used to optimize performance of the ODBC driver when executing operations
such as data conversion. The default value is DB2/MVS.

Defa
ult
Qual
ifier

The name of the schema (collection/owner) with which to fully qualify unqualified object names. This attribute allows the
user to access database objects without fully-qualifying the objects using a collection (schema) qualifier. The ODBC drive
r sends this value to DB2 using a SET CURRENT SQLID statement, instructing the DBMS to use this value when locating u
nqualified objects (for example, tables and views) referenced in SQL statements. If you do not set a value for default quali
fier, then no SET statement is issued by the ODBC driver. This ODBC connection attribute is only valid when connecting t
o DB2 for MVS (OS/390, z/OS).

Alte
rnat
e TP
Na
me

The remote transaction program name is optional. For example, it is used when configuring an off-line DB2 demo link se
rvice connection.

Distr
ibut
ed tr
ansa
ctio
ns

When this option is checked, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handle
d using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and one of the HIS Resync services.

Proc
ess
bina
ry as
char
acte
r

When this option is checked, it indicates that binary data fields should be processed as characters. This option treats bina
ry data type fields (with a CCSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and
PC Code Page values are required input and output parameters. See the Locale tab.

The Locale tab allows the user to configure the parameters used for character conversion between the client computer and the
DB2 server. Two versions of the Locale tab are possible depending on which versions of SNA Server client software and ODBC
for DB2 Driver client software are installed.

For the ODBC Driver for DB2, the Locale tab has the following fields:

Para
met
er

Comments

Host
CCSI
D

The coded character set identifier (CCSID) matching the DB2 data as represented on the remote computer. This property
is required when processing binary data as character data. Unless the Process Binary as Character value is set, characte
r data is converted based on the DB2 column CCSID and configured ANSI code page.

This parameter defaults to U.S./Canada (37).

PC c
ode
pag
e

This parameter indicates the personal computer code page to use. It is required when processing binary data as characte
r data. Unless the Process Binary as Character value is set, character data is converted based on the default ANSI code
page configured in Windows.

The default value for this property is Latin 1 (1252).

Click OK or Cancel when data entry is finished. If you click OK, the values specified become the defaults when an application
connects to this data source. These default values can be changed at any time using this procedure to reconfigure the data
source. An ODBC application can override these defaults by connecting to the data source using a connection string with
alternate values.

Network Integration Help
Use the topics in this section to navigate through the Network Integration user interface.

In This Section

Print Service Properties

Print Session Properties

Print Session Properties

Print Service Properties

Configuring an IP-DLC Connection

Configuring an IP-DLC Link Service

Downstream Pool

LUA pool

https://msdn.microsoft.com/en-us/library/aa704864(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705174(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705180(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753933(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744907(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705668(v=bts.10).aspx

Print Service Properties
Click No Event Log for Skipping Transparent Section to prevent an entry in the Event Log every time print services skips a
transparent section found while printing a host print job. Skipping transparent sections can be enabled from the Advanced
tab of a print session properties page.

3270

Click Flush Final FF causes Host Print services to explicitly form feed the document at the end of a print job. This is not
needed for most print jobs and configurations.

Click Use Proportional Font Change to prevent overlapping characters in documents containing nonfixed-type fonts
printed through Host Print services. Most standard 3270 data streams are designated for fixed-type fonts.

Click Ignore Characters 3F and Under to cause the print service to ignore Hexadecimal characters 3F and below. In LU 1
data streams, this option causes hexadecimal characters below 40 to be replaced by spaces.

Click Delay Print Start to delay the start of the print job until printable data is received by Host Print services. In a few
environments, hosts may poll the Host Print service for activity by sending "empty jobs". In such cases, not selecting this
option may cause blank pages to be printed between actual print jobs.

LU 3 Only

Click Do All FF to force the printer driver to honor all form feed commands. (In most jobs, this is unnecessary and may lead
to unwanted blank pages.)

Click Always do NL to insert a new line when the print services determines that the Maximum Print Position has been
reached for a particular line of data. Selecting this option will prevent data from printing over an existing line.

Click No Space After FF to prevent print services from inserting a space character following a form feed.

Click Support Embedded Printer Codes to allow unmarked embedded characters, such as EBCDIC X'27' characters, to pass
through print services to the printer.

LU 1 Only

Click Use Fixed Tabs to disable normal tab functionality (such as aligning tabs in columns) and interpret each tab as a fixed
number of spaces. The number of spaces for a tab stop is based on the size of the first tab in the Set Horizontal Format SCS
control code.

APPC

Set the Activation Retry Limit to the number of times print services will attempt to activate the APPC conversation
following a terminated connection. The default value is –1 (infinite), meaning that attempts to activate the session will
continue until it is successful or terminated manually.

Click Infinite Retry Limit to force the system to retry printing the job until it is successful.

Set the Activation Retry Interval to the number of seconds to wait before trying to print the job again. The default value is
10 seconds.

Print Session Properties
The following tabs are available on the Print Session 3270 Properties sheet:

Print Session Properties: General
Session Name

To print 3270 jobs, you must define the session name, which is a descriptive name to distinguish different printers on the
network.

Comment

Optionally, type a comment of 25 characters or less.

Session Activation

Click Manual to activate the print session manually, or Automatic to activate the print session automatically when the Host
Print service is started.

Host Code Page

Click Language, and then select a languagecode from the drop-down list.

If your language code does not appear in the drop-down list, click Custom, then click on the File button. The Select Custom
Page File dialog box appears. Select your custom code page and click Open.

Note
The custom page support in Host Print service provides Arabic and Hebrew code page support for left-to-right output only. T
he Host Print service does not support bi-directional data streams from right to left.

Destination

The default printer should appear in the box. Otherwise, click Printer to open the Print Setup dialog box. Make your
selections and click OK.

Click File to send your job to a file. Check Unique to activate the Reset button. This feature allows you to reset the print job
sequential numbering scheme (for example, when the number gets too high). Click Reset, and then click Yes to reset to the
printer file extension numbering.

Note
You need to select a printer driver to print to a file. Select a valid printer driver, then select File in the Destination box. Otherw
ise, you get an error message.

Print Session Properties: 3270
LU Name

Choose a 3270 printer LU for the print session from the LU Name drop-down list. The drop-down list shows all of the LUs
in an SNA Subdomain. If no 3270 printer LUs appear, you need to define one.

Job Termination When

Set job termination to either When End Bracket Received or When Unbind Received.

Selecting When End Bracket Received means the Host Print service will treat receiving the End Bracket notification from
the host as an indication that the job is complete. Otherwise, the Print service defaults to spooling the job until the session
ends: When Unbind Received.

Note
If the host application sends print jobs that comprise multiple SNA brackets, set job termination to When End Bracket Receiv
ed.

Job Timeout

To set a parameter for terminating print jobs, click the Timeout Job After box. Click the Seconds Inactivity up and down
buttons to set the time limit for terminating print jobs. In some cases, an LU 3 print job is sent down from the host over an

extended period of time. Selecting a Job Timeout ensures that the portions of the job are regularly form-fed. This option also
provides normal timeout functionality for other 3270 print jobs.

Monitor Job

Click Request Definite Response if you want to invoke an advanced feature for applications that require a high level of
assurance that a job completed. This feature sends a message to the host stating that the print job completed.

Note
If you select the Request Definite Response feature, the host job must mark the data as RQD (definite response required).

Print Session Properties: Job Format
Do Not Format Print Job

Do Not Format Print Job allows print jobs that are formatted with host software to bypass the Microsoft® Windows®-based
printing format system. The Windows-based Host Print service treats all received data as transparent. All data is passed
directly to the printer.

Format Print Job

Print jobs from a host system can be formatted one of two ways:

GDI

The Windows Graphical Device Interface (GDI) is used to format the print job. SCS codes in the data are interpreted and
represented, and the GDI automatically supports all the configurable options such as font, margins, duplex, paper-source etc.
Transparent sections (for example, containing PCL escape sequences) are just ignored. When such data is discarded, a log is
written to the Event Log, containing the first 32 bytes of discarded data. This logging can be globally disabled from the Host
Print service properties page.

Selecting this option disables the Ignore Transparent Sections for PDT Formatting on the Advanced tab.

Note
If your print job has a mixture of SCS codes and PCL escapes, then you should use a PDT. The PDT should contain mappings f
or the SCS code functionality, and the PCL escapes should pass directly to the printer without being mapped.

PDT

A Printer Definition Table (PDT) is used to specify the output format, control codes, and transfer of characters to a printer.
When you use a PDT, the Windows based printer driver is not used. The PDT defines all information used to generate the
print output. Click the PDT File button to select a compiled Printer Definition File.

To create a new PDT, you must first create a Printer Definition File (PDF), and then compile the PDF into a PDT. (If an
uncompiled PDF file is selected, the compilation is performed automatically each time the print session is used. This feature
has a performance overhead and is available mainly for ease of development). The PDF is a text file that defines macros and
session parameters.

The PDT may override changes you make to Font, Margins, or Page Setup, although it is now possible to support these
options in the PDT file. If you want to print in a particular font with a PDT, you should alter the startup sequence in the PDT to
tell the printer which font you require. When a PDT file is used, Host Print service uses the definitions of NL, CR, FF, and LF
from the PDT file to allow it to format the print job correctly.

Click Printer Language is Hewlett-Packard (HP) PCL if your PDT contains PCL commands. Limited support for Manager-
defined font, margins and paper setup settings is automatically supported for HP (PCL), with full support available for
customizing the Printer Definition File.

Font

To make changes to the font, click Font. Click the Font button. Make your selections in the Windows-based Font dialog
box,and then click OK.

Use Fixed Font Size

Select the Use Fixed Font Size to select a user-defined font size. When this box is checked, the Host Print service will use the
configured point size regardless of whether the data will fit (it will be clipped to fit the page if it is too large). When this
option is selected, the Horizontal and Vertical scaling options on the Advanced tab are not available.

Print Session Properties: Page Layout

All these options are automatically available using the Windows GDI. Supporting these options using a PDT file may require
extra configuration.

Horizontal Controls
Characters per line

The default is 132 characters per line. Type 80, 158, or another number for characters per line to change the default. The
maximum line length is 255 characters.

Click Override Host Commands to force the specified settings and ignore host commands.

Vertical Controls
Lines per Page

Select Lines Per Page and then set the number of lines to be printed on each page.

Lines Per Inch

Select Lines Per Inch and then set either 6 or 8 lines per inch to set the default.

Click Override Host Commands to force the specified settings and ignore host commands.

Margin Settings

To change the margins, select Margins, and then click Setup. The Page Setup dialog box appears. Make your changes, and
then click OK.

Page settings

Settings for Paper Source, Page Size, and Orientation are controlled from the Printer section. Click Override Host
Commands to force the specified settings and ignore host commands.

Print Session Properties: Advanced
Filter DLL

Click Filter DLL to pass the printer data stream to a third-party or user-supplied DLL. Clicking Filter activates the DLL File
button. The Select Filter DLL dialog box appears. Make your selection, then click Open.

Ignore Transparent Sections for PDT Formatting

Selecting this option will cause those sections of the print data stream that have been marked as transparent to be ignored
when using a PDT file to format the data. Note, when using the GDI to format the data, transparent sections are automatically
ignored. When such data is discarded, a log is written to the Event Log, containing the first 32 bytes of discarded data. This
logging can be globally disabled from the Host Print service properties page.

Do Not Scale Horizontally

Selecting this option will turn off the horizontal scaling feature of the printer driver.

Do Not Scale Vertically

Selecting this option will turn off the vertical scaling feature of the printer driver.

3270 Printing
Transparency is ASCII

Click Transparency is ASCII to indicate that transparent data from the host is in ASCII and needs no translation from
EBCDIC to ASCII. Selecting Transparency is ASCII causes the Windows-based Host Print service to not put the received data
through an EBCDIC to ASCII translation table before printing.

Transparency Custom Byte

Transparency Custom Byte indicates the character designated to start a sequence of transparent data (the transparent data
may or may not be ASCII). The IBM standard is 0x35, but if the host print job uses another value (for example 0x36, and so
on), then this should be specified here.

No Line Formatting

Prevents the SNA Print Service from inserting its own Carriage Return/Line Feed (CR/LF) according to the dimensions
specified in the Default Page Width field (also on this property page). As No Line Formatting is a special case, this box is
usually not checked. It is a useful option when using physical printers that do their own wrapping or are told to do their own
wrapping with an Esc sequence. The Esc sequence that causes a printer to do its own End-of-line wrap on PCL printers is
<Esc>&s0C.

Printer Time Out

Default is 10 seconds. This parameter optimizes performance and system resources. If the printer is always available, system
resources are consumed. However, if the printer is constantly being "opened" and "closed" with each print job sent,
performance suffers. By setting the time out, the printer will remain available for jobs sent close together to improve
performance, and yet "close" during non-busy times to free up resources.

Print Session Properties
The following tabs are available on the Print Session 3270 Properties sheet:

Print Session Properties: APPC
Remote APPC LU

Choose Alias or Fully Qualified Name to select another remote APPC LU.

You must supply either a Remote APPC LU Alias or a Fully Qualified Name before you can leave this page. If you want to
use a Fully Qualified Name, you need to select a Remote APPC LU Alias first, then select a Local LU Alias. Then you must
go back and change from the Remote APPC LU Alias to the Remote APPC LU Fully Qualified Name. If you select Fully
Qualified Name first, the Local LU Alias does not get initialized.

Network Name + LU Name in NETNAME.LUNAME syntax (for example, APPN.NORTHB).

Local LU Alias

Select the local LU alias from the drop-down list.

Mode Name

The default mode name is QPCSUPP. Click the drop-down list arrow to make another selection. The choices are: #INTERSC,
BLANK, QPCSUPP, QSERVER.

AS/400 Device Name

You must enter the name for the AS/400 printer device, which is a descriptive name that distinguishes different printers on
the network.

System Type

Select the type of system you are printing from; either AS/400, System/36, AS/36.

AS/400

Msg Queue Name

Enter the qualified name of the message queue to which operational messages for this device are sent.

Msg Lib Name

Enter the name of the library in which the message queue is located.

System/36, AS/36

APPC Print Session Properties: Security
User ID

Type your User ID.

Password

Type your Password. Click tab to put the cursor in the Confirm password box.

Confirm Password

Type your password again and click OK.

Print Session Properties: Job Format
Job

Do Not Format Print Job allows print jobs that are formatted with host software to bypass the Windows-based printing
format system. The Windows-based Host Print service treats all received data as transparent. All data is passed directly to the
printer.

HPT

Displays the Host Print Transform Properties box, where you can designate the printer type and paper sources.

The Host Print Transform feature changes print data on the AS/400 to the ASCII format needed by a PC printer.

Select a manufacturer type and model number. If you cannot find the type and model number in the list you can type them

in the box. If you do not know the manufacturer type and model number, see your system administrator or see the help on
the AS/400.

Important
You must enter an asterisk "*" before the manufacturer type and model number. Make sure there are no spaces between t
he asterisk, manufacturer type and model number, for example: *HPIIISI, or *IBM3812.

Format Print Job

Print jobs from a host system can be formatted one of two ways:

GDI

The Windows Graphical Device Interface (GDI) is used to format the print job. SCS codes in the data are interpreted and
represented, and the GDI automatically supports all the configurable options such as font, margins, duplex, paper-source etc.
Transparent sections (for example, containing PCL escape sequences) are just ignored. When such data is discarded, a log is
written to the Event Log, containing the first 32 bytes of discarded data. This logging can be globally disabled from the Host
Print service properties page.

Selecting this option disables the Ignore Transparent Sections for PDT Formatting on the Advanced tab.

Note
If your print job has a mixture of SCS codes and PCL escapes, then you should use a PDT. The PDT should contain mappings f
or the SCS code functionality, and the PCL escapes should pass directly to the printer without being mapped.

PDT

A Printer Definition Table (PDT) is used to specify the output format, control codes, and transfer of characters to a printer.
When you use a PDT, the Windows based printer driver is not used. The PDT defines all information used to generate the
print output. Click the PDT File button to select a compiled Printer Definition File.

To create a new PDT, you must first create a Printer Definition File (PDF), and then compile the PDF into a PDT. (If an
uncompiled PDF file is selected, the compilation is performed automatically each time the print session is used. This feature
has a performance overhead and is available mainly for ease of development). The PDF is a text file that defines macros and
session parameters.

The PDT may override changes you make to Font, Margins, or Page Setup, although it is now possible to support these
options in the PDT file. If you want to print in a particular font with a PDT, you should alter the startup sequence in the PDT to
tell the printer which font you require. When a PDT file is used, Host Print service uses the definitions of NL, CR, FF, and LF
from the PDT file to allow it to format the print job correctly.

Click Printer Language is Hewlett-Packard (HP) PCL if your PDT contains PCL commands. Limited support for Manager
defined font, margins and paper setup settings is automatically supported for HP (PCL), with full support available for
customizing the Printer Definition File.

Font

To make changes to the font, click Font. Click the Font button. Make your selections in the Windows-based Font dialog
box,and then click OK.

Use Fixed Font Size

Select the Use Fixed Font Size to select a user defined font size. When this box is checked, the Host Print service will use the
configured point size regardless of whether the data will fit (it will be clipped to fit the page if it is too large). When this
option is selected, the Horizontal and Vertical scaling options on the Advanced tab are not available.

APPC Print Session Properties: Advanced
Filter DLL

Click Filter DLL to pass the printer data stream to a third-party or user-supplied DLL. Clicking Filter activates the DLL File
button. The Select Filter DLL dialog box appears. Make your selection, then click Open.

Ignore Transparent Sections for PDT Formatting

Selecting this option will cause those sections of the print data stream that have been marked as Transparent to be ignored
when using a PDT file to format the data. Note, when using the GDI to format the data, Transparent sections are
automatically ignored. When such data is discarded, a log is written to the Event Log, containing the first 32 bytes of

discarded data. This logging can be globally disabled from the Host Print service properties page.

Do Not Scale Horizontally

Selecting this option will turn off the horizontal scaling feature of the printer driver.

Do Not Scale Vertically

Selecting this option will turn off the vertical scaling feature of the printer driver.

Print LU Properties: General
LU Number

Enter the LU Number.

LU Name

Enter the LU Name.

Connection

The connection for this LU is shown. The connection cannot be changed here.

Pool

If the LU has already been assigned to a pool, the pool name appears here.

Comment

Optionally, enter a comment of not more than 25 characters.

Use Compression

Selecting this option will compress the data stream and reduce the local area network traffic.

User Workstation Secured

Selecting this option allows only this workstation to access the Host LU.

TN3270 Properties: Settings
Idle Timeout

Specify time limits. If the session is inactive for this length of time, then TN3270 service disconnects the client computer.

Init Status Delay

Specify time limits. This is the delay between the time when TN3270 service connects to a host session and the time the
TN3270 service starts updating the client computer screen. There are often a large number of startup messages when the
TN3270 service first connects to a host session, and this option gives the user the opportunity not to receive them all.

Message Close Delay

Specify time limits. When TN3270 service forces a client computer to disconnect (for example, when the Host Integration
Server session to the host has been lost), it sends the client computer an error message to be displayed on the screen. This
value specifies the time between sending the message to the client computer and closing the socket with the client computer
(which causes some client computers to clear the screen, and so erase the message).

Refresh Cycle Time

Specify time limits. This is the delay between updates of the status on the display.

Default RU Sizes - Inbound and Outbound

This controls the RU size (SNA message size) used by the TN3270 service for logon messages to and from the host. The
minimum value for inbound or outbound RU size is 256 bytes. If the host application sends large logon screens, these values
should be increased.

Certificate CN

The common name of the certificate used if TLS/SSL is enabled.

Print Service Properties
Click No Event Log for Skipping Transparent Section to prevent an entry in the Event Log every time print services skips a
transparent section found while printing a host print job. Skipping transparent sections can be enabled from the Advanced
tab of a print session properties page.

3270
Click Flush Final FF causes Host Print services to explicitly form feed the document at the end of a print job. This is not
needed for most print jobs and configurations.

Click Use Proportional Font Change to prevent overlapping characters in documents containing nonfixed-type fonts
printed through Host Print services. Most standard 3270 data streams are designated for fixed-type fonts.

Click Ignore Characters 3F and Under to cause the print service to ignore Hexadecimal characters 3F and below. In LU 1
data streams, this option causes hexadecimal characters below 40 to be replaced by spaces.

Click Delay Print Start to delay the start of the print job until printable data is received by Host Print services. In a few
environments, hosts may poll the Host Print service for activity by sending "empty jobs". In such cases, not selecting this
option may cause blank pages to be printed between actual print jobs.

LU 3 Only
Click Do All FF to force the printer driver to honor all form feed commands. (In most jobs, this is unnecessary and may lead
to unwanted blank pages.)

Click Always do NL to insert a new line when the print services determines that the Maximum Print Position has been
reached for a particular line of data. Selecting this option will prevent data from printing over an existing line.

Click No Space After FF to prevent print services from inserting a space character following a form feed.

Click Support Embedded Printer Codes to allow unmarked embedded characters, such as EBCDIC X'27' characters, to pass
through print services to the printer.

LU 1 Only

Click Use Fixed Tabs to disable normal tab functionality (such as aligning tabs in columns) and interpret each tab as a fixed
number of spaces. The number of spaces for a tab stop is based on the size of the first tab in the Set Horizontal Format SCS
control code.

APPC
Set the Activation Retry Limit to the number of times print services will attempt to activate the APPC conversation
following a terminated connection. The default value is –1 (infinite), meaning that attempts to activate the session will
continue until it is successful or terminated manually.

Click Infinite Retry Limit to force the system to retry printing the job until it is successful.

Set the Activation Retry Interval to the number of seconds to wait before trying to print the job again. The default value is 10
seconds.

Configuring an IP-DLC Connection
As with other connections, configuration requires setting parameters on the Connection properties dialog. It is recommended
that you read this section before beginning the configuration process, so you can gather all the necessary information before
you start.

To configure an IP-DLC connection

1. If you have just created a new IP-DLC link service connection, the Connection properties dialog will automatically
appear. If it does not, or if you are configuring an already-existing IP-DLC link service connection, right-click the IP-DLC
link service connection in the results pane of the MCC snap-in, and click Properties.

2. Fill in the required parameters according to the tables below.

General Page

The General page is similar to that used for other connections in Microsoft® Host Integration Server.

Pro
per
ty

Comments

Na
me

Name of the connection.

Link
serv
ice

This list displays all currently configured IP-DLC link services.

Co
mm
ent

Descriptive comment (optional).

Acti
vati
on

Specifies conditions under which connection is activated.

On
serv
er st
artu
p

Connection is activated on server startup.

On
de
ma
nd

Connection is activated on demand.

By a
dmi
nist
rato
r

Connection can only be activated by system administrator.

Allo
wed
dire
ctio
n

Specifies the connection directions. For more information, see the note under Peer system later in this table.

Out
goi
ng c
alls

Connection is outgoing.

Inco
min
g ca
lls

Connection is incoming.

Bot
h di
recti
ons

Connection can be both incoming and outgoing.

Re
mot
e en
d

Specifies which system is the remote end.

Hos
t sy
ste
m

Selecting this option signifies that the connection will be used for Dependent LU Server (DLUS) traffic and may have depe
ndent LUs. You cannot associate independent APPC LUs with an IP-DLC connection remote end type of host system.

Pee
r sy
ste
m

Selecting this option signifies that the connection will be used for independent APPC LU sessions. You cannot associate d
ependent 3270 LUs with an IP-DLC connection remote end type of peer system. Because peer system IP-DLC connections
do not support DLUS traffic, selecting this option will disable all controls on the Address page and the IP-DLC page (show
n later in this topic). Only one peer connection can be associated with an IP-DLC link service.

Note: Selecting Peer system automatically sets Activation to On Server Startup and Allowed direction to Both.

Address Page

Use this page to configure DLUS properties for the connection. The DLUS on the mainframe system operates in conjunction
with the Dependent LU Requester (DLUR) on the local Host Integration Server computer. Together they route dependent (for
example, 3270) sessions across the APPN network using the IP-DLC link service.

If you selected the Remote end as Peer system on the General page, all controls on this page will be disabled.

Pro
pert
y

Comments

Pri
mar
y DL
US

Fill in these required fields for the primary server with the appropriate names.

Net
wor
k na
me

Maximum of eight characters of SNA type A string, representing the APPN network in which to locate the primary DLUS.

Bac
kup
DLU
S

Fill in these fields for the backup server with the appropriate names. These fields are optional.

Pref
erre
d ro
ute

Optionally, enter the IP address, host name, or fully qualified name for the NNS as routing server through which to conne
ct to the DLUS. Using a separate NNS may improve host performance by offloading the DLUS host computer from operat
ing as an NNS directory server. The IP-DLC link service will attempt to establish the connection to the DLUS using the pre
ferred route address.

System Identification Page

The System Identification page is similar to that used for other connections in Host Integration Server.

If you selected the Remote end as Peer system on the General page, all controls on this page will be disabled.

Propert
y

Comments

Networ
k name

Network name.

Control
Point N
ame

Control point name.

Node ID Required. Enter a hexadecimal value to uniquely identify the physical unit (PU) for the host connection. This value mus
t match an existing remote LEN-style PU definition. Default value is 05D FFFFF. The node ID value must match the val
ue configured on the host DLUS computer.

Link co
mpressi
on

Optional. Choose a setting from the list. Default value is None.

Remote
node na
me

Specify information for the remote DLUS.

Node ID Required. Enter a hexadecimal value to uniquely identify the physical unit (PU) for the host connection. This value mus
t match an existing remote LEN-style PU definition for the DLUS. There is no default value.

IP-DLC Page

Use this page to optionally set parameters specific to the IP-DLC connection.

If you selected the Remote end as Peer system on the General page, all controls on this page will be disabled.

Property Comments

Connection retry li
mits

Optionally, use these controls to specify retry limits for activating a connection.

None Specifies no retries.

Limited Specifies the number of retries, from 1 through 65534. Default value is 8.

Delay after retry Specifies the wait period after a retry, from 1 through 327670 seconds. Value must be a multiple of five. De
fault value is 10 seconds.

DLUR retry limits Optional. Use these controls to specify retry action in case the DLUR connection fails. Default setting is Infin
ite.

Infinite Specifies an infinite number of retries.

None Specifies no retries.

Limited Specifies the number of retries, from 1 through 65534. Default value is 8.

Delay after retry Specifies the wait period after each retry, from 1 through 65535 seconds. Default value is 10 seconds.

Configuring an IP-DLC Link Service
As with other link services, configuration requires setting parameters on the Link Service Properties dialog box. It is
recommended that you read this section before beginning the configuration process, so you can gather all the necessary
information before you start.

To configure an IP-DLC link service

1. If you have just created a new IP-DLC link service, the IP-DLC Link Service Properties dialog box will automatically
appear. To reconfigure an existing IP-DLC link service, right-click the IP-DLC link service in the scope pane of the MCC
snap-in, click Properties, and then click the Configure button to load the IP-DLC Link Service Properties dialog box.

2. Fill in the required parameters according to the following table.

3. Click OK to persist the settings to the configuration file and registry. The Insert Link Service dialog box appears.

4. Click Complete Configuration of the IP-DLC Link Service.

Propert
y

Comments

Service
name

Displays the name of the link service being configured. For a new link service, the name is predefined as SNAIP#, whe
re # is the ordinal number of the link service.

Service t
itle

Enter a user-friendly text description of up to 128 characters. This name will be displayed in the Service Control Mana
ger. The default value is IP-DLC Link Service #N, where N is the ordinal number of the link service.

Primary
NNS

Enter the IP address, host name, or fully qualified name of the primary network node server. There is no default value.

Backup
NNS

Optionally, enter the IP address, host name, or fully qualified name of the backup network node server. There is no de
fault value.

No Pref
erred N
NS

Selecting this will allow the IP-DLC link service to use the first available network node server. If this option is not selec
ted, the link service will always use the Primary NNS when it becomes available.

Local ad
dress

This set of parameters assigns the link service to a particular IP address on the local computer. Every link service must
be associated with a local IP address or logical connection, and neither the IP address nor the logical connection can b
e used by another IP-DLC link service on the local computer.

Adapter
address

Selecting this option button forces the link service to use the default IP address associated with the network adapter s
pecified in the adjacent list. (The alternative is to associate with a static IP address.) The list displays all available netw
ork adapters currently configured. Physical adapters are listed first, followed by virtual adapters (that is, WAN Mini-p
orts).

Static IP
address

Selecting this option button forces the link service to use the IP address specified in the adjacent list. The list displays
all static IP addresses defined to the local computer. Enter the IP address, host name, or fully qualified name for the IP
-DLC link service.

Local AP
PN nod
e

This set of parameters configures the network identification of the APPN branch network node implemented by the I
P-DLC link service. Note: No other IP-DLC link service within the APPN network can use both the same network name
and control point name as this one. Individual names may be reused, but the pair may not.

Networ
k name

Enter the APPN network name for the IP-DLC link service operating as a local APPN node across which the IP-DLC lin
k service will communicate. This value must be text with a maximum of eight characters and comply with the APPN n
aming convention. There is no default value.

Control
point na
me

Enter the APPN control point name for the IP-DLC link service operating as a local APPN node. This value must be tex
t with a maximum of eight characters and comply with the APPN naming convention. There is no default value. The c
ontrol point name must be unique for this computer on the APPN network.

Use Dyn
amic PU
Definitio
n

Selecting this option allows the IP-DLC link service to attempt to use the dynamically defined PU definitions on the ho
st.

Node ID In the first box, enter any valid 3-digit hexadecimal number except the reserved numbers of 000 and FFF. In the secon
d box, enter any valid hexadecimal number except the reserved number 00000. There is no default value.

Associat
ed LEN
node

Select an SNA service operating as an APPN LEN node to associate with this IP-DLC link service. Default value is the fi
rst SNA service on the local computer.

Downstream Pool
Enter a Name and Comment for the pool.

LUA pool
Enter a Name and Comment for the pool.

Messaging Help
Microsoft MSMQ-MQSeries Bridge is an adaptable system that can be customized. You can set up MSMQ-MQSeries Bridge to
operate on almost any Message Queuing (also known as MSMQ) or IBM MQSeries network configuration.

For additional information on the MSMQ-MQSeries Bridge user interface, see the following sections:

In This Section

General Tab

Advanced Tab

MQI Channels Tab

General Tab - CN

General Tab - Message Pipe

Batch Tab

Cache Tab

Retry Tab

https://msdn.microsoft.com/en-us/library/aa771704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705259(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771379(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745608(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744365(v=bts.10).aspx

General Tab
This tab displays the following information:

Path Name Network name of the MSMQ-MQSeries Bridge computer.
Service Name of the Microsoft MSMQ-MQSeries Bridge Service.

Version Version of the Microsoft MSMQ-MQSeries Bridge Service.

Status Status of the Microsoft MSMQ-MQSeries Bridge Service (running, paused, or stopped).

Advanced Tab
By default, MSMQ-MQSeries Bridge allocates one thread for each type of message pipe.

If the MSMQ-MQSeries Bridge is connected to more than one MQSeries Queue Manager (QM), you should allocate a larger
number of threads. This improves performance, and if a pipe to one QM fails, it lets the other pipes continue running.

For each type of message pipe, specify the following:

Paramete
r

Description

Max Threa
ds

The maximum number of threads (recommended one per MQSeries QM).

Refresh Q
ueue Cach
e

The interval (in minutes) at which the message pipes check for Cache Timeout (see Setting Message pipe propertie
s).

Support M
SMQ to Bri
dge Encryp
tion

Check this option to enable the Encryption feature from MSMQ to MSMQ-MQSeries Bridge.

Replace '.'
with '-' in
Queue Ma
nager

Enables the MQSeries QM to address an Message Queuing computer that has a '-' in its name. This is necessary be
cause MQSeries does not support the '-' character. When this box is checked, MSMQ-MQSeries Bridge replaces '.' f
rom the remote QM name on MQSeries with '-'. You should only enable this option if there is a '-' in the Message
Queuing computer name.

MQI Channels Tab
MSMQ-MQSeries Bridge accesses MQSeries through MQI channels defined in both MQSeries and MSMQ-MQSeries Bridge.

Note
Each MQI channel connects an MSMQ-MQSeries Bridge to an MQSeries Queue Manager. Ordinarily, you should define one
MQI channel for each connected network or foreign site.

First, define the channels in the MSMQ-MQSeries Bridge properties. Later, you can export the definitions to MQSeries (see
Exporting MQSeries definitions).

The currently defined channels are listed in the dialog box. Click Add for a new MQI channel, Properties to edit the settings for
an existing channel, or Remove to delete a channel.

On the General tab of the Channel Properties window, specify the following options:

Parameter Description

Channel Nam
e

A legal MQSeries name for the MQI channel. For convenience, you can assign the same name as you assigned
to the connected network representing MQSeries in Message Queuing, for example IBMNT_CN.

MQSeries Qu
eue Manager

The MQSeries Queue Manager to which the channel connects.

Transport Typ
e

TCP/IP or SNA LU 6.2 communication.

On the Address tab of the Channel Propertieswindow, specify the following parameters for TCP/IP:

Parameter Description

IP Address, Port Of the MQSeries listener.

For SNA LU 6.2, specify:

Parameter Description

Side Information Record The CPI-C Symbolic Name defined in Host Integration Server.

For more information on the TCP/IP or SNA LU 6.2 configuration, see the IBM MQSeries documentation.

On the Security tab of the Channel Properties window, you may specify:

Paramete
r

Description

MCA User An existing or new MQSeries user name, for example FMQUSER1, under which the server side of the MQI channel
runs.

In MQSeries, you should set the permissions of the MCA User, that is, the queues that MSMQ-MQSeries Bridge can address. If
you do not specify an MCA User, the server side of the channel runs under the default user name, which is the value of the
MQSeries SYSTEM.DEF.SVRCONN parameter.

General Tab - CN
On the General tab of the CN properties window, specify the following options:

Parameter Description
MQSeries QM Name Select from the list of MQSeries Queue Managers to which you have defined MQI channels.

Note
If the same MSMQ-MQSeries Bridge is on two connected networks, do not connect them both to the same QM.

Parameter Description
Reply to Q
M Name

The default MSMQ QM to which MQSeries should return report or acknowledgment messages. Ordinarily, you wo
uld enter the name of the MSMQ-MQSeries Bridge computer, for example MSBridge1.

The MSMQ-MQSeries Bridge Manager exports your entry to MQSeries as a queue manager alias (see Exporting MQSeries
definitions). If the Microsoft® Windows® computer name contains an invalid MQSeries character such as a hyphen (-), replace
it with another character such as an underscore (_) in the Reply to QM Name box. If you want to receive acknowledgments by
nontransactional instead of transactional message pipe, add a % sign to the name (for example, MSBridge1%).

MQSeries uses the alias to identify the transmission queue where it should send acknowledgments. You can redirect the
acknowledgments by specifying a different alias. For example, if you want to receive acknowledgments on another computer
where MSMQ-MQSeries Bridge is installed, enter the name of the computer and define the name as an alias in MQSeries. For
additional information, refer to your IBM MQSeries documentation.

Paramet
er

Description

Startup Enabled or disabled at MSMQ-MQSeries Bridge startup (to change the status afterwards see Starting, Stopping, or P
ausing an Object).

General Tab - Message Pipe
The General tab of the Message Pipe Properties window displays the following:

Parame
ter

Description

Status Running, Paused, Pending, Recovering, Stopped,or Error (This is read-only; to change the status see Starting, St
opping, or Pausing an Object).

Startup Enabled or disabled at MSMQ-MQSeries Bridge startup.

For the MQSeries>MSMQ Transactional and Nontransactional message pipes:

Parameter Description

Transmissio
n Queue Na
me

A unique MQSeries transmission queue name for the pipe. The default names are <CN name>.XMITQ for the tra
nsactional message pipe and <CN name>.XMITQ.HIGH for the nontransactional message pipe. You can specify d
ifferent names if you want.

For example, if the MSMQ-MQSeries Bridge computer name is MSBridge1, the default transmission queue names are
MSBridge1.XMITQ and MSBridge1.XMITQ.HIGH.

Batch Tab
To optimize performance, MSMQ-MQSeries Bridge batches messages together. Increasing the batch size may improve
performance. For transactional message pipes, this may increase the quantity of retransmitted data after a communication
failure.

To change the batch size, specify any combination of:

Parameter Description
Max. Number of Messages The maximum number of messages in a batch.

Max. Accumulated Size The maximum size (in bytes) of a batch.

Max. Accumulated Time The maximum time (in milliseconds) during which messages are batched.

Transmission begins as soon as there are messages to be sent. When any of the above limits is reached the message pipe
checks that the batch was fully received on the destination side.

Cache Tab
To reduce the overhead of opening and closing a queue for each message, MSMQ-MQSeries Bridge caches queue handles and
reuses them when several messages are sent to the same queue. Specify the following option:

Parameter Description
Cache Expiry The time (in minutes) after which MSMQ-MQSeries Bridge closes an unused queue handle.

The system checks for Cache Timeout only at the Cache Refresh Time (see "Setting MSMQ-MQSeries Bridge Properties"). Thus
the maximum time that an unused queue handle remains open is the Cache Timeout + Cache Refresh Time.

To refresh the cache immediately (for example to release a queue that is needed by another application), see "Refreshing the
cache."

Retry Tab
If a message pipe fails, MSMQ-MQSeries Bridge tries to restart it automatically. For both the Short and Long retry cycles,
specify:

Parameter Description
Count Maximum number of retries.

Delay Interval between retries.

For example, you might specify a Short cycle of 3 retries at 30-second intervals. If the connection is still not successful, the
system continues in a Long cycle of, for example, 10 retries at 300-second intervals.

Note
If you connect by TCP/IP, set the Delay to at least twice the keep-alive time of the destination MQSeries computer. This enabl
es the MQSeries listener to release the resources of a broken connection before MSMQ-MQSeries Bridge tries to reconnect.

Trace Utility Help
If you are working to improve performance or solve a problem in Host Integration Server , you can use trace tools to
determine the source of the problem.

A trace file contains a record of internal activities. When you enable the Trace utility, the Trace files are stored in the TRACES
folder of the Host Integration Server folder. Trace files have the extension .ATF.

When gathering information about system difficulties, it is best to start with event log information. Event log information is
generally more straightforward to interpret than tracing information. However, if you call product support, the technician may
ask for some or all of the following information:

Tracing. Trace files record activity between or within components of Host Integration Server. Trace files provide detailed
information about the exact sequence of events occurring within Host Integration Server or between Host Integration
Server and another system on the network. Tracing is turned on in Host Integration Server using the SNA Trace tool,
which is located in the Applications and Tools program group of Host Integration Server. Trace files are created in the
TRACES folder of the root folder with the filename extension .ATF.

Windows Server event logs. When gathering information about system difficulties, it is generally best to start with the
event logs, which record system and application events, including errors. Event logs are more straightforward to interpret
than tracing information. Use tracing information if the event logs do not provide enough detail.

The Trace utility is started from SNA Manager, or the Trace icon in the Host Integration Server Applications and Tools program
group. You can run the Trace utility on each server in the subdomain. For specific instructions on running traces, see the Host
Integration Server online Help.

After you start the Trace utility in Host Integration Server or on a Host Integration Server client, you can enable or disable trace
options.

Use the topics in this section to navigate through the Trace Utility User Interface. Click a topic below for more information.

In This Section

Trace Items Tab

Tracing Global Properties Tab

Trace File Directory Tab

https://msdn.microsoft.com/en-us/library/aa754430(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771073(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744943(v=bts.10).aspx

Trace Items Tab
The Trace Items tab has several items that must be selected and configured for the Trace application to operate properly.

List of Trace Items

The following components can be configured for tracing.

SNA applications

SNA Manager Client

SNA Manager Agent (MngAgent)

DB2 Network Library

Trace Items - Properties

Properties displays the Trace Properties Sheet that contains an Internal Trace, Message Trace, API Trace or the TN3270
Internal Trace tab depending on the Trace Item that was selected.

From the Internal Trace, Message Trace, API Trace and TN3270 Internal Trace tabs, you can either select a single item or
click Set All.

To set Server trace properties

1. On the Tools menu, click Trace Initiator.

2. Click a component to trace from the list of Trace items.

3. Click Properties.

4. Click the appropriate trace tab.

5. Click the appropriate options for the trace, and then click Apply.

Trace Items - Clear All Traces

Clear All Traces will clear all trace settings and stop any running traces. If you only want to clear a specific trace item, double-
click the item or select the item and click Properties. Then click Clear All.

When you select Clear all Traces, you will be presented with a dialog box to verify that you want to clear all trace setting.

Trace Items - Purge All Trace Files

Purge All Trace Files will delete all trace files from the Traces folder that is designated in the Trace File Directory tab.

When you select Purge All Trace Files, you will be presented with a dialog box to verify that you want to delete all trace files.
If you purge all trace files, the trace settings are not deleted.

Tracing Global Properties Tab
The Tracing Global Properties tab has several items that can be modified to adjust how Trace runs. These items include:

Trace File Flip Length

The default size is 20,000,000 bytes.

You can change the maximum length by highlighting the number and typing a new value.

Tracing Global Properties tab to set the length of the trace file

1. In the Trace Settings dialog box, click the Tracing Global Properties tab.

2. Enter a value for the Trace File Flip Length box, and then click OK.

Write Traces on a Background Thread

Check this box to run tracing in the background. If the box is cleared (blank), tracing runs in the foreground.

To reduce performance impacts caused by tracing Host Integration Server 2006 components, traces can be queued and written
by a background thread when this box is checked. Otherwise, trace files will be written immediately.

Background Thread Priority

If you select Write Traces on a Background Thread, check only one item to set the level of priority for tracing to run within
the Microsoft Windows operating system. Highest gives tracing the highest level of priority, which means that tracing takes
precedence over other jobs. Idle means that tracing runs when the CPU is idle.

Trace File Directory Tab
The following information details the Trace File Directory tab.

The Trace File Directory tab allows you to change where the Trace Initiator files will be stored.

Use Browse or enter a new location.

3270 Client Help
The Microsoft Host Integration Server 3270 Client enables your personal computer (PC) to access IBM hosts on the Systems
Network Architecture (SNA) network. With the Host Integration Server 3270 Client, you can establish a single logical unit (LU)
for your SNA session. You can connect to the following host application environments:

Virtual Machine/Conversational Monitor System (VM/CMS)

Time-Sharing Options (TSO)

Customer Information Control System (CICS)

Once connected to a host application, you can transfer information between the host system and your computer without using
an intermediate storage medium. This gives you the ability to:

Transfer a file back and forth between your computer and the host. You can then continue working with the file even if
the host is unavailable or slow.

Edit a file and return it to the host, where it can be shared by other users.

Print the information in the active window of a host application file.

Extract information from the host for further analysis on your computer.

In This Section

Defining Session Settings

Connecting to a Host Application

Numeric Override Facility

How to Record and Play Logon Scripts

Defining Session Settings

Specifying a File

Sending or Receiving a File

Using Macros

Printing the Screen

Copying and Pasting Displayed Information

Saving a Configuration

3270 Client Standard Keyboard Map

OIA Inidcators

https://msdn.microsoft.com/en-us/library/aa754741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744906(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754078(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744376(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704935(v=bts.10).aspx

Defining Session Settings
Before you can connect to a host, you must define the settings you will need for your session. These settings include the LU or
Pool Name and the Host Code Page.

To define session settings for a Host Integration Server connection

1. On the Session menu, click Session Configuration. The 3270 Settings dialog box appears.

2. In the LU or Pool Name box, select the correct LU or pool name.

3. In the Host Code Page box, select the correct host code page. The default is United States.

4. Optionally, use a Script File to record and playback an automatic logon procedure. For more information, see Recording
and Playing Logon Scripts.

5. Click OK.

To define session settings for a TN3270E connection

1. On the Session menu, click Session Configuration. The 3270 Settings dialog box appears.

2. Enter the Server Name or Address. This should be the IP address of the Host Integration Server running the TN3270
service.

3. Select the Model to use for the connection from the drop down list.

4. Leave Device blank if you want to allow the TN3270 service to select an LU. Optionally, you can enter the name of a
specific LU or LU pool.

5. Enter the Port number to use when connecting to the TN3270 service. The default is 23.

6. In the Host Code Page box, select the correct host code page. The default is United States.

7. Optionally, use a Script File to record and playback an automatic logon procedure. For more information, see Recording
and Playing Logon Scripts.

8. Click OK.

Connecting to a Host Application
After defining session settings, you can automatically connect to the host every time you start the 3270 Client.

To connect to the host application

1. On the Session menu, click Connect. The logon dialog box appears, ready for you to enter your user ID and password.

To disconnect from the host application

1. On the Session menu, click Disconnect. The host disconnects.

To turn on the Autoconnect option

1. On the Session menu, click Autoconnect. A check mark will appear next to the option. When you start the Client,
connection will be automatic.

To turn off the Autoconnect option

1. 1. On the Session menu, click Autoconnect to clear the check mark.

Numeric Override Facility
The numeric override facility allows a user to enter non-numeric characters in numeric-only fields.

To toggle numeric override on and off, press CTRL+N (the CTRL key and the N key simultaneously). When numeric override is
on, the number 9 appears in the operator information area at the bottom of the terminal, indicating that non-numeric
characters can be entered in numeric-only fields.

Note
Make sure that the host computer will accept non-numeric characters in numeric-only fields before using this facility.

How to Record and Play Logon Scripts
The 3270 logon scripts make it easy for users and administrators to automate the logon procedure. You can use a script
provided by your system administrator, or create your own. You can run the logon script at any time. The logon script feature
enables Single Sign-On to host applications for the 3270 Host Integration Server clients and 3270 weblets, provided your host
security administrator has enabled account password synchronization.

To use a logon script provided by your system administrator

1. Start the 3270 Client.

2. On the Session menu, click Connect. The logon dialog box appears, ready for you to enter your user ID and password.

3. On the Script menu, click Play. The script runs, and you are logged on.

To create your own logon script

1. Start the 3270 Client.

2. On the Session menu, click Connect. The logon dialog box appears, ready for you to enter your user ID and password.

3. On the Script menu, click Record.

4. Logon to the host using the 3270 screens and keyboard. The Record facility converts these actions into a logon script.
(Click here to see a Sample Logon Script.)

When you are finished recording your logon script, on the Script menu, click Stop.

1. To run your logon script, on the Script menu, click Play.

The scripts can be modified using any text editor, such as Notepad.

To run the logon script automatically each time you connect

1. On the Script menu, select Auto Run. When you establish a connection to the host, the logon script runs automatically.

2. Optionally, on the Session menu, select Autoconnect. Every time you start the 3270 Client, the connection to the host
will be made and you will be logged on automatically.

To choose different script files

1. On the Session menu, select Session Configuration. The 3270 Settings dialog box appears.

2. On the Script File box, click Browse and select another script file.

3. Double-click the script file you want to use.

4. Click OK.

See Also
Concepts
Sample Logon Script

https://msdn.microsoft.com/en-us/library/aa745347(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745347(v=bts.10).aspx

Sample Logon Script

See Also
Tasks
How to Record and Play Logon Scripts

SETTIMEOUT 30,EXIT
WAITSESSION SSCP
WAIT 3
SEND vm1@E
WAITSESSION LULU
WAIT 3
SEND myuser@Tmypass@E
WAIT 3
SEND run myapp@E
WAIT 3
EXIT:

https://msdn.microsoft.com/en-us/library/aa704732(v=bts.10).aspx

Defining File Transfer Settings
Using the 3270 Client, you can transfer a file between your computer and a host application. However, before you can send a
file to the host or receive a file from the host, you must define the transfer settings that you need. These settings tell the 3270
Client which host environment you will be using (VM/CMS, TSO, or CICS) as well as the parameters for the connection
between your computer and the host.

Before starting this procedure, review the configuration parameters under step 3 below to ensure that you have the necessary
information at hand.

To define file transfer settings

1. On the Transfer menu, click Settings. The File Transfer Settings dialog box appears.

2. Under Host Operating System, select the option for the correct host environment. The host environment option that
you select determines the rest of the settings you enter in the File Transfer Settings dialog box. Settings that you do not
need for your host environment are unavailable.

3. Find the items that apply to your configuration, and supply the information as follows:

Host Program Name Specify the host program name by typing the host name for the program used by the 3270 Client.

Timeout Specify the amount of time, in seconds, that the 3270 Client will wait for a host response to the file transfer
request.

Packet Size Specify the packet size transferred at one time. The larger the size, the faster the file is transferred.

Block Size (TSO) Select the Block Size check box, and specify the size of the data blocks, in bytes, in the new data set on
your TSO volume.

Issue Clear (VM/CMS and CICS) Select this check box to request the host to clear the terminal screen before
transferring files.

Host Code Page Select the correct EBCDIC code page translation table used by the host.

PC Code Page Select the correct ASCII code page translation table used by your computer.

Record (VM/CMS and TSO) Specify the type for the logical record length by selecting the correct option button for your
configuration. This parameter controls whether the logical record length—the number of characters in each record of a
file transferred to the host—is fixed, variable, undefined, or default; that is, controlled by host defaults (TSO only). A
transferred file that replaces or appends to an existing file automatically takes the logical record length of the existing file.

To update an existing host file, select Default.

To create a new host file, select the record length type: Fixed, Variable, or Undefined.

If you select Fixed, specify the logical record length in the Fixed box.

Space (TSO) Select this check box to specify the space for a new data set, then select the option that corresponds to the
unit of measurement (Blocks, Tracks, or Cylinders) and type the number of units to allocate. To allocate additional space,
in the second box, type the number of additional blocks, tracks, or cylinders to allocate. To find out the correct amount of
space to specify, contact the host administrator.

4. Click OK.

Specifying a File
Once you have defined the settings for transferring files, you can send a file to the host or receive a file from the host. You can
select a file to transfer in one of two ways: by typing the name of the specific file to send or receive, or by browsing through a
list of available files.

To type the name of a specific file

1. On the Transfer menu, click Send File or Receive File. Either the Send File dialog box or Receive File dialog box
appears.

2. In the PC File Name box, type the name of the file to send or receive. Note that when receiving a file from the host
application, if you type the name of an existing PC file, it will be overwritten by the host file.

3. To review your settings, click Settings.

To browse through a list of available files

1. On the Transfer menu, click Send File or Receive File. Either the Send File dialog box or Receive File dialog box
appears.

2. Click Browse. The Open dialog box appears.

3. In the File Name list, select the file you want to send or receive. To see files of another type, select the type from the List
Files of Type box.

4. Click OK. The Send File or Receive File dialog box reappears with your selection in the PC File Name box.

5. To review your settings, click Settings; to continue.

Sending or Receiving a File
Once you have defined the settings you need to transfer files, and selected the file to transfer, you can send a file to or receive a
file from the host. To send or receive a file, you must supply certain configuration information. This information includes the
host filename, host file type, host file mode, data set name, carriage return, whether you are appending to an existing file,
EBCDIC conversion, and carriage return line feed.

To send a file to the host or receive a file from the host

1. After specifying the file, find the items that apply to your configuration, and supply the information as follows:

Specify the host file type. For CICS, select either ASCII File or Binary File.

Host File Mode (VM/CMS) Specify the host file mode, the specific minidisk where the user data resides. To find out the
mode for a specific file, from an Client session, type the following command, substituting the name of the file for
filename: list filename * *.

In the resulting display, the third column contains the file mode. The default host file mode is A1.

Data Set Name (TSO) Specify the host data set name. Be sure to include the Member name, in parentheses, if you are
sending to a host partitioned data set (PDS). The following is an example of a data set name for a PDSDEF_009:

PROJECT.GROUP.TYPE(MEMBER)

Carriage Return (CICS) Select the carriage return option for the file you are sending or receiving. Delete CR/LF removes
all carriage return/line feed characters from the file sent to the host. No CR/LF leaves the carriage return/line feed
characters in the file when transferring to the host. None of the Above uses the default implied by the type of file (ASCII
or binary) being transferred. The default for ASCII (being converted to EBCDIC) is CR/LF. The default for binary is No
CR/LF, and CRLFs will not be interpreted.

Append to Existing File (send) Select this check box to add new data to the end of an existing host file.

Convert to EBCDIC (send) Select this check box to convert from ASCII to EBCDIC.

Convert from EBCDIC (receive) Select this check box to convert from EBCDIC to ASCII. Use this option for text files
rather than binary files.

Delete Carriage Return/Line Feed CR/LF (send) Select this check box to replace all CR/LF characters with end of
record marks.

Insert Carriage Return/Line Feed CR/LF (receive) Select this check box to replace all end-of-record marks with CR/LF
characters. Use this option for text files rather than binary files.

2. Click OK. The 3270 Client begins the transfer.

Using Macros
The 3270 Client provides macros for ease in using host function keys.

To use a macro, select the correct macro from the Macro menu. The appropriate function key is sent to the host.

The following table shows the macros for the 3270 Client:

Macro Description

Attentio
n

Sends an Attention key to the host. The Attention key is used to temporarily stop the present display station activity.

Clear Sends a Clear key to the host. This macro clears the display screen.

Reset Sends a Reset key to the host. Reset unlocks the keyboard and clears operator errors.

Sys Req
uest

Sends a Sys Req key to the host. With most systems, use this macro to notify the host system that the display station
is ready to select a new program or activity.

Printing the Screen
After you have established a connection to the host, you can print the information in the active window.

To print the screen

On the File menu, click Print.

To change printer options

1. On the File menu, click Printer Setup.

The Print Setup dialog box appears.

2. To change the printer, from the Printer list, select the correct printer.

To view Advanced Document Properties, click More.

To view printers on the network, click Network.

3. Change any other printer options as necessary.

4. Click OK.

Copying and Pasting Displayed Information
The 3270 Client allows you to make a copy of the information in the display, so that you can use that information in other
applications. To do this, you select a portion of the displayed information, and then copy it to the Windows Clipboard. After
copying information to the Clipboard, you can change to a different application and transfer the information into that
application.

In reverse fashion, you can copy information from an application other than the Client, then paste the information into the
Client. If the emulation session is in a state in which information can be received (indicated by the status line), the pasted
information will be entered as a series of keystrokes.

To copy and paste displayed information

1. Select the portion of the displayed information that you want to copy

-or-

on the Edit menu, click Select All.

2. On the Edit menu, click Copy. The selection is copied to the Clipboard.

3. Change to the program in which you will insert the contents of the Clipboard.

4. Position the cursor at the location where you want to insert the contents of the Clipboard.

5. On the Edit menu, click Paste.

To copy information from an application and paste it into the Client window

1. From the application, copy information to the Clipboard by using the application’s standard copy command(s).

2. Change to an active Client session, or start the Client and begin a session.

3. Check to see that the session is in a state in which keystrokes can be received.

4. On the Edit menu, click Paste. The copied information is entered as a series of keystrokes.

Saving a Configuration
After you have configured a connection to the host, you can save it. While you are connected to the host application, you
cannot open a new or existing configuration.

To save a configuration

1. On the File menu, click Save.The Save As dialog box appears.

2. In the Directories box, select the appropriate directory.

3. In the File Name box, type a name for the configuration file or select a file from the list.

4. Click OK. Now, when you click Open on the File menu, the configuration appears as an available configuration.

To open a configuration

1. On the File menu, click Open. The Open dialog box appears.

2. In the Directories box, select the appropriate directory. To open a file from a directory on the network, click Network.

3. In the File Name box, type a name for the configuration file or select a file from the list.

4. Click OK.

To create a new configuration

On the File menu, click New. The configuration settings are reset to their default values.

To rename a configuration

1. On the File menu, click Save As. The Save As dialog box appears.

2. In the Directories box, select the appropriate directory. To save a file to a directory on the network, click Network.

3. In the File Name box, type a new name for the configuration file or select a file from the list.

4. Click OK. Now, when you click Open on the File menu, the configuration is renamed and appears as an available
configuration.

3270 Client Standard Keyboard Map
The following table maps values from the 3270 keyboard to the Enhanced 101 keyboard.

3270 Keyboard Enhanced 101 Keyboard

DUP CTRL ALT INSERT

FIELD MARK SHIFT HOME

ERASE TO END OF FIELD SHIFT DELETE

ERASE INPUT ALT END

RESET CTRL + R

HOME HOME

TAB TAB

BACKTAB SHIFT TAB

ENTER ENTER

NEWLINE SHIFT ENTER

FAST CURSOR LEFT NOT SUPPORTED BY THIS EMULATION

FAST CURSOR RIGHT NOT SUPPORTED BY THIS EMULATION

CURSOR UP UP ARROW

CURSOR DOWN DOWN ARROW

CURSOR LEFT LEFT ARROW

CURSOR RIGHT RIGHT ARROW

INSERT INSERT

DELETE DELETE

ATTENTION ESC

SYSTEM REQUEST CTRL+ S

CLEAR PAUSE

PA1 ALT INSERT

PA2 ALT HOME

PA3 SHIFT PAGE UP

CurSel ALT F3

PF1 F1

PF2 F2

PF3 F3

PF4 F4

PF5 F5

PF6 F6

PF7 F7

PF8 F8

PF9 F9

PF10 F10

PF11 F11

PF12 F12

PF13 SHIFT F1

PF14 SHIFT F2

PF15 SHIFT F3

PF16 SHIFT F4

PF17 SHIFT F5

PF18 SHIFT F6

PF19 SHIFT F7

PF20 SHIFT F8

PF21 SHIFT F9

PF22 SHIFT F10

PF23 SHIFT F11

PF24 SHIFT F12

OIA Inidcators
The Operator Information Area (OIA) is used to display the status of a 3270 screen session. The OIA is the last (bottom) line
display in the terminal window of the 3270 session. Except for the initial three positions (system connection indicators), status
line indicators only appear when they apply.

The following tables describe the OIA and explain each indicator. In the table, position refers to the column(s) that a specific
indicator occupies on the OIA, where the left-most column of the OIA is position 1. Note that the "female" symbol used for
certain system connection and input-inhibited indicators cannot be displayed in this table. In its place is the "^" symbol.

Following is a list of symbols found on each system connection and their respective meanings.

System Connection (position 1)

Does not apply to Host Integration Server 3270 Client.

System Connection (position 2)

B Connection uses an SNA protocol.

A Connection uses a non-SNA protocol.

System Connection (position 3)

b Connected to a host application (LU-LU session).

^ Connected to host system services (SSCP-LU session).

? Session is established, but is not connected to any host program (unknown).

Session ID (positions 4-7)

aaaa First four characters of your configured long name session ID.

Input-Inhibited messages (keyboard locked) (positions 9-17)

X COMMnnn Communications error. See Communications Status (positions 19-26).

X MACHnnn Machine check error.

X PROGnnn Program check error. See Communications Status (positions 19-26).

X SYSTEM Keyboard input is being processed by the host. Wait for the message to clear or press RESET.

X[] The host requires more time to process your request. Wait for indicator to clear or press RESET.

X -f Function is not supported. Press RESET and select a valid function.

X^> More data was typed than the field allows or can accept. Press RESET and re-enter the data.

X <-^-> Protected field; you cannot type data. Press RESET and move the cursor to an unprotected field.

X -f^X Function is not authorized. Press RESET and select a valid function.

X^+? Invalid accent/character combination typed. The accent is displayed in position 12. Press RESET and type a valid
combination.

Communications Status (positions 19-26)

COMM500 All the link services configured for use by the connection were inactive.

COMM504 Communications are not established with the host. This message disappears as soon as communication is
established with the host. If this message does not disappear, check to ensure proper settings of the host network address,
local node ID, or local SAP.

COMM505 The host terminated the connection used by your 3270 session.

COMM510 The host has deactivated the communications link. Report the message to your system administrator.

COMM518 A segment was out of sequence. Contact your system administrator.

COMM695 A communications error occurred.

COMM5nn The communications link is still being established; the keyboard is locked. Wait for the message to clear; also check

Input-Inhibited messages.

PROG703 A session control, data flow control or network control command is not supported. Press RESET, and try the
operation again.

PROG705 A sequence number error has occurred. Press RESET, and try the operation again.

PROG706 A chaining error has occurred. Press RESET, and try the operation again.

PROG707 A bracket state error has occurred. Press RESET, and try the operation again.

PROG708 A data traffic reset state exists. Press RESET and try the operation again.

PROG717 The support level requested is not valid. Press RESET, and try the operation again.

PROG723 The LU type requested is not valid. Press RESET, and try the operation again.

PROG724 The screen size requested is not valid. Press RESET, and try the operation again.

Screen Session LU Address (positions 79-80)

Nn The LU address of the currently displayed 3270 screen session.

5250 Client Help
The Microsoft Host Integration Server 5250 Client is a powerful communications product that enables you to access AS/400
systems on the Systems Network Architecture (SNA) network from your computer. Once connected to a host application, you
can print the screen, copy and paste displayed information via the Clipboard, and save a configuration.

This section contains:

Defining Session Settings

Using the Keypad Menu

Printing the Screen

Copying and Pasting Displayed Information

Saving a Configuration

5250 Client Standard Keyboard Map

Remapping for the Standard IBM 101 Keyboard Layout

5250 Client Status Line

https://msdn.microsoft.com/en-us/library/aa770546(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744385(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744376(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754493(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745680(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772023(v=bts.10).aspx

Defining Session Settings
Before you can connect to an AS/400 system, you must define the settings you will need for your 5250 session such as the
Local LU Alias, Remote APPC LU Alias, Host Code Page, and Display Size. You can also change the Device Name, although this
is generally not necessary.

To define basic session settings for the 5250 Client for a Host Integration Server

1. On the Session menu, click Session Configuration. The 5250 Session Information dialog box appears.

2. Select the Server Type: Host Integration Server.

3. In the Local APPC LU Alias box, type the Local LU Alias provided by your system administrator. In some cases, the Local
LU Alias provided by your system administrator may be the same as your user name. In other cases, your system
administrator may instruct you to leave the box blank; this allows the Host Integration Server to use the default local LU
configured for your user name.

4. In the Remote APPC LU Alias box, select the system name of the AS/400, as provided by your system administrator.
Your system administrator may instruct you to leave the box blank; this allows the Host Integration Server to use the
default system name (also called the remote LU) configured for your user name.

5. In the Host Code Page box, select the correct host code page. The default is English-US.

6. Under Display Size, select the option button for the correct display size. The default is 24 x 80.

7. To specify a device name other than the default, in the Device Name box, type the correct device name.

8. Select the System 36 Compatibility check box to connect to a System 36 computer.

9. Select the Automatic Logon check box to use the single sign-on feature. You must install the Host Security Integration
feature to enable single sign-on.

10. Click OK.

To define basic session settings for the 5250 Client for a TN 5250 Server

1. On the Session menu, click Session Configuration. The 5250 Session Information dialog box appears.

2. Select the Server Type: TN 5250.

3. Enter the Server Name or IP Address for the server where Host Integration Server is installed. If you are unsure, see your
system administrator.

4. Select a Terminal Type from the list box to allow the TN5250 Service to accept client requests from TN5250 clients
emulating those types of terminals. Clear a name to cause TN5250 Service to reject requests from clients emulating that
terminal type. All terminal names are selected by default.

5. Select Use Default to use the port number configured with the service (on the Host Integration Server Service
Properties page).

6. You can override the default value for a given session by selecting Use and typing another port number.

Note that TN services listen on multiple ports simultaneously. You can set a default port number for the TN service
(assign the port number to the server) and override this number on a per session basis (assign the port number to the LU
session), allowing a single client to connect to multiple host computers. See the Host Integration Server help for more
information.

7. In the Host Code Page box, select the correct host code page. The default is English-US.

8. Click OK.

Using the Keypad Menu
Standard 5250 function keys can be selected from the Keypad menu. The direct keyboard mapping is displayed in the right-
most column of the menu.

To send a 5250 keystroke to the host

From the Keypad menu, choose the correct 5250 function. The appropriate function key is sent to the host.

Note
Limited keyboard remapping is provided for the standard IBM 101 keyboard.

Printing the Screen
After you have established a connection to the host, you can print the information in the active window.

To print the screen

On the File menu, click Print.

To change printer options

1. On the File menu, click Printer Setup. The Print Setup dialog box appears.

2. To change the printer, in the Printer list, select the correct printer. To view Advanced Document Properties, click More.
To view printers on the network, click Network.

3. Change any other printer options as necessary.

4. Click OK.

Copying and Pasting Displayed Information
The 5250 Client allows you to make a copy of the information in the display, so that you can use that information in other
applications. To do this, select a portion of the displayed information, and then copy it to the Windows Clipboard. After copying
information to the Clipboard, you can change to a different application and transfer the information into that application.

In reverse fashion, you can copy information from an application other than the Client, and then paste the information into the
Client. If the emulation session is in a state in which information can be received (indicated by the status line), the pasted
information will be entered as a series of keystrokes.

To copy and paste displayed information in the Client window

1. Select the portion of the displayed information that you want to copy

-or-

on the Edit menu, click Select All.

2. On the Edit menu, click Copy. The selection is copied to the Clipboard.

3. Change to the application in which you will insert the contents of the Clipboard.

4. Position the cursor where you want to insert the contents of the Clipboard.

5. On the Edit menu, click Paste.

To copy information from an application and paste it into the Client window

1. From the application, copy information to the Clipboard by using the applications standard copy command(s).

2. Change to an active Client session, or start the Client and begin a session.

3. Check to see that the session is in a state in which keystrokes can be received.

4. On the Edit menu, click Paste. The copied information is entered as a series of keystrokes.

Saving a Configuration
After you have configured a connection to the host, you can save it. While you are connected to the host application, you
cannot open a new or existing configuration.

To save a new configuration

1. On the File menu, click Save. The Save As dialog box appears.

2. In the Directories box, select the appropriate directory.

3. In the File Name box, type a name for the configuration file or select a file from the list. To save the configuration to a
directory on the network, click Network.

4. Click OK. Now, when you choose Open from the File menu, the configuration appears as an available configuration.

To open a configuration

1. On the File menu, click Open. The Open dialog box appears.

2. In the Directories box, select the appropriate directory. To open a file from a directory on the network, click Network.

3. In the File Name box, type a name for the configuration file or select a file from the list.

4. Click OK.

To create a new configuration

On the File menu, click New. The configuration settings are reset to their default values.

To rename a configuration

1. On the File menu, click Save As. The Save As dialog box appears.

2. In the Directories box, select the appropriate directory. To save a file to a directory on the network, click Network.

3. In the File Name box, type a new name for the configuration file or select a file from the list.

4. Click OK. Now, when you choose Open from the File menu, the configuration is renamed and appears as an available
configuration.

5250 Client Standard Keyboard Map
The following table maps values from the 5250 keyboard to the Enhanced 101 keyboard.

5250 Keyboard Enhanced 101 Keyboard

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

F8 F8

F9 F9

F10 F10

F11 F11

F12 F12

F13 SHIFT+F1

F14 SHIFT+F2

F15 SHIFT+F3

F16 SHIFT+F4

F17 SHIFT+F5

F18 SHIFT+F6

F19 SHIFT+F7

F20 SHIFT+F8

F21 SHIFT+F9

F22 SHIFT+F10

F23 SHIFT+F11

F24 SHIFT+F12

Alternate Cursor ALT+F9

ATTENTION ESC

Backspace BACKSPACE

SHIFT+BACKSPACE

BACKTAB SHIFT+TAB

CLEAR PAUSE

SHIFT+PAUSE

Cmd SHIFT+ALT(left)

SHIFT+ALT(right)

CURSOR UP UP ARROW

8 (num pad)

SHIFT+UP ARROW

CURSOR DOWN DOWN ARROW

2 (num pad)

SHIFT+DOWN ARROW

CURSOR LEFT LEFT ARROW

4 (num pad)

SHIFT+LEFT ARROW

CURSOR RIGHT RIGHT ARROW

6 (num pad)

SHIFT+RIGHT ARROW

DELETE DELETE

. (num pad)

DUP SHIFT+INSERT

END END

1 (num pad)

SHIFT+END

ENTER ENTER

ERASE EOF NA

ERASE EOL ALT+HOME

ERASE INPUT ALT+END

FAST CURSOR LEFT ALT+LEFT ARROW

FAST CURSOR RIGHT ALT+RIGHT ARROW

FIELD EXIT + (num pad)

FIELD MARK NA

FIELD - - (num pad)

SHIFT+-(num pad)

FIELD + + (num pad)

HOME HOME

7 (num pad)

SHIFT+HOME

HELP SCROLL LOCK

SHIFT+SCROLL LOCK

HEX ALT+F7

INSERT INSERT

0 (num pad)

LOCAL HELP CTRL+SHIFT+H

LOCAL HELP CURSOR CTRL+H

LOCAL PRINT CTRL+P

NEWLINE SHIFT+ENTER

PAGE UP PAGE UP

9 (num pad)

SHIFT+PAGE UP

PAGE DOWN PAGE DOWN

3 (num pad)

SHIFT+PAGE DOWN

PA1 NA

PA2 NA

PA3 NA

PRINT PRINTSCREEN

RESET CTRL+R

SYSTEM REQUEST CTRL+S

ALT+NUM (*)

TAB TAB

SHIFT+NUM(+)

TEST REQUEST ALT+PAUSE

Remapping for the Standard IBM 101 Keyboard Layout
When using the Host Integration Server 5250 Client, function keys located on the numeric keypad (such as PGUP, PGDN and
ENTER) are not mapped to 5250 functions for PAGE UP, PAGE DOWN, and ENTER. The standard cursor control keys for
PageUp and PageDown (located on the keypad positioned between the BACKSPACE and NUMLOCK keys) and the standard
ENTER key do work.

The <Snaroot>\System\5250.kbd file can be edited to support limited keyboard remapping, for the standard IBM 101
keyboard layout. For example, the procedure below describes how to add support for the ENTER, PGUP and PGDN keys located
on the numeric keypad:

To add support for the ENTER, PGUP and PGDN keys

1. Save the original copy of <Snaroot>\System\5250.kbd to 5250.old.

2. Add the following lines to the 5250.kbd file:

NumPgUp : PAGE_UP

NumPgDn : PAGE_DOWN

NumEnter: ENTER

Note
5250.kbd will already include default entries for the 5250 PAGE_UP, PAGE_DOWN, and ENTER functions, mapped to the PAG
EUP, PAGEDOWN, and ENTER keys respectively.

1. Copy the 5250.kbd file to Keyboard.map, and place Keyboard.map in the same directory where the Win5250.exe
program resides:

for Windows 3.x clients, the default is <sna.win>

for Windows 95 clients, the default is <sna95>\system

for Windows NT clients, the default is <sna>\system

2. . Restart the 5250 Client.

Note
The Host Integration Server 5250 Client does support limited keyboard remapping by following the instructions in the <Snar
oot>\System\5250.kbd file. This keyboard mapping support is not available in SNA Server 2.x versions of the 5250 Client.

5250 Client Status Line
The following list describes the information displayed in the status line of the 5250 Client.

Connection Indicator The session is in the indicated state: connected or disconnected. When menu items are highlighted, an
explanation of the menu item is displayed.

Status Indicators These indicators are only true when red.

SA (System Available) The AS/400 is operating and is available to the PC.

MW (Message Waiting) The AS/400 has one or more messages for you.

KS (Keyboard Shift) The keyboard is in shifted mode.

IM (Insert Mode) Characters inserted into an existing field will not type over the existing data.

II (Input Inhibited) Keyboard input is not being accepted by the AS/400. Try pressing the ERROR RESET key. If it is still
highlighted, the system is processing your request.

KB (Keystroke Buffering) Keystrokes are being saved in a temporary buffer (storage space), because keyboard input is not
being accepted by the AS/400 (as indicated by the II indicator). After the II indicator goes off, the keystrokes will be processed.
To clear the keystroke buffering, press the ERROR RESET key.

System and Device Indicators These indicators appear only when the Client is connected to the AS/400.

Administrator’s Reference
The Administrator's Reference section provides technical information about working with Microsoft Host Integration Server.

To use this reference section effectively, you should be familiar with the following:

Host Integration Server

Microsoft Windows

IBM Systems Network Architecture (SNA) concepts

In This Section

Document Conventions explains the formatting conventions this documentation set uses to distinguish important elements of
text.

Common Acronyms and Abbreviations lists common industry abbreviations and acronyms, along with their meanings.

Host Integration Server Support explains how Host Integration Server works within Systems Network Architecture (SNA)
networks.

Network Management describes the support that Host Integration Server provides for centralized network management

Network Protocols and Client/Server Communication describes how clients using different local area network (LAN) protocols
can communicate with Host Integration Server computers.

Error Messages describes the audit and error messages database and how to access it.

Command-Line Interface describes the command-line interface that can be used when you want to view a configuration
setting quickly, or when you wnat to store configuration commands.

Sample Host Definitions presents samples for establishing Host Integration Server connections to an IBM host system.

CICS and VTAM Sample Definitions for LU 6.2 presents sample definitions for CICS and VTAM for Host Integration Server
connections to an IBM host system.

Sense Codes lists sense codes used by Host Integration Server.

Character Tables provides tables of the ASCII, ANSI, and IBM Extended character sets. It also provides a character translation
table that can be used by the custom code page option of Host Print service.

For more information about systems network architecture, see the latest version of the IBM publication, Systems Network
Architecture Technical Overview (GC30-3073).

For frequently used terms, see the Glossary.

https://msdn.microsoft.com/en-us/library/aa744363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771441(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770942(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770970(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771665(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771694(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744296(v=bts.10).aspx

Document Conventions
This Administrator's Reference uses the following formatting conventions to distinguish important elements of text.

Convent
ion

Purpose

bold Indicates syntax items that must be typed exactly as shown.

italic Indicates variables.

UPPERC
ASE

Represents file names, paths, volumes, array and structure names, values, and conversation states. Also represents r
eturn values and key names (such as ALT or CTRL).

[brackets
]

Enclose optional items in square brackets.

{braces} Enclose required items in curly brackets.

| (vertical
bar)

Stands for OR and separates items in syntax statements.

... (ellipsis
)

Indicates that the preceding syntax item can be repeated. If a punctuation mark precedes the ellipsis, you must includ
e the punctuation when repeating the item.

X'nnnn' Indicates hexadecimal digits.

Common Acronyms and Abbreviations
The following table contains a list of common abbreviations used in this reference. For definitions of these and other terms, see
the Glossary.

Abbreviation Description

ACTLU Activate Logical Unit

ACTPU Activate Physical Unit

ADO ActiveX Data Objects

API application programming interface

APPC Advanced Program-to-Program Communications

APPN Advanced Peer-to-Peer Networking

ASCII American Standard Code for Information Interchange

BB RQE Begin Bracket, Exception Response

BTU basic transmission unit

CD Change Direction

CEB Conditional End Bracket

CICS Customer Information Control System

CCSID Coded Character Set ID

COM Component Object Model

CPI-C Common Programming Interface for Communications

CSV Common Service Verb

CTS clear-to-send

DACTLU Deactivate Logical Unit

DAF destination address field

DCA Digital Communications Associates, Inc.

DCOM Distributed Component Object Model

DDM Distributed Data Management

DDS Digital Data System

DFC data flow control

https://msdn.microsoft.com/en-us/library/aa744296(v=bts.10).aspx

DLC data link control

DLL dynamic-link library

DLS Distributed Link Service

DM disconnect mode

DMA Direct Memory Access

DMOD Dynamic Module

DRDA Distributed Relational Database Architecture

DSC data stream compatible

DSR Data Set Ready

DTR Data Terminal Ready

EB End Bracket

EBCDIC Extended Binary Coded Decimal Interchange Code

EN End Node

ESCON Enterprise System Connection

FDDI Fiber Distributed Data Interface

FEP front-end processor

FM function management

FRMR frame reject

FTP File Transfer Protocol

IMS Information Management System

KB Kilobyte

LAN local area network

LCS link connection subsystem

LL record length field

LLC Logical Link Control

LU logical unit

LUA Logical Unit for Applications (programming interface)

MAC media access control

MB Megabyte

MMC Microsoft Management Console

MVS Multiple Virtual Storage

NAU Network Addressable Unit

NCP Network Control Panel

NMVT network management vector transport

NN Network Node

N(r) number returned

NRM Normal Response Mode

NRZ non-return to zero

NRZI non-return to zero inverted

N(s) number sent

ODBC Open Database Connectivity

OLE object linking and embedding

OLE DB Object Linking and Embedding Database

PCT Program Control Table

PDSE Partitioned Data Set Extended

PIP program initialization parameter

PLU primary logical unit

PPT Program Processing Table

PU physical unit

PVC permanent virtual circuit

QLLC Qualified Logical Link Control

RH request/response header

RIM ring indicator monitor

RSP Response

RTM Response Time Monitor

RU request/response unit

RUI Request Unit Interface

SAP service access point

SDK software development kit

SDLC Synchronous Data Link Control

SID Security ID

SLI Session Level Interface

SLU secondary logical unit

SNA Systems Network Architecture

SNRM Set Normal Response Mode

SP Service Pack

SQL Structured Query Language

SSCP System Services Control Point

SVC switched virtual circuit

TCP/IP Transmission Control Protocol/Internet Protocol

TCT Terminal Control Table

TH transmission header

TN Telnet

TP transaction program

TS transmission service

TSO time sharing option

VSAM Virtual Storage Access Method

VTAM Virtual Telecommunications Access Method

WAN wide area network

XID Exchange Identification

Host Integration Server Support
This section explains how Host Integration Server works in Systems Network Architecture (SNA) networks. The following
information is included:

A summary of the types and number of SNA sessions supported by Host Integration Server.

A list of the SNA commands supported by Host Integration Server. This section also shows the type of SNA sessions in
which the commands flow.

The transmission service (TS) and function management (FM) profiles supported by Host Integration Server.

A list and explanation of the five categories of SNA sense codes generated by Host Integration Server. This section also
describes logical unit (LU) type 6.2-specific sense data.

For specific information about an application programming interface (API) supported by Host Integration Server, see the
programmer's guide for that API:

APPC Programmer's Guide

CPI-C Programmer's Guide

LUA Programmer's Guide

In This Section

SNA Session Support

Command Request Support

Transmission Service and Function Management Profiles

Option Set Support

SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa705653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704957(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745368(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

SNA Session Support
This section lists and explains the types and numbers of SNA sessions supported by Host Integration Server.

In This Section

LU Support

Session Support

https://msdn.microsoft.com/en-us/library/aa746207(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745602(v=bts.10).aspx

LU Support
A Host Integration Server node can support as many as 15,000 sessions.

Logical unit 6.2 (LU 6.2) works in combination with node type 2.1 to provide Advanced Program-to-Program Communications
(APPC). An LU 6.2 can be either a primary logical unit (PLU) or a secondary logical unit (SLU). The partner LU can reside in a
type 2.1 node, within an upstream type 5 node, or within the Host Integration Server node itself.

LU types 0, 1, 2, or 3 are always SLUs, and the partner LU in an upstream type 5 node is always the PLU. LU 0 supports session-
level cryptography, within certain limits, on the Request Unit Interface (RUI). You implement session-level cryptography
through Cryptography Verification (CRV) requests; the RUI applications must perform all necessary processing. For details
about the limits of session-level cryptography and about the processing carried out by the RUI application, see the
LUA Programmer's Guide. For all interfaces other than RUI, CRV requests are handled with a negative response.

See Also
Other Resources
SNA Session Support

https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705736(v=bts.10).aspx

Session Support
Host Integration Server supports many types of SNA communications sessions:

A System Services Control Point – physical unit (SSCP-PU)

A Host Integration Server physical unit (PU) Services Manager which communicates with the System Services Control
Point (SSCP) on the host

An SSCP-LU

A Host Integration Server logical unit (LU) which communicates with a host SSCP

A Primary logical unit-secondary logical unit (PLU-SLU)

A Host Integration Server LU which communicates with host or peer LUs

See Also
Other Resources
Host Integration Server Support

https://msdn.microsoft.com/en-us/library/aa770942(v=bts.10).aspx

Command Request Support
The next three tables list the SNA command requests supported by Host Integration Server. Note that not all commands are
supported for every LU-to-LU session type. For example, Bracket Initiation Stopped (BIS) is only supported for use by an APPC
LU.

The following three tables categorize requests in the following order:

1. Session control requests

2. Function management data requests: network services (maintenance) and network services (session)

3. Data flow control requests

The three tables denote the category for each request by the setting of the request/response unit (RU) category bits in the
request/response header (RH), and by the function of the request. Host Integration Server does not support commands that fall
in the network control request category.

For more information about command requests, see your IBM documentation.

SNA Request Support for Session Control Requests
Session Request Direction

SSCP-PU ACTPU SSCP to PU

 DACTPU SSCP to PU

SSCP-LU ACTLU SSCP to SLU

 DACTLU SLU to SSCP

PLU-SLU BIND PLU to SLU

 UNBIND PLU to/from SLU

 CLEAR PLU to SLU

 SDT PLU to SLU

SNA Request Support for Function Management Data Requests
Session Request Direction

SSCP-PU NMVT (1) SSCP to/from PU

 INIT-SELF (2) SLU to SSCP

 TERM-SELF (2) SLU to SSCP

 NOTIFY (2) SLU to SSCP

 NSPE (2) SSCP to SLU

1. Network services, maintenance services

2. Network services, session services

SNA Request Support for Data Flow Control Requests
Session Request Direction

PLU-SLU BID PLU to/from SLU

 BIS PLU to/from SLU

 CANCEL PLU to/from SLU

 CHASE PLU to SLU

 LUSTAT PLU to/from SLU

 RTR PLU to/from SLU

 SHUTC PLU from SLU

 SHUTD PLU to SLU

 SIGNAL PLU to/from SLU

See Also
Other Resources
Host Integration Server Support

https://msdn.microsoft.com/en-us/library/aa770942(v=bts.10).aspx

Transmission Service and Function Management Profiles
Host Integration Server enforces the rules that govern active sessions between communicating partners on an SNA network.

The Host Integration Server computer can select some of these session protocols—such as request/response control modes,
bracket usage, and pacing—when you activate a session. The term "profiles" refers to specific combinations of these selectable
protocol options.

Transmission service (TS) profiles refer to transmission control options, while function management (FM) profiles refer to data
flow control and function management data options.

When activated, TS and FM profiles of a session are specified by using parameters in the appropriate session activation request
and response such as ACTPU, ACTLU, BIND.

The following table specifies the TS and FM profiles supported by each of the Host Integration Server session types.

Session type TS profiles FM profiles

SSCP-LU session 1 0

SSCP-PU session 1 0

3270 display and printer PLU-SLU session 3 3

LU 6.2 PLU-SLU session 7 19

LUA PLU-SLU session 2, 3, 4 2, 3, 4, 7, 18

In This Section

TS Profile 1

TS Profile 2

TS Profile 3

TS Profile 4

TS Profile 7

FM Profile 0

FM Profile 2

FM Profile 3

FM Profile 4

FM Profile 7

FM Profile 18

FM Profile 19

https://msdn.microsoft.com/en-us/library/aa770730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771896(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744323(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771107(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745047(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705400(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705546(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771067(v=bts.10).aspx

TS Profile 1
Transmission service (TS) Profile 1 is supported on System Services Control Point physical unit (SSCP-PU) and System Services
Control Point secondary logical unit (SSCP-SLU) sessions; the profile does not require a TS usage field. This profile specifies the
following session rules:

Pacing is not supported.

Identifiers, rather than sequence numbers, are used on the normal flows.

ACTPU, DACTPU, ACTLU, and DACTLU are supported.

Maximum outbound request/response (RU) size is 256 bytes.

Maximum inbound RU size is 512 bytes.

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

TS Profile 2
Transmission service (TS) Profile 2 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU 0.
This profile specifies the following session rules:

Primary logical unit-secondary logical unit (PLU-SLU) and SLU-PLU normal flows are paced.

Sequence numbers are used on the normal flows whenever the transmission header (TH) format used includes a
sequence number field.

CLEAR is supported.

SDT, RQR, STSN, and CRV are not supported.

The TS usage subfields defining the options for this profile are the following:

Pacing window counts

Maximum request/response (RU) sizes on the normal flows

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

TS Profile 3
Transmission service (TS) Profile 3 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU
types 0, 1, 2, or 3. Selection is a BIND option. This profile specifies the following session rules:

PLU-SLU and SLU-PLU normal flows are paced.

Sequence numbers are used on the normal flows.

BIND, UNBIND, CLEAR, and SDT are supported.

The TS usage subfields defining the options for this profile are the following:

Pacing counts

Maximum request/response (RU) sizes on the normal flows

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

TS Profile 4
Transmission service (TS) Profile 4 is supported on logical unit-logical unit (LU-LU) sessions using LU types 0 or 1. This profile
specifies the following session rules:

Primary logical unit-secondary logical unit (PLU-SLU) and SLU-PLU normal flows are paced.

Sequence numbers are used on the normal flows whenever the transmission header (TH) format used includes a
sequence number field.

SDT, CLEAR, RQR, and STSN are supported.

CRV is supported when session-level cryptography is selected via a BIND parameter.

The TS usage subfields defining the options for this profile are the following:

Pacing window counts

Maximum request/response (RU) sizes on the normal flows

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

TS Profile 7
Transmission service (TS) Profile 7 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU 6.2.
This profile specifies the following session rules:

PLU-SLU and SLU-PLU normal flows are paced.

Sequence numbers are used on the normal flows.

BIND and UNBIND are supported.

The TS Usage subfields defining the options for this profile are the following:

Pacing counts

Maximum request/response (RU) sizes on the normal flows

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 0
Function management (FM) Profile 0 is supported on SSCP-PU and SSCP-SLU sessions. This profile specifies the following
session rules:

SSCP, PU, and SLU use immediate request mode and immediate response mode.

Only single-RU chains are allowed.

All chains require definite response.

No compression.

No data flow control (DFC) RUs.

No function management (FM) headers.

No brackets.

No alternate code.

Normal flow send/receive mode is half-duplex contention.

Secondary wins contention.

SSCP is responsible for recovery.

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 2
Function management (FM) Profile 2 is supported on primary logic unit-secondary logic unit (PLU-SLU) sessions using LU 0.
This profile uses the following session rules:

SLU uses delayed request mode.

SLU uses immediate response mode.

Only single-RU chains are allowed.

SLU requests indicate no-response.

No FMH-1 SCB compression.

Length-checked compression allowed.

No data flow control (DFC) RUs.

No FM headers.

SLU is the first speaker if brackets are used.

Bracket termination rule 2 is used if brackets are used.

PLU will send an end bracket (EB).

SLU will not send an EB.

Normal-flow send/receive mode is full duplex (FDX).

PLU is responsible for recovery.

The following FM Usage fields define the options for Profile 2:

Primary request control mode selection

Primary chain response protocol (no-response cannot be used)

Brackets usage and reset state

Alternate code

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 3
Function management (FM) Profile 3 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU
types 0, 1, 2, or 3. This profile specifies the following session rules:

PLU and SLU use immediate response mode.

PLU and SLU support the following data flow control (DFC) commands (an asterisk [*] indicates commands permitted by
the FM profile that are never sent by Host Integration Server):

CANCEL

SIGNAL

LUSTAT (SLU-PLU only)

CHASE*

SHUTD

SHUTC

RSHUTD*

BID and RTR

The following FM Usage fields define the options for Profile 3:

Chaining use (PLU and SLU)

Request control mode selection (PLU and SLU)

Chain response protocol (PLU and SLU)

Compression indicator (PLU and SLU)

Send EB indicator (PLU and SLU)

FM header usage

Bracket usage

Bracket termination rule

Alternate Code Set Allowed indicator

Normal-flow send/receive mode

The next three tables list the FM Profile 3 options that Host Integration Server supports. Host Integration Server rejects any
BIND option that specifies an option value not listed in these tables.

Supported options for BIND requests from primary LUs
Usage option Value Meaning
Chaining use element 0 Can send only single-element chains

 1 Can send single- or multiple-chains

Request control mode 0 Immediate request mode used

Chain response protocol 01 Can request only exception-only responses

 10 Can request only definite responses

 11 Can request definite or exception-only responses

Compression indicator 0 Cannot send compressed data

 1 Can send compressed data (LU 1 only)

Send EB indicator 1 Can send an end bracket

Supported options for BIND requests from secondary LUs
Usage option Value Meaning
Chaining use element 0 Can only send single-element chains (not LU 2)

 1 Can send single- or multiple-chains

Request control mode 0 Immediate request mode used

Chain response protocol 01 Can request only exception-only responses

 10 Can request only definite responses

 11 Can request definite or exception-only responses

Compression indicator 0 Cannot send compressed data

Send EB indicator 1 Cannot send end bracket

Supported common protocol values for BIND requests from any LU
Usage option Value Meaning
FM header usage 0 Cannot exchange FM headers

 1 Can exchange FM headers

Bracket usage 1 Bracket protocols must be used

Bracket termination rule 1 Bracket termination rule 1 is used

Alternate code set allowed 0 Must use Extended Binary Coded Decimal Interchange Code (EBCDIC)

Normal flow send/receive mode 10 Half-duplex flip-flop

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 4
Function management (FM) Profile 4 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU
types 0 or 1. This profile uses the following session rules:

PLU and SLU use immediate response mode.

PLU and SLU support the following data flow control (DFC) commands (an asterisk [*] indicates commands permitted by
the FM profile that are never sent by Host Integration Server):

CANCEL

SIGNAL

LUSTAT

QEC

QC

RELQ

CHASE*

SHUTD

SHUTC

RSHUTD*

BID and RTR (allowed only if brackets are used)

Length-checked compression allowed

The following FM Usage fields define the options for Profile 4:

Chaining use (PLU and SLU)

Request control mode selection (PLU and SLU)

Chain response protocol (PLU and SLU)

FMH-1 SCB (String Control Byte) Compression indicator (PLU and SLU)

Send EB indicator (PLU and SLU)

FM header usage

Brackets usage and reset state

Bracket termination rule

Alternate Code Set Allowed indicator

Normal-flow send/receive mode

Recovery responsibility

Contention winner/loser

Half-duplex flip-flop reset states

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 7
Function management (FM) Profile 7 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU
0. This profile uses the following session rules:

PLU and SLU use immediate response mode.

PLU and SLU support the following data flow control (DFC) commands (an asterisk [*] indicates commands permitted by
the FM profile that are never sent by Host Integration Server):

CANCEL

SIGNAL

LUSTAT

RSHUTD*

Length-checked compression is allowed on LU 0 only.

The following FM Usage fields define the options for Profile 7:

Chaining use (PLU and SLU)

Request control mode selection (PLU and SLU)

Chain response protocol (PLU and SLU)

FMH-1 SCB Compression indicator (PLU and SLU)

Send EB indicator (PLU and SLU)

FM header usage

Brackets usage and reset state

Bracket termination rule

Alternate Code Set Allowed indicator

Normal-flow send/receive mode

Recovery responsibility

Contention winner/loser

Half-duplex flip-flop reset states

See Also
Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 18
Function management (FM) Profile 18 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU
0. This profile uses the following session rules:

PLU and SLU use immediate response mode.

PLU and SLU support the following data flow control (DFC) commands (an asterisk [*] indicates commands permitted by
the FM profile that are never sent by Host Integration Server):

CANCEL

SIGNAL

LUSTAT

BIS and SBI (allowed only if brackets are used)

CHASE*

BID and RTR (allowed only if brackets are used)

Length-checked compression is allowed.

The following FM Usage fields define the options for Profile 18:

Chaining use (PLU and SLU)

Request control mode selection (PLU and SLU)

Chain response protocol (PLU and SLU)

FMH-1 SCB Compression indicator (PLU and SLU)

Send EB indicator (PLU and SLU)

FM header usage

Brackets usage and reset state

Bracket termination rule

Alternate Code Set Allowed indicator

Normal-flow send/receive mode

Recovery responsibility

Contention winner/loser

Half-duplex flip-flop reset states

See Also
Other Resources

Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

FM Profile 19
Function management (FM) Profile 19 is supported on primary logical unit-secondary logical unit (PLU-SLU) sessions using LU
6.2. This profile specifies the following session rules:

PLU and SLU use immediate request mode.

PLU and SLU use immediate response mode.

Multiple RU chains are allowed.

PLU and SLU requests indicate definite or exception response.

No compression is used.

Brackets are used.

FM headers (types 5, 7, and 12 only) are allowed.

Conditional termination for brackets, specified by conditional end bracket (CEB),is used.

PLU and SLU may send CEB.

Normal-flow send/receive mode is half-duplex flip-flop.

Half-duplex flip-flop reset state is SEND for PLU.

Symmetric error responsibility.

Contention winner/loser is negotiated at BIND time.

PLU and SLU support the following data flow control (DFC) commands:

SIGNAL

LUSTAT

BIS

RTR

The following combinations of RQE, RQD, CEB, and CD are allowed on end-chain Russ

RQE CD CEB

RQD2 CD CEB

RQD3 CD CEB

RQE1 CD CEB

RQD CD CEB

The only option for Profile 19 is contention winner/loser.

See Also

Other Resources
Transmission Service and Function Management Profiles

https://msdn.microsoft.com/en-us/library/aa745864(v=bts.10).aspx

Option Set Support
The following table lists the option sets supported by Host Integration Server. The reference numbers are those specified in
IBM documentation.

Ref No. Option Set

101 Flush the send buffer of the LU

102 Get attributes

103 Post on receipt with test for posting (supported by asynchronous APPC verbs)

104 Post on receipt with wait (supported by asynchronous APPC verbs)

105 Prepare to receive

106 Receive immediate

109 Get TP name and instance identifier

110 Get conversation type

201 Queued allocation of a contention winner session

203 Immediate allocation of a session

204 Conversations between programs located at the same LU

205 Queued allocation for when session is free

211 Session-level LU-LU verification

212 User ID verification

213 Program-supplied user ID and password

214 User ID authorization

241 Send program initialization parameter (PIP) data

243 Accounting

244 Long locks

245 Test for request-to-send received

246 Data mapping

251 Extract transaction and conversation identification information

290 Logging of data in a system log

291 Mapped conversation LU services component

505 LU definition verbs (operator only)

601 MIN_CONWINNERS_TARGET parameter

602 RESPONSIBLE(TARGET) parameter

603 DRAIN_TARGET(NO) parameter

605 LU-LU session limit

606 Locally known LU names

607 Uninterpreted LU names

610 Maximum RU size bounds

612 Automatic activation limit for contention winner

See Also
Other Resources
Host Integration Server Support

https://msdn.microsoft.com/en-us/library/aa770942(v=bts.10).aspx

SNA Sense Codes
If there is a communication problem during an SNA session, Host Integration Server can generate sense codes that notify the
remote system of the type of problem. The sense codes fall into five distinct categories, corresponding to the type of problem
that occurred.

Value Category

X'08' Request Reject

X'10' Request Error

X'20' State Error

X'40' RH Usage Error

X'80' Path Error

The following sections list the sense codes by category, and include two additional categories of sense codes:

Sense codes sent by a 3270 emulator on LUSTAT requests

Sense codes that can only flow on LU 6.2 sessions

In This Section

Request Reject (Category X'08')

Request Errors (Category X'10')

State Errors (Category X'20')

RH Usage Errors (Category X'40')

Path Errors (Category X'80')

LUSTAT Sense Codes

Sense Data Specific to LU 6.2

https://msdn.microsoft.com/en-us/library/aa705247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705806(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705190(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745803(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745592(v=bts.10).aspx

Request Reject (Category X'08')
This category indicates that the request was delivered to the intended half session, and was understood and supported, but not
executed. The following codes are in this category.

Code Meaning
0801 Resource not available

0802 Intervention required (LU 1/LU 3 printer soft error)

0805 Session limit exceeded

0809 Mode inconsistency

080A Permission rejected, NOTIFY will not be sent

080B Bracket race error

080C Procedure not supported

0812 Insufficient resources

0814 Bracket bid reject-RTR forthcoming

0815 Function active

081B Contention race condition

081C Request not executable (hard error)

0821 Invalid session parameters

0829 Change direction required

082B Presentation space integrity lost

082D LU busy (usually local copy print in progress)

082E Intervention required (local copy print soft error)

082F Request not executable (local copy print hard error)

0831 LU component disconnected

0843 WCC print command not sent (RQD or RQE, CD, EB)

0845 Permission rejected, NOTIFY will be sent

0863 Referenced character set does not exist

0871 Read partition state error (SLU in retry state)

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

Request Errors (Category X'10')
Sense codes in this category represent an imbalance in half-session capabilities. They indicate that the RU (request/response
unit) was delivered to the intended half-session but could not be processed. The following codes are in this category.

Code Meaning
1003 Function not supported (also used instead of X'0826', which is not supported by Host Integration Server)

1005 Parameter modifying a control function is invalid

1007 Category not supported (SSCP data for host printer)

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

State Errors (Category X'20')
Sense codes in this category indicate a sequence number error, or a request/response header (RH) or request/response unit
(RU) that is not allowed in the receiver's current state. This condition prevents delivery of the request to the intended half-
session. The following codes are in this category.

Code Meaning

2001 Sequence number error

2002 Chaining error

2003 Bracket error

2004 Direction error

2005 Data traffic reset

2006 Data traffic quiescent

2007 Data traffic not quiescent

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

RH Usage Errors (Category X'40')
These sense codes indicate that fields in the request/response header (RH) are contrary to SNA rules or previously selected
BIND options and prevent the intended half-session from receiving the request.

The checks 400A and 4012 are also performed. These do not permit negative responses because they apply to no-response
sessions and responses, respectively.

The following codes are in this category.

Code Meaning
4006 Exception response not allowed

4007 Definite response not allowed

400F Incorrect use of format indicator

4011 Incorrect specification of RU category

4014 Incorrect use of DR1, DR2, ER

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

Path Errors (Category X'80')
Sense codes in this category indicate that the request could not be delivered to the required half-session because of path
errors. The following codes are in this category.

Cod
e

Meaning

800
4

Unrecognized destination field address (DAF)

800
5

No session

800
6

Invalid format identification (FID): Error detected and logged; negative response not sent

800
7

Segmentation error request/response header (RH) not present or too short: negative response sent only for segmentatio
n error

800
8

Primary unit (PU) not active: SSCP-PU was not active and request was not ACTPU or DACTPU

800
9

Logical unit (LU) not active: DAF specified an LU for which the SSCP-SLU session has not been activated, and request was
not ACTLU or DACTLU

800
F

Invalid address combination

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

LUSTAT Sense Codes
The following sense codes are sent by a 3270 emulator on LUSTAT requests.

Code Meaning
0001 B000 Host initialized local copy soft error recovery

081C 0000 Soft error changed to hard error (LU 1/LU 3)

081C B000 Soft error changed to hard error (local copy)

082B 0000 SLU session changed from SSCP to PLU (SYSREQ)

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

Sense Data Specific to LU 6.2
The LU 6.2 sense codes are specified and interpreted by SNA components within Host Integration Server, and, in general, are
presented as return codes and as parameters to specific verbs.

The following sense codes are carried on responses flowing on LU 6.2 sessions.

Co
de

Meaning

08
14

Bracket bid reject RTR forthcoming

08
19

RTR not required receiver of RTR request has nothing to send

08
35

Invalid parameter request contained a fixed or variable field that is invalid. Bytes 2 and 3 contain a 2-byte binary count whi
ch indexes the field error (zero origin)

08
46

ERP message forthcoming: The received request was rejected for a reason to be specified in a forthcoming FMH-7 request
which itself carries SNA sense data (see the following table for a list of these codes)

08
8B

BB not accepted BIS reply requested

20
10

BIS protocol error receiver detected a BIS error, for example, two BIS replies received

The following data is carried on an FMH-7 request, coming after the flow of a negative response X'0846'.

Code Meaning

1008 600B Resource failure no retry

1008 6021 Allocation error TPN not recognized

1008 6031 Allocation error PIP not allowed

1008 6032 Allocation error PIP not specified correctly

1008 6034 Allocation error conversation type mismatch

1008 6041 Allocation error sync level not supported by pgm

080F 6051 Allocation error security not valid

084B 6031 Allocation error trans pgm not available retry

084C 0000 Allocation error trans pgm not available no retry

0864 0000 Deallocate abend prog

0864 0001 Deallocate abend svc

0846 0002 Deallocate abend timer

0889 0000 Prog error no trunc or prog error purging

0889 0001 Prog error trunc

0889 0100 Svc error no trunc or svc error purging

0889 1001 Svc error trunc

See Also
Other Resources
SNA Sense Codes

https://msdn.microsoft.com/en-us/library/aa744318(v=bts.10).aspx

Network Management
This section describes the support that Host Integration Server provides for centralized network management.

In This Section

Connections Used for NetView and RTM

Link Alerts for SDLC and Token Ring

Link Statistics

Alerts Used by Applications, NVAlert, and NVRunCmd

Local Logging of Network Management Data

For information about how to configure Host Integration Server to work with NetView, and information about configuring the
NVAlert and NVRunCmd services, see Network Integration User's Guide.

https://msdn.microsoft.com/en-us/library/aa746235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754450(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770491(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705620(v=bts.10).aspx

Connections Used for NetView and RTM
Host Integration Server can make use of NetView, a reporting system that runs on an IBM host (mainframe). NetView sends
alerts between the host and the PCs that connect to it. Host Integration Server can also receive information from Response
Time Monitor (RTM), a 3270 and NetView facility that monitors the amount of time it takes for a host to respond during 3270
display sessions.

To send link alerts, link statistics, and application-generated alerts to the NetView program at the host, you must specify the
connection on which the alerts will be sent. See the Host Integration Server online Help for information about specifying the
connection.

RTM data and NetView alerts sent to the host by 3270 users are not necessarily sent via the NetView connection. RTM data is
sent on the connection for the session to which it refers, while 3270 user alerts are sent on the connection for the currently
selected 3270 session.

For information about configuring SNA Management to work with NetView and information about configuring the NVAlert
and NVRunCmd services, see Network Integration User's Guide.

See Also
Other Resources
Network Management

https://msdn.microsoft.com/en-us/library/aa705620(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704725(v=bts.10).aspx

Link Alerts for SDLC and Token Ring
When a Synchronous Data Link Control (SDLC) or Token Ring connection fails, Host Integration Server logs diagnostic
information, called link alerts, about the connection failure. The alerts are logged in a log file that can be viewed using the
Windows Event Log service. To find a Host Integration Server log, in the Event Log service, on the Log menu, make sure
Application is selected. Under the "Source" heading, the application log file will have a name starting with "SNA."

The link alerts are also used to build a network management vector transport (NMVT) alert, which includes probable causes
and suggested actions for the alert. If a connection on the server running Host Integration Server has been designated for
NetView, and the connection is active, the NMVT alert will be sent on that connection.

This section includes information that includes an explanation of the general format of link alerts, common to both SDLC and
Token Ring, descriptions of individual alerts produced by the SDLC link service, detailed information about the local logging of
SDLC alerts, descriptions of individual alerts produced by the Token Ring link service, and details of the local logging of Token
Ring alerts.

In This Section

Link Alert Format and Common Subvectors

SDLC Failure Alerts

SDLC Alert Local Logging

Token Ring Failure Alerts

For information about the NetView vectors supported by the NVAlert and NVRunCmd services, see
Alerts Used by Applications, NVAlert, and NVRunCmd.

https://msdn.microsoft.com/en-us/library/aa770547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745325(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770694(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754450(v=bts.10).aspx

Link Alert Format and Common Subvectors
The general format of link alerts is as follows:

The specific alert is identified by the alert description and alert ID (part of the generic alert subvector). Common subvectors are
listed later in this section. SDLC and Token Ring failure alerts are described in the SDLC Failure Alerts and
Token Ring Failure Alerts.

Each subvector or subfield begins with a 1-byte length field and a 1-byte key identifying the subvector or subfield. The length
field contains the length in bytes of the entire subvector or subfield, including the length and key bytes. Where the length byte
is shown as LL (record length field), this indicates that the length is not fixed because different alerts require different data to
be included.

The following table lists all the possible subvectors used in the alert, with their subvector keys (identifiers).

Link alert subvectors
Subvector key (identifier) Subvector

05 Hierarchy/Resource List Subvector

03 Hierarchy Name List Subvector

01 Date/Time Subvector

10 Product Set ID Subvector (this appears twice, as Alert Sender PSID and Indicated Resource PSID).

51 LAN LCS Data Subvector

52 LCS Configuration Data Subvector

8C Link Station Data Subvector

91 Basic Alert Subvector

92 Generic Alert Subvector

93 Probable Cause Subvector

94 User Causes Subvector

95 Install Causes Subvector

96 Failure Causes Subvector

A1 Detail Qualifier Subvector

The following tables describe the formats of link alert subvectors. Additional tables, in this section describe the individual link
alerts.

Hierarchy/resource list subvector

NMVT HEADER
41 03 8D 00 00 00 00 00 NMVT Header
Major Vector Header
LL LL Length of Major Vector
00 00 Alert major vector

https://msdn.microsoft.com/en-us/library/aa745004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770694(v=bts.10).aspx

Format and conte
nts

Description

LL 05 Hierarchy/Resource List Subvector

LL 10 Hierarchy/Resource List Subfield

hh Flags: 80 (1-User) 00 (Server)

LL Name field length: name length plus this length byte.

hh...hh Adapter name in EBCDIC, 8 bytes

00 Flags byte: always 0

3F Resource type: port

Optional second na
me

Remote host name. For Token Ring, use the local ring name. See the individual alert descriptions found lat
er in this section.

LL Name field length: name length plus this length byte.

hh...hh Name in EBCDIC, up to 8 bytes

00 Flags byte: always 0

F4 or 2E Resource type: control point or Token Ring.

Hierarchy/name list subvector
Format and contents Description

LL 03 Hierarchy Name List subvector

00 or 03 Reserved byte

hh Number of names in the hierarchy name list.

LL Length of each name, including this length byte.

hh...hh Name of resource for each name.

D3 C3 D6 D5 Resource type identifier: LCON (logical link connection not known to SNA)

Date/time subvector alerts
Format and contents Description

0A 01 Date/Time Subvector

08 10 Local Date/Time subfield

hh Year two digits

hh Month

hh Date

hh Hours

hh Minutes

hh Seconds (binary)
Product set ID subvector
Format and contents Description

2A 10 Product Set ID subvector

00 (unused field)

27 11 Product ID subvector

0C Product classification: non-IBM software

08 04 Software product common level subfield

F0 F2 Version identifier: 02

F0 F0 Release identifier: 00

F0 F0 Modification identifier: 00

13 06 Software product common name subfield

C4 C3 C1 61 D4 E2 40 C3 D6 D4 D4 40 E2 C5 D9 E5 D9 Product name: Microsoft Host Integration Server

09 08 Software product program number subfield

F0 F0 F0 F0 F0 F0 F0 Product program number: zeros

LAN link connection subsystem data subvector*
Format and contents Description

LL 51 LAN LCS Data Subvector

04 02 Ring Identifier subfield

hh hh Ring number

08 03 Local Individual MAC Address subfield

hh...hh Local individual MAC address

08 04 Remote Individual MAC Address subfield

hh...hh Remote individual MAC address

LL 05 LAN Routing Information subfield

hh...hh LAN routing information

* Token ring only.

Link connection subsystem configuration data subvector
Format and contents Description

LL 52 LCS Configuration Data Subvector

04 01 Port Address subfield

hh hh Port address

03 02 Remote Device Address subfield

hh Remote device address

03 04 Local Device Address subfield

hh Local device address

04 06 Link Station Attributes subfield

01 or 02 or 03 Link station role: Primary, Secondary, or Negotiable

03 or 04 Remote node type: Type 4 or Type 2.1

06 07 Link Attributes subfield

01 or 02 Link connection type: nonswitched or switched

01 or 02 Half-duplex or full-duplex

01 Protocol: SDLC

01 or 02 Point-to-point or multipoint

Link station data subvector
Format and contents Description

LL 8C Link Station Data Subvector

04 01 N(s) and N(r) counts subfield

hh N(s) count

hh N(r) count

03 02 Outstanding frame count subfield

hh Outstanding frame count

04 03 Last SDLC Control Field Received subfield

hh hh Last control field received

04 04 Last SDLC Control Field Sent subfield

hh hh Last control field sent

03 05 Sequence Number Modulus subfield

80 Sequence number modulus

03 06 Link Station State subfield

80 or 40 Link station state: local or remote station sending RNR

04 07 LLC Reply Timer Expiration Count subfield

hh hh Reply timer expiration count

03 08 Last Received N(r) Count subfield

hh Last received N(r) (binary)

Basic alert subvector
Format and contents Description

0E 91 Basic Alert subvector

00 Not-operator initiated

01 Alert type: permanent

0E General cause code: link-level protocol error

00 80 or 00 34 Specific component code: Token Ring LAN or SDLC data link control

00 00 Alert description code

00 00 User action code

00 00 Detail text reference code

00 Unused field

Generic alert subvector
Format and contents Description

0B 92 Generic Alert subvector

00 00 Flags: not operator-initiated, not a held alert

01 Alert type: permanent

hh hh Alert description: See alert descriptions.

hh hh hh hh Alert ID number (unique to a particular alert)

Probable cause subvector
Format and contents Description

LL 93 Probable cause subvector

hh hh Probable cause: See individual alert descriptions. This alert may include more than one entry.

User causes subvector

Format and contents Description

LL 94 User Causes Subvector

LL 01 User causes subfield

hh hh User cause: See individual alert descriptions. More than one entry may appear here.

LL 81 Recommended actions subfield

hh hh Recommended action: See individual alert descriptions. More than one entry may appear here.

03 83 Product set ID index subfield

99 Product Set ID index

LL 82 Detailed data subfield. This subfield may appear more than once.

99 Product Set ID code

hh Data ID: See individual alert descriptions.

00 Data encoding: hexadecimal

hh...hh Detailed data: See individual alert descriptions.

Install cause subvector
Format and contents Description

LL 95 Install Causes Subvector

LL 01 Install causes subfield

hh hh Install cause: See individual alert descriptions. More than one entry may appear here.

LL 81 Recommended actions subfield

hh hh Recommended action: See individual alert descriptions. More than one entry may appear here.

03 83 Product set ID index subfield

99 Product Set ID index

LL 82 Detailed data subfield. This subfield may occur more than once.

99 Product Set ID code

Hh Data ID: See individual alert descriptions.

00 Data encoding: hexadecimal

Hh...hh Detailed data: See individual alert descriptions.

Failure cause subvector
Format and contents Description

LL 96 Failure Causes Subvector

LL 01 Failure causes subfield

hh hh Failure cause: See individual alert descriptions. More than one entry may appear here.

LL 81 Recommended actions subfield

hh hh Recommended action: See individual alert descriptions. More than one entry may appear here.

03 83 Product set ID index subfield

99 Product Set ID index

LL 82 Detailed data subfield. This subfield may occur more than once.

99 Product Set ID code

hh Data ID: See individual alert descriptions.

00 Data encoding: hexadecimal

hh...hh Detailed data: See individual alert descriptions.

Detail qualifier (hexadecimal) subvector
Format and contents Description

06 A1 Detail Qualifier subvector

hh hh hh hh Detail Qualifier subfield four bytes as follows:

Token ring: adapter number

Alert number

Two-byte error code SDLC: link ID

Station address, outage

SDLC Failure Alerts
The tables in this section describe the alerts generated by the SDLC link service provided with Host Integration Server. The
alerts are listed in numerical order by alert description and within each description in numerical order by alert ID.

Write timeout alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 1000 Equipment malfunction

Alert ID: 61D0 2E7B

Probable causes: 2031 Line

 3601 Local modem

 2200 Remote node

 3603 Remote modem

Failure causes: 3511 Line

 3601 Local modem

 2200 Remote node

 3603 Remote modem

 F034 CTS failed to rise

Recommended actions: 0403 Run modem tests

 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier

Detail qualifier: 2E Write timeout retry exceeded

Abnormal modem response alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 1000 Equipment malfunction

Alert ID: 70A1 5CB0

Probable causes: 3601 Local modem

 3401 Local cable

 3302 Communications adapter

User causes: 3401 Cabling installed incorrectly

Recommended actions: 0301 Check cable and its connections

Failure causes: 3601 Local modem

 3401 Local cable

 3302 Communications adapter

 F035 DSR dropped

Recommended actions: 0403 Run modem tests

 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier

Detail qualifier: 2D Abnormal response

DSR failure alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 1000 Equipment malfunction

Alert ID: 83BB 6EC8

Probable causes: 3601 Local modem

 3401 Local cable

 3302 Communications adapter

User causes: 3400 Cable loose

 0205 Local modem power off

Failure causes: 3601 Local modem

 3401 Local cable

 3302 Communications adapter

 F035 DSR dropped

Recommended actions: 0403 Run modem tests

 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier

Detail qualifier: 11 DSR failure

DCD failure alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 1000 Equipment malfunction

Alert ID: C3BB 504A

Probable causes: 2031 Line

 3601 Local modem

Failure causes: 3511 Line

 3601 Local modem

 F038 Carrier detect lost

Recommended actions: 0403 Run modem tests

 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier

Detail qualifier: 14 DCD failure

Invalid frame received: i-field not permitted alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: 1103 D152

Probable causes: 2004 SDLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F021 I-field received when not permitted

Recommended actions: 2011 Review hexadecimal display of alert report

 32A0 Report the following detail qualifier: Outage qualifier

Detail qualifier: 87 Invalid frame received

Invalid frame received: invalid/unsupported cmd/rsp alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: 15C2 CCE5

Probable causes: 2004 SDLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F020 Invalid/unsupported command or response received.

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier

Detail qualifier: 87 Invalid frame received

Invalid frame received: invalid n(r) received alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: 1C40F78B

Probable causes: 2004 SDLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F022 Invalid N(R) received

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 87 Invalid frame received

RIM/RD received alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: 29BF 0032

Probable causes: 2104 SDLC communications/remote node

 1023 Communications program in remote node

Failure causes: 2104 SDLC communications/remote node

 3511 Line

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 88 RIM received

 89 RD received

Invalid frame received: max i-field length exceeded alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: 5F76 24FD

Probable causes: 2104 SDLC communications/remote node

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F023 Received I-field exceeded maximum length

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 87 Invalid frame received

FRMR received: no reason given alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: A472 BC48

Probable causes: 2004 SDLC communications

 1000 Software program

Failure causes: 1000 Software program

 F014 FRMR received: no reason specified

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 86 FRMR received

FRMR received: i-field received when not permitted
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: B3B7 D723

Probable causes: 2004 SDLC communications

 1000 Software program

Failure causes: 1000 Software program

 F011 FRMR received: I-field sent when not permitted

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 86 FRMR received

FRMR received: invalid/unsupported command or response alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: B776 CA94

Probable causes: 2004 SDLC communications

 1000 Software program

Failure causes: 1000 Software program

 F010 FRMR received: invalid/unsupported command or response sent

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 86 FRMR received

FRMR received: max i-field length exceeded alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: BA35 EC4D

Probable causes: 2004 SDLC communications

 1000 Software program

Failure causes: 1000 Software program

 F013 FRMR received: maximum I-field length exceeded

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 86 FRMR received

FRMR received: invalid n(r) sent alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: BEF4 F1FA

Probable causes: 2004 SDLC communications

 1000 Software program

Failure causes: 1000 Software program

 F012 FRMR received: invalid N(R) sent

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 86 FRMR received

DISK/SNRM received: snrm received in nrm alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: D635 CA1E

Probable causes: 2004 SDLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F015 SNRM received while in NRM

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 15 Connection terminated by host

CTS failure alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: 0231 CF0A

Probable causes: 2031 Line

 3601 Local modem

Failure causes: 3511 Line

 3601 Local modem

 F030 CTS dropped

Recommended actions: 0403 Run modem tests

 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 12 CTS failure

Connection problem: xid (exchange identification) retransmission alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: 0AEC C2A6

Probable causes: 2104 SDLC communications/remote node

 2031 Line

User causes: 0209 Remote device power off

Recommended action: 0200 Check power

Failure causes: 2104 SDLC communications/remote node

 3511 Line

 F018 XID poll count exhausted

Idle timeout alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: 0E2D DF11

Probable causes: 2104 SDLC communications/remote node

 2031 Line

User causes: 0209 Remote device power off

Recommended action: 0200 Check power

Failure causes: 2104 SDLC communications/remote node

 3511 Line

 F019 Inactivity timer expired

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 25 Idle timeout retry exceeded

Poll count exhausted alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: 32A3 7F1B

Probable causes: 2104 SDLC communications/remote node

 2031 Line

User causes: 0209 Remote device power off

Recommended action: 0200 Check power

Failure causes: 2104 SDLC communications/remote node

 3511 Line

 F017 Poll count exhausted

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 81 Disconnect retry limit

 82 Contact retry limit

 83 Poll retry limit

 84 No response retry limit

Remote busy retry alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: 66D6 DA74

Probable causes: 2104 SDLC communications/remote node

User causes: 0209 Remote device power off

Recommended actions: 0200 Check power

Failure causes: 2104 SDLC communications/remote node

 3511 Line

 F00F RNR received threshold reached

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 85 Remote busy retry limit

DM Received in Information Transfer Alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: BD84 C4C9

Probable causes: 2004 SDLC communications

Failure causes: 2004 SDLC communications

 F01A DM received

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 80 DM received

Nonproductive receive timeout alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: C458 E284

Probable causes: 2104 SDLC communications/remote node

 2031 Line

User causes: 0209 Remote device power off

Recommended action: 0200 Check power

Failure causes: 2104 SDLC communications/remote node

 3511 Line

 F00E NPR timeout retry limit reached

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 24 Nonproductive receive retry exceeded

DISK/SNRM received: disk received alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: D9C4 172B

Probable causes: 2004 SDLC communications

Failure causes: 2004 SDLC communications

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 15 Connection terminated by host

Connection problem: i-frame retransmission alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 3300 Link error

Alert ID: E3DA E42F

Probable causes: 2104 SDLC communications/remote node

 2031 Line

User causes: 0209 Remote device power off

Recommended action: 0200 Check power

Failure causes: 2104 SDLC communications/remote node

 3511 Line

 F06A Transmit retry limit reached

Recommended actions: 2011 Review hexadecimal display of alert

 32A0 Report the following detail qualifier: Outage qualifier.

Detail qualifier: 29 Connection problem

See Also
Other Resources
Link Alerts for SDLC and Token Ring

https://msdn.microsoft.com/en-us/library/aa771696(v=bts.10).aspx

SDLC Alert Local Logging
Before Host Integration Server attempts to build and send an SDLC link alert, information about the outage that caused the
alert is recorded in a log file that can be viewed using the Windows Event Log service. Message 182 is always logged, as
follows:

The Outage Code (outagecode) is also reported on Message 23. For a complete list of these codes, the conditions they
represent, and the specific link alerts on which they are used, see the next section.

Cause Data is a list of the failure causes from the Failure causes subvector in the alert. Link Role and Remote Node type are as
described in the Link Connection Subsystem Configuration Data subvector in the alert.

A connection failure can be due to a station outage, rather than a link outage. If it is due to a station outage which can be
recognized by outage code values of X'80' or higher then Message 183, formatted as follows, is also logged:

The value (stationaddress) is the station address as given in the Detail qualifier subvector in the alert.

The other fields are all data from the Link Station Data subvector, as follows:

Field Description

SBSY Link station state: 80 or 40

 (local or remote station sending RNR)

CFTX Last SDLC control field sent

CRX Last SDLC control field received

V(S) N(S) count

V(R) N(R) count

N(R) Last received N(R)

OSFC Outstanding frame count

T1CT Reply timer expiration count

See Also
Other Resources
Link Alerts for SDLC and Token Ring

182I: Connection failure, code = (outagecode)
Cause Data = hh...hh
Link Role = hh
Remote Node Type = hh

183I:
Detailed diagnostic data for station (stationaddress):
SBSY CFTX CFRX V(S) V(R) N(R) OSFC T1CT
hh hhhh hhhh hh hh hh hh hhhh

https://msdn.microsoft.com/en-us/library/aa771696(v=bts.10).aspx

Identifying Alerts from Local Logs Only
When only the local log of an alert is available, you can still obtain the information that would have been supplied on the alert.
To do this, check the outage code given on Message 182 against the following list. Find the alert that uses this outage code,
and then check the alert data in SDLC Failure Alerts. Some Outage Codes are used for more than one alert. In these cases, you
can find the appropriate alert by comparing the Failure causes codes given on Message 182 with those given in the alert data.

SDLC outage codes
Outage code Condition Alert description/ID
11 DSR failure 1000 : 83BB6EC8

12 CTS failure 3300 : 0231CF0A

14 DCD failure 1000 : C3BB504A

15 Connection terminated by host 2100 : D635CA1E 2100 : D9C4172B

24 Nonproductive receive retry exceeded 3300 : C458E284

25 Idle timeout retry exceeded 3300 : 0E2DDF11

29 Connection problem 3300 : 0AECC2A6 3300 : E3DAE42F

2D Abnormal response 1000 : 70A15CB0

2E Write timeout retry exceeded 1000 : 61D02E7B

80 DM received 3300 : BD84C4C9

81 Disconnect retry limit 3300 : 32A37F1B

82 Contact retry limit 3300 : 32A37F1B

83 Poll retry limit 3300 : 32A37F1B

84 No response retry limit 3300 : 32A37F1B

85 Remote busy retry limit 3300 : 66D6DA74

86 FRMR received 2100 : A472BC48

 2100 : B3B7D723

 2100 : B776CA94

 2100 : BA35EC4D

 2100 : BEF4F1FA

87 Invalid frame received 2100 : 1103D152

 2100 : 15C2CCE5

 2100 : 1C40F78B

 2100 : 5F7624FD

88, 89 RIM or RD received 2100 : 29BF0032

See Also
Other Resources
Link Alerts for SDLC and Token Ring

https://msdn.microsoft.com/en-us/library/aa745004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771696(v=bts.10).aspx

Token Ring Failure Alerts
The tables in this section describe the alerts generated by the Token Ring link service provided with Host Integration Server.
The alerts are listed in numerical order by alert description and within each description in numerical order by alert ID.

Adapter check error: adapter error alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 1010 Adapter error

Alert ID: 3BA0 3B6D

Probable causes: 3320 Local Token Ring adapter

Failure causes: 3320 Local Token Ring adapter

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 02):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 02 Data ID: adapter check status

 hh hh Adapter check status

LAN LCS: Ring identifier Local individual MAC address

DLC status error: frmr sentinvalid N(R) received
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name.

Alert description: 2100 Software program error

Alert ID: 216D 1033

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F012 Invalid N(r) received

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvector (
hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: FRMR sentreceived i-field exceeded maximum length alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 25AC 0D84

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F023 Received I-field exceeded maximum length

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: FRMR sentinvalid/unsupported command/response received alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 28EF 2B5D

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F020 Invalid/unsupported command or response received

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: FRMR senti-field received when not permitted alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 2C2E 36EA

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F021 I-field received when not permitted

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

Adapter command error: software alert
Name of subvector Hexadecimal value in subvector Description

Alert description: 2100 Software program error

Alert ID: 3EF7 89B7

Probable causes: 1000 Software program

Failure causes: 1000 Software program

Recommended actions: 30E1 Contact service representative

 32C0 Report the following data:

 Product Set ID index subfield included

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 03 Data ID: adapter return code

 hh Adapter return code

DLC status error: dm or disk received alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 4B74 26FB

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F01A DM received

Recommended actions: 3301 If problem persists, do the following:

 2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32A0 Report the error information described by the detailed data subvect
or (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: FRMR receivedinvalid N(R) sent alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 83D9 1642

Probable causes: 2007 LAN LLC communications

 1000 Software program

Failure causes: 1000 F012 Software program Frame reject received: Invalid N(r) sent

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: FRMR receivedmax I-field length
Name of subvector Hexadecimal value

in subvector
Description

Hierarchy/resource list
:

 Second name is remote node CP name.

Alert description: 2100 Software program error

Alert ID: 8718 0BF5

Probable causes: 2007 LAN LLC communications

 1000 Software program

Failure causes: 1000 Software program

 F013 Frame reject received: maximum I-field length exceeded

Recommended actions
:

3301 If problem persists, do the following (available messages correspond to subvect
ors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvector (hex
value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC (Media Access Control) address Remote ind
ividual MAC address LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subv
ector included

DLC status error: FRMR receivedinvalid/unsupported commands/response sent alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 8A5B 2D2C

Probable causes: 2007 LAN LLC communications

 1000 Software program

Failure causes: 1000 Software program

 F010 Frame reject received: Invalid/unsupported command or response sent

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: FRMR received
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: 8E9A 309B

Probable causes: 2007 LAN LLC communications

 1000 Software program

Failure causes: 1000 Software program

 F011 Frame reject received: I-field sent when not permitted

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

Software program error: adapter interface alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 2100 Software program error

Alert ID: DA7B C09D

Probable causes: 3220 Token ring adapter interface

Install causes: 1600 Mismatch between software and microcode

 1601 Incorrect customization image

Recommended act
ions:

1500 Correct installation problem

 1502 Correct customization parameters

Failure causes: 3220 Token ring adapter interface

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

LAN LCS: Ring identifier Local individual MAC address

DLC status error: SABME received for open link station alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 2100 Software program error

Alert ID: E65B 0B7F

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

Failure causes: 1023 Communications program in remote node

 F016 SABME received while in ABME

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

Bring-up error alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 3210 Initialization failure

Alert ID: AB86 8B0B

Probable causes: 3320 Local Token Ring adapter

Install causes: 1200 Incorrect hardware configuration

 1402 Mismatch between hardware and software configurations

Recommended act
ions:

1503 Correct configuration

Failure causes: 3320 Local Token Ring adapter

Recommended act
ions:

30E1 Contact service representative

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

LAN LCS: Local individual MAC address

Adapter open error: open failure alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Hierarchy/resourc
e list:

 Second name is ring name

Alert description: 3211 Open failure

Alert ID: 016E 5F4E

Probable causes: 3702 Token ring lobe

 3701 Token ring LAN component

Failure causes: 3712 Local Token Ring lobe

 3701 Token ring LAN component

 2600 Interference

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

LAN LCS: Local individual MAC address

Adapter open error: remove command received alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 3211 Open failure

Alert ID: 44D1 AD86

Probable causes: 3705 Token ring remove command received

User causes: 3320 Token ring remove adapter command received

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

LAN LCS: Local individual MAC address

Adapter open error: problem on local lobe alert
Name of subve
ctor

Hexadecimal value in su
bvector

Description

Alert description: 3211 Open failure

Alert ID: 55BF 3E1C

Probable causes: 3702 Token ring lobe

Failure causes: 3320 Local Token Ring adapter

 3711 Local Token Ring lobe

 3434 Local lobe cables

Recommended a
ctions:

1009 Try reopening adapter after 30 seconds

 3301 If problem persists, do the following (available messages correspond to subvect
ors 2010, 3103, or 32C0):

 2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex
values 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

LAN LCS: Local individual MAC address

Adapter open error: beaconing detected alert
Name of subve
ctor

Hexadecimal value in su
bvector

Description

Alert description: 3211 Open failure

Alert ID: CAF3 C58A

Hierarchy/resour
ce list:

 Second name is ring name

Probable causes: 3703 Token ring fault domain

Failure causes: 3703 Token ring fault domain

Recommended a
ctions:

1009 Try reopening adapter after 30 seconds

 3301 If problem persists, do the following (available messages correspond to subvect
ors 2010, 3101, or 32C0):

 2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex
values 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

Adapter open error: duplicate address alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 3211 Open failure

Alert ID: D615 A61E

Probable causes: 3704 Token ring duplicate station address

Install causes: 3704 Token ring duplicate station address assigned

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 07 Data ID: error code

 hh hh Error code

LAN LCS: Local individual MAC address

System action: operator caused LAN adapter to be reset alert
Name of subvecto
r

Hexadecimal value in subv
ector

Description

Alert description: 3211 Open failure

Alert ID: F7A6 2F59

Probable causes: 7001 Resources not active

User causes: 3300 Adapter not ready

Recommended acti
ons:

1300 Correct then retry

 2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32A0 Report the error information described by the detailed data subvector (he
x value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier local individual MAC address

Network status error: lobe wire fault alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Hierarchy/resourc
e list:

 Second name is ring name

Alert description: 3212 Wire fault

Alert ID: A676 B230

Probable causes: 3702 Token ring lobe

Failure causes: 3711 Local access unit

 3434 Local lobe cables

 3320 Local Token Ring adapter

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 17):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 17 Data ID: ring status code

 hh hh Ring status code

LAN LCS: Local individual MAC address

Network status error: auto-removal alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Hierarchy/resourc
e list:

 Second name is ring name

Alert description: 3213 Auto-removal

Alert ID: EB61 E14F

Probable causes: 3702 Token ring lobe

Failure causes: 3320 Local Token Ring adapter

 3711 Local access unit

 3434 Local lobe cables

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 17):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 17 Data ID: ring status code

 hh hh Ring status code

LAN LCS: Local individual MAC address

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 17 Data ID: ring status code

 hh hh Ring status code

LAN LCS: Local individual MAC address

Network status error: Token Ring remove adapter command received alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 3214 Remove adapter command received

Alert ID: 59F3 2622

Probable causes: 7013 LAN Manager operator

User causes: 7101 Token ring remove adapter command received

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 17):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 17 Data ID: ring status code

 hh hh Ring status code

LAN LCS: Ring identifier Local individual MAC address

Network status error: llc remove adapter command received alert
Name of subvector Hexadecimal value in

subvector
Description

Hierarchy/resource list: Second name is remote node CP name

Alert description: 3300 Link error

Alert ID: 5B8F 5BA7

Probable causes: 2017 LAN LLC communications/remote node

Failure causes: 2107 LAN LLC communications/remote node

 F017 Poll count exhausted

Recommended actions: 3301 If problem persists, do the following (available messages correspond to su
bvectors 2010, 3103, or 32A0):

 2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32A0 Report the error information described by the detailed data subvecto
r (hex value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC addr
ess LAN routing information

LCS configuration: Remote device address Local device address

Link Station Data subvect
or included

DLC status error: link lost alert
Name of subvec
tor

Hexadecimal value in su
bvector

Description

Hierarchy/resourc
e list:

 Second name is remote node CP name

Alert description: 3300 Link error

Alert ID: 9921 0A2B

Probable causes: 3321 Remote Token Ring adapter

Failure causes: 3321 Remote Token Ring adapter

Recommended ac
tions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32A0 Report the error information described by the detailed data subvector (hex valu
e 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC address L
AN routing information

LCS configuration
:

 Remote device address Local device address

DLC error: remote station not on local or attached rings alert
Name of subve
ctor

Hexadecimal value in su
bvector

Description

Hierarchy/resour
ce list:

 Second name is remote node CP name

Alert description: 3305 Unable to communicate with remote node

Alert ID: D91B 9E2D

Probable causes: 2007 LAN LLC communications

 1023 Communications program in remote node

User causes: 0209 Remote device power off

Recommended a
ctions:

0200 Check power

Failure causes: 1023 Communications program in remote node

Recommended a
ctions:

3301 If problem persists, do the following (available messages correspond to subvect
ors 2010, 3101, or 32A0):

 2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32A0 Report the error information described by the detailed data subvector (hex
value 61):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address Remote individual MAC address LA
N routing information

LCS configuratio
n:

 Remote device address Local device address

Adapter command error: storage capacity exceeded alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 5003 Capacity exceeded

Alert ID: 9C35 13D5

Probable causes: 0101 Main storage

Failure causes: 0110 Storage control

Recommended act
ions:

2010 Review link detailed data

 3103 Contact LAN administrator responsible for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 03):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 03 Data ID: adapter return code

 hh Adapter return code

LAN LCS: Ring identifier Local individual MAC address

Adapter check error: receive queue overrun alert
Name of subvecto
r

Hexadecimal value in subv
ector

Description

Alert description: 5012 Receive queue overrun

Alert ID: 14D5 3710

Probable causes: 1000 Software program

Failure causes: 1000 Software program

Recommended acti
ons:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32A0 Report the error information described by the detailed data subvector (he
x value 61):

 Product Set ID index subfield included

Detailed data: 61 Data ID: adapter number

 hh Adapter number

LAN LCS: Ring identifier Local individual MAC address

Adapter check error: microcode program abnormally terminated alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 6000 Microcode program abnormally terminated

Alert ID: E1EC 74A7

Probable causes: 3320 Local Token Ring adapter

Failure causes: 3320 Local Token Ring adapter

Recommended act
ions:

2010 Review link detailed data

 3101 Contact Token Ring administrator for this LAN

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 07):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

 07 Data ID: error code

 hh hh Error code

LAN LCS: Ring identifier Local individual MAC address

Adapter command error: configuration alert
Name of subvect
or

Hexadecimal value in sub
vector

Description

Alert description: 8000 Configuration error

Alert ID: B8AB EF98

Probable causes: 7001 Local system operator

Install causes: 1501 Incorrect customization parameters

 1400 Mismatch between hardware and software

Recommended act
ions:

3110 Contact communications systems programmer

 32C0 Report the error information described by the detailed data subvector (hex v
alues 61 and 03):

Detailed data: 61 Data ID: adapter number

 hh Adapter number

Detailed data: 03 Data ID: adapter return code

 hh Adapter return code

See Also
Other Resources
Link Alerts for SDLC and Token Ring

https://msdn.microsoft.com/en-us/library/aa771696(v=bts.10).aspx

Link Statistics
For SDLC (Synchronous Data Link Control) and Token Ring connections, Host Integration Server maintains statistics on link
usage and errors. Host Integration Server logs this information when a connection ends or when the counter for a particular
error or timeout reaches its maximum value.

This section contains:

Format for Link Statistics

https://msdn.microsoft.com/en-us/library/aa705636(v=bts.10).aspx

Format for Link Statistics
When an SDLC or Token Ring connection ends, or when an error counter reaches its maximum value, Host Integration Server
records statistics on link usage. These statistics include information such as the adapter number, the date and time the link was
established, and the counts of errors and timeouts. This data is also logged in NMVT (network management vector transport)
format if a connection has been specified for carrying NetView data. The data is then sent if that connection and the server that
owns the connection are both active.

This section contains:

SDLC Link Statistics

Token Ring Link Statistics

https://msdn.microsoft.com/en-us/library/aa754762(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770931(v=bts.10).aspx

SDLC Link Statistics
Link statistics are generated when a link is closed or when one of the wrap counters listed later in this section is about to wrap.
Whenever a link statistics message is built, all the wrap counters are reset to 0. The cumulative counters are not reset; they
provide statistics from the point at which the particular link service was started.

The NMVT generated has the following format:

NMVT header

41 03 8D 00 00 00 00 00 NMVT Header

Major vector header

00 69 Length of major vector

00 25 Link statistics major vector

Data link traffic counters subvector

65 9A Data Link Traffic Counters subvector

03 DLC type: SDLC

hh Adapter number (01+04)

Date/time link established

hh Date

hh Month

hh hh Year

hh Hour

hh Minute

hh Second

hh Hundredths of a second

hh Counter

Wrap counters

hh Transmit I-frames OK

hh Transmit I-frames not OK

hh Retransmit I-frames

hh Received I-FCS OK

hh Received I-FCS not OK

hh Total frames sent

00 Reserved

hh Lost data frames received

hh FRMR conditions sent

00 Reserved

hh CTS drop

00 Reserved

00 Reserved

hh DSR drop out

hh Inactivity timeouts

00 Reserved

hh DMA underruns

00 Reserved

hh Transmit fail timeouts

00 Reserved

Cumulative Counters

The cumulative counters are the same counters as the wrap counters, with reserved bytes in the same positions.

See Also
Concepts
Format for Link Statistics

https://msdn.microsoft.com/en-us/library/aa705636(v=bts.10).aspx

Token Ring Link Statistics
Link statistics are generated when a link is closed or when one of the following counters is about to wrap. Whenever a link
statistics message is built, all the counters are reset to 0.

The NMVT generated has the following format:

NMVT header
41 03 8D 00 00 00 00 00 NMVT Header

Major vector header
00 32 Length of major vector

00 25 Link Statistics major vector

Data link traffic counters subvector
2E9A Data Link Traffic Counters subvector

04 DLC type: Token Ring

01 or 02 Statistics type: link counter overflow or adapter counter overflow

Token ring adapter log information and counters
hh Adapter number (01+04)

00 Reserved

hh Line error

hh Internal error

hh Burst error

hh ARI/FCI error

hh End delimiter

00 Reserved

hh Lost frame

hh Receive congestion

hh Frame copied error

hh Frequency error

hh Token error

00 00 00 Reserved

DLC SAP station information
hh hh hh hh Count of frames transmitted OK

hh hh hh hh Count of frames received OK

hh hh hh hh Count of frames discarded

hh hh hh hh Lost data

hh hh Buffer available in SAP

DLC link station information

hh hh Count of I-frames transmitted

hh hh Count of I-frames received

hh Received I-frames error count

hh Transmitted I-frames error count

hh hh T1 timer expired count

See Also
Concepts
Format for Link Statistics

https://msdn.microsoft.com/en-us/library/aa705636(v=bts.10).aspx

Alerts Used by Applications, NVAlert, and NVRunCmd
Application programs and the NVAlert and NVRunCmd services can generate alerts using the Common Service Verb (CSV)
TRANSFER_MS_DATA. An application or service can supply subvectors, which are required to build an NMVT, or it can supply
the complete NMVT. In both cases, the completed NMVT is logged locally, and may also be sent on the connection designated
for NetView if the connection is configured and active. An application or service can also supply user-defined alert data, in
which case the data is logged locally but cannot be sent.

This section contains:

Format for Alerts Used by Applications, NVAlert, and NVRunCmd

https://msdn.microsoft.com/en-us/library/aa771736(v=bts.10).aspx

Format for Alerts Used by Applications, NVAlert, and
NVRunCmd

An application program or the NVAlert and NVRunCmd services can use the CSV TRANSFER_MS_DATA to issue alerts. The
alerts are logged in a log file that can be viewed using the Windows Event Log service, and may also be sent on the NetView
connection.

The data supplied to TRANSFER_MS_DATA may be in any of the following formats:

NMVT

The application or service supplies a complete NMVT, including the header information.

ALERT_SUBVECTORS

The application or service supplies the subvectors required for an alert, but without the NMVT header or major vector
header. Host Integration Server adds the header information, as described in the next section.

PDSTATS_SUBVECTORS

The application or service supplies the subvectors required for a Problem Determination Statistics NMVT, but without the
NMVT header or major vector header. Host Integration Server adds the header information, as described in the next section.

USER_DEFINED

The application or service supplies data in its own format. This data cannot be sent on the connection designated for
NetView, but is logged in the same way as the other data formats.

The application or service can also request Host Integration Server to add the Product Set ID subvector (for all data types
except USER_DEFINED), the Date/Time subvector, or both to the supplied data. The format of these added subvectors is
described in the next section.

For all data types, the data (with added headers and subvectors, if appropriate) is logged locally in NMVT format, whether or
not you specified a connection for NetView.

See Also
Reference
Added Headers and Subvectors

https://msdn.microsoft.com/en-us/library/aa744684(v=bts.10).aspx

Added Headers and Subvectors
The following table lists Added Headers and Subvectors.

NMVT header
41 03 8D 00 00 00 00 00 NMVT Header

Major vector h
eader

LL LL Length of Major Vector

00 00 or 00 25 Alert major vector (for the data type ALERT_SUBVECTORS), or Problem Determination Statistics major vector
(for the data type PSTATS_SUBVECTORS)

Product set ID subvector
4D 10 Product set ID subvector

00 Unused field

34 11 Product ID subvector

0C Product classification: non-IBM software

08 04 Software product common level subfield

F0 F2 Version identifier: 02

F0 F0 Release identifier: 00

F0 F0 Modification identifier: 00

20 06 Software product common name subfield

C4 C3 C1 61 D4 E2 40 C3 D6 D4 D4 40 E2 C5 D9 E5 D9 Product name: Microsoft Host Integration Server

00 .. 00 Name padded with nulls to 30 characters

09 08 Software product program number subfield

F0 F0 F0 F0 F0 F0 F0 Product program number: zeros

16 11 Product ID subvector

03 Product classification: hardware

13 00 Hardware product ID subfield

00 Format type: undefined

hh...hh Server: Windows-based computer name

Date/time subvector
0A 01 Date/Time Subvector

08 10 Local Date/Time subfield

hh Year two digits

hh Month

hh Date

hh Hours

hh Minutes

hh Seconds

See Also
Reference
Format for Alerts Used by Applications, NVAlert, and NVRunCmd

https://msdn.microsoft.com/en-us/library/aa771736(v=bts.10).aspx

Local Logging of Network Management Data
Data is logged in a Windows Event Log service log file in two ways. First, the data from the alert is logged in a more readable
format, using standard log messages. The format is specific to the alert type. For the message numbers used and explanations
of the data, see the section in this documentation that relates specifically to that type of alert.

If a connection has been designated for carrying NetView data and the server that owns the connection is active, the alert
NMVT containing the data is also logged in NMVT format as it would be sent. The NMVT appears as Message 540, followed by
Message 541. Note that this logging occurs before Host Integration Server attempts to send the NMVT. The log is therefore no
guarantee that the NMVT is sent successfully.

For more information about local logging of alert information, see the section in this documentation relating specifically to that
type of alert.

See Also
Other Resources
Alerts Used by Applications, NVAlert, and NVRunCmd

https://msdn.microsoft.com/en-us/library/aa754450(v=bts.10).aspx

Network Protocols and Client/Server Communication
This section explains how clients using different local area network (LAN) protocols can communicate with Host Integration
Server computers. The section includes an overview of how network protocols are used on clients, and how client logons work.
Also included are procedures for checking the setup options for Host Integration Server specified on a client or server. These
setup options must be specified correctly in order for the client to communicate with a Host Integration Server computer. You
will also find descriptions and illustrations of how clients using each of the possible protocols locate a Host Integration Server
computer in the network.

In This Section

Overview of Network Protocols for Clients

Important Host Integration Server Network Options

Adjusting Clients Running Windows for Workgroups

Details about How Clients Use Protocols

https://msdn.microsoft.com/en-us/library/aa771489(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745860(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745197(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705417(v=bts.10).aspx

Overview of Network Protocols for Clients
Host Integration Server clients can communicate with servers through the following LAN protocols:

Microsoft Networking (Named Pipes)

IPX/SPX (the protocol used with NetWare)

TCP/IP

Important
In order for the different client/server protocols to be handled correctly by Host Integration Server, both clients and servers
must have the network software and the Host Integration Server software installed correctly. Be sure to follow the installatio
n instructions in this section carefully, and follow the installation instructions for other software you are using for example, W
indows 2000 Server and the associated network software, Host Integration Server, and network software on clients.

Correct installation of network and Host Integration Server on servers and clients ensures that two essential aspects of
communication work correctly:

The servers and clients are visible to each other on the local area network (LAN). This results when the network software
is installed correctly on all affected computers.

The Host Integration Server computers communicate with clients over the correct LAN protocol, and the clients direct
their communication to the correct domain name or, for some clients using Microsoft Networking or TCP/IP, to one or
more correct server names. A Host Integration Server client must be set up to use the correct server or domain name or,
for Microsoft Networking, set up to locate servers in the local domain. Otherwise, the client will not be able to locate a
Host Integration Server computer.

For example, in order for a client to successfully communicate over Novell NetWare, there must be working communication
between the client, a NetWare server, or a Windows Server running Microsoft File and Print Services for NetWare and any Host
Integration Server computers in the network. Either server provides the client with names of Host Integration Server
computers. In addition, for clients running NetWare 4.x, bindery emulation must be enabled. The following figure illustrates
how correct installation is necessary for successful communication:

Diagram and explanation of how correct installation results in successful communication

For information about how Host Integration Server enables you to view and choose the domain and protocols to be used by
Host Integration Server computers and clients, see Important Network Options on a Host Integration Server Computer. For
details about how each of the network protocols works on a Host Integration Server client, see the section about that specific
network protocol (for example, Clients Using TCP/IP).

In This Section

Client Logons and the Storing of Passwords

Types of Client Logons

https://msdn.microsoft.com/en-us/library/aa705056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771889(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745044(v=bts.10).aspx

Client Logons and the Storing of Passwords
For security reasons, a user at a client computer may have to log on several times before obtaining access through Host
Integration Server to a mainframe or AS/400. Users may not always find this to be convenient. The logons are necessary
because starting an SNA session requires several kinds of access: access to the Windows domain, access to a Host Integration
Server computer, access to the mainframe or AS/400 and, possibly, access to programs on the mainframe or AS/400. An
example of such a program is an AS/400 program that uses conversation security when communicating with 5250 emulators.
Each layer of access may require an additional logon depending on the operating system and the client/server protocol used
on the client.

The Host Security Integration feature of Host Integration Server can reduce or even eliminate these multiple logons on
Windows -based networks. If you are not able to take advantage of this feature, users can avoid multiple logons by following
the procedures outlined in the following sections.

See Also
Concepts
Types of Client Logons

https://msdn.microsoft.com/en-us/library/aa745044(v=bts.10).aspx

Types of Client Logons
The number of logons required for establishing an SNA session from a client varies, depending mostly on what client/server
protocol the client computer is using. The following list describes the logons:

Clients Using Microsoft Networking

A client using Microsoft Networking must log on to the Windows domain and then must perform any logons required on the
mainframe or AS/400. For example, a client using Microsoft Networking and also using a 5250 emulator would log on once to
the Windows domain, once to the AS/400 itself, and (in many cases) once to the AS/400 program that communicates with the
5250 emulator.

After clients using Microsoft Networking are logged on to the domain, no additional logon is needed for access to Host
Integration Server computers in the domain. That is, Host Integration Server can securely confirm the domain logon without
any additional action by the user.

Clients Using Novell NetWare

A client using NetWare must first log on to the NetWare network and then to the Host Integration Server computers. Finally,
the client must perform any logons required on the mainframe or AS/400

Clients Using TCP/IP

A client using TCP/IP must log on to the Host Integration Server computers even if the client has already accessed other
resources in the Windows domain, and then must perform any logons required on the mainframe or AS/400.

See Also
Other Resources
Overview of Network Protocols for Clients

https://msdn.microsoft.com/en-us/library/aa771489(v=bts.10).aspx

Important Host Integration Server Network Options
The following two sections illustrate and describe important Host Integration Server network options for a Host Integration
Server server or client. These options must be set correctly in order for clients to locate Host Integration Server computers and
start sessions. If the options are set incorrectly, clients may use the wrong protocols or may search the wrong locations for
Host Integration Server computers.

In This Section

Important Network Options on a Host Integration Server Computer

Important Network Options on a Client

https://msdn.microsoft.com/en-us/library/aa705056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705807(v=bts.10).aspx

Important Network Options on a Host Integration Server
Computer

When Host Integration Server network options are specified correctly on a Host Integration Server computer, the server will
use the appropriate protocol(s) for communicating with clients. Servers supporting NetWare, TCP/IP, or Microsoft Networking
will have the correct domain name so that clients can locate the Host Integration Server computers.

Important
These changes do not take effect until the server is restarted. Do not change these settings while the server has active users.

To view or change client/server protocols and other network options on a Host Integration Server computer

1. In SNA Manager, select a Host Integration Server computer.

2. Right-click a server and then click Properties. The Server Properties dialog box appears.

Server Properties dialog box

3. To change the Host Integration Server computer name, click Change in the Name box. The Host Integration Server
computer must be in an off-line state before you can change the name.

4. To modify the client/server protocols and other network options, click Change in the Properties box, and then click OK.

5. Complete the Server SNA Resource wizard.

Note
If the server has TCP/IP installed and will communicate with clients that use TCP/IP, be sure that the selections in the Select Cl
ient/Server Protocols dialog box include TCP/IP. If Microsoft Networking (Named Pipes) is selected and TCP/IP is not, the ser
ver can communicate through Named Pipes over TCP/IP, a protocol combination that does not recover from error conditions
as effectively as native TCP/IP.

If TCP/IP is selected, you can also select Microsoft Networking. In this situation, the Host Integration Server computer will use
native TCP/IP with clients that use TCP/IP, and Microsoft Networking with clients that use Microsoft Networking.

See Also
Other Resources
Important Host Integration Server Network Options

https://msdn.microsoft.com/en-us/library/aa745860(v=bts.10).aspx

Important Network Options on a Client
For Host Integration Server client software, several key options supply the information a client must have for locating Host
Integration Server computers. These options specify which protocol the client uses to communicate with Host Integration
Server computers if more than one protocol is available on the client, and which domain or server names the client will direct
SNA requests to.

When a client makes an SNA request, the client must direct that request to a domain or to one or more Host Integration Server
computers. The appropriate way for a client to direct requests depends on the protocol used and the relative location of clients
and servers. The following table lists the ways clients direct SNA requests, and the information that will be requested by setup
during client installation. For more detail about how a client directs requests and locates Host Integration Server computers,
see the section about the appropriate type of client (for example, Clients Using TCP/IP).

Network p
rotocol us
ed on clie
nt

How the client directs SNA requests Information to find out before running client
setup

Microsoft
Networkin
g

Either to the local domain (if the Host Integration Server comp
uters are in the same domain as the client), or to one or two sp
ecific Host Integration Server computers in a remote domain.

Whether the client is in the same domain as the Ho
st Integration Server computers, and if not, one or
two names of Host Integration Server computers.

Novell Net
Ware (IPX/
SPX)

To a specific domain. The Host Integration Server computers
must be located in this domain in order for the client to locate
them.

The name of the Host Integration Server subdomai
n in which the Host Integration Server computers a
re located.

TCP/IP Either to a domain name or to specific server name, depending
on what is specified in the Host Integration Client Mode or Hos
t Integration Server Location dialog box.

Contact your network administrator for additional
information regarding a specific IP address for the
Host Integration Server computer.

See Also
Other Resources
Important Host Integration Server Network Options

https://msdn.microsoft.com/en-us/library/aa771039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745860(v=bts.10).aspx

Adjusting Clients Running Windows for Workgroups
Clients running Windows for Workgroups have a very flexible set of options for network operation. As a result, these clients
may require specific adjustments in order to communicate with Host Integration Server computers.

Clients running Windows for Workgroups and using Microsoft Networking (not other network software) must use domain and
password settings that coordinate with settings in Host Integration Server Setup. For example, if the client's workgroup name
does not match the server's domain name, options in Host Integration Server Setup must be set accordingly.

In This Section

Domain and Password Settings for Clients Running Windows for Workgroups

https://msdn.microsoft.com/en-us/library/aa770341(v=bts.10).aspx

Domain and Password Settings for Clients Running Windows
for Workgroups

This section applies only to clients running Windows for Workgroups and using Microsoft Networking to communicate with
Host Integration Server computers. Such clients must be configured so that any domain names, workgroup names, local
passwords, and domain passwords all work together smoothly.

In This Section

Domain Settings with Windows for Workgroups

Password Settings with Windows for Workgroups

https://msdn.microsoft.com/en-us/library/aa771244(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705727(v=bts.10).aspx

Domain Settings with Windows for Workgroups
For domain names and workgroup names, use one of the following approaches:

Workgroup name differs from Host Integration Server domain name.

For clients where the workgroup name must be different from the server's domain name (the name of the Windows
domain), in Host Integration Server Client Setup, you must use the Remote Domain setting. That is, in the Host
Integration Server Location dialog box, select Remote Domain, and supply the name of one or two Host Integration
Server computers to which the client will send requests.

To view a client's workgroup name, in Control Panel, double-click the Network icon. The name is listed in the resulting
dialog box.

Workgroup name matches Host Integration Server domain name.

For clients where the workgroup name is the same as the server's domain name (the name of the Windows domain), in
Host Integration Server Client Setup, you can use the Local Domain setting. That is, in the Host Integration Server
Location dialog box you can select Local Domain. When the client requests an SNA session, the request will reach the
domain that has the same name as the client's workgroup.

To view a client's workgroup name, in Control Panel, double-click the Network icon. The name is listed in the resulting
dialog box.

See Also
Tasks
Password Settings with Windows for Workgroups

https://msdn.microsoft.com/en-us/library/aa705727(v=bts.10).aspx

Password Settings with Windows for Workgroups
For Windows for Workgroups passwords and domain passwords, use one of the following approaches:

Enable logon to the Windows domain automatically at startup. You can configure Windows for Workgroups to log
the user on to the Windows domain automatically at startup.To do this, first make sure that a user account has been
created for the user in the Windows domain, and obtain the assigned user name and password.

To configure Windows for Workgroups to logon to the Windows domain automatically at startup

1. On the client computer, from the Control Panel, double-click the Network icon and then click Startup .

2. In the Startup Settings dialog box, under Options for Enterprise Networking, find the check box labeled Log On to
Windows or LAN Manager Domain. Select this check box, and type the domain name in the appropriate box.

3. Choose OK repeatedly until the dialog boxes are closed.

The next time Windows for Workgroups is restarted, the user will be prompted for both the local password and the domain
password, and must type them correctly. Thereafter, only the local password is needed at startup, because the domain
password is encrypted and stored (to be "unlocked" by the local password).

After domain logon has been set up, it is important for the user to understand the difference between the local Windows for
Workgroups password and the actual domain password. The local Windows for Workgroups password unlocks the encrypted
password list that has been stored for that user on that computer. This password list includes a copy of the domain password if
the preceding configuration steps have been taken. The actual domain password is the password for that user's account on the
Windows domain, as recorded on Windows servers that are domain controllers.

The user's domain account may be set up to require periodic changing of the password. If the domain password expiration
date is getting close, when the user logs on to the domain, pop-up warnings will appear on the user's computer. Note that the
user must try to log on in order for the pop-up warnings to appear. At this point, the user needs to understand the different
buttons used for changing passwords with Windows for Workgroups. After choosing the Network option from the Control
Panel, click the Password button. This only changes the password to unlock the user's local password list; it does not change
the domain password.

To change the domain password, the user must choose the Startup button followed by the Set Password button. When the
user changes the domain password using the Set Password button, the domain password is also changed in the local
password file.

Make sure that users understand how to use these buttons correctly to change their local Windows for Workgroups password
and to change their Windows domain password.

Log on only as needed, by using the net logon command. If the user does not log on to the Windows domain at
startup, the following command can be used before starting an SNA session. At the MS-DOS prompt (from within
Windows for Workgroups), type

net logon username /domain:domainname

After typing the command, the user is prompted for the domain password.

See Also
Concepts
Domain Settings with Windows for Workgroups

https://msdn.microsoft.com/en-us/library/aa771244(v=bts.10).aspx

Details about How Clients Use Protocols
The following sections describe how each type of client works with Host Integration Server. The clients are listed according to
the protocol used: Microsoft Networking (Named Pipes), Novell NetWare (IPX/SPX), and TCP/IP.

In This Section

Clients Using Microsoft Networking (Named Pipes)

Clients Using NetWare (IPX/SPX)

Clients Using TCP/IP

https://msdn.microsoft.com/en-us/library/aa754785(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705176(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771039(v=bts.10).aspx

Clients Using Microsoft Networking (Named Pipes)
Diagram showing how a Microsoft Networking client can connect to the mainframe

A Microsoft Networking (Named Pipes) client uses the following procedure for connecting to the mainframe:

1. You can choose between two methods by which a client searches for Host Integration Server computers.

Active Directory

Sponsor connections, locating servers by SNA subdomain or by server name.

Client locates servers by subdomain means that the client locates the server through broadcasts in the local
subdomain. Therefore, the client must be in the same physical network as the Host Integration Server computers, and
must not be separated from the servers by a router.

Client locates servers by name means that the client searches for Host Integration Server computers by name, and
therefore need not be on the same side of any routers as the Host Integration Server computers. When connecting with
Named Pipes over TCP/IP, and there is a router separating the Host Integration Server computer and the client, the client
computer requires a method of resolving NetBIOS names to an IP address. A local LMHOSTS file or a Windows Internet
Name Service (WINS) server may be used to perform this resolution.

Note
If Windows for Workgroups 3.11 is being used and the Microsoft IPX/SPX compatible transport is installed, add Direct
host=no to the [network] section of SYSTEM.INI file on the Windows for Workgroups 3.11 client computer, and then r
eboot the computer.

If this is a routed network, Named Pipes is not recommended. TCP/IP is the recommended interface for this environment.

2. The Host Integration Server computer responds with a list of available Host Integration Server computers that are
available to get a 3270 or APPC session with. This special connection is called the sponsor connection.

3. Finally, the client attempts to connect to each Host Integration Server computer in the list until a server is found that can
handle the 3270 or APPC request.

See Also
Tasks
Microsoft Networking (Named Pipes) Errors

https://msdn.microsoft.com/en-us/library/aa753918(v=bts.10).aspx

Microsoft Networking (Named Pipes) Errors
 

NAMED PIPES 5
Causes

One of the following has occurred:

Access has been denied trying to create a connection to the Host Integration Server computer. The client/server interface
connects to the Host Integration Server computer just like any other local area network (LAN) connection. It must be
validated by Windows as a valid user in the domain.

The Host Integration Server computer is unreachable. If using TCP/IP this could mean that the name to IP address
resolution has failed.

NAMED PIPES 2
Causes

The client has connected to the Host Integration Server computer, but the SNABase service is not running on that machine.
Start the SNABase service on the Host Integration Server computer to which you are trying to connect.

NAMED PIPES 121
Causes

The client is configured for Client locates servers in an Host Integration Server 2009 Subdomain and therefore, is
sending out broadcast messages to discover a Host Integration Server computer. These broadcast messages will typically not
be passed by a router that may be between your client and the server. In the client configuration select Client locates server
by name and specify an IP address or computer name of one or more Host Integration Server computers.

See Also
Concepts
Clients Using Microsoft Networking (Named Pipes)

https://msdn.microsoft.com/en-us/library/aa754785(v=bts.10).aspx

Clients Using NetWare (IPX/SPX)
The following diagram shows how a client using NetWare can connect to the mainframe.

Novell NetWare (IPX/SPX) client computers use the following procedure for connecting to the mainframe:

1. At startup time, all Host Integration Server computers register their subdomain name and computer name with the
NetWare Bindery. The subdomain name is configured in Setup for Host Integration Server. The computer name used is
the Windows computer name.

2. Sometime later, a client requests an initial SNA session (3270 or APPC) by sending the request to the NetWare server
requesting a list of registered Host Integration Server computers.

3. In response, the NetWare server sends the client the names of the Host Integration Server computers.

4. The client then selects one of the names from this list of Host Integration Server computers at random, and attempts to
get a LAN connection with one of the Host Integration Server computers. The client must be configured for the same
subdomain name as the Host Integration Server computers.

5. The Host Integration Server computer responds with a list of available Host Integration Server computers that are
available to get a 3270 or APPC session with. This special connection is called the sponsor connection.

6. Finally, the client attempts to connect to each Host Integration Server computer in the list until a server is found that can
service the 3270 or APPC request.

See Also
Tasks
Checklist for Clients Using NetWare (IPX/SPX)
NetWare Errors

https://msdn.microsoft.com/en-us/library/aa705704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745353(v=bts.10).aspx

Checklist for Clients Using NetWare (IPX/SPX)
When troubleshooting client problems, check that all of the following conditions have been met:

For Bindery

NetWare Servers

The NetWare server is properly installed and running, so that the bindery service is available.

Host Integration Server Computers

The Host Integration Server computer has registered its name in the bindery on the NetWare server. Several elements
are required for this. The first element happens automatically: the installation of the NWLink IPX/SPX Compatible
Transport on Windows. The second is matching the frame-type with the NetWare Server. For instance, if 802.2 is
configured on the NetWare Servers, then the same frame type should be configured in the properties for the NWLink
IPX/SPX Compatible Transport on Windows. Auto Frame Type is recommended.

The correct subdomain name must be typed in the Host Integration Server 2009 Subdomain Name dialog box. The
name is registered (along with the server name computer name) on the NetWare server. Only if the NetWare server is
provided with the correct subdomain name can it respond to client requests and provide the clients with Host Integration
Server names.

Also, for the Host Integration Server computer to register its name on the NetWare server, Host Integration Server must
be installed to work with IPX/SPX. This means that in Setup, the Novell NetWare (IPX/SPX) option must be selected in the
Select Client/Server Protocols dialog box.

IPX Routers

In addition, for Bindery, any IPX routers between the two servers must be configured to allow NetWare Service
Advertising Protocol broadcasts (SAP broadcasts)() to flow. IPX routers must propagate sockets 84C8 and 84C9 to
support the communication needed by Host Integration Server computers and clients.

To discover whether any Host Integration Server computers have been registered with NetWare Bindery, use the
NetWare Rconcole utility against any NetWare Server that is using Bindery. For instance, if there are two Host Integration
Server computers (Server1, Server2) that have successfully registered themselves with the NetWare Bindery and both
servers are configured to be in a subdomain called Domain1, the entry in the NetWare Rconsole utility would be:

DOMAIN1!Server1

DOMAIN1!Server2

For Client

Ensure that the client is using the same subdomain name as the Host Integration Server computers you want to connect
to and has NWLink installed.

NDS Specific

The same concepts for Bindery apply to NetWare Directory Service (NDS), which the exceptions:

Host Integration Client

The NetWare Directory Service (NDS) logon credentials on the Host Integration Server computer must have the right to
add an entry into the NetWare NDS tree structure. If this fails, there will be an event logged to the Windows Application
Event Log.

The NDS Context and Tree Name must be provided by the client and server configurations in addition to the subdomain
name in order for a client to connect successfully.

NetWare Servers

If using NetWare Directory Services (NDS), Host Integration Server requires NetWare version 4.11 or later. Earlier
versions of NetWare are supported through the bindery emulation feature of NetWare version 4.0 or later.

Note
If NDS is selected on the client and an attempt to get a sponsor connection fails, it will automatically try Bindery.

See Also
Tasks
NetWare Errors

https://msdn.microsoft.com/en-us/library/aa745353(v=bts.10).aspx

NetWare Errors
BINDERY 250

The Host Integration Server computer has contacted a NetWare Server and has enumerated a list of available Host
Integration Server computers in the client's subdomain. However, the client cannot connect to any of the Host Integration
Server computers in this list. There may be a network problem preventing a connection. Ensure that the same frame type
is being used on the client and the other Host Integration Server computer.

BINDERY 252

The client has found that there are no Host Integration Server computers in this subdomain registered with the NetWare
Bindery. Ensure that the clients and servers are using the same subdomain name and that SNABase service on the Host
Integration Server computers has been started and registered with Bindery. To check whether SNABase has been
registered with the NetWare Bindery use the NetWare Rconsole utility. For instance, if the Host Integration Server
computer is configured to be in a subdomain called Seattle, and the computer name of the Host Integration Server
computer is SNAS1, then the entry in Rconsole would be:

SEATTLE!SNAS1

NDS 64935

See Also
Tasks
Checklist for Clients Using NetWare (IPX/SPX)

https://msdn.microsoft.com/en-us/library/aa705704(v=bts.10).aspx

Clients Using TCP/IP
The following figure shows how a TCP/IP client computer can connect to the mainframe.

A TCP/IP client computer uses the following procedure to connect to the mainframe:

1. With TCP/IP, you can choose between two methods by which a client searches for Host Integration Server computers.

Client locate servers by subdomain means that the client locates the server through broadcasts in the local
subdomain. Therefore, the client must be in the same physical network as the Host Integration Server computers,
and must not be separated from the servers by a router.

Client locates servers by name means that the client searches for Host Integration Server computers by name or
IP address, and therefore need not be on the same side of any routers as the Host Integration Server computers.
When using a name (instead of an IP address) and there is a router separating the Host Integration Server
computer and the client, the client computer requires a method of resolving a name to an IP address. A local
LMHOSTS file or a Windows Internet Name Service (WINS) server may be used to perform this resolution.

2. The Host Integration Server computer responds with a list of available Host Integration Server computers that are
available to get a 3270 or APPC session with. This special connection is called the sponsor connection.

3. Finally, the client attempt to connect to each Host Integration Server computer in the list until a server is found that can
service the 3270 or APPC request.

Note that before attempting to establish communication involving Host Integration Server, you can use the TCP/IP utility called
ping to verify that contact can be established between client and server. This can help you identify basic TCP/IP problems, such
as difficulties with name resolution or with routers. For information about the ping utility, see the TCP/IP documentation.

Note
Ensure that the logged-on user has sufficient user rights to access the Host Integration Server computer across the network.
As with any other LAN connection, this is validated through the Windows Domain model.

See Also
Tasks
TCP/IP Errors

TCP/IP Errors
TCP/IP 11004
Causes

Your client is configured for Remote client locates servers by name, and you have selected a computer name instead of an IP
address. The computer name to IP address resolution has failed, or the IP address resolved cannot be found on the network.
Try inputting an IP address instead of a computer name into the client configuration. If this works, then there may be a
problem with your local lmhosts file, DNS Server or WINS when using a computer name in the configuration. If this does not
work, try pinging the address.

TCP/IP 10061
Causes

The SNABase service on Host Integration Server computer is not running or the IP address cannot be resolved, either because
this Server is not on the network, the IP address is incorrect, or there is a router or network problem. Try pinging the address.

TCP/IP 121
Causes

The client is configured for Local Client locates servers in a Host Integration Server Subdomain and therefore, is sending out
broadcast messages to discover a Host Integration Server computer. These broadcast messages will typically not be passed by
a router that may be located in between your client and the server. Go into the client configuration and select Client locates
server by name and specify an IP address or computer name of one or more Host Integration Server computers.

See Also
Concepts
Clients Using TCP/IP

https://msdn.microsoft.com/en-us/library/aa771039(v=bts.10).aspx

Error Messages
The messages recorded in the event log for Host Integration Server are now available in a database. The Message Database file,
included on the Host Integration Server CD-ROM at \Documentation\Message Database\Snamsg.mdb, requires Microsoft
Access 97 or later for viewing. This database enables you to design your own queries and reports to gather and analyze
information regarding Host Integration Server events. The message database includes the message identifier, severity level,
symbolic message name, source, message, and an explanation where appropriate.

Some errors and events have additional information, such as debugging suggestions or recommended actions, available in the
Error Message Database (EMDB). You can access the EMDB through the link provided in the error and event log. This link will
take you directly to the error in the EMDB.

You can also access the entire EMDB at the following location:

http://go.microsoft.com/fwlink/?LinkId=33506

Finally, you can view events using the Windows Event Log service on the Tools menu in SNA Manager. Once you have the
Windows Event Log service running, double-click an event to display the Event Detail dialog box. Then use the Event Detail
dialog box to see more information about a selected event.

See Also
Other Resources
Administrator’s Reference

http://go.microsoft.com/fwlink/?LinkId=33506
https://msdn.microsoft.com/en-us/library/aa704936(v=bts.10).aspx

Command-Line Interface
In addition to the graphical user interfaces provided by Host Integration Server Setup and the SNA Manager, Host Integration
Server offers a command-line interface. The command-line interface can be useful in certain situations, such as when you want
to view a configuration setting quickly without starting the graphical interface, or when you want to store configuration
commands in a command file so that they can be carried out easily in the future.

Before using the command-line interface, you must install Host Integration Server and run the SNA Manager at least once. This
initializes important elements of the Host Integration Server configuration that cannot be controlled with the command-line
interface.

You can use the command-line interface to modify an offline configuration file (as well as a regular on-site configuration file).
However, when you work with an offline configuration file, validation of server names, link names, and user names cannot take
place, and errors may result. For information about specifying the name of the configuration file to modify with the command-
line interface, see Specify the Subdomain Configuration File.

Other actions are also not available from the command-line. For example, you cannot use the command-line interface to
configure ranges of LUs.

Certain Host Integration Server commands must be used with great care if the /add option is used with them. With these
commands snacfg server, snacfg link, and snacfg user the information you type must match existing information in your
system or on the Windows domain.

Important
If you specify server names, link service names, adapter properties, or user names by using the /add option with snacfg serve
r, snacfg link, or snacfg user, these names or properties must match existing names and properties in your installation, or a n
onfunctioning configuration may result. To protect against errors with these commands, use the SNA Manager instead.

In This Section

Snacfg Reference

Linkcfg Reference

https://msdn.microsoft.com/en-us/library/aa705716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754424(v=bts.10).aspx

Kerberos Support
In addition to NTLM, Kerberos support is now available. To use Kerberos support, it is necessary to set a Service Principal Name
(SPN) for each server in the subdomain. You can do this through the command line as follows:

An icon will appear in the status bar to verify that the system is using Kerberos. Kerberos support is compatible with previous
versions of Host Integration Server.

setspn -a hisservice/servername serviceaccount

Snacfg Reference
The following sections reference specific areas of Snacfg.

This section contains:

Task Order

Help with the Command-Line Interface

Specify the Subdomain Configuration File

Use a Command File

Create a Snacfg Command File from a Configuration File

General Syntax for the /print Option

Examples of Syntax for the /print Option

Use the /print Option

Display the Contents of a Configuration File

Snacfg APPCLLU

Snacfg APPCRLU

Snacfg Connection

Snacfg CPIC

Snacfg Diagnostic

Snacfg LINK

Snacfg LU

Snacfg LUA

Snacfg LUD

Snacfg Mode

Snacfg Pool

Snacfg PoolA

Snacfg PoolD

Snacfg PrintServer

Snacfg PrintSession3270

Snacfg PrintSessionAPPC

https://msdn.microsoft.com/en-us/library/aa705507(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754338(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704980(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770927(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704966(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704835(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770747(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770463(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745619(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771424(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744302(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771675(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705207(v=bts.10).aspx

Snacfg Server

Snacfg TN3Server

Snacfg TN5Server

Snacfg TN3Session

Snacfg TN5Session

Snacfg TNIPID

Snacfg User

Snacfg Workstation

Snacfg Error Messages

https://msdn.microsoft.com/en-us/library/aa744923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771446(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771091(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745419(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772053(v=bts.10).aspx

Task Order
Just as with the SNA Manager, configuration tasks must be carried out in a certain order with the command-line interface. For
example, before configuring an LU, you must configure the connection that the LU will use. You can vary the interface you use
for each configuration task, as long as you carry out the tasks in order, and as long as you have already installed Host
Integration Server with the Host Integration Server Setup and then run the SNA Manager. For example, you can carry out tasks
using the SNA Manager, then the command-line interface, then the SNA Manager again, as long as the tasks are done in the
correct order.

The following table shows the order in which configuration tasks must be carried out, and the command used to carry out the
task.

Task Order for Configuration Tasks
Configuration task (in order) Command that carries out task

Add a server to the configuration snacfg server*

Configure link service(s) for the server(s) snacfg link*

Configure connection(s) for the server(s) snacfg connection

Configure LU(s) for the connection(s) snacfg appcllu, snacfg appcrlu, snacfg lu, snacfg lua, or snacfg lud

Create LU pool(s) (optional) snacfg pool, snacfg poola, or snacfg poold

Assign LUs to pool(s) (optional) snacfg lu, snacfg lua, or snacfg lud

Add users to the list used by Host Integration Server snacfg user*

Assign LU(s) or LU pool(s) to users snacfg user

* It is recommended that you use the SNA Manager, not the command-line interface, for these tasks. Any errors in the typing
of commands for these tasks can result in a nonfunctioning configuration.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Help with the Command-Line Interface
To see the syntax for a particular snacfg command, follow the command with the /? option.

For example, to get a listing of the words that can follow snacfg in the command-line, type

To get a listing of the options that can follow snacfg connection, type

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Specify the Subdomain Configuration File
Within a Host Integration Server command (a snacfg command), you can specify the path of the subdomain configuration file
to access, or you can omit the path. If you omit the path, Host Integration Server attempts to access the configuration file in the
normal location on the local system: \Program Files\Host Integration Server\SYSTEM\CONFIG\COM.CFG. To specify the path
of the configuration file to access, type the snacfg command with the following syntax:

That is, follow the snacfg command with a space, a pound sign, then the configuration path, and then any additional command
syntax.

For example, to view a listing of the connections stored in Program Files\Host Integration
Server\SYSTEM\CONFIG\BACKUP.SNA, type

See Also
Other Resources
Snacfg Reference

 configpath command options

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Use a Command File
If you want to run a series of Host Integration Server configuration commands, you can remove the word snacfg from each
command, place the new commands in a file called a command file, then use a single snacfg command to run the entire
command file. This is similar to the way a batch file works; however, a command file opens and closes the configuration file
fewer times than a batch file. When a command file is run, the configuration file is opened only once, at the beginning. Then all
the commands are carried out, and the configuration file is closed. In contrast, when a batch file containing snacfg commands
is run, the configuration file is opened and closed multiple times, once for every command in the file.

When creating a command file, do not include the following:

The word snacfg

A path for a configuration file

A command path for another command file

A backslash inside the text string for a comment

Also, you can include long, multiline commands in a command file by ending lines with a backslash (\). The backslash
indicates that the string in the next line should be appended to the current command.

There are two steps for using a command file. First, create the file, either by typing the configuration commands into a plain
text file, or by using the /print option as described in the next section. Then run the command file from the command prompt
by typing a line with the following syntax:

In the preceding syntax line, configpath is the path of the configuration file on which commands should be carried out; precede
this path with the # symbol. Similarly, commandpath is the path of the command file; precede this path with the @ symbol.
Use the /v (verbose) option to cause all informational messages (not just error messages) to be displayed when the command
file is running. Without the /v option, only error messages are displayed.

For example, to run a series of commands that result in a listing of the links and connections in a configuration file, create a file
called SNA_CMD1.TXT, containing the following lines:

See Also
Other Resources
Snacfg Reference

 [configpath]commandpath []

link /list
connection /list

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Create a Snacfg Command File from a Configuration File
To create lines for a snacfg command file, you can type them, or you can generate them by using the /print option. The /print
option accesses an existing configuration file and generates the command-line(s) required to add an individual resource or
(depending on syntax) the entire configuration file.

The output generated by the /print option does not contain the word snacfg. This means that the output can be included in a
snacfg command file.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

General Syntax for the /print Option
The syntax lines in this section and the next section show ways to use the /print option. By default, the output is sent to the
screen. To capture the output in a file, redirect it in the standard way, by adding a greater-than sign (>) to the end of the
command, followed by the name of the file in which you want to capture the output.

With all the syntax lines, if the source configuration file is not in the default path \Program files\Host Integration
Server\SYSTEM\CONFIG\COM.CFGthen for #configpath, substitute a path, preceded by the pound sign (#). Do not type the
square brackets. After the greater-than sign (>), type the name of the command file you want to create. (For information about
using the greater-than sign or other methods of redirection, see your Windows documentation.)

The general syntax for the /print option is:

For resource, substitute the second word of a snacfg command (for example, appcllu, connection, or server). For location, if
needed, substitute the server or connection name that uniquely locates a resource; for resourcename, substitute the name of
the resource.

See Also
Other Resources
Snacfg Reference

 [configpath] [resource [location]resourcename] cmdfile.ext

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Examples of Syntax for the /print Option
The following examples illustrate the use of the /print option.

To create a command file that can recreate an entire configuration file, type a command of the following form:

To create a command file from a particular connection in an existing configuration, type a command of the following
form, substituting the name of the connection for connectionname:

To create a command file from a particular 3270 LU in an existing configuration, type a command of the following form,
substituting the name of the LU for luname:

After generating snacfg command files, you can modify them and then use them like any other snacfg command file.

See Also
Other Resources
Snacfg Reference

 [configpath] cmdfile.ext

 [configpath] connectionnamecmdfile.ext

 [configpath] lunamecmdfile.ext

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Use the /print Option
The /print option can make it easier to carry out repetitive configuration actions, if you have a detailed understanding of Host
Integration Server configurations and of the snacfg command. Here are some ways of using the /print option:

Creating a new configuration
You can generate a snacfg command file corresponding to an entire configuration file, modify the command file, and use it
to create a new configuration file for another subdomain or site. To generate the commands for an entire configuration file,
use the syntax shown in the first example in the previous section; that is, omit all snacfg modifiers (such as connection or
lu).

Creating a template to use for expanding one or more configurations
You can generate a snacfg command file that corresponds to a useful element of an existing configuration (for example, a
3270 LU in a configuration). Then you can modify the file and use it to add one or many similar elements to an existing
configuration. Such a command file acts as a template for the element that it contains.

Modifying a configuration
You can generate a snacfg command file that corresponds to some part of an existing configuration (for example, an 802.2
connection in a configuration), modify the command file, and use it to modify the configuration file from which it came. This
involves removing the /add option from lines in the command file, and making other changes that require a detailed
understanding of the commands in the file.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Display the Contents of a Configuration File
You can create a display of the entire contents of a configuration file by using the /display option with the following syntax:

When you use the /display option, all the resources in the configuration file are displayed. For each resource, the display is the
same as that from typing snacfg resource resourcename, where resource is the second word of a snacfg command (for
example, appcllu, connection, or server), and resourcename is the name of the corresponding resource. (The exception to
this is that the display of the "diagnostic" resource is the same as that from snacfg diagnostic /list.)

See Also
Concepts
Use the /print Option
General Syntax for the /print Option

 [configpath]

https://msdn.microsoft.com/en-us/library/aa704966(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770927(v=bts.10).aspx

Snacfg APPCLLU
 

Purpose

Allows you add, delete, modify, or view a local APPC LU. Also allows you to view the command that would create a specified
local APPC LU.

Note
Configuration settings specified with snacfg appcllu correspond to local APPC LU settings configured with the SNA Manager.

Syntax

Recommended Syntax

Other Available Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\System\CONFIG\COM.CFG.

/list

Generates a list of configured local APPC LUs.

servername : LUalias

Specifies the server name and LU alias of the local APPC LU on which to carry out actions. The server name should be in the
format machine_name or \\machine_name\snaservr (for specifying the primary node on the machine) and
\\machine_name\snasrv02 (or snasrv03, snasrv04, etc.) for specifying the secondary nodes on the machine.

It is recommended that servername: be included in snacfg appcllu commands (other than /add commands) that include
LUalias. Without servername:, if there is more than one local LU called LUalias in the subdomain, it is difficult to predict
which of these LUs will be affected by the command. The snacfg appcllu command does not necessarily default to the local
server if servername is omitted.

See the following paragraphs for details about characters permitted in the LU alias.

If no options are specified after LUalias, the configuration settings, partner LUs, and modes are displayed for the specified LU.

LUalias

Specifies the LU alias of the local APPC LU on which to carry out actions. See the previous paragraphs and the syntax lists for
recommendations about using the server name with the LU alias.

The LU alias can be from one through eight characters long, and can contain alphanumeric characters and the special
characters %, $, #, and @. Lowercase letters are converted to uppercase. For a local APPC LU, the LU alias must be unique on
the server.

snacfg [#configpath] appcllu /list

 [configpath] servernameLUalias
 [configpath] LUalias servername [options]
 [configpath] servernameLUalias [options]
 [configpath] servernameLUalias [configpath] servernameLUalias

 [configpath] [configpath] LUalias
 [configpath] LUalias [options]
 [configpath] LUalias [configpath] LUalias

Note
LUalias is used as the default LU name if /luname:text is not specified.

If no options are specified after LUalias, the configuration settings, partner LUs, and modes are displayed for the specified LU.

/add

Adds a local APPC LU called LUalias. To configure the LU, either specify other options after /add, or specify configuration
options in additional snacfg appcllu commands (using the same LUalias).

/connection: conn-name

When adding or modifying a dependent local APPC LU, this option is used to specify the LU's connection assignment.

/delete

Deletes the LU called LUalias.

/print

Causes the display of the snacfg command that would create the specified local APPC LU. The displayed command does not
contain the word snacfg, so that it can be redirected to a command file.

Options for Local APPC LUs
/server: servername

Specifies the server to which to assign or move the APPC LU. When /add is used, this option is required. The server name
should be in the format machine_name or \\machine_name\snaservr (for specifying the primary node on the machine) and
\\machine_name\snasrv02 (or snasrv03, snasrv04, etc.) for specifying the secondary nodes on the machine.

/lunumber: value

Specifies the LU number. If an LU number of 0 is specified, the LU is configured as an independent local APPC LU.

/netname:" text"

Specifies a name for the network of this LU. The name can be from one through eight characters long, and can contain
alphanumeric characters and the special characters $, #, and @.

If /netname:text is not specified, the network name of the Host Integration Server on which the LU is located is used as the
default.

Note
/luname:text also has a default (the LU alias). Therefore, the fully qualified LU name (network name plus LU name) can potent
ially be created by default, if the LU alias and local network name are configured appropriately. A fully qualified LU name is r
equired for an APPC LU.

/luname:" text"

Specifies the LU name. The name can be from one through eight characters long, and can contain alphanumeric characters
and the special characters $, #, and @. Lowercase letters are converted to uppercase. For a local APPC LU, the fully qualified
LU Name (Network Name plus LU Name) must be unique on the server.

If /luname:text is not specified, LUalias is used as the default LU name.

Note
/netname:text also has a default (the network name of the server on which the LU is located). Therefore, the fully qualified LU
name (network name plus LU name) can potentially be created by default, if the LU alias and local network name are configu
red appropriately. A fully qualified LU name is required for an APPC LU.

/comment:" text"

Adds an optional comment for the LU. The comment can contain as many as 25 characters; enclose the comment in quotes.

/autopartner:{ yes| no }

Specifies whether this LU will automatically be partnered with other APPC LUs.

If automatic partnering is left unspecified, the default is yes.

/defaultpool:{ yes| no }

Specifies whether this LU will be in the default outgoing local APPC LU pool. This pool makes LUs available for invoking TPs
that do not specify a local LU.

/impremotelu: remoteLUname

Specifies an existing remote LU to be used as an implicit incoming remote LU for the local LU.

/tptimeout: value

Specifies the number of seconds that Host Integration Server should wait for the invokable TP to respond to a start request
from the invoking TP.

/addpartner: LUalias , mode[,connection]

Partners the local LU with the specified LU and the specified mode. Both LUalias and mode must exist before they can be
specified as partners. If LUalias specifies a remote LU that is not unique on the server, the connection used by the remote LU
must also be specified; otherwise, Host Integration Server will randomly choose one of the remote LUs called LUalias to act
on.

Only one /addpartner option can be used in each command.

/delpartner: LUalias , mode[,connection]

Deletes the pair listing that includes this local LU, the specified partner LU, and the specified mode. (Does not delete any LUs
or modes themselves.) If LUalias specifies a remote LU that is not unique on the server, the connection used by the remote
LU must also be specified; otherwise, Host Integration Server will randomly choose one of the remote LUs called LUalias to
act on.

Only one /delpartner option can be used in each command.

/syncpoint:{ yes | no }

Specifies if this Local APPC LU provides LU 6.2 SyncPoint support.

/clientname: "text"

Specifies client name if SyncPoint support is enabled.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg APPCRLU
 

Purpose

Allows you add, delete, modify, or view a remote APPC LU. Also allows you to view the command that would create a specified
remote APPC LU.

Note
Configuration settings specified with snacfg appcrlu correspond to remote APPC LU settings configured with the SNA Manag
er.

Syntax

Recommended Syntax

Other Available Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured remote APPC LUs.

connectionname : LUalias

Specifies the connection and LU alias of the remote APPC LU on which to carry out actions. You should include
connectionname: in snacfg appcrlu commands (other than /add commands) that include LUalias. Without
connectionname:, if there is more than one remote LU called LUalias in the subdomain, it is difficult to predict which of these
LUs will be affected by the command. The snacfg appcrlu command does not necessarily default to a connection on the
local server if connectionname is omitted.

See the following paragraphs for details about characters permitted in the LU alias.

If no options are specified after LUalias, the configuration settings, partner LUs, and modes are displayed for the specified LU.

LUalias

Specifies the LU alias of the remote APPC LU on which to carry out actions. See the previous paragraphs and the syntax lists
for recommendations about using the connection name with the LU alias.

The LU alias can be from one through eight characters long, and can contain alphanumeric characters and the special
characters %, $, #, and @. Lowercase letters are converted to uppercase. For a remote APPC LU, the LU alias must be unique
on the connection, and must not match that of a local LU on that server.

If no options are specified after LUalias, the configuration settings, partner LUs, and modes are displayed for the specified LU.

/add

snacfg [#configpath] appcrlu /list

 [configpath] connectionnameLUalias
 [configpath] LUalias connectionname [options]
 [configpath] connectionnameLUalias [options]
 [configpath] connectionnameLUalias [configpath] connectionnameLUalias

 [configpath] LUalias [configpath] LUalias [options]
 [configpath] LUalias [configpath] LUalias

Adds a remote APPC LU called LUalias. To configure the LU, either specify other options after /add, or specify configuration
options in additional snacfg appcrlu commands (using the same LUalias).

/delete

Deletes the LU called LUalias.

/print

Causes the display of the snacfg command that would create the specified remote APPC LU. The displayed command does
not contain the word snacfg, so that it can be redirected to a command file. See the information about command files earlier
in this section.

Options for Remote APPC LUs
/connection: connectionname

Specifies the connection to which to assign or move the APPC LU. When /add is used, this option is required.

/netname:" text"

Specifies a name for the network of this LU. The name can be from one through eight characters long, and can contain
alphanumeric characters and the special characters $, #, and @.

If /netname:text is not specified, the remote network name configured for the connection supporting this LU is used as the
default.

Note
/luname:text also has a default (the LU alias). Therefore, the fully qualified LU name (network name plus LU name) can potent
ially be created by default, if the LU alias and remote network name are configured appropriately. A fully qualified LU name i
s required for an APPC LU.

/luname:" text"

Specifies the LU name. The name can be from one through eight characters long, and can contain alphanumeric characters
and the special characters $, #, and @. Lowercase letters are converted to uppercase. For a remote APPC LU, the fully
qualified LU Name must be unique on the connection, and must not match that of a local LU on that server.

If /luname:text is not specified, LUalias is used as the default LU name.

Note
/netname:text also has a default (the remote network name configured for the connection supporting this LU). Therefore, the
fully qualified LU name (LU name plus network name) can potentially be created by default, if the LU alias and remote contro
l point name are configured appropriately. A fully qualified LU name is required for an APPC LU.

/comment:" text"

Adds an optional comment for the LU. The comment can contain as many as 25 characters; enclose the comment in quotes.

/autopartner:{ yes | no }

Specifies whether this LU will automatically be partnered with other APPC LUs.

If automatic partnering is left unspecified, the default is yes.

/parallelsess:{ yes | no }

Specifies whether the remote LU supports parallel sessions.

/uninterpname:" text"

Specifies the uninterpreted LU name, which is required only when using dependent APPC. The name can be from one
through eight characters long, and can contain alphanumeric characters and the special characters $, #, @ and period (.).

/impmode: modename

Designates modename as the implicit incoming mode for this LU. A mode must exist before being specified as an implicit
incoming mode.

/security:{ none| hex,text| char,text }

Configures session security for a remote LU using a cleartext key. The none option turns off session-level security. The
hex,text option specifies a 16-digit security key in hexadecimal. The char,text option specifies an eight-character security key
that can include uppercase and lowercase alphanumeric characters, and the special characters $, @, #, and the period (.).

/addpartner: LUalias , mode

Partners the remote LU with the specified local LU and the specified mode. Both the local LU and the mode must exist before
they can be specified as partners. LUalias should specify a local LU, not a remote LU; otherwise, an error message is
displayed, indicating that no such local LU can be found.

Only one /addpartner option can be used in each command.

/delpartner: LUalias , mode

Deletes the pair-listing that includes this remote LU, the specified local LU, and the specified mode. (Does not delete any LUs
or modes themselves.)

Only one /delpartner option can be used in each command.

/securityex:{ none| hex,text| char,text }

Configures session security for a remote LU using a scrambled key. For security purposes, Snacfg displays the security key
information in a scrambled format when the /securityex option is specified. To change the security key, use the /security
option instead.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Connection
 

Purpose

Allows you to view, add, delete, or modify connections, including peer connections (necessary for APPC LUs) or downstream
connections.

Before configuring a connection, you must configure the server and link service that the connection will use.

Note
Configuration settings specified with snacfg connection correspond to connection settings configured with the SNA Manager
.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured connections.

connectionname

Specifies a name for the connection to be configured or viewed. The name can be from one through eight characters long,
and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. A new connection name cannot be the same as any other connection name in the installation, and cannot be the
reserved name SNASERVR.

If no options are specified after connectionname, the command-line interface displays a list of the configuration settings for
the specified connection.

/add

Adds a connection called connectionname. To configure the connection, either specify other options after /add, or specify
configuration options in additional snacfg connection commands (using the same connectionname).

/delete

Deletes connectionname.

Options Used with All Connection Types
/server: servername

Specifies the server to which to assign or move the connection. When /add is used, this option is required. The server name
should be in the format machine_name or \\machine_name\snaservr (for specifying the primary node on the machine) and
\\machine_name\snasrv02 (or snasrv03, snasrv04, etc.) for specifying the secondary nodes on the machine.

/conntype:{ 802.2 | SDLC | X.25 | CHANNEL | TWINAX }

Specifies the connection type. When /add is used, this option is required.

/comment:" text"

Adds an optional comment for the specified connection. The comment can contain as many as 25 characters; enclose the
comment in quotes.

 [configpath] [configpath] connectionname [configpath] connectionname servernam
e{ [options]
 [configpath] connectionname [options]
 [configpath] connectionname /

/linkservice: linkname

Specifies the name of the link service to be used by connectionname. The link service type must match the connection type
(802.2, SDLC, or X.25), or the snacfg command will not run.

In order for the link service to function correctly, it must be installed with the SNA Manager. Link services can also be
installed with snacfg link; however, the SNA Manager is the recommended interface for installing link services, because it
helps ensure that the resulting configuration is functional.

/activation:{ onserverstartup | ondemand | byadministrator }

For outgoing calls on connectionname, tells how the connection will be activated: on server startup, on demand, or by the
administrator. (For incoming calls, activation is irrelevant, since the connection always begins listening for calls on server
startup.)

If no value has been specified for /activation, the default for 802.2 (token ring or Ethernet) connections is onserverstartup.
For all other connections, the default is ondemand.

/localblockno: hexdigits

Specifies the local block number, a three-digit hexadecimal number. The local block number forms the first part of the Local
Node ID, an eight-digit hexadecimal number that identifies the local system.

Do not use 000 or FFF for the local block number. These values are reserved.

For connections to host systems, the local block number should match IDBLK in VTAM.

/localnodeno: hexdigits

Specifies the local node number, a five-digit hexadecimal number. The local node number forms the last part of the Local
Node ID, an eight-digit hexadecimal number that identifies the local system.

For connections to host systems, the local node number should match IDNUM in VTAM.

/cpname: text

Specifies the control point name of the remote node, as it is represented in Format 3 XIDs. The name can be from one
through eight characters long, and can contain alphanumeric characters and the special characters $, #, and @.

The control point name of the remote node works together with netname. If either of these parameters is supplied, the
other should also be supplied.

When connecting to a host system and using a remote control point name, the name should match the SSCPNAME
parameter in the VTAM Start command for the remote SSCP (the VTAM system).

/netname: text

Specifies the name of the network for the remote node, as it is represented in Format 3 XIDs. The name can be from one
through eight characters long, and can contain alphanumeric characters and the special characters $, #, and @.

The netname parameter works together with the control point name of the remote node. If either of these parameters is
supplied, the other should also be supplied.

/remoteblockno: hexdigits

Specifies the remote block number, a three-digit hexadecimal number. The remote block number forms the first part of the
Remote Node ID, an eight-digit hexadecimal number that identifies the remote system.

Do not use 000 or FFF for the remote block number. These values are reserved.

/remoteend:{ Host | Ppeer | downstream | PUPassThrough}

Specifies whether the connection is to be a host, peer, downstream, or passthrough.

/remotenodeno: hexdigits

Specifies the remote node number, a five-digit hexadecimal number. The remote node number forms the last part of the
Remote Node ID, an eight-digit hexadecimal number that identifies the remote system.

/xidtype:{ format0 | format3 }

Specifies the XID type, the type of identifying information for Host Integration Server to send. The choices are format0
(Format 0) and format3 (Format 3). Format 0 sends only the Node ID. Format 3 sends up to 100 bytes of identifying
information, including the local node ID and control point name.

If no XID type has been specified, the default is format3.

/calldirection:{ Incoming | Outgoing | Both }

This option specifies the call direction.

/channeladdress: hex string

Specifies the channel sub address for channel attach connections. Hex string is a two-digit hexadecimal number, valid range
00..FF.

/localsap: hexnum

Specifies the local System Access Point (SAP). Enter a hexadecimal number between 04 and EC that is a multiple of 4. For
example, snacfg connection thisconn /localsap:7C.

/localcpname: text

The Local Control Point Name works with the Network Name to identify a system. The maximum length is eight characters.

/localnetname: text

The Local Network Name works with the Local Control Point Name to identify a system. The maximum length is eight
characters.

/compression:{ None | RLE | LZ9 }

These options offer progressively better compression, but at a progressively higher CPU usage cost.

/passthruconn: text

Specifies the name of the PU Passthrough connection.

/peerdlcrole:{ Primary | Secondary | Negotiable }

Specifies the role used in peer-to-peer communications.

/dynamicludef:{ yes | no }

Specifies that this connection supports dynamic remote APPC LU allocation.

Additional Options Used with Downstream Connections
/insert: luname [,luname,]

Assigns a downstream LU or pool to a downstream connection. Separate multiple LU or pool names with commas.

The downstream LU or pool named by luname must already exist. (A downstream LU can be created with snacfg LUD, and
a downstream pool can be created with snacfg poold.) The connection named by connectionname must be a downstream
connection. If these conditions are not met, the command is not processed.

/remove: luname [,luname,]

Removes the assignment of a downstream LU or pool to a downstream connection. Separate multiple LU or pool names
with commas.

Additional Options Used with 802.2 (Token Ring or Ethernet) Connections
/remotenetaddr: hexdigits

Specifies the 12-digit hexadecimal network address of the remote host to which this connection provides access.

If no remote network address has been specified, the default is 400000000000.

/remotesapaddr: hexdigits

Specifies the remote SAP address, which is a two-digit hexadecimal number, a multiple of 4, between 04 and EC. A value of
04 is recommended for most installations.

If no remote SAP address has been specified, the default is 04.

/maxbtulen: value

Specifies the maximum length for the BTU, which is the number of bytes that can be transmitted in a single data-link control
frame.

The range is from 265 through 16393. If no maximum BTU length has been specified, the default is 1929.

/receiveackthresh: value

Specifies the receive ACK threshold, the maximum number of frames that the local system can receive from the remote
system before sending a response.

The range is from 1 through 127. If no receive ACK threshold has been specified, the default is 2.

/naksendlimit: value

Specifies the unacknowledged send limit, the maximum number of frames that the local system can send without receiving a
response from the remote system.

The range is from 1 through 127. If no unacknowledged send limit has been specified, the default is 1.

/retrylimit: value

Specifies the retry limit, the number of times that the local system should retransmit a frame if no response is received from
the remote system.

The range is from 0 through 255. A value of 0 means the system uses its internal default retry limit. If no retry limit has been
specified, the default is 10.

/xidretries: value

Specifies the XID retries, the number of times that the local system should retransmit an XID (an identifying message) if no
response is received from the remote system.

The range is from 0 through 30. If no XID retries value has been specified, the default is 3.

/t1timeout:{ Default| 200ms| 400ms| 600ms| 800ms| 1000ms | 1s| 2s| 3s| 4s | 5s}

Specifies the amount of time that the local system should wait for the remote system to respond to a transmission before the
local system tries again.

The values used for Default for t1timeout are 400 milliseconds for a local ring and 2 seconds for a remote ring.

/t2timeout:{ Default| 40ms| 80ms| 120ms| 160ms| 200ms| 400ms| 800ms| 1200ms| 1600ms| 2000ms}

Select the maximum amount of time that should be allowed before the local system sends an acknowledgment of a received
transmission.

The values used for Default for t2timeout are 80 milliseconds for a local ring and 800 milliseconds for a remote ring.

/titimeout:{ Default| 1s| 2s| 3s| 4s| 5s| 10s| 15s| 20s| 25s}

Select the amount of time that the link can be inactive before the local system treats it as nonfunctioning and shuts it down.

The values used for Default for titimeout are 5 seconds for a local ring and 25 seconds for a remote ring.

/activatedelay:{ Default | 5s | 10s | 15s | 20s | 25s | 30s | 35s | 40s | 45s | 50s | 55s | 60s | 65s | 70s | 75s | 80s | 85s | 90s | 95s
| 100s | 105s | 110s | 115s | 120s | 125s | 130s | 135s | 140s | 145s | 150s | 155s | 160s | 165s | 170s | 175s | 180s | 185s | 190s
| 195s | 200s | 205s | 210s | 215s | 220s | 225s | 230s | 235s | 240s | 245s | 250s | 255s }

This value specifies the delay between successive attempts to activate a Host Integration Server connection.

/activateretrylimit:{ None | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 |
205 | 210 | 215 | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 }

This option specifies the number of times the server will try to activate a connection.

Additional Options Used with SDLC Connections
/dialdata: value

Specifies the phone number stored for this connection. For a modem that accepts a phone number from Host Integration
Server that is, a modem attached to an SDLC adapter with a built-in serial (COM) port the dial data specifies the telephone
number for Host Integration Server to send to the modem. In this case, the number should be in the format expected by the
modem. For manually dialed modems, the dial data is displayed in a pop-up message when the connection is started, and
can be in any format.

/encoding:{ NRZI | NRZ }

Specifies the encoding scheme to be used by the modem. The choices are nrzi, nonreturn to zero inverted, and NRZ,
nonreturn to zero.

The modem must use the same encoding scheme as the modem at the remote computer. For connections to host systems,
the encoding scheme must match the value in the LINE/GROUP definition in VTAM.

If no encoding scheme has been specified, the default is NRZI.

/duplex:{ half | full }

Specifies the modem duplex setting. The choices are half, for a half-duplex modem, and full, for a full-duplex modem. If you
want to use the full-duplex setting, one or more of your adapters must have the constant carrier option set. The constant
carrier option is set in the SNA Manager. The constant carrier option can also be set with snacfg link; however, the SNA
Manager is the recommended interface for setting the constant carrier option and other link service options.

Most Host Integration Server computers will use the default for duplex, half.

/datarate:{ high | low }

Specifies the data rate for transmissions between the Host Integration Server communications adapter and the modem. This
rate can only be set for certain kinds of modems and adapters; for specific information, see the adapter and modem
documentation.

A data rate of high gives faster transmissions; low gives more reliable transmissions and prevents the transmission errors
sometimes caused by poor-quality lines at the high rate.

If no data rate has been specified, the default is high.

/polladdress: hexdigits

Specifies the poll address, a two-digit hexadecimal number. For connections to a host, the local poll address should match
the VTAM PU definition for the ADDR= parameter.

Do not use 00 or FF for the poll address; these values are reserved. If no poll address has been specified, the default is C1.

/idletimeout: value

Specifies, in tenths of a second, the idle time-out. The idle time-out is the length of time that the local system should wait for
the host to respond to a transmission, before the local system tries again. Too small a time-out can cause connection
problems.

The range is from 1 (one-tenth of a second) through 300 (30 seconds). If no idle time-out has been specified, the default is
300 (30 seconds).

/idleretrylimit: value

Specifies the idle retry limit, the number of times the local system should try to poll or send data to the host if there is no
response.

The range is from 1 through 255. If no idle retry limit has been specified, the default is 10.

/contacttimeout: value

Specifies the contact time-out: the length of time, in tenths of a second, which the local system should wait between attempts
to make a connection with a remote system.

The range is from 5 (five-tenths of a second) through 300 (30 seconds). If no contact time-out has been specified, the default
is 300 (30 seconds).

/contactretrylimit: value

Specifies contact retry limit, the maximum number of times the local system should attempt to make a given connection.

The range is from 1 through 20. If no contact retry limit has been specified, the default is 10.

/switchedconntimeout: value

Specifies the switched connection establishment time-out; used for switched SDLC lines (standard telephone lines) only. The
switched connection establishment time-out is the number of seconds that will be allowed for the user or modem to dial the
remote computer's number.

This parameter is ignored by incoming calls.

The range is from 10 through 500 seconds. If no switched connection establishment time-out has been specified, the default
is 300.

/multidropprimconn:{ yes | no }

Specifies whether this connection will be a multidrop primary connection.

A multidrop connection is one in which a primary node communicates with multiple secondary nodes concurrently over the
same physical transmission medium.

/selectstandby:{ yes | no }

Specifies whether the modem's standby line is set to "on." Standby can only be set for certain kinds of modems; for specific
information, see the modem documentation.

If no setting has been specified for standby, the default setting is no.

/sdlcmaxbtu: value

Specifies the maximum length for the BTU, which is the number of bytes that can be transmitted in a single data-link
information frame.

The range is from 265 through 16393. If no maximum BTU length for SDLC has been specified, the default is 265.

/activatedelay:{ Default | 5s | 10s | 15s | 20s | 25s | 30s | 35s | 40s | 45s | 50s | 55s | 60s | 65s | 70s | 75s | 80s | 85s | 90s | 95s
| 100s | 105s | 110s | 115s | 120s | 125s | 130s | 135s | 140s | 145s | 150s | 155s | 160s | 165s | 170s | 175s | 180s | 185s | 190s
| 195s | 200s | 205s | 210s | 215s | 220s | 225s | 230s | 235s | 240s | 245s | 250s | 255s }

This value specifies the delay between successive attempts to activate a Host Integration Server connection.

/activateretrylimit:{ None | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 |
205 | 210 | 215 | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 }

This option specifies the number of times the server will try to activate a connection.

Additional Options Used with SDLC Peer Connections
/multidropprimconn:{ yes | no }

Specifies whether this server is to be the primary station for a multidrop connection on a leased SDLC line.

/pollrate: value

Specifies the poll rate in polls per second.

The range is from 1 through 50. If no poll rate has been specified, the default is 5.

/activatedelay:{ Default | 5s | 10s | 15s | 20s | 25s | 30s | 35s | 40s | 45s | 50s | 55s | 60s | 65s | 70s | 75s | 80s | 85s | 90s | 95s
| 100s | 105s | 110s | 115s | 120s | 125s | 130s | 135s | 140s | 145s | 150s | 155s | 160s | 165s | 170s | 175s | 180s | 185s | 190s
| 195s | 200s | 205s | 210s | 215s | 220s | 225s | 230s | 235s | 240s | 245s | 250s | 255s }

This value specifies the delay between successive attempts to activate a Host Integration Server

/activateretrylimit:{ None | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 |
205 | 210 | 215 | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 }

This option specifies the number of times the server will try to activate a connection.

Additional Options Used with X.25 Connections
/remotex25addr: hexdigits

Specifies the remote X.25 address, which identifies the remote system on an X.25 network. The address usually consists of 12
hexadecimal digits, but can contain up to 15 hexadecimal digits.

/x25maxbtu: value

Specifies the maximum length for the BTU, which is the number of bytes that can be transmitted in a single data-link
information frame.

The range is from 265 through 16393. If no maximum BTU length for X.25 has been specified, the default (for host
connections) is 265.

/virtualcircuit:{ perm | switched }

Specifies the type of virtual circuit used by the connection. The choices are perm and switched. A perm circuit is constantly
active and uses a preset destination address. A switched circuit is called and cleared dynamically, and uses a destination
address that is supplied when the circuit is called.

If no virtual circuit type has been specified, the default is switched.

/pvcalias: value(for PVC only)

Specifies the PVC alias, the number that identifies the PVC channel: 1 for the first channel, 2 for the second, and so on. Used
for PVCs only.

The range is from 1 through the number of configured PVC channels. If no PVC alias has been specified, the default is 1.

/packetsize: value(for PVC only)

Specifies packet size, the maximum number of data bytes (not header bytes) to be sent in a frame on this X.25 network. Used
for PVCs only.

The possible values are 64, 128, 256, 512, and 1024. If no packet size has been specified, the default is 128.

/windowsize: value(for PVC only)

Specifies window size, the maximum number of frames that the local system can send without receiving a response from the
remote system, on this X.25 network. Used for PVCs only.

The range is from 1 through 7. If no window size has been specified, the default is 2.

/facilitydata: text(for SVC only)

Specifies the codes for any facility data required by the network provider or by the administrator of the remote system. Used
for SVCs only. Facility data can include as many as 126 hexadecimal characters (63 hexadecimal bytes).

Facility data is a coded string of information often used to request nondefault functions from the X.25 network for a
particular SVC connection.

/userdata: text(for SVC only)

Specifies the codes for any user data required by the network provider. Used for SVCs only. The user data must be an even
number of hexadecimal characters, up to the maximum of 32 characters.

User data is a coded string of information, specifying items such as the communications protocol used by the X.25 network
(for SNA, this protocol must be QLLC, specified by C3).

The default for user data is C3; this specifies the QLLC protocol.

/activatedelay:{ Default | 5s | 10s | 15s | 20s | 25s | 30s | 35s | 40s | 45s | 50s | 55s | 60s | 65s | 70s | 75s | 80s | 85s | 90s | 95s
| 100s | 105s | 110s | 115s | 120s | 125s | 130s | 135s | 140s | 145s | 150s | 155s | 160s | 165s | 170s | 175s | 180s | 185s | 190s
| 195s | 200s | 205s | 210s | 215s | 220s | 225s | 230s | 235s | 240s | 245s | 250s | 255s }

This value specifies the delay between successive attempts to activate a Host Integration Server connection.

/activateretrylimit:{ None | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 |
205 | 210 | 215 | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 }

This option specifies the number of times the server will try to activate a connection.

Additional Options Used with Channel Connections
/activatedelay:{ Default | 5s | 10s | 15s | 20s | 25s | 30s | 35s | 40s | 45s | 50s | 55s | 60s | 65s | 70s | 75s | 80s | 85s | 90s | 95s
| 100s | 105s | 110s | 115s | 120s | 125s | 130s | 135s | 140s | 145s | 150s | 155s | 160s | 165s | 170s | 175s | 180s | 185s | 190s
| 195s | 200s | 205s | 210s | 215s | 220s | 225s | 230s | 235s | 240s | 245s | 250s | 255s }

This value specifies the delay between successive attempts to activate a Host Integration Server connection.

/activateretrylimit:{ None | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 |
205 | 210 | 215 | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 }

This option specifies the number of times the server will try to activate a connection.

/controlunit: value (0x0-0xf)

Sets the value of the control unit image number.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg CPIC
 

Purpose

Allows you add, delete, modify, or view a CPI-C symbolic destination name. Also allows you to view the command that would
create a specified CPI-C symbolic destination name.

Note
Settings specified with snacfg cpic correspond to CPI-C symbolic destination names configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured symbolic destination names.

cpicname

Specifies the symbolic destination name on which to carry out actions. A symbolic destination name can be from one
through eight characters long, and can contain alphanumeric characters and the special characters $, #, and @.

If no options are specified after cpicname, the configuration settings for the specified symbolic destination name are
displayed.

/add

Adds a symbolic destination name called cpicname. When you use the /add option, you must include the other options
shown in the preceding syntax.

/delete

Deletes cpicname.

/print

Causes the display of the snacfg command that would create the specified symbolic destination name. The displayed
command does not contain the word snacfg, so that it can be redirected to a command file. See the information about
command files earlier in this section.

Options for CPI-C Commands
/comment:" text"

Adds an optional comment for the symbolic destination name. The comment can contain as many as 25 characters; enclose
the comment in quotes.

Partner TP options(use one or the other, but not both):

/appltpname:"text"

Specifies that the partner TP is an application TP, and provides the name. The name can be from 1 through 64 characters

 [configpath] [configpath] cpicname [configpath] cpicname
 { text | hexstring }
 { btexttext | text }
 text{ | | }
 [text] [text] [text]
 [configpath] cpicname []
 [configpath] cpicname [configpath] cpicname

long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase.

If you specify both an application TP name and a service TP name in the same command, the command is rejected. If you
specify an application TP for an existing symbolic destination name, it overrides any previous TP name (whether application
TP or service TP).

/svcetpname:hexstring

Specifies that the partner TP is a service TP, and provides the hexadecimal string identifying the TP. The string can be from
one through eight hexadecimal digits long.

If you specify both a service TP name and an application TP name in the same command, the command is rejected. If you
specify a service TP for an existing symbolic destination name, it overrides any previous TP name (whether application TP or
service TP).

Partner LU options(use one or the other, but not both):

/netname:"text" /luname:"text"

Identifies the partner LU by fully qualified LU name (network name plus LU name). Each part of the fully qualified name can
be from one through eight characters long, and can contain alphanumeric characters and the special characters $, #, and @.
Lowercase letters are converted to uppercase.

If you specify both a fully qualified LU name and an LU alias in the same command, the command is rejected. If you specify a
fully qualified LU name for an existing symbolic destination name, it overrides any previous LU setting (whether name or
alias).

/lualias:"text"

Identifies the partner LU by LU alias. The alias can be from one through eight characters long, and can contain alphanumeric
characters and the special characters %, $, #, and @. Lowercase letters are converted to uppercase.

If you specify both an LU alias and a fully qualified LU name in the same command, the command is rejected. If you specify
an LU alias for an existing symbolic destination name, it overrides any previous LU setting (whether name or alias).

/modename:" text"

Specifies the mode. The mode must already exist.

/seckeytype:{ none| same| program}

Sets the conversation security type. If program is specified, one or both of the following options can be set:

/secuserid:" text"

Specifies the user ID to use when the security type is program. The ID can contain from 1 through 10 characters.

/secpassword:" text"

This parameter is optional; it specifies the password to use with the user ID. The password can contain from 1 through 10
characters. A password need not be specified even if the security type is program and the user ID is set. If a display is created
showing the symbolic destination name, the password will not be displayed.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Diagnostic
 

Purpose

Allows you to view and configure settings for event logging (auditing), and view or change the connection designated to
receive NetView alerts.

Note
Configuration settings specified with snacfg diagnostic correspond to diagnostic settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list that tells the settings for event logs (auditing), the name of the NetView management connection (if one has
been specified), and the default connection for the DISPLAY verb (if one has been specified).

/logserver: servername

Specifies a centralized server on which event logs for this Host Integration Server installation should be stored.

If /logserver: is typed without servername, the setting reverts to the default, which is to store event logs for the local server
on the local server.

/auditlevel:{ 6| 8| 10| off}

Sets the level of Host Integration Server events to be recorded in the Windows Event Log. These events can be viewed with
the Windows Event Viewer, which is described in the Windows documentation. The following table describes the available
levels:

Level Description Events to be recorded

6 Detailed problem analysis All events that can be recorded

8 General information messages General activity but not all events

10 Significant system events Major events only

off Auditing disabled No events

/popupserver: servername

Specifies the server to which pop-up error messages for this Host Integration Server installation should be routed.

Pop-up messages will always appear on the local server; routing them to a remote server means they will appear on both the
remote and local server.

If /popupserver: is typed without servername, the setting reverts to the default, which is the local server.

/netviewconn: connectionname

Specifies the name of the connection through which NetView alerts are sent. The connection called connectionname must
already exist.

snacfg [#configpath] diagnostic /list
snacfg [#configpath] diagnostic [options]

If /netviewconn: is typed without connectionname, the setting is cleared so that the configuration contains no NetView
connection name.

/cnosdisplayconn: connectionname

Specifies the default connection to be used for the DISPLAY verb when no connection is provided. The connection called
connectionname must already exist.

If /cnosdisplayconn: is typed without connectionname, the setting is cleared so that the configuration contains no default
connection for the DISPLAY verb.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg LINK
 

Purpose

Allows you to view, delete, or modify adapters.

Note
This command has been superseded by Linkcfg, as described in Linkcfg.

Important
If you specify adapter properties with snacfg link, these properties must match existing properties in your installation, or a n
onfunctioning configuration may result. To protect against errors with snacfg link, use the SNA Manager instead.

Before configuring link services, you must use the SNA Manager to add the server on which the link services will be located.

Syntax

Recommended Syntax

Other Available Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured link services.

servername

Specifies the name of the server on which to view or change link services. Separate the name of the server from the name of
the link service with a colon (:). It is recommended that servername be included in every snacfg link command that includes
linkname. Without servername, if there is more than one link service called linkname in the installation, it is difficult to
predict which link service called linkname will be affected by the command. The snacfg link command does not necessarily
default to the local server if servername is omitted.

linkname

Specifies the name of the link service to view, modify, or delete. Link services names can contain from one through eight
alphanumeric characters.

For adding link services, the recommended method is to use the SNA Manager, not snacfg link.

If no options are specified after linkname, the result is a list of the configuration settings for the specified link.

 [configpath]

 [configpath]servernamelinkname [configpath]servernamelinkname [options]
 [configpath]servernamelinkname [options]
 [configpath]servernamelinkname

 [configpath]linkname [configpath]linkname [options]
 [configpath]linkname [options]
 [configpath]linkname

https://msdn.microsoft.com/en-us/library/aa771464(v=bts.10).aspx

/add

Adds a link service called linkname. To configure the link service, either specify other options after /add, or specify
configuration options in additional snacfg link commands (using the same servername:linkname combination).

For adding link services, the recommended method is to use the SNA Manager, not snacfg link.

/delete

Deletes linkname.

Options for Link Services
/server: servername

Specifies the server on which to install the link service.

/linktype:{ Token| Ether| SDLC| X25| Channel | Twinax }

Specifies the type of adapter with which linkname works.

/linetype:{ leased| softdial| manual}(for SDLC lines only)

Specifies the type of SDLC line (and, where applicable, the modem) that the link service will use:

A leased line is a telecommunications line committed solely to SDLC communications with a particular remote system.

A softdial line is a switched SDLC line on which the modem is dialed automatically by Host Integration Server. Such a
modem must be attached to an SDLC adapter with a built-in serial (COM) port. Otherwise it is considered a manual
modem.

A manual line is a switched SDLC line on which the modem stores a phone number, or on which the modem is dialed
manually.

/carrier:{ on| off}(for SDLC lines only)

Specifies whether the constant carrier option for an SDLC line is on or off.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg LU
 

Purpose

Allows you to view, add, delete, or modify 3270 LUs, on three types of connections: 802.2, SDLC, and/or X.25. Also allows you
to assign 3270 LUs to LU pools that have already been configured.

Before configuring an LU, you must configure the connection that the LU will use. Also, before assigning an LU to an LU pool,
you must create the LU and the LU pool.

Note
Configuration settings specified with snacfg lu correspond to 3270 LU settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured 3270 LUs.

luname

Specifies the name of the 3270 LU to view, add, modify, or delete. A 3270 LU name can be from one through eight characters
long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. A 3270 LU name cannot be the same as any other LU name or pool name (except for APPC LU names) on the
server.

If no options are specified after luname, the result is a list of the configuration settings for the specified LU.

/add

Adds a 3270 LU called luname. To configure the 3270 LU, either specify other options after /add, or specify configuration
options in additional snacfg lu commands (using the same luname).

/delete

Deletes luname.

Options for 3270 LUs
/connection: connectionname

Specifies the connection to which the 3270 LU should be assigned or moved. When /add is used, this option is required.

/lunumber: value

Specifies the LU number, which identifies the LU on its connection. When /add is used, this option is required. Check with the
administrator of the host system for the correct value; it should match the LOCADDR= parameter of the LU definition in
VTAM or the NCP Gen on the host.

If the number that you specify has already been assigned to an LU or an APPC LU-LU pair on the intended connection, the
command fails.

The range is from 1 through 254.

/pool: poolname

 [configpath] [configpath] luname [configpath] lunameconnectionnamevalue [options]
 [configpath] luname [options]
 [configpath] luname

Assigns or moves the 3270 LU to poolname. A 3270 LU can be assigned to only one pool.

The pool specified with poolname must already exist. A 3270 LU pool can be created with the snacfg pool command.

If /pool: is typed without poolname, the specified LU is removed from whichever pool it is assigned to.

/lutype:{ display | printer }

Specifies whether the 3270 LU will be used for display (terminal emulation) or a printer (that is, a local printer or a local-
area network printer, attached to a PC).

If no LU type has been specified, the default is display.

/displaymodel:{ mod2 | mod3 | mod4 | mod5 | 2 | 3 | 4 | 5 }

Specifies the display model; applies only when the lutype is display. The following display types are available:

Model 2 is 24 lines by 80 characters.

Model 3 is 32 lines by 80 characters.

Model 4 is 43 lines by 80 characters.

Model 5 is 27 lines by 132 characters.

Some emulators can only emulate certain display models. For more information, see your emulator documentation.

When a 3270 display LU is assigned to a 3270 LU pool, the display model setting of the pool overrides the setting of the LU.

If no display model has been specified, the default is Model 2.

/allowmodeloverride:{ yes | no }

Specifies whether the user is allowed to override the display model type by using the 3270 terminal emulation program.

When a 3270 display LU is assigned to a 3270 LU pool, the model override setting of the pool overwrites the setting of the
LU.

If no setting has been specified for this parameter, the default is no.

/associate:" text"

This allows you to associate a specific 3270 printer LU with a 3270 display LU. Any user or group with permission to use the
display LU will also have access to the associate printer LU. The text is the printer LU name.

/unassociate:" text"

This allows you to unassociate a 3270 printer LU from a 3270 display LU. It is not necessary to enter any text. Snacfg will
ignore the text and unassociate the LU. To unassociate the printer LU, use the display LU name.

/comment:" text"

Adds an optional comment for the specified LU. The comment can contain as many as 25 characters; enclose the comment in
quotes.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg LUA
 

Purpose

Allows you to view, add, delete, or modify LUA LUs on three types of connections: 802.2, SDLC, and/or X.25. Also allows you to
assign LUA LUs to LU pools that have already been configured.

Before configuring an LU, you must configure the connection that the LU will use. Also, before assigning an LU to an LU pool,
you must create the LU and the LU pool.

Note
Configuration settings specified with snacfg lua correspond to LUA LU settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured LUA LUs.

luname

Specifies the name of the LUA LU to view, add, modify, or delete. An LUA LU name can be from one through eight characters
long and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. An LUA LU name cannot be the same as any other LU name or pool name (except for APPC LU names) on the
server.

If no options are specified after luname, the result is a list of the configuration settings for the specified LU.

/add

Adds an LUA LU called luname. To configure the LUA LU, either specify other options after /add, or specify configuration
options in additional snacfg lua commands (using the same luname).

/delete

Deletes luname.

Options for LUA LUs
/connection: connectionname

Specifies the connection to which the LUA LU should be assigned or moved. When /add is used, this option is required.

/lunumber: value

Specifies the LU number, which identifies the LU on its connection. When /add is used, this option is required. Check with
the administrator of the host system for the correct value; it should match the LOCADDR= parameter of the LU definition in
VTAM or the NCP Gen on the host.

If the number that you specify has already been assigned to an LU or an APPC LU-LU pair on the intended connection, the
command fails.

The range is from 1 through 254.

/pool: poolname

 [configpath] [configpath] luname [configpath] lunameconnectionnamevalue [options]
 [configpath] luname [options]
 [configpath] luname

Assigns or moves the LUA LU to poolname. An LUA LU can be assigned to only one pool. The pool specified with poolname
must already exist. An LUA LU pool can be created with the snacfg poola command.

If /pool: is typed without poolname, the specified LU is removed from whichever pool it is assigned to.

/highpriority:{ yes | no }

Specifies whether this LU will be given priority over low-priority LUs.

When an LUA LU is assigned to an LUA LU pool, the priority setting of the pool overwrites the priority setting of the LU.

/comment:" text"

Adds an optional comment for the specified LU. The comment can contain as many as 25 characters; enclose the comment in
quotes.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg LUD
 

Purpose

Allows you to view, add, delete, or modify downstream LUs. Also allows you to assign downstream LUs to LU pools that have
already been created, and allows you to view the command that would create a specified downstream LU.

Note
Configuration settings specified with snacfg lud correspond to downstream LU settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured downstream LUs.

luname

Specifies the name of the downstream LU to view, add, modify, or delete. A downstream LU name can be from one through
eight characters long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are
converted to uppercase. The name cannot be the same as any other LU or pool name that uses this connection.

If no options are specified after luname, the result is a list of the configuration settings for the specified LU.

/add

Adds a downstream LU called luname. To configure the downstream LU, either specify other options after /add, or specify
configuration options in additional snacfg lud commands (using the same luname).

/delete

Deletes luname.

/print

Causes the display of the snacfg command that would create the specified downstream LU. The displayed command does
not contain the word snacfg, so it can be redirected to a command file. See the information about command files earlier in
this section.

Options for Downstream LUs
/connection:connectionname

Specifies the connection to which the downstream LU should be assigned or moved. When /add is used, this option is
required.

/lunumber: value

Specifies the LU number, which identifies the LU on its connection. When /add is used, this option is required. Check with
the administrator of the host system for the correct value; it should match the LOCADDR= parameter of the LU definition in
VTAM or in the NCP Gen.

The LU number identifies the LU to the host system.

If the number you specify has already been assigned to an LU or an APPC LU-LU pair on the intended connection, the

 [configpath] [configpath] luname [configpath] lunameconnectionnamevalue [options]
 [configpath] luname [options]
 [configpath] luname [configpath] luname

command fails.

The range is from 1 through 254.

/pool: poolname

Assigns or moves the downstream LU to poolname. A downstream LU can be assigned to only one pool. The pool specified
with poolname must already exist. A downstream LU pool can be created with the snacfg poold command.

If /pool: is typed without poolname, the specified LU is removed from whichever pool it is assigned to.

/comment:" text"

Adds an optional comment for the specified LU. The comment can contain as many as 25 characters; enclose the comment in
quotes.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Mode
 

Purpose

Lets you add, delete, modify, or view an APPC mode. Also lets you to view the command that would create a specified mode.

Note
Configuration settings specified with snacfg mode correspond to APPC mode settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured modes.

modename

Specifies the name of the mode on which to carry out actions. A mode name can be from one through eight characters long,
and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. The mode name cannot be the same as any other mode name in the subdomain of the server.

If no options are specified after modename, the configuration settings for the specified mode are displayed.

/add

Adds a mode called modename. To configure the mode, either specify other options after /add, or specify configuration
options in additional snacfg mode commands (using the same modename).

/delete

Deletes modename.

/print

Causes the display of the snacfg command that would create the specified mode. The displayed command does not contain
the word snacfg, so that it can be redirected to a command file. See the information about command files earlier in this
section.

Options for APPC Modes
/comment:" text"

Adds an optional comment for the mode. The comment can contain as many as 25 characters; enclose the comment in
quotes.

/sessionlim: value

Specifies the parallel session limit.

The range is from 1 through 254. If no parallel session limit has been specified, the default is 1.

/conwin: value

Specifies the minimum contention winner limit.

The range is from 0 through the parallel session limit. If no minimum contention winner limit has been specified, the default

 [configpath] [configpath] modename [configpath] modename [options]
 [configpath] modename [options]
 [configpath] modename [configpath] modename

is 0.

/conlose: value

Specifies the partner minimum contention winner limit.

The range is from 0 through the parallel session limit. If no partner minimum contention winner limit has been specified, the
default is 0.

/autoact: value

Specifies the automatic activation limit.

The range is from 0 through the minimum contention winner limit.

/autopartner:{ yes | no }

Specifies whether this mode will be used in automatic partnering of APPC LUs.

If automatic partnering is left unspecified, the default is yes.

/highpriority:{ yes | no }

Specifies whether communication with this mode will be given preference over low-priority communication.

If the high-priority setting is left unspecified, the default is yes.

/pacesendcnt: value

Specifies the pacing send count. A value of 0 represents an unlimited number of frames.

The range is from 0 through 63. If no pacing send count has been specified, the default is 4.

/pacerecvcnt: value

Specifies the pacing receive count. A value of 0 represents an unlimited number of frames.

The range is from 0 through 63. If no pacing receive count has been specified, the default is 4.

/maxsendru: value

Specifies the maximum size for RUs sent by the TP(s) on the local system.

The range is from 256 through 16384. If no maximum send RU size has been specified, the default is 1024.

/maxrecvru: value

Specifies the maximum size for RUs received from the TP(s) on the remote system.

The range is from 256 through 16384. If no maximum receive RU size has been specified, the default is 1024.

/maxsendcomp:{ None | RLE | LZ9}

These options offer progressively better compression, but at a progressively higher CPU usage cost.

/maxrecvcomp:{ None | RLE | LZ9}

These options offer progressively better compression, but at a progressively higher CPU usage cost.

/allowcomp:{ yes | no}

If LZ9 is used, this option controls whether data is compressed using RLE before being further compressed using LZ9.

/endpointcomp:{ yes | no}

This option controls whether intermediate nodes may use compression if one of the endpoints does not support
compression or does not want to use it.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Pool
 

Purpose

Allows you to view, add, delete, or modify 3270 LU pools.

To assign existing 3270 LUs to a 3270 LU pool, first configure the pool with the snacfg pool command (including options),
then add the LUs with the snacfg lu command (using the /pool:poolname option).

Note
Configuration settings specified with snacfg pool correspond to 3270 LU pool settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured 3270 LU pools.

poolname

Specifies the name of the 3270 LU pool to view, add, modify, or delete. The name can be from one through eight characters
long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. The name cannot be the same as any other pool name or LU name (other than APPC LU names) in the
installation.

If no options are specified after poolname, the result is a list of the configuration settings for the specified pool.

/add

Adds a 3270 LU pool called poolname. To configure the 3270 LU pool, either specify other options after /add, or specify
configuration options in additional snacfg pool commands (using the same poolname).

/delete

Deletes poolname.

Options for 3270 LU Pools
/displaymodel:{ mod2 | mod3 | mod4 | mod5 | 2 | 3 | 4 | 5 }

Specifies the model number of the LUs that will be added to this pool. (Only display LUs can be pooled; printer LUs cannot be
pooled.) The following display models are available:

Model 2 is 24 lines by 80 characters.

Model 3 is 32 lines by 80 characters.

Model 4 is 43 lines by 80 characters.

Model 5 is 27 lines by 132 characters.

 [configpath] [configpath] poolname [configpath] poolname [options]
 [configpath] poolname [options]
 [configpath] poolname

Some emulators can only emulate certain display models. For more information, see your emulator documentation.

The display model setting of a pool overwrites the setting of any 3270 LU assigned to the pool.

If no display model has been specified for a pool, the default is Model 2.

/allowmodeloverride:{ yes | no }

Specifies whether the user is allowed to override the display model type of the LU by using the 3270 terminal emulation
program.

The model override setting of a pool overwrites the setting of any 3270 LU assigned to the pool.

If no setting has been specified for this parameter, the default is no.

/comment:" text"

Adds an optional comment to the specified 3270 LU pool. The comment can contain as many as 25 characters; enclose the
comment in quotes.

/assocprint:{ yes | no }

Specifies that the LU pool contains display LUs with associated 3270 printers.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg PoolA
 

Purpose

Allows you to view, add, delete, or modify LUA LU pools.

To assign existing LUA LUs to an LUA LU pool, first configure the pool with the snacfg poola command (including options),
then add the LUs with the snacfg lua command (using the /pool:poolname option).

Note
Configuration settings specified with snacfg poola correspond to LUA LU pool settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured LUA LU pools.

poolname

Specifies the name of the LUA LU pool to view, add, modify, or delete. The name can be from one through eight characters
long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. The name cannot be the same as any other pool name or LU name (other than APPC LU names) in the
installation.

If no options are specified after poolname, the result is a list of the configuration settings for the specified pool.

/add

Adds an LUA LU pool called poolname. To configure the LUA LU pool, either specify other options after /add, or specify
configuration options in additional snacfg poola commands (using the same poolname).

/delete

Deletes poolname.

Options for LUA LU Pools
/highpriority:{ yes | no }

Specifies whether LUs in this pool will be given priority over low-priority LUs. The priority setting of a pool overwrites the
setting of any LUA LU assigned to the pool.

/comment:" text"

Adds an optional comment to the specified LUA LU pool. The comment can contain as many as 25 characters; enclose the
comment in quotes.

See Also
Other Resources
Snacfg Reference

 [configpath] [configpath] poolname [configpath] poolname [options]
 [configpath] poolname [options]
 [configpath] poolname

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg PoolD
 

Purpose

Allows you to view, add, or delete downstream LU pools. Also allows you to view the command that would create a specified
downstream LU pool.

To assign existing downstream LUs to a downstream LU pool, first configure the pool with the snacfg poold command; then
add the LUs with the snacfg lud command (using the /pool:poolname option).

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured downstream LU pools.

poolname

Specifies the name of the downstream LU pool to view, add, or delete. The name can be from one through eight characters
long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. The name cannot be the same as any other pool name or LU name (other than APPC LU names) in the
subdomain.

If no options are specified after poolname, the result is a list of the configuration settings for the specified pool.

/add

Adds a downstream LU pool called poolname.

/delete

Deletes poolname.

/print

Causes the display of the snacfg command that would create the specified downstream LU pool. The displayed command
does not contain the word snacfg, so that it can be redirected to a command file. See the information about command files
earlier in this section.

/comment:" text"

Adds an optional comment to the specified downstream LU pool. The comment can contain as many as 25 characters;
enclose the comment in quotes.

See Also
Other Resources
Snacfg Reference

 [configpath] [configpath] poolname [configpath] poolname [] [text]
 [configpath] poolname [configpath] poolname

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg PrintServer
 

Purpose

Allows you to add, delete, or view printer servers from one subdomain or multiple subdomains.

Note
Configuration settings specified with snacfg printserver correspond to settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of print servers in the Host Integration Server subdomain.

/add

Adds the print server name of the Host Integration Server computer that is running the Host Integration Server Host Print
Service. To configure the server name, specify the name after the /add. The print server name must match the computer
name of the computer running Host Print Service.

You can add print servers for Host Integration Server computers that do not yet exist. For example, you can prepare a
configuration file to be used at another location and add the server names using this parameter. Until the computers are
configured with Host Integration Server running Host Print Service, SNA Manager will show them as offline.

/delete

Deletes the print server.

See Also
Other Resources
Snacfg Reference

 [configpath] [configpath] servername [configpath] servername

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg PrintSession3270
 

Purpose

Allows you to add, delete, modify, or view 3270 print sessions defined in the Host Print Service.

Note
Configuration settings specified with snacfg printsession3270 correspond to local print server settings configured with the S
NA Manager.

Note
The /feedignorefinal option is no longer supported. By default, this value is enabled. A PDF file can be used to control this be
havior if required.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of 3270 print sessions.

/print

Displays a list of the configuration settings of a print session. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a print session to the Host Print Service. To configure the print session, you must specify the server name and the
configured 3270 printer LU name after the /add using the /server:servername and /luname:Luname options.

/delete

Deletes the printer session. To delete the print session, you must specify the server name and the configured 3270 printer LU
name after the /delete.

Options for 3270 Print Sessions
/autoactivate:{ yes | no }

Specifies whether the printer session will automatically activate when Host Integration Server is started. The default is yes.

/bestfit:{ yes | no }

Specifies whether to scale the output to the paper size. The default is yes.

/codepage: {Country | Custom}

This defines the host code page language in which the print jobs are output. The default is Country and the default language
is English (United States) [037]. To change the default language, provide the number of the host code page of the
country/region you want with the /country option.

If you want to use a custom file for the host code page, you must use /customfile:text, where the text value is the name of

 [configpath] [configpath] [configpath] printsession3270nameservernameLUname[opti
ons]
 [configpath] printsession3270name [options]
 [configpath] printsession3270name

the file containing the specifications for the print job.

Host Code Page Numbers and Corresponding Language

Host Code Page Number Language

0 "Afrikaans [500]"

1 "Albanian [870]"

2 "Arabic (Algeria) [420]"

3 "Arabic (Kingdom of Bahrain) [420]"

4 "Arabic (Egypt) [420]"

5 "Arabic (Iraq) [420]"

6 "Arabic (Jordan) [420]"

7 "Arabic (Kuwait) [420]"

8 "Arabic (Lebanon) [420]"

9 "Arabic (Libya) [420]"

10 "Arabic (Morocco) [420]"

11 "Arabic (Oman) [420]"

12 "Arabic (Qatar) [420]"

13 "Arabic (Saudi Arabia) [420]"

14 "Arabic (Syria) [420]"

15 "Arabic (Tunisia) [420]"

16 "Arabic (U.A.E.) [420]"

17 "Arabic (Yemen) [420]"

18 "Basque [284]"

19 "Belarusian [1025]"

20 "Bulgarian [1025]"

21 "Catalan [284]"

22 "Chinese (PRC) [935]"

23 "Chinese (Singapore) [935]"

24 "Chinese (Hong Kong SAR) [937]"

25 "Chinese (Macao SAR) [937]"

26 "Chinese (Taiwan) [937]"

27 "Croatian [870]"

28 "Czech [870]"

29 "Danish [277]"

30 "Dutch (Belgium) [500]"

31 "Dutch (Standard) [037]"

32 "English (Australian) [037]"

33 "English (Belize) [500]"

34 "English (Canadian) [037]"

35 "English (Caribbean) [500]"

36 "English (Ireland) [285]"

37 "English (Jamaica) [500]"

38 "English (New Zealand) [037]"

39 "English (South Africa) [037]"

40 "English (Trinidad) [500]"

41 "English (United Kingdom) [285]"

42 "English (United States) [037]"

43 "Estonian [1112]"

44 "Faeroese [277]"

45 "Finnish [278]"

46 "French (Belgium) [500]"

47 "French (Canadian) [037]"

48 "French (Luxembourg) [500]"

49 "French (Standard) [297]"

50 "French (Swiss) [500]"

51 "German (Austrian) [273]"

52 "German (Liechtenstein) [500]"

53 "German (Luxembourg) [500]"

54 "German (Standard) [273]"

55 "German (Swiss) [500]"

56 "Greek [423]"

57 "Greek (Modern) [875]"

58 "Hebrew [424]"

59 "Hungarian [870]"

60 "Icelandic [871]"

61 "Indonesian [037]"

62 "Italian [280]"

63 "Italian (Swiss) [500]"

64 "International [500]"

65 "Japanese (Extend Katakana) [930]"

66 "Japanese (English-lower) [931]"

67 "Japanese (Extend English) [939]"

68 "Japanese (Katakana) [290]"

69 "Korean [933]"

70 "Latvian [1112]"

71 "Lithuanian [1112]"

72 "Macedonian [1025]"

73 "Malay [037]"

74 "Norwegian (Bokmal) [277]"

75 "Norwegian (Nynorsk) [277]"

76 "Polish [870]"

77 "Portuguese (Brazil) [037]"

78 "Portuguese (Portugal) [037]"

79 "Romanian [870]"

80 "Russian [880]"

81 "Serbian (Cyrillic) [1025]"

82 "Serbian (Latin) [870]"

83 "Slovak [870]"

84 "Slovenian [870]"

85 "Spanish (Argentina) [284]"

86 "Spanish (Bolivia) [284]"

87 "Spanish (Chile) [284]"

88 "Spanish (Columbia) [284]"

89 "Spanish (Costa Rica) [284]"

90 "Spanish (Dominican Rep.) [284]"

91 "Spanish (Ecuador) [284]"

92 "Spanish (El Salvador) [284]"

93 "Spanish (Guatemala) [284]"

94 "Spanish (Honduras) [284]"

95 "Spanish (Mexico) [284]"

96 "Spanish (Modern Sort) [284]"

97 "Spanish (Nicaragua) [284]"

98 "Spanish (Panama) [284]"

99 "Spanish (Paraguay) [284]"

100 "Spanish (Peru) [284]"

101 "Spanish (Puerto Rico) [284]"

102 "Spanish (Trad. Sort) [284]"

103 "Spanish (Uruguay) [284]"

104 "Spanish (Venezuela) [284]"

105 "Swedish [278]"

106 "Thai [838]"

107 "Turkish [905]"

108 "Turkish (Latin-5) [1026]"

109 "Ukrainian [1025]"

/collate:{ yes | no }

Adds an option to collate pages sequentially.

/color:{ yes | no }

For color printers, printing will be gray scale if nothing is selected.

/comment:" text"

Adds an optional comment for the printer session. It can contain as many as 25 characters; enclose the comment in quotes.

/copies: value

Specifies the number of copies for printing.

/country: value

Specifies the language in which the print jobs are printed.

/customfile:" text"

Specifies the name of the file containing the custom language translation information. Use this option if you specify
/codepage:custom.

/devicename:" text"

Specifies the name of the destination printer.

/duplex: simplex | horizontal | vertical

Specifies printing on two-sided paper.

/filterfile:" text"

The /filterfile is a defined programming API that allows you to pass the printer data stream to a third party or user supplied
DLL. Enter text to signify where the printer data stream should go.

/font:" text"

Specifies the font to be used in the printer sessions. This can be any available font installed on the computer.

/formname: string

Specifies the name for the form.

/margin: left, right, top, bottom

Specifies the margins of the page in inches in the order of left, right, top, bottom. The default margins are 0".

/orientation: portrait, landscape

Specifies the page layout as portrait or landscape.

/papersize: value

Specifies the size of the paper for printing.

Valid Values and Descriptions for Papersize

Value Constant Name (from wingdi.h) Description

1 DMPAPER_LETTER Letter, 8.5" x 11"

2 DMPAPER_LETTERSMALL Letter Small, 8.5" x 11"

3 DMPAPER_TABLOID Tabloid, 11" x 17"

4 DMPAPER_LEDGER Ledger, 17" x 11"

5 DMPAPER_LEGAL Legal, 8.5" x 14"

6 DMPAPER_STATEMENT Statement, 5.5" x 8.5"

7 DMPAPER_EXECUTIVE Executive, 7.25" x 10.5"

8 DMPAPER_A3 A3 Sheet, 297 x 420mm

9 DMPAPER_A4 A4 Sheet, 210 x 297mm

10 DMPAPER_A4SMALL A4 Small Sheet, 210 x 297mm

11 DMPAPER_A5 A5 Sheet, 148 x 210mm

12 DMPAPER_B4 B4 Sheet, 250 x 354mm

13 DMPAPER_B5 B5 Sheet, 182 x 257mm

14 DMPAPER_FOLIO Folio, 8.5" x 13"

15 DMPAPER_QUARTO Quarto, 215 x 275mm

16 DMPAPER_10X14 10" x 14" Sheet

17 DMPAPER_11X17 11" x 17" Sheet

18 DMPAPER_NOTE Note, 8.5" x 11"

19 DMPAPER_ENV_9 #9 Envelope, 3.875" x 8.875"

20 DMPAPER_ENV_10 #10 Envelope, 4.125" x 9.5"

21 DMPAPER_ENV_11 #11 Envelope, 4.5" x 10.375"

22 DMPAPER_ENV_12 #12 Envelope, 4.75" x 11"

23 DMPAPER_ENV_14 #14 Envelope, 5" x 11.5"

24 DMPAPER_CSHEET C Sheet, 17" x 22"

25 DMPAPER_DSHEET D Sheet, 22" x 34"

26 DMPAPER_ESHEET E Sheet, 34" x 44"

27 DMPAPER_ENV_DL DL Envelope, 110 x 220mm

28 DMPAPER_ENV_C5 C5 Envelope, 162 x 229mm

29 DMPAPER_ENV_C3 C3 Envelope, 324 x 458mm

30 DMPAPER_ENV_C4 C4 Envelope, 229 x 324mm

31 DMPAPER_ENV_C6 C6 Envelope, 114 x 162mm

32 DMPAPER_ENV_C65 C65 Envelope, 114 x 229mm

33 DMPAPER_ENV_B4 B4 Envelope, 250 x 353mm

34 DMPAPER_ENV_B5 B5 Envelope, 176 x 250mm

35 DMPAPER_ENV_B6 B6 Envelope, 176 x 125mm

36 DMPAPER_ENV_ITALY Italy Envelope, 110 x 230mm

37 DMPAPER_ENV_MONARCH Monarch Envelope, 3.875" x 7.5"

38 DMPAPER_ENV_PERSONAL 6.75 Envelope, 3.625" x 6.5"

39 DMPAPER_FANFOLD_US US Standard Fanfold, 14.875" x 11"

40 DMPAPER_FANFOLD_STD_GERMAN German Standard Fanfold, 8.5" x 12"

41 DMPAPER_FANFOLD_LGL_GERMAN German Legal Fanfold, 8.5" x 13"

Additional values, supported by Windows

42 DMPAPER_ISO_B4 B4 (ISO) 250 x 353mm

43 DMPAPER_JAPANESE_POSTCARD Japanese Postcard 100 x 148mm

44 DMPAPER_9X11 9" x 11"

45 DMPAPER_10X11 10" x 11"

46 DMPAPER_15X11 15" x 11"

47 DMPAPER_ENV_INVITE Envelope Invite 220 x 220mm

48 DMPAPER_RESERVED_48 Reserved -- do not use

49 DMPAPER_RESERVED_49 Reserved -- do not use

50 DMPAPER_LETTER_EXTRA Letter Extra, 9.275" x 12"

51 DMPAPER_LEGAL_EXTRA Legal Extra, 9.275" x 15"

52 DMPAPER_TABLOID_EXTRA Tabloid Extra, 11.69" x 18"

53 DMPAPER_A4_EXTRA A4 Extra, 9.27" x 12.69"

54 DMPAPER_LETTER_TRANSVERSE Letter Transverse, 8.275" x 11"

55 DMPAPER_A4_TRANSVERSE A4 Transverse, 210 x 297mm

56 DMPAPER_LETTER_EXTRA_ TRANSVERSE Letter Extra Transverse, 9.275" x 12"

57 DMPAPER_A_PLUS SuperA / A4, 227 x 356mm

58 DMPAPER_B_PLUS SuperB / A3, 305 x 487mm

59 DMPAPER_LETTER_PLUS Letter Plus, 8.5" x 12.69"

60 DMPAPER_A4_PLUS A4 Plus, 210 x 330mm

61 DMPAPER_A5_TRANSVERSE A5 Transverse, 148 x 210mm

62 DMPAPER_B5_TRANSVERSE B5 (JIS) Transverse, 182 x 257mm

63 DMPAPER_A3_EXTRA A3 Extra, 322 x 445mm

64 DMPAPER_A5_EXTRA A5 Extra, 174 x 235mm

65 DMPAPER_B5_EXTRA A5 Extra, 174 x 235mm

66 DMPAPER_A2 A2, 420 x 594mm

67 DMPAPER_A3_TRANSVERSE A3 Transverse, 297 x 420mm

68 DMPAPER_A3_EXTRA_TRANSVERSE A3 Extra Transverse, 322 x 445mm

/paperlength: value

Specifies the length of the paper for printing. The values for paperlength and paperwidth are in tenths of a millimeter, and
override the papersize setting.

/paperwidth:value

Specifies the width of the paper. The values for paperlength and paperwidth are in tenths of a millimeter, and override the
papersize setting.

/pdtfile:" text"

Specifies the name of a printer definition file.

/provider:" text"

This parameter maps to one of the two print provider DLLs (PPD3270.DLL or PPD5250.DLL) and tells the Host Printer Service
which DLL to load to do the printer communications (ppd3270.dll or ppd5250.dll). The text for snacfg printsession3270 is
PPD3270.

/printtofile:" text"

Specifies the name of a text file to which the output is to be sent. When information is entered into this parameter, the print
job is saved into a file on the hard drive instead of being sent to the printer.

/quality: high, medium, low, draft

Specifies the quality of print.

/scalefactor: value

Specifies the amount by which the printed output is to be scaled from the physical page size, divided by 100. For example, a

scale factor of 50 would make the printed output half its normal size, 10 would be one tenth, etc.

/server:" text"

Specifies the name of the server to which the session should attach. This is usually the name of an Host Integration Server
computer that is running the Host Print Service in the subdomain. When /add is used, this option is required.

/truetype: bitmap, download, substitute

Specifies TrueType fonts or substitutes.

/uniqueextension:{ yes | no }

When the /printtofile option is used, specifying YES enables the Host Print Service to generate a unique output file
extension for each print job.

/overridefontsize:{ yes | no }

Specifies whether or not the default font size can be overridden.

/fontsize:value

Specifies the size of the font (in points) used for output.

/charset:value

Specifies the font face used for output.

/bypassgdi:{ yes | no }

This allows print jobs that are formatted with host software to bypass the Windows printing format system. All the data from
the host is passed directly to the printer. The default is no.

/charsperline:value

Specifies the number of characters printed per line.

/feedperjob:{ yes | no }

If set to yes, it will issue a form feed between each print job. The default is no.

/feedignoreinitial:{ yes | no }

If set to yes, the beginning form feed in a print job will be ignored. The default is no.

/jobtermination:{ EndBracket | UnBind }

The print job will terminate when either a When End Bracket Received or a When Unbind Received command is
received by the printer. The default is EndBracket.

/linespacing:value

Specifies the space (in points) between printed lines.

/linesperinch:{ 6 | 8 }

This specifies the number of lines per inch (either six or eight) in the print job. The default is 6.

/linewrap:{ yes | no }

Specifies whether the text will automatically wrap at the end of a line.

/luname:" text"

The name of the configured 3270 printer LU. When /add is used, this option is required.

/monitorjob:{ yes | no }

If yes is specified, this feature sends a message to the host computer stating that the print job is completed. The default is no.

/pagewidth:{ 80 | 132 | 158 }

Specifies the default page width in number of characters per line. The values can be 80, 132, or 158 characters. The default is
80.

/skipblanklines:{ yes | no }

If there are blank lines in the print job, it will not print them if yes is specified. The default is no.

/timeout: value

Specifies the time limit, in seconds, for terminating print jobs.

/transparencyascii:{ yes | no }

This sets a flag that indicates that the transparent data from the host is in ASCII format and does not need translation from
EBCDIC. The default is no.

/transparencycustom: value

Specifies the custom byte that sends the data stream in transparent mode. The IBM standard value is 0x35, but if the host
print job uses another value, such as 0x36, then this should be specified.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg PrintSessionAPPC
 

Purpose

Allows you to add, delete, modify, or view APPC print sessions defined in the Host Print Service.

Note
Configuration settings specified with snacfg printsessionAPPC correspond to local print server setting configured with the S
NA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of APPC print sessions.

/print

Displays a list of the configuration settings of a print session. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a print session to the Host Print Service. To configure the print session, you must specify the server name and the
configured APPC local LU alias name after the /add. The required options are /server:servernameand
/localLUalias:localLUname

/delete

Deletes the printer session. To delete the print session, you must specify the server name and the configured local LU alias
after the /delete.

Options for APPC Print Sessions
/autoactivate:{ yes | no }

Specifies whether the printer session will automatically activate when Host Integration Server is started. The default is yes.

/bestfit:{ yes | no }

Specifies whether to scale the output to the paper size. The default is yes.

/codepage: {Country | Custom}

This defines the host code page language in which the print jobs are printed. The default is Country and the default
language is English (United States) [037]. To change the default language, provide the number of the host code page of
the country/region you want using the /country option.

If you want to use a custom file for the host code page, you must use /customfile:text, where the text value is the name of
the file containing the specifications.

/collate:{ yes | no }

Adds an option to collate pages sequentially.

 [configpath] [configpath] [configpath] printsessionAPPCnameservernamelocalLUname
[options]
 [configpath] printsessionAPPCname [options]
 [configpath] printsessionAPPCname

/color:{ yes | no }

For color printers, printing will be gray scale if nothing is selected.

/comment:" text"

Adds an optional comment for the printer session. It can contain as many as 25 characters; enclose the comment in quotes.

/country: value

Specifies the language in which the print jobs are printed.

/customfile:" text"

Specifies the name of the file containing the custom language translation information. Use this option if you specify
/codepage:custom.

/devicename:" text"

Specifies the name of the destination printer.

/duplex: simplex | horizontal | vertical

Specifies printing on two-sided paper.

/filterfile:" text"

This parameter is a defined programming API that allows you to pass the printer data stream to a third-party or user-
supplied DLL. Enter the text of the file to which the printer data stream should go.

/font:" text"

Specifies the font to be used in the printer sessions. This can be any available font installed on the computer.

/formname: string

Specifies the name for the form.

/margin: left, right, top, bottom

Specifies the margins of the page, in inches, in the order of left, right, top, bottom. The default margins are 0".

/orientation: portrait, landscape

Specifies the page layout as portrait or landscape.

/pagewidth: value (0-255)

Specifies the width of page in characters.

/papersize: value

Specifies the size of the paper for printing.

/paperlength: value

Specifies the length of the paper for printing. The values for paperlength and paperwidth are in tenths of a millimeter, and
override the papersize setting.

/paperwidth:v alue

Specifies the width of the paper. The values for paperlength and paperwidth are in tenths of a millimeter, and override the
papersize setting.

/pdtfile:" text"

Specifies the name of a printer definition file.

/provider:" text"

This parameter maps to one of the two print provider DLLs (PPD3270.DLL or PPD5250.DLL) and tells Host Printer Service
which DLL to load for the printer communications (ppd3270.dll or ppd5250.dll). The text for snacfg printsessionappc is
PPD5250.

/printtofile:" text"

Specifies the name of a text file to which the output is to be sent. When information is entered into this parameter, the print

job is saved into a file on the hard drive instead of sending it to the printer.

/quality: high, medium, low, draft

Specifies the quality of print.

/scalefactor: value

specifies the amount by which the printed output is to be scaled from the physical page size, divided by 100. For example, a
scale factor of 50 would make the printed output half its normal size, 10 would be one tenth, etc.

/server:" text"

Specifies the name of the server to which the session should attach. This is usually the name of an Host Integration Server
computer that is running the Host Print Service in the subdomain. When /add is used, this option is required.

/systemtype: {AS400 | System36}

Specifies the type of system being used.

/truetype: bitmap, download, substitute

Specifies TrueType fonts or substitutes.

/uniqueextension:{ yes | no }

When the /printtofile option is used, the Host Print Service can generate a unique output file extension for each print job.

/overridefontsize:{ yes | no }

Specifies whether or not the default font size can be overridden.

/fontsize:value

Specifies the size of the font (in points) used for output.

/charset:value

Specifies the font face used for output.

/as400devicename:" text"

Specifies the name of the AS/400 computer that will be sending the print job.

/locallualias:" text"

Specifies the previously configured local LU alias. This is a required parameter when using /add.

/remotelualias:" text"

Specifies the default remote APPC LU. If an LU is specified here, do not enter text into /remotefqname.

/remotefqname:" text"

Specifies the fully qualified name or alias of a remote APPC LU. The fully qualified name is the network name and LU name. If
text is entered here, do not enter text into /remotelualias.

/modename:" text"

The default mode name is QPCSUPP. The other mode names available are: #INTERSC, BLANK, and QSERVER.

/username:" text"

Specifies the authorized user.

/password:" text"

Specifies the user password.

/hostprinttransform:{ yes | no }

Enter yes to activate the Host Print Transform feature.

/msgqname:" text"

Specifies the qualified name of the message queue to which operational messages for this device are sent.

/msglibname:" text"

Specifies the library in which the message queue is located.

/hostprintertype:" text"

Specifies the type of host printer.

/copies:value

Specifies the number of copies to print.

/papersrc1:{ continuous | cut | autocut }

Specifies the type of paper used in the output device.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Server
 

Purpose

Allows you to view or change settings for servers. Can also be used to add a server, although the SNA Manager is the
recommended interface for adding servers.

Note
Configuration settings specified with snacfg server correspond to server settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the servers on the local subdomain.

servername

Specifies the name of the server on which settings will be viewed or changed. The server name should be in the format
machine_name or \\machine_name\snaservr (for specifying the primary node on the machine) and
\\machine_name\snasrv02 (or snasrv03, snasrv04, etc.) for specifying the secondary nodes on the machine.

/add

Adds a Host Integration Server computer called servername. For adding a server, the recommended method is to use the
SNA Manager, not snacfg server.

Before you can add connections to the server, link services must also be configured for the server. The recommended
interface for configuring link services is the SNA Manager.

/delete

Deletes servername.

Options for Servers
/netname:" text"

Specifies the local network name, which identifies the SNA network of the local server. The name can be from one through
eight characters long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are
converted to uppercase. If the local network name is specified, the local control point name must also be specified (using the
/cpname option).

/cpname:" text"

Specifies the local control point name, which identifies the local system to other control points (nodes) on the SNA network.
The name can be from one through eight characters long, and can contain alphanumeric characters and the special
characters $, #, and @. If the local control point name is specified, the local network name must also be specified (using the
/netname option).

When connecting to a host system and using a local control point name, the name should match the CPNAME = parameter
in the host's PU definition.

/comment:" text"

 [configpath] [configpath] servername [configpath] servername [options]
 [configpath] servername [options]
 [configpath] servername

Adds an optional comment for the specified server. The comment can contain as many as 25 characters; enclose the
comments in quotes.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg TN3Server
 

Purpose

Allows you to view, add, delete, or modify TN 3270 servers. This command can also be used to add a TN 3270 server, though
the SNA Manager is the recommended interface for adding servers.

Note
Configuration settings specified with snacfg tn3server correspond to server settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the TN 3270 servers on the local subdomain.

tn3servername

Specifies the computer name of the TN 3270 server on which settings will be viewed or changed.

/print

Displays a list of the configuration settings of a print session. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a TN 3270 Server computer called tn3servername. For adding a server, the recommended method is to use the SNA
Manager, not snacfg tn3server.

Before you can add connections to the server, link services must also be configured for the server. The recommended
interface for configuring link services is the SNA Manager.

/delete

Deletes tn3servername.

Options for TN 3270 Servers
/logauditevents:{ yes | no }

Specifies whether the TN service uses the event log to log informational messages as well as error conditions. These are
messages that log successful client connection and successful client termination.

/snaeventlog:{ yes | no }

Specifies whether the TN service uses the same event log as the SNA Manager. If this is set to yes, all TN3270 service event
messages are written to the event log being used by the Host Integration Server system. If this is set to no, all TN3270
service event messages are written to the Windows Event Log on the local machine.

/nameresolution:{ yes | no }

Name resolution should only be selected if you are running a domain name resolver. A domain name resolver catalogs IP
addresses and corresponding network names of connected computers. The domain name resolver allows you to enter the

 [configpath] [configpath] TN3Servername [configpath] TN3Servernname [configpath]
TN3Servernname [options]
 [configpath] TN3Servername [options]
 [configpath] TN3Servername

name of a computer rather than the IP address when an IP address is required.

/closelistensocket:{ yes | no }

By default, the TN3270 Service always has a socket open for listening for incoming requests. If this option is turned on, the
TN3270 Service stops listening on this socket once all of its defined LUs are in use. The purpose of this is to work with
emulators that can try to connect to a number of computers running TN3270 Service and that connect to whichever
computer accepts their connection attempt. In this case, it is useful if a computer with no LUs available is not listening.

/tn3270modeonly:{ yes | no }

The TN3270 Service now supports TN3270E, an enhancement to TN3270. When a client first connects to a computer
running TN3270 Service, it negotiates which functions they both support. TN3270 emulators should be able to negotiate
with TN3270 Service, if only to state that they do not support TN3270E. However, some TN3270 emulators are unable to
negotiate properly with TN3270 Service, causing the negotiation to fail. For this reason the TN3270 Service has an option to
default to TN3270 mode and not to use TN3270E features, so that these TN3270 negotiation problems do not occur.

/printerflowcontrol:{ yes | no }

If a TN3270 Server adheres strictly to the specification described in RFC 1647, there is no way of implementing flow control
between a computer running TN3270 Service and a TN3270 client. In practice this causes no problems for display emulators,
but it does cause a problem for printer emulators, which can be swamped with data and have no way of notifying the
TN3270 Service that they cannot process any more messages. If this option is turned on, the TN3270 Service sends all
messages to a TN3270 printer client as RESPONSE-REQUIRED, and does not send any messages until it has received a
response for the previous message.

/idletimeout: value 1-1440

Specifies time limits in seconds. If the session is inactive for this length of time, then TN3270 Service disconnects the client.

/initstatusdelay: value (0-86400)

Specifies time limits. This is the delay between the time when TN3270 Service connects to a host session and the time the
TN3270 Service starts updating the client screen. There are often a large number of startup messages when the TN3270
Service first connects to a host session, and this option gives the user the opportunity not to receive them all.

/msgclosedelay: value (0-86400)

Specifies time limits. When TN3270 Service forces a client to disconnect (for example, when the Host Integration Server
session to the host has been lost), it sends the client an error message to be displayed on the screen. This value specifies the
time between sending the message to the client and closing the socket with the client (which causes some clients to clear the
screen, and so erase the message).

/refreshcycletime: value (0-60)

Specifies time limits. This is the delay between updates of the status on the display.

/inboundrusize: value (256-32768)

This controls the RU size (SNA message size) used by the TN3270 Service for logon messages to and from the host. The
minimum value for inbound or outbound RU size is 256 bytes. If the host application sends large logon screens, these values
should be increased.

/outboundrusize: value (256-32768)

This controls the RU size (SNA message size) used by the TN3270 Service for logon messages to and from the host. The
minimum value for inbound or outbound RU size is 256 bytes. If the host application sends large logon screens, these values
should be increased.

/portnumber: value

Specifies the port number associated with telnet. You can type another port number to override the default value for a given
session. TN services listen on multiple ports simultaneously. You can set a default port number for the TN service (assign the
port number to the server) and override this number on a per session basis (assign the port number to the LU session),
allowing a single client to connect to multiple host computers.

/comment:" text"

Adds an optional comment for the specified server. The comment can contain as many as 25 characters; enclose the
comments in quotes.

See Also

Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg TN5Server
 

Purpose

Allows you to view, add, delete, or modify TN 5250 servers. the SNA Manager is the recommended interface for adding TN
5250 servers.

Note
Configuration settings specified with snacfg tn5server correspond to server settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the TN 5250 servers on the local subdomain.

Tn5servername

Specifies the computer name of the TN 5250 server on which settings will be viewed or changed.

/print

Displays a list of the configuration settings of a print session. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a Host Integration Server computer called tn5servername. For adding a TN 5250 server, the recommended method is
to use the SNA Manager, not snacfg tn5server.

Before you can add connections to the server, link services must also be configured for the server. The recommended
interface for configuring link services is the SNA Manager.

/delete

Deletes tn5servername.

Options for TN 5250 Servers
/portnumber: value

Specifies the port number associated with telnet (e.g., port number 23). You can type another port number to override the
default value for a given session. TN services listen on multiple ports simultaneously. You can set a default port number for
the TN service (assign the port number to the server) and override this number on a per session basis (assign the port
number to the LU session), allowing a single client to connect to multiple host computers.

/comment:" text"

Adds an optional comment for the specified server. The comment can contain as many as 25 characters; enclose the
comments in quotes.

See Also
Other Resources
Snacfg Reference

 [configpath] [configpath] TN5Servername [configpath] TN5Servernname [configpath]
TN5Servernname[options]
 [configpath] TN5Servername [options]
 [configpath] TN5Servername

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg TN3Session
 

Purpose

Allows you to view, add, delete, or modify TN 3270 sessions. the SNA Manager is the recommended interface for adding
sessions.

Note
Configuration settings specified with snacfg tn3session correspond to session settings configured with the SNA Manager.

Syntax

where

#configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the sessions on the local subdomain.

luname

Specifies the LU name on which the session will be activated.

/print

Displays a list of the configuration settings of a print session. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a TN 3270 session called luname. For adding a session, the recommended method is to use the SNA Manager, not
snacfg tn3session.

/delete

Deletes luname.

Options for TN 3270 Sessions
/tn3server: tn3servername(required)

Specifies the computer name of the TN 3270 server on which settings will be viewed or changed. The tn3servername is
required.

/assocname:" text"

Printer LUs can be marked as associated instead of generic or specific. To associate a printer LU with a terminal LU, type the
Associated LU name. When this option is selected, the terminal name will default to IBM-3287-1. The quotes must be
included.

/portnumber: value

Specifies the port number associated with telnet (e.g., port number 23). You can type another port number to override the
default value for a given session. TN services listen on multiple ports simultaneously. You can set a default port number for
the TN service (assign the port number to the server) and override this number on a per session basis (assign the port
number to the LU session), allowing a single client to connect to multiple host computers.

 [configpath] [configpath] luname [configpath] luname [configpath] luname[option
s]
 [configpath] luname [options]
 [configpath] luname

/pooltype: pooltype

The values for pooltype are: GenericTerminal, SpecificTerminal, GenericPrinter, SpecificPrinter, AssocPrinter.

/maxsessions: value

Specifies the maximum number of LU-LU sessions that one independent LU can support. The limit set by maxsessions
prevents an independent LU from using up too many unreserved session control blocks.

/modeltypes: model[,model,]

Values for TN3270 model types are:

Model2, Model3, Model4, Model5,

3275_2, 3276_2, 3277_2, 3278_2, 3278_2_E, 3279_2, 3279_2_E,

3276_3, 3278_3, 3278_3_E, 3279_3, 3279_3_E,

3276_4, 3278_4, 3278_4_E, 3279_4, 3279_4_E,

3278_5, 3278_5_E, 3279_5, 3279_5_E,

Dynamic, 3287_1

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg TN5Session
 

Purpose

Enables you to view, add, delete, or modify TN 5250 sessions. the SNA Manager is the recommended interface for adding
sessions.

Note
Configuration settings specified with snacfg tn5session correspond to session settings configured with the SNA Manager.

Syntax

where

#configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the sessions on the local subdomain.

appcrlualias

Specifies the APPC remote LU alias name on which the session will be activated.

/print

Displays a list of the configuration settings of a print session. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a TN 5250 session called appcrlualias. For adding a session, the recommended method is to use the SNA Manager, not
snacfg tn5session.

/delete

Deletes appcrlualias.

Options for TN 5250 Sessions
/tn5server: tn5servername(required)

Specifies the computer name of the TN 5250 server on which settings will be viewed or changed.

/locallu: appclualias(required)

Specifies the name of the APPC LU alias to view, add, modify, or delete. An APPC LU alias name can be from one through
eight characters long, and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are
converted to uppercase. The APPC LU alias name cannot be the same as any other APPC LU alias name or pool name on the
server.

/mode: modename

Specifies the name of the mode on which to carry out actions. A mode name can be from one through eight characters long,
and can contain alphanumeric characters and the special characters $, #, and @. Lowercase letters are converted to
uppercase. The mode name cannot be the same as any other mode name in the subdomain of the server.

If no options are specified after modename, the configuration settings for the specified mode are displayed.

 [configpath] [configpath] appcrlualias [configpath] appcrlualias [configpath] app
crlualias[options]
 [configpath] appcrlualias [options]
 [configpath] appcrlualias

/user: username

Specifies the name of the user to view, change settings for, or delete. For adding TN 5250 users, the recommended method
is to user the SNA Manager, not snacfg tn5session. If you are adding a user, username must match the name in the user's
account on the Windows domain or on the local system.

/password: password

Specifies the current password for the user's account identified in username.

/modeltypes: model(,model,)

Specifies the model type. Values for TN5250 model types are:

5555_C01, 5555_B01, 3477_FC, 3477_FG

3180_2, 3179_2, 3196_A1

5292_2, 5291_1, 5251_11

/portnumber: value

Specifies the port number associated with telnet (e.g., port number 23). You can type another port number to override the
default value for a given session. TN services listen on multiple ports simultaneously. You can set a default port number for
the TN service (assign the port number to the server) and override this number on a per session basis (assign the port
number to the LU session), allowing a single client to connect to multiple host computers.

/comment:" text"

Optionally, type a comment of up to 25 characters.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg TNIPID
 

Purpose

Allows you to view, add, delete, or modify telnet IP (Internet Protocol) addresses. the SNA Manager is the recommended
interface for adding TNIPIDs.

Note
Configuration settings specified with snacfg tnipid correspond to session settings configured with the SNA Manager.

Syntax

where

#configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the TNIPIDs on the local subdomain.

tnipid

Specifies the TN Internet Protocol (IP) address.

/print

Displays a list of the configuration settings of valid telnet IP addresses. The displayed command does not contain the word
snacfg, so that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds a TNIPID called tnipid. For adding a tnipid, the recommended method is to use the SNA Manager, not snacfg tnipid.

/delete

Deletes tnipid.

Options for TNIPID
/session: text

Specifies the session name for the specified telnet IP address.

/subnet: tnipaddress

Specifies the TN Internet Protocol (IP) address. If a tnipid parses as "n.n.n.n," it will be treated as an IPADDRESS. Otherwise, it
will be treated as an IPNAME.

See Also
Other Resources
Snacfg Reference

 [configpath] [configpath] tnipid [configpath] tnipid [configpath] tnipid [option
s]
 [configpath] tnipid [options]
 [configpath] tnipid

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg User
 

Purpose

Enables you to view, modify settings for, or delete users recognized by Host Integration Server. Also lets you assign LUs or LU
pools to 3270 users, or assign default LUs to 5250 users.

In addition, snacfg user enables you to add users to the list recognized by Host Integration Server. However, it is
recommended that you use the SNA Manager, not snacfg user, when adding users.

Important
If you add user names by using the /add option with snacfg user, these names must match existing user account names in t
he Windows domain, or a nonfunctioning configuration may result. To protect against errors with snacfg user, use the SNA
Manager, instead.

Before assigning LUs or LU pools to users, you must first configure the LUs or LU pools.

Note
Configuration settings specified with snacfg user correspond to user or group settings configured with the SNA Manager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of the 3270 users recognized by Host Integration Server.

domain/username

Specifies the domain and name of the user to add, view, change settings for, or delete.

For adding 3270 users, the recommended method is to use the SNA Manager, not snacfg user. If you are adding or
removing a user, username must match the name in the user's account on the Windows domain specified by domain.

/add

Adds a user called username to the list of 3270 users recognized by Host Integration Server. The user must already have an
account on the Windows domain or on the local system.

For adding 3270 users, the recommended method is to use the SNA Manager, not snacfg user.

/validate

Attempts to fill in any SIDs that are missing from user or group listings in the Host Integration Server configuration file. If the
SIDs can be obtained from user accounts in the Windows domain for each user, the SIDs will be added to the listings in the
Host Integration Server configuration.

Run snacfg user /validate after working offline and adding users to the configuration, so that the user listings in Host
Integration Server will be functional.

/delete

 [configpath] [configpath] username [configpath] username [options]
 [configpath] [configpath] username [options]
 [configpath] username

Deletes username.

Options for Users of 3270 Emulators
/insert: luname[, luname,...]

Assigns the specified 3270 or LUA LUs or pools to the user. Separate multiple names with commas.

/remove: luname[, luname,...]

Deletes the assignment of 3270 or LUA LUs or pools to the user. Separate multiple names with commas.

/insertrlu: luname[, luname,...]

Assigns APPC Remote LUs to the user. Separate multiple names with commas. The name rluname can be either the RLU alias
or its fully-qualified name of the form "netname.luname".

/removerlu: luname[, luname,...]

Deletes the assignment of APPC Remote LUs to the user. Separate multiple names with commas. The name rluname can be
either the RLU alias or its fully-qualified name of the form "netname.luname".

/domain: domainname

Specifies the Windows domain in which the user account is found. For all actions involving the domain name associated with
a user account, the recommended method is to use the SNA Manager, not snacfg user. If an incorrect domain name is
specified with snacfg user, a nonfunctioning configuration may result.

/comment:" text"

Adds an optional comment for the specified user. The comment can contain as many as 25 characters. The quotes must be
included.

/encrypt:{ yes | no }

Specify YES to enable data encryption between the server and client.

Options for Users of TPs or 5250 Emulators
/defloclu: LUalias

Specifies the default local APPC LU for this user or group. Both the user (or group) name and the LU alias must already be
configured in Host Integration Server. If /defloclu: is typed without LUalias, the user or group record is cleared of any
default local LU.

/defremlu: LUalias

Specifies the default remote APPC LU for this user or group. Both the user (or group) name and the LU alias must already be
configured in Host Integration Server. If /defremlu: is typed without LUalias, the user or group record is cleared of any
default remote LU.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Workstation
 

Purpose

The workstation assignment feature allows you to add, delete, modify, or view workstations. You can specify parameters such
as IP address, workstation name, and define access parameters to the workstation.

Note
Configuration settings specified with snacfg workstation correspond to local workstation settings configured with the SNA M
anager.

Syntax

where

configpath

Specifies the path of the configuration file to view or change. If the configuration path is omitted, Host Integration Server will
attempt to access the configuration file on the local system, using the path \Program Files\Host Integration
Server\SYSTEM\CONFIG\COM.CFG.

/list

Generates a list of configured workstations.

/print

Displays a list of the configuration settings of a workstation. The displayed command does not contain the word snacfg, so
that it can be redirected to a command file. Command files are discussed earlier in this section.

/add

Adds the workstation ID using a either a name or IP address to identify the workstation. The workstation ID is usually the
workstation name.

If using an IP address to identify the workstation, the /address option is a required parameter.

To configure the workstation, either specify other options after /add or specify configuration options in additional snacfg
workstation workstationid commands.

/delete

Deletes the workstation.

Options for Workstation
/insert: luname[,luname,]

Assigns the specified 3270 or LUA LUs or pools to the workstation. Separate multiple names with commas.

/remove: luname[,luname,]

Deletes the assignment of 3270 or LUA LUs or pools to the workstation. Separate multiple names with commas.

/insertrlu: luname[, luname,...]

Assigns APPC Remote LUs to the workstation. Separate multiple names with commas. The name rluname can be either the
RLU alias or its fully-qualified name of the form "netname.luname".

/removerlu: luname[, luname,...]

Deletes the assignment of APPC Remote LUs to the workstation. Separate multiple names with commas. The name rluname

 [configpath] [configpath] workstationid [configpath] workstationid [configpath] w
orkstationid [options]
 [configpath] workstationid [options]
 [configpath] workstationid

can be either the RLU alias or its fully-qualified name of the form "netname.luname".

/comment:" comment"

Sets the workstation's comment field. The quotes must be included.

/wkstaonly:{ yes | no }

If yes,it restricts resources available on the computer to the LUs assigned to the workstation. Users will not be able to access
LUs assigned to them unless the LU is also assigned to the workstation. If no, it allows users access to the LUs assigned to
the workstation and the LUs assigned to the user. The default is no.

/address:{ yes | no }

If yes, Host Integration Server will look for an IP address in place of an alphanumeric name for the workstation ID. This
parameter must be set to yes if using an IP address. The default is no.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Snacfg Error Messages
This section lists the error codes and their corresponding messages used by Snacfg commands.

Er
ro
r
C
o
d
e

Message

3
8
4
1

Insufficient privilege to run the SNA Manager program in this domain.

3
8
4
2

The activation value is invalid.

3
8
4
3

The link service is invalid.

3
8
4
4

The allocation timeout is invalid.

3
8
4
5

The audit level is invalid.

3
8
4
6

The Control Point Name is invalid. The name can be from one through eight alphanumeric characters long.

3
8
4
7

The Switched Connection Establishment Timeout is invalid. The range is from 10 through 500 seconds; the default is 300.

3
8
4
8

The Contact Retry Limit is invalid. The range is from 1 through 20; the default is 10.

3
8
4
9

The Contact Timeout is invalid. The range is from 5 (five-tenths of a second) through 300 (30 seconds). The default is 300 (3
0 seconds).

3
8
5
0

The Partner Min Contention Winner Limit is invalid. The range is from 0 through the parallel session limit; the default is 0.

3
8
5
1

The Minimum Contention Winner Limit is invalid. The range is from 0 through the parallel session limit; the default is 0.

3
8
5
2

The default connection for the display verb is invalid.

3
8
5
3

The DLC type is invalid.

3
8
5
4

The domain name is invalid.

3
8
5
5

The duplex value is invalid.

3
8
5
6

Internal : Bad existing record.

3
8
5
7

Facility Data is invalid. Facility Data can include as many as 126 hexadecimal digits.

3
8
5
8

The configuration file is corrupt or does not have correct structure.

3
8
5
9

The configuration file name is invalid. Verify that a primary or backup server is running in the domain you are trying to ad
minister.

3
8
6
0

Internal : Bad File Handle.

3
8
6
1

The Idle Retry Limit is invalid. The range is from 1 through 255; the default is 10.

3
8
6
2

The Idle Timeout is invalid. The range is from 1 (one-tenth of a second) through 300 (30 seconds). The default is 300 (30 se
conds).

3
8
6
3

The Automatic Activation Limit is invalid. The range is from 0 through the Minimum Contention Winner Limit.

3
8
6
4

The Security Key Type is invalid.

3
8
6
5

The Line Type is invalid.

3
8
6
6

The LU Name is invalid. The name can be from one through eight characters long, and can contain alphanumeric characters
and the special characters $, #, and @. Lowercase letters are converted to uppercase. Names for APPC LUs must be differen
t from one another, and names for non-APPC LUs must be different from one another.

3
8
6
7

The LU Number is invalid. The range is from 1 through 255. The LU Number cannot be the same as that for any other LU us
ing the connection, including local APPC LUs paired with remote APPC LUs that use the connection.

3
8
6
9

The Mode Name is invalid. The name can be from one through eight characters long, and can contain alphanumeric charact
ers and the special characters $, #, and @. Lowercase letters are converted to uppercase.

3
8
7
0

The Display Model is invalid.

3
8
7
1

The Name or Alias is invalid.

3
8
7
2

The LU Name is invalid. The name can be from one through eight characters long, and can contain alphanumeric characters
and the special characters $, #, and @. Lowercase letters are converted to uppercase. Names for APPC LUs must be differen
t from one another.

3
8
7
3

The NetView connection is invalid.

3
8
7
4

The Network Name is invalid. The name can be from one through eight characters long, and can contain alphanumeric char
acters and the special characters $, #, and @. Lowercase letters are converted to uppercase.

3
8
7
5

The Network Name is invalid. The name can be from one through eight characters long, and can contain alphanumeric char
acters and the special characters $, #, and @. Lowercase letters are converted to uppercase.

3
8
7
6

The value for 'Model can be overridden' is invalid.

3
8
7
7

The Packet Size is invalid. The possible values are 64, 128, 256, and 512. The default is 128.

3
8
7
8

The LU Partner is invalid.

3
8
7
9

The password is invalid. A password can contain from one through 10 characters.

3
8
8
0

The Poll Address is invalid. The address is a two-digit hexadecimal number; the address cannot be the reserved values 00 or
FF.

3
8
8
1

The Poll Rate is invalid. The range is from 1 through 50 polls per second; the default is 5.

3
8
8
2

The Poll Retry Limit is invalid. The range is from 1 through 255; the default is 10.

3
8
8
3

The Poll Timeout is invalid. The range is from 1 (one-tenth of a second) through 300 (30 seconds). The default is 10 (1 seco
nd).

3
8
8
4

The Port is invalid.

3
8
8
5

Internal : Invalid record.

3
8
8
6

The Remote X.25 Address is invalid. The address usually consists of 12 hexadecimal digits, but can contain up to 15 hexadec
imal digits.

3
8
8
7

The Role Type is invalid.

3
8
8
8

The RTM Timers Run Until value is invalid.

3
8
8
9

The first three digits of the Remote Node ID are invalid. These digits, also called the Block Number, can be any three hexade
cimal digits except 000 or FFF, which are reserved.

3
8
9
0

The last five digits of the Remote Node ID are invalid. These digits, also called the Node Number, can be any five hexadecim
al digits.

3
8
9
1

The Max Receive RU Size is invalid. The range is from 256 through 16384; the default is 1024.

3
8
9
2

The Pacing Receive Count is invalid. The range is from 0 through 63; the default is 4.

3
8
9
3

The Remote SAP Address is invalid. The address can be a 2-digit hexadecimal number that is a multiple of 04, between 04 a
nd EC. The default is 04.

3
8
9
4

The Security Key is invalid. For a Security Key in Hex, type a 16-digit hexadecimal number. For a Security Key in Characters, t
ype an eight-character string consisting of alphanumeric characters and/or $, @, #, and the period (.).

3
8
9
5

The server name is invalid.

3
8
9
6

The Parallel Session Limit is invalid. Legal values are between 1 and 10000 inclusive.

3
8
9
7

The Parallel Session Limit is invalid. Legal values are between 1 and 10000 inclusive.

3
8
9
8

The Timeout for Starting TPs is invalid. The range is from 1 through 3600 seconds; the default is 60 seconds.

3
8
9
9

The Timeout for Starting TPs is invalid. The range is from 1 through 3600 seconds; the default is 60 seconds.

3
9
0
0

The Maximum BTU Length is invalid. The range is from 265 through 16393; the defaults are: Token Ring:\t1929Ethernet:\t1
493Channel:\t4105SLDC:\t\t265X25:\t\t1033.

3
9
0
1

The Remote Network Address is invalid. The address is a 12-digit hexadecimal value.

3
9
0
2

The Retry Limit is invalid. The range is from 0 through 255; the default is 10. A value of zero means the system uses its inter
nal default retry limit.

3
9
0
3

The Receive ACK Threshold is invalid. The range is from 1 through 127; the default is 2.

3
9
0
4

The Unacknowledged Send Limit is invalid. The range is from 1 through 127; the default is 8.

3
9
0
5

The XID Retries value is invalid. The range is from 0 through 30; the default is 3.

3
9
0
6

The first three digits of the Local Node ID are invalid. These digits, also called the Block Number, can be any three hexadeci
mal digits except 000 or FFF, which are reserved.

3
9
0
7

The last five digits of the Local Node ID are invalid. These digits, also called the Node Number, can be any five hexadecimal
digits except 00000, which is reserved.

3
9
0
8

The Max Send RU Size is invalid. The range is from 256 through 16384; the default is 1024.

3
9
0
9

Minimum Send RU is invalid.

3
9
1
0

The Pacing Send Count is invalid. The range is from 0 through 63; the default is 4.

3
9
1
1

User Data is invalid. User Data consists of an even number of hexadecimal charters, up to the maximum of 32 characters. Th
e default is C3; this specifies the Qualified Logical Link Control (QLLC) protocol.

3
9
1
2

The User ID is invalid. The User ID can contain from one through 10 characters.

3
9
1
3

The PVC Alias is invalid. The range is from 1 through the number of configured PVC channels; the default is 1.

3
9
1
4

The configuration file has been created by newer version of Host Integration Server. The Admin program only supports ne
wer versions in read only mode.

3
9
1
5

The Window Size is invalid.

3
9
1
7

The connection cannot be modified when there are downstream LUs associated with it.

3
9
1
8

There is already a 3270 LU with this name.

3
9
1
9

There is already a 3270 Pool with this name.

3
9
2
0

There is already a Link Service with this name.

3
9
2
1

Multiple implicit partners or modes are not allowed for a local LU.

3
9
2
2

There is already an LU with this LU Number.

3
9
2
3

There is already an LUA LU with this name.

3
9
2
4

There is already an LUA Pool with this name.

3
9
2
5

The name or alias has already been used.

3
9
2
6

There is already a Host Integration Server with this name.

3
9
2
7

There is already a Downstream LU with this name.

3
9
2
8

There is already an Downstream LU Pool with this name.

3
9
2
9

The LU-LU pair already exists, or the adapter assignment already exists for the connection.

3
9
3
0

There is already a user with this name.

3
9
3
1

Unable to read the file.

3
9
3
2

Unable to write the file.

3
9
3
3

Field conflict. Unable to change.

3
9
3
4

Writing to active file is not allowed.

3
9
3
5

Configuration file was not found.

3
9
3
6

Limit reached on objects associated with this item.

3
9
3
7

Internal: Configuration is invalid.

3
9
3
8

Session Limit conflicts with contention settings.

3
9
3
9

Line Types do not match.

3
9
4
0

Unable to write to active configuration file.

3
9
4
1

Lost contact with remote domain.

3
9
4
2

Unable to allocate memory.

3
9
4
3

Internal: Memory corruption has occurred. Please reload configuration file.

3
9
4
4

The number of LUs or connections for this Host Integration Server has been exceeded. Each Host Integration Server is capa
ble of supporting 250 connections and 15000 dependent LUs.

3
9
4
5

Internal: LUs are on different servers.

3
9
4
6

Implicit partner or mode is not implicit.

3
9
4
7

Internal: The item to be deleted is already absent from this grouping.

3
9
4
8

Internal: Record has already been added to the configuration.

3
9
4
9

A connection must have an associated link service.

3
9
5
0

The Initially Active value must be zero for Local/Local Partners.

3
9
5
1

The diagnostics record could not be found in the configuration file.

3
9
5
2

Parallel Sessions are not supported on this LU.

3
9
5
3

When a link service is to be used by multiple connections, and the connections accept incoming calls, the NRZ/NRZI setting
s for all the connections must match.

3
9
5
4

The configuration file is an older config file.

3
9
5
5

Internal: Target record already has an owner.

3
9
5
6

The internal control record for the configuration file has exceeded its maximum size.

3
9
5
7

During the conversion of an old Comm Server configuration file, COM.SEC was found to be corrupt, or of the wrong versio
n type.

3
9
5
8

Insufficient privilege or the configuration file is locked for read\\write access.

3
9
5
9

Limit reached on number of objects in a configuration file.

3
9
6
0

Limit reached on number of objects of this type.

3
9
6
1

Internal: Invalid record type.

3
9
6
2

Unable to change this record.

3
9
6
3

The connection cannot be modified when there are LUs associated with it.

3
9
6
4

The Session Limit is invalid.

3
9
6
5

One of the DLC timeout values is invalid.

3
9
6
6

This Return code is not used.

3
9
6
7

The LU Alias has already been used. The LU Alias cannot be the same as any other APPC LU on its server.

3
9
6
8

Unable to configure domain because the primary Host Integration Server for the domain is not active.

3
9
6
9

The same Remote Network Address and SAP have already been specified for this link service in connection %s. To create m
ore than one connection to the same remote machine, add one or more 802.2/DLC link services via Host Integration Server
Setup over the same adapter with different local SAP addresses. This will automatically create additional connections in SN
A Manager. Alternatively, if further SAPs are available at the remote machine, choose a different Remote SAP for this conne
ction.

3
9
7
0

No users or groups have been defined with Full Control Administration Access privileges. At least one user or group must b
e configured with permissions to alter the configuration.

3
9
7
1

The Fully Qualified LU Name has already been used. The combination of the Net Name and LU Name cannot be the same a
s any other APPC LU on the server.

3
9
7
2

Another Incoming Connection for this Link Service is already configured for XID 0. Multiple Incoming connections for one Li
nk Service can only be configured if the connections use XID 3.

3
9
7
3

Another incoming connection for this link service is configured for a different NRZ/NRZI setting. Multiple incoming connect
ions for one link service must use the same NRZ/NRZI setting.

3
9
7
4

Another Incoming Connection for this Link Service is configured for a different Poll Address. Multiple Incoming connections
for one Link Service must use the same Poll Address.

3
9
7
5

Another Primary Multidrop Connection for this Link Service is configured for this Poll Address. Primary Multidrop connecti
ons for the same Link Service must use different Poll Addresses.

3
9
7
6

Another Primary Multidrop Connection for this Link Service is configured for a different NRZ/NRZI setting. Primary Multidr
op connections for the same Link Service must use the same NRZ/NRZI setting.

3
9
7
7

Another Primary Multidrop Connection for this Link Service is configured for a different Maximum BTU Length. Primary Mu
ltidrop connections for the same Link Service must use the same Maximum BTU Length.

3
9
8
4

Another Primary Multidrop Connection for this Link Service is configured for a different XID Type. Primary Multidrop conne
ctions for the same Link Service must use the same XID Type.

3
9
8
5

Another Primary Multidrop Connection for this Link Service is configured for a different Duplex setting. Primary Multidrop
connections for the same Link Service must use the same Duplex setting.

3
9
8
6

Another Primary Multidrop Connection for this Link Service is configured for a different Data Rate. Primary Multidrop conn
ections for the same Link Service must use the same Data Rate.

3
9
8
7

Another Primary Multidrop Connection for this Link Service is configured for a different Data Rate. Primary Multidrop conn
ections for the same Link Service must use the same Data Rate.

3
9
8
8

Another Primary Multidrop Connection for this Link Service is configured for a different Poll Timeout. Primary Multidrop co
nnections for the same Link Service must use the same Poll Timeout.

3
9
8
9

Another Primary Multidrop Connection for this Link Service is configured for a different Poll Retry Limit. Primary Multidrop
connections for the same Link Service must use the same Poll Retry Limit.

3
9
9
0

Another Primary Multidrop Connection for this Link Service is configured for a different Contact Timeout. Primary Multidro
p connections for the same Link Service must use the same Contact Timeout.

3
9
9
1

Another Primary Multidrop Connection for this Link Service is configured for a different Contact Retry Limit. Primary Multid
rop connections for the same Link Service must use the same Contact Retry Limit.

3
9
9
2

Leased SDLC connections cannot support Incoming Calls. Leased connections do not require either end to initiate the conne
ction, therefore both ends treat the connection as Outgoing Calls only.

3
9
9
3

The Partner LU specified for the CPI-C Symbolic Destination Name does not exist.

4
0
0
0

The Mean time between broadcasts is invalid. The range is from 45 through 65535 seconds; the default is 60.

4
0
0
1

No protocols have been defined to send Server Broadcasts. At least one protocol must be configured to send Server Broadc
asts.

4
0
0
2

The Channel Address is invalid.

4
0
0
3

Could not perform the necessary privilege lookup to enable the required privileges in your process.

4
0
0
4

Could not perform the necessary operations on the process token to enable the required privileges.

4
0
0
5

You do not have the privileges required to set system ACLs on files.

4
0
0
6

Unable to get or set security information on the config file.

4
0
0
7

All connections on this SDLC Link Service must have their multidrop primary flag set the same way.

4
0
0
8

Unable to obtain a write lock on the config file.

4
0
0
9

The config file has become out of date and you must reload it.

4
0
1
0

Bad parameter to function.

4
0
1
1

The LU Alias has already been used. The LU alias cannot be the same as any other APPC LU on its server.

4
0
1
2

You do not have the privileges necessary to lock the config file.

4
0
1
3

Only a primary 3.0 or later computer can write a pre-3.0 configuration file.

4
0
1
4

This configuration contains un-partnered dependent Local LU(s). These LU(s) have been discarded.

4
0
1
5

The primary configuration file could not be located. The primary Host Integration Server may be unavailable. No configurati
on changes may be made at this time.

4
0
1
6

This LU is already assigned to this user.

4
0
1
7

There is already a dependent Local APPC LU with this LU number.

4
0
1
8

There is already a 3270 LU with this LU number.

4
0
1
9

Insufficient privilege to modify the config file.

4
0
2
0

A 3270 LU name must be provided.

4
0
2
1

The AS/400 device name must be provided.

4
0
2
2

The Local LU Alias must be provide

4
0
2
3

The Remote LU Alias or Fully Qualified Name must be provided.

4
0
2
4

The mode must be provided.

4
0
2
5

A Workstation with the same ID exists. Please use a different ID.

4
0
2
6

The page width must be between 40 and 512.

4
0
2
7

This LU is already assigned to this workstation.

See Also
Other Resources
Snacfg Reference

https://msdn.microsoft.com/en-us/library/aa770945(v=bts.10).aspx

Linkcfg Reference
The following sections reference specific areas of Linkcfg.

This section contains:

About Linkcfg

Linkcfg Error Messages

Demo SDLC Link Service

Distributed Link Service

DLC 802.2 Link Service

https://msdn.microsoft.com/en-us/library/aa771464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745644(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705277(v=bts.10).aspx

Linkcfg
Purpose

Allows you to install and delete link services from the command prompt. Linkcfg allows you to build script files to add link
services. If you need to uninstall or reinstall Host Integration Server, you can reinstall link services by running the Linkcfg script
files.

To view the list of link services you can install using Linkcfg, type the command linkcfg. The following appears:

Note
If one of the link services was not copied during Setup, it will not appear on the list.

When setting the parameters for each of the link services, you must type the link service exactly as it appears above.

The configurable parameters for each link service are provided in the command-line help. To see the parameters for each, type
the following:

LINKCFG LINKSVC /LSTYPE:"name of link service" where the name is one of those listed above. The available parameters will
appear on the screen. The following sections list the available parameters for each link service.

See Also
Other Resources
Linkcfg Reference

LINKCFG [LINKSVC /LSTYPE:{
"Andrew Twinax Link Service"|
"Atlantis/SAGEM SDLC Link Service"|
"Atlantis/SAGEM X.25 Link Service"|
"DCA ISCA SDLC Link Service"|
"DCA ISCA X.25 Link Service"|
"DEMO SDLC Link Service"
"Distributed Link Service"|
"DLC 802.2 Link Service"|
"IBM SDLC Link Service"|
"IBM Twinax Link Service"|
"IBM X.25 Link Service"|
"MicroGate SDLC Link Service"|
"MicroGate X.25 Link Service" }]
 [@commandfile]

https://msdn.microsoft.com/en-us/library/aa754424(v=bts.10).aspx

Linkcfg Error Messages
The LinkCfg command utility returns the following codes and their corresponding messages. If you use the Windows
Command Prompt, you only see the message. If you use Microsoft's System Management Server (SMS) to distribute link
services across clients, you see the message and return code.

Error Code Message
0 success.

160 command-line arguments are invalid.

1114 Unable to initialize Link Service DLL.

1157 Unable to locate DLL file.

In addition, LinkCfg will return error codes from GetLastError() calls for all file I/O operations.

See Also
Other Resources
Linkcfg Reference

https://msdn.microsoft.com/en-us/library/aa754424(v=bts.10).aspx

Demo SDLC Link Service
Linkcfg options for the Demo SDLC link service. You can install the 3270 Continuous Demo, the 3270 File Transfer Demo, the
3270 Logon Demo, the AS400 Demo, and the LU1 and LU3 Printing Demos. Each of these demos is a script file that is run to
demonstrate access to mainframe and AS/400 computers.

Note
Configuration settings specified with LINKCFG correspond to local link configuration settings in the SNA Manager.

Syntax

/LINKSVC" title" (The quotes must be included.)

Enter the name of the service title. The quotes must be included. While any title name can be used, it is recommended that
one of the following titles be used:

/LSTYPE:"Demo SDLC Link Service"

This parameter is used to list the available options for the Demo SDLC link service. You must type in the exact string as
shown above for it to work correctly. The quotes must be included.

/SERVER: servername

This is the name of the computer on which the link service is to be installed.

/SCRIPTFILE:" script file"

This is the name of the demonstration script. Host Integration Server provides the following scripts:

"Continuous Demo.dem" - this is the 3270 continuous demo script..

"File Transfer Demo.dem" - this is the file transfer demo script.

"3270 Logon Demo.dem" - this is the 3270 logon demo script.

"AS400 Demo.dem" - this is the 5250 demo script.

"LU1 Printing Demo.dem "- this is the demo script showing LU1 printing.

"LU3 Printing Demo.dem" - this is the demo script showing LU3 printing. (The quotes must be included.)

See Also
Other Resources
Linkcfg Reference

LINKCFG LINKSVC "title" (The quotes must be included.)
 /SERVER:servername
 /LSTYPE:"DEMO SDLC Link Service"
 /SCRIPTFILE: {"3270 Continuous Demo.dem" |
 "3270 File Transfer Demo.dem" |
 "3270 Logon Demo.dem" |
 "AS400 Demo.dem" |
 "LU1 Printing Demo.dem" |
 "LU3 Printing Demo.dem"}
 /DISTRIBUTABLE:

https://msdn.microsoft.com/en-us/library/aa754424(v=bts.10).aspx

Distributed Link Service
Linkcfg options for distributed link service.

Note
Configuration settings specified withlinkcfgcorrespond to local link configuration settings in the SNA Manager.

Syntax

/LINKSVC" title"

Enter the name of the distributed link service. The quotes must be included. Any title name can be used.

/SERVER: servername

This is the name of the computer on which the link service is to be installed.

/LSTYPE:"Distributed Link Service"

This parameter is used to list the available options for the distributed link service. You must type in the exact string as shown
above for it to work correctly. The quotes must be included.

/REMOTELINKTYPE:{ Channel | Ethernet 802.2 | LeasedSDLC | SwitchedSDLC | TokenRing802.2 | Twinax | X.25 }

This parameter defines the remote link type for the distributed link service.

/REMOTELIST:\\ server\ service[;\\ server\ service;]

This is the name of the remote link service, for example \\SNASERV1\SNADLC1;\\SNASERV2\SNADLC1.

/ALTLIST: \\server\service[;\\server\service;]

These are the names of alternate (backup) link services using the preceding format and example.

/DOMAIN: domain

Enter the name of the Host Integration Server subdomain. This is a required parameter if Host Integration Server is installed
on a system account, not a local account.

/USERID: userid

Enter the name of the userid for the system account. This is a required parameter if Host Integration Server is installed on a
system account, not a local account.

/PASSWORD: password

Enter the password of the system account. This is a required parameter if Host Integration Server is installed on a system
account, not a local account.

See Also
Other Resources
Linkcfg Reference

LINKCFG LINKSVC "title"
 /SERVER:servername
 /LSTYPE:"Distributed Link Service"
 /REMOTELINKTYPE:{ Channel | Ethernet802.2 | LeasedSDLC |
 SwitchedSDLC | TokenRing802.2 | Twinax | X.25QLLC }
 /REMOTELIST:\\server\service[;\\server\service;...]
 /ALTLIST:\\server\service[;\\server\service;...]
 /DOMAIN:domain
 /USERID:userid
 /PASSWORD:password

https://msdn.microsoft.com/en-us/library/aa754424(v=bts.10).aspx

DLC 802.2 Link Service
Linkcfg options for the DLC 802.2 link service.

Note
Configuration settings specified withlinkcfgcorrespond to local link configuration settings in the SNA Manager.

Recommended Syntax

/LINKSVC" title"

Enter the name of the service title. The quotes must be included. Any title name can be used.

/SERVER: servername

This is the name of the computer on which the link service is to be installed.

/LSTYPE:"DLC 802.2 Link Service"

This parameter is used to list the available options for the DLC 802.2 link service. You must type in the exact string as shown
above for it to work correctly. The quotes must be included.

/ADAPTERTYPE: adaptertype

This parameter specifies the adapter type (using the adapter name) for the link service. Type the name of the adapter. This is
an optional parameter and does not need to be defined if there is only one adapter installed. If there are multiple adapters in
the computer and this parameter is not specified, it will use the first adapter it finds in the Registry, and only if the adapter
has been bound with the DLC protocol.

The adapter name can be located in the registry using the following path:

The value is:

Bindform:REG_SZ: "short name of adapter" yes yes container

/SAP:hexvalue

Enter the SAP address using a hexadecimal value. For example, an acceptable value is 0x4, or 0xC.

/DISTRIBUTABLE:{ yes | no }

This parameter is used to specify whether the link service will be distributed. The Distributed Link Service feature provides a
method for a Host Integration Server computer to connect with a host using a link service installed on a different Host
Integration Server computer.

See Also
Other Resources
Linkcfg Reference

LINKCFG LINKSVC "title" (The quotes must be included.)
 /SERVER:servername
 /LSTYPE:"DLC 802.2 Link Service"
 /ADAPTERTYPE:adaptertype
 /SAP:hexvalue
 /DISTRIBUTABLE:

HKEY_LOCAL_MACHINE
 SOFTWARE
 Microsoft
 Windows NT
 CurrentVersion
 NetworkCards
 number
 NetRules

https://msdn.microsoft.com/en-us/library/aa754424(v=bts.10).aspx

Sample Host Definitions
This section presents some sample host definitions used for establishing a Host Integration Server computer connection to IBM
S/370 (host) systems. The samples show configuration values for Host Integration Server computer connections of the
following types:

Connection type Connection use Host system

Token Ring 3270 emulation Virtual Telecommunications Access Method (VTAM)

SDLC switched 3270 emulation VTAM

SDLC leased 3270 emulation VTAM

X.25 3270 emulation VTAM

Any type LU 6.2 Customer Information Control System (CICS)

Note
The VTAM listings in this topic omit the column 72-continuation character.

In This Section

Token Ring Definition

SDLC Definition (for Switched and Leased Lines)

X.25 Definition

https://msdn.microsoft.com/en-us/library/aa705810(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772107(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771255(v=bts.10).aspx

Token Ring Definition
The following table shows a VTAM definition for a connection between a Host Integration Server computer and an IBM 9370
host computer across a Token Ring local area network (LAN).

VTAM Token Ring definitions
Na
me

Des
crip
tio
n

Parameters

LA
NO
DE

VB
UIL
D

TYPE=LAN

R0
11
00

PO
RT

CUADDR=100,MACADDR=400001701100, LANCON=(5,2),MAXDATA=2012, MAXSTN=32,SAPADDR=04

G0
11
00

GR
OU
P

DIAL=YES,ISTATUS=ACTIVE,LNCTL=SDLC

L0
11
00
A

LIN
E

CALL=INOUT

P0
11
00
A

PU MAXLU=254

L0
11
00
B

LIN
E

CALL=INOUT

P0
11
00
B

PU MAXLU=254

SW
LA
N

VB
UIL
D

TYPE= SWNET,MAXGRP=5,MAXNO=12

SE
RV
ER
01

PU ADDR=C1,IDBLK=05D,IDNUM=00001, ANS=CONTINUE,MAXDATA=265, MAXOUT=7,MAXPATH=7,PACING=0, VPA
CING=0,SSCPFM=USSSCS, LANACK=(0,0),LANCON=(5,2), LANINACT=4.8,LANRESP=(5,2), LANSDWDW=(7,1),LANS
W=YES, MACADDR=4000000000FD,PUTYPE=2, DISCNT=(NO),ISTATUS=ACTIVE, SAPADDR=04

E0
11
00
A

PAT
H

DIALNO=0004400001701100, GRPNM=G01100,GID=1,PID=1,USE=YES

T0
11
00
00

LU LOCADDR=002,DLOGMOD=D4C32782

T0
11
00
01

LU LOCADDR=003,DLOGMOD=D4C32782

T0
11
00
02

LU LOCADDR=004,DLOGMOD=D4C32782

T0
11
00
03

LU LOCADDR=005,DLOGMOD=D4C32782

T0
11
00
04

LU LOCADDR=006,DLOGMOD=LU33286S

The following table defines key parameters for Token Ring.

VTAM parameter descriptions for Token Ring
VTAM p
aramete
r

Corresponding H
ost Integration S
erver parameter

Description

IDBLK= First three digits of
local node ID (basi
c connection settin
g)

A three-digit hexadecimal value that, together with IDNUM, identifies the Host Integration Server
computer. The values 000 and FFF cannot be used; these values are reserved.

IDNUM= Last five digits of l
ocal node ID (basic
connection setting)

A five-digit hexadecimal value that, together with IDBLK, identifies the Host Integration Server co
mputer.

MAXDAT
A=

(in the P
U definiti
on for SE
RVER01)

Max basic transmis
sion unit (BTU) Len
gth (advanced 802.
2 setting)

The maximum length of a BTU sent or received; BTUs are also known as I-frames. Max BTU Lengt
h should be less than or equal to MAXDATA.

MACADD
R=

(in the P
ORT defi
nition)

Remote Network A
ddress (basic 802.
2 setting)

The media access control address, a 12-digit hexadecimal address.

SAPADD
R=

(in the P
U definiti
on)

Remote service acc
ess point (SAP) Ad
dress (advanced 8
02.2 setting)

The system access point address, a two-digit hexadecimal number, a multiple of 4, between 04 a
nd EC.

LOCADD
R=

(in the LU
definition
)

Local unit (LU) Nu
mber

The LU local address at the physical unit (PU). For independent LUs that communicate with a hos
t, the LOCADDR parameter must be set to 0. For dependent LUs with VTAM, the LOCADDR must
be at least 2. Also, for dependent LUs, the LU Numbers set in the Host Integration Server comput
er must match the LOCADDR values on the host.

The GRPNM value shown in the sample above is a group name; group names must match the label of a VTAM group
definition. The DLOGMOD values shown in the sample are the logon mode table entries from the mode table. For descriptions
of the group macros used in these samples and a complete listing of default mode table entries, see the documentation for
your IBM product.

See Also
Other Resources
Sample Host Definitions

https://msdn.microsoft.com/en-us/library/aa770970(v=bts.10).aspx

SDLC Definition (for Switched and Leased Lines)
The following table shows a sample IBM 9370 VTAM definition for four Synchronous Data Link Control (SDLC) lines. The
LLGROUP label shows the VTAM definitions for lines B80 and BB0 of a leased group. The SNAGROUP label shows the VTAM
definitions for lines B90 and BA0 of a switched group.

VTAM definition for four SDLC lines
Label Operation Operands

IBMLINE VBUILD TYPE=CA

LLGROUP GROUP LNCTL=SDLC,DIAL=NO,ACTIVTO=10

L01B80 LINE ADDRESS=B80,PAUSE=0.4,REPLYTO=2.0, RETRIES=7

P01B80A PU ADDR=C1,DISCNT=NO,PASSLIM=7, PUTYPE=2,MAXOUT=7,USSTAB=AUSSTAB

T01B8002 LU LOCADDR=002,DLOGMOD=D4C32792

T01B8003 LU LOCADDR=003,DLOGMOD=D4C32792

T01B8004 LU LOCADDR=004,DLOGMOD=D4C32792

L01BB0 LINE ADDRESS=BB0,PAUSE=0.4,REPLYTO=2.0, RETRIES=7

P01BB0A PU ADDR=C1,DISCNT=NO,PASSLIM=7, PUTYPE=2,MAXOUT=7,USSTAB=AUSSTAB

T01BB000 LU LOCADDR=002,DLOGMOD=D4C32792

T01BB001 LU LOCADDR=003,DLOGMOD=D4C32792

T01BB002 LU LOCADDR=004,DLOGMOD=D4C32792

T01BB003 LU LOCADDR=005,DLOGMOD=D3C32792

T01BB004 LU LOCADDR=006,DLOGMOD=LU33286S

SNAGROUP GROUP LNCTL=SDLC,DIAL=YES,MAXLU=20

L01B90 LINE ADDRESS=B90,PAUSE=0.4,REPLYTO=2.0, RETRIES=7

P01B90A PU

L01BA0 LINE ADDRESS=BA0,PAUSE=0.4,REPLYTO=2.0, RETRIES=7

P01BA0A PU

The following table shows the sample IBM 9370 VTAM switched definition for the SNAGROUP label.

VTAM switched definition for SNAGROUP
Label Operati

on
Operands

SWNOD
E

VBUILD TYPE=SWNET,MAXGRP=0,MAXNO=0

SWPU1 PU ADDR=C1,IDBLK=017,IDNUM=DC006, DISCNT=NO,PASSLIM=2,PUTYPE=2, MAXDATA=265,MAXOUT=2,
USSTAB=MSUSSTAB

T01BA0
00

LU LOCADDR=2,DLOGMOD=D4C32782

T01BA0
01

LU LOCADDR=3,DLOGMOD=D4C32782

T01BA0
02

LU LOCADDR=4,DLOGMOD=D4C32782

T01BA0
03

LU LOCADDR=5,DLOGMOD=D4C32782

T01BA0
04

LU LOCADDR=6,DLOGMOD=LU33286S

The following table describes key parameters for SDLC.

VTAM Parameter Descriptions for SDLC
VTAM p
aramete
r

Corresponding H
ost Integration S
erver parameter

Description

ADDR= Poll Address (adva
nced SDLC setting)

A two-digit hexadecimal value that identifies the control unit that the host uses to poll.

IDBLK= First three digits of
Local Node ID (basi
c connection settin
g)

A three-digit hexadecimal value that, together with IDNUM, identifies the Host Integration Server
computer. The values 000 and FFF cannot be used; these values are reserved.

IDNUM= Last five digits of L
ocal Node ID (basic
connection setting)

A five-digit hexadecimal value that, together with IDBLK, identifies the Host Integration Server co
mputer.

MAXDAT
A=

(in the P
U definiti
on for S
WPU1)

Max basic transmis
sion unit (BTU) Len
gth (advanced SDL
C setting)

The maximum length of a BTU sent or received; BTUs are also known as I-frames.

LOCADD
R=

LU Number The LU local address at the PU. For independent LUs that communicate with a host, the LOCADD
R parameter must be set to zero. For dependent LUs with VTAM, the LOCADDR must be at least
2. Also, for dependent LUs, the LU Numbers set in the Host Integration Server computer must m
atch the LOCADDR values on the host.

The DLOGMOD values shown in the example are the logon mode table entries from the mode table. For a complete listing of
default mode table entries, see the documentation for your IBM product.

See Also
Other Resources
Sample Host Definitions

https://msdn.microsoft.com/en-us/library/aa770970(v=bts.10).aspx

X.25 Definition
The following table shows a sample IBM 9370 VTAM definition for X.25 circuits. The X25GROUP label shows the VTAM
definitions for switched virtual circuits 001 through 006.

VTAM definition for X.25 connection
Label Oper

ation
Operands

X25N
ODE

VBUI
LD

TYPE=PACKET

PORT
A00

PORT CUADDR=(A00,A08),NETTYPE=1, CHARGACC=YES,CHARGE=NO, VCALLS=(,,001,006,,),DIALNO=31370023061
MAXOUT=7,NETLEVEL=80,PMOD=8, PLENGTH=256,PWINDOW=3,REPLYT0=3, RETRIES=7

VCPA
00

VCPA
RMS

LC=(1,6),PWINDOW=3,PLENGTH=256

X25G
ROUP

GRO
UP

DIAL=YES,LNCTL=SDLC,CALL=INOUT, ISTATUS=ACTIVE

L01A
00A

LINE ADDRESS=001,AUTO=001, ISTATUS=ACTIVE

P01A
OOA

PU MAXLU=32

L01A
00B

LINE ADDRESS=002,ISTATUS=INACTIVE, AUTO=002

P01A
OOB

PU MAXLU=32

L01A
00C

LINE ADDRESS=003,ISTATUS=INACTIVE, AUTO=003

P01A
OOC

PU MAXLU=32

L01A
00D

LINE ADDRESS=004,ISTATUS=INACTIVE, AUTO=004

P01A
OOD

PU MAXLU=32

L01A
00E

LINE ADDRESS=005,ISTATUS=INACTIVE, AUTO=005

P01A
OOE

PU MAXLU=32

L01A
00F

LINE ADDRESS=006,ISTATUS=INACTIVE, AUTO=006

P01A
OOF

PU MAXLU=32

The following table shows the sample IBM 9370 VTAM switched definition for the X25GROUP label.

VTAM switched definition for X25GROUP
Lab
el

Oper
atio
n

Operands

X25 VBUI
LD

TYPE=SWNET,MAXGRP=5,MAXNO=12

USE
R01

PU ADDR=C1,IDBLK=05D,IDNUM=00025, ANS=CONTINUE,MAXDATA=265, MAXOUT=7,MAXPATH=0,PACING=0, V
PACING=0,SSCPFM=USSSCS, IRETRY=YES,USSTAB=MSUSSTAB, PUTYPE=2,DISCNT=YES,ISTATUS=ACTIVE

T01
A00
02

LU LOCADDR=002,DLOGMOD=D4C32792

T01
A00
03

LU LOCADDR=003,DLOGMOD=D4C32792

T01
A00
04

LU LOCADDR=004,DLOGMOD=D4C32792

T01
A00
05

LU LOCADDR=005,DLOGMOD=D4C32792

T01
A00
06

LU LOCADDR=006,DLOGMOD=LU33286S

The following table defines key parameters for X.25.

VTAM Parameter Descriptions for X.25
VTAM p
aramete
r

Corresponding
Host Integratio
n Server param
eter

Description

IDBLK= First three digits
of Local Node ID
(basic connection
setting)

A three-digit hexadecimal value that, together with IDNUM, identifies the Host Integration Server
computer. The values 000 and FFF cannot be used; these values are reserved.

IDNUM= Last five digits of
Local Node ID (ba
sic connection set
ting)

A five-digit hexadecimal value that, together with IDBLK, identifies the Host Integration Server co
mputer.

DIALNO
=

(in the P
ORT defi
nition)

Remote X.25 Add
ress

An address that identifies an X.25 system. The address consists of from 1 through 15 hexadecimal
digits. If a 15-digit address is used, the final 3 digits are used for routing between stations with the
same 12-digit address.

MAXDAT
A=

(in the P
U definiti
on for US
ER01)

Max BTU Length (
advanced X.25 se
tting)

The maximum length of a BTU sent or received.

LOCADD
R=

LU Number The LU local address at the PU. For independent LUs that communicate with a host, the LOCADDR
parameter must be set to 0. For dependent LUs with VTAM, the LOCADDR must be at least 2. Also,
for dependent LUs, the LU numbers set in the Host Integration Server computer must match the L
OCADDR values on the host.

In Table A.4, the LU numbers range from 002 to 006.

See Also
Other Resources
Sample Host Definitions

https://msdn.microsoft.com/en-us/library/aa770970(v=bts.10).aspx

CICS and VTAM Sample Definitions for LU 6.2
This topic presents sample definitions for CICS (version 1.6) and VTAM (version 3.2) for Host Integration Server computer
connections to an IBM host system for LU 6.2 operation.

To configure a CICS host system for LU 6.2 operation with a Host Integration Server system, you configure the following
information at the host:

The remote systems with which CICS is able to communicate.

The name used by VTAM to communicate with each remote system.

The transaction programs (TPs) available on the CICS system.

The programming language (PL/I, COBOL, or Assembler) in which each program is written.

This information is configured in CICS and VTAM tables. This topic provides sample definitions that show how to configure
CICS for LU 6.2 using these CICS and VTAM tables.

In This Section

CICS Tables

VTAM Definitions

https://msdn.microsoft.com/en-us/library/aa704939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770470(v=bts.10).aspx

CICS Tables
CICS uses the following tables to define LU 6.2 information:

Terminal Control Table (TCT)—defines the remote systems to CICS.

Program Control Table (PCT)—defines the local TPs to CICS.

Program Processing Table (PPT)—defines the load module characteristics to CICS.

The following sections describe these tables, and include sample definitions to illustrate how they are used.

Note
These samples assume there are four TPs residing on CICS written in PL/I with the following names: TRAN0, TRAN1, TRAN2,
and TRAN3.

This section contains:

Terminal Control Table

Program Control Table

Program Processing Table

https://msdn.microsoft.com/en-us/library/aa746122(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744378(v=bts.10).aspx

Terminal Control Table
The sample Terminal Control Table (TCT) defines the remote systems to CICS. Each remote system is specified using a DFHTCT
definition, which includes both the name by which CICS knows the system (the SYSIDNT field), and the name by which VTAM
knows the system (the NETNAME field).

Sample CICS terminal control table entries
La
be
l

Defin
ition

Operands

TP
11

DFHT
CT

TYPE=SYSTEM ACCMETH=VTAM, FEATURE=SINGLE,TRMTYPE=LUTYPE62, NETNAME=TPLU6207,SYSIDNT=DC11,
MODENAM=LU62,CONNECT=AUTO, BUFFER=256,RUSIZE=256, TRMSTAT=(TRANSCEIVE)

TP
12

DFHT
CT

TYPE=SYSTEM ACCMETH=VTAM, FEATURE=SINGLE,TRMTYPE=LUTYPE62, NETNAME=TPLU6208,SYSIDNT=DC12,
MODENAM=LU62,CONNECT=AUTO, BUFFER=256,RUSIZE=256, TRMSTAT=(TRANSCEIVE)

TP
13

DFHT
CT

TYPE=SYSTEM ACCMETH=VTAM, FEATURE=SINGLE,TRMTYPE=LUTYPE62, NETNAME=TPLU6209,SYSIDNT=DC13,
MODENAM=LU62,CONNECT=AUTO, BUFFER=256,RUSIZE=256, TRMSTAT=(TRANSCEIVE)

TP
14

DFHT
CT

TYPE=SYSTEM ACCMETH=VTAM, FEATURE=SINGLE,TRMTYPE=LUTYPE62, NETNAME=TPLU620A,SYSIDNT=DC14,
MODENAM=LU62,CONNECT=AUTO, BUFFER=256,RUSIZE=256, TRMSTAT=(TRANSCEIVE)

See Also
Other Resources
CICS Tables

https://msdn.microsoft.com/en-us/library/aa704939(v=bts.10).aspx

Program Control Table
The Program Control Table (PCT) defines the local transaction programs (TPs) to CICS. Each TP is specified using a DFHPCT
definition that includes the name by which the TP is invoked (the TRANSID field) and the corresponding load module name
from the CICS library of TPs.

Sample CICS program control table entries
TP La
bel

Definiti
on

Operands

TRAN
0

DFHPCT TYPE=ENTRY PROGRAM=TRAN0000, TWASIZE=1000,SPURGE=NO,TPURGE=NO, RSL=00,RSLC=NO,MODE
NAM=NORMAL, TRANSID=TRAN0

TRAN
1

DFHPCT TYPE=ENTRY PROGRAM=TRAN0001, TWASIZE=1000,SPURGE=NO,TPURGE=NO, RSL=00,RSLC=NO,MODE
NAM=NORMAL, TRANSID=TRAN1

TRAN
2

DFHPCT TYPE=ENTRY PROGRAM=TRAN0002, TWASIZE=1000,SPURGE=NO,TPURGE=NO, RSL=00,RSLC=NO,MODE
NAM=NORMAL, TRANSID=TRAN2

TRAN
3

DFHPCT TYPE=ENTRY PROGRAM=TRAN0003, TWASIZE=1000,SPURGE=NO,TPURGE=NO, RSL=00,RSLC=NO,MODE
NAM=NORMAL, TRANSID=TRAN3

* ****** * PROFILE TO BE USED IN LU6.2 ALLOCATE * ****** *

TP Label Definition Operands
 DFHPCT TYPE=PROFILE, PROFILE=DFHCICSA, INBFMH=ALL,MODENAME=LU62

See Also
Other Resources
CICS Tables

https://msdn.microsoft.com/en-us/library/aa704939(v=bts.10).aspx

Program Processing Table
The Program Processing Table (PPT) defines the load module characteristics to CICS.

Each load module is defined using the DFHPPT definition, which includes the name of the load module (the PROGRAM field),
and the language in which the module has been written. Examples are PL/I, Assembler, or COBOL (the PGMLANG field).

Sample CICS program processing table entries
Definition Program name Language
DFHPPT TYPE=ENTRY PROGRAM=TRAN0000 PGMLANG=PL/I

DFHPPT TYPE=ENTRY PROGRAM=TRAN0001 PGMLANG=PL/I

DFHPPT TYPE=ENTRY PROGRAM=TRAN0002 PGMLANG=PL/I

DFHPPT TYPE=ENTRY PROGRAM=TRAN0003 PGMLANG=PL/I

See Also
Other Resources
CICS Tables

https://msdn.microsoft.com/en-us/library/aa704939(v=bts.10).aspx

VTAM Definitions
Each remote system must be defined to VTAM in its table of Network Addressable Units, (NAUs), using logical unit (LU)
definitions.

If a LOGAPPL parameter is specified on the LU definition naming the CICS system, CICS will attempt to establish a session to
that LU whenever it becomes active. This is necessary if TPs residing in CICS do not use the ALLOCATE verb with
RETURN_CONTROL=WHEN_SESSION_ALLOCATED to establish sessions. There must also be a VTAM mode table definition
present for LU 6.2, although CICS does not use the values specified here.

Sample VTAM network control program (NCP) definition for LU 6.2
Labe
l

Oper
ation

Operands

TPPU
62

PU ADDR=C1,IBLK=03E,IDNUM=01A1A, IRETRY=YES,DISCNT=NO,ISTATUS=ACTIVE, MAXDATA=265,SSCPFM=USS
SCS, MODETAB=MRNDS,USSTAB=USSNDN1, MAXOUT=7,PASSLIM=7,PUTYPE=2

TPLU
6207

LU LOCADDR=7,DLOGMOD=LU62, USSTAB=USSNOMSG

TPLU
6208

LU LOCADDR=8,DLOGMOD=LU62, USSTAB=USSNOMSG

TPLU
6209

LU LOCADDR=9,DLOGMOD=LU62, USSTAB=USSNOMSG

TPLU
620A

LU LOCADDR=A,DLOGMOD=LU62, USSTAB=USSNOMSG

The following table shows NCP mode table entries for LU 6.2.

Sample NCP mode table entries for LU 6.2
Label Operation Operands
 MODETAB

LU62 MODEENT LOGMODE=NORMAL

 . . .

 MODEEND

Note
It is recommended that the mode used by LU 6.2 be listed first, as shown by the LU62 example in the preceding table.

See Also
Concepts
TP Coding Requirements

https://msdn.microsoft.com/en-us/library/aa746188(v=bts.10).aspx

TP Coding Requirements
To work with CICS, TPs must be coded to specify a SYSID parameter on the ALLOCATE request that matches the defined
SYSIDNT parameter configured in the DFHTCT tables. This request must be in the following format:

The SYSID field must match the SYSIDNT field specified for a CICS program by the DFHTCT definition in the TCT (Terminal
Control Table). The TCT then uses the NETNAME parameter to refer to a specific LU in the VTAM table of the NAUs (Network
Addressable Units). This parameter is used by the TP to communicate with the remote system.

See Also
Reference
VTAM Definitions

EXEC CICS ALLOCATE SYSID('DC11')

https://msdn.microsoft.com/en-us/library/aa770470(v=bts.10).aspx

Sense Codes
This section lists the sense codes used by Host Integration Server.

Host Integration Server sense codes are sent on either a negative response to an outbound data stream or an LUSTAT that
notifies the host of a change in the secondary logical unit (LU) state. The sense codes generated by a 3270 emulator program
are shown in the following tables.

Negative response sense codes
Value Meaning
0802 Intervention required (LU 1/LU 3 printer soft error).

0814 Bracket bid reject RTR forthcoming.

081B Receiver in transmit mode.

081C Request not executable (hard error).

0821 Invalid session parameters (negotiable BIND request).

0829 Change direction required.

082B Presentation space integrity lost.

082D LU busy (usually local copy print in progress).

082E Intervention required (local copy print soft error).

082F Request not executable (local copy print hard error).

0843 WCC print command bit not sent (RQD or RQE, CD, EB).

0863 Referenced character set does not exist.

0871 Read partition state error (SLU in retry state).

1003 Function not supported.

1005 Parameter modifying a control function is invalid.

1007 Category not supported (SSCP data for host printer).

LUSTAT sense codes
Value Meaning
0001 B000 Host initialized local copy soft error recovery.

081C 0000 Soft error changed to hard error (LU 1/LU 3).

081C B000 Soft error changed to hard error (local copy).

082B 0000 LU session changed from SSCP to PLU (SYSREQ).

See Also
Other Resources
Administrator’s Reference

https://msdn.microsoft.com/en-us/library/aa704936(v=bts.10).aspx

Character Tables
This section provides tables that show the ASCII, ANSI, and IBM extended character sets.

ASCII Character Set

ASCII Character Set (continued)

ANSI Character Set

IBM Extended Character Set

See Also
Reference
Host Print Service Character Translation Table Format

https://msdn.microsoft.com/en-us/library/aa745003(v=bts.10).aspx

Host Print Service Character Translation Table Format
The character translation table that can be used by the custom code page option of Host Print service is a 512-byte file, split
into two 256-byte regions. Bytes 0255 are the mapping bytes for data from the host; bytes 256511 map data to the host.

For example, the following illustrates standard translation tables for the 037 EBCDIC code page:

Bytes 0-255: Data from Host

Each byte that is received represents a location, that is, a byte offset, in the appropriate table. For example, if the value 0xC1
(the EBCDIC value for the letter A) is received from the host, it is converted to the value in position 0xC1 in the first table; that
is, to 0x41 (the ASCII value for the letter A). This is shown in bold in the preceding table.

Similarly, if the letter Z (ASCII value 0x5A) is to be transmitted to the host, it is first converted to the value located in position
0x5A in the second table, which is 0xE9 (the EBCDIC value for Z). This is shown in bold in the table below:

Bytes 256511: Data to Host

Currently, only the first table (bytes 0255) is used by Host Print service. However, the file must be exactly 512 bytes in length,
so the final 256 bytes must be present, even if they are set to zero.

See Also
Reference
Character Tables

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
10| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
30| 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
40| 20 a0 e2 e4 e0 e1 e3 e5 e7 f1 a2 2e 3c 28 2b 7c
50| 26 e9 ea eb e8 ed ee ef ec df 21 24 2a 29 3b ac
60| 2d 2f c2 c4 c0 c1 c3 c5 c7 d1 a6 2c 25 5f 3e 3f
70| f8 c9 ca cb c8 cd ce cf cc 60 3a 23 40 27 3d 22
80| d8 61 62 63 64 65 66 67 68 69 ab bb f0 fd de b1
90| b0 6a 6b 6c 6d 6e 6f 70 71 72 aa ba e6 b8 c6 a4
a0| b5 7e 73 74 75 76 77 78 79 7a a1 bf d0 dd fe ae
b0| 5e a3 a5 b7 a9 a7 b6 bc bd be 5b 5d af a8 b4 d7
c0| 7b 42 43 44 45 46 47 48 49 ad f4 f6 f2 f3 f5
d0| 7d 4a 4b 4c 4d 4e 4f 50 51 52 b9 fb fc f9 fa ff
e0| 5c f7 53 54 55 56 57 58 59 5a b2 d4 d6 d2 d3 d5
f0| 30 31 32 33 34 35 36 37 38 39 b3 db dc d9 da 00

 | 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00| 00 01 02 03 37 2d 2e 2f 16 05 25 0b 0c 0d 0e 0f
10| 10 14 24 04 b6 15 32 26 18 19 00 27 1c 1d 1e 1f
20| 40 5a 7f 7b 5b 6c 50 7d 4d 5d 5c 4e 6b 60 4b 61
30| f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 7a 5e 4c 7e 6e 6f
40| 7c c1 c2 c3 c4 c5 c6 c7 c8 c9 d1 d2 d3 d4 d5 d6
50| d7 d8 d9 e2 e3 e4 e5 e6 e7 e8 ba e0 bb b0 6d
60| 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96
70| 97 98 99 a2 a3 a4 a5 a6 a7 a8 a9 c0 4f d0 a1 00
80| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0| 41 aa 4a b1 9f b2 6a b5 bd b4 9a 8a 5f ca af bc
b0| 90 8f ea fa be a0 b6 b3 9d da 9b 8b b7 b8 b9 ab
c0| 64 65 62 66 63 67 9e 68 74 71 72 73 78 75 76 77
d0| ac 69 ed ee eb ef ec bf 80 fd fe fb fc ad 8e 59
e0| 44 45 42 46 43 47 9c 48 54 51 52 53 58 55 56 57
f0| 8c 49 cd ce cb cf cc e1 70 dd de db dc 8d ae df

https://msdn.microsoft.com/en-us/library/aa771694(v=bts.10).aspx

Troubleshooting
A variety of diagnostic methods and tools are available to troubleshoot Microsoft Host Integration Server. These methods and
tools can provide information about the status of services, connections, 3270, APPC and LUA sessions, and performance. Data
can be obtained from the SNA Manager, NetView, RTM, System Monitor, and trace files.

In This Section

Troubleshooting Tools and Tips

Adapters and Link Service Problems

Connection Problems

Event and Error Problems

Performance Problems

Host Print Service Problems

Configuration Problems

Problems with Other Features

Troubleshooting Network Integration

Troubleshooting Transaction Integrator

https://msdn.microsoft.com/en-us/library/aa770480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770918(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771291(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771132(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771835(v=bts.10).aspx

Troubleshooting Tools and Tips
Using the Host Integration Server management console, SNA Manager, you can view the status and properties of services,
connections, 3270 sessions, APPC sessions, LUA sessions and the number of active users. Server status information includes
Active, Inactive, Pending, Stopping, Active [Out of Date] or Error. If the server is active, the number of licensed users and
licensed sessions is also shown

If you have an Active [Out of Date] status, the server needs to be restarted to bring the internal parameters up to date with the
latest configuration changes. The Error status indicates that an unexpected condition has made the server inaccessible to the
SNA Manager.

Connection status can be Active, Pending, Stopping, or Inactive. On Demand connections can also show a status of "On
Demand", meaning that the connection will become active when needed. Incoming connections can also show "Incoming",
meaning that the connection is available to receive incoming calls.

The status of a non-APPC LU can be Inactive, In Session, SSCP, Available, or Pending. A downstream LU can also have a status
of Unavailable. The SSCP status indicates that the LU is in use but is not yet bound to a specific host application. The Available
status indicates that the LU is recognized by the host as an available LU. Pending status indicates that a user is trying to access
the LU but either the connection is inactive or the mainframe does not recognize the LU.

NetView is helpful for reporting system alerts between mainframes and Host Integration Server. For more information about
NetView, see Network Management Support NetView uses NVAlert to provide the ability for the host system console to
receive and display alerts generated by Windows 2000 and applications running on the Windows 2000 computer. NVRunCmd
provides the ability to command Host Integration Server from the host system console.

Response Time Monitor (RTM) measures the amount of time it takes for a host to respond during 3270 display sessions. RTM
is only supported by certain emulators. You can specify the times at which RTM should send data, as well as the trigger that
will cause RTM to register that the host has responded. For more information, see Monitoring Mainframe Response Times.

When a problem occurs on Host Integration Server, the Windows 2000 event logs can tell you the sequence and type of events
that led up to the problem. For more information about event logs, see Status and Performance Tools.

System Monitor allows you to measure the performance of your computer or other computers on the network. You can
monitor connections, LU sessions, and adapters with System Monitor. For more information, see
Status and Performance Tools.

Tracing is the action of recording activity between or within components of Host Integration Server. Tracing can provide
detailed information of internal activities on the Server. It is helpful in isolating problems and is frequently used by product
support personnel.

https://msdn.microsoft.com/en-us/library/aa771878(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705023(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704840(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704840(v=bts.10).aspx

Four Most Common Problems
The four most common problems reported are as follows:

1. Setup or Upgrades: The most frequently asked Host Integration Server questions are related to setup or upgrade issues.
If you are connecting to an AS/400 via Token-Ring or Ethernet, make sure you read KB article Q112158 found at
http://go.microsoft.com/fwlink/?LinkId=14394. If you are connecting to an AS/400 via an SDLC card, KB Article Q112159
found at http://go.microsoft.com/fwlink/?LinkId=14395 can be helpful. Examples of VTAM configurations for connecting
to a mainframe can be found in the Host Configuration section. The configuration file (COM.CFG) contains almost all of
the configuration information for the Host Integration Server environment. It is extremely important to back up this file
before making changes.

2. Connectivity Issues: If you are having a problem connecting to the host, determine where the problem originates.
Because Host Integration Server is the middle piece of a three-part connection, it helps to narrow the problem down to a
Host Integration client, Host Integration Server issue, or a Host Integration Server host issue.

3. Host Printing: For more information, see Host Print Service Problems.

4. APPC or LUA Application Failures: See APPC or LUA Application Failures.

http://go.microsoft.com/fwlink/?LinkId=14394
http://go.microsoft.com/fwlink/?LinkId=14395
https://msdn.microsoft.com/en-us/library/aa705464(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771132(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704669(v=bts.10).aspx

APPC or LUA Application Failures
These applications may be written internally, or may be commercial applications. If an error code is produced on an APPC
application, it is documented in the "APPC Applications."

An LUA application may produce error codes which are found in the "LUA Applications," or the IBM SNA Formats Guide.

If you are able to test a 3270 or 5250 connection, that can help you determine whether you are experiencing a connectivity
problem or a problem with the application itself.

Adapters and Link Service Problems
The following three adapters may have problems associated with installation and configuration. Some of the common
problems and solutions are identified in the respective sections.

In This Section

802.2 Adapters and Link Services: Installation Pointers

SDLC Adapters and Link Services: Installation Pointers

X.25 Adapters and Link Services: Installation Pointers

https://msdn.microsoft.com/en-us/library/aa754429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746113(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704610(v=bts.10).aspx

802.2 Adapters and Link Services: Installation Pointers
An 802.2 link service enables the Host Integration Server software to communicate with an Ethernet, Token-Ring, or FDDI
adapter. The following pointer highlights an important step for installing an 802.2 adapter and link service:

When you install a new adapter, check the interrupt, port address, and direct memory access (DMA) settings, to avoid conflicts
with other adapters in the computer. The normal method for adjusting the settings among your adapters is through EISA
configuration programs, jumpers on the motherboard, or configuration utilities. Windows 2000 provides the Device Manager.
You may also use configuration utilities supplied with your adapters.

One way of viewing the settings used by various adapters in your computer is to start WINMSD.EXE, the Windows 2000
Diagnostics utility, which includes an IRQ/Port Status button and a DMA/Memory button.

Note
Device drivers provided by Host Integration Server report any interrupt, port address, or DMA conflicts they detect in the Win
dows 2000 System Event Log. The events are listed under a Source of Service Control Manager or a driver name.

SDLC Adapters and Link Services: Installation Pointers
An SDLC link service enables the Host Integration Server software to communicate with the SDLC adapter. For detailed
information about using a particular SDLC adapter or a particular modem (or DCE), see the adapter, modem, or DCE
documentation.

The following pointers highlight important steps for installing an SDLC adapter and link service:

Selecting the Constant RTS option in the IBM SDLC Link Service Properties dialog box equates to the NCP LINE macro:

This configuration is recommended for all SDLC connections except tributary connections on multidrop SDLC lines. This
configuration improves performance by eliminating several seconds of line turnaround delay after each transmission.

The Constant RTS option is mandatory if the line is used for full duplex, but it can also enhance performance on a half-
duplex line.

When choosing an SDLC adapter, pay close attention to the speed and duplexing capabilities. Greater speed and/or full-
duplexing capabilities allow an adapter to carry greater loads. Note that an adapter that lacks a coprocessor cannot
handle

full-duplex transmission at high transmission speeds, that is, greater than 9600 baud. (Examples of adapters lacking a
coprocessor are the IBM SDLC, IBM MPCA, and MicroGate adapters. For these adapters, half-duplex transmission is
recommended.)

Configuring adapters that lack a coprocessor to half duplexing, although slower, has the advantage of requiring
substantially less central processing unit (CPU) time. The device driver via DMA will process transmitted information as
frames. In contrast, if you use full duplexing with such adapters, the device driver must handle interrupts as characters,
placing more load on the CPU. However, if the CPU can handle the load, full duplex provides substantially faster
throughput, if the host VTAM configuration also specifies full duplex (DATMODE=FULL in the PU definition).

After installation of the adapter and link service, you will need to configure the connection with the correct duplex setting.
For details, see the next section, X.25 Adapters and Link Services: Installation Pointers.

Stop all existing services that use the SDLC adapter before attempting to configure the link service properties. For
example, stop the Remote Access Service if it uses the SDLC adapter. Only when these services are stopped can SNA
Manager successfully autodetect the adapter.

If you attempt to install an SDLC link service for an adapter that you know is physically installed in the computer, and a
pop-up message appears saying that SNA Manager cannot detect the adapter, click Cancel. The message indicates that a
service is currently using the SDLC adapter. Find out which service it is, stop the service, and then try to install the link
service again.

SNA Manager can detect the adapter only if no other service is using that adapter. If you do not click Cancel when the
pop-up message appears, SNA Manager continues the installation process using default values (not values attuned to
that adapter, since SNA Manager cannot detect it). As described in the preceding paragraph, to correct this situation, stop
the service using the SDLC adapter and then reinstall the link service.

When you install a new adapter, check the interrupt, port address, and direct memory access (DMA) settings, to avoid
conflicts with other adapters in the computer. The normal method for adjusting the settings among your adapters is
through EISA configuration programs, jumpers on the motherboard, or configuration utilities. Windows 2000 provides
the Device Manager. You may also use configuration utilities supplied with your adapters.

One way of viewing the settings used by various adapters in your computer is to start WINMSD.EXE, the Windows 2000
Diagnostics utility, which includes an IRQ/Port Status button and a DMA/Memory button.

DUPLEX=FULL

Device drivers provided by Host Integration Server report any interrupt, port address, or DMA conflicts they detect to the
Windows 2000 System Event Log. The events are listed under a Source of Service Control Manager or a driver name.

To ensure that the line speed is set correctly through hardware or software settings, study the documentation for the
modem or DCE. (Do not confuse setting the line speed with selecting the Data Rate, configurable through the SDLC
Connection Properties dialog box, on the SDLC tab, in SNA Manager. The Data Rate setting controls the speed of
transmissions between the SDLC adapter and the modem only.)

If you want to use a server-stored number, check that both the link service and the modem are configured correctly. This
applies to MicroGate adapters, or any adapter that can handle a server-stored number. On the modem, it may be
necessary to override the setting that causes the modem to autodial from its own stored number. (In modem
terminology, when Data Terminal Ready — DTR — is raised, the modem must wait, not dial.) To find out how to override
modem autodialing, see your modem or DCE documentation.

X.25 Adapters and Link Services: Installation Pointers
An X.25 link service enables the Host Integration Server software to communicate with the X.25 adapter. The following pointers
highlight important steps for installing an X.25 adapter and link service:

When choosing an X.25 adapter, pay close attention to the speed capabilities. Greater speed allows an adapter to carry
greater loads. Note that an adapter that lacks a coprocessor cannot handle high-speed transmission with full duplexing;
the duplexing type used by Host Integration Server X.25 connections. (Examples of adapters lacking a coprocessor are the
IBM SDLC and IBM MPCA adapters. For these adapters, the transmission speed must be 9600 baud or less.)

Contact your X.25 carrier or network administrator for information needed for your X.25 link service. The following table
lists some important parameters you will need to know:

Parameters from X.25 carrier Corresponding parameter in Connection Propert
ies

Typical val
ue(s)

Local X.25 address Local NUA Address Varies

Level 3 window size Default L3 Window Size 2

Level 3 packet size Default L3 Packet Size 512

Level 2 window size L2 Window Size 7

Channel ranges (Outgoing SVC, Two-Way SVC, Inco
ming SVC, and/or PVC)

Channel Ranges (Outgoing SVC, Two-Way SVC, Inco
ming SVC, and/or PVC)

Vary

Note that the encoding setting (NRZ or NRZI) is almost always NRZ on X.25 networks. This setting must match the
equivalent setting on the host. For connections to mainframes, the NRZI setting is found in the LINE/GROUP definition in
VTAM or NCP. If VTAM does not specify the NRZI setting, it defaults to NRZI=YES. For connections to AS/400 computers,
the NRZI setting is in the Line Description.

When you install a new adapter, check the interrupt, port address, and direct memory access (DMA) settings, to avoid
conflicts with other adapters in the computer. The normal method for adjusting the settings among your adapters is
through EISA configuration programs, jumpers on the motherboard, or configuration utilities. Windows 2000 provides
the Device Manager. You may also use configuration utilities supplied with your adapters.

One way of viewing the settings used by various adapters in your computer is to start WINMSD.EXE, the Windows 2000
Diagnostics utility, which includes an IRQ/Port Status button and a DMA/Memory button.

Device drivers provided by Host Integration Server report any interrupt, port address, or DMA conflicts that they detect to
the Windows 2000 System Event Log. The events are listed under a Source of Service Control Manager or a driver name.

Ignore the option labeled "Switched: Server-Stored Number" in the X.25 Link Service Properties dialog box. This option
does not match capabilities currently available with X.25 link services. If chosen, the option behaves the same way as
"Switched: Modem-Stored Number."

With X.25 link services, you can also adjust the T1 timeout and N2 retry limit. However, the defaults for these are
appropriate for most networks. Therefore, it is recommended that you do not adjust them unless you have a specific
reason for doing so, and that you understand the characteristics of your network as well as the way that the timeout
works.

Connection Problems
In This Section

Client to Host Integration Server Problems

Host Integration Server to Host Problems

Settings to Check for All Connection Types

802.2 Connection Pointers

Troubleshooting 802.2 Connections

SDLC Connection Pointers

Troubleshooting SDLC Connections

X.25 Connection Pointers

Troubleshooting X.25 Connections

Settings to Check on Channel Connections

https://msdn.microsoft.com/en-us/library/aa753913(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745830(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744342(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745541(v=bts.10).aspx

Client to Host Integration Server Problems
When you are troubleshooting an issue between the workstation and the Host Integration Server server, the first step is to
verify that the client workstation computer can connect to other network resources on the Windows 2000 Server that has Host
Integration Server installed. If you cannot map a network drive at the workstation, then you should troubleshoot this problem
as a workstation to Windows 2000 Server issue.

If you can map a network drive at the workstation but cannot get an emulation session, you should determine what protocol is
being used. Host Integration Server supports client connections over any of the network protocols. In addition, IPX and TCP/IP
connections may be either named pipes or sockets. If you are unsure, run Host Integration Server Setup or Configuration at the
client. If TCP/IP or IPX/SPX has been selected, the connection is sockets-based.

If the protocol chosen is "Microsoft Networking," Named Pipes is being used. Depending on which protocols are installed,
"Microsoft Networking" will use IPX/SPX, NetBEUI, or TCP/IP.

A common problem preventing workstations from connecting to the Host Integration Server over TCP/IP is failed NetBIOS
name resolution. If you can ping the TCP/IP address of the server, but not its NetBIOS name, then you are probably having
trouble with WINS or an LMHOSTS file. Configure the client for the IP address rather than the NetBIOS name.

IPX/SPX clients must be able to see the SNA Manager service registered in the Novell Bindery. If the Novell server is version
4.x, Bindery emulation must be enabled except when using the feature in Host Integration Server that supports name
resolution via NDS under Netware 4.x. The SNA Manager service registers itself through SAP 444. It is important to verify a
router on the network is not filtering this SAP. It is recommended that client workstations be configured for sockets if you are
using TCP/IP or IPX/SPX. A configuration of "Remote" causes the client to connect directly to the server. "Local" connects via a
broadcast method.

If TCP/IP is being used, the IP address should be entered in the "Primary Server" field rather than the NetBIOS name.

5250 emulation utilizes LU type 6.2 on the AS/400. Often, an error message on the client will include return codes. These codes
are documented in the Host Integration Server Message Database included on the CD-ROM.

When using a third-party emulator, the error messages returned by the application will vary. If possible, you should reproduce
the error with the client emulator provided with the Host Integration Server and Client software. This will help you verify
whether the problem is in the emulator, as well as providing an error message that will probably be documented.

Host Integration Server to Host Problems
Host Integration Server cannot connect to a host over the NetBEUI or IPX/SPX network protocols. DLC, SDLC, and increasingly
TCP/IP are the protocols most commonly used to connect from the server to a host. If you cannot get an emulation session at
the server itself, check the status of the connection using the SNA Manager. If the status is "Active", but you cannot access an
emulation session, there may be a configuration problem. If the connection to an AS/400 is "Pending", it may be useful to go
through the KB articles Q112158 found at: http://go.microsoft.com/fwlink/?LinkId=14394 or Q112159 found at:
http://go.microsoft.com/fwlink/?LinkId=14395 or browse other KB articles available from the Web site
http://go.microsoft.com/fwlink/?LinkId=14396 to make sure that you have all the required information.

If the status is "Inactive" or "Pending", the communication between the server and the host is failing.

Check the Application and System Event Logs. Most often, "Pending" or "Inactive" connections will produce an event in the
Applications Log – usually an event 230 or 23. The text of these messages varies and can indicate the nature of the problem. If
the problem is the result of hardware failure, the event will usually be logged in the System Log. If the connection has been
functional in the past, there may be a communications problem. For example, an SDLC connection may fail due to phone line
problems.

http://go.microsoft.com/fwlink/?LinkId=14394
http://go.microsoft.com/fwlink/?LinkId=14395
http://go.microsoft.com/fwlink/?LinkId=14396

Settings to Check for All Connection Types
When you are configuring a new Host Integration Server connection or troubleshooting an existing connection, regardless of
the connection type, the identifiers must match between the Host Integration Server computer and the host. The type of
identifier (ID or name) is as follows:

For most mainframe connections

Node ID is the identifier used when exchanging identification (XIDs) with most mainframes. Check to make sure that the
following items match; if they do not, the Host Integration Server computer is not identifying itself in a way that the host can
recognize.

Identifier used on mainframe Identifier to configure on Host Integration Server

IDBLK and IDNUM in the PU definition Two parts of the Local Node ID (configured on the connection)

For other mainframe connections

There are some situations in which the mainframe does not use Node ID in XIDs, but instead uses Network Name and Control
Point Name. These situations include mainframes communicating through LU 6.2, and mainframes that call up the Host
Integration Server computer (meaning that the Host Integration Server computer accepts incoming calls on that mainframe
connection). In these situations, the following parameters must match.

Note
Change the following identifiers only when necessary. The local Network Name and the local Control Point Name should be
changed only when the host requires a specific Network Name and Control Point Name that differ from those configured in t
he server properties.

Identifier used on mainframe (in unusual cases only) Identifier to configure on Host Integration Server

NETID in the VTAM Start command for the local SSCP

CPNAME in the PU definitionNETID and SSCPNAME in the VTAM Sta
rt command for the remote SSCP (VTAM system)

Local Network Name (configured on the server)

Local Control Point Name (configured on the server)

Remote Network Name and Remote Control Point
Name (configured on the connection)

For AS/400 connections

Network Name and Control Point Name (used together and called the fully qualified name) are the identifiers used when
exchanging identification (XIDs) with AS/400 computers. Check to make sure that the following items match. If they do not, the
Host Integration Server is not identifying itself in a way that the AS/400 can recognize.

Note
Change the following identifiers only when necessary. To support multiple connections to the same AS/400, you must provid
e a unique local Network Name and local Control Point Name for each connection. In addition, you can change the local Net
work Name and the local Control Point Name if the host requires a specific Network Name and Control Point Name that diff
er from those configured in the server properties.

Identifier used on AS/400 Identifier to configure on Host Integration Server

RMTNETID (usually; often set to APPN); RMTCPNAME Local Network Name and Local Control Point Name (confi
gured on the server)

RMTNETID (often set to APPN); CP Name (shown in the "Disp
lay network attributes" screen)

Remote Network Name and Remote Control Point Name
(configured on the connection)

802.2 Connection Pointers
Connections are configured through Host Integration Server SNA Manager. The steps for configuring an 802.2 connection are
described in detail in Important Connection Information. The following pointers indicate items that require special attention:

As with all connections, the identifiers must be configured correctly. For details, see
Settings to Check for All Connection Types.

Pay close attention to the Remote Network Address (which can be viewed on the Address tab of Connection
Properties). It should match the 12-digit hexadecimal network address of the remote host, peer, or downstream system.
The following guidelines may help:

For... Set the Remote Network Address to...

Connections to a 3174 controller The value in the configuration response 900 of the controller's customiz
ation program.

Connections to a 3720, 3725, or 3745 front-end
processor

LOCADDR in the NCP LINE macro.

Connections to an IBM mainframe MACADDR in the VTAM PORT definition

Connections to an AS/400 ADPTADR in the Line Description on the AS/400

Check the Max BTU Length setting, found on the DLC 802.2 tab of Connection Properties. A BTU is also called an I-
frame. It is the number of bytes that can be transmitted in a single data-link information frame.

Set the Max BTU Length so that it matches the capacity of the adapter and the host or downstream system. Otherwise,
when the mainframe or AS/400 sends a logon screen, the BTU length (frame size) that is used will be unworkable,
causing the connection to be dropped. The following table provides guidelines:

Adapter type Max BTU Length to use

Token-Ring adapter that transmits
at 4 Mbps (megabits per second)

Less than or equal to 4195.

Token-Ring adapter that transmits
at 16 Mbps

The appropriate value for the host or downstream system; the adapter itself can han
dle the greatest Max BTU Length available with Host Integration Server, 16393.

Ethernet adapter Less than or equal to 1493.

Connection type Max BTU Length to use

Connection to a mainframe Equal to MAXDATA in the PU definition on the mainframe (recommended).

Connection to an AS/400 Equal to MAXFRAME on the AS/400 (recommended).

Connection to a downstream system Less than or equal to the maximum value supported by the downstream system.

Setting the Max BTU Length correctly is especially important for downstream connections.

With 802.2 connections, you can adjust a variety of other settings, especially timeout and retry settings. However, the defaults
for the timeouts and retries are appropriate for most networks. Therefore, it is recommended that you do not adjust these
settings unless you have a specific reason for doing so, and unless you understand the characteristics of your network, and the
way that the timeouts work.

See Also
Other Resources
Connection Problems

https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770689(v=bts.10).aspx

Troubleshooting 802.2 Connections
The following table outlines some ways to interpret symptoms of a nonfunctioning 802.2 connection:

Symptom Configuration item to check

Symptom: Host Integration Ser
ver will not start; the System Ev
ent Log (viewable through the E
vent Viewer) contains messages
about a link service failing to sta
rt.

Recommendation: Check that all existing link services are configured to work with functioni
ng adapters. The server service cannot start if any existing link service cannot start, even if tha
t link service is not being used by any connection.

Symptom: Host Integration Ser
ver will not start; System Event
Log contains messages about c
onflicts in port addresses, IRQs,
or DMA addresses.

Recommendation: Check the port address, IRQ setting, or DMA address of your 802.2 adapt
er, which may be conflicting with those of another adapter or port in your computer. Change t
he settings on one of the adapters or ports, if possible, or remove the conflicting adapter.

Symptom: Connection can only
reach "Pending" status, and App
lication Event Log contains even
t 230.

Recommendation: Check that the identifiers (IDs or names) and/or the network address use
d by the host match the corresponding parameters in SNA Manager. (To view these paramete
rs, double-click the connection in the left pane and then click System Identification.) The ide
ntifiers or addresses must match in order for the exchange of identifiers (XIDs) and test frame
s to complete successfully. For more information about identifiers, see the preceding section.

Symptom: Connection (especia
lly downstream connection) ma
y become "Active," but reverts t
o "Pending" when first user atte
mpts to start a session.

Recommendation: Check the Max BTU Length setting for the connection (to see the setting, i
n SNA Manager, double-click the connection in the left pane and then click DLC 802.2). For de
tails about the correct setting to use, see the preceding section and
Settings to Check for All Connection Types.

Symptom: Connection reaches
"Active" status, but reverts to "P
ending;" event 23 is generated i
n the Application Event Log.

Recommendation: Possible causes include LAN or router problems, or actions by the remot
e system (for example, an AS/400 disconnecting because of lack of activity).

Note
With 3270 LUs, if one or more of the LUs never become active even when users are attempting to start sessions, the LOCAD
DR settings in the LU definitions in VTAM or NCP may not match the Host Integration Server LU numbers, or some or all of t
he LUs may be inactivated in VTAM or NCP. To correct this, consult with the administrator of the host system.

https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx

SDLC Connection Pointers
Connections are configured through the SNA Manager. The steps for configuring an SDLC connection are described in detail in
Important Connection Information. The following pointers indicate items that require special attention:

As with all connections, the settings must be configured correctly. For details, see Settings to Check for All Connection Types.

If possible, configure the connection to use constant RTS. See the recommendations in
SDLC Adapters and Link Services: Installation Pointers.

The duplex setting is found in the SDLC tab of SDLC Connection Properties. Duplex can be half or full; the setting must not
exceed the capabilities of the adapter and modem. For more information about the factors to consider when choosing the
setting for duplex, see the preceding section.

Check the encoding setting, which is either nonreturn to zero (NRZ) or nonreturn to zero inverted (NRZI). The setting is on the
Address tab of SDLC Connection Properties. This setting must match the equivalent setting on the host. For connections to
mainframes, the NRZI setting is found in the LINE/GROUP definition in VTAM or NCP. (If VTAM does not specify the NRZI
setting, it defaults to NRZI=YES.). For connections to AS/400 computers, the NRZI setting is in the Line Description.

When multiple SDLC connections accept incoming calls and use the same link service, the encoding (NRZ/NRZI) settings for all
the connections must match.

Check the Max BTU Length setting, found on the SDLC tab of the SDLC Connection Properties dialog box. A BTU is also
called an I-frame; it is the number of bytes that can be transmitted in a single data-link information frame.

Set the Max BTU Length so that it matches the capacity of the adapter and the host or downstream system. Otherwise, when
the mainframe or AS/400 sends a logon screen (typically a full screen), the BTU length (frame size) that is used will be
unworkable, causing the connection to be dropped. The following table provides guidelines:

For... Set the Max BTU Length to...

IBM SDLC adapter 521 or less.

Connection to a mainframe Equal to MAXDATA in the PU definition on the mainframe (recommended).

Connection to an AS/400 Equal to MAXFRAME on the AS/400 (recommended).

Connection to a downstream system Less than or equal to the maximum value supported by the downstream system.

Setting the Max BTU Length correctly is especially important for downstream connections.

With SDLC connections, you can adjust a variety of other settings, especially timeout and retry settings. However, the defaults
for the time-outs and retries are appropriate for most networks. Therefore, it is recommended that you do not adjust these
settings unless you have a specific reason for doing so, and you understand the characteristics of your communications lines
as well as the way that the time-outs work.

https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746113(v=bts.10).aspx

Troubleshooting SDLC Connections
To begin troubleshooting an SDLC connection, it is helpful to look at two simple indicators of activity: the server and
connection status shown in SNA Manager, and the modem lights. Event logs also provide important information. The following
table outlines some ways to interpret symptoms of a nonfunctioning SDLC connection.

Symptom Configuration item to check

Symptom: Host Integration Server will n
ot start; the System Event Log (viewable t
hrough the Event Viewer) contains mess
ages about a link service failing to start.

Recommendation: Check that all existing link services are configured to work with
functioning adapters. The SNA Manager service cannot start if any existing link servi
ce cannot start, even if that link service is not being used by any connection.

Symptom: Host Integration Server will n
ot start; System Event Log contains mess
ages about conflicts in port addresses, IR
Qs, or DMA addresses.

Recommendation: Check the port address, IRQ setting, or DMA channel of the SDL
C adapter, which may be conflicting with those of another adapter (for example, a so
und system adapter) or port in your computer. Change the settings on one of the ad
apters or ports, if possible, or remove the conflicting adapter. For more information,
see SDLC Adapters and Link Services: Installation Pointers.

Symptom: Modem lights may flash but t
he connection remains at "Pending" and
does not go to "Active."

Recommendation: Check the DMA channel setting (jumpers) on the adapter and co
mpare this to the setting in the link service properties dialog box. If this setting specif
ies a nonexistent address, data cannot flow.

Symptom: Modem appears to make the
connection ("receive data" light flashes, b
ut "transmit data" light does not). The co
nnection status reaches "Pending" and th
en the connection is dropped.

Recommendation: Check the cables; then check the Encoding (NRZ/NRZI) setting u
sed by the host and compare this to the setting in the connection properties dialog b
ox. If the NRZ/NRZI settings do not match, the two ends of the connection begin neg
otiating but cannot interpret each others signals correctly. For more information, see
the preceding section.

Symptom: Modem lights are flashing bu
t the connection can only reach "Pending
" status. Also, the Application Event Log c
ontains event 182.

Recommendation: Check that the identifiers (IDs or names) used by the host match
the ones used in the Connection Properties dialog box. If the identifiers do not mat
ch, the exchange ID (XID) process cannot complete successfully. For more informatio
n about identifiers, see Settings to Check for All Connection Types.

Symptom: Connection (especially down
stream connection) may become "Active,
" but reverts to "Pending" when first user
attempts to start a session.

Recommendation: Check the Max BTU Length setting in the Connection Properti
es dialog box. For details about the correct setting to use, see the preceding section.

If one or more 3270 LUs never becomes active, even when users are attempting to start sessions, the LOCADDR settings in the
LU definitions in VTAM or NCP may not match the Host Integration Server LU numbers, or some or all of the LUs may be
inactivated in VTAM or NCP. To correct this, consult with the administrator of the host system.

https://msdn.microsoft.com/en-us/library/aa746113(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx

X.25 Connection Pointers
An X.25 connection uses a packet-switching network, and communicates through the Qualified Logical Link Control (QLLC)
protocol. Connections are configured through SNA Manager. The steps for configuring an X.25 connection are described in
detail in Important Connection Information. The following pointers indicate items that require special attention:

As with all connections, the identifiers must be configured correctly. For details, see
Settings to Check for All Connection Types.

Pay close attention to the Remote X.25 Address on the Address tab of the Connection Properties dialog box; it should
match the address of the remote host, peer, or downstream system. The address consists of from 1 through 15
hexadecimal digits. If a 15-digit address is used, the final 3 digits are used for routing between stations with the same 12-
digit address. For connections to a host using VTAM, the address should match the DIALNO parameter in the PORT
definition. For connections to an AS/400, the address should match the local address of the AS/400 (assigned by the X.25
carrier).

Check the Max BTU Length setting, found in the Connection Properties dialog box. A BTU is a data-link information
frame.

Set the Max BTU Length so that it matches the capacity of the adapter and the host or downstream system. Otherwise,
when the mainframe or AS/400 sends a logon screen, the BTU length (frame size) that is used will be unworkable,
causing the connection to be dropped. The following table provides guidelines:

For... Set the Max BTU Length to...

IBM SDLC adapter 521 or less.

Connection to a mainframe Equal to MAXDATA in the PU definition on the mainframe (recommended).

Connection to an AS/400 Equal to MAXFRAME on the AS/400 (recommended).

Connection to a downstream system Less than or equal to the maximum value supported by the downstream system.

Setting the Max BTU Length correctly is especially important for downstream connections.

For SVC connections, check that the codes in User Data include C3, which specifies the QLLC protocol (the X.25 protocol
used by SNA Manager). To view User Data codes, right-click the connection in the left pane, then click Properties, then
click the X.25 tab in the Connection Properties dialog box. For information about other user data codes, contact your
X.25 network administrator.

If each attempt at connection activation incurs cost as you access the X.25 network, you may want to limit the number of
these attempts. To do this, double-click the connection, and then click the X.25 tab. In the Maximum Retries list, select
an appropriate maximum number of attempts. (The default is No Limit.)

https://msdn.microsoft.com/en-us/library/aa704862(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx

Troubleshooting X.25 Connections
The following table outlines some ways to interpret symptoms of a nonfunctioning X.25 connection.

Symptom Configuration item to check

Symptom: Host Integration Ser
ver will not start; the System Eve
nt Log (viewable through the Ev
ent Viewer) contains messages a
bout a link service failing to start
.

Recommendation: Check that all existing link services are configured to work with functioni
ng adapters. The SNA Manager cannot start if any existing link service cannot start, even if th
at link service is not being used by any connection.

Symptom: Host Integration Ser
ver will not start; System Event L
og contains messages about con
flicts in port addresses, IRQs, or
DMA addresses.

Recommendation: Check the port address, IRQ setting, or DMA address of your X.25 adapte
r, which may be conflicting with those of another adapter or port in your computer. Change t
he settings on one of the adapters or ports, if possible, or remove the conflicting adapter. For
more information, see X.25 Adapters and Link Services: Installation Pointers.

Symptom: Connection can only
reach "Pending" status, and the
Application Event Log contains E
vent 23 with an outage code of
0x62 (for SVC) or 0x61 (for PVC)
.

Recommendation: Check that the identifiers (IDs or names) and/or the X.25 address used b
y the host match the corresponding parameters on the System Identification tab of the Co
nnection Properties dialog box. The identifiers or addresses must match in order for the exc
hange of identifiers (XIDs) and test frames to complete successfully. For more information ab
out identifiers, see the preceding section and Settings to Check for All Connection Types.

Symptom: Connection (especial
ly downstream connection) may
become "Active," but reverts to "
Pending" when first user attemp
ts to start a session.

Recommendation: Check the Max BTU Length setting for the connection on the X.25 tab o
f the Connection Properties dialog box. For details about the correct setting to use, see the
preceding section.

If one or more 3270 LUs never becomes active, even when users are attempting to start sessions, the LOCADDR settings in the
LU definitions in VTAM or NCP may not match the Host Integration Server LU numbers, or some or all of the LUs may be
inactivated in VTAM or NCP. To correct this, consult with the administrator of the host system.

https://msdn.microsoft.com/en-us/library/aa704610(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745639(v=bts.10).aspx

Settings to Check on Channel Connections
The number of parameters involved in channel connections is fewer than with other types of connections. The key parameters
to note are those specifying addresses and, for channel connections, the Max BTU Length.

If one or more 3270 LUs never becomes active, even when users are attempting to start sessions, the LOCADDR settings in the
LU definitions in VTAM or NCP may not match the Host Integration Server LU numbers, or some or all of the LUs may be
inactivated in VTAM or NCP. To correct this, consult with the administrator of the host system.

Event and Error Problems
In This Section

Additional Help with Events and Errors

Connection Initialization Sequence

Finding Relevant Information

802.2 Connection Failures

Sample AS/400 Configuration

https://msdn.microsoft.com/en-us/library/aa771924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704715(v=bts.10).aspx

Additional Help with Events and Errors
Microsoft provides troubleshooting information about specific product event and error messages. For Microsoft Windows XP
and Microsoft Windows Server 2003 operating systems, you can access event message documentation by using the link inside
the property window of an event. Microsoft also provides this content on the Web at
http://go.microsoft.com/fwlink/?LinkId=20869.

The information provided on the Web site includes:

The text of the event or error message, so you can confirm you have located the correct message

A detailed explanation of what caused the event or error

Recommended actions, if any, for you to take to correct the problem.

For Microsoft Windows 2000, Microsoft Windows XP, and Microsoft Windows Server 2003 operating systems, you can also
access additional information about an event by using the Event Viewer or additional information about an error directly from
the Microsoft website.

To access additional information about events through the Windows 2000 Event Viewer

1. Click Start, point to Programs, point to Administrative Tools, and then click Event Viewer.

2. Expand the Event Viewer (Local) folder. You should see at least three logs: Application, Security, and System.

3. Click the Application log to view its list of events.

4. Double-click the event of interest.

5. Under Description, look for For more information, see Help and Support Center at
http://go.microsoft.com/fwlink/events.asp, and then click the link.

6. In the Event Viewer dialog box, click Yes.

7. When the results appear, select the message text that matches the message you received. Any relevant Knowledge Base
articles are also available on the page.

To access additional information about events through the Windows XP/Windows Server 2003 Event Viewer

1. Click Start, point to Programs, point to Administrative Tools, and then click Event Viewer.

2. Expand the Event Viewer (Local) node.

3. Click Application to view a list of events.

4. Double-click an event.

5. Under the Description text box, click http://go.microsoft.com/fwlink/events.asp.

Event Properties for Event Viewer

http://go.microsoft.com/fwlink/?LinkId=20869

6. In the Event Viewer dialog box, click Yes.

Note
Clicking Yes allows your computer to send information across the Internet.

Note
The Help and Support Center dialog box displays the event ID event source, detailed explanation, and recommended
actions.

Information about errors and events, as well as relevant Knowledge Base articles, are also available directly from the Microsoft
Web site at http://go.microsoft.com/fwlink/?LinkId=20869.

Microsoft continually updates the troubleshooting information about specific product event and error messages and posts this
information to http://go.microsoft.com/fwlink/?LinkId=20869. The following table lists the event and error ID numbers that
had additional information available on the Web at the time Host Integration Server was released. Microsoft recommends that
you check the Web site for the additional messages that have been added since product release.

http://go.microsoft.com/fwlink/?LinkId=20869
http://go.microsoft.com/fwlink/?LinkId=20869

Connection Initialization Sequence
When troubleshooting pending DLC Connections, it is helpful to review the connection initialization sequence that occurs
between the Host Integration Server computer and the host platform.

The following diagram applies to both AS/400 and mainframe connections:

Connection initialization sequence

Connection Initialization Overview
Connection Initialization occurs in a sequential fashion. Each step builds upon the preceding step. After all steps have
completed correctly, an Active connection is established between Host Integration Server and a remote host, either an AS/400
or a mainframe.

Every connection requires that a number of parameters match between the two platforms. Throughout this overview, these
parameters, indicated in bold type, are displayed using the actual field names used by Host Integration Server and a remote
host (that is, upper/lower case is preserved).

Steps 1 and 2

Verify basic network connectivity - can Host Integration Server communicate with the host's network adapter card?

Does the Remote Network Address on the Address tab of the Connection Properties dialog box match the Local Adapter
Address defined in the AS/400 line description, or the Switched Line in the VTAM definition?

Steps 3 and 4

Verify host SSAP - is the host listening on the correct Source Service Access Port?

Does the Remote SAP Address on the Address tab of the Connection Properties dialog box match the LAN SSAP defined
in the APPC Controller Description, or the Switched Line in the VTAM definition?

Steps 5 and 6

Verify local parameters - do the Host Integration Server "Local" parameters on the System tab of the Connection Properties
dialog box match the "Remote" parameters in the host APPC controller, or VTAM PU, definition?

Step 7

Verify remote parameters - do the Host Integration Server "Remote" parameters, also defined on the System tab of the
Connection Properties dialog box, match the "Local" parameters in the host APPC controller, or VTAM PU definition?

Connection initialization is a complex, sequential process that includes a wealth of details.

For more information, see Connection Initialization Details.

https://msdn.microsoft.com/en-us/library/aa772120(v=bts.10).aspx

Connection Initialization Details
For an overview, refer to the topic Connection Initialization Overview.

Step 1, outbound

When Host Integration Server attempts to activate a DLC connection, it first sends out an LLC TEST frame to the host's network
adapter address to initiate the link level connection, and to verify the link station to link station transmission path.

This TEST command is sent by the SNADLC 802.2 link service via the Window's DLC driver.

Host Integration Server issues this TEST command at the start of every 802.2 connection. Although this command does not
cause connection activation, its failure precludes continuing the activation.

This TEST command causes the remote link station to return a TEST Response. This will not affect the mode or state of the
remote link station.

TOKEN-RING CONNECTIONS:

The TEST command is sent to the local ring first.

If Host Integration Server does not receive a reply to this TEST command within 0.5 seconds, it resends it, with the "all routes
broadcast" setting enabled, causing it to be forwarded to adjacent rings by any source routing bridges which are present on
the ring. The SNADLC link service will send a total of three all-routes broadcast TEST commands if the remote station (host) is
not responding.

ETHERNET CONNECTIONS:

The TEST command does not contain any source-routing information.

Host Integration Server sends four TEST commands to the host's network adapter address.

1. 802.3 to the regular MAC address

2. 802.3 to the bit flipped MAC address

3. DIX format to the regular MAC address

4. DIX to the bit flipped MAC address

Step 2, inbound

The success of the TEST command indicates that the host's network interface adapter is accessible, and is configured for SNA
communication.

The failure to receive a response to the TEST command will result in an Event 230 "No response to TEST commands".

What does this failure imply?

1. The Remote Network Address, which is the host's network adapter address, is incorrectly configured on the Host
Integration Server Connection Properties dialog box, Address Tab. It should match the Local Adapter Address defined
in the AS/400 line description, or the Switched Line in the VTAM definition.

2. Multiple Network Adapter Cards: If the Host Integration Server computer has multiple network adapter cards, say one for
the SNA Link Service, and the other for Windows 2000/NT domain connectivity, and the SNA Link Service is configured
to communicate over the NT domain adapter, there obviously will be no AS/400 response.

3. Intermediate bridges or routers are not passing the DLC Protocol between the Host Integration Server computer and the
host. DLC traffic cannot reach the segment or ring on which the AS/400's network address resides because the
intermediate locater is not forwarding the LLC frames.

4. The host is not enabled for SNA communication (this occurs rarely).

https://msdn.microsoft.com/en-us/library/aa771243(v=bts.10).aspx

Step 3, outbound

Verify that the host's LAN SSAP matches the Host Integration Server Remote SAP Address property.

A NULL XID command is sent to the host. This is required as part of link level connection establishment. This command is sent
to the host's LAN SSAP (which is referred to in the Host Integration Server environment as the Remote SAP Address). This is
the port that the host 'listens to', when receiving messages from the Host Integration Server computer. SNA protocol uses a
default LAN SSAP of 0x04.

Step 4, inbound

The success of the NULL XID command is indicated when Host Integration Server receives back a RQOS (Request Open
Station) XID response.

The failure to receive a RQOS command will also result in the generation of an Event 230 – "No Response to XID Commands".

This indicates that the Host Integration Server timed out before the RQOS command was received, because:

The Host Integration Server Remote SAP Address was incorrect.

The AS/400 was unable to create a new APPC Controller for some reason. For example, AUTOCRTCTL is disabled.

The AS/400 APPC Controller or VTAM PU is in an Error State, or Inactive Status.

On Ethernet and Token-Ring networks, if the host does not reply to the XID command, then the connection remains in a
pending condition, and an Event 230 will be logged in the NT Event Viewer Application log. The Host Integration Server
computer will continually attempt connection startup, though only the first Event ID 230 will be logged with the Event Viewer,
to prevent the log from filling up.

Step 5, outbound

Verify that the Host Integration Server computer's "Local Parameters" match an APPC Controller, or VTAM PU, description on
the host.

An XID command is sent to the host. This XID contains the Host Integration Server computer's "Local Parameters". The
parameters of interest are the Host Integration Server computer's network adapter address, "Local" Network Name, and
"Local" Control Point Name.

Step 6, inbound

The success of the "Local Parameters" XID is indicated when Host Integration Server receives back a "Remote Parameters" XID
from the host containing its "Local Parameters".

The failure to receive this "Remote Parameters" XID from the host will result in the generation of an Event 56 - "XID rejected by
remote computer

The host failed to match the parameters sent in Step 5 to a known APPC controller or VTAM PU definition.

Host Integration Server logs Event 56 when it receives an XID Negotiation Error (X'22') Control Vector from the host. This
control vector includes an offset pointer into the XID that was sent to the host in Step 5, where the offset points to the
parameter in error. If the offset is "2" (pointing to the Local Node ID parameter), then an Event 47 is logged. If the offset is 19
(pointing to the link role parameter), then an Event 46 is logged. These two events are very rare. If some other offset is received
(99.9% of the time), then Event 56 is logged.

For the purpose of discussion, lets assume an APPC Controller already exists on the host containing:

The address of the network adapter in the Host Integration Server computer, which is referred to on the AS/400 as the
LAN remote adapter address (ADPTADR).

A specific Remote network identifier (for example, APPN).

A specific Remote control point (for example, TEST1).

The XID sent in step 5 will be rejected under the following circumstances:

1. There is already an APPC controller defined on the AS/400 with the same name as the name defined in Host Integration

Server SNA Manager, but it has a different LAN remote adapter address (ADPTADR)" associated with it.

Another way of saying the same thing is: The Host Integration Server computer attempted to connect with an invalid
"Local" Network Name. For example: ESSLAB, where the AS/400 was expecting APPN.

(There is a source of potential confusion here. The Remote Network Identifier in the APPC Controller description
corresponds to the "Local" Network Name on the Host Integration Server Connection Properties dialog box, System
tab. However, on the AS/400 Display Networks Attributes screen, you will very likely see that the value for the Local
network ID is identical to the APPC Remote Network Identifier. The confusion exists because the Host Integration
Server "Local" Network Name is apparently referred to by two different field names on the AS/400. However, these
two AS/400 fields are not the same. The AS/400 Remote Network Identifier must match the Host Integration Server
"Local" Network Name. The AS/400 Local network ID does not have to match. It is usually defaulted to the same
name as the Remote Network Identifier for the sake of convenience, however, the name actually refers to the AS/400's
"local" network ID, not the "local" network name on Host Integration Server).

2. There is already a different controller name defined on the AS/400 with the same "LAN remote adapter address
(ADPTADR)" (Autocreate Controller (AUTOCRTCTL) is set to YES in the AS/400 Line Description).

In other words, The Host Integration Server computer attempted to connect with an invalid "Local" Control Point
Name. For example: TESTXXX, where the AS/400 was expecting TEST1.

3. The Remote Control Point Name in the Host Integration Server Connection Properties dialog box does not match
the Local Control Point Name in the AS/400 Network Attributes screen.

4. The Host Integration Server computer is configured with XID Type: Format 0, when the AS/400 requires XID Type: Format
3.

Step 7

Host Integration Server uses a four-step algorithm to match the hosts "Local parameters". If a step succeeds, any remaining
steps are bypassed, and the activation sequence continues to step 8.

1. The Network Name and Control Point Name from the host XID are compared to the Network Name and Control
Point Name in the "Remote" Node Name section of the Host Integration Server Connection Properties dialog box,
System Identification tab.

2. If the host XID does not contain a network name and control point name (format 0 XID) or those fields are blank in the
Host Integration Server Connection Properties dialog box, the matching will proceed to the next step. If the comparison
fails, the XID will be rejected and event ID 49 is generated. If the comparison is successful, the XID will be responded to in
step 8.

3. If Host Integration Server is unable to match the Network Name and Control Point Name, it will compare the IDBLK
and IDNUM (Node ID) in the XID to the "Remote" Node ID field in the Host Integration Server Connection Properties
dialog box. If this field is blank, the matching will proceed to the next step. If the comparison fails the XID is rejected and
NT Event ID 49 is generated.

Note
All XIDs must contain an IDBLK and IDNUM.

If the comparison is successful, the XID will be responded to in step 8.

4. Host Integration Server then compares the network address contained within the incoming XID to the Remote Network
Address configured in the Host Integration Server Connection Properties dialog box. For x.25 the Remote X.25 address
is used. If this comparison fails, the XID is rejected and NT Event ID 49 is generated. For SDLC the XID is simply accepted.

If the comparison process fails, an Event 49 is generated by Host Integration Server, and logged with the NT Event Service.

Step 8

The connection eventually goes active.

Finding Relevant Information
In This Section

Host Integration Server Screens

AS/400 Screen Walkthrough

802.2 Connection Failures

https://msdn.microsoft.com/en-us/library/aa772099(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770804(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745575(v=bts.10).aspx

Host Integration Server Screens
Here is the SNA Manager showing active connections:

SNA Manager showing active connections

Here is the SNA Manager showing a pending connection:

SNA Manager showing a pending connections

Right-click the pending connection, and then click Properties.

Here is the SNA Manager with the Address tab selected:

SNA Manager showing the Address tab

Here is the SNA Manager with the System Identification tab selected.

SNA Manager showing the System Identification tab

Host Integration Server "Local" Network Name must match the AS/400 Remote network identifier.

Host Integration Server "Local" Control Point Name must match the AS/400 Remote control point.

Here is a command window on the Host Integration Server computer. The command ipconfig/all has been entered to display
the Host Integration Server computer's local network adapter address.

The command window

The network adapter address is also referred to as the Physical Address.

It is also possible to enter the command net config workstation.

Both methods will work, but only if TCP/IP is bound to the adapter that Host Integration Server (and DLC) is using, for example,
a NetBIOS-compatible transport is bound to the address used by the Host Integration Server computer. If it is not bound to it,
then there is no easy way to determine the address.

Another way of saying this is: Assume there are two network adapter cards in the Host Integration Server computer. One is
used for Windows domain connectivity, the other, to communicate with an AS/400. Since ipconfig /all will only report the
address of the card used for domain connectivity, it will be difficult to find the address used for AS/400 connectivity.

AS/400 Screen Walkthrough
The starting point on the AS/400 is the AS/400 Main Menu:

AS/400 Main Menu

From here, you can display/work with Line and Controller descriptions, and modify configuration status fields.

What would you like to do?

Lines:

1. Display Line Descriptions

2. Change Line Descriptions

3. Change Line Status

Controllers:

1. Display Controller Descriptions

2. Change Controller Descriptions

https://msdn.microsoft.com/en-us/library/aa771242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705488(v=bts.10).aspx

Display Line Descriptions
Open the AS/400 Main Menu:

Screenshot of the AS/400 Main Menu

Enter WRKLIND *ALL at the command prompt.

Note
The AS/400 command line is case-insensitive.

This will bring up the Work With Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

There are three types of Lines that may be displayed on this screen: Ethernet (ELAN), Token-Ring (TRLAN), and Synchronous
Data Link Control (SDLC).

The line names shown here are for illustration purposes only and may not correspond to the names displayed on your AS/400
screens.

See Also
Tasks
Display an Ethernet Line Description
Display a Token-Ring Line Description

https://msdn.microsoft.com/en-us/library/aa705472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770340(v=bts.10).aspx

Display an Ethernet Line Description
Here is the AS/400 Work with Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

To display information for a particular Line, choose option 5 for that Line, as is shown on the screen above.

Note
The word "ETHERNET" in the "Line" column is the merely the name of a particular line, not the type of the line, which is indica
ted in the next column.

Here is an AS/400 Display Line Description screen, showing an Ethernet Line Description:

Screenshot of the Display Line Description screen

The AS/400 Ethernet network adapter address, referred to as the Local adapter address, is displayed on this screen.

This value must match the Remote Network Address shown on the Host Integration Server Connection Properties dialog
box, Address tab.

Display a Token-Ring Line Description
Here is the AS/400 Work with Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

To display information for a particular Line, choose option 5 for that Line, as is shown on the screen above.

Note
The word "LANLINE" in the "Line" column is the merely the name of a particular line, not the type of the line, which is indicate
d in the next column.

This is the first of two AS/400 Token-Ring Display Line Description screens:

Screenshot of the first Display Line Description screen

Press the PAGEDOWN key to scroll to the second screen.

Here is the second Token-Ring Display Line Description screen:

Screenshot of the second Display Line Description screen

The AS/400 Token-Ring network adapter address, referred to as the Local adapter address, is displayed on this screen.

This value must match the Remote Network Address shown on the Host Integration Server Connection Properties dialog
box, Address tab.

Change Line Descriptions
Open the AS/400 Main Menu:

Screenshot of the AS/400 Main Menu screen

Enter WRKLIND *ALL at the command prompt.

Note
The AS/400 command line is not case-sensitive.

This will bring up the Work With Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

What would you like to do?

1. Change an Ethernet Line Description

2. Change a Token-Ring Line Description

https://msdn.microsoft.com/en-us/library/aa744327(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770487(v=bts.10).aspx

Change an Ethernet Line Description
Here is the AS/400 Work with Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

Select Option 2 (Change) to modify an Ethernet Line.

This will bring up the first of four AS/400 Change Line Description (Ethernet) screens:

Screenshot of the first Change Line Description (Ethernet) screen

Press the PAGEDOWN key to scroll to the second screen.

Here is the second of four AS/400 Change Line Description (Ethernet) screens:

Screenshot of the second Change Line Description (Ethernet) screen

Press the PAGEDOWN key to scroll to the third screen.

Here is the third of four AS/400 Change Line Description (Ethernet) screens:

Screenshot of the third Change Line Description (Ethernet) screen

Press the PAGEDOWN key to scroll to the fourth screen.

Here is the last of four AS/400 Change Line Description (Ethernet) screens:

Screenshot of the fourth Change Line Description (Ethernet) screen

The Autocreate controller parameter can be set on this screen.

Change a Token-Ring Line Description
Here is the AS/400 Work with Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

Select Option 2 (Change) to modify a Token-Ring Line.

This will bring up the first of four AS/400 Change Line Description (Token-Ring) screens:

Screenshot of the first Change Line Description (Token-Ring) screen

Press the PAGEDOWN key to scroll to the second screen.

Here is the second of four AS/400 Change Line Description (Token-Ring) screens:

Screenshot of the second Change Line Description (Token-Ring) screen

Press the PAGEDOWN key to scroll to the third screen.

Here is the third of four AS/400 Change Line Description (Token-Ring) screens:

Screenshot of the third Change Line Description (Token-Ring) screen

The Autocreate controller parameter can be set on this screen.

Press the PAGEDOWN key to scroll to the fourth screen.

Here is the last of four AS/400 Change Line Description (Token-Ring) screens:

Screenshot of the fourth Change Line Description (Token-Ring) screen

The Autodelete controller parameter can be set on this screen.

Change Line Status
Open the AS/400 Main Menu:

Screenshot of the AS/400 Main Menu screen

Enter WRKLIND *ALL at the command prompt.

Note
The AS/400 command line is not case-sensitive).

This will bring up the Work With Line Descriptions screen:

Screenshot of the Work with Line Descriptions screen

What would you like to do?

1. Change an Ethernet Line's Status

2. Change a Token-Ring Line's Status

https://msdn.microsoft.com/en-us/library/aa744905(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754760(v=bts.10).aspx

Change an Ethernet Line's Status
Here is the AS/400 Work With Line Descriptions screen:

Choose the Status option for the desired line by entering the number 8 in the Opt column, next to the Ethernet Line you want
to change.

Here is the AS/400 Work with Configuration Status screen:

Select option 2 to vary the Line status off, and option 1 to vary the Line status back on.

Change a Token-Ring Line's Status
The following figure shows the AS/400 Work With Line Descriptions screen:

Choose the Status option for the desired line by entering the number 8 in the Opt column, next to the Token-Ring Line you
want to change.

The AS/400 Work with Configuration Status screen appears:

Screenshot of the Work with Configuration Status screen

Select option 2 to vary the Line status off, and option 1 to vary the Line status back on.

Display Controller Descriptions
Open the AS/400 Main Menu:

AS/400 Main Menu screen

Enter WRKCTLD *ALL at the command prompt.

This will bring up the Work With Controller Descriptions screen, which lists available AS/400 Controller Descriptions:

Work with Controller Descriptions screen

The controller names shown here are for illustration purposes only and may not correspond to the names displayed on your
AS/400 screens.

Choose the Display option by entering the number 8 next to the Controller that you want to display.

Here is the first of two Display Controller Description screens:

First Display Controller Description screen

There are three important non-modifiable fields displayed on this screen:

AS/400 Field Name Host Integration Server Field name
Remote network identifier "Local" Network Name

Remote control point "Local" Control Point

LAN remote adapter address Network adapter address

Note
The LAN remote adapter address corresponds to the Host Integration Server computers local network adapter address, no
t to the AS/400s local network adapter address.

Press the PAGEDOWN key to display the second Display Controller Description screen.

Here is the second Display Controller Description screen:

Second Display Controller Description screen

There are two important non-modifiable fields on this screen:
AS/400 Field Name Host Integration Server Field name
LAN DSAP Local SAP Address

LAN SSAP Remote SAP Address

Change Controller Descriptions
Open the AS/400 Main Menu:

AS/400 Main Menu screen

Enter WRKCTLD *ALL at the command prompt.

This will bring up the Work With Controller Descriptions screen, which lists available AS/400 Controller Descriptions:

Work with Controller Descriptions screen

The controller names shown here are for illustration purposes only and may not correspond to the names displayed on your
AS/400 screens.

Select the Change option (option 2) for the Controller you want to change.

Here is the first of four AS/400 Chng Ctl Desc (APPC) screens:

Work with Controller Descriptions screen

There are two important modifiable fields on this screen:
AS/400 Field Name Host Integration Server Field name

Remote network identifier "Local" Network Name

Remote control point "Local" Control Point Name

Press the PAGEDOWN key to scroll to the second screen.

Here is the second of four Chng Ctl Desc (APPC) screens:

Second Change Ctl Desc (APPC) screen

There are three important modifiable fields on this screen:
AS/400 Field Name Host Integration Server field name

LAN remote adapter address Network adapter address (see Note 2)

LAN DSAP Local SAP Address

LAN SSAP Remote SAP Address

Note
The Host Integration Server computers Remote Network Address MUST NOT match the AS/400 controllers LAN remote
adapter address. The AS/400 controllers LAN remote adapter address is the Host Integration Server computers local net
work (MAC) address. This is a common mistake.

Note
The field name "Network adapter address" does not actually exist within Host Integration Server. This is why it is not in bold t
ype. This field name refers to the address of the network adapter on the Host Integration Server computer.

Press the PAGEDOWN key to scroll to the third screen.

Here is the third of four AS/400 Chng Ctl Desc (APPC) screens:

Third Change Ctl Desc (APPC) screen

Press the PAGEDOWN key to scroll to the fourth screen.

Here is the last of four AS/400 Chng Ctl Desc (APPC) screens:

Fourth Change Ctl Desc (APPC) screen

Change Controller Status

Open the AS/400 Main Menu:

Second Change Ctl Desc (APPC) screen

Enter WRKCTLD *ALL at the command prompt.

This will bring up the Work with Controller Descriptions screen:

Work with Controller Descriptions screen

Choose the Status option for the desired controller by entering the number 8 next to the Controller that you want to change.

Here is the AS/400 Work with Configuration Status screen:

Work with Configuration Status screen

Select option 2 to vary the controller status off, and option 1, to vary the controller status back on.

802.2 Connection Failures
Event ID 23

Event ID 230

Event ID 56

Event ID 49

https://msdn.microsoft.com/en-us/library/aa770681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770976(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772110(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705468(v=bts.10).aspx

Event ID 23
Troubleshooting Mainframe and AS/400 Active to Pending DLC Connections

When a connection is Active and reverts to Pending, you should check the Event Viewer Application log for Event ID 23 and
outage conditions described in the message. The qualifier reported in the Event 23 message is a DLC status code returned by
the DLC interface as response to the SNA Manager 802.2 link service. This status code is interpreted by the link service and
mapped to the actual "qualifier" that is reported in Event 23.

Possible causes for Event 23 Link Lost Outage Code AF and DISC Received outage code AE include LAN or router problems,
timeouts or actions that need to be performed by the remote system. To diagnose bridge or router related problems we
suggest using a Network Monitor to read the DLC Packets from Host Integration Server to the Host to determine the device
that is causing the connection to break.

Another recommendation would be to check the Max BTU Length setting for the connection found on the DLC 802.2 tab of the
Connection Properties dialog box. The Max BTU is also called an I-frame; it is the number of bytes that can be transmitted in
a single data-link information frame. Set the Max BTU Length so that it matches the capacity of the adapter and the host or
downstream system. Otherwise, when the mainframe sends a logon screen, the BTU length that is used will be unworkable,
causing the connection to drop. The MAX BTU length setting in the Connection Properties should equal the MAXDATA
parameter in the PU definition on the mainframe or equal the MAXFRAME parameter on the AS/400. For Token-Ring Adapter
Type that transmits at 4 Mbps the MAX BTU setting should be set to less than or equal to 4195. For Token-Ring Adapter that
transmits at 16 Mbps, you can specify 16393. For Ethernet Adapter Type you can specify less than or equal to 1493.

With 802.2 connections, you can adjust other settings such as 802.2 Timeouts and Retry Limit settings found on the DLC 802.2
tab of the Connection Properties dialog box in Host Integration Server Manager. However, the defaults for the timeouts and
retries are appropriate for most networks. Knowledge Base Article Q129786 explains the details on how connection timers
function and the settings to adjust if timeouts on the DLC connection are causing the connection to drop.

Other Event 23 qualifiers include:

Outage code 29 = Remote node not active

Outage code AB = SABME received while connection active

Outage code AC = Frame reject sent

Outage code AD = Frame reject received

Frame rejects occur when the receiver or sender acknowledges or detects that a DLC frame is out of sequence or invalid. We
recommend taking Network Monitor traces to diagnose what intermediate device on the network is causing the frame reject to
occur.

Event ID 230
This troubleshooter walks you through the process of changing a pending status to an active status for a Windows 2000 Event
ID 230 connection error.

Host Integration Server generates Event ID 230 when it encounters the following conditions:

The DLC connection to the host did not activate, and reached Pending status.

-or-

A connection outage (which additionally generates an Event ID 23) caused a connection to change from Active to Inactive,
and finally to Pending.

Complete the following steps to troubleshoot Event ID 230:

1. Review the topic Connection Initialization Sequence, especially steps 1 through 4.

2. Review the topic Finding Relevant Information.

3. Examine the Windows Application Event Log.

4. Resolve the problem: Failure Conditions and Solutions.

https://msdn.microsoft.com/en-us/library/aa770919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754231(v=bts.10).aspx

Windows Application Event Log
If a DLC connection fails to activate and reaches Pending status, and Host Integration Server determines that the activation
failure is due to an Event ID 230 error, the following entry will be created in the Windows 2000 Application Event Log.

Note
The values displayed are for illustration purposes only.

Screenshot of Event Viewer showing Event Detail information

Failure Conditions and Solutions
There are several failure conditions that will cause an 802.2 connection to reach Pending status, with an associated Event ID
230 Application Log entry:

Failure Condition 1 — Remote Network Address mismatch

Problem: The Remote Network Address (Host Integration Server Connection Property dialog box, Address Tab), does not
match the AS/400 Local adapter address.

Solution: You cannot change the AS/400 Local adapter address without changing its network adapter, in which case it will
likely still not match. However, you can simply update the Remote Network Address so that it matches the AS/400 Local
adapter address.

Failure Condition 2 — Improperly configured SNA Link Service

Problem: If the Host Integration Server computer has multiple network adapters, verify that the network adapter used to
communicate with the host is properly configured with the SNA Link Service.

Failure Condition 3 — Network or Bridge Issues

Problem: Network addresses match, and SNA Link Service is properly configured on the correct network adapter, but still no
response to the TEST XID command.

Solution: The connection may not be able to locate the remote network address due to Network or Bridge related issues. Try to
capture a Microsoft Network Monitor or Sniffer™ trace from server to host, and determine the device that is not responding, or
forwarding, the DLC Test command.

Failure Condition 4 — Remote SAP Address Mismatch

Problem: The Remote SAP Address on the Address tab of the Connection Properties dialog does not match the LAN SSAP
defined in the APPC Controller Description.

Solution:

Manually edit either the AS/400 fields, or the Host Integration Server fields such that the parameters match.

Failure Condition 5 — Unable to create new APPC Controller

Problem: The AS/400 was unable to create a new APPC Controller for some reason.

Solution: If you are creating a new APPC Controller - perhaps bringing up a connection for the first time, or maybe you have
tried to bring up a new APPC Controller several times, and the initialization state is now indeterminate:

1. Delete the current controller configuration on the AS/400.

2. Set the Autocreate controller parameter in the AS/400 Line Description to Yes.

3. Re-establish a connection, and allow the AS/400 to dynamically create a new APPC Controller.

Failure Condition 6 — Error States

Problem: The AS/400 APPC Controller or VTAM PU is in an Error State, such as Inactive or Pending Status, perhaps because
there were several attempts to start the connection which were unsuccessful.

Solution: Delete the current controller configuration, set Autocreate controller to Yes, and right-click the connection, and
then click Start.

Failure Condition 7 — Recovery Pending Status

Problem: The AS/400 line or the APPC controller is in an RCYPND (Recovery Pending) Status.

Solution:

Check if the AS/400 line or the APPC controller is in an RCYPND (Recovery Pending) Status, when a connection is not
responding to XID commands. To check for the status of the connection found in the AS/400 line description, issue the
following AS/400 command:

It is also possible to start from the AS/400 Main Menu, enter "WRKLIND *ALL", then choose the Status option on the line
description that you want to check.

Alternatively, you can check for an RCYPND status by issuing "WRKCTLD *ALL", then choose the Status option on the
controller you want to check.

If the AS/400 line status is RCYPND

1. Stop the Server connection from the Host Integration Server Manager.

2. From the AS/400 WRKCFGSTS screen, choose option 2 to vary off the line status. Wait for the line to show a status of
Varied Off. (Press F5 to refresh the screen).

3. Select option 1 to Vary On the line description. Press F4 for the Vary Configuration dialog box. The last option in this
box is Reset, which is "No" by default. Change to "Yes". This will reset the Ethernet Card in the AS/400. Status should
then change on the AS/400 to Vary On Pending.

4. Restart the Host Integration Server Connection.

" WRKCFGSTS *lin <line name> or WRKLIND <line name>

Common Connection Failure Scenarios
Scenario One:

You have a new machine and an old adapter card. This is probably the single most common cause of an Event ID 230 failure:
You just upgraded your Host Integration Server computer platform and removed the C: drive. In attempting to restart a data
link connection, you get an Event ID 230, "Not responding to XID commands" in your NT Event log. The AS/400 controller that
you are trying to connect to is expecting to be connected with the old network adapters address. To correct this, delete the
controller on the AS/400 side, (or manually change it to match your new adapter address although this is not advisable). Then,
set Autocreate Controller on, and reconnect from the SNA side. The AS/400 will create a new controller description based
upon the network adapter address of your new network adapter.

Scenario Two:

In a similar situation, you have a new machine and an old COM.CFG file. Your Host Integration Server computer platform is
upgraded. Rather than reuse your old C drive, you reinstall the product on the new machine, and copy over the old Host
Integration Server computer COM.CFG file. This causes the same problem. The old adapter address is contained in the
COM.CFG file. When the AS/400 attempts to answer your NULL XID, it cannot match the parameters. The new network
adapters address is contained in the NULL XID, but the AS/400 is expecting to see the old adapter address. To correct this,
delete the controller on the AS/400 side, set Autocreate Controller on, and reconnect.

Scenario Three:

You need to restart Host Integration Server computer several times and experience problems. If the Host Integration Server
computer's AS/400 connection is restarted several times in close succession (within a few minutes), then the AS/400s APPC
controller may get hung in an RCYPND state. This requires manual intervention on the AS/400 to clear it.

Event ID 56
This troubleshooter walks you through the process of changing a pending status to an active status for an Event ID 56
connection error.

Host Integration Server generates Event ID 56 when it receives an XID Negotiation Error (X22) Control Vector from the host.
This control vector includes an offset pointer into the XID that was sent to the host. This offset pointer points to the parameter
that the host did not like.

Complete the following steps to troubleshoot Event ID 230:

1. Review the topic Connection Initialization Sequence, especially steps 5 and 6.

2. Review the topic Finding Relevant Information.

3. Windows 2000 Application Event Log.

4. Resolve the problem: Failure Conditions and Solutions.

https://msdn.microsoft.com/en-us/library/aa770919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704973(v=bts.10).aspx

Windows 2000 Application Event Log
If a DLC connection fails to activate and reaches Pending status, and Host Integration Server determines that the activation
failure is due to an Event ID 56 error, the following entry will be created in the Windows 2000 Application Event Log.

Note
The values displayed are for illustration purposes only.

Event Viewer with Event Detail information

Failure Conditions and Solutions
There are four failure conditions that can cause an 802.2 connection to reach Pending status, with an associated Event ID 56
Application Log entry:

Three of the failures are caused by a mismatch between a Host Integration Server configuration field, and an AS/400 field, and
the last is due to an XID format mismatch.

This table summarizes the fields that must match between the Host Integration Server, and the AS/400, for a given connection:

Failure Condition Host Integration Server field name AS/400 Field Name

1 "Local" Network Name Remote network identifier

2 "Local" Control Point Name Remote control point

3 Local network adapter address (see note) LAN remote adapter address

Failure Condition 1 — Local Network Name Mismatch

Problem: The "Local" Network Name on the System Identification tab of the Connection Properties dialog box does not
match the Remote network identifier in the APPC Controller Description.

Solution: Manually update the parameter on either platform, or delete/recreate the APPC Controller, as in Failure Condition 3.

Failure Condition 2 — Local Control Point Name Mismatch

Problem: The Local Control Point Name on the System Identification tab of the Connection Properties dialog does not
match the Remote control point defined in the APPC Controller Description.

Solution: Manually update the parameter on either platform, or delete/recreate the APPC Controller, as shown in Failure
Condition 3.

Failure Condition 3 — Local Adapter Address Mismatch

Problem: The Host Integration Server computer's network adapter address (found via ipconfig /all via DOS box) does not
match the AS/400 LAN remote adapter.

Solution: It is possible to manually edit the AS/400 LAN remote adapter, so that it matches the network adapter address of
the Host Integration Server computer. However, it is not advisable, due to the possibility of creating parameter mismatches.
Instead, perform the following procedure.

1. Delete the current controller configuration on the AS/400.

2. Set the Autocreate controller parameter in the AS/400 Line Description to Yes.

3. Re-establish a connection, allowing the AS/400 to dynamically create a new APPC controller that correctly binds the Host
Integration Server computer's local network adapter address to the SNA Managers "Local" Network Name, and
"Local" Control Point Name.

Failure Condition 4 — Invalid XID format type

1. Problem: The Host Integration Server computer is configured with XID Type: Format 0, when the AS/400 requires XID
Type: Format 3.

2. Solution: Select the XID Type 3 radio button on the System Identification tab of the Connection Properties dialog.

Event ID 49
This troubleshooter walks you through the process of changing a pending status to an active status for an Event ID 49
connection error.

Host Integration Server generates Event ID 49 when it receives an XID from an AS/400 or mainframe host that contains invalid
"local" parameters (as seen from the host).

Complete the following steps to troubleshoot Event ID 49:

1. Review the topic Connection Initialization Sequence, especially step 7.

2. Review the topic Finding Relevant Information.

3. Examine the Windows 2000 Application Event Log.

4. Resolve the problem: Failure Conditions and Solutions.

https://msdn.microsoft.com/en-us/library/aa770919(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772007(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746193(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705461(v=bts.10).aspx

Windows 2000 Application Event Log
If a DLC connection fails to activate and reaches Pending status, and Host Integration Server determines that the activation
failure is due to an Event ID 49 error, the following entry will be created in the Windows 2000 Application Event Log.

Note
The values displayed are for illustration purposes only.

Screenshot of Event Viewer showing Event Detail information

Failure Conditions and Solutions
There are three failure conditions that can cause an 802.2 connection to reach Pending status, with an associated Event ID 49
Application Log entry:

This table summarizes the fields that must match between Host Integration Server, and the AS/400, for a given connection:

Failure Condition Host Integration Server field name AS/400 Field Name

1 "Local" Network Name Remote network identifier

2 "Local" Control Point Name Remote control point

3 Network Adapter Address LAN remote adapter address

These parameters are located on the Host Integration Server Connection Properties dialog box, System Identification tab,
in the lower group box.

Note
The field name "Network adapter address" is not an actual field within Host Integration Server. Network adapter address refe
rs to the address of the network adapter on the Host Integration Server computer.

Solution:

When connecting against an AS/400, these parameters should be left BLANK (i.e., empty), since they are not needed when
connecting to an AS/400. However, if they were configured, and they dont match the values that the AS/400 is sending, Host
Integration Server will reject the XID and log Event 49, followed by one or more Event 56s.

The main benefit that these fields provide is the ability for Host Integration Server to distinguish connection attempts by
different remote systems.

Most connections are set for "outgoing". But for "incoming" connections, Host Integration Server "listens" for incoming
connection attempts, and then uses the configuration information to determine who is trying to talk to it. When
communicating to hosts and AS/400s, it is extremely rare for the remote system to invoke the connection. In 99% of the cases,
the Host Integration Server computer establishes the connection to the remote system (i.e., an "outgoing" connection). As such,
these fields should be left empty.

Step-by-Step Configuration Instructions
The following information was extracted from the Knowledge Base query "Configuring Host Integration Server computer to
Talk to AS/400 Over 802.2" http://go.microsoft.com/fwlink/?LinkId=14394. This will walk you through the Host Integration
Server - AS/400 connection configuration process.

This article describes how to configure a Host Integration Server computer to communicate with an AS/400 over 802.2 (Token-
Ring or Ethernet), to support 5250 emulation. Both Host Integration Server and AS/400 configuration parameters are
discussed.

These instructions assume the following:

The DLC transport driver has been installed and is bound to the correct network adapter.

The Host Integration Server computer's DLC link service has been installed using the Host Integration Server Setup
program.

The system has been restarted.

To configure the following entries using the Host Integration Server SNA Manager

1. In the SNA Manager, right-click SNA Service, and select Properties.

2. Enter the following parameters:

Network Control Point Name:

Network Name = APPN (or Remote Network ID, RMTNETID value on the AS/400).

Control Point Name = This is the remote control point name (RMTCPNAME) value in the AS/400 APPC controller
definition. For simplicity, this should be set to the local Windows 2000 computer name.

Click OK.

3. Right-click Local APPC LUs, point to New, click Local LU, and then enter the following parameters:

LU 6.2 Type Independent

LU Alias For simplicity, this should be the same as the Local LU Name below.

Network Name APPN (same as network name above)

LU Name This is the remote control point name in the AS/400 APPC controller description (RMTCPNAME).

All other entries can remain at default values.

Note
It is most efficient for all Host Integration Server computer users to use the same Local APPC LU. However, it is possible
to create a unique LU for each user if desired, where the LU alias and LU name above could be replaced with the actual
user name (though this requires additional administration to maintain).

Click OK.

4. Right-click Connections, point to New, click 802.2, and then enter the following parameters.

Link Service = SnaDlc1 (or name specified during SNA setup)

Remote End = Peer System

Activation = If set to "On Server Startup" (default), then the Switched disconnect (SWTDSC) value on the AS/400
controller definition should be set to NO. This causes the underlying link to stay active even if there are no active
sessions. Otherwise, if SWTDSC is YES, then Host Integration Server computer should be set to "On Demand" activation.

http://go.microsoft.com/fwlink/?LinkId=14394

Allowed Directions = Outgoing calls. Check Incoming Calls if you want the AS/400 to activate the link.

Zoom on the Setup button:

Remote Network Address = Set to the network adapter address of the AS/400 (ADPTADR), located in the AS/400 line
description.

Local Node ID = EXCHID value on the AS/400 controller description (if not specified on the AS/400, leave at default -
05D FFFFF).

Remote Node Name:

Network Name = APPN (or remote network ID RMTNETID value on the AS/400)

Control Point Name = AS/400 local control point name, configured in the AS/400 Display Network Attributes
screen.

Remote Node ID = Not used (leave blank).

Advanced options can be left at their default settings.

Click OK.

5. Add a new Remote APPC LU off the connection by choosing the Insert button and enter the following parameters:

LU Alias = For simplicity, this should be the same as the Remote APPC LU Name below.

Network Name = APPN (or remote network id RMTNETID value on the AS/400).

LU Name = Must be set to the AS/400 local control point name (set in the AS/400 Display Network Attributes screen).

Uninterpreted LU Name = Not used (leave at default setting).

Select Supports Parallel Sessions (required).

Zoom on the Partners button. The Remote APPC LU must be partnered with the Local APPC LU created above, using the
QPCSUPP mode. Because Enable Automatic Partnering is enabled by default for APPC LUs, this pairing will already be
added.

Click OK.

6. Save the Host Integration Server computer configuration file and restart the Host Integration Server computer service.
Once the Host Integration Server computer service is Active, all connections configured to activate on server startup will
go into a Pending state, then switch to Active.

Note
If the connection stays in Pending mode and doesn't activate:

7. Check the Windows 2000 Application Event log (using Event Viewer) to see the reason why the connection is not
activating. For example, if the AS/400 is not responding to TEST commands, then the remote network address may not
be correct.

8. Double check the configuration entries above with your AS/400 system administrator and make sure the AS/400 line is
active. If all appears okay, check the Host Integration Server computer controller description on the AS/400. For LAN-
based connections (such as Token-Ring or Ethernet), the AS/400 defaults to auto configuration for new controllers, so
manual generation on the AS/400 is not required.

9. Check to see if the AS/400 is logging any errors when Host Integration Server computer attempts to establish the
connection.

10. If the connection activates but users are unable to open 5250 sessions, zoom on the Status button on the Local APPC LU,
which should show the following (when working correctly):

Partner LU Mode User Name Client Limit

<remote LU> SNASVCMG <User Name> <Client Name> 2

<remote LU> QPCSUPP <User Name> <Client Name> 64

This means that up to 64 sessions are available for use, though no sessions are currently active.

11. At this point, a 5250 user can then open any valid APPC LU/LU pair supported by any Host Integration Server computer
in the domain. However, in order to simplify 5250 user access through Host Integration Server, there are various options
available to a Host Integration Server computer administrator and the 5250 user, including the following:

Default AS/400 session for a user: On the Host Integration Server computer user/group record, the administrator
can define default local and remote APPC LUs. If defaults are configured, and the 5250 client is used, this is the
LU/LU pair the 5250 user will open when the 5250 client local and partner APPC LU names are left blank.

If default APPC LUs are not preassigned to a user/group, here is how to configure pools of Local APPC LUs and
Remote (partner) APPC LUs to simplify 5250 user access to one or more AS/400's supported by Host Integration
Server.

Local APPC LU pool: Define the Local APPC LU as a "Member of Default Outgoing Local APPC LU Pool". If a 5250
user does not enter a Local APPC LU when opening a session, the user will access one of the available Local LUs in
this pool.

Remote APPC LU pool: The Remote APPC LU pool is determined by the Remote LUs that are partnered with the
Local APPC LU and the QPCSUPP mode. So, if a Local APPC LU is specified, but the Remote APPC LU is left blank, a
5250 session will be allocated from an available Remote APPC LU with which it is partnered.

Sample AS/400 Configuration
The following AS/400 configuration screens are shown below, along with their corresponding configuration setting for SNA.
This includes the AS/400 network attributes screen, Token-Ring line description, APPC controller, and virtual device
description.

Many of the configuration settings are not relevant for communications to function, though are shown here for completeness.

AS/400: Display Network Attributes screen

Current system name BIGBLUE

Pending system name

Local network ID APPN (must match the remote network name on the Host Integration Server computer
connection)

Local control point name BIGBLUE (must match the remote network name on the Host Integration Server comput
er connection)

Default local location BIGBLUE

Default mode BLANK

APPN node type *ENDNODE

Maximum number of intermediate se
ssions

200

Route addition resistance 128

Server network ID/control point nam
e

APPN BLUE

Alert status *OFF

Alert logging status *NONE

Alert primary focal point *NO

Alert default focal point *NO

Alert backup focal point

Network ID *NONE

Alert focal point to request

Network ID *NONE

Alert controller description *NONE

Alert hold count 0

Alert filter : *NONE

 Library

Message queue QSYSOPR

 Library QSYS

Output queue QPRINT

 Library QGPL

Job action *FILE

Maximum hop count 16

DDM request access *OBJAUT

PC Support request access *OBJAUT

Default ISDN network type

Default ISDN connection list QDCCNNLANY

AS/400: Change Line Desc (Token-Ring) (CHGLINTRN), screen 1

Line description LIND > LANLINE

Resource name RSRCNAME LIN031

Online at IPL ONLINE *YES

Vary on wait VRYWAIT *NOWAIT

Maximum controllers MAXCTL 64

Line speed LINESPEED 16M

Maximum frame size MAXFRAME 1033

Activate LAN Manager *YES

TRLAN manager logging level TRNLOGLVL *OFF

TRLAN manager mode TRNMGRMODE *OBSERVING

Log configuration changes LOGCFGCHG *LOG

Token-Ring inform of beacon TRNINFBCN *YES

Local adapter address ADPTADR 494061026052

Functional address

 + for more values

FCNADR *SAME

Note

The Local adapter address must match the remote network address on the Host Integration Server computer connection.

Also, the Local Adapter Address (ADPTADR) parameter on the line description (for Token-Ring or Ethernet) has a default of
*ADPT. AS/400 Administrators can choose to enter their own locally administered address or the *ADPT inserts the burned-in
adapter card address. The following information includes advantages of both options.

Locally Administered Address:

Advantages: The address is permanent and will not change. It is important to pick a unique address so that there are no
network conflicts. This is the IBM recommended option.

*ADPT Address:

Advantages: The adapter address is inserted into the line description when the line is varied on. Afterward, you can display the
line description and see the adapter card address. This address is a unique address and you are insured there will be no
duplicates on your network.

Disadvantages: If the Adapter card has a hardware problem and is replaced, you need to have a new address when the line is
varied on for the first time. All users who connect using the address will not be able to communicate unless they change their
configuration accordingly. This can cause problems if you have many users because they all reference the same adapter
address.

AS/400: Change Line Desc (Token-Ring) (CHGLINTRN), screen 2

Source Service Access Point 04

SSAP maximum frame *MAXFRAME

SSAP type for more values *SNA

Early token release ELYTKNRLS *YES

Error threshold level THRESHOLD *OFF

Link speed LINKSPEED 16M

Cost/connect time COSTCNN 0

Cost/byte COSTBYTE 0

Security for line SECURITY *NONSECURE

Propagation delay PRPDLY *LAN

User-defined 1 USRDFN1 128

User-defined 2 USRDFN2 128

User-defined 3 USRDFN3 128

Autocreate controller AUTOCRTCTL *YES

Note
For 16-MB Token-Ring, note the Early Token Release setting. This should match the early token release setting used on you
r local network adapter (set using the Network program in Control Panel).

Autocreate controller: This setting controls whether the APPC controller definition and virtual device definition (listed below)

are automatically created by the AS/400 on this line. For Token-Ring or Ethernet lines, this is the default.

AS/400: Change Line Desc (Token-Ring) (CHGLINTRN), screen 3

Autodelete controller AUTODLTCTL 1440

Recovery limits: CMNRCYLMT

 Count limit 2

 Time interval 5

Text 'description' TEXT 'LAN Line description'

Note
If AUTOCRTCTL (Autocreate controller) is YES (in the line description above), then the APPC controller and virtual device defi
nitions below do not have to be generated. In this case, the Host Integration Server computer configuration settings noted be
low will cause these AS/400 configuration entries to be automatically generated.

AS/400: Change Ctl Desc (APPC) (CHGCTLAPPC), screen 1

Controller description CTLD > TRUTH00

Online at IPL ONLINE *NO

APPN-capable APPN *YES

Switched line list

 + for more values

SWTLINLST LANLINE

Character code CODE *EBCDIC

Maximum frame size MAXFRAME 16393

Remote network identifier RMTNETID APPN

Remote control point RMTCPNAME TRUTH

Exchange identifier EXCHID 05600001

SSCP identifier SSCPID *SAME

Initial connection INLCNN *DIAL

Dial initiation DIALINIT *LINKTYPE

Switched disconnect SWTDSC *YES

Disconnect timer: DSCTMR

Minimum connect timer 170

Disconnection delay timer 0

Note

Remote network identifierMust match the network name configured on Host Integration Server computer (set using Admin
when zooming on the server name), as well as the network name configured on the Local APPC LU.

Remote control point Must match the local control point name configured on Host Integration Server computer (set using
Admin when zooming on the server name), as well as the LU name of the Local APPC LU.

Exchange identifier Must match the Local Node ID in the Host Integration Server computer connection.

Switched disconnect If this is set to YES, the AS/400 drops the link when there are no active users, so the Host Integration
Server computer connection should be configured to activate On Demand. Note that Host Integration Server computer 802.2
connections default to activate On Server Startup. If this is desired, the SWTDSC setting should be set to NO.

AS/400: Change Ctl Desc (APPC) (CHGCTLAPPC), screen 2

LAN remote adapter address ADPTADR 10005A38374C

LAN DSAP DSAP 04

LAN SSAP SSAP 04

LAN frame retry LANFRMRTY *CALC

LAN connection retry LANCNNRTY *CALC

LAN response timer LANRSPTMR *CALC

LAN connection timer LANCNNTMR *CALC

LAN acknowledgment timer LANACKTMR *CALC

LAN inactivity timer LANINACTMR *CALC

LAN acknowledgment frequency LANACKFRQ *CALC

LAN max outstanding frames LANMAXOUT *CALC

LAN access priority LANACCPTY *CALC

LAN window step LANWDWSTP * *NONE

APPN CP session support CPSSN *YES

APPN node type NODETYPE * *CALC

APPN transmission group number TMSGRPNBR *CALC

APPN HPR capable *YES

Note
LAN remote adapter addressThis is the network adapter address of the network card being used on the Host Integration Serv
er computer.

LAN DSAP This must match the SAP address on the Host Integration Server computer link service, configured using Host
Integration Server computer setup. This is usually set to 04, so this rarely (if ever) changes.

LAN SSAP This is the SAP address of the destination AS/400 computer, and must match the SAP address on the Host

Integration Server computer connection, configured using Host Integration Server computer Admin. Again, this rarely (if ever)
changes. AS/400: Change Ctl Desc (APPC) (CHGCTLAPPC), screen 3

APPN minimum switched status MINSWTSTS *VRYONPND

Autodelete device AUTODLTDEV 1440

User-defined 1 USRDFN1 *LIND

User-defined 2 USRDFN2 *LIND

User-defined 3 USRDFN3 *LIND

Recovery limits: CMNRCYLMT

 Count limit 2

 Time interval 5

Model controller description MDLCTL *NO

Connection network ID CNNNETID *SAME

Connection network CP CNNCPNAME *SAME

Control owner CTLOWN *SAME

Text 'description' TEXT AUTOMATICALLY CREATED BY QLUS

AS/400: Change Device Desc (APPC) (CHGDEVAPPC)

Device description DEVD > TRUTH03

Online at IPL ONLINE *NO

Mode

 + for more values

MODE *NETATR

Message queue MSGQ QSYSOPR

 Library *LIBL

Local location address LOCADR 00

Single session: SNGSSN

 Single session capable *NO

 Number of conversations

Locally controlled session LCLCTLSSN *SAME

Pre-established session PREESTSSN *SAME

Text 'description' TEXT AUTOMATICALLY CREATED BY QLUS

Mode description MODD > QPCSUPP

Class-of-service . COS #CONNECT

Maximum sessions MAXSSN 64

Maximum conversations MAXCNV 64

Locally controlled sessions LCLCTLSSN 16

Pre-established sessions PREESTSSN 0

Inbound pacing value INPACING 7

Outbound pacing value OUTPACING 7

Maximum length of request unit MAXLENRU *CALC

Text 'description' TEXT created by <name>

Note
Device descriptionThis device name corresponds with the Host Integration Server computer Local APPC LU name (in this cas
e, TRUTH), plus a two-digit device number, generated by the AS/400 (but not configured in Host Integration Server computer
).

Mode description - This should not be changed; this is the default mode name for IBM PC Support clients (and Host
Integration Server computer).

Maximum sessions - This is the number of sessions supported by the QPCSUPP mode, and should match the Host
Integration Server computer session limit configured on the QPCSUPP mode entry, configured using the Host Integration
Server computer setup program (zoom on Local or Remote LU, zoom on Partners button, then choose the Modes button).
Maximum conversations - This should match the Maximum sessions setting.

Solution: Vary off, then on, the controller, as previously outlined.

Troubleshooting Mainframe Pending DLC Connections - Event
ID 230

If a DLC connection to the mainframe does not activate and reaches "Pending" status, you should view the Event Viewer
Application Log for errors. Event 230 is an event in the application log that occurs when a connection is not responding to XID
commands. We recommend checking the identifiers and/or the network address used by the host match with the
corresponding parameters in Host Integration Server Manager. The identifiers or addresses must match in order for the
exchange of identifiers (XIDs) and test frames to complete successfully.

The Remote Network Address (which can be viewed on the Address tab of the Connection Properties dialog box); should
match the 12-digit hexadecimal network address of the remote host, peer, or downstream system. The MACADDR parameter
in the VTAM PORT definition, or in the NCP Gen must match the Remote Network Address configured in the Host Integration
Server Connection.

Node ID is the identifier used when exchanging identification (XIDs) with most mainframes. Check to make sure that the Node
ID matches. If they do not, the Host Integration Server is not identifying itself in a way that the host can recognize. The IDBLK
and IDNUM host parameters are located in the PU definition and must match the Local Node ID configured in the System
Identification Tab in the Server Connection properties. We also recommend checking to see that the PU in VTAM is active.

There are some situations in which the mainframe does not use Node ID in XIDs, but instead uses Network Name and Control
Point Name. These situations include mainframes communicating through LU 6.2, and mainframes that call up the Host
Integration Server computer (meaning that the SNA Server computer accepts incoming calls on that mainframe connection). In
these situations, the following parameters must match:

The NETID in the VTAM Start command for the local SSCPNAME configured in the PU definition must match the Local
Network Name configured on the Server. The CPNAME in the PU definition must match the Local Control Point Name
configured on the server. The NETID and SSCPNAME in the VTAM Start command must match the Remote Network
Name and Remote Control Point Name configured in the Connection Properties.

If all connection settings above match the corresponding host parameters, then the connection may not be able to locate the
remote network address due to Network or Bridge related issues. When the DLC connection first tries to activate, it sends out
an LLC TEST frame to the remote network address to initiate the link level connection. If the Server does not receive a reply to
the local TEST command within 0.5 seconds, it sends an all-routes broadcast TEST command. The link service will send a total
of three all-routes broadcast TEST commands if the remote station it not responding.

On a Token-Ring network, the local ring is tried first. If there is no response to the TEST frame, the Server resends the TEST
frame with the "all routes broadcast" setting enabled which is then forwarded by source routing bridges.

In an Ethernet network, the Test command does not contain any source-routing information. The Server sends TEST and XID
frames to both the configured remote network address and the bit-flipped address, in both DIX and 802.3 formats.

If the remote station does not reply to the TEST frame then the connection remains in a pending condition and an Event 230
gets logged in the Event Viewer Application log.

To diagnose the cause of the Test command failing we recommend capturing a Microsoft Network Monitor or SnifferTM trace
from Server to host and determine which device is not responding or forwarding the DLC Test command.

Troubleshooting AS/400 Pending SDLC Connections
If the SDLC connection to the mainframe does not activate and reaches "Pending" status shown in Host Integration Server, you
should view the Event Viewer Application and System Log for SDLC Link Service and Adapter errors and to check the modem
light indicators. We also suggest enabling detailed Problem Analysis found on the Error/Audit Logging tab in the Subdomain
properties dialog box.

If a switched connection failure occurs, we recommend checking the identifiers used by the host match to the one used by the
Host Integration Server connection. The Local Node ID found on the System Identification Tab of the Connection Properties
needs to match the EXCHID value on the AS/400 controller description.

When these conditions occur, the Event Viewer Application Log will contain Event ID 182 if an IBM SDLC Link Service is used.

Connection pending conditions can also occur if the AS/400 APPC controller does not match the Local Control Point Name in
Host Integration Server. We recommend comparing the controller value found on the RMTCPNAME field in the AS/400
controller definition with the Local Control Point Name located on the System Identification tab in the Host Integration Server
connection properties. The Network Name in the connection properties also must match the setting found in the RMTNETID
value on the AS/400.

We suggest checking to see if the Encoding (NRZ/NRZI) setting in the AS400 line description matches the setting on the
Address Tab in the connection properties dialog box. If the NRZ/NRZI settings do not match, the two ends of the connection
begin negotiating but cannot interpret each others signals correctly. The Poll Address found on the Address Tab in the
connection properties dialog box, should also be verified to match the Station address (STNADR) setting on the AS/400
controller definition. The duplex setting on the AS/400 line description must also match the Duplex setting on the SDLC tab of
the connection properties in Host Integration Server Manager.

If the modem "receive data" light flashes, but "transmit data" light does not and the connection status reaches "Pending" and
then the connection is dropped, we recommend checking the cables to verify that the correct V.35 or RS232 connector is used
for the adapter installed in the machine. If the SDLC connection is a leased line and is a multi-drop line, we suggest checking
that all devices sharing the line are set for half-duplex and that Constant RTS should be disabled.

We also suggest checking the DMA channel setting on the adapter if supported and compare this to the setting in the link
service properties dialog box. If this setting specifies a nonexistent address, data cannot flow. The modem configuration should
also be checked to make sure that its configured to use Synchronous instead of Asynchronous communications.

If problem persists, we recommend capturing a synchronous line trace using a third party Line Monitor and an SDLC Link
Service Trace to diagnose the cause of the SDLC connection failing. The Host Integration Server Trace Program can be found
on the Tools menu in Host Integration Server Manager. Select the Link Service Properties and enable data link control and
Level 2 Messages from the Message Trace Tab and enable all Internal traces from the Internal Trace Tab. To analyze the traces,
we suggest that you open an incident with Microsoft and send the traces to the Support Specialist.

Troubleshooting Mainframe Pending SDLC Connections
If the SDLC connection to the mainframe does not activate and reaches "Pending" status shown in Host Integration Server, it is
recommended to view the Event Viewer Application and System Log for SDLC Link Service and Adapter errors and to check
the modem light indicators. We also suggest enabling detailed Problem Analysis found on the Error/Audit Logging tab in the
Subdomain properties dialog box.

If a switched connection failure occurs, we recommend checking to ensure the identifiers used by the host match the one used
by the Host Integration Server connection. The Local Node ID found on the System Identification Tab of the Connection
Properties needs to match the IDBLK and IDNUM host parameters located in the PU definition. The connection failure can also
occur if the XID is already in use. We recommend verifying that the Local Node ID is not already in use and that the PU is
enabled in VTAM. When these conditions occur, the Event Viewer Application Log will contain Event ID 182 if an IBM SDLC Link
Service is used.

We suggest checking the Encoding (NRZ/NRZI) setting used by the host and compare this to the setting on the Address Tab in
the connection properties dialog box. The NRZI setting on the Mainframe can be found in the LINE/GROUP definition and it
defaults to YES. If the NRZ/NRZI settings do not match, the two ends of the connection begin negotiating but cannot interpret
each others signals correctly. The Poll Address found on the Address tab in the Connection Properties dialog box, should also
be verified to match the ADDR parameter found in the PU definition.

If the modem "receive data" light flashes, but "transmit data" light does not and the connection status reaches "Pending" and
then the connection is dropped, we recommend checking the cables to verify that the correct V.35 or RS232 connector is used
for the adapter installed in the machine. If the SDLC connection is a leased line and is a multi-drop line, we suggest checking
that all devices sharing the line are set for half-duplex and that Constant RTS should be disabled.

We also suggest checking the DMA channel setting on the adapter if supported and to compare this to the setting in the link
service properties dialog box. If this setting specifies a nonexistent address, data cannot flow. The modem configuration should
also be checked to make sure that its configured to use Synchronous instead of Asynchronous communications.

If problem persists, we recommend capturing a synchronous line trace using a third party Line Monitor and an SDLC Link
Service Trace to diagnose the cause of the SDLC connection failing. The Host Integration Server Trace Program can be found
on the Tools menu in SNA Manager. Select the Link Service Properties and enable data link control and Level 2 Messages from
the Message Trace tab and enable all Internal traces from the Internal Trace tab. To analyze the traces, we suggest that you
open an incident with Microsoft and send the traces to the Support Specialist.

Performance Problems
In This Section

Maximizing Communications Performance

Maximizing Background Processing on Host Integration Server Computers

https://msdn.microsoft.com/en-us/library/aa746061(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770743(v=bts.10).aspx

Maximizing Communications Performance
Servers used primarily for communications need to provide fast network performance, but do not need to provide fast file
access (such as a server used primarily as a file server). Faster network communication can be achieved if portions of memory
are set aside for communications by configuring "nonpaged memory". Nonpaged memory is portions of memory that are
never swapped to disk, but remain available for immediate use at all times.

In Windows 2000, you can view or change network performance options, as described in the following procedures. For a Host
Integration Server computer, you may not need to change this option, because Host Integration Server Setup automatically
sets the option to maximize throughput for network applications.

To view or change network communication options for a Windows 2000 Server

1. Click Start, point to Settings, click Control Panel, and then double-click Network and Dial-up Connections.

2. Double-click Local Area Connection and click Properties.

3. Click File and Printer Sharing for Microsoft Network, and click Properties.

4. For a server dedicated to communications, select Maximize data throughput for network applications.

5. Click OK, and then click OK again. Click Close.

If you made a change, the Network Settings Change message box appears. To put the changes into effect right away, restart
the computer. To put the changes into effect later (at next startup), do not restart the computer now.

Maximizing Background Processing on Host Integration Server
Computers

Servers used primarily for communications run many important background processes (processes not related to user actions
in the current window). These servers generally do not need to run foreground processes at maximum speed. Therefore, Host
Integration Server throughput can be increased by making the operating system more responsive to background processes
and less responsive to foreground processes.

As would be expected, a server that is less responsive to foreground processes will run local applications such as word-
processing software, spreadsheets, or SNA Manager more slowly. Tasking is most appropriate for servers used primarily to
support clients, not servers used locally as desktop computers.

To optimize background processing for a Windows 2000 server

1. Click Start, point to Settings, click Control Panel, and then double-click System.

2. Select the Advanced tab.

3. In the Performance box, click Performance Options.

4. In the Application response box,select Background services.

5. Click OK, and then click OK again.

Host Print Service Problems
In This Section

Common Problems

Print Tracing Problems

3270 Printing Problems

Non-printable Character Problems

https://msdn.microsoft.com/en-us/library/aa754385(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770318(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770484(v=bts.10).aspx

Common Problems
The Host Print Service runs under a Windows 2000 user context. The Host Print Service (SnaPrint) may not be running under a
Windows 2000 user context that has authority to open a session to the destination printer. Confirm the user context of the
Host Print Service, and/or try re-entering the password within the Services Control Panel for SnaPrint Startup, within "Log On
As: This Account:". In addition the user's rights can be confirmed by logging on to Host Integration Server as that user and
attempting to print from Notepad.

The Generic/Text only printer driver has several limitations. Please see the following Microsoft Knowledge Base articles
(available from the Web site http://go.microsoft.com/fwlink/?LinkID=99570):

168233: http://support.microsoft.com/kb/168233

166000: http://support.microsoft.com/kb/166000

162616: http://support.microsoft.com/kb/162616

154322: http://support.microsoft.com/kb/154322

Transparent sections in print jobs will be discarded unless a PDT file is configured. When such sections are discarded, an Even
is logged in the Event Log, with a sample of the discarded data. This logging can be disabled globally from the Properties Page
of the Print Server in SNA Manager.

HP PCL escape sequences in transparent sections should use all ASCII characters.

In addition the session property Transparent is ASCII must be selected.

If printing through cascaded Windows 2000 print servers, it may be necessary to add the printer share name to the
NullSessionShares Registry entry on the Windows 2000 computer to which the Host Print Service is printing:

Where <sharename> is the share name associated with the Windows printer. Note that each share name must be listed on a
separate line within the REGEDT32 "Multi-String editor". The Windows 2000 computer must be rebooted to enable this
change. See Microsoft Knowledge Base article 121853 at: http://support.microsoft.com/kb/121853.

HKEY_LOCAL_MACHINE
 System/CurrentControlSet
 Services
 LanmanServer
 Parameters
 NullSessionShares: REG_MULTI_SZ: <sharename>

http://go.microsoft.com/fwlink/?LinkID=99570
http://support.microsoft.com/kb/168233
http://support.microsoft.com/kb/166000
http://support.microsoft.com/kb/162616
http://support.microsoft.com/kb/154322
http://support.microsoft.com/kb/121853

Print Tracing Problems
Host Integration Server incorporates extensive tracing within the Host Print Service components and the messages that flow
between them. The Host Integration Server Print Service communicates over two well-defined SNA APIs - FMI (Functional
Management Interface) and the APPC (Application Program to Program Communication) API FMI is used for 3270 printing,
while APPC API is used for AS/400 printing.

For problems where the output is not correct

1. If possible, isolate this print job by stopping all printing to other printer sessions. This will make it easier for support
personnel to analyze when viewing traces.

2. Stop the print session(s) in question.

3. Enable the following traces using the SNA Manager Trace Utility:

4. Select SNAPrint: Internal Trace Tab (Custom Events), Message Trace (all). Custom Events enables a new type of tracing
called Advanced Job Logging. It traces each byte of the data stream.

Select SNAServer. Message Trace (Data Link Control, 3270 Messages, LU 6.2 Messages).

Reproduce the problem.

Turn the traces off immediately by selecting Clear All Traces button in the Tracing Items Tab.

Print another job to this Print Session, this time changing the Destination to File. This can be done in the Printing Tab for this
Print Session.

For all other problems

1. If the problem manifests itself with only one print job, isolate this job by stopping all printing to other print sessions, if
possible. This will make it easier for support personnel to analyze when viewing traces.

2. Stop the print session(s) in question.

3. Enable the following traces using the SNA Manager Trace Utility:

Select SNAPrint: Internal Trace (all; with the exception of Custom Events), Message Trace (all).

Select SNAServer. Message Trace (Data Link Control, 3270 Messages, LU 6.2 Messages).

Reproduce the problem.

Turn the traces off immediately by selecting Clear All Traces in the Tracing Items tab.

Collecting Information for support personnel

1. %snaroot%\system\config\com.cfg.

2. All traces in the %snaroot%\traces directory.

3. Application Event log.

4. Printer output file in cases where the problem is wrong output.

5. Hard copy output from the physical printer.

6. An output file and / or a hard copy output of a "successful" job. This might be another print emulator or an output from
an actual IBM device.

Note
Before contacting product support, obtain the following information:

3270 Printing Problems
The 3270 datastream was not designed for proportional fonts. This can cause problems in some print jobs, resulting in
characters that overlap. The advanced settings of the Print Server Properties page allows you to configure Host Print Service to
use a different method of positioning characters.

Problems with Form Feeds

One commonly seen problem with Host Print Service is extra or missing form feeds (FF). Some of these issues involve how
SNA Print handles explicit form feeds. Other issues relate to using the number of lines per page, in place of a FF character, to
cause a page break (form feed).

When Host Print Service receives a FF character in the host data stream ('0x0C'), it holds this character until it receives
additional data, either control codes (SCS or 3270 orders) or printable characters. If it receives additional data, the FF is sent to
the printer and the additional data is processed. If no further data is received, meaning we are at the end of the job, the FF is
dropped. At this point the SNA Print will complete the outstanding job by calling either EndDoc for sessions not using a PDT
or EndDocPrinter, for sessions using a PDT. When EndDoc is called, a FF is added to the end of the job. When
EndDocPrinter is called, no FF is added. In this latter case, whether SNA Print adds a FF to the end of the job depends on how
the END_JOB parameter is configured in the PDT. An alternative to using the PDT is to change the default data type for the
print processor in the Windows NT Printer properties. If the default data type is set to RAW [auto FF], the print driver checks for
the presence of a FF and adds one if necessary.

It is possible to force SNA Print to not drop the final FF when using a PDT. This requires the Registry entry FlushFF be added
and set to TRUE.

FF at End of Job PDT FF added End results
Yes No Yes FF

No No Yes FF

Yes Yes No (depends on PDT)

No Yes No (depends on PDT)

Many older host print jobs rely on the number of lines per page to determine page breaks. They assume for example that a job
will use 66 lines per page, so add enough blank lines after the text to bring the total number of lines to 66 before starting the
text that should be on the next page. If there were 30 lines of text, 36 blank lines would be added before the text intended for
the next page. The drawback of this method is it depends on the printable area of the printer, the lines per inch, the lines per
page, and the top margin set for the job. If by default only 65 lines will fit per page, the resulting printout will show "page
creep," where the last blank line is pushed to the top of the next page, and then two lines to the top of the third page, etc. This
"page creep" can be remedied within the PDT file by having the START_JOB parameter set the top margin to zero and the lines
per page to 66. In addition the Printer Session properties should have the lines per inch set to 6.

For example with a printer using HP PCL the following would be added to the PDF:

In the macros section:

For Start Job

FlushFF: REG_SZ
 HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 SnaPrint
 Parameters

TOP EQU 1B 26 6C 30 45 /* Top Margin set to 0 */
STL EQU 1B 26 6C 36 36 46 /* Set Text Length to 66 */

Host Print Service is designed to execute a form feed (FF) included in an LU 3 print job when any of the following conditions
are met:

If the FF is inserted as the first character after the WCC in a 3270 Erase/Write or Erase/Write Alternate command.

If the FF is located after a valid NL (New Line) order.

If the FF is located after the last printable character position of any print line.

A registry entry is available that will force Host Print Service to honor all form feed characters in an LU 3 print job, even if they
do not meet the above conditions. To add this entry, find the following key using REGEDT32:

Add the following entry to this key:

DoAllLU3FFs should be set to TRUE. The system checks to see if this registry entry exists. Any value entered for the string will
enable this feature.

START_JOB = TOP0 STL

HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 SnaPrint
 Parameters

Value Name:
Data Type:
String:

Non-printable Character Problems
Characters below 0x40 in the 3270 datastream are considered "non-printable" characters. Some of these values are used by
3270 Orders and SCS codes. By default, if Host Print Service encounters a non-printable character that is not an SCS code or
3270 Order, it rejects the frame, or in some cases translates the character to an ASCII space and continues on. To force Host
Print Service to process all characters, and translate them to their ASCII equivalents according to the code page being used, a
registry entry has been made available. To add this entry, find the following key using REGEDT32:

Add the following value to this key:

HKEY_LOCAL_MACHINE
 SYSTEM
 CurrentControlSet
 Services
 SnaPrint
 Parameters

Value Name: HonorCharsUnder0x40
Data Type: REG_SZ
String: TRUE

Configuration Problems
In This Section

Config Lock and Out-of-Date Messages in the Status Bar

Saving Configuration Changes

Server Configuration Setup Problems

https://msdn.microsoft.com/en-us/library/aa744928(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753889(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770494(v=bts.10).aspx

Config Lock and Out-of-Date Messages in the Status Bar
The SNA Manager will only lock the configuration file when you initiate a configuration change. If the lock is obtained, the
status bar will flash 'CONFIG LOCK'. When you complete the change and save the configuration file, the lock will be released
and the status bar will be cleared.

The tree pane will display '[Out Of Date]' on other servers in the domain. To refresh the status on the out-of-date servers, on
the Service menu, click Stop, and then click Start. The status bar will display 'OUT OF DATE' if SNA Manager is out-of-date.
On the File menu, click Refresh.

Saving Configuration Changes
If the SNA Manager is opened in the domain, it will attempt to obtain an exclusive lock on the configuration file when it is
opened (unless opened in read-only mode). It is recommended that you do not run SNA Manager until all servers in the
domain have been upgraded to Host Integration Server.

SNA Manager will lock the configuration file when a configuration change is initiated. When the change is completed and the
configuration file is saved, then the configuration file lock will be released. The status bar will display OUT OF DATE on other
servers in the domain. To refresh the status on the out-of-date servers, SNA Manager must be closed and reopened.

Server Configuration Setup Problems
If a server is set up incorrectly, SNA Manager allows the administrator to make changes. Right-click on the server you want to
modify.

1. Open SNA Manager, and select a server.

2. On the Server Properties page, click on the Server Configuration tab.

3. Click Change. From Server Configuration, you can change the subdomain, role, and transport protocol.

4. Restart the server for the changes to take effect.

Problems with Other Features
In This Section

DLS Status Problems

Virus-Checking Tool Problems

https://msdn.microsoft.com/en-us/library/aa705630(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754436(v=bts.10).aspx

DLS Status Problems
If you get a message stating that no DLS service is available for a given server, you may not have access to the Registry for that
server. For DLS status (or dlsstat on the command line) to display the available link services, you need to have access to the
Registry on the system that you specify in DLS status.

To correct this problem, see if you have any access to the Registry keys in the HKEY_LOCAL_MACHINE window for a remote
server: run regedt32 on the Host Integration Server computer on which you ran dlsstat and connect to one of the remote
computers. If everything in the Registry window is unavailable (dimmed out), dlsstat will not work properly. Make sure you
have access to the Registry before running DLS status again.

Virus-Checking Tool Problems
When you are running Host Integration Server with some independent software vendor virus checking tools, SNA link services
might fail to start due to the following error:

Event 128: "Can't load IHV DLL xxx.dll"

where xxx.dll is the specific DLL

It is recommended that any "real-time scanning" options be disabled on the virus checker before starting Host Integration
Server to prevent local file access slowdowns.

Troubleshooting Network Integration
In This Section

Troubleshooting IP-DLC Link Services

https://msdn.microsoft.com/en-us/library/aa745618(v=bts.10).aspx

Troubleshooting IP-DLC Link Services
IP-DLC uses the Host Integration Server Trace Utility.

Troubleshooting Transaction Integrator
Use the information in this section to troubleshoot problems in your COM-based or .NET Framework-based client application
and Transaction Integrator (TI).

General Tips

Here are some general tips to help you troubleshoot problems with COM-based applications:

Collect and analyze error message information.

Collect and analyze Windows Event Log information. Gather all available error information: HRESULT values, error
strings, and information in the Windows Logs. For more information, see Checking the Windows Event Logs for Errors.

COM Error Messages

To understand COM application error messages, you need to understand the roles of HRESULT and failfast.

At the end of every method call, the called object sends a four-byte status code (an HRESULT) to its client. For example, most
methods return a value of 0x00000000, which signifies that the call completed successfully. However, other numbers can be
returned, each of which has a specific meaning. Often these numbers are displayed to the user, in which case they can help you
understand the problem and how to correct it.

If a grave error occurs, COM can shut down the process that caused the problem. This sort of behavior is called a failfast. It is
performed to guard system and data integrity. A general protection fault (GPF) or an Access Violation in a COM+ application
causes a failfast. When a failfast occurs, there is no error message; Windows just shuts down the offending process. When a
failfast occurs, COM logs a lot of error information to the event log. Thus it is important to search the event log for data if a
problem is occurring.

To find out more about specific error messages:

Search for the error text in this document as well as on the Web. For more information, see
Additional Help with Events and Errors.

Identify the HRESULT values. If you see a long number along with the error message, that number is probably an
HRESULT. All HRESULT values are displayed in either hexadecimal or decimal format. In hexadecimal format, an HRESULT
is eight hexadecimal digits (0-9, A-F.), such as 0x400FAB23 or 0x80001234. In decimal format. An HRESULT is a ten-digit
number, and it will probably be negative, such as -2146889713.

The thirty-two bits in an HRESULT are numbered from 31 to 0, and bit 31 is the highest bit.

Once you have the HRESULT, use it to:

Confirm that the HRESULT signals failure. If bit 31 is 0, then this is a success or an informational HRESULT. For
example, 0x00000000 signals success. If bit 31 is not zero, the HRESULT signals a warning or an error. For
example, 0x80000000 is an error HRESULT.

Look for the source of the problem. HRESULT values contain a facility code that specifies the error source. The
facility code is in bits 16-27 of the HRESULT. In the hexadecimal format, the facility code is in the Z positions in
0x0ZZZ0000. Following are the meanings of the various facility codes: 0 = COM, 1 = RPC, 2 = Dispatch,
3=Storage, 4 = ITF/?, 7 = Win32, 8 = Windows, 9=SSPI, 0xA=ActiveX Controls/MDAC/user code/?,
0xB=Certification, 0xC = Internet, 0xD=Mediaserver, 0xE = MSMQ, 0xF=SetupAPI, 0x10 = Scard, 0x11 = COM+.

In This Section

How to Check the Windows Event Logs for Errors

Tracing and Debugging

Client Application Does Not Start but No Error Given

Trouble Defining a Recordset for Web-Based Applications

https://msdn.microsoft.com/en-us/library/aa744371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745232(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771452(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770541(v=bts.10).aspx

Cannot Use Save Command in TI Designer

Trouble Creating an Object

Case Discrepancies in Assigned Names

Visual Basic Limitation on Number of Parameters Per Method

How to Resolve Transactions Manually

Mainframe Issues Affecting Transaction Recovery

Allocation Failure

How to Start and Stop DTC or SNA LU 6.2 Resync TP

Newly Deployed Components Not Recognized

Data Type Conversion Errors

Memory Leak When Using User-Defined Types in User-Defined Types

Avoiding Data Translation

Using TI User-Defined Types with the .NET Framework and Visual Studio

How to Use Variable Length Recordsets with Transaction Integrator

See Also
Tasks
Additional Help with Events and Errors
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa745581(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705445(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745252(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705484(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771077(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771284(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771484(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

How to Check the Windows Event Logs for Errors
The Windows Event Log keeps a record of the system's behavior. It contains:

Informational events that signal normal system function. For instance, certain services log an event whenever they start
or shut down.

Warning events that signal issues that can be problematic but are not actual errors.

Errors. If you find any error events in your logs, this indicates a problem.

COM+ and .NET often log error events when they detect a problem in an application. This is their main way of signaling a
problem or giving diagnostic information. Therefore, understanding a COM+ or .NET problems begins with searching the
event log for errors.

To search for errors in the event logs

1. Look for a red circle that contains an x. Errors generally indicate a serious problem, so you should troubleshoot them
before moving on to the specific problem.

2. Search the event logs for COM+ errors. COM+ generally logs its events in the Application and System logs. You can
determine which errors are from COM+ by looking at the Source column. Errors with a source heading of COM+ or
MSDTC are COM+ errors. Explore the COM+ errors by double-clicking the error to bring up an error dialog box that
contains all the error information: Source, Machine, Date, Time, and Event ID. At the bottom of the error dialog box is an
error description. Read this carefully as it will explain the error and even recommend a remedy. Also, check the Data area
on the error dialog box; it may contain additional useful binary information. If you find an HRESULT, analyze it.

3. Determine whether the error contains a call stack. A call stack is a piece of text describing what the application was doing
when the error occurred. It begins with a Call stack line. If there is a call stack, determine which .dll file caused the error.
Each line in the call stack begins with the name of a .dll file and ends with an exclamation mark or a plus sign.

The call stack shows a cause and effect chain. The .dll file listed in the top line in the call stack is the direct cause of the
error, and .dll files listed on lines below it are indirect causes of the error.

See Also
Other Resources
Windows Event Viewer

https://msdn.microsoft.com/en-us/library/aa770932(v=bts.10).aspx

Tracing and Debugging
Transaction Integrator (TI) provides low impact performance monitoring for call volumes, processing time, and data
throughput capable of isolating each major participant (host, TI, the .NET Framework, and client) to the granularity of
transaction type and programming model supported. This support is turned on or off by the administrator online.

See Also
Other Resources
Using the SNA Trace Utility

https://msdn.microsoft.com/en-us/library/aa745440(v=bts.10).aspx

Client Application Does Not Start but No Error Given
If you double-click the .exe file for your Visual Basic client application and nothing happens but no error message appears, the
problem may be that you did not deploy the TI component that your client application is attempting to use.

Normally, if a TI component type library is not registered (that is, it has not been deployed in a COM+ application), you will
receive error message number 429 that says, "ActiveX component cannot create object." However, no error appears at all if the
unregistered TI component contains a user-defined type (UDT) and that UDT is referenced in the Visual Basic client application.

To resolve this problem, deploy the TI component in a COM+ application to automatically register it. Then your Visual Basic
client application will work.

Trouble Defining a Recordset for Web-Based Applications
In TI, a recordset consists of tabular data defined in COBOL source code on the mainframe. Tabular data is defined by a group
item containing an OCCURS clause in the COBOL data area. When you import a COBOL data area into TI Designer, the
following COBOL-to-Automation conversions take place:

The COBOL data area defines the parameters of the newly created method and the members of any recordsets.

The group item that defines the table (contains the OCCURS clause) is represented as both the type definition of the
method's recordset and a method parameter.

Other group items are represented as method parameters.

Elemental data items (definitions of the table fields) are represented as the recordset's members.

The following COBOL data area describes the type library for a Web-based application that uses a CICS LINK remote
environment. The application returns information on up to six accounts for each customer name and matching PIN entered as
input.

When imported into TI Designer, the data area's group items are treated as the parameters of the newly created method.
However, because of Remote Data Service (RDS) requirements for Web-based applications, the group item that defines the
table must be defined as the method's return value, not as a method parameter. To define the method correctly, you must
manually redefine this group item (ACCTINFO in the previous example) as a return value.

Before you import the COBOL data area, note the number of rows specified in the OCCURS clause. After you have imported
the COBOL data area, use the following procedure to define a recordset for Web-based applications.

To define a recordset for a Web-based application

1. Start TI Designer.

2. In the console tree, double-click the Recordsets folder to verify that TI Designer created the type definition of the
recordset. The type definition's name is taken from the group item that defined the table in the COBOL source code.

3. Double-click the Methods folder, and click the method's name. Verify that the recordset parameter is displayed in the
details pane. The parameter name should match the name of the recordset's type definition.

4. On the Edit menu, click Unlock to unlock the method.

5. In the details pane, delete the recordset parameter.

6. Right-click the method, click Properties, and then click the Automation Definition tab.

7. Click the name of the recordset's type definition in the Return Type box.

01 DFHCOMMAREA.
* ACCTINFO IS (INPUT, OUTPUT)
 O5 ACCTINFO OCCURS 6 TIMES.
 10 ACCOUNTNUMBER PIC X(6).
 10 ACCOUNTTYPE PIC X(20).
 10 CURRENTBALANCE PIC S9(13)V9(2) COMP-3.

 10 INTERESTBEARING PIC S9(4) COMP.
 10 INTERESTRATE COMP-1.
 10 MONTHLYSVCCHG PIC S9(13)V9(2) COMP-3.

* NAME IS (INPUT, OUTPUT)
 05 NAMEPIC X(30).
* PIN IS (INPUT, OUTPUT)
 05 PIN PIC X(10).

8. Click the Recordsets tab.

9. In the Group-Item Maximum box, type the number of rows specified in the COBOL source code, and then click OK.

For detailed information about recordsets, see the ActiveX Data Objects (ADO) and Remote Data Service (RDS) documentation
included when you installed Microsoft Data Access Components (MDAC).

Cannot Use Save Command in TI Designer
Before updating a Transaction Integrator (TI) component, consider how your changes affect applications that call the
component's methods. If, for example, you add a parameter to an existing method or change the direction of a parameter,
current applications will no longer be able to call the method successfully. To prevent unintended overwrites of TI components,
the Save command in TI Designer is disabled for any component that has been added to a COM+ Application.

To save modified components that no longer need to work with existing applications, first display the properties of the
component's interface and change the component's ProgID (programmatic ID in Visual Basic terminology). Then use the Save
As command to save the component under a different file name. The new component can be used with later applications, and
the original component can be used with existing ones.

You can modify a component in such a way that it will continue to work with existing applications. (For example, you can add a
method to the component's interface without breaking existing applications.) In this case, how you save the modified
component depends on whether existing applications connect to the component through declarative binding or late binding.
Declarative-bound applications connect to a component when the application is compiled. Declarative-bound applications
recognize a required component by the component's class identifier (CLSID). Late-bound applications connect to a component
at run time. Late-bound applications recognize a required component by the component's ProgID.

If you modify a component accessed by a late-bound application, you can save your modifications with the Save As command.
As long as you do not change the component's ProgID, existing late-bound applications can still access the component. (It is
recommended that you change the component's minor version number on the properties page for the component's interface.
The minor version number is the number to the right of the decimal point in the Version box on the properties page.)

Because the Save As command changes a component's CLSID, you must use the Save command to save modifications to any
component that will continue to support existing declarative-bound applications. This means that before you open the
component's .tlb file in TI Designer, you must delete the component from its COM+ application. Use the following procedure to
modify a TI component currently deployed in a COM+ application.

To modify a TI component currently deployed in a COM+ application

1. Before opening the component in TI Designer, start TI Manager.

2. In the Component Services folder of TI Manager, shut down the server process on the computer where the TI
component's COM+ application resides.

3. Delete the TI component from its COM+ application.

4. In TI Designer, open the TI component's .tlb file.

5. Modify the TI component, and then change the component's minor version number on the properties page for the
component's interface.

6. Save the component. Because you deleted the component from its COM+ application before opening it in TI Designer,
the Save command is enabled.

7. Deploy the new version of the TI component in a COM+ application.

Note
If you modify the TI component before deleting it from its COM+ application, your only recourse is to close the component's
.tlb file without saving it, and then follow the procedure.

Note
If you are not sure whether the component is used by late-bound or declarative-bound applications, you can protect existing
applications by using the above procedure instead of using the Save As command.

Trouble Creating an Object
When running your application, if you encounter the message "ActiveX component cannot create object," try the following to
correct the problem:

Verify that the TI component library is deployed in a COM+ application.

Verify that the application references the correct ProgID.

Verify that ActiveX Data Objects (ADO) is installed. This is necessary if the object you want to create is a recordset object.
ADO is a subcomponent of Microsoft Data Access Components (MDAC), which is an integral part of Windows 2000 or
Windows Server 2003.

Case Discrepancies in Assigned Names
Use care when assigning names to any part of a type library in TI Designer. You can assign case-sensitive variants of the same
name. For example, you can assign a name of myparam to a parameter of one method, and MyParam to a parameter of
another method. However, when you save the type library, the name of the second parameter will be changed to match the
case of the first. In the previous example, both parameters would be saved as myparam. Such unexpected changes in case are
potentially confusing, although they will not affect the operation of your application.

Visual Basic Limitation on Number of Parameters Per Method
If you attempt to compile a Visual Basic 6.0 application containing a component with more than 60 parameters per method,
you can encounter the following error: "Subscript out of range." This error occurs with applications that connect to the
component through declarative binding. You can avoid this error by switching to late binding. If, for the sake of performance,
you want to maintain declarative binding, you can modify the component to aggregate its parameters within a single
recordset. The recordset will then be treated as a single parameter and will not cause the error the next time you compile.

How to Resolve Transactions Manually
The following procedures describe how to resolve a transaction manually when it cannot be committed or aborted by the
system due to a resynchronization failure following restoration of services between the Windows 2000 or Windows Server
2003 and IBM LU 6.2 systems. Such resynchronization failures can occur, for example, if CICS makes a heuristic decision to
commit or abort a transaction. CICS versions prior to 5 will do this. Typically, TI and Microsoft Distributed Transaction
Coordinator (DTC) will automatically resolve all in-doubt transactions when service between the systems is restored. However,
if resynchronization and recovery cannot be automatically achieved for any reason, you can resolve transactions manually by
using one of the following procedures.

To resolve a transaction manually

1. For transactions in the Only Failed Remain to Notify state or in the Cannot Notify Committed state:

The Only Failed Remain to Notify and the Cannot Notify Committed states indicate that the transaction has committed,
but some subordinate Microsoft DTC or IBM LU 6.2 systems have not been notified.

a. Start TI Manager, and navigate to Transaction List in the console tree's Component Services folder in Windows
2000 or Windows Server 2003.

b. In the Transaction List details pane, right-click the transaction that is in the Only Failed Remain to Notify or
Cannot Notify Committed state.

This will display the parent DTC and the subordinate DTC and IBM LU 6.2 systems for the transaction.

c. Force the transaction to commit on each subordinate system.

d. Return to the DTC that shows the Only Failed Remain to Notify or Cannot Notify Committed state, and force that
DTC to forget the transaction.

Caution
Do not manually forget a transaction until all subordinate systems have been notified of the transaction outcome.

2. For transactions in the Aborted state or in the Cannot Notify Aborted state:

The Aborted and Cannot Notify Aborted states indicate that the transaction has aborted. If a transaction remains in one of
these states for an extended period of time, this indicates that some subordinate DTC or IBM LU 6.2 systems have not
been notified of the transaction's outcome.

a. Start TI Manager, and navigate to Transaction List in the console tree's Component Services folder in Windows
2000 or Windows Server 2003.

b. In the Transaction List details pane, right-click the transaction that is in the Aborted or Cannot Notify Aborted
state. This will display the parent DTC and the subordinate DTC and IBM LU 6.2 systems for the transaction.

c. Force the transaction to commit on each subordinate system.

d. Return to the DTC that shows the Aborted or Cannot Notify Aborted state, and force that DTC to forget the
transaction.

Caution
Do not manually forget a transaction until all subordinate systems have been notified of the transaction outcome.

For more information about resolving transactions manually, see the Windows 2000 or Windows Server 2003 documentation.

Note

Resolving a transaction manually does not apply to TCP/IP because the IBM TCP/IP protocol does not currently support ACID
(atomic, consistent, isolated, durable) transactions.

Mainframe Issues Affecting Transaction Recovery
In some situations, TI cannot process new transactions with a remote environment. This can be correct behavior. For example, if
TI exception 1227 is returned to a client application or logged in an event, and the HRESULT is 8004D110, it indicates that new
transactions with this remote environment cannot be accepted because previous transactions were not resolved after a
communications failure.

When the two-phase commit process does not complete, CICS must hold the transaction in the In-Doubt state until
communications are re-established. Then TI will perform recovery protocols to ensure that the transaction is in the same state
at all nodes. CICS must be configured correctly for this to occur.

If CICS terminates unexpectedly, and then is restarted in a cold state, there is no memory in its log of any transactions that have
not completed. Therefore, these transactions cannot be automatically recovered to a consistent state. Verify that all transactions
have completed before stopping CICS, or configure CICS for a warm restart using the same log so that any pending
transactions can be recovered.

CICS Transaction Server allows the administrator to specify a Wait Time in the In-Doubt Attributes of a transaction. Be sure to
specify a value that is adequate to allow communications to be re-established in most cases. If this timeout elapses before all
transactions left in the In-Doubt state have been recovered, CICS will make a heuristic decision to resolve them locally. If this
decision conflicts with the decision made for the transactions by Microsoft DTC (Distributed Transaction Coordinator), new
transactions cannot be started until the outcome of the previous transactions have been manually overridden.

In CICS versions prior to CICS Transaction Server, there is no Wait Time in the Recovery attributes. Assigning the Wait value to
the In-Doubt attribute does not cause CICS to place the transaction in the state requested by TI when recovery is attempted. If
you are using these versions of CICS, set the In-Doubt attribute to Backout or Commit. If a resulting heuristic decision is
incorrect and prevents new transactions from beginning, override the outcome of the transaction using DTC.

Examine the Windows Event Log for messages from the SNA LU 6.2 Resync TP service indicating that transactions were not
recovered successfully. Follow the suggested actions. Use Microsoft Transaction Server's Transaction List window to show
pending transactions. Right-click the transaction to show its properties. Resolve it to agree with the state that CICS was
configured to select heuristically, or to the backed-out or aborted state if CICS terminated unexpectedly and started up cold.
The event in the log identifies the transaction and the state chosen by CICS.

Note
This does not apply to TCP/IP because TCP/IP does not support ACID (atomic, consistent, isolated, and durable) transactions.

See Also
Tasks
How to Resolve Transactions Manually

https://msdn.microsoft.com/en-us/library/aa705445(v=bts.10).aspx

Allocation Failure
If you used one of the modes that come pre-packaged with Host Integration Server, that mode can attempt to dynamically
create a session with the partner. This fails with an abnormal CNOS reply, "mode name not recognized." The error returned by
the APPC API is ALLOCATION FAILURE - RETRY. This leads to an error stating: "The TI LU 6.2 transport failed to allocate
conversation, make sure that host LU (hostname) is active, and retry the operation."

You will see this same error when you try to create a session with a CICS region that is not active.

To avoid this problem, upon entering SNA Manager in Host Integration Server, add the LUs and modes that you will be using
and delete any pre-supplied modes that you will not be using.

How to Start and Stop DTC or SNA LU 6.2 Resync TP
If necessary, you can manually stop and start the Microsoft Distributed Transaction Coordinator (DTC) and/or the SNA LU 6.2
Resync TP services by clicking Services in the Administrative Tools menu in Windows 2000 or Windows Server 2003.

Use the following procedures to start or stop services in Windows 2000 or Windows Server 2003. It is important to start and
stop the services in the precise order given.

To stop DTC or SNA LU 6.2 Resync TP in Windows 2000 or Windows Server 2003

1. Click Start, point to Programs, point to Administrative Tools, and then click Services.

2. Right-click SNA LU 6.2 Resync TP, and then click Stop. If prompted, click Yes.

3. Right-click SnaBase, and then click Stop. If prompted, click Yes.

4. Right-click DTC, and then click Stop. If prompted, click Yes.

To start DTC or SNA LU 6.2 Resync TP in Windows 2000 or Windows Server 2003

1. Click Start, point to Programs, point to Administrative Tools, and then click Services.

2. Right-click DTC, and then click Start.

3. Right-click SnaBase, and then click Start.

4. Right-click SNA LU 6.2 Resync TP, and then click Start.

Newly Deployed Components Not Recognized
You can deploy new components in a COM+ application while other components within that application are servicing clients.
However, the Component Services run-time environment will not recognize and service these newly deployed components
until the Component Services server process associated with the application is stopped. As a result, the following error is
returned: "An attempt was made to launch a server process for a package that was already actively supported by another
server process on this computer."

To avoid this problem, run the Shutdown Server Processes command after each test run and before adding a new
component to a COM+ application to do another test run. This stops the active process for the package.

Warning
The Shutdown Server Processes command interrupts all components in all COM+ applications for a given machine. Theref
ore, you should carefully consider the consequences of this action.

Data Type Conversion Errors
A message indicating that a data type conversion could not take place uses a numeric code to identify the data type. The
following tables translate the numeric codes into their equivalent variant data types (for Visual C++) and Automation data
types (for Visual Basic).

Numeric Code Variant Data Type Automation Data Type

0x0000 VT_EMPTY nothing

0x0002 VT_I2 2-byte signed int

0x0003 VT_I4 4-byte signed int

0x0004 VT_R4 4-byte real

0x0005 VT_R8 8-byte real

0x0006 VT_CY currency

0x0007 VT_DATE date

0x0008 VT_BSTR OLE Automation string

0x0009 VT_DISPATCH IDispatch * (currently only for recordset pointer)

0x000b VT_BOOL True=-1, False=0

0x000c VT_VARIANT VARIANT *

0x000e VT_DECIMAL 16-byte fixed point

0x0011 VT_UI1 unsigned char

0x0018 VT_VOID C style void

0x001b VT_SAFEARRAY (use VT_ARRAY in VARIANT)

0x001d VT_USERDEFINED user-defined type

Arrays of the following types have these codes:

Numeric Code Variant Data Type Automation Data Type

0x2000 VT_EMPTY nothing

0x2002 VT_I2 2-byte signed int

0x2003 VT_I4 4-byte signed int

0x2004 VT_R4 4-byte real

0x2005 VT_R8 8-byte real

0x2006 VT_CY currency

0x2007 VT_DATE date

0x2008 VT_BSTR OLE Automation string

0x2009 VT_DISPATCH IDispatch * (currently only for recordset pointer)

0x200b VT_BOOL True=-1, False=0

0x200c VT_VARIANT VARIANT *

0x200e VT_DECIMAL 16-byte fixed point

0x2011 VT_UI1 unsigned char

0x2018 VT_VOID C style void

0x201b VT_SAFEARRAY (use VT_ARRAY in VARIANT)

0x201d VT_USERDEFINED user-defined type

The following types are passed by reference:

Numeric Code Variant Data Type Automation Data Type

0x4000 VT_EMPTY nothing

0x4002 VT_I2 2-byte signed int

0x4003 VT_I4 4-byte signed int

0x4004 VT_R4 4-byte real

0x4005 VT_R8 8-byte real

0x4006 VT_CY currency

0x4007 VT_DATE date

0x4008 VT_BSTR OLE Automation string

0x4009 VT_DISPATCH IDispatch * (currently only for recordset pointer)

0x400b VT_BOOL True=-1, False=0

0x400c VT_VARIANT VARIANT *

0x400e VT_DECIMAL 16-byte fixed point

0x4011 VT_UI1 unsigned char

0x4018 VT_VOID C style void

0x401b VT_SAFEARRAY (use VT_ARRAY in VARIANT)

0x401d VT_USERDEFINED user-defined type

Arrays of the following types are passed by reference:

Numeric Code Variant Data Type Automation Data Type

0x6000 VT_EMPTY nothing

0x6002 VT_I2 2-byte signed int

0x6003 VT_I4 4-byte signed int

0x6004 VT_R4 4-byte real

0x6005 VT_R8 8-byte real

0x6006 VT_CY currency

0x6007 VT_DATE date

0x6008 VT_BSTR OLE Automation string

0x6009 VT_DISPATCH IDispatch * (currently only for recordset pointer)

0x600b VT_BOOL True=-1, False=0

0x600c VT_VARIANT VARIANT *

0x600e VT_DECIMAL 16-byte fixed point

0x6011 VT_UI1 unsigned char

0x6018 VT_VOID C style void

0x601b VT_SAFEARRAY (use VT_ARRAY in VARIANT)

0x601d VT_USERDEFINED user-defined type

Memory Leak When Using User-Defined Types in User-Defined
Types

If Microsoft COM Transaction Integrator (COMTI) is configured to use a "Customer Information Control System (CICS) or
Information Management System (IMS) by using TCP/IP" Remote Environment (RE), and a client application repeatedly calls
the COM+ component, which in turn instantiates COMTI objects by using user-defined types, eventually the application might
fail and return the following error message:

Method %1 of Object %2 failed

Note
Other REs may exhibit the same problem.

If you use Microsoft Windows System Monitor to log data for the Private Bytes and Working Set of the Process object, a
memory leak occurs.

The problem is caused by having Occurs Depending On (ODO) arrays in a user-defined type. Specifically, a call is made to
obtain a VarDesc structure from a type library, and a free method call is never issued to release the memory back to the
operating system.

Avoiding Data Translation
In some circumstances, you may want the Transaction Integrator runtime to pass untranslated data to or from the mainframe.
To do this, set up an array of PIC X Untranslated bytes.

TI supports many data types, however, you may not always want TI to translate or interpret the data.

To configure a byte array of PIC X Untranslated bytes, follow these steps:

1. Open the COMTI Component Builder.

2. Unlock the COMTI component.

3. Select the properties for the parameter that you want to change.

4. On the Automation tab, set the data type to Byte.

5. On the COBOL Definition tab, set the COBOL Definition to PIC X Untranslated.

6. On the Arrays tab, set the array to be a Single Dimension Array, and set the maximum size of the array equal to the
expected number of bytes.

7. Lock the component.

After the last step is complete, TI will pass the bytes in the array to the calling program as untranslated binary data.

Because MTI passes the bytes as untranslated binary data, the interface program must take into account the newly modified
parameter. You can use this procedure if, for example, the characters coming from or going to the host are outside the range of
the translation table. By following the steps earlier in this section, you can implement a custom translation table in code that
handles the data.

If a variable-sized array is to be transferred, follow these steps:

1. Set the array size to the maximum number of characters ever to be exchanged.

2. On the Advanced tab of the method properties, set the Data buffer options as follows:

a. Final field from host is Bounded.

b. Final field to host is Bounded.

Using TI User-Defined Types with the .NET Framework and
Visual Studio

TI supports the use of user-defined types for parameters and return values. A few things to note about user-defined types:

They are defined by using the TI Designer application.

They work very well in a Visual Basic 6 development environment.

They also work well in a Visual C++ 6 development environment.

However, by default, user-defined types do not work in an application that is based on the .NET Framework, version 1.0. For
example, if a UDT is passed to TI by a .NET Framework application, the following error will be logged by TI:

(102) COM Transaction Integrator reported the following exception to the client:

Component: TestUDT.TestUDT.1

Method: Method1

Exception description:

(1205) COM Transaction Integrator detected an error on parameter 1 prior to the remote operation. COM Transaction
Integrator could not convert from variant type (0x4009) to (0x401d) (0x80020008). Contact the application programmer.
Install the correct component library for this component in Microsoft Transaction Server.

This call does not work because the COM Interop layer of the .NET Framework 1.0 marshals the user-defined type as a
VT_DISPATCH type instead of as a VT_RECORD type or VT_USERDEFINED type.

To successfully use COMTI user-defined types with a .NET Framework 1.0 application, that application must implement a
custom marshaller. This means that the application must build the VT_RECORD structure itself before handing it off to COMTI.
This type of coding requires advanced knowledge of COM and .NET Framework data types and marshaling between those
types.

In the .NET Framework (version 1.1), the COM Interop layer automatically marshals user-defined types as VT_RECORD types.
This means that .NET Framework 1.1 applications can use COMTI and user-defined types without implementing any custom
marshaling.

Visual Studio .NET 2003 uses this version of the .NET Framework. Therefore, applications that are written in Visual Studio .NET
2003 can also use COMTI and user-defined types without any extra coding.

To use TI from a .NET Framework 1.1 application:

1. Create a .NET interop assembly for the COMTI type library. To do this, you can use either the TLB Importer Utility
(Tlbimp.exe) or the Add Reference dialog box in Visual Studio.

2. Register the newly created .NET Framework interop assembly by using the Register Assembly Utility (Regasm.exe). If the
assembly is not registered, the calling application can pass user-defined types to COMTI but will receive an exception
when COMTI tries to pass a user-defined type back to the calling application.

3. Add a reference to the .NET interop assembly in the .NET Framework 1.1 application.

How to Use Variable Length Recordsets with Transaction
Integrator

When data of variable length with field type of recordset is sent to the host by way of COM Transaction Integrator (COMTI),
COMTI sends the final field to the host padded with NULL characters (0x00) up to the defined maximum size of the field.

When the last parameter in the type library is a recordset that refers to an OCCURS DEPENDING ON value, the null values will
be passed to the mainframe unless the option Final field from host is variably sized (Return Value) is selected.

The Final field from host is variably sized (Return Value) option is located in the method's Properties on the Advanced tab.

The following trace snippet from an SNA Server Logical Unit (LU) 6.2 message trace shows the problem when the Final field
from host is variably sized (Return Value) option is not selected:

PVI --- 14:08:18.0343

PVI 0A1F0001->0102FEB1 LU 6.2

PVI MSGID:SWAT MSGTYP:NTEOD Sense1:2E00

PVI Sense2:0100

PVI

PVI ---- Header at address 01196054, 14 elements ----

PVI 0B012E00 01000400 000E0000 01007E01 <..............~.>

PVI

PVI ---- Element at address 01B89574, start 13, end 268 ----

PVI 2B0502FF 0003D100 0004C3E2 D4C9001A <+.....J...CSMI..>

PVI 11C5C3C9 C2D4C8C8 F14BE3F2 F2F1F5F8 <.ECIBMHH1KT22158>

PVI C4C407D0 0B100E08 00010090 0012F20D <DD............2.>

PVI 85020201 02000004 C3E2D4C9 12430E02 <e.......CSMI.C..>

PVI 000006E4 00070000 0104D4E2 E3E7000B <...U......MSTX..>

PVI 02C3D3D3 D3C9E2C3 D3000504 14AE14B1 <.CLLLISCL.......>

PVI 06D4C5D5 C1404040 40404040 40404040 <.MENA@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI 40404040 40404040 40404040 40404040 <@@@@@@@@@@@@@@@@>

PVI

PVI ---- Element at address 01B89B28, start 13, end 268 ----

PVI 40000000 00000000 00000000 00000000 <@...............>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 0000F0F0 F0000000 00000000 00000000 <..000...........>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI

PVI ---- Element at address 01B88E9C, start 13, end 268 ----

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI

PVI ---- Element at address 01B815B4, start 13, end 268 ----

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

PVI 00000000 00000000 00000000 00000000 <................>

Development
This software development kit (SDK) section of Microsoft Host Integration Server Help provides information for the
programmer writing applications for Host Integration Server 2009.

Using Help in a Developer Environment

Host Integration Server Help contains features that you can use to display the developer documentation in your preferred
language and to link between Host Integration Server Help and Visual Studio Help.

Using Language Filtering

The Host Integration Server .NET Framework Class Reference and COM Object Reference provide signatures and code
examples in multiple programming languages.

You can customize your view of the content in the reference pages to display information only in your preferred programming
language. To select a custom language, use the Language Filter button in the upper-left corner of the reference page. After it is
enabled, the language filtering is persisted until it is changed. When language filtering is enabled on a page, the name of the
language follows the title in the blue bar at the top of the page.

Viewing Host Integration Server Help in Visual Studio

You can view Host Integration Server Help in three ways:

In Visual Studio, select Contents on the Help menu.

In the Visual Studio Help, select Microsoft Visual Studio from the Programs menu.

In the stand-alone Microsoft Host Integration Server Help, select Host Integration Server Documentation from the
Programs, Microsoft Host Integration Server menu.

If you are developing in Visual Studio, either of the first two methods are recommended. Using either of these methods
enables integration between Host Integration Server Help and Visual Studio Help; this integration is extremely useful when
navigating class relationships across the documentation sets. If you view Host Integration Server Help outside of Visual Studio,
read the following tip to properly render links to Visual Studio.

Linking between Host Integration Server Help and Microsoft Visual Studio Help

When a member is inherited from the .NET Framework Base Class Library, two links are provided, as shown in the following
example:

Finalize (inherited from
System.Object)

For additional information about the System namespace, see .NET Framework Help available from Vi
sual Studio or go to http://go.microsoft.com/fwlink/?LinkID=9677.

If you are viewing Host Integration Server Help in Visual Studio or in the Visual Studio Help, the link in the left column goes to
the exact member page. If you are viewing Host Integration Server Help outside of Visual Studio, use the link in the right
column to go to the System namespace page in MSDN Library. Note that the link will not go to the specific member page.

In This Section

Programmer's Guide

Programmer's Reference

Samples

http://go.microsoft.com/fwlink/?LinkID=9677
https://msdn.microsoft.com/en-us/library/aa771975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744309(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Programmer's Guide
Host Integration Server 2009 provides comprehensive bidirectional services for integrating Microsoft Windows with legacy
systems.

Most of the services provided by Host Integration Server expose a programming interface, which enables you to extend the
functionality of the product and integrate it more tightly in your own environment. This guide describes these interfaces and
provides guidance on how to use them.

In This Section

Application Integration Programmer’s Guide

Data Integration Programmer's Guide

Network Integration Programmer's Guide

Administration and Management Programmer's Guide

Messaging Programmer's Guide

Creating a Single Sign-On Application

https://msdn.microsoft.com/en-us/library/aa746049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771662(v=bts.10).aspx

Application Integration Programmer’s Guide
This section of the Microsoft Host Integration Server 2009 Software Development Kit (SDK) provides information required to
develop software to integrate COM and .NET applications with Customer Information Control System (CICS) and Information
Management System (IMS) transactions on IBM mainframe and AS/400 computers.

Transaction Integrator (TI) enables developers to integrate mainframe-based transaction programs (TPs) with component-
based Microsoft Windows applications. With Transaction Integrator, you can integrate existing mainframe-based TPs with
Windows-based COM or distributed COM (DCOM) applications. You may not have to modify your mainframe TP if the
business logic is separate from the presentation logic. The wizards available in the TI Designer and TI Manager guide you
through the process, step-by-step.

Transaction Integrator is appropriate when you need a synchronous or transactional solution where both systems being
integrated are running at all times. For applications only requiring an asynchronous integration solution, a messaging-based
solution using the MSMQ-MQSeries Bridge is preferred over Transaction Integrator.

Applications that integrate message queuing and that use MSMQ-MQSeries Bridge in a Host Integration Server 2009
environment can be developed using several different development tools and application programming interfaces including
the following:

C or C++ applications that use the MSMQ-MQSeries Bridge Extensions to extend the MSMQ-MQSeries Bridge.

Microsoft Visual Basic applications that use MSMQ-MQSeries Bridge Extensions to extend the MSMQ-MQSeries Bridge.

To use this guide effectively, you should be familiar with the following:

Microsoft Host Integration Server 2009

Microsoft Windows 2000 or later

Message Queuing

IBM MQSeries

Depending on the application programming interface and development tools used, you should be familiar with the following:

Microsoft COM objects

ASP

ASP.NET

For API references and other technical information for the Transaction Integrator, see the Programmer's Reference section of
the SDK.

For sample code using the Transaction Integrator, see Application Integration Samples in the Samples section of the SDK.

For information about how to tune your system to get the best possible performance from Transaction Integration, see the
Transaction Integrator Performance Guide in the Operations section.

In This Section

This section contains the following topics

Application Integration Development Tools

Application Integration Programming

https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745251(v=bts.10).aspx

Application Integration Development Tools
This section contains the following topics:

In This Section

How to Install Host Integration Server Designer

How To Migrate from Earlier Versions of Host Integration Server

How To Report Errors in Host Integration Server Designer

https://msdn.microsoft.com/en-us/library/aa771854(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770326(v=bts.10).aspx

How to Install Host Integration Server Designer
Transaction Integrator (TI) Designer is installed and configured by the Host Integration Server 2009 Installation Wizard. You
can install and configure TI Designer at the time you first install Host Integration Server 2009, or you can use the Host
Integration Server 2009 Installation Wizard at a later time to add TI Designer. The Host Integration Server 2009 Installation
Wizard installs everything you need, including program files, Help files, sample applications, and other tools. The TI Project
template is automatically installed on your computer at <drive>:/Program Files/Microsoft Host Integration
Server/System/Projects/.

Note
TI Designer is hosted in the Visual Studio development environment and must be registered in Visual Studio at the time of in
stallation. Be sure that Visual Studio is installed on your computer before you install TI Designer.

To install Transaction Integrator Designer

1. Start Host Integration Server Setup and accept all defaults until you reach the Custom Installation page.

2. On the Custom Installation page, expand the Application Integration node.

3. Select Transaction Integrator Designer and any other options you want to install.

4. Click Next, and then follow the on-screen directions.

See Also
Concepts
TI Designer

https://msdn.microsoft.com/en-us/library/aa754279(v=bts.10).aspx

How To Migrate from Earlier Versions of Host Integration
Server

If you used the COM Transaction Integrator (COMTI) feature of Microsoft Host Integration Server 2000 (or SNA Server 4.0) to
integrate Windows-based applications with the mainframe, you have a choice of four options for migrating to Transaction
Integrator (TI):

1. Do nothing. Your current type libraries and remote environments (REs) work as they are. Host Integration Server 2009 is
fully backward compatible with components created with Host Integration Server 2000 (or SNA Server 4.0).

2. Upgrade all your type libraries at once by dragging them into Microsoft Visual Studio and then clicking Save All. Create
new REs that have the same characteristics as the old REs using the TI Manager. Associate the updated type libraries with
the new REs. This is the easiest upgrade path.

3. Upgrade your type libraries one-at-a-time by opening them in Visual Studio and then clicking Save As. Create new REs
that have the same characteristics as the old REs using the TI Manager. Associate the updated type libraries with the new
REs.

4. Upgrade your type libraries one-at-a-time by creating new type libraries, and then importing the property settings from
the old type library. Use TI Manager to create new REs that have the same characteristics as the old REs. Associate the
updated type libraries with the new REs. This is the most time-consuming option because each library is created
individually.

When a type library is fully upgraded to Host Integration Server 2009, three aspects of the old type library may be updated
depending on the upgrade process you used. These are:

Remote environment class

Library, interface, coclass, and UDT GUIDs

Default conversion information defined at the library level. The defaults for converting data types are different in TI than
in COMTI.

Depending upon your circumstances and the requirements of your applications, you might want to update one, two, or all
three aspects.

User Ac
tion

TI Actions Results When to use

None. U
se existi
ng Type
Libraries
and REs.

No changes ar
e made to:

RE

Type libr
ary GUID

Type libr
ary defa
ult conve
rsions

Type library and RE is fully functional in both Host Integration
Server 2009 and Host Integration Server 2000.

The properties within the type library and RE can no longer be
modified.

New Type libraries created with TI Project cannot be associated
with older REs.

Existing COM client works unmodified.

Initial upgrade to Host Int
egration Server 2009.

Old type libraries and old
REs work and do not need
to be modified.

Open a
nd Save

Updates
the Rem
ote Envir
onment
class.

No chan
ges are
made to:

T
y
p
e
li
b
r
a
r
y
G
U
I
D
s

D
e
f
a
u
lt
c
o
n
v
e
r
si
o
n
s

The method property Include Context Parameter is automati
cally set to True. Client Applications do not need to support the
Client Context and work unchanged as Client Context is an opti
onal parameter in the COM environment. In the Visual Studio T
I Project, set Include Context Parameter to False on the met
hod.

Old type libraries are updated the Host Integration Server 200
9. The updated type library can only be associated with an RE c
reated with TI Manager.

Existing COM client works unmodified.

When a new RE needs to
be created in the Host Inte
gration Server 2009 envir
onment.

Using new Host Integratio
n Server 2009 RE features.

Using new Client context f
eatures (Client Security, P
ersistent Connections, and
so forth).

Moving to the Host Integr
ation Server 2009 support
ed environment.

Programming model stay
s the same.

Open a
nd Save
As

Updates
the Rem
ote Envir
onment
class.

Generate
s new ty
pe librar
y GUIDS.
Save doe
s not.

No chan
ges mad
e to the t
ype libra
ry defaul
t convers
ions

The method property Include Context Parameter is automatically
set to True. Client Applications do not need to support the Client Co
ntext and work unchanged as Client Context is an optional paramete
r in the COM environment. In the Visual Studio TI Project, set Includ
e Context Parameter to False on the method.

If you migrate an old type library to a .NET assembly, TI also migrate
s all Visual Basic version 6.0 Automation data types to Visual Basic .N
ET data types, including:

Integer to Short

Long to Integer

Currency to Decimal

Recordset to datatable

UDT to Structure

Client Applications using the NewRecordSet function to create disc
onnected recordsets must modify the code. The NewRecordset func
tion is not supported in .NET.

Existing COM Clients that use declarative binding need to be recomp
iled because of GUID changes.

Creating a new instance of
the application for side by
side operation with Host I
ntegration Server 2009 wi
th the intent of extending t
he application.

Programming model stay
s the same.

Import Updates
the Rem
ote Envir
onment
class

Updates
the GUID
s

Adds Ho
st Integr
ation Ser
ver 2009
defaults t
o the ne
w library

Same results as Open and Save As

All methods use new library default defined for Host Integratio
n Server 2009

This is the only way to migrate type libraries to Assemblies.

Same as Save As

Programming model chan
ge

Target environment chang
e (CICS, IMS, AS/400)

Initiation change (WIP, HIP
)

Platform change (COM, .N
ET)

See Also
Concepts
TI Designer

https://msdn.microsoft.com/en-us/library/aa754279(v=bts.10).aspx

How To Report Errors in Host Integration Server Designer
The standard error-reporting mechanism in Visual Studio is through the Output window. This window has been extended to
allow for error reporting. For example, if an operation could not be completed, an error message is logged in the Output
window; the user can then double-click the error message to see its source in the Host Integration Server Designer.

See Also
Concepts
TI Designer

https://msdn.microsoft.com/en-us/library/aa754279(v=bts.10).aspx

Application Integration Programming
This section contains the following topics:

In This Section

Creating an Application using Host Integration Server Designer

Programming Windows-Initiated Processing

Programming Host-Initiated Processing

Application Integration Security Guide

https://msdn.microsoft.com/en-us/library/aa744759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746071(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746104(v=bts.10).aspx

Creating an Application using Host Integration Server Designer
Using the tools for Host Integration Server (HIS) Designer in Visual Studio, you can create an application that uses Transaction
Integrator (TI) to communicate with a remote mainframe.

1. Create a new project for your application.

2. Add a library to your project that uses Transaction Integrator.

3. If available, import a Host File.

A host file is a file that describes the interfaces your application will be programming towards on the remote server.
Using HIS Designer, you can create a .dll that describes these interfaces.

4. If necessary, use HIS Designer to make any changes or additions to the interfaces.

5. Deploy the interface.

Deploying the interface allows you to write code against the interfaces you create in steps three and four.

6. Write your application.

Your application is simply a standard application that includes a reference to the deployed .dll.

7. Test and modify your code.

If necessary, you many need to undeploy the assembly in order to update the interfaces.

One you are finished testing your application, you can move your application to a staging or production server. If you want to
use the BizTalk Adapter for Host Applications, you can add your assemblies to a BizTalk Server export package.

In This Section

How to Create a New Host Integration Server Designer Project

How to Add a Library to a Transaction Integrator Project

How to Import a Host File into a Transaction Integrator Project

How to Modify and Update a Transaction Integrator Interface

How to Deploy a Host File Interface

How to Code a Transaction Integrator Application

How to Test and Modify a Transaction Integrator Application

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa705256(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746130(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754463(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

How to Create a New Host Integration Server Designer Project
You can create a new Transaction Integrator (TI) Designer project in the Visual Studio 2005 development environment.

To create an HIS Designer Project

1. Click Start, point to Programs, and then click Microsoft Visual Studio.

2. On the Visual Studio File menu, click New, and then click Project.

3. Under Project Types, select Host Integration Projects.

4. Under Templates, select Transaction Integrator Project.

5. After Name, type the name of the project.

The name can be a maximum of 256 Unicode characters.

6. After Location, type or browse to the location to store the project.

See Also
Concepts
Host Integration Server Designer UI

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx

How to Add a Library to a Transaction Integrator Project
Once you have created the Transaction Integrator (TI) project, you need to add an assembly to the project. Once you have
added the assembly, you can import a host file definition.

To add a library to a TI project

1. Click Project, and then click Add .NET Client Library.

2. On the Add New Item dialog, in the Templates pane, confirm that .NET Client Library is highlighted.

3. In the Name: field, type the name of the assembly, and then click Add.

4. On the Welcome to the .NET Client Library Wizard page, click Next.

5. On the Remote Environment page, select the information that describes the remote environment your application will
interact with, and then click Next.

Visual Studio will use this information to optimize your application for the specified remote environment. In contrast, the
information you entered in Transaction Manager will be used by Host Integration Server when making a connection.

6. On the Completing the .NET Client Library Wizard page, confirm that the displayed settings are correct, and then click
Create.

See Also
Other Resources
Creating an Application using Host Integration Server Designer

https://msdn.microsoft.com/en-us/library/aa744759(v=bts.10).aspx

How to Import a Host File into a Transaction Integrator Project
Once you have created a library in your Transaction Integrator (TI) project, you can import a Host Definition file. After you
import the host definition file, you can modify the interfaces using Host Integration Server (HIS) Designer.

To import a Host File into a TI project

1. If you have a Host Definition file (.hcd) file available, you can use the Import COBOL Wizard or the Import RPG Wizard to
define your interfaces.

For more information, see How to Import COBOL into a TI Component or Importing RPG.

2. If you have a previous .NET client library that you want to base your new object on, you can use the Import Library tool to
import the library into your project.

For more information, see How to Import a TI Component.

https://msdn.microsoft.com/en-us/library/aa771097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705591(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704696(v=bts.10).aspx

How to Modify and Update a Transaction Integrator Interface
Once you have imported a host definition file, you can modify and update the interface. Optionally, if you did not start with a
host definition file, you can create a new TI interface using the available tools.

Once you have modified the interface, you can deploy and write code against the interface.

To create, modify, or update a TI interface

1. Use HIS Designer to create, modify, or update the TI interface. For more information, see
Host Integration Server Designer UI.

See Also
Other Resources
Creating an Application using Host Integration Server Designer

https://msdn.microsoft.com/en-us/library/aa771045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744759(v=bts.10).aspx

How to Deploy a Host File Interface
Once you have finished importing and modifying the host file interface, you can deploy the interface. Deploying the interface
allows you to write and test code against the interface.

To deploy a Host File interface

1. In HIS Designer, select the tab that has the name of the assembly to deploy.

2. In the Properties window, confirm that you have selected the remote environment that you want your assembly to
communicate with.

3. In the HIS tree node, right-click on the name of the assembly, and select Deploy.

See Also
Other Resources
Creating an Application using Host Integration Server Designer

https://msdn.microsoft.com/en-us/library/aa744759(v=bts.10).aspx

How to Code a Transaction Integrator Application
Once you have deployed a Transaction Integrator (TI) component, you can write code against that component. Once you are
finished writing your code, you can test your code, and if necessary modify the interface to the TI component.

To code a TI application

1. Create an instance of the TI object.

The TI object contains the interfaces that you will write code against. When your application calls an interface on the TI
object, TI Manager will pass the information on to your remote server.

For more information on creating a TI component and .NET assembly, see Introduction to COM and COM+ [HIS06].

2. Set up your data variables.

As with many applications that use Host Integration Server, it is important that you use a data type that can successfully
translate to and from your remote server. For more information on data types and how they map between systems, see
Data Types [HIS06] and Host and Automation Data [HIS06].

3. Make calls against any relevant parameters in the TI object.

Perform any actions necessary to your application, which will likely include calling the interfaces described by your TI
object. You may also have additional tasks necessary for your application. For more information, see Programming
Windows-Initiated Processing [HIS06].

4. When writing your application, be sure to consider the relevant security details of your environment.

For more information, see the Transaction Integrator Security Guide [HIS06].

Example

The following example is cut from the main program code from the Discriminated Union tutorial in the SDK sample directory.
For the complete code sample, see <Installation Directory>\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\DiscrimiatedUnion.

using System;
using System.Collections.Generic;
using System.Text;
using Banking;

namespace DiscriminatedUnions
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Processing Output only Account Information");
 AccountInformationOutOnly();

 Console.WriteLine("\n\nProcessing Input and Output Account Information");
 AccountInformationInOut();

 Console.WriteLine("\nPress any key to continue...");
 Console.Read();

 }

 #region Output Only Discriminated Union Processing
 static void AccountInformationOutOnly()
 {
 // Define an instance of the TI Banking object
 Banking.Accounts MyBankObj = new Banking.Accounts();

 // Call the Get Account Information method on the TI Object
 // passing it the array that contains the checking and saving
 // account information

Optional comments.

 string AccountNumber = "BNK4566112";
 string AccountType = " ";
 Object AcctInfoUnionObj = null;
 string FillerNotUsedByThisSample = " ";

 MyBankObj.GetAInfoOutOnly("111223333", AccountNumber, out AccountType, out Acct
InfoUnionObj, out FillerNotUsedByThisSample);
 switch (AcctInfoUnionObj.GetType().ToString())
 {
 // check the type of the union that was returned to determine
 // whether the array element
 // is a checking or saving account so that the correct
 // structure of the union can be used
 case "Banking.CHECKING":
 Banking.CHECKING ChkInfo = (Banking.CHECKING)AcctInfoUnionObj;

 Console.WriteLine("Checking account number: {0}", AccountNumber);
 Console.WriteLine("\tOverdraft charge:\t {0,10:C2}", ChkInfo.CHK_OD
_CHG);
 Console.WriteLine("\tOverdraft limit:\t {0,10:C2}", ChkInfo.CHK_OD_
LIMIT);
 Console.WriteLine("\tLinked account:\t {0,18}", ChkInfo.CHK_OD_LINK
_ACCT);
 Console.WriteLine("\tLast Statement:\t {0,18}", ChkInfo.CHK_LAST_ST
MT);
 Console.WriteLine("\tDetail Items:\t {0,18:F0}", ChkInfo.CHK_DETAIL
_ITEMS);
 Console.WriteLine("\tBalance:\t {0,18:C2}\n", ChkInfo.CHK_BAL);
 break;

 case "Banking.SAVINGS":
 Banking.SAVINGS SavInfo = (Banking.SAVINGS)AcctInfoUnionObj;

 Console.WriteLine("Savings account number: {0}", AccountNumber);
 Console.WriteLine("\tInterest rate:\t {0,20:P}", SavInfo.SAV_INT_RA
TE / 100);
 Console.WriteLine("\tService charge:\t {0,18:C2}", SavInfo.SAV_SVC_
CHRG);
 Console.WriteLine("\tLast Statement:\t {0,18}", SavInfo.SAV_LAST_ST
MT);
 Console.WriteLine("\tDetail Items:\t {0,18:F0}", SavInfo.SAV_DETAIL
_ITEMS);
 Console.WriteLine("\tBalance:\t {0,18:C2}\n", SavInfo.SAV_BAL);
 break;

 default:
 break;
 }
 }
 #endregion Output Only Discriminated Union Processing
 }
}

How to Test and Modify a Transaction Integrator Application
Once you have finished coding your application, you may test and modify your application. During this process, you may need
to undeploy and modify the host file interface.

To test and modify your TI application

1. Before compiling and executing your application, ensure that the host file interface is deployed.

2. Execute your application and test as you would any other application.

3. To undeploy a host file interface, right-click on the name of the .dll that contains the interface and select UnDeploy.

4. Make modifications to the interface using HIS Designer, and then save your work.

5. Once you are finished making changes, you can deploy the interface again by clicking on the name of the .dll in HIS
Designer and selecting Deploy.

See Also
Other Resources
Creating an Application using Host Integration Server Designer

https://msdn.microsoft.com/en-us/library/aa744759(v=bts.10).aspx

Programming Windows-Initiated Processing
This section discusses various issues you need to understand to program Windows-initiated processing components and
applications.

In This Section

Creating a Windows-Initiated Application

How To Determine Who Initiated a Transaction

Managing Security in a Windows-Initiated Application

Specifying a Remote Environment Programmatically

How to Program with Discriminated Unions

How To Override Settings in the Type Library

Using a Persistent Connection

How to Self-Host a Windows-Initiated Process

How To Verify a Remote Installation

https://msdn.microsoft.com/en-us/library/aa744917(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746101(v=bts.10).aspx

Creating a Windows-Initiated Application
In This Section

This section contains the following topics

How To Confirm that COMTIIntrinsic is Set in Windows XP

How to Update a Transaction Integrator Assembly

How to Debug a Visual Basic Application Integration Application

How To Handle a Host Server Exception

https://msdn.microsoft.com/en-us/library/aa744973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772003(v=bts.10).aspx

How To Confirm that COMTIIntrinsic is Set in Windows XP
If you use Explicit Security in your application, make sure that the property COMTIIntrinsic is set to –1. The property
COMTIIntrinsic is set to Off by default for COM+ in Windows XP Professional.

You can use the following Visual Basic script to display and set the COMTIIntrinsic value:

Note
You must clear the Protection and Disable Changes properties for the COM+ COMTI Utility application before you run this
script.

See Also
Other Resources
Programming Windows-Initiated Processing

'Get arguments ' Set objArgs = WScript.Arguments
 ' if objArgs.Count <> 3 then
 ' WScript.Echo "ComtiSec"
 ' WScript.Echo ""
 ' WScript.Echo "Usage:"
 ' WScript.Echo "ComtiSec [appname], [progid], [value]"
 ' WScript.Echo "[appname]: Name of the application"
 ' WScript.Echo "[progid]: ProgID of the component to change. Type 'all' for all comp
onents."
 ' WScript.Echo "[value]: 0 for False, 1 for True"
 ' WScript.Quit (0)
 ' end if
 applicationName = "COMTI Utilities"
 componentProgID = "all"
 'ComtiIntrinsics must be set to -1 for comti callback secuity to work.
 ' ComtiIntrinsics = -1 ' This will make Explicit Security work in COM+ on Win XP Pro
 ' ComtiIntrinsics = 0 ' This is the deffault value for COM+ in Win XP Pro
 Set catalog = CreateObject("COMAdmin.COMAdminCatalog.1")
 Set applications = catalog.GetCollection("Applications")
 applications.Populate
 numApplications = applications.Count
 For i = numApplications - 1 To 0 Step -1
 If applications.Item(i).Value("Name") = applicationName Then
 Set application = applications.Item(i)
 Exit For
 End If
 Next
 Set components = applications.GetCollection("Components", application.Value("ID"))
 components.Populate
 numComponents = components.Count
 For i = numComponents - 1 To 0 Step -1
 If components.Item(i).Name = componentProgID Or componentProgID = "all" Then
 Set component = components.Item(i)
 'component.Value("COMTIIntrinsics") = ComtiIntrinsics
 WScript.Echo component.Value("COMTIIntrinsics")
 End If
 Next
 components.SaveChanges
 applications.SaveChanges
 WScript.Echo "Changes All Complete"

https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx

How to Update a Transaction Integrator Assembly
If you are upgrading your version of Host Integration Server, you may have Transaction Integrator (TI) assemblies that use a
previous version of the .NET Framework. Host Integration Server allows you several options on how to upgrade, so that your
assemblies use, so that they may be compatible with the newest version of the .NET Framework.

To update a TI Assembly

1. Do nothing.

If you do not modify your TI assembly in any way, you do not need to upgrade the assembly: .NET Frameworks 2.0 is
backwards-compatible with any TI assembly created using .NET Frameworks 1.x.

2. Open the assembly, make a change, and save the file.

When you save the file, Host Integration Server will automatically update the TI assembly to the .NET Framework 2.0.

3. Change the name of the assembly in Visual Studio using the Save As… command.

As with option 2, Host Integration Server will update the assembly when you save the name.

How to Debug a Visual Basic Application Integration
Application

The following tips will help prevent frustrating debugging sessions:

When a Transaction Integrator (TI) .NET Framework application is configured to display error numbers (err.number), the
number returned is always 0 and not the TI error results. Although TI returns the correct values to COM Interop and COM
Interop passes the right values to Visual Basic, Visual Basic considers any positive return code to be success and changes
it to 0. To work around this problem, configure the .NET Framework application to return an error description
(err.description) instead of the error number. The error description provides accurate and useful error information.

TI Project parameter type Integer must be defined as a short within Visual Basic.

TI Project parameter type Long must be defined as an integer within Visual Basic.

A Visual Basic array index begins at 0, the index of TI parameters defined as arrays starts at position 1. Therefore, it is no
longer possible to directly align one for one the index of TI parameters defined as arrays with those defined within Visual
Basic.

Arrays of Decimal data types must be defined as an array of objects, not an array of decimals within Visual Basic. All
other arrays of data types can be defined as either an object or data type.

A common cause of errors during development of host-initiated processing (HIP) .NET Framework components is
forgetting to copy all the required assemblies, including all the dependencies, to the HIP Implementing Assemblies folder.

See Also
Other Resources
Programming Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx

How To Handle a Host Server Exception
Procedure Title

1.

Procedure Title

1.

Subhead

Insert section body here.

Procedure Title

1.

Example

This is the optional description for a Code Example.

Optional comments.

Compiling the Code

Robust Programming

Security

How To Determine Who Initiated a Transaction
It is helpful to be able to determine who initiated a specific transaction, for example, when you need to track down the history
of a transaction failure. You can also use this technique to implement resource or transaction-level, per user, security.

When you select either user-level or package-level security on the Security tab of the Transaction Integrator (TI) remote
environment (RE) properties page, TI sends security information in the session request to the host. If you deploy the Host
Account Mapping database known as the Host Account Cache (HAC) and set up a mapping between each Microsoft Windows
user and the corresponding host user ID, TI will send that information. Or you can use the Allow application to override
security option on the Security tab, and have the application return any host user ID (and password).

Whether the host does anything with the different user IDs depends mostly on the ATTACHSEC setting for the CICS connection;
this corresponds to the APPC LU that TI uses. The default ATTACHSEC setting is local, meaning that CICS does not validate the
user ID in the session, and CICS runs the transaction in a default host credential. But if you set the ATTACHSEC setting, CICS
uses Resource Access Control Facility (RACF) to validate the user ID in the session, and CICS then attaches that user ID to the
trusted computing base (TCB) for the transaction as it runs through the mirror transaction into the target mainframe
transaction program (TP).

See Also
Other Resources
Programming Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx

Managing Security in a Windows-Initiated Application
In This Section

This section includes the following topics

How to Call a Transaction Integrator Proxy Object in a Secured Virtual Directory

How To Impersonate Client Application Security Credentials

How To Use the DPC Security Override

https://msdn.microsoft.com/en-us/library/aa771882(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744328(v=bts.10).aspx

How to Call a Transaction Integrator Proxy Object in a Secured
Virtual Directory

One of the interactions Transaction Integrator (TI) has with the windows operating system is the Virtual Directory. In order to
use TI and virtual directories together, you need to ensure that you have to correct credentials set on your application. By
explicitly using the default credentials for your application, you can ensure that the user's credentials are property replicated
across TI and virtual directory.

To call a TI proxy object in a secured virtual directory

1. Create an instance of the new object.

2. Set the credentials of the object to CredentialCache.DefaultCredentials.

The default credentials of CredentialCache.DefaultCredentials are the credentials of the current user.

3. Continue with your application.

Example

The following code shows how to call a TI proxy object that is inside a secured virtual directory.

See Also
Other Resources
Programming Windows-Initiated Processing

using System;
using System.Collections.Generic;
using System.Text;
using System.Net;

namespace ELMBankingClient2
{
 class Program

 {
 static void Main(string[] args)
 {
 GetBal.Service MyBal = new ELMBankingClient2.GetBal.Service();
 decimal Balance;
 MyBal.Credentials = CredentialCache.DefaultCredentials;
 Balance = MyBal.GetBalance("Kim Akers", "12345");
 Console.WriteLine(Balance);
 }
 }
}

https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx

How To Impersonate Client Application Security Credentials
If you are using Windows-initiated processing (WIP) and are configuring a remote environment (RE) to use Enterprise Single
Sign-On (SSO), you have a choice between using the security credentials of the client application or of the COM server
program. You make this choice in Transaction Integrator (TI) Manager on the Security tab of the remote environment
Properties dialog box. If you select User credentials, the COM server impersonates the client's security credentials to access
SSO and retrieve the host account information. If you select COM application or ASP.NET credentials, the COM server uses
its own credentials.

Before the COM server can impersonate the client, however, you must program the client to grant the COM server explicit
permission to do the impersonating. You can grant the explicit permission in either of two ways:

Program the client application to call CoInitializeSecurity(...) at the beginning of its lifetime, and then request the
Impersonate access level:

Set the default COM security level on your computer to Impersonate.

1. Click Start, point to Programs, point to Microsoft Host Integration Server 2009, and then click TI Manager.

2. In the TI Manager navigation tree, expand Component Services, and then expand Computers.

3. Right-click My Computer, and then click Properties.

4. On the Default Properties tab, set the Default Impersonation Level to Impersonate.

5. Restart your computer so the settings take effect.

The first course of action, adding the CoInitializeSecurity(...) call to your application, is the more secure of the two
alternatives because it limits the explicit permission to just that client application. The second course of action, changing the
default COM security level on your computer, should be chosen only if you are not able to rebuild your client application.

See Also
Reference
Security Tab (Remote Environment Properties)

HRESULT hr = CoInitializeSecurity(NULL, -1, NULL, NULL,
 RPC_C_AUTHN_LEVEL_CONNECT, RPC_C_IMP_LEVEL_IMPERSONATE
 NULL, NULL, NULL);

https://msdn.microsoft.com/en-us/library/aa770330(v=bts.10).aspx

How To Use the DPC Security Override
Procedure Title

1.

Procedure Title

1.

Subhead

Insert section body here.

Procedure Title

1.

Example

This is the optional description for a Code Example.

Optional comments.

Compiling the Code

Robust Programming

Security

Specifying a Remote Environment Programmatically
When an application uses a Transaction Integrator (TI) component, you can structure the application to explicitly specify the
remote environment (RE) used by the TI run-time environment. When the application specifies the RE, the application identifies
the CICS or IMS region where transaction programs (TP) are executed when they handle method calls to the component. The
specific algorithm an application uses to select an RE is up to you. For example, an enterprise can use separate CICS or IMS
regions to handle requests from different branches. In this case, the application should set the RE to the appropriate value that
identifies the region suitable for the current branch.

In This Section

This section includes the following topics

How To Use REOverride to Specify a Remote Environment

Guidelines for Using REOverride

https://msdn.microsoft.com/en-us/library/aa754297(v=bts.10).aspx

How To Use REOverride to Specify a Remote Environment
To programmatically specify an RE, an application uses the REOverride Context entry. TI Project automatically adds an optional
parameter to a TI object for passing TI context data. The application sets the REOverride entry for an object representing a TI
component by assigning the name of the RE.

The following Visual Basic code example (with no error checking) shows how to use REOverride to programmatically instruct
the TI run-time environment to use a non-default RE named AltREName to handle the calls to Method1, Method2, and
Method4. The calls to the three methods are directed to AltREName because the client program has set the context name
REOverride to have the value of AltREName and include the optional context parameter ContextArray. The call to Method3 is
directed to the RE assigned as default to the object because it does not include the optional ContextArray context parameter.

See Also
Tasks
Specifying a Remote Environment Programmatically

Dim Obj As Object
Dim ConObj AS Object
Dim ContextArray() As Variant

Set ConObj = CreateObject("COMTI.ContextObject")
Set Obj = CreateObject("Your.Object")

ConObj.WriteContext "REOverride", "AltREName", ContextArray

Obj.Method1 parm1, parm2, parm3, ContextArray
Obj.Method2 parm1, parm2, ContextArray
Obj.Method3 parm1, parm2, parm3, parm4, parm5
Obj.Method4 parm1, parm2, parm3, parm4, ContextArray

https://msdn.microsoft.com/en-us/library/aa754711(v=bts.10).aspx

Guidelines for Using REOverride
Use the following guidelines for when to use REOverride to set an RE programmatically:

Avoid hard-coding RE names into applications. Instead, load RE names from a file or database.

Ensure that applications are structured to handle failures when they attempt to set the RE.

Structure your application code to use a list of RE names. This practice reduces errors caused by missing REs.

Ensure that procedures for adding and configuring REs include a mechanism to update REs referenced in the application
code.

Note
Use REOverride to confirm that administrative and operational tasks do not interfere with application code that sets an RE. S
pecifically, review when and how REs are deactivated and deleted.

To implement RE selection by using REOverride, you must ensure that the TI component starts out with an associated RE
instance even though the application will set the RE programmatically. The RE that is currently assigned to the component is
used when an application does not explicitly set the RE.

See Also
Tasks
Specifying a Remote Environment Programmatically

https://msdn.microsoft.com/en-us/library/aa754711(v=bts.10).aspx

How to Program with Discriminated Unions
A discriminated union is a data structure that can hold a data value of several different types. Host Integration Server uses
discriminated unions with several providers, such as the Managed Provider for Host Files. When creating an application that
uses Remoting or Web Services, you must satisfy the Web Services Description Language (WSDL) requirements for the
discriminated union. WSDL generation constraints require that all structures in an object be used in a method call. Therefore,
you need to ensure that all the structures in a discriminated union are also used, even if only in a piece of stub code.

To use a discriminated union with Remoting or Web Services

1. Create your schema as normal.

2. Identify any structure in the discriminated union that is not explicitly used in another method call.

3. Create a dummy method call that calls the unused structure.

Example

The following example shows a line of dummy method that uses several discriminated union structures. By having such a
method, the WSDL generation requirements are satisfied.

See Also
Other Resources
Programming Windows-Initiated Processing

void dummyroutine1 (ACCT_TYPE_SAVE acct_type_sav, ACCT_TYPE_CHK acct_type_chk)

https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx

How To Override Settings in the Type Library
If you need to temporarily change certain data sent from the type library to the host, you can override the type library settings
without changing the original file. Use the following keywords in combination with the COMTIContext parameter to override
the type library setting:

CONNTIMEOUT

CONNTYPE

IMS_LTERM

IMS_MODNAME

LibNameOverride

OverrideSourceTP

PASSWORD

PortOverride

ProgNameOverride

RecvTimeOut

REOverride

SendTimeOut

TPNameOverride

USERID

The override remains active until either a new override is set or the override is deleted. Use the WriteContext function to set
the override and the DeleteContext function to delete the override. If you delete the override, the value defaults to the setting
in the original type library.

See Also
Tasks
How to Pass a Custom TRM
Concepts
Using Custom TRMs and ELMs with COMTIContext

https://msdn.microsoft.com/en-us/library/aa754311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770750(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771485(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772104(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx

Using a Persistent Connection
Windows-initiated processing (WIP) supports persistent connections over TCP/IP and SNA for the following programming
models:

IMS Connect

TCP Transaction Request Message (TRM) Link

TCP Enhanced Listener Message (ELM) Link

TCP Transaction Request Message (TRM) User Data

TCP Enhanced Listener Message (ELM) User Data

OS/400 DPC

CICS Link LU 6.2

CICS User Data LU 6.2

Persistent connections are not supported in the following programming models:

IMS Implicit

IMS Explicit

IMS LU 6.2

Windows-initiated processing (WIP) persistent connections allow you to maintain a single TCP connection or SNA conversation
over multiple method calls to the host. In Host Integration Server 2000, COMTI had to open and close a connection each time a
method call was made to the host. On the mainframe side, CICS had to start and stop a transaction program (TP). In Host
Integration Server 2009, persistent connections allow Transaction Integrator (TI) to open a connection for the first method in a
group of methods, make all the method calls, and then close the connection. On the mainframe side, CICS starts an instance of
the transaction program, keeps the instance active between method calls, and then stops the program after the last call.

One of the major benefits from using persistent connections is that it allows CICS to maintain state across multiple method
calls and allows for the use of local variables. Persistent connections are implemented and managed through the
COMTIContext.

COMTIContext supports methods that flow to the COM+ or .NET Framework application and updates client status
information (COMTIContext array) or closes persistent connections.

UpdateContextInfo updates the clients COMTIContext array with information obtained from the COM+ or .NET Framework
application object, but with no server object involvement.

ClosePersistentConnection closes persistent connections by contacting the COM+ or .NET Framework application object, but
with no server object involvement.

The client can obtain connection state information by calling the GetConnectionInfo method that is implemented by the
COMTIContext object. In the case of a .NET Framework method failure, the client must call UpdateContextInfo before it calls
GetConnectionInfo.

A time-out mechanism reclaims orphaned persistent connections. The new COMTIContext keyword CONNTIMEOUT takes
an integer value specifying, in seconds, how much time elapses before a persistent connection is considered abandoned, and
then automatically closed. The timing starts as the client call processing is completed by the COM+ or .NET Framework generic
object.

GetConnectionInfo querys the status of a persistent connection. The following shows a COM-based method:

The following shows the .NET Framework-based equivalent:

The COMTIContextArray parameter is updated to reflect the state of the connection, the pfConnectionIsPersistent
parameter contains TRUE if the connection is persistent and active, and the pfConnectionIsViable parameter contains TRUE if
the connection is active.

UpdateContextInfo updates the clients COMTIContext array. The following shows a COM-based method:

The following shows the .NET Framework-based equivalent:

The COMTIContextArray parameter is updated to reflect the state of the connection. At a later time other information kept in
the COM+ or .NET Framework application might also be returned in the update COMTIContextArray.

ClosePersistentConnection closes a persistent connection without the need for a call to the server system. The following
shows a COM-based method:

The following shows the .NET Framework-based equivalent:

The COMTIContextArray parameter is updated to reflect the state of the connection.

In This Section

About Persistent Connections

Programming Models that Support Persistent Connections

How To Use a Persistent Connection

 HRESULT GetConnectionInfo (
 [in, out] SAFEARRAY(VARIANT)*COMTIContextArray,
 [out] BOOL* pfConnectionIsPersistent,
 [out] BOOL* pfConnectionIsViable);

 GetConnectionInfo (ref object[] contextArray,
 out bool fConnectionIsPersistent,
 out bool fConnectionIsViable).

 HRESULT UpdateContextInfo (
 [in, out] SAFEARRAY(VARIANT)*COMTIContextArray);

 UpdateContextInfo (ref object[] contextArray).

 HRESULT ClosePersistentConnection (
 [in, out] SAFEARRAY(VARIANT)*COMTIContextArray);

 ClosePersistentConnection (ref object[]COMTIContextArray).

https://msdn.microsoft.com/en-us/library/aa704703(v=bts.10).aspx

About Persistent Connections
Insert introduction here.

Subhead

Insert section body here.

Subhead

Insert section body here.

Programming Models that Support Persistent Connections
Insert introduction here.

Subhead

Insert section body here.

Subhead

Insert section body here.

How To Use a Persistent Connection
The following topic describes how to use a persistent connection with Windows-Initiated Processing (WIP)

To use a persistent connection with WIP

1. Set the COMTIContext keyword CONNTYPE to OPEN.

If a call with CONNTYPE set to OPEN completes successfully, the returned COMTIContext array CONNTYPE keyword will
have a value of USE.

After you set the COMTIContext keyword CONNTYPE to OPEN, you can choose to set CONNTYPE to USE. However, this
action is not mandatory because it is set to USE by default.

2. Once you have established the connection, you can use the COMTIContext object to access the mainframe.

3. If the method call fails, use UpdateContextInfo and GetConnectionInfo on the COMTIContextLib.ContextObject to obtain
updated status of the connection.

4. To make a call and terminate the persistent connection, set the CONNTYPE keyword to CLOSE.

If the call completes successfully, the returned COMTIContext array CONNTYPE keyword will have a value of NON-
PERSISTENT.

Optionally, you can call ClosePersistentConnection at any time to close a persistent connection. The connection will be
terminated and there will be no interaction with a server program.

Example

The following Visual Basic 6.0 code example shows how to use the OPEN and CLOSE method calls that might return an error.
The sample also demonstrates how to determine whether a connection can still be used.

Public CtxCount As Long
Public COMTIContext() As Variant
Public ContextObj As COMTIContextLib.ContextObject

Dim fConIsPersistent as Boolean
Dim fConnIsViable as Boolean
Dim varConnType as Variant

Private Sub cmdBalance_Click()
 On Error GoTo ErrorHandler

OpenCall:
 varConnType = "OPEN"
 ContextObj.WriteContext "CONNTYPE", varConnType, COMTIContext
 lngReturn = objBank.cedrbank(txtName.Text, txtAccount.Text, curRetBalance, COMTIContext)

UseCall:
 lngReturn = objBank.cedrbank(txtName.Text, txtAccount.Text, curRetBalance, COMTIContext)

CloseCall:
 If (fCloseWithMethod) Then
 varConnType = "CLOSE"
 ContextObj.WriteContext "CONNTYPE", varConnType, COMTIContext
 lngReturn = objBank.cedrbank(txtName.Text, txtAccount.Text, curRetBalance, COMTIConte
xt)
 Else
 COMTIContext = objBank.ClosePersistentConnection
 End-if

 Exit Sub

ErrorHandler:
 COMTIContext = objBank.UpdateContextInfo Optional for COM required for .NET
 ContextObj.GetConnectionInfo (COMTIContext, fConnIsPersistent, fConnIsViable)
 If (fConnIsPersistent = True And fConnIsViable = True) Then

See Also
Other Resources
Using a Persistent Connection
COMTIContext Interface
COMTIContext Keywords

 Continue with the next Use or Close method call is OK
 Else
 Connection is either Non-persistent or no longer viable
 So a Use or Close call is not valid
 End-if
 Exit Sub

End Sub

https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

How to Self-Host a Windows-Initiated Process
Self-Hosting is a technology that allows you the option of running a Transaction Integrator (TI) assembly in-process with an
associated application. Self-Hosting improves performance of your application by not running the TI assembly through
Internet Information Services (IIS).

To self-host a TI assembly

1. Create a TI assembly as you would normally.

For more information, see Creating an Application using Host Integration Server Designer.

2. Register the TI assembly using TI Manager, using the Self-Host radio button selected.

You may also set the hosting model in the Properties toolbox in Visual Studio.

For more information, see Creating an Object.

3. In Visual Studio, use Solution Explorer to add a reference to your TI assembly.

4. Code your application, using the interfaces on the TI assembly as you would any other interface.

See Also
Other Resources
Programming Windows-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa744759(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705501(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704796(v=bts.10).aspx

How To Verify a Remote Installation
Procedure Title

1.

Procedure Title

1.

Subhead

Insert section body here.

Procedure Title

1.

Example

This is the optional description for a Code Example.

Optional comments.

Compiling the Code

Robust Programming

Security

Programming Host-Initiated Processing
This section discusses various issues you need to understand to program host-initiated processing components and
applications.

In This Section

Connecting HIP Components to Visual Basic Applications

https://msdn.microsoft.com/en-us/library/aa705158(v=bts.10).aspx

How To Connect a HIP Component to a Visual Basic
Applications

A key link in host-initiated processing (HIP) is the connection between the HIP component in Transaction Integrator (TI) and the
client application. The connection between the HIP component and the Microsoft Visual Basic server DLL is created through
matching elements of the HIP type library with elements of the Visual Basic project. The following table shows the relationship
between the elements.

HIP Type Library Visual Basic Project

Type Library name Visual Basic Project name.

Type Library Interface nam
e

Visual Basic Class name.

Type Library Method name
s

Functions or subroutines within the Visual Basic Class.

Type Library method para
meters

Defined one for one within the Visual Basic functions or subroutines with the Visual Basic subrouti
nes and functions.

Note
Make sure that the Visual Basic server DLL is registered.

If you are using the Implements key word within a Visual Basic server, the following additional rules apply:

The Visual Basic Implement Compatible Interface property must be enabled. Set the property on the component
interface Properties page within the TI type library or assembly

All parameters defined to type library methods must be Input\Output. The Implements keyword does not support
parameters defined as either input or output. All parameters must be defined as input or output.

The function or subroutine calls must be defined as public, not private, within the Visual Basic class.

See Also
Other Resources
Programming Host-Initiated Processing

https://msdn.microsoft.com/en-us/library/aa746071(v=bts.10).aspx

How to Use a Persistent Connection with Host-Initiated
Processing

A persistent connection is a connection that stays open past the duration of a specific call. Because your application does not
need to re-create the connection on each call, you can use a persistent connection to increase the efficiency of your Host-
initiated application. An application that uses a persistent connection with Host-initiated Processing (HIP) operates in many
ways the same way as a Windows-Initiated Processing (WIP). The difference, of course, is that the mainframe initiates and
terminates the connection, while the windows application responds to the requests of the mainframe.

Note
Host Integration Server supports many of the same programming environments for HIP as for WIP. The exceptions are IMS C
onnect, Distributed Program Call (DPC), and SNALink, which are not supported for HIP persistent connections.

To use a persistent connection with HIP

1. Receive a call with your Windows application from the mainframe, indicating that a connection has been created.

It is the responsibility of the mainframe application to request the persistent connection.

2. Have your Windows application react to the request in the relevant manner.

There is nothing specific your application must do in order to use a persistent connection: creating and terminating the
connection is the responsibility of the mainframe application.

3. Optionally, you can create a new instance of the HIPServerUserContext to query the status of the connection.

The new instance is automatically created with the context information for the relevant connection. Using
HIPServerUserConext, you can determine what type of connection the mainframe has created, and react accordingly.

Example

The following code is pulled from the CICS sample application in the SDK. The sample uses the CONNTYPE of the server object
to perform different actions.

decimal GetAccountBalance(object[] contextArray)
 {
 decimal ReturnBalance = 0.0m;
 string ConnType;
 object contextValue;

 _TIServerContext.ReadContext("CONNTYPE", out contextValue, ref contextArray);

 if (contextValue == null)
 ReturnBalance = 123.45m;
 else
 {
 ConnType = contextValue.ToString();
 ConnType.ToUpper();
 switch (ConnType)
 {
 case "OPEN":
 // Set the initial value of the Account Balance
 // and save it in a global varaible and return it.
 ReturnBalance = 123.45m;
 _AccountBalance = ReturnBalance;
 break;

 case "USE":
 // Increase the value of the global Account Balance
 // varaible and and return its value. Save this new value
 // in the global variable for later use
 _AccountBalance += 100;
 ReturnBalance = _AccountBalance;
 break;

The code sample uses a global variable to store information. It is also possible to use the context object itself to store
information. Although not shown here, it is possible to use the context object to pass information back to the windows
application.

See Also
Concepts
CICS Sample
Other Resources
Using a Persistent Connection

 case "CLOSE":
 // Increase the value of the global Account Balance
 // variable and return the new value. Set the global variable
 // to zero because the "CLOSE" call indicates that we are
 // done with it.
 ReturnBalance = _AccountBalance + 150;
 _AccountBalance = 0.0m;
 break;

 case "UNKNOWN":
 default:
 _AccountBalance = 0.0m;
 ReturnBalance = 123.45m;
 break;
 }
 }

 return ReturnBalance;
 }

https://msdn.microsoft.com/en-us/library/aa771311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

Application Integration Security Guide
This section provides information about steps you can take to safeguard Transaction Integrator, your data, and your network
when you are programming client or server applications.

In This Section

Mainframe Authentication for CICS LINK

AS/400 Security

Limitations of User Access Level Sign On

Using SSO with Host-Initiated Processing

Using SSO with Encrypted Passwords

Threat Mitigation within Visual Studio

https://msdn.microsoft.com/en-us/library/aa705498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704806(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746107(v=bts.10).aspx

Mainframe Authentication for CICS LINK
Resource-level authentication is recommended in the CICS region. Due to a restriction imposed by the IBM distributed
program link (DPL) protocol, a user ID and password transmitted from the workstation by Transaction Integrator (TI) are
ignored and not used for transaction-level authentication. The target CICS region expects, under such circumstances, that
authentication has been completed by the application that executes the IBM DPL; for example, a TI application on the PC.
(Traditionally, the application that executes an IBM DPL has been another CICS region.)

Instead, for transaction-level authentication, the target CICS region associates the default user ID for the region with the
transaction ID of the CICS (Mirror transaction) task and the user ID from the sender is ignored. Unless this practice is taken into
consideration, attempts to secure the Mirror transaction can cause an application malfunction because of the failure to
authenticate.

See Also
Concepts
AS/400 Security
Limitations of User Access Level Sign On
Using SSO with Host-Initiated Processing
Using SSO with Encrypted Passwords
Other Resources
Threat Mitigation within Visual Studio
Application Integration Security Guide

https://msdn.microsoft.com/en-us/library/aa772005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704806(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746107(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746104(v=bts.10).aspx

AS/400 Security
The support for AS/400 security is the same as for other Windows-initiated operations against the mainframe, with the
following adjustments:

No support for RACF, AFC/2, Kerberos, or Top Secret

Integration with AS/400 native security system only

Support for Single Sign-On through SSO

Support for SSL security

See Also
Other Resources
Application Integration Security Guide

https://msdn.microsoft.com/en-us/library/aa746104(v=bts.10).aspx

Limitations of User Access Level Sign On
When you sign on with only user access permissions, you have restricted capabilities for using Transaction Integrator (TI). In
Visual Studio, user access enables you to do the following:

Open TI projects

Create and save new type libraries

Open and save existing type libraries

See Also
Other Resources
Application Integration Security Guide

https://msdn.microsoft.com/en-us/library/aa746104(v=bts.10).aspx

Using SSO with Host-Initiated Processing
When you use Single Sign-On (SSO) security with host-initiated processing (HIP), the impersonation of user credentials is
handled differently depending upon whether you are calling a .NET object or a COM object. If HIP is calling a .NET object, there
are no special considerations; the Transaction Integrator (TI) run-time environment impersonates the user account. If HIP is
calling a COM object, however, there are special considerations.

Depending on the threading model and registration type of the components, the following actions occur when HIP calls the
method of a .COM object when it is impersonating a user account (the one that the host credentials would have been mapped
to via SSO):

Threading
Model

Registration Actions

Single, apar
tment

Server/Library/No CO
M+ application

Server object methods are called under HIP Service/COM+ application configured i
dentity.

Server object methods call CoImpersonateClient to start impersonating the user i
dentity.

Optionally, methods can call CoRevertToSelf, although that is not necessary becau
se COM will call it anyway after the method returns.

Free, both,
neutral

Server COM+ applicati
on

Server object methods are called under HIP Service/COM+ application configured i
dentity.

Server object methods call CoImpersonateClient to start impersonating the user i
dentity.

Optionally, methods can call CoRevertToSelf, although that is not necessary becau
se COM will call it anyway after the method returns.

Free, both,
neutral

Library/No COM+ appl
ication

Server object methods are called under the user identity being impersonated.

Server object method should not call CoImpersonateClient or CoRevertToSelf be
cause they would fail with RPC_E_CALL_COMPLETE.

If you are programming in Microsoft Visual Basic® 6.0, be sure to include the CoImpersonateClient and CoRevertToSelf
declarations in your programs:

See Also
Concepts
Mainframe Authentication for CICS LINK
AS/400 Security
Limitations of User Access Level Sign On
Using SSO with Encrypted Passwords
Other Resources
Threat Mitigation within Visual Studio
Application Integration Security Guide

Private Declare Function CoImpersonateClient Lib "ole32.dll" () As Long
Private Declare Function CoRevertToSelf Lib "ole32.dll" () As Long

https://msdn.microsoft.com/en-us/library/aa705498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704806(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746107(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746104(v=bts.10).aspx

Using SSO with Encrypted Passwords
If you are using Single Sign-On (SSO) security, you must determine whether the client application passes plain text passwords
or encrypted passwords to the Transaction Integrator (TI) run-time environment. If the passwords are in plain text, SSO accepts
the passwords when they are submitted by the TI run-time environment. If the passwords are encrypted, SSO does not accept
the passwords, and the call to SSO fails. To avoid failed SSO calls, disable password validation for the SSO affiliate application.

Threat Mitigation within Visual Studio
Product security is a top priority throughout Microsoft development. Beginning with the Microsoft Windows Security Push in
2002, Microsoft has invested additional time and resources to developing more secure code and detailed instructions for
deploying and securing your computing environment.

The Host Integration Server product team conducted a complete threat modeling analysis to identify and mitigate potential
areas of concern. A threat model is a security-based analysis that helps you determine the highest-level security risks posed to
a product or application and how attacks can manifest themselves.

Although Microsoft has mitigated all known internal security threats to Host Integration Server, you should take steps to
mitigate threats from elsewhere in your network environment. Threat modeling helps you evaluate the threats to the
applications you are writing or running, and thereby reduce the overall risk to your computer system. For more information
about threat model analysis, see Chapter 4 Threat Modeling in Michael Howard and David LeBlanc, Writing Secure Code 2nd
Edition, Redmond, WA: Microsoft Press. 2003.

Howard and LeBlanc summarize six categories of possible security threats to your computing environment:

Spoofing identity. Spoofing threats enable an attacker to pose as another user or enable a rogue server to pose as a
valid server. An example of user identity spoofing is illegally gaining access and then using another users authentication
information, such as username and password.

Tampering with data. Data tampering involves malicious modification of data. Examples include unauthorized changes
made to persistent data, such as that held in a database, and the alteration of data as it flows between two computers
over an open network, such as the Internet.

Repudiation. Repudiation threats are associated with a user who denies that he performed an action without other
parties having any way to prove otherwise—for example, a user performs an illegal operation in a system that lacks the
ability to trace the prohibited operations.

Information disclosure. Information disclosure threats involve the exposure of information to individuals who are not
supposed to have access to it—for example, a users ability to read a file that she was not granted access to and an
intruders ability to read data in transit between two computers.

Denial of service. Denial of service (DoS) attacks deny service to valid users—for example, by making a Web server
temporarily unavailable or unusable. You protect against certain types of DoS threats simply to improve system
availability and reliability.

Elevation of privileges. In this type of threat, an unprivileged user gains privileged access and thereby has sufficient
access to compromise or destroy the entire system. Elevation of privilege threats include situations in which an attacker
has effectively penetrated all system defenses and become part of the trusted system itself, a dangerous situation indeed.

Howard and LeBlanc also point out that some threat types can interrelate. For example, it is possible for information disclosure
threats to lead to spoofing threats if the users credentials are not secured. Similarly, elevation of privilege threats is by far the
worst because if someone can become an administrator or root on the target computer, every other threat category becomes a
reality. Conversely, spoofing threats might lead to a situation where escalation is no longer needed for an attacker to achieve
his goal.

To mitigate threats that originate outside Transaction Integrator (TI) but which can negatively affect TI components and your
application, Microsoft recommends that you do the following:

Protect the TI COM Type Library or .NET Assembly from Unauthorized Access

Protect the Output from Tracing and Network Monitoring Activities

Protect the TI Record or Playback Files from Unauthorized Access

https://msdn.microsoft.com/en-us/library/aa744918(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705409(v=bts.10).aspx

Protecting the TI COM Type Library or .NET Assembly from
Unauthorized Access

To prevent an attacker from viewing or modifying the contents of a Transaction Integrator (TI) COM type library or .NET
assembly and then using that information to either create a client application which spoofs the identity of an authorized user
or modify the custom properties of the component, you should:

Place the computer running Visual Studio and TI Designer in a secure location.

Confirm that the access permissions to Visual Studio, TI Designer, or any other tool used to modify TI type libraries and
.NET assemblies are set correctly.

Store all TI component type libraries and .NET assemblies in a secure directory.

Confirm that the access permissions are set correctly on all type libraries and .NET assemblies.

Confirm that the access permissions are set correctly on the directory that contains the type libraries and .NET
assemblies.

See Also
Concepts
Protecting the Output from Tracing and Network Monitoring Activities
Protecting the TI Record or Playback Files from Unauthorized Access
Other Resources
Threat Mitigation within Visual Studio

https://msdn.microsoft.com/en-us/library/aa772042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746107(v=bts.10).aspx

Protecting the Output from Tracing and Network Monitoring
Activities

To prevent an attacker from viewing the user credential information that might be stored in trace files or network monitoring
files, you should:

Confirm that only authorized users are allowed to run the SNA TRACE or Microsoft Network Monitoring programs on
the computer that is running Transaction Integrator.

Store all tracing (Tracebits) output files and network monitoring (Netmon) output files in a secure directory.

Confirm that the access permissions are set correctly on all tracing output files and network monitoring output files.

Confirm that the access permissions are set correctly on the directory that contains the output files.

Delete all tracing output files and network monitoring output files as soon as you are done with them.

See Also
Concepts
Protecting the TI COM Type Library or .NET Assembly from Unauthorized Access
Protecting the TI Record or Playback Files from Unauthorized Access
Other Resources
Threat Mitigation within Visual Studio

https://msdn.microsoft.com/en-us/library/aa744918(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746107(v=bts.10).aspx

Protecting the TI Record or Playback Files from Unauthorized
Access

To prevent an attacker from either viewing the contents of the Transaction Integrator (TI) record or playback files or replacing
those files with ones that could record user data sent to or from the host, you should:

Store all TI record and playback files in a secure directory.

Confirm that the access permissions on all record or playback files are set correctly. A user must have administrator
rights to be able to record and save a file.

Confirm that the access permissions are set correctly on the directory that contains the record or playback files are
stored.

Store the record file in a form other than plain text.

See Also
Concepts
Protecting the TI COM Type Library or .NET Assembly from Unauthorized Access
Protecting the Output from Tracing and Network Monitoring Activities
Other Resources
Threat Mitigation within Visual Studio

https://msdn.microsoft.com/en-us/library/aa744918(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746107(v=bts.10).aspx

Data Integration Programmer's Guide
This section provides information required to develop applications to access data in an environment using Host Integration
Server 2009. This section provides documentation for developers about data access, data replication, and data tools.

For API reference and other technical information about data integration, see the Data Integration Programmer's Reference
section of the SDK.

For sample code that illustrates data integration, see the Data Integration Samples section of the SDK.

For more information, see the Data Integration User's Guide in the Operations section.

In This Section

Introduction to the Data Integration Programmer's Guide

Data Access Library Programmer's Guide

Managed Provider Programmer's Guide

OLE DB Providers Programmer's Guides

ODBC Driver for DB2 Programmer's Guide

ActiveX Controls Programmer's Guide

Using Data Design Tools

Data Integration Security Guide

https://msdn.microsoft.com/en-us/library/aa771301(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746214(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705183(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745848(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744325(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705385(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704858(v=bts.10).aspx

Introduction to the Data Integration Programmer's Guide
Data Integration refers to the set of tools and techniques you can use from a Windows environment to access and manipulate
database information on a remote host system. This section provides information required to develop applications to access
data in that environment using Microsoft Host Integration Server 2009.

In This Section

Supported Data Integration Programming Scenarios

What You Need to Know to Program Data Integration

Additional Resources for Data Integration Programming

https://msdn.microsoft.com/en-us/library/aa704790(v=bts.10).aspx

Supported Data Integration Programming Scenarios
You can develop applications for data integration used in a Host Integration Server environment using several different
development tools and application programming interfaces. The following table describes the different programming tools
available, and the different languages usable for each tool.

Language Managed provider Unmanaged provider ODBC provider

Visual Basic Managed Provider for DB2 using ma
naged Visual Basic
Managed Provider for Host files usin
g managed Visual Basic

ADO Provider for AS/400 and VASM
ADO Provider for DB2

Host File Transfer ActiveX controls for MVS,
OS/390, AS/400, and AS/36

Data Queue ActiveX for AS/400 Data Queues

ADO to access DB2
using ODBC

C/C++ Managed Provider for DB2 using ma
naged C/C++
Managed Provider for Host files usin
g managed C/C++

OLE DB Provider for AS/400 and VASM
OLE DB Provider for DB2

Host File Transfer ActiveX controls for MVS,
OS/390, AS/400, and AS/36

Data Queue ActiveX for AS/400 Data Queues

ODBC Driver for DB
2

.NET Frameworks (C+
+, C#, VB.NET)

Managed Provider for DB2
Managed Provider for Host Files

See Also
Other Resources
Introduction to the Data Integration Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705183(v=bts.10).aspx

What You Need to Know to Program Data Integration
To use this section effectively, you should be familiar with:

Host Integration Server 2009

One of the following operating environments:

Microsoft Windows Server 2003

Microsoft Windows XP

Microsoft Windows 2000 Server

SNA concepts

Depending on the application programming interface and development tools used, you should be familiar with:

Microsoft COM objects

Microsoft OLE DB

Microsoft ADO

Microsoft ODBC

Microsoft .NET

See Also
Other Resources
Introduction to the Data Integration Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705183(v=bts.10).aspx

Additional Resources for Data Integration Programming
This section does not describe the products, architectures, or standards developed by other companies or organizations.

For information about SNA architecture, see your system network documentation.

The following documents provide additional information about the OLE DB application programming interfaces (APIs):

Microsoft® Data Access Components (MDAC) Software Development Kit 2.8

The following documents provide additional information about Microsoft ActiveX® Data Objects:

Microsoft Data Access Components (MDAC) Software Development Kit 2.5

The following documents and publications provide additional information about the Open Database Connectivity (ODBC)
standard and ODBC programming:

Microsoft Data Access Components (MDAC) Software Development Kit 2.5

Microsoft ODBC 3.0 Software Development Kit and Programmer's Reference

Inside ODBC,written by Kyle Geiger and published by Microsoft Press

For more information about SNA and the Distributed Data Manager (DDM), see the following manuals:

IBM Distributed Data Management Architecture: General Information (Document Number GC219527-3)

IBM OS400 Distributed Data Manager User's Guide

IBM OS400 Distributed Data Manager Programmer's Guide

IBM Systems Network Architecture: Technical Overview

IBM Systems Network Architecture: Concepts and Products

IBM SNA Format and Protocol Reference Manual: Architectural Logic

IBM DFSMS/MVS Version 1 Release 2 DFM/MVS Guide and Reference (Document Number SC26-4915-00)

IBM DFSMS/MVS Version 1 Release 3 DFM/MVS Guide and Reference (Document Number SC26-4915-01)

IBM DFSMS/MVS Version 1 Release 4 DFM/MVS Guide and Reference (Document Number SC26-4915-02)

For more information about IBM DB2, see the following manuals:

IBM DB2 for OS/390 Version 5 Reference for Remote DRDA: Requesters and Servers (Document Number SC26-8964-00)

IBM DB2 for OS/390 Version 5 Application Programming and SQL Guide (Document Number SC26-8958-00)

IBM DATABASE 2 Administration Guide for Common Servers Reference (Document Number S20H-4580)

IBM DATABASE 2 Application Programming Guide for Common Servers Reference (Document Number S20H-4643)

IBM DB2 Universal Database API Reference (Document Number S10J-8167)

IBM DB2 Universal Database Building Applications for Windows and OS/2 Environments Reference (Document Number
S10J-8160)

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), or the
Common Programming Interface for Communications (CPI-C), see the following manuals:

IBM SNA: Technical Overview

IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2

IBM SNA: Formats

IBM Systems Network Architecture: Introduction to APPC

IBM Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2

See also:

Introduction to Data Integration

Data Integration User's Guide

https://msdn.microsoft.com/en-us/library/aa705183(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746214(v=bts.10).aspx

Data Access Library Programmer's Guide
This section contains information describing how to access the capabilities of the Data Access Tool using the interface exposed
by the Data Access Library.

For API references and other technical information about the Data Access Library, see the
Data Access Library Programmer's Reference section of the SDK.

For information about how to use the user interface (UI) of the Data Access Tool, see the Data Access Tool section in the
Operations guide.

In This Section

Data Access Library

Programming with the Data Access Library

https://msdn.microsoft.com/en-us/library/aa753936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704721(v=bts.10).aspx

Data Access Library
This section describes the background for the Data Access Library (DAL), how the different interfaces relate to each other, and
what technologies you must be familiar with to program the DAL.

In This Section

Goals for the Data Access Library

Data Access Library Interface

What You Should Know Before Programming the Data Access Library

Supported Platforms for the Data Access Library

https://msdn.microsoft.com/en-us/library/aa745880(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754421(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770680(v=bts.10).aspx

Goals for the Data Access Library
The original goal of the Data Access Library (DAL) was to expose an interface that would enable developers to automate
lengthy tasks normally performed through the Data Access Tool (DAT) user interface. As development progressed, the Data
Access Library grew to include the most common functionality of the DAT.

When Microsoft developers originally created the Data Access Tool, they realized that some tasks were relatively time-
consuming. For example, creating a DB2 data package takes several steps through the DAT user interface. The developers
determined that the best way to reduce the time to perform such tasks was to expose a programming interface to the DAT.
They determined that in exposing the interface that is required to automate a lengthy procedure, they could expose essentially
the entire functionality of the Data Access Tool.

Therefore, the purpose of the Data Access Library interface is to provide a programmatic interface for the Data Access Tool and
Data Source Wizard. This is done through a straightforward interface that correlates almost entirely to actions that you can
take using the appropriate user interface. Although the Data Access Library provides a subset of the capabilities the user
interface exposes, you can automate most of the common tasks for which you would typically use the UI.

See Also
Other Resources
Data Access Library

https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

Data Access Library Interface
The Data Access Library is based around four objects that represent the core functionality of the Data Access Tool (DAT) and
Data Source Wizard. The following table describes the core objects for the Data Access Library.

Object Description

DataAccessC
ontrol

Provides access to the options listed on the DAT Action menu: testing connections and queries, creating packag
es, and converting data.

DataAccessS
ettings

Provides access to the functionality of the Data Source Wizard: describing where information is stored, and con
trolling the Wizard dialog boxes and warnings.

IConnectionS
tring

Base class for describing the different types of connection strings that the DAT uses.

IHCDItem Base class for describing the objects that make up a host column description (HCD) file.

In addition to the above objects, the Data Access Library interface has an exception object, possible data types, a callback
function triggered when creating packages, and a collection of IHCD items. For more information, see the
Data Access Library Programmer's Reference.

See Also
Other Resources
Data Access Library

https://msdn.microsoft.com/en-us/library/aa753936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

What You Should Know Before Programming the Data Access
Library

The Data Access Library (DAL) is a .NET Framework interface for creating universal data link (.udl) files for Host Integration
Server. Therefore, you should be familiar with the following concepts and technologies:

Host Integration Server 2009

The purpose of the DAL is make it easier to create .udl files, which Host Integration Server then uses to access remote
servers through a variety of technologies. Therefore, you should be familiar with the general framework that you will be
working with when you use the DAL.

Data Access Tool (DAT) and Data Access Wizard

The DAT and the Data Access Wizard are the technologies that enable you to create .udl files and ODBC DSNs through a
user interface. Therefore, you should be familiar with the standard way in which the technology performs a task before
you try to perform that task programmatically.

.NET Framework 2.0

The Data Access Library was written using Microsoft Visual Studio 2005 and the .NET Framework 2.0. Therefore, in order
to successfully use the DAL, you should be familiar with the technologies that went into constructing it.

See Also
Other Resources
Data Access Library

https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

Supported Platforms for the Data Access Library
As a programmatic interface to the Data Access Tool (DAT), the Data Access Library (DAL) is supported by all systems that also
support the DAT.

See Also
Other Resources
Data Access Library

https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

Programming with the Data Access Library
The main programming tasks for the Data Access Library (DAT) can be considered one of three tasks: creating a connection
string, retrieving or modifying data in a connection string, or performing an administrative task.

In This Section

Creating a Connection String

How to Retrieve Data

Performing Administrative Tasks

See Also
Other Resources
Data Access Library

https://msdn.microsoft.com/en-us/library/aa770521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705572(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770711(v=bts.10).aspx

Creating a Connection String
The Data Access Tool can create one of two basic types of connection strings: an OLE DB connection string stored in a universal
data link (.udl) file, and an ODBC connection string stored in a data source name (DSN).

For information about how to view a connection string using the UI, see How to Display an Initialization String in the
Operations guide.

In This Section

How to Create a Connection String for a .udl File

How to Create a Connection String for an ODBC System, User or File DSN

See Also
Other Resources
Programming with the Data Access Library

https://msdn.microsoft.com/en-us/library/aa705701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704721(v=bts.10).aspx

How to Create a Connection String for a .udl File
A universal data link (.udl) file is essentially a text file that contains the connection string for an OLE DB data source. You can
create a .udl file by using the appropriate DB2OleDbConnectionString or FileSysOleDbConnectionString constructor, and
then save the string to secondary storage with a call to Save. The Data Access Library automatically creates the appropriate
.udl file to store the string in, and save the file to disk.

To create a .udl file and associated connection string

1. Create an empty connection string by calling a connection string constructor.

Calling the constructor creates a connection string with default settings. These default settings can be set only through
the Data Access Tool user interface.

If you use a file path for a file that currently exists, the system loads the connection string information in that file instead.

You can determine the default path your system uses for storing .udl files with a call to
DataAccessSettings.MakeUDLPath. DataAccessSettings also stores the default paths for DSN and HCD files.

2. Add in the relevant connection information to the connection string by calling the various connection string properties,
such as DataSourceName, UserName, or Password.

You can also retrieve the full connection string as a text string with a call to GetString, and then save the modified string
with SetString.

3. Save the string by calling the relevant Save method, such as DB2OleDbConnectionString.Save.

The system saves the connection string in a .udl file. The system creates the .udl file using the file path passed in the
name parameter of the constructor. If the file does not contain the full path, the system uses the default path as described
in DataAccessSettings.UDLpath.

The following code example demonstrates how to create a .udl file using a new file name, user name, and password.

See Also
Tasks
How to Retrieve Data
How to Edit a Configuration
Other Resources
Programming with the Data Access Library

static DB2OleDbConnectionString CreateUDLFile(string FileName, string NameOfUser, string Pa
ssWord, ref System.Exception myException)
{
 try
 {
 DB2OleDbConnectionString myConnection = new DB2OleDbConnectionString(FileName, false)
;
 myConnection.UserName = NameOfUser;
 myConnection.Password = PassWord;
 myConnection.Save();
 System.Exception MyEx= new System.Exception(@"Successful Creation", null);
 myException = MyEx;
 return myConnection;

 }
 catch (Exception ex)
 {
 myException = ex;
 return null;
 }
}

https://msdn.microsoft.com/en-us/library/aa705572(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704721(v=bts.10).aspx

How to Create a Connection String for an ODBC System, User
or File DSN

The other type of data that you can create by using the Data Access Library is a data source name (DSN). Like a universal data
link (UDL) file, a DSN contains the connection information necessary to access a remote database. However, where a .udl file is
generally used for an OLE DB database connection, most systems use DSN files for ODBC connections. Further, a DSN does not
necessarily have to be a file: a DSN can be a file, a registry-based system DSN, or a registry-based user DSN.

To create a DSN file and associated connection string

1. Call the constructor for DB2OdbcFileConnectionString, DB2OdbcSysConnectionString, or
DB2OdbcUserConnectionString.

Calling the constructor creates a connection string with default settings. These default settings can be set only through
the Data Access Tool user interface.

If you use a file path for a file that currently exists, the system loads the connection string information in that file instead.

2. Fill in the relevant connection string properties by calling the properties of the object created.

You can also fill in the connection string with GetString, which returns the connection string as a text string. After you
finish modifying the relevant values, you can return the connection string to the object with a call to SetString.

3. Save the connection string information back into storage with a call to Save.

The following code example demonstrates how to create a DSN file and associated connection string.

See Also
Tasks
How to Edit a Configuration
Reference
Configuring a Data Source for the ODBC Driver for DB2
Other Resources
Creating a Connection String

static DB2OdbcFileConnectionString CreateUDLFile2(string FileName, string NameOfUser, strin
g PassWord, ref System.Exception myException)
{
 try
 {
 DB2OdbcFileConnectionString myConnection = new DB2OdbcFileConnectionString(FileName,
false);
 myConnection.UserName = NameOfUser;
 myConnection.Password = PassWord;
 myConnection.Save();
 System.Exception MyEx= new System.Exception(@"Successful Creation", null);
 myException = MyEx;
 return myConnection;

 }
 catch (Exception ex)
 {
 myException = ex;
 return null;

 }
}

https://msdn.microsoft.com/en-us/library/aa744311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746212(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770521(v=bts.10).aspx

How to Retrieve Data
Creating connection string information requires that you create an object that is derived from the IConnectionString class,
such as DB2OdbcConnectionString or DB2OleDbConnectionString. After you create the string, you can save, modify, or
retrieve information from it by using the associated properties.

To retrieve and modify connection string information

1. Create a new connection string by calling the specific type of connection string constructor, using the file path of the .udl
file that contains the specified connection string.

Or, you can call ReadUDL for the specified ConnectionString type. Many of the ConnectionString classes also have a
Clone method that you may want to use. Note that Clone does not load the current instance into active memory, but
instead makes a copy that you can later modify and save to disk.

If you are attempting to retrieve data from a connection string that you currently have an instance of, you can call Load.
For example, if you recently created a new connection string and called Save, you can retrieve the object from storage
and into active memory by calling Load on the object again.

If you use a path that describes a file that does not exist, the system creates a .udl new file using the path described.

2. Retrieve the connection data from your current instance by using GetString or by accessing the relevant property.

Using GetString enables you to manipulate the connection string as though it were a standard text string. In contrast,
accessing the value as a property is usually simpler and safer.

3. When you are finished viewing or manipulating the relevant value, return the value to the object by calling SetString or
by setting the appropriate property.

4. When you are finished, save your changes to secondary storage by calling Save.

The following code example demonstrates how to retrieve, change, and save connection string data.

See Also
Tasks
How to Create a Connection String for an ODBC System, User or File DSN
How to Display an Initialization String
Other Resources
Creating a Connection String

static System.Exception ChangeCommentInUDL(string connString, string newComment)
{
 try
 {
 IConnectionString udl = DB2OleDbConnectionString.ReadUDL(connString);
 udl.Comment = newComment;
 udl.Save();
 System.Exception noException = null;
 return noException;

 }
 catch (System.Exception ex)
 {
 return ex;
 }
}

https://msdn.microsoft.com/en-us/library/aa771326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770521(v=bts.10).aspx

Performing Administrative Tasks
The administrative tasks for the Data Access Library are the tasks you can perform using the DataAccessControl interface. In
general, these tasks are those that require you go beyond creating universal data link (UDL) or host column description (HCD)
files, and start interacting with the actual data sources.

In This Section

How to Convert Data Source Information

How to Create a DB2 Package

How to Test a Connection

How to Run a Sample Query

https://msdn.microsoft.com/en-us/library/aa754317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746248(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705684(v=bts.10).aspx

How to Convert Data Source Information
Converting a data source enables you to convert DB2 data source information from one provider type to another. Note that
this does not change the data source itself, but rather reformats the data source information stored on your system.

To convert data source information

1. Retrieve the connection string for the relevant database using the appropriate call to ReadUDL.

2. Create a connection string to the converted database by calling DataAccessControl.ConvertTo, describing the data
types of the original data and translated data.

3. Save the data in the new connection string by calling IConnectionString.Save.

The following example demonstrates how to convert data source information between OLE DB UDLs and ODBC DSNs.

See Also
Tasks
How to Convert Data Sources
Other Resources
Performing Administrative Tasks

IConnectionString ConvertUDLtoODBC(string originalUDL)
{
 try
 {
 IConnectionString udl = DB2OleDbConnectionString.ReadUDL(originalUDL);
 IConnectionString odbcDsn = DataAccessControl.ConvertTo(udl, typeof(DB2OdbcSysConnect
ionString));
 odbcDsn.Save();
 return odbcDsn;
 }
 catch
 {
 return null;
 }
}

https://msdn.microsoft.com/en-us/library/aa771691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705260(v=bts.10).aspx

How to Create a DB2 Package
A DB2 package is a collection of data used by a provider implemented as an IBM Distributed Relational Database Architecture
(DRDA) application requester. The provider uses packages to issue SQL statements and call DB2 stored procedures. You can
use CreatePackages to create these packages.

The create package command creates a Host Integration Server package on a DB2 system.

To create a DB2 package

1. Create a connection string to the targeted database with a call to ReadUDL.

2. Create the package with CreatePackages.

The following example describes how to create a package.

See Also
Tasks
How to Create Packages
Reference
Creating Packages for Use with the OLE DB Provider for DB2
Concepts
Creating Packages for Use with the ODBC Driver for DB2

static void CreatePackage(string myUDL, System.Exception myException)
{
try
 {
 IConnectionString connString = DB2OleDbConnectionString.ReadUDL(myUDL);
 DataAccessControl.CreatePackages(connString, null);
 myException = null;
 }
catch (System.Exception Caught)
 {
 myException = Caught;
 }
}

https://msdn.microsoft.com/en-us/library/aa754626(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705428(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705138(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771710(v=bts.10).aspx

How to Test a Connection
After you create the appropriate connection string and store it in a file, you can programmatically test the validity of your
connection with a call to TestConnection.

To test a connection

1. Create or retrieve the connection string on which you run the sample query.

For more information about creating and retrieving connection strings, see Creating a Connection String and
How to Retrieve Data.

2. Test the connection with a call to TestConnection.

If successful, TestConnection returns the class and version number of the server. Otherwise, the method returns null.
Note that you may be required to enter the user name and password. In this case, the Password dialog box appears.

See Also
Tasks
How to Test a Connection
Other Resources
Performing Administrative Tasks

https://msdn.microsoft.com/en-us/library/aa754637(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705572(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705260(v=bts.10).aspx

How to Run a Sample Query
One of the final checks you can perform on a created connection string is a simple query that fetches a list of available files and data sources in the target
database. Once you create the connection string, you can run this query using
DataAccessControl.Microsoft.HostIntegration.DataAccessLibrary.DataAccessControl.SampleQuery(Microsoft.HostIntegration.DataAccessLibrary.IConnectionString).

To run a sample query

1. Create or retrieve the connection string on which you run the sample query.

For more information on creating and retrieving connection strings, see Creating a Connection String and How to Retrieve Data.

2. Run the sample query with a call to SampleQuery.

If successful, SampleQuery returns a data table with the relevant values. Otherwise, the method returns null.

See Also
Tasks
How to Run a Sample Query
Other Resources
Performing Administrative Tasks

https://msdn.microsoft.com/en-us/library/aa754635(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770521(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705572(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705260(v=bts.10).aspx

Managed Provider Programmer's Guide
A Managed Provider is a .NET Framework data provider that is used for connecting Host Integration Server 2009 applications
to a database, executing commands, and retrieving results. Those results are processed directly, placed in an ADO.NET DataSet
to be exposed to the user, combined with data from multiple sources, or accessed remotely between tiers. A Host Integration
Server Managed Provider is designed to be lightweight, creating a minimal layer between the data source and your code, and
increasing performance without sacrificing functionality.

In This Section

Managed Provider for DB2 Programmer's Guide

Managed Data Provider for Host Files Programmer's Guide

.NET Framework Data Providers for Host Integration Server

ADO.NET DataSet for Host Integration Server

https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754101(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744353(v=bts.10).aspx

Managed Provider for DB2 Programmer's Guide
This section describes the general architecture and implementation details of the Managed Provider for DB2. The Managed
Provider for DB2 enables a client to connect to a DB2 data source in order to retrieve and modify data. The Managed Provider
for DB2 implements a subset of the System.Data interfaces to enable connection management and query execution.

In This Section

Managed Provider for DB2

Using the Managed Provider for DB2

Managed Provider for DB2 Tutorial

https://msdn.microsoft.com/en-us/library/aa704606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754703(v=bts.10).aspx

Managed Provider for DB2
Host Integration Server 2009 includes a Managed Provider to access data from a loosely coupled data source: in this case, a
DB2 database. The Managed Provider for DB2 uses two central .NET Framework components to implement this capability: the
ADO.NET DataSet object and the Managed Provider for DB2 itself.

A DataSet object is designed for data access independent of any data source. As a result, it can be used with multiple and
different data sources, with XML data, or to manage data local to the application. A DataSet contains a collection of one or
more DataTable objects consisting of rows and columns of data, and also primary key, foreign key, constraint, and relation
information about the data in the DataTable objects.

In contrast, the Managed Provider for DB2 provides data manipulation and fast, forward-only, read-only access to data.
Therefore, the Managed Provider for DB2 exposes a specific set of objects. The MSDb2Command object enables access to DB2
commands to return data, modify data, run stored procedures, and send or retrieve parameter information. The
MsDb2DataReader provides a high-performance stream of data from the DB2 database. Finally, the MsDb2DataAdapter
provides the bridge between the DataSet object and the DB2 database. MsDb2DataAdapter uses MsDb2Command objects to
execute SQL commands at the data source to both load the DataSet with data, and reconcile changes that were made to the
data in the DataSet back to the data source.

In This Section

Managed Provider for DB2 Goals

Relationships between the .NET Provider for DB2 Interfaces

https://msdn.microsoft.com/en-us/library/aa754103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772112(v=bts.10).aspx

Managed Provider for DB2 Goals
The main goal of the Managed Provider for DB2 is to enable access to loosely coupled data sources using the technologies
offered by ADO.NET and the .NET Framework. To implement this goal, the Managed Provider for DB2 was designed as an
incremental improvement over the traditional COM-based OLE DB providers. In addition, the Managed Provider for DB2 is
optimized for DB2 over the currently available OLE DB .NET Framework data provider.

ODBC and OLE DB Solutions

Microsoft has offered programming models and tools for developing enterprise data integration solutions for several years.
These include the industry-standard ODBC and the COM-based OLE DB. However, developing and deploying ADO-based Web
solutions presents a number of issues, including insufficient design tools, decreased performance, limited scalability, and little
XML interoperability.

Additionally, the ADO- and OLE DB-based data architecture is based on solutions that require tightly coupled, live connections
between application and data tiers. However, the vast majority of Web solutions today require a loosely coupled association
between application components and tiers. Also, most modern Web application requirements include the use of XML as the
universal Web message and data medium. Remote Data Services (RDS) offered a disconnected recordset between application
and presentation tiers. ADO also offered the ability to persist recordsets as XML. However, there was no uniform way to
provide asynchronous execution between tiers. In addition, XML recordset persistence was extremely limited.

ADO.NET and the .NET Framework

To make implementation easier and to improve performance, scalability, and XML support, Microsoft offered the .NET
Framework and ADO.NET. The .NET Framework offered developers a number of advantages over COM, such as cross-language
inheritance, object lifetime management, and multilanguage class libraries as supported by the common language runtime
(CLR). The CLR offers developers a predictable, managed environment in which to execute their programs. The ADO.NET
programming model was designed to provide better performance and scalability than the older ADO. ADO.NET is a set of
common classes for exposing data services that are implemented by .NET Framework data providers.

Microsoft Visual Studio has shipped two .NET Framework data provider implementations: the first provider accesses Microsoft
SQL Server through an application-level protocol called Tabular Data Stream (TDS), and is called the SQL Server .NET
Framework Data Provider. The second provider accesses the underlying OLE DB providers, and is called the OLE DB .NET
Framework Data Provider.

However, just as the OLE DB Provider for ODBC offers less optimal performance and scalability than a direct OLE DB provider
solution, so too does the OLE DB .NET Framework Data Provider offer a less optimal solution than a specific .NET Framework
data provider implementation would. In addition, the OLE DB .NET Framework Data Provider adds complexity and
compatibility issues with an extra layer of indirection. Therefore, Host Integration Server has implemented a .NET Framework
data provider for a key enterprise data source: DB2.

See Also
Other Resources
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

Relationships between the .NET Provider for DB2 Interfaces
The Managed Provider for DB2 interfaces interact in different ways—with the exception of MsDb2DataAdapter, the remaining
classes adhere to a rigid parent/child relationship:

An MsDb2Connection can have one MsDb2Transaction running, although it can have multiple MsDb2Commands.

An MsDb2Transaction can have one or more MsDb2Commands running.

An MsDb2Command owns one MsDb2ParameterCollection, which stores multiple MsDb2Parameters.

An MsDb2Command can also create a single MsDb2DataReader for parsing one or more resultsets.

The MsDb2DataAdapter takes advantage of all the other Managed Provider interfaces. The MsDb2DataAdapter serves as the
gateway between a host DB2 system and a client-side ADO.NET DataSet. The DataSet is an important piece of the .NET data
framework because it provides a mechanism for caching data in a managed environment and inferring XML schema
information, basically providing a gateway between DB2 data and Microsoft Web services.

See Also
Concepts
Examining the Core Interface for a Managed Provider
Other Resources
Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa744334(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704606(v=bts.10).aspx

Using the Managed Provider for DB2
The Managed Provider for DB2 operates in most ways as a normal data provider: you can connect to a DB2 database, execute
commands, retrieve data, and use stored procedures.

In This Section

Using the Managed Provider for DB2 with Visual Studio

Connecting to and Disconnecting from a DB2 Database

Executing Commands in a DB2 Database

Reading Data from a DB2 Database

Using Stored Procedures in a DB2 Database

How to Obtain a Single Value from a DB2 Database

Working with the DataAdapter and the DataSet for a DB2 Database

How to Perform Transactions with a DB2 Database

How to Perform a Two-Phase Commit Transaction over TCP/IP

Obtaining Schema Information from the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa771987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705624(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771450(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746127(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745346(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771033(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705132(v=bts.10).aspx

Using the Managed Provider for DB2 with Visual Studio
You can create a project that uses the managed provider for DB2 with Visual Studio as you would any other project. The
following topics describe any issues that are unique to this provider.

Data Design Tools

The Make Table option in the Visual Studio 2005 Query Designer is not supported for the Managed Provider for DB2 in
conjunction with IBM DB2 databases. Therefore, the syntax generated by the SELECT INTO statement in Visual Studio is not
supported by DB2 when executed using dynamic SQL. There is no solution for this problem.

See Also
Other Resources
Using the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

Connecting to and Disconnecting from a DB2 Database
There are two ways to connect and disconnect to a DB2 database. The first and most common way is using an
MsDb2Connection to open and close the connection. The second method is to access a connection pool.

In This Section

How to Connect with an MsDb2Connection

How to Connect to a DB2 Connection Pool

Working with Connection Strings and the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa753952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754060(v=bts.10).aspx

How to Connect with an MsDb2Connection
The first step in accessing a remote DB2 database is to connect to the database. You must use MsDb2Connection to access an
IBM DB2 data source. After you have connected, you can retrieve, modify, and update any information that you want. Note that
connections are not implicitly released when the MsDb2Connection falls out of scope or is reclaimed by garbage collection.
Therefore, you must close the connection when you are finished using it. You can close a connection by using either
MsDb2Connection.Close or MsDb2Connection.Dispose.

Example

The following example demonstrates how to connect to a DB2 database.

See Also
Tasks
How to Connect to and Disconnect from a Host File System
Other Resources
Using the Managed Provider for DB2

Public void SampleConnect()
{
 MsDb2Connection myConnection = null;
 Try
 {
 myConnection = new MsDb2Connection(@"file name=HOST.udl ");
 myConnection.Open();
 // Perform any necessary tasks here.
 myConnection.Close();
 }
finally
 {
 if(myConnection!= null)
 myConnection.Dispose();
 }
}

https://msdn.microsoft.com/en-us/library/aa771645(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

How to Connect to a DB2 Connection Pool
Another way to connect to a DB2 database is through a connection pool. Although implemented differently on the server, a
connection pool is identical to a traditional connection from the perspective of a client application.

A connection pool is a set of one or more connections that the server keeps open to service requests from one or more clients.
When the client is finished with a connection, the server does not terminate the connection. Instead, the connection is released
back into the pool, and can then service another client. Connection pooling is frequently used in situations where clients
connect, query, and terminate a connection to the server multiple times over the course of a session, such as a database server
that is accessed through the Internet.

To connect and disconnect to a DB2 connection pool Using Host Integration Server

1. Connect to the DB2 server with MsDb2Connection, with the
Microsoft.HostIntegration.MsDb2Client.MsDb2Connection.ConnectionPooling set to true.

2. Perform your queries as you would with a traditional DB2 connection.

3. Use MsDb2Connection.Close or MsDb2Connection.Dispose to end your session.

Note
Calling Close or Dispose on a connection from a connection pool does not actually close or dispose the connection. In
stead, the server returns the connection to the pool.

The following code example shows how to connect to a DB2 database using a connection pool.

See Also
Other Resources
Using the Managed Provider for DB2
Connecting to and Disconnecting from a DB2 Database

int GetNumberOfOrders()
{
 MsDb2Connection conn = new MsDb2Connection(@"File Name=C:\MyConn.UDL");
 sDb2Command cmd;
 int numOrders = 0;
 conn.ConnectionPooling = true;
 conn.Open();
 cmd = new MsDb2Command("select count(*) from orders", conn);
 numOrders = (int)cmd.ExecuteScalar();
 conn.Close();
 return numOrders;
}

https://msdn.microsoft.com/en-us/library/aa705120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705624(v=bts.10).aspx

Working with Connection Strings and the Managed Provider
for DB2

A connection string contains initialization information passed as a parameter from a data provider to a data source, which is
then parsed immediately after being set. Syntax errors generate a run-time exception, but other errors can be found only after
the data source has validated the information in the connection string. After the information is validated, the data source sets
various connection string options that enable the connection and allow it to be opened.

The .NET Framework 2.0 provides new capabilities for working with connection strings, such as the
MsDb2ConnectionStringBuilder class, which facilitates building valid connection strings at run time based on user input.

In This Section

Building Connection Strings

Using Connection String Keywords

Storing and Retrieving Connection Strings

https://msdn.microsoft.com/en-us/library/aa705474(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754295(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771913(v=bts.10).aspx

Building Connection Strings
The Managed Provider for DB2 provides a strongly typed connection string builder class that inherits from
DbConnectionStringBuilder. The connection string builders let developers programmatically create syntactically correct
connection strings that are based on user input, and also parse and rebuild existing connection strings by using methods of the
class. The MsDb2ConnectionStringBuilder class provides strongly typed properties that correspond to the known key/values
pairs allowed by the Managed Provider for DB2.

In earlier versions of ADO.NET, there was no compile-time checking of connection strings that consisted of concatenated string
values. At run time, an incorrect keyword would generate an invalid ArgumentException. Because values received from a user
were not checked or quoted appropriately, it was possible for an attacker to bypass expected settings.

The MsDb2ConnectionStringBuilder class performs checks for valid key/value pairs. An invalid pair throws an exception and
injected values are handled in a safe manner. Each class maintains a fixed collection of synonyms and can translate from a
synonym to the corresponding well-known key name.

Example
See Also
Other Resources
Working with Connection Strings and the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa771646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754060(v=bts.10).aspx

Using Connection String Keywords
The format of a connection string is a semicolon-delimited list of key/value parameter pairs:

keyword1=value; keyword2=value

When the connection string is validated by the data source, spaces are ignored and keywords are not case sensitive. However,
values may be case sensitive, depending on the case sensitivity of the data source. To include values that contain a semicolon,
single-quote character, or double-quote character, the value must be enclosed in double quotation marks.

To avoid misspellings, the Managed Provider for DB2 exposes the keywords and values of the connection string as properties.

Example
See Also
Other Resources
Working with Connection Strings and the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa754060(v=bts.10).aspx

Storing and Retrieving Connection Strings
We recommend that you not embed connection strings in your code. If the location of the server ever changes, your
application must be recompiled. In addition, unencrypted connection strings that are compiled into an application's source
code can be viewed using the MSIL Disassembler (ildasm.exe).

To avoid storing connection strings in your code, you can store them in the web.config file for an ASP.NET application and in
the app.config file for a Windows application. Although configuration files are mainly used in ASP.NET applications, where they
are protected from being browsed to, you can also use them in a Windows application. The syntax and format of the app.config
and web.config files is identical for both ASP.NET and Windows applications.

The connection string can be stored in the configuration file in the <connectionStrings> element. Connection strings are
stored as key/value pairs, where the name key can be used to look up the value stored in the connectionString attribute at
run time.

You can work with configuration files programmatically by using the MsDb2Configuration class. The methods of the
WebConfigurationManager object also enable you to obtain a configuration section, each of which has its own object type.
In addition, the System.Configuration namespace provides classes for working with configuration information stored in
configuration files.

Example
See Also
Other Resources
Working with Connection Strings and the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa754060(v=bts.10).aspx

Executing Commands in a DB2 Database
The MsDb2Command object exposes several Execute methods that you can use to perform the intended action. When you are
returning results as a stream of data, use ExecuteReader to return a DataReader object. Use ExecuteScalar to return a
singleton value. Use ExecuteNonQuery to execute commands that do not return rows.

Using MsDb2Command with Stored Procedures

When you use the MsDb2Command object with a stored procedure, you can set the CommandType property of the
MsDb2Command object to StoredProcedure. With a CommandType of StoredProcedure, you can use the Parameters
property of the Command to access input and output parameters and return values. The Parameters property can be
accessed regardless of the Execute method called. However, when you call ExecuteReader, return values and output
parameters cannot be accessed until the DataReader is closed.

Note that SQL statements that modify data (such as INSERT, UPDATE, or DELETE) do not return rows. Similarly, many stored
procedures perform an action but do not return rows. To execute commands that do not return rows, create an
MsDb2Command object with the appropriate SQL command and an MsDb2Connection, including any required
MsDb2Parameters. Execute the command by using the ExecuteNonQuery method of the MsDb2Command object. The
ExecuteNonQuery method returns an integer that represents the number of rows affected by the statement or stored
procedure that was executed. If multiple statements are executed, the value returned is the sum of the records affected by all
the statements executed.

Modifying Databases and Catalogs

To execute a command to modify a database or catalog, such as the CREATE TABLE or CREATE PROCEDURE statement,
create an MsDb2Command object by using the appropriate SQL statements and an MsDb2Connection object. Execute the
command by using the ExecuteNonQuery method of the MsDb2Command object.

See Also
Other Resources
Using the Managed Provider for DB2
Managed Provider for DB2 Programmer's Guide
Managed Provider for DB2 Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa771643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770901(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770903(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771645(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771755(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705735(v=bts.10).aspx

Reading Data from a DB2 Database
In addition to executing commands on a remote database, you can also retrieve information from the database to view locally.

In This Section

Reading Data from a Database

How to Retrieve Multiple Result Sets

Retrieving Schema Information

https://msdn.microsoft.com/en-us/library/aa754404(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771373(v=bts.10).aspx

Reading Data from a Database
You can use MsDb2DataReader to retrieve a read-only, forward-only stream of data from a database. Using
MsDb2DataReader can increase application performance and reduce system overhead because only one row at a time is ever
in memory.

After you create an instance of the MsDb2Command object, you can create an MsDb2DataReader by calling ExecuteReader to
retrieve rows from a data source.

You can use Microsoft.HostIntegration.MsDb2Client.MsDb2DataReader.Read to obtain a row from the results of the query. You
access each column of the returned row by passing the name or ordinal reference of the column to MsDb2DataReader.
However, for best performance, MsDb2DataReader provides a series of methods that enable you to access column values in
their native data types. Using the typed accessor methods when the underlying data type is known reduces the amount of type
conversion required when retrieving the column value.

MsDb2DataReader also provides a nonbuffered stream of data that enables procedural logic to efficiently process results
from a data source sequentially. MsDb2DataReader is a good choice when you are retrieving large amounts of data because
the data is not cached in memory.

After you are finished with MsDb2DataReader, be sure to call the Close method. In addition, output parameters and return
values from an MsDb2Command are not available until MsDb2DataReader is closed.

Note
The Distributed Relational Data Architecture (DRDA) uses a "." as a decimal point and a "," to separate numerical values. If yo
u are working in a language, such as German, that uses a "," as a decimal point, you might receive an error when you are retri
eving data from your database. To avoid this error, use System.Globalization.CultureInfo.InvariantCulture when you call
the ToString and Parse methods.

Example

The following example shows how to read data from a DB2 database by reading a row from a SELECT statement:

See Also
Other Resources
Using the Managed Provider for DB2
Managed Provider for DB2 Programmer's Guide
Managed Provider for DB2 Programmer's Reference

Public void ReadMyData(string myConnString)
{
 string mySelectQuery = "SELECT OrderID, CustomerID FROM Orders";
 MsDb2Connection myConnection = new MsDb2Connection(myConnString);
 MsDb2Command myCommand = new MsDb2Command(mySelectQuery,myConnection);
 myConnection.Open();
 MsDb2DataReader myReader;
 myReader = myCommand.ExecuteReader();
 // Always call Read before accessing data.
 While (myReader.Read())
 {
 Console.WriteLine(myReader.GetInt32(0) + ", "
 + myReader.GetString(1));
 }
 // Always close when done reading.
 myReader.Close();
 // Close the connection when done.
 myConnection.Close();
}

https://msdn.microsoft.com/en-us/library/aa771648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770901(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771162(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705735(v=bts.10).aspx

How to Retrieve Multiple Result Sets
MsDb2DataReader provides the NextResult method to iterate through multiple returned results.

Example

The following example shows how to retrieve multiple result sets.

See Also
Other Resources
Using the Managed Provider for DB2
Managed Provider for DB2 Programmer's Guide
Managed Provider for DB2 Programmer's Reference

Public void ReadMyData(string myConnString)
{
 string myCallQuery = "CALL MyReports()";
 MsDb2Connection myConnection = new MsDb2Connection(myConnString);
 MsDb2Command myCommand = new MsDb2Command(myCallQuery,myConnection);
 myConnection.Open();
 MsDb2DataReader myReader;
 myReader = myCommand.ExecuteReader();
 do
 {
 // Always call Read before accessing data.
 While (myReader.Read())
 {
 Console.WriteLine(myReader.GetString(0) + " , ", "
 + myReader.GetString(1));
 }
 }
 while(myReader.NextResult());
 // Always call Close when done reading.
 myReader.Close();
 // Close the connection when done with it.
 myConenction.Close();
}

https://msdn.microsoft.com/en-us/library/aa771648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771161(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705735(v=bts.10).aspx

Retrieving Schema Information
While an MsDb2DataReader is open, you can retrieve schema information about the current result set by using
MsDb2DataReader.GetSchemaTable. GetSchemaTable returns a data table that is populated with rows and columns that
contain the schema information for the current result set. The data table contains one row for each column of the result set.
Each column of the schema table row maps to a property of the column returned in the result set, where the ColumnName is
the name of the property and the value of the column is the value of the property.

See Also
Other Resources
Using the Managed Provider for DB2
Managed Provider for DB2 Programmer's Guide
Managed Provider for DB2 Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa771648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705735(v=bts.10).aspx

Using Stored Procedures in a DB2 Database
Stored procedures offer many advantages in data-driven applications. By using stored procedures, you can encapsulate
database operations in a single command, optimized for best performance, and enhanced with additional security. Although
you can call a stored procedure by passing the stored procedure name followed by parameter arguments as an SQL statement,
using the Parameters collection of MsDb2Command object enables you to more explicitly define stored procedure parameters,
and also to access output parameters and return values.

To call a stored procedure, set the CommandType of the MsDb2Command object to StoredProcedure. After the
CommandType is set to StoredProcedure, you can use the Parameters collection to define parameters.

You can create an MsDb2Parameter object by using the MsDb2Parameter constructor, or by calling the Add method of the
Parameters collection of an MsDb2Command. MsDb2Parameters.Add takes as input either constructor arguments or an
existing MsDb2Parameter object. When setting the Value of an MsDb2Parameter to a null reference, use DBNull.Value.

For parameters other than Input parameters, you must set the ParameterDirection property to specify whether the
parameter type is InputOutput, Output, or ReturnValue.

See Also
Other Resources
Using the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa705064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771755(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

How to Obtain a Single Value from a DB2 Database
You might need to return database information that is just a single value rather than in the form of a table or data stream. For
example, you might want to return the result of an aggregate function such as Count(*), Sum(Price), or Avg(Quantity). The
Command object enables you to return single values by using the ExecuteScalar method. The ExecuteScalar method
returns as a scalar value the value of the first column of the first row of the result set.

Example

The following code example demonstrates how to retrieve a single value from a DB2 database.

See Also
Other Resources
Using the Managed Provider for DB2

static void SingleValueConnection()
{
 MsDb2Connection myConnection = null;
 try
 {
// Obtaining a single value as a database.
 myConnection = new MsDb2Connection(@"file name=HOST.udl ");
 myConnection.Open();
 MsDb2Command myCommand = new MsDb2Command("SELECT Count(*) FROM Orders", myConnecti
on);
 Int32 count = (Int32)myCommand.ExecuteScalar();
 myConnection.Close();
 }
 catch (Exception exc)
 {
 Console.WriteLine(exc);
 Console.ReadLine();
 }

 finally
 {
 if(myConnection!= null)
 myConnection.Dispose();
 }
} // End SingleValueConnection.

https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

Working with the DataAdapter and the DataSet for a DB2
Database

The MsDb2DataAdapter is the main interface for retrieving and updating the DataSet.

In This Section

Populating a Managed Provider Dataset from a Data Adapter

Working with DataAdapter Events

Updating the DB2 Database with a Data Adapter and the Dataset

Using Parameters with the DB2 DataAdapter

Adding Constraints to a DB2 DataSet

Setting up DataTable and DataColumn Mappings for a DB2 Database

https://msdn.microsoft.com/en-us/library/aa705525(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704845(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746195(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745344(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771232(v=bts.10).aspx

Populating a Managed Provider Dataset from a Data Adapter
The dataset is a memory-resident representation of data that provides a consistent relational programming model
independent of the data source. The dataset represents a complete set of data including tables, constraints, and relationships
among the tables. Because the dataset is independent of the data source, a dataset can include data that is local to the
application, and also data from multiple data sources. Interaction with existing data sources is controlled through an
MsDb2DataAdapter object.

The Microsoft.HostIntegration.MsDb2Client.MsDb2DataAdapter.SelectCommand is a Command object that retrieves data
from the data source. The InsertCommand, UpdateCommand, and DeleteCommand properties of MsDb2DataAdapter are
also Command objects that manage updates to the data in the data source according to modifications made to the data in the
dataset.

Fill Method

The MsDb2DataAdapter.Fill method is used to populate a dataset with the results of
Microsoft.HostIntegration.MsDb2Client.MsDb2DataAdapter.SelectCommand. Fill takes as its arguments a DataSet
object to be populated, and a DataTable object, or the name of the DataTable object to be filled with the rows returned from
SelectCommand.

The Fill method uses MsDb2DataReader implicitly to return the column names and types that are used to create the tables in
the dataset, and also the data to populate the rows of the tables in the dataset. Tables and columns are only created if they do
not already exist; otherwise Fill uses the existing dataset schema. Column types are created as .NET Framework types. Primary
keys are not created unless they are located in the data source, and DataAdapter.MissingSchemaAction is set to
MissingSchemaAction.AddWithKey. If Fill finds that a primary key exists for a table, it overwrites data in the DataSet with
data from the data source for rows where the primary key column values match those of the row returned from the data
source. If no primary key is found, the data is appended to the tables in the DataSet. Fill uses any mappings that may exist
when populating the DataSet object.

Note
If SelectCommand returns the results of an OUTER JOIN, the MsDb2DataAdapter does not set a PrimaryKey value for the
resulting DataTable. You must define the PrimaryKey yourself to ensure that duplicate rows are resolved correctly

Multiple Result Sets

If MsDb2DataAdapter encounters multiple result sets, it creates multiple tables in the dataset. The tables are given an
incremental default name of TableN, starting with "Table" for Table0. If a table name is passed as an argument to the Fill
method, the tables are given an incremental default name of TableNameN, starting with "TableName" for TableName0.

Any number of MsDb2DataAdapter objects can be used with a dataset. Each MsDb2DataAdapter can be used to fill one or
more DataTable objects and resolve updates back to the relevant data source. You can add DataRelation and Constraint
objects to the dataset locally, enabling you to relate data from dissimilar data sources.

See Also
Other Resources
Working with the DataAdapter and the DataSet for a DB2 Database
Using the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa745794(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771647(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

Working with DataAdapter Events
MsDb2DataAdapter exposes two events you can use to respond to changes made to data at the data source. The following
table shows the MsDb2DataAdapter events.

Event Description

RowUpdating An UPDATE, INSERT, or DELETE operation on a row (by a call to one of the Update methods) is about to begin.

RowUpdated An UPDATE, INSERT, or DELETE operation on a row (by a call to one of the Update methods) is complete.

RowUpdating is raised before any update to a row from the dataset has been processed at the data source. RowUpdated is
raised after any update to a row from the dataset has been processed at the data source. As a result, you can use
RowUpdating to modify update behavior before it occurs, to provide additional handling when an update occurs, to retain a
reference to an updated row, to cancel the current update and schedule it for a batch process to be processed later, and so on.
RowUpdated is useful for responding to errors and exceptions that occur during the update. You can add error information,
retry logic, and so on, to the dataset.

Arguments

The MsDb2RowUpdatingEventArgs and MsDb2RowUpdatedEventArgs arguments that are passed to the RowUpdating and
RowUpdated events include the following:

A Command property that references the Command object that is used to perform the update.

A Row property that references the DataRow object containing the updated information.

A StatementType property for what type of update is being performed.

The TableMapping, if applicable.

The Status of the operation.

You can use the Status property to determine whether an error has occurred during the operation and, if you want, to control
the actions against the current and resulting rows. When the event occurs, the Status property equals either Continue or
ErrorsOccurred.

Status Property Values

The following table shows the values to which you can set the Status property in order to control subsequent actions during
the update.

Status Description

Continue Continue the update operation.

ErrorsOccurred Abort the update operation and throw an exception.

SkipCurrentRow Ignore the current row and continue the update operation.

SkipAllRemainingRows Abort the update operation, but do not throw an exception.

Setting the Status property to ErrorsOccurred causes an exception to be thrown. You can control which exception is thrown
by setting the Errors property to the desired exception. Using one of the other values for Status prevents an exception from
being thrown.

See Also
Other Resources
Working with the DataAdapter and the DataSet for a DB2 Database
Using the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa770817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

Updating the DB2 Database with a Data Adapter and the
Dataset

The Update method of MsDb2DataAdapter is called to resolve changes from a dataset back to the data source. The Update
method, like the Fill method, takes as arguments an instance of DataSet, and an optional DataTable object or DataTable
name. The DataSet instance is the DataSet object that contains the changes that have been made, and the DataTable object
identifies the table from which to retrieve the changes.

Calling the Update Method

When you call the Update method, MsDb2DataAdapter analyzes the changes that have been made and executes the
appropriate command (INSERT, UPDATE, or DELETE). When the MsDb2DataAdapter encounters a change to a data row, it
uses InsertCommand, UpdateCommand, or DeleteCommand to process the change. This enables you to maximize the
performance of your ADO.NET application by specifying command syntax at design time and, where possible, with stored
procedures. You must explicitly set the commands before calling Update. If Update is called, and the appropriate command
does not exist for a particular update (for example, no DeleteCommand for deleted rows), an exception is thrown. You can
use command parameters to specify input and output values for an SQL statement or stored procedure for each modified row
in a dataset.

If your DataTable object maps to or is generated from a single database table, you can take advantage of the
MsDb2CommandBuilder object to automatically generate the DeleteCommand, InsertCommand, and UpdateCommand
properties of the MsDb2DataAdapter object.

Updating Datasets

The Update method resolves your changes back to the data source; however other clients might have modified data at the
data source since the last time you filled the dataset. To update your dataset with current data, use the MsDb2DataAdapter
and Fill method. New rows are added to the table, and updated information is incorporated into existing rows. The Fill method
determines whether a new row will be added or an existing row will be updated by examining the primary key values of the
rows in the dataset and the rows returned by SelectCommand. If the Fill method encounters a primary key value for a row in
the dataset that matches a primary key value from a row in the results returned by SelectCommand, it updates the existing
row with the information from the row returned by SelectCommand and sets the RowState property of the existing row to
Unchanged. If a row returned by SelectCommand has a primary key value that does not match any of the primary key
values of the rows in the dataset, the Fill method adds a new row with a RowState of Unchanged.

Note
If SelectCommand returns the results of an OUTER JOIN, the DataAdapter object does not set a PrimaryKey value for the r
esulting DataTable object. You must define the PrimaryKey yourself to ensure that duplicate rows are resolved correctly.

To handle exceptions that might occur when you call the Update method, you can use the RowUpdated event to respond to
row update errors as they occur, or you can set DataAdapter.ContinueUpdateOnError to true before calling Update, and
respond to the error information stored in the RowError property of a particular row when the update is complete.

Note
Calling AcceptChanges on the DataSet, DataTable, or DataRow objects causes all Original values for a data row to be ove
rwritten with the Current values for the data row. If the field values that identify the row as unique have been modified, after
you call AcceptChanges, the Original values no longer match the values in the data source.

Working with Auto-Incrementing Columns

If the tables from your data source have auto-incrementing columns, you can fill the columns in your dataset either by
returning the auto-increment value as an output parameter of a stored procedure and mapping that to a column in a table, or
by using the RowUpdated event of the MsDb2DataAdapter.

However, the values in your dataset can become out of sync with the values at the data source and result in unexpected
behavior. For example, consider a table that has an auto-incrementing primary key column of CustomerID. If you add two new
customers within the dataset, they receive auto-incremented CustomerId values of 1 and 2. When the second customer row is
passed to the Update method of MsDb2DataAdapter, the newly added row receives an auto-incremented CustomerID value
of 1 at the data source, which does not match the value, 2, in the dataset. When the MsDb2DataAdapter fills the row in the
dataset with the returned value, a constraint violation occurs because the first customer row already has a CustomerID of 1.

To avoid this behavior, we recommend that, when you are working with auto-incrementing columns at a data source and auto-
incrementing columns in a dataset, you create the column in the dataset with an AutoIncrementStep of -1 and an
AutoIncrementSeed of 0, and also ensure that your data source generates auto-incrementing Identity values starting at 1 and
incrementing with a positive step value. As a result, the dataset will generate negative numbers for auto-incremented values
that do not conflict with the positive auto-increment values generated by the data source. Another option is to use columns of
type Guid instead of auto-incrementing columns. The algorithm that generates Guid values should never generate the same
Guid in the dataset as is generated by the data source.

In many circumstances, the order in which changes that are made through the dataset are sent to the data source is important.
For example, if a primary key value for an existing row is updated, and a new row has been added with the new primary key
value, it is important to process the update before the insert.

You can use the Select method of the DataTable object to return a DataRow array that only references rows with a particular
RowState. You can then pass the returned DataRow array to the Update method of the MsDb2DataAdapter to process the
modified rows. By specifying a subset of rows to be updated, you can control the order in which inserts, updates, and deletes
are processed.

See Also
Other Resources
Working with the DataAdapter and the DataSet for a DB2 Database

https://msdn.microsoft.com/en-us/library/aa770817(v=bts.10).aspx

Using Parameters with the DB2 DataAdapter
The DataAdapter class has four properties that are used to retrieve data from and update data to the data source: the
SelectCommand property returns data from the data source; the InsertCommand, UpdateCommand, and
DeleteCommand properties are used to manage changes at the data source. You must set the SelectCommand property
before calling the Fill method of the DataAdapter object. The InsertCommand, UpdateCommand, or DeleteCommand
properties must be set before the Update method of the DataAdapter is called, depending on what changes were made to
the data in the DataSet. For example, if rows have been added, you must set the InsertCommand property before calling the
Update method. When Update is processing an inserted, updated, or deleted row, the DataAdapter object uses the
respective Command property to process the action. Current information about the modified row is passed to the Command
object through the Parameters collection.

When you are updating a row at the data source, you call the UPDATE statement, which uses a unique identifier to identify the
row in the table to be updated. The unique identifier is commonly the value of a primary key field. The UPDATE statement uses
parameters that contain both the unique identifier, and the columns and values to be updated.

Specifying the Parameter type converts the value of the Parameter to the Managed Provider for DB2 before passing the value
to the data source. You may also specify the type of a Parameter in a generic fashion by setting the DbType property of the
Parameter object to a particular DbType.

ParameterDirection Enumeration Values

The following table shows the values you can use with the ParameterDirection enumeration to set the Direction of the
Parameter.

Member name Description

Input The parameter is an input parameter. This is the default.

InputOutput The parameter is capable of both input and output.

Output The parameter is an output parameter.

ReturnValue The parameter represents a return value.

SourceColumn and SourceVersion may be passed as arguments to the Parameter constructor, or set as properties of an
existing Parameter. The SourceColumn is the name of the DataColumn from the DataRow where the value of the
Parameter is retrieved. The SourceVersion specifies which DataRow version the DataAdapter uses to retrieve the value.

DataRowVersion Enumeration Values

The following table shows the DataRowVersion enumeration values available for use with SourceVersion.

Member name Description

Current The parameter uses the current value of the column. This is the default.

Default The parameter uses the DefaultValue of the column.

Original The parameter uses the original value of the column.

Proposed The parameter uses a proposed value.

You can control how the values returned from the data source are mapped back to the DataSet object by using the
UpdatedRowSource property of the Command object. By setting the UpdatedRowSource property to one of the
UpdateRowSource enumeration values, you can control whether parameters returned by the DataAdapter command are
ignored or applied to the changed row in the DataSet object. You can also specify whether the first returned row (if it exists) is
applied to the changed row in the DataSet object.

UpdateRowSource Enumeration Values

The following table describes the different values of the UpdateRowSource enumeration and how they affect the behavior of
a command used with a DataAdapter object.

Member name Description

Both Both the output parameters and the first row of a returned result set can be mapped to the changed row in
the DataSet.

ReturnedFirstRec
ord

Only the data in the first row of a returned result set can be mapped to the changed row in the DataSet.

None Any output parameters or rows of a returned result set are ignored.

OutputParameter
s

Only output parameters may be mapped to the changed row in the DataSet.

See Also
Other Resources
Working with the DataAdapter and the DataSet for a DB2 Database

https://msdn.microsoft.com/en-us/library/aa770817(v=bts.10).aspx

Adding Constraints to a DB2 DataSet
The Fill method of the MsDb2DataAdapter fills a dataset only with table columns and rows from a data source; though
constraints are commonly set by the data source, the Fill method does not add this schema information to the dataset by
default. To populate a dataset with existing primary key constraint information from a data source, you can either call the
FillSchema method of the MsDb2DataAdapter, or set the MissingSchemaAction property of the MsDb2DataAdapter to
AddWithKey before calling Fill. This ensures that primary key constraints in the dataset reflect those at the data source.
Foreign key constraint information is not included and must be created explicitly.

Adding schema information to a DataSet object before filling it with data ensures that primary key constraints are included
with the DataTable objects in the DataSet object. As a result, when additional calls to fill the DataSet are made, the primary
key column information is used to match new rows from the data source with current rows in each DataTable object, and
current data in the tables is overwritten with data from the data source. Without the schema information, the new rows from
the data source are appended to the DataSet, resulting in duplicate rows.

Note
If a column in a data source is identified as auto-incrementing, the FillSchema method, or the Fill method with a MissingSc
hemaAction of AddWithKey, creates a DataColumn with an AutoIncrement property set to true. However, you must set
the AutoIncrementStep and AutoIncrementSeed values yourself.

Using the FillSchema method or setting the MissingSchemaAction to AddWithKey requires extra processing at the data
source to determine primary key column information. This additional processing can hinder performance. If you know the
primary key information at design time, we recommend that you explicitly specify the primary key column or columns in order
to achieve optimal performance.

If the MsDb2DataAdapter encounters multiple result sets returned from the SelectCommand property, it creates multiple
tables in the dataset. The tables are given a zero-based incremental default name of TableN, starting with Table instead of
"Table0". If a table name is passed as an argument to the FillSchema method, the tables are given a zero-based incremental
name of TableNameN, starting with TableName instead of "TableName0".

Setting up DataTable and DataColumn Mappings for a DB2
Database

An MsDb2DataAdapter contains a collection of zero or more DataTableMapping objects in its TableMappings property. A
DataTableMapping object provides a master mapping between the data returned from a query against a data source, and a
DataTable object. The DataTableMapping name can be passed instead of the DataTable name to the Fill method of the
MsDb2DataAdapter.

A DataTableMapping object enables you to use column names in a DataTable object that are different from those in the
database. The MsDb2DataAdapter uses the mapping to match the columns when the table is updated.

If you do not specify a TableName or a DataTableMapping name when calling the Fill or Update method of the
MsDb2DataAdapter, the MsDb2DataAdapter looks for a DataTableMapping named "Table". If that DataTableMapping
does not exist, the TableName of the DataTable object is "Table". You can specify a default DataTableMapping by creating
a DataTableMapping with the name of "Table".

When the Fill method is passed an instance of a DataSet and a DataTableMapping name, and if a mapping with that name
exists, it is used; otherwise, a DataTable object with that name is used.

Note
If a source column name is not supplied for a column mapping, or a source table name is not supplied for a table mapping, d
efault names are automatically generated. If no source column is supplied for a column mapping, the column mapping is giv
en an incremental default name of SourceColumnN, starting with SourceColumn1. If no source table name is supplied for a t
able mapping, the table mapping is given an incremental default name of SourceTableN, starting with SourceTable1.

Note
We recommend that you avoid the naming convention of SourceColumnN for a column mapping, or SourceTableN for a tabl
e mapping, because the name you supply may conflict with an existing default column mapping name in the ColumnMappi
ngCollection or table mapping name in the DataTableMappingCollection. If the supplied name already exists, an excepti
on is thrown.

If SelectCommand returns multiple tables, Fill automatically generates table names with incremental values for the tables in
the dataset, starting with the specified table name and continuing on in the form TableNameN, starting with TableName1. You
can use table mappings to map the automatically generated table name to a name you want specified for the table in the
dataset.

See Also
Other Resources
Working with the DataAdapter and the DataSet for a DB2 Database
Using the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa770817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

How to Perform Transactions with a DB2 Database
Transactions are a group of database operations combined into a logical unit of work, and are used to control and maintain the
consistency and integrity of each database despite errors that might occur in the system. A transaction consists of a series of
SQL SELECT, INSERT, UPDATE, or DELETE statements. If no errors occur during a transaction, all modifications in the
transaction become a permanent part of the database. If errors occur, none of the modifications are made to the database.

A transaction is considered to be a local transaction when it is a single-phase transaction and is handled by the database
directly. Transactions are considered to be distributed transactions when they are coordinated by a transaction monitor and
use fail-safe mechanisms (such as two-phase commit) for transaction resolution.

Note
Transactions are most efficient when they are performed on the server. If you are working with a SQL Server database that m
akes extensive use of explicit transactions, you should consider writing them as stored procedures using the Transact-SQL BE
GIN TRANSACTION statement.

You control transactions with the MsDb2Connection object. You can initiate a local transaction with the BeginTransaction
method. Once you have begun a transaction, you can enlist a command in that transaction with the Transaction property of
an MsDb2Command object. You can then commit or roll back modifications made at the data source based on the success or
failure of the components of the transaction.

There are three basic commands for transactions: BEGIN, COMMIT, and ROLLBACK. The BEGIN statement marks the beginning
of a transaction. All procedures attempted after the BEGIN statement are considered part of the transaction, which is completed
by the COMMIT statement, or canceled by the ROLLBACK statement.

To perform a transaction

1. Call MsDb2Connection.BeginTransaction to mark the start of the transaction.

BeginTransaction returns a reference to the transaction. Retain this reference so that you can assign it to commands
that are enlisted in the transaction.

2. Assign the transaction to the MsDb2Command.Transaction to be executed.

If a command is executed on a connection with an active transaction and the Transaction object has not been assigned
to the Transaction property of the Command, an MsDb2Exception is thrown.

3. Execute the required commands.

4. Call MsDb2Transaction.Commit to complete the transaction, or call MsDb2Transaction.Rollback to cancel the
transaction.

If the connection is closed or disposed before either the Commit or Rollback methods have been executed, the
transaction is rolled back.

The following code example demonstrates how to perform a transaction.

static void TransactionConnection()
{
 MsDb2Connection myConnection new MsDb2Connection(@"file name=HOST.udl ");
 myConnection.Open();
 // Start a local transaction.
 MsDb2Transaction myTrans = myConnection.BeginTransaction();
 // Enlist the command in the current transaction.
 MsDb2Command myCommand = myConnection.CreateCommand();
 myCommand.Transaction = myTrans;
 try
 {
 myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (1
00, 'Description')";
 myCommand.ExecuteNonQuery();
 myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (1
01, 'Description')";
 myCommand.ExecuteNonQuery();

See Also
Other Resources
Using the Managed Provider for DB2

 myTrans.Commit();
 Console.WriteLine("Both records are written to database.");
 }
 catch(Exception e)
 {
 try
 {
 myTrans.Rollback();
 }
 catch (MsDb2Exception ex)
 {
 if (myTrans.Connection != null)
 {
 Console.WriteLine("An exception of type " + ex.GetType() +
 " was encountered while attempting to roll back the transaction.");
 }
 }

 Console.WriteLine("An exception of type " + e.GetType() +
 "was encountered while inserting the data.");
 Console.WriteLine("Neither record was written to database.");
 }
 finally
 {
 Console.ReadLine();
 myConnection.Close();
 }
}
// End TransactionConnection

https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

How to Perform a Two-Phase Commit Transaction over TCP/IP
Two-phase commit (2PC) is a host server-installed protocol that ensures that updates to multiple instances of a database on a
network either succeed or fail in their entirety. Host Integration Server 2009 supports 2PC over TCP/IP, enabling you to gain
the security of a 2PC connection over the Internet.

Host Integration Server supports 2PC works using three components: the Microsoft Distributed Transaction Coordinator (DTC),
the Resync service, and the transaction log. The DTC governs the normal DTC transaction flow: enlist, prepare, commit, and
abort. The Resync service coordinates transaction recovery in case of any failure or disconnection, while the transaction log
maintains a log of information that is needed in case of recovery.

You can perform a 2PC transaction with ADO.NET and the Managed Provider for DB2 by using the
System.EnterpriseServices namespace. Using a 2PC transaction is automatic. However, you may need to configure your 2PC
connection by using tools such as the Data Access Tool.

Example

The following code example demonstrates how to use 2PC in a DB2 transaction.

Public class CentralBank : ServicedComponent
{
 public CentralBank()
 {
 }

 public void Transfer(string connString, int fromId, int toId, double amount)
 {
 MsDb2Connection conn = null;
 MsDb2Command cmd = null;
 int rowsAffected = 0;
 try
 {
 conn = new MsDb2Connection(connString);
 conn.Open();

 cmd = new MsDb2Command();
 cmd.Connection = conn;
 cmd.CommandText = "UPDATE ACCOUNTS SET BALANCE = BALANCE + ?
WHERE ID = ?";
 cmd.Parameters.Add("balance", amount);
 cmd.Parameters.Add("toId", toId);
 rowsAffected = cmd.ExecuteNonQuery();
 cmd.Parameters.Clear();
 cmd.CommandText = "UPDATE ACCOUNTS SET BALANCE = BALANCE - ?
WHERE ID = ?";
 cmd.Parameters.Add("balance", amount);
 cmd.Parameters.Add("fromId", fromId);
 rowsAffected = cmd.ExecuteNonQuery();
 ContextUtil.SetComplete();
 }
 catch(MsDb2Exceptionsqlca)
 {
 Console.WriteLine(sqlca.Message);
 ContextUtil.SetAbort();
 }
 finally
 {
 if(cmd != null)
 cmd.Dispose();
 if(conn != null)
 {
 if(conn.State == ConnectionState.Open)
 conn.Close();
 conn.Dispose();
 }
 }

See Also
Other Resources
Using the Managed Provider for DB2

 }
}

https://msdn.microsoft.com/en-us/library/aa771653(v=bts.10).aspx

Obtaining Schema Information from the Managed Provider for
DB2

You can obtain schema information from a database by using schema discovery. Schema discovery enables applications to
request that managed providers find and return information about the database schema, also known as metadata, of a given
database. Different database schema elements such as tables, columns, and stored-procedures are exposed through schema
collections. Each schema collection contains a variety of schema information specific to the provider that is being used.

The Managed Provider for DB2 implements MsDb2Connection.GetSchema. The schema information returned from
GetSchema comes in the form of a DataTable object. GetSchema provides optional parameters for specifying the schema
collection to return, and restricting the amount of information returned.

In This Section

Working with the Managed Provider for DB2 GetSchema Methods

Understanding the Schema Collections for the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa772033(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771071(v=bts.10).aspx

Working with the Managed Provider for DB2 GetSchema
Methods

The Connection classes in the Managed Provider for DB2 implement a GetSchema method, which is used to retrieve schema
information about the database that is currently connected, and the schema information returned from the GetSchema
method comes in the form of a DataTable object. The GetSchema method is an overloaded method that provides optional
parameters for specifying the schema collection to return, and restricting the amount of information that is returned.

Specifying the DB2 Schema Collections

The first optional parameter of the GetSchema method is the collection name, which is specified as a string. There are two
types of schema collections: common schema collections that are common to all providers, and specific schema collections,
which are specific to each provider.

To determine the list of supported schema collections

1. Call GetSchema to determine a list of supported schema collections.

You can call GetSchema with no arguments, or with the schema collection name “MetaDataCollections. This returns a
DataTable object with a list of the supported schema collections, the number of restrictions that they each support, and
the number of identifier parts that they use.

Specifying the Restriction Values for a DB2 Schema Collection

The second optional parameter of the GetSchema method is the restrictions that are used to limit the amount of schema
information returned, and it is passed to the GetSchema method as an array of strings. The position in the array determines
the values that you can pass, and this is equivalent to the restriction number.

Note
The number of elements in the array must be less than or equal to the number of restrictions supported for the specified sch
ema collection, or an ArgumentException is thrown. There can be fewer than the maximum number of restrictions. The mis
sing restrictions are assumed to be null (unrestricted).

To determine the list of supported restrictions

1. Call the GetSchema method with the name of the restrictions schema collection, which is "Restrictions".

This returns a DataTable object with a list of the collection names, restriction names, default restriction values, and
restriction numbers.

See Also
Other Resources
Obtaining Schema Information from the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa705132(v=bts.10).aspx

Understanding the Schema Collections for the Managed
Provider for DB2

The following tables describe the schema collections that are implemented by the Managed Providers for DB2. You can query
the Managed Provider for DB2 to determine the list of supported schema collections by calling the GetSchema method with
no arguments, or with the schema collection name "MetaDataCollections". This returns a DataTable object with a list of the
supported schema collections, the number of restrictions that they each support, and the number of identifier parts that they
use. These collections describe all of the required columns. If a provider cannot determine the value of a required column, it
returns null.

Common Schema Collections

MetaDataCollections

DataSourceInformation

DataTypes

Restrictions

ReservedWords

Provider-Specific Collections

Tables

Columns

Procedures

ProcedureParameters

Incexes

PrimaryKeys

ForeignKeys

TablePrivileges

Statistics

Example
See Also
Other Resources
Obtaining Schema Information from the Managed Provider for DB2

https://msdn.microsoft.com/en-us/library/aa705132(v=bts.10).aspx

Managed Provider for DB2 Tutorial
The following tutorial shows how to configure a connection to a DB2 database and build a simple XML Webservice to expose
DB2 tables using ASP.NET. The sample also shows how to retrieve a recordset of information from a DB2 table and return that
recordset as a .NET DataSet via an XML Webservice.

In This Section

Getting Started with the Managed Provider for DB2 Tutorial

Step 1: Configuring a Connection to DB2

Step 2: Creating an XML Web Service

Step 3: Adding a Web Service to the Project

Step 4: Executing the Web Service

Reference

Microsoft.HostIntegration.DataAccessLibrary

Microsoft.HostIntegration.MsDb2Client

See Also
Other Resources
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa745580(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705387(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705149(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

Getting Started with the Managed Provider for DB2 Tutorial
Before you start the Managed Provider for DB2 tutorial, make sure to perform the following actions:

1. Install Visual Studio 2005

2. Ensure IIS is installed and ASP.NET 2.0 is configured.

3. Install Host Integration Server.

4. Ensure you have access to a DB2 instance with permissions to query and modify data.

See Also
Tasks
Step 1: Configuring a Connection to DB2
Other Resources
Managed Provider for DB2 Tutorial

https://msdn.microsoft.com/en-us/library/aa745710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754703(v=bts.10).aspx

Step 1: Configuring a Connection to DB2
The first step you need to perform is to create and configure a connection string to your DB2 data source. Once you are
finished creating the string, you will use the string to create an XML web service.

To create the connection string

1. Start the Data Access Tool by clicking on Start, then Programs, then Microsoft Host Integration Server 2009, and
then click Data Access Tool.

2. On the Data Access Tool, click File, select New, click Data Source…, and then click Next.

3. On the Data Source page, select your data source platform and network type, and then click Next.

For the purpose of this tutorial, we will select DB2/MVS from Data source platform, and TCP/IP as a Network type.

4. On the TCP/IP Network Connection page, enter the IP address or alias of your DB2 source into the Address or alias field,
and enter the port number of your DB2 source into the Port field.

5. Ensure the Distributed Transactions box is unchecked, and then click Next.

6. On the DB2 Database page, fill in the Initial Catalog, Package collection, Default schema, and Default qualifier
fields with the information relevant to your database, and then click Next.

7. On the Locale page, confirm that the locales are correct for your system, and then click Next.

8. On the Security page, select Interactive Sign-On from the Security Method drop-down box, enter your user name and
password in the Properties fields, and then click Next.

9. On the Advanced Options page, confirm that no options are checked, and then click Next.

10. On the Validation page, click Connect to connect to your database using the information you provided, and click
Sample Query to send a sample query to your DB2 database.

Once you confirm that your information is correct, click Next.

11. On the Saving Information page, check the Initialization string file box, enter a data source name in the Data source
name field, and then click Next.

12. On the Completing the Data Source Wizard, click Finish.

To view the connection string

1. Click Start, and then click Run….

2. In the Run dialog, type Notepad in the Open: field, and then click OK.

3. In Notepad, click File, and then click Open….

4. Use the Open dialog to browse to the .txt file that contains the connection string information for the data source.

For this tutorial, the file name is HIS_TRAINING.txt, and is located in c:\Documents and Settings\username\My
Documents\Host Integration Projects\Data Sources.

See Also
Tasks
Step 2: Creating an XML Web Service
Other Resources
Managed Provider for DB2 Tutorial

https://msdn.microsoft.com/en-us/library/aa705387(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754703(v=bts.10).aspx

Step 2: Creating an XML Web Service
Once you have created the connection string to your DB2 database, you can create the XML web service. Once you have
created the service, you can add the service to the project.

To create the XML web service

1. In Visual Studio, click File, select New, and then click Project…

2. In the New Project dialog, in the Project types: pane, click on Other Project Types, and then select Visual Studio
Solutions.

3. In the Templates pane, confirm that Blank Solution is selected.

4. Type HISTraining in the Name field, and then click OK.

To add code to the web service

1. In Solution Explorer, right-click HISTraining, select Add…, and then click New Project.

2. In the Add New Project dialog, in the Project types: pane, click Other Languages, and then select Visual Basic.

3. In the Templates: pane, select Class Library.

4. In the Name field, type DB2DAL, and then click OK.

5. In Solution Explorer, right-click DB2DAL, select Add…, and then click Add Reference….

6. In the Add Reference dialog, on the .NET tab, select Microsoft.HostIntegration.MsDb2Client, and then click OK.

7. Add the following code to your Class1.vb file:

8. On the Build menu, click Build Solution.

9. On the File menu, click Save All.

See Also
Tasks
Step 3: Adding a Web Service to the Project
Other Resources
Managed Provider for DB2 Tutorial

Imports Microsoft.HostIntegration.MsDb2Client
Public Class DB2DAL
 Public Function executeSQL(ByVal sqlQuery As String, ByVal connString As String) A
s DataSet
 Dim db2Conn As New MsDb2Connection(connString)
 Dim db2Cmd As New MsDb2Command(sqlQuery, db2Conn)
 Dim db2DA As New MsDb2DataAdapter(db2Cmd)
 Dim returnDS As New DataSet
 db2Conn.Close()
 db2DA.Fill(returnDs)
 db2Conn.Close()
 Return returnDS
 End Function
End Class

https://msdn.microsoft.com/en-us/library/aa705149(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754703(v=bts.10).aspx

Step 3: Adding a Web Service to the Project
Once you have created the XML web service, you can add the web service to your project. Once you have added the web
service, you can start the application.

To add a web service to the project

1. In the Solution Explorer, right-click HISTraining, select Add…, and then click New Web Site.

2. In the Add New Web Site dialog, select ASP.NET Web Service.

3. In the Location drop-down box, select HTTP, and enter http://localhost/DB2WebService to the field, and then click OK

4. In Solution Explorer, right-click http://localhost/DB2WebService, and then click Add Reference….

5. In the Add Reference dialog, on the Projects tab, select DB2DAL, and then click OK.

6. In Solution Explorer, expand http://localhost/DB2WebService, expand App_Code, and double-click Service.vb.

7. Add the following code to Service.vb

8. On the Build menu, click Build Solution.

9. On the File menu, click Save All.

See Also
Tasks
Step 4: Executing the Web Service
Other Resources
Managed Provider for DB2 Tutorial

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://tempuri.org/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function executeSQLQuery(ByVal connstring As String, ByVal sqlStatement As
String) As Data.DataSet
 Dim dal As New DB2DAL.DB2DAL
 Return dal.executeSQL(sqlStatement, connstring)
 End Function

End Class

https://msdn.microsoft.com/en-us/library/aa745702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754703(v=bts.10).aspx

Step 4: Executing the Web Service
Once you have added the web service to your project, you can execute the application.

To run the Managed DB2 tutorial

1. In Solution Explorer, double-click on Service.asmx

2. Right-click in the Service.asmx pane, and select View in Browser.

3. On the Service page, click executeSQLQuery.

4. On the ExecuteSQLQuery page, enter the connection string created in Step 1 into the connstring: field.

5. In the squStatement: field, type SELECT * FROM AREAS, and then click Invoke.

See Also
Other Resources
Managed Provider for DB2 Tutorial

https://msdn.microsoft.com/en-us/library/aa754703(v=bts.10).aspx

Managed Data Provider for Host Files Programmer's Guide
This section describes the general architecture and implementation details of the Managed Provider for Host Files. The
Managed Provider for Host Files enables a client to connect to a remote host file system, read and write data from the host file
system using a managed framework, exposes bulk file transfer, and enables remote commands to the host.

In This Section

Managed Data Provider for Host Files

Using the Managed Data Provider For Host Files

Managed Provider for Host Files Tutorial

https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx

Managed Data Provider for Host Files
This section contains a discussion about the background and general design principles surrounding the Managed Data
Provider for Host Files.

In This Section

Goals for the Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa754705(v=bts.10).aspx

Goals for the Managed Data Provider for Host Files
The primary purpose of the Managed Data Provider for Host Files is to enable developers to access files and data structures on
mid-range and mainframe systems using the Microsoft .NET Framework. This differs from the Managed Provider for DB2,
which enables developers to access host DB2 recordsets.

The Managed Data Provider for Host files was designed with the following capabilities in mind:

Granting developers access to the file system commands of mid-range and mainframe systems. By exposing the file
system commands, a developer can perform such activities as setting record attributes, locking files and records,
navigating between records, and modifying file contents. Such activities are exposed primarily through the Managed
Provider for Host Files interface.

Granting access to the file commands of the most popular mid-range and mainframe file server systems. In doing so,
developers familiar with AS/400 input and output commands can use their knowledge to access mid-range file systems.
This differs from the Managed Provider for DB2, which allows developers familiar with SQL to use that knowledge to
access DB2/400 tables.

Improving the bulk transfer rate between systems.

See Also
Other Resources
Managed Data Provider for Host Files

https://msdn.microsoft.com/en-us/library/aa745010(v=bts.10).aspx

Using the Managed Data Provider For Host Files
The Managed Data Provider for Host Files operates in most ways as a normal data provider: you can connect to a host file
system, execute commands, retrieve data, and use stored procedures.

In This Section

How to Create a Project in Visual Studio for the Managed Provider for Host Files

How to Connect to and Disconnect from a Host File System

How to Execute Commands in the Host File System

How to Retrieve Data from the Host File System

How to Obtain a Single Value from a Host File System

Working with the Host File Adapter and Dataset

Obtaining Schema Information from the Host File System

https://msdn.microsoft.com/en-us/library/aa771977(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704998(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744337(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704859(v=bts.10).aspx

How to Create an Application Using the Managed Data
Provider for Host Files

The following topics describe the basic setup for creating and deploying an application that uses the Managed Data Provider
for Host Files.

In This Section

How to Create a Project in Visual Studio for the Managed Provider for Host Files

How to Create an Assembly for the Managed Data Provider for Host Files

How to Deploy an Assembly for the Managed Data Provider for Host Files

See Also
Other Resources
Using the Managed Data Provider For Host Files

https://msdn.microsoft.com/en-us/library/aa771977(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771286(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx

How to Create a Project in Visual Studio for the Managed
Provider for Host Files

Host Integration Server 2009 provides a specific way to create a project that uses the Managed Provider for Host files.

To create a project in Visual Studio using the Managed Provider for Host Files

1. In Visual Studio, on the File menu, point to New, and then click Project.

2. In the New Project dialog box, in the Project Types pane, click Host Integration Projects.

3. In the Templates pane, click Host File Project.

4. In the Name field, type the name of the file.

5. In the Location field, type the location to save the project.

6. Click OK to create the project.

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Create an Assembly for the Managed Data Provider for
Host Files

Once you have finished defining a remote environment for your application, you can use Visual Studio to create the application
assembly. Host Integration Server provides a variety of wizards and tools to help you in this process:

1. Create a Host File project.

2. Add one or more .NET client libraries to the project that will contain your application.

3. Create the interfaces for your application using Host Integration Server Designer.

HIS Designer enables you to create interfaces that represent data and methods native to your host environment. By
programming towards these interfaces, you can pass information and commands through Host Integration Server and
onto the mainframe.

After you create the assembly, you can deploy your assembly to your local computer and test the interfaces against your code.

To create an application assembly that uses the Managed Provider for Host Files

1. Start Visual Studio.

2. Click File, then New, and then click Project.

3. In the New Project dialog box, in the Project types: pane, click on Host Integration Projects.

4. In the Templates pane, click Host File Project.

5. In the Name field, type the name of your project.

6. In the Location field, type the location to save your project, and then click OK.

To add an assembly to your project

1. Click Project, and then click Add .NET Client Library.

The Managed Provider for Host Files supports .NET only.

2. On the Add New Item dialog box, in the Templates pane, confirm that .NET Client Library is highlighted.

3. In the Name: field, type the name of the assembly, and then click Add.

4. On the Welcome to the .NET Client Library Wizard page, click Next.

5. On the Completing the .NET Client Library Wizard page, confirm that the displayed settings are correct, and then
click Create.

To define interfaces using the HIS Designer

1. If you do not have a Host Definition file (.hcd) file available, you can use the Import COBOL Wizard or the Import RPG
Wizard to define your interfaces.

For more information, see How to Import COBOL into a TI Component.

2. If you have a previous .NET client library that you want to base your new object on, you can use the Import Library tool to
import the library into your project.

For more information, see How to Import a TI Component.

3. If you want to manually create or modify the interface definitions, you can do so using the console tree of HIS Designer.

See Also
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa771097(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to Deploy an Assembly for the Managed Data Provider for
Host Files

Once you have created the assembly that contains your code, you can deploy the assembly to your local computer. Deploying
the assembly registers the assembly with Host Integration Server and Transaction Integrator, and loads the assembly into the
appropriate location to be used. After you deploy the assembly, you can test the interfaces and the code that you wrote. You
can then undeploy the assembly, modify the code, and redeploy as necessary.

To deploy and undeploy an assembly to your local machine

1. In HIS Designer, select the tab that has the name of the assembly to deploy.

2. In the Properties window, confirm that you have selected the remote environment that you want your assembly to
communicate with.

3. In the HIS tree node, right-click the name of the assembly, and select Deploy.

4. Test your application as necessary.

5. When you are finished, you may undeploy your assembly by right-clicking the assembly name in HIS Designer, and
selecting UnDeploy.

See Also
Concepts
Creating an Application for the BizTalk Adapter for Host Applications

https://msdn.microsoft.com/en-us/library/aa771887(v=bts.10).aspx

How to Connect to and Disconnect from a Host File System
The first step in accessing a host file system is to connect to the file system. You must use HostFileConnection to access the
host file system. After you have connected, you can retrieve, modify, and update the information that you want.

Procedure
To connect and disconnect to a Host File System

1. Create a HostFileConnection object, using the connection string that describes the Host system.

2. Open a connection with a call to HostFileConnection.Open.

3. Interact with the host file system as necessary.

4. When you are finished, release the HostFileConnection object with a call to HostfileConnection.Close and
HostFileConnection.Dispose.

Connections are not implicitly released when a HostFileConnection falls out of scope. Therefore, you need to release
the object when you are finished using it.

Example

The following very simple code example shows how to use HostFileConnection to open and close a connection.

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

try
 {
 HostFileConnection cn = new HostFileConnection();
 cn.ConnectionString = cnstring;
 cn.Open();
 // Perform tasks here.
 cn.Close();
 cn.Dispose();
 }

https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Execute Commands in the Host File System
After establishing a connection to a data source, you can execute commands and return results from the data source using
HostFileCommand.

Important
The Managed Provider for Host Files does not support any type of transaction. Therefore, you should try to avoid using INSE
RT, UPDATE, or DELETE commands on mission-critical data.

Procedure
To execute a command on the host file system

1. Establish a connection using HostFileConnection.

For more information, see How to Connect to and Disconnect from a Host File System.

2. Once connected, create a HostFileCommand object by using HostfileConnection.CreateCommand.

3. Use the HostFileCommand object to execute commands on the Host File system.

HostFileCommand exposes several Execute methods that you can use:

When returning results as a stream of data, use ExecuteDbDataReader to return a DataReader object.

Use ExecuteScalar to return a singleton value.

Use ExecuteNonQuery to execute commands that do not return rows.

Use ExecuteRecordSet to execute commands on a recordset.

Note
When modifying an Alternate Index File (AIX), you may receive an "Invalid record length" error when the Index is defined not
to accept duplicate keys. This error may occur because the INDEX of the Alternate Index VSAM file is not large enough to hol
d multiple key values for the same index record .

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa770634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

Retrieving Information from the Host File System
The topics in this section describe how to retrieve information from the Host File System.

In This Section

How to Retrieve Data from the Host File System

How to Retrieve Multiple Resultsets from the Host File System

How to Retrieve Schema Sets from the Host File System

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa744337(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772109(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746027(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Retrieve Data from the Host File System
Just as you can do with other managed data providers, you can access host data with an implementation of a DataReader
object through HostfileCommand.

To retrieve data using a data reader

1. Create an instance of HostFileCommand.

2. Create a DataReader object through a call to HostFileCommand.ExecuteDBDataReader.

Calling ExecuteDBDataReader retrieves data rows from the data source.

3. Use DBDataReader.Read to obtain a row from the results of the query.

You can access each column of the returned row by passing the name or ordinal reference of the column to the
DBDataReader object. However, for best performance, the DBDataReader object provides a series of methods that
enable you to access column values in their native data types (GetDateTime, GetDouble, GetGuid, GetInt32, and so
on).

4. Once you are finished with the DBDataReader object, call DBDataReader.Close.

If your HostFileCommand object contains output parameters or return values, they will not be available until the
DBDataReader is closed.

Note that while DBDataReader is open, the HostFileConnection is in use exclusively by that DBDataReader. You
cannot execute any commands for the HostFileConnection, including creating another DBDataReader, until the
original DBDataReader is closed.

See Also
Other Resources
Retrieving Information from the Host File System
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa705717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Retrieve Multiple Resultsets from the Host File System
If multiple result sets are returned, the DBDataReader class provides the NextResult method to iterate through the result sets
in order.

Example
See Also
Other Resources
Retrieving Information from the Host File System
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa705717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Retrieve Schema Sets from the Host File System
When a HostFileConnection is open, you can retrieve schema information about the target data by using the GetSchema
method. GetSchema returns a DataTable object populated with the rows and columns that contain the schema information
of the target of the current connection.

In addition, while a DBDataReader is open, you can retrieve schema information about the current result set by using the
GetSchemaTable method. GetSchemaTable returns a DataTable object populated with rows and columns that contain the
schema information for the current result set. The DataTable object contains one row for each column of the result set. Each
column of the schema table row maps to a property of the column returned in the result set, where the ColumnName is the
name of the property and the value of the column is the value of the property.

To retrieve schema sets from the host file system

1. Open a connection to the host file system with a call to HostFileConnection.

2. Call HostfileConnection.GetSchema to retrieve the schema data.

Example

The following code example demonstrates how to retrieve the schema sets from a connection object. Note that the
ETCMLogging and HostFileUtils objects are developer-created objects that provide logging and utility functionality.

public void CNGetSchema(ETCMLogging.Logging logging, string host, string ccsid, string cnst
ring, HostFileUtils.Utils.HostFileType hostfiletype)
 {
 HostFileUtils.Oledb oledb = new HostFileUtils.Oledb();
 HostFileUtils.Utils u = new HostFileUtils.Utils();
 logging.LogInfo(host);
 try
 {
 // Create connection.
 HostFileConnection cn = oledb.CreateConnection(logging);
 cn.ConnectionString = cnstring;
 DataTable dt = cn.GetSchema();
 if (dt.HasErrors)
 {
 logging.LogFail("returned datatable has errors");
 }
 // Open the connection.
 logging.LogInfo("Open Connection");
 cn.Open();
 DataTable dt2 = cn.GetSchema();
 if (dt2.HasErrors)
 {
 logging.LogFail("returned datatable has errors");
 }
 int rowcnt = dt.Rows.Count;
 for (int i = 0; i < rowcnt; i++)
 {
 int colcnt = dt.Rows[i].ItemArray.Length;
 for (int o = 0; o < colcnt; o++)
 {
 u.CompareValues(dt.Rows[i][o].ToString(), dt2.Rows[i][o].ToString()
, logging);
 }
 }
 // Close the open connection.
 cn.Close();
 }
 catch (Exception e)
 {
 logging.LogInfo(e.Message);
 logging.LogFail(e.StackTrace);
 }
 }

See Also
Other Resources
Retrieving Information from the Host File System
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa705717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Obtain a Single Value from a Host File System
You might need to return database information that is just a single value rather than in the form of a table or data stream. For
example, you might want to return the result of an aggregate function such as COUNT(*), SUM(Price), or AVG(Quantity).

To obtain a single value from the Host File System

1. Make a call to HostFileCommand.ExecuteScalar.

ExecuteScalar returns a scalar value: the value of the first column of the first row of the result set.

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

Working with the Host File Adapter and Dataset
A HostFileDataAdapter is used to retrieve data from a data source and populate tables within a dataset. The
HostFileDataAdapter also resolves changes made to the dataset back to the data source. The HostFileDataAdapter uses the
HostFileConnection object to connect to a data source, and it uses HostFileCommand objects to retrieve data from and
resolve changes to the data source.

In This Section

How to Populate a Host File Dataset from the Data Adapter

How to Update the Host File System with the Data Adapter

How to Add Constraints to the Host File Dataset

How to Close a Connection with the Host File Adapter

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa746074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745180(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744374(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Populate a Host File Dataset from the Data Adapter
The dataset is a memory-resident representation of data that provides a consistent relational programming model
independent of the data source. The dataset represents a complete set of data including tables, constraints, and relationships
among the tables. Because the dataset is independent of the data source, a dataset can include data local to the application, and
also data from multiple data sources. Interaction with existing data sources is controlled through the DataAdapter object.

The HostfileDataAdapter.SelectCommand property is a HostFileCommand object that retrieves data from the data
source. The HostFileDataAdapter.Fill method is used to populate a dataset with the results of the SelectCommand. Fill
takes as its arguments a DataSet object to be populated, and a DataTable object, or the name of the DataTable to be filled
with the rows returned from the SelectCommand.

The Fill method uses the HostFileDataReader object implicitly to return the column names and types used to create the
tables in the DataSet object, and also the data to populate the rows of the tables in the DataSet object. Tables and columns
are only created if they do not already exist; otherwise Fill uses the existing DataSet schema. Primary keys are not created
unless they are in the data source, and HostFileDataAdapter.MissingSchemaAction is set to
MissingSchemaAction.AddWithKey. If Fill finds that a primary key exists for a table, it overwrites data in the DataSet object
with data from the data source for rows where the primary key column values match those of the row returned from the data
source. If no primary key is found, the data is appended to the tables in the DataSet object. Fill uses any mappings that might
exist when populating the DataSet object.

If the HostFileDataAdapter encounters multiple result sets, it creates multiple tables in the DataSet object. The tables are
given an incremental default name of TableN, starting with "Table" for Table0. If a table name is passed as an argument to the
Fill method, the tables are given an incremental default name of TableNameN, starting with "TableName" for TableName0.

You can use any number of HostFileDataAdapter objects with a DataSet object. Each DataAdapter object can be used to fill
one or more DataTable objects and resolve updates back to the relevant data source. You can add DataRelation and
Constraint objects to the DataSet locally, enabling you to relate data from dissimilar data sources. One or more
DataAdapter objects can handle communication to each data source.

To populate a host file dataset from the data adapter

1. Create a new connection to your data source by using HostFileConnection.

2. Open the connection by using HostFileConnection.Open.

3. Create a SELECT command that describes the data to retrieve with HostFileCommand.

4. Create a HostFileDataAdapter using HostFileConnection to interact with the stored data.

5. Create a DataSet object to store the data locally.

6. Retrieve the data through the HostFileDataAdapter using the DataSet object and the Fill command.

Example

The following code example shows how to fill a dataset through a HostFileDataAdapter. In this example, the ETCMLogging
and HostFileUtils objects supply logging and utility functionality, respectively.

public void HFDAdapterCommandConstructor(ETCMLogging.Logging logging, string host, string c
csid, string cnstring, HostFileUtils.Utils.HostFileType hostfiletype)
 {
 HostFileUtils.Utils u = new HostFileUtils.Utils();
 logging.LogInfo(host + "::" + hostfiletype.ToString());
 HostFileUtils.Utils.MytestsVals[] Datavals = u.InitMytestsVals();

 try
 {
 HostFileConnection cn = new HostFileConnection(cnstring);
 cn.Open();
 String SELECT = u.CreateSQLCommand(host, hostfiletype, cnstring, "SELECT",
"MYTEST");
 HostFileCommand hfc = new HostFileCommand(SELECT, cn);
 HostFileDataAdapter hfda = new HostFileDataAdapter(hfc);
 DataSet ds = new DataSet();
 hfda.Fill(ds);
 int[] cp = u.CheckColumns(SELECT, cn, logging);

In this code example, the HostFileUtils object and the cnstring and ccsid parameters enable you to quickly create a test SQL
command with the relevant information.

See Also
Other Resources
Working with the Host File Adapter and Dataset
BizTalk Adapter for Host Files

 u.ValidateDataSet(ds, logging, Datavals, cp);

 cn.Close();
 }
 catch (Exception e)
 {
 logging.LogInfo(e.Message);
 logging.LogFail(e.StackTrace);
 }
 }

https://msdn.microsoft.com/en-us/library/aa744709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Update the Host File System with the Data Adapter
HostFileDataAdapter.Update is called to resolve changes from a DataSet object back to the data source. The Update
method, like the Fill method, takes an instance of a DataSet as an argument.

To update the host file system with the data adapter

1. Create a DataSet object that contains the information that you want to update.

Or, you can overwrite the data of an existing DataSet object with a call to DataSet.AcceptChanges.

Note that calling AcceptChanges on the DataSet, DataTable, or DataRow object causes all Original values for a
DataRow object to be overwritten with the Current values for the DataRow. If the field values that identify the row as
unique have been modified, after you call AcceptChanges, the Original values no longer match the values in the data
source.

In addition, you can use HostFileCommand parameters to specify input and output values for a SQL statement for each
modified row in a DataSet object.

2. Call HostFileDataAdapter.Update, with the DataSet object that you want to update.

When you call the Update method, the HostFileDataAdapter analyzes the changes that have been made and executes
the appropriate command. If Update is called and the appropriate command does not exist for a particular update (for
example, no DeleteCommand for deleted rows), an exception is thrown.

3. If you want to update your dataset with data, call HostFileDataAdapter.Fill on your DataSet object.

The Update method resolves your changes back to the data source; however other clients may have modified data at the
data source since the last time you filled the DataSet. New rows are added to the table, and updated information is
incorporated into existing rows.

Example

The following code example demonstrates how to updating a dataset with the Fill and Update commands. Note that the
ETCMLogging and HostFileUtils objects provide logging and utility functionality, respectively.

public void BVTHFDataAdapterInsert(ETCMLogging.Logging logging, string host, string ccsid,
string cnstring, HostFileUtils.Utils.HostFileType hostfiletype)
 {
 HostFileUtils.Utils u = new HostFileUtils.Utils();
 logging.LogInfo(host + "::" + hostfiletype.ToString());
 HostFileUtils.Utils.BvttestsVals[] Datavals = u.InitBvttestsVals();

 try
 {
 HostFileConnection cn = new HostFileConnection(cnstring);
 cn.Open();
 String SELECT = u.CreateSQLCommand(host, hostfiletype, cnstring, "SELECT",
"BVTTESTS");
 HostFileDataAdapter hfda = new HostFileDataAdapter(SELECT, cn);
 DataSet ds = new DataSet();
 DataSet dsold = new DataSet();
 hfda.Fill(ds);
 hfda.Fill(dsold);
 int[] cp = u.CheckColumns(SELECT, cn, logging);
 u.ValidateDataSet(ds, logging, Datavals, cp);
 object[] newrow = new object[5];
 // ('REC129-1','REC129-2',129,1290,'129.645')
 newrow[cp[0]] = "REC129-1";
 newrow[cp[1]] = "REC129-2";
 newrow[cp[2]] = 129;
 newrow[cp[3]] = 1290;
 newrow[cp[4]] = 129.645M;
 ds.Tables[0].Rows.Add(newrow);
 int z = hfda.Update(ds);
 if (z != 1)
 {

See Also
Other Resources
Working with the Host File Adapter and Dataset
BizTalk Adapter for Host Files

 logging.LogFail("a unexpected number of updates::"+z.ToString());
 }
 DataSet ds1 = new DataSet();
 hfda.Fill(ds1);
 int j = 0;
 int i = 0;
 foreach (DataRow row in ds1.Tables[0].Rows)
 {
 string rec = (string)ds1.Tables[0].Rows[j][cp[0]];
 if (!rec.Equals("REC129-1"))
 {
 u.CompareValues((string)ds1.Tables[0].Rows[j][cp[0]], Datavals[i].O
UT1_CHAR1, logging);
 u.CompareValues((string)ds1.Tables[0].Rows[j][cp[1]], Datavals[i].O
UT1_CHAR2, logging);
 u.CompareValues((short)ds1.Tables[0].Rows[j][cp[2]], Datavals[i].OU
T1_SMALLINT, logging);
 u.CompareValues((int)ds1.Tables[0].Rows[j][cp[3]], Datavals[i].OUT1
_INTEGER, logging);
 u.CompareValues((decimal)ds1.Tables[0].Rows[j][cp[4]], Datavals[i].
OUT1_DECIMAL, logging);
 j++;
 i++;
 }
 else
 {
 u.CompareValues((string)ds1.Tables[0].Rows[j][cp[0]], "REC129-1", l
ogging);
 u.CompareValues((string)ds1.Tables[0].Rows[j][cp[1]], "REC129-2", l
ogging);
 u.CompareValues((short)ds1.Tables[0].Rows[j][cp[2]], 129, logging);
 u.CompareValues((int)ds1.Tables[0].Rows[j][cp[3]], 1290, logging);
 u.CompareValues((decimal)ds1.Tables[0].Rows[j][cp[4]], 129.645M, lo
gging);
 j++;
 }
 }
 if (j == 0)
 {
 logging.LogFail("No Rows on DataTable!");
 }
 z = 0;
 z = hfda.Update(dsold);
 if (z != 1)
 {
 logging.LogFail("a unexpected number of updates::" + z.ToString());
 }
 DataSet ds2 = new DataSet();
 hfda.Fill(ds2);
 u.ValidateDataSet(ds2, logging, Datavals, cp);

 cn.Close();
 }
 catch (Exception e)
 {
 logging.LogInfo(e.Message);
 logging.LogFail(e.StackTrace);
 }
 }

https://msdn.microsoft.com/en-us/library/aa744709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Add Constraints to the Host File Dataset
The HostFileDataAdapter.Fill method fills a DataSet object with table columns and rows from a data source; though
constraints are commonly set by the data source, the Fill method does not add this schema information to the DataSet object
by default. To populate a DataSet object with existing primary key constraint information from a data source, you can call
HostFileDataAdapter.FillSchema.

Note
If a column in a data source is identified as auto-incrementing, the FillSchema method, or the Fill method with a MissingS
chemaAction of AddWithKey, creates a DataColumn that has an AutoIncrement property set to true. However, you mu
st set the AutoIncrementStep and AutoIncrementSeed values yourself.

To populate a dataset with additional key constraints

1. Call HostFileDataAdapter.FillSchema, using the targeted DataSet and Schema that contains the specified key
constraints.

Adding schema information to a DataSet before filling it with data ensures that primary key constraints are included
with the DataTable objects in the DataSet object. As a result, when additional calls to fill the DataSet are made, the
primary key column information is used to match new rows from the data source with current rows in each DataTable
object, and current data in the tables is overwritten with data from the data source. Without the schema information, the
new rows from the data source are appended to the DataSet object, resulting in duplicate rows.

See Also
Other Resources
Working with the Host File Adapter and Dataset
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa744709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

How to Close a Connection with the Host File Adapter
If you create a HostFileDataAdapter object with a connection string, the object will automatically create a connection object.
Once you are finished using a host file adapter, you need to dispose of the implicit connection you made. You can use the
Dispose and Close commands to do so.

To close the connection created implicitly through a HostFileDataAdapter object

1. Once you are finished with the connection, call HostFileDataAdapter.Dispose() to dispose of the connection.

2. Alternately, you may also call HostFileDataAdapter.SelectCommand.Connection.Close() to close the connection as well.

Example

The following code sample shows how to create a connection through a HostFileDataAdapter object, and how to properly
dispose of the connection.

See Also
Other Resources
Working with the Host File Adapter and Dataset

try
{
 HostFileDataAdapter hfda = new HostFileDataAdapter(SELECT,"valid connection string");
 DataSet ds = new DataSet();
 hfda.Fill(ds);
 string xml = ds.GetXml();
 Console.WriteLine(xml);
 hfda.Dispose();
}
catch (Exception e)
{
 Console.WriteLine(e.Message);
}

https://msdn.microsoft.com/en-us/library/aa744709(v=bts.10).aspx

Obtaining Schema Information from the Host File System
You can obtain schema information from a database by using schema discovery. Schema discovery enables applications to
request that managed providers find and return information about the database schema, also known as metadata, of a given
database. Different database schema elements such as tables, columns, and stored procedures are exposed through schema
collections. Each schema collection contains a variety of schema information specific to the provider that is being used.

The Managed Provider for Host Files implements HostFileConnection.GetSchema class, and the schema information that is
returned from GetSchema comes in the form of a DataTable object. GetSchema also provides optional parameters for
specifying the schema collection to return, and restricting the amount of information returned.

In This Section

Working with the Host File GetSchema Methods

Common Schema Collections for the Host File System

See Also
Other Resources
Using the Managed Data Provider For Host Files
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa771886(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745182(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754285(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

Working with the Host File GetSchema Methods
The Managed Provider for Host File HostFileConnection class implements a GetSchema method, which is used to retrieve
schema information about the file system that is currently connected. The schema information that is returned from the
GetSchema method comes in the form of a DataTable object. The GetSchema method is an overloaded method that
provides optional parameters for specifying the schema collection to return, and restricting the amount of information that is
returned.

To retrieve file system schema information

1. Create a HostFileConnection object that represents the connection to the host file system.

2. Retrieve the schema information by calling HostFileConnection.GetSchema.

a. The first optional parameter of the GetSchema method is the collection name, which is specified as a string. There
are two types of schema collections: common schema collections that are common to all providers, and specific
schema collections, which are specific to each provider. You can call GetSchema either with no parameters, or else
with the schema collection name "MetaDataCollections". This returns a DataTable object with a list of the supported
schema collections, the number of restrictions that they each support, and the number of identifier parts that they
use.

b. The second optional parameter of the GetSchema method is the restrictions that are used to limit the amount of
schema information returned, and it is passed to the GetSchema method as an array of strings. The position in the
array determines the values that you can pass, and this is equivalent to the restriction number.

3. If you want to put a restriction on the Tables schema collection, consider the following:

a. Create an array of strings with four elements.

b. Put a value in the element that matches the restriction number.

For example, to restrict the tables returned by the GetSchema method to only those tables that are owned by the
"dbo" role, set the second element of the array to "dbo".

c. Pass the value into your GetSchema call.

To determine a list of supported restrictions on a Schema

1. Call GetSchema with the first parameter set to "Restrictions".

This returns a DataTable object with a list of the collection names, the restriction names, the default restriction values, and
the restriction numbers.

See Also
Other Resources
Obtaining Schema Information from the Host File System
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa704859(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

Common Schema Collections for the Host File System
The common schema collection is the schema collection that is implemented by the Managed Provider for Host Files. You can
query the managed provider to determine the list of supported schema collections by calling the GetSchema method with no
arguments, or with the schema collection name "MetaDataCollections". This returns a DataTable object with a list of the
supported schema collections, the number of restrictions that they each support, and the number of identifier parts that they
use.

The following tables describe the common schema collections for the Host File System.

Columns

Column Name Data Type Description

table_catalog String Catalog of the table.

table_schema String Schema that contains the table.

table_name String Table name.

column_name String Column name.

ordinal_position Int16 Column identification number.

column_default String Default value of the column

is_nullable String Nullability of the column. If this column allows NULL, this column returns YES. Otherwise, No
is returned.

data_type String System-supplied data type.

character_maxi
mum_length

Int32 – Sql8, Int
16 – Sql7

Maximum length, in characters, for binary data, character data, or text and image data. Other
wise, NULL is returned.

character_octet_
length

Int32 – SQL8, I
nt16 – Sql7

Maximum length, in bytes, for binary data, character data, or text and image data. Otherwise,
NULL is returned.

numeric_precisi
on

Unsigned Byte Precision of approximate numeric data, exact numeric data, integer data, or monetary data. O
therwise, NULL is returned.

numeric_precisi
on_radix

Int16 Precision radix of approximate numeric data, exact numeric data, integer data, or monetary d
ata. Otherwise, NULL is returned.

numeric_scale Int32 Scale of approximate numeric data, exact numeric data, integer data, or monetary data. Other
wise, NULL is returned.

datetime_precisi
on

Int16 Subtype code for datetime and SQL-92 interval data types. For other data types, NULL is retu
rned.

character_set_ca
talog

String Returns master, indicating the database in which the character set is located, if the column is
character data or text data type. Otherwise, NULL is returned.

character_set_sc
hema

String Always returns NULL.

character_set_na
me

String Returns the unique name for the character set if this column is character data or text data typ
e. Otherwise, NULL is returned.

collation_catalo
g

String Returns master, indicating the database in which the collation is defined, if the column is char
acter data or text data type. Otherwise, this column is NULL.

DataSourceInformation

CompositeIden
tifierSeparator
Pattern

string The regular expression to match the composite separators in a composite identifier. For example, “\.”
(for SQL Server) or “@|\.” (for Oracle).

A composite identifier is typically what is used for a database object name, for example: pubs.dbo.au
thors or pubs@dbo.authors.

For SQL Server, use the regular expression “\.”. For OracleClient, use “@|\.”.

For ODBC use the Catalog_name_seperator.

For OLE DB use DBLITERAL_CATALOG_SEPARATOR or DBLITERAL_SCHEMA_SEPARATOR.

DataSourcePro
ductName

string The name of the product accessed by the provider, such as "Oracle" or "SQLServer".

DataSourcePro
ductVersion

string The version of the product accessed by the provider, in the data sources native format and not in Mi
crosoft format.

In some cases DataSourceProductVersion and DataSourceProductVersionNormalized are the same
value. With OLE DB and ODBC, these are always be the same because they are mapped to the same
function call in the underlying native API.

DataSourcePro
ductVersionNo
rmalized

string A normalized version for the data source, such that it can be compared with String.Compare(). The
format of this is consistent for all versions of the provider to prevent version 10 from sorting betwe
en version 1 and version 2.

For example, the Oracle provider uses a format of “nn.nn.nn.nn.nn” for its normalized version, which
causes an Oracle 8i data source to return “08.01.07.04.01”. SQL Server uses the typical Microsoft “n
n.nn.nnnn” format.

In some cases, DataSourceProductVersion and DataSourceProductVersionNormalized will be the sa
me value. In the case of OLE DB and ODBC these will always be the same as they are mapped to the
same function call in the underlying native API.

GroupByBehavi
or

GroupBy
Behavior

Specifies the relationship between the columns in a GROUP BY clause and the non-aggregated colu
mns in the select list.

IdentifierPatter
n

String A regular expression that matches an identifier and has a match value of the identifier. For example “
[A-Za-z0-9_#$]”.

IdentifierCase Identifier
Case

Indicates whether non-quoted identifiers are treated as case sensitive.

OrderByColum
nsInSelect

bool Specifies whether columns in an ORDER BY clause must be in the select list. A value of true indicates
that they are required to be in the select list, a value of false indicates that they are not required to b
e in the select list.

ParameterMar
kerFormat

string A format string that represents how to format a parameter.

If named parameters are supported by the data source, the first placeholder in this string should be
where the parameter name should be formatted.

For example, if the data source expects parameters to be named and prefixed with an ‘:’ this would b
e “:{0}”. When formatting this with a parameter name of “p1” the resulting string is “:p1”.

If the data source expects parameters to be prefixed with the ‘@’, but the names already include the
m, this would be ‘{0}’, and the result of formatting a parameter named “@p1” would just be “@p1”.

For data sources that do not expect named parameters and expect the use of the ‘?’ character, the fo
rmat string can be specified as just ‘?’, which would ignore the parameter name. For OLE DB we retu
rn ‘?’.

ParameterMar
kerPattern

string A regular expression that matches a parameter marker. It has a match value of the parameter name,
if any.

For example, if named parameters are supported with an ‘@’ lead-in character that will be included i
n the parameter name, this would be: “(@[A-Za-z0-9_$#]*)”.

However, if named parameters are supported with a ‘:’ as the lead-in character and it is not part of t
he parameter name, this would be: “:([A-Za-z0-9_$#]*)”.

Of course, if the data source does not support named parameters, this would just be “?”.

ParameterNam
eMaxLength

int The maximum length of a parameter name in characters. Visual Studio expects that if parameter na
mes are supported, the minimum value for the maximum length is 30 characters.

If the data source does not support named parameters, this property returns zero.

ParameterNam
ePattern

string A regular expression that matches the valid parameter names. Different data sources have different
rules regarding the characters that may be used for parameter names.

Visual Studio expects that if parameter names are supported, the characters "\p{Lu}\p{Ll}\p{Lt}\p{Lm
}\p{Lo}\p{Nl}\p{Nd}" are the minimum supported set of characters that are valid for parameter nam
es.

QuotedIdentifi
erPattern

string A regular expression that matches a quoted identifier and has a match value of the identifier itself wi
thout the quotes. For example, if the data source uses double-quotes to identify quoted identifiers, t
his would be: "(([^\"]|\"\")*)".

QuotedIdentifi
erCase

Identifier
Case

Indicates whether quoted identifiers are treated as case sensitive.

StatementSepa
ratorPattern

string A regular expression that matches the statement separator.

StringLiteralPat
tern

string A regular expression that matches a string literal and has a match value of the literal itself. For exam
ple, if the data source used single-quotes to identify strings, this would be: "('([^']|'')*')"'

SupportedJoin
Operators

Supporte
dJoinOpe
rators

Specifies what types of SQL join statements are supported by the data source.

DataTypes

Column
Name

Dat
a Ty
pe

Description

TypeNa
me

strin
g

The provider-specific data type name.

Provider
DbType

int The provider-specific type value that should be used when specifying a parameter’s type. For example, SqlDbTy
pe.Money or OracleType.Blob.

Column
Size

long The length of a non-numeric column or parameter refers to either the maximum or the length defined for this ty
pe by the provider.

For character data, this is the maximum or defined length in units, defined by the data source. Oracle has the co
ncept of specifying a length and then specifying the actual storage size for some character data types. This defin
es only the length in units for Oracle.

For date-time data types, this is the length of the string representation (assuming the maximum allowed precisi
on of the fractional seconds component).

If the data type is numeric, this is the upper bound on the maximum precision of the data type.

CreateFo
rmat

strin
g

Format string that represents how to add this column to a data definition statement, such as CREATE TABLE. Eac
h element in the CreateParameter array should be represented by a “parameter marker” in the format string.

For example, the SQL data type DECIMAL needs a precision and a scale. In this case, the format string would be “
DECIMAL({0},{1})”.

CreatePa
rameters

strin
g

The creation parameters that must be specified when creating a column of this data type. Each creation paramet
er is listed in the string, separated by a comma in the order they are to be supplied.

For example, the SQL data type DECIMAL needs a precision and a scale. In this case, the creation parameters sho
uld contain the string “precision, scale”.

In a text command to create a DECIMAL column with a precision of 10 and a scale of 2, the value of the CreateFo
rmat column might be DECIMAL({0},{1})” and the complete type specification would be DECIMAL(10,2).

DataTyp
e

strin
g

The name of the .NET Framework type of the data type.

IsAutoin
crement
able

bool true—Values of this data type may be auto-incrementing.

false—Values of this data type may not be auto-incrementing.

Note that this merely indicates whether a column of this data type may be auto-incrementing, not that all colum
ns of this type are auto-incrementing.

IsBestMa
tch

Bool true—The data type is the best match between all data types in the data store and the .NET Framework data typ
e indicated by the value in the DataType column.

false—The data type is not the best match.

For each set of rows in which the value of the DataType column is the same, the IsBestMatch column is set to tru
e in only one row.

IsCaseSe
nsitive

bool true—The data type is a character type and is case sensitive.

false—The data type is not a character type or is not case sensitive.

IsFixedL
ength

bool true—Columns of this data type created by the data definition language (DDL) are of fixed length.

false—Columns of this data type created by the DDL are of variable length.

DBNull.Value—It is not known whether the provider will map this field with a fixed-length or variable-length c
olumn.

IsFixedPr
ecisionS
cale

bool true—The data type has a fixed precision and scale.

false—The data type does not have a fixed precision and scale.

IsLong bool true—The data type contains very long data; the definition of very long data is provider-specific.

false—The data type does not contain very long data.

IsNullabl
e

bool true—The data type is nullable.

false—The data type is not nullable.

DBNull.Value—It is not known whether the data type is nullable.

IsSearch
able

bool true—The data type can be used in a WHERE clause with any operator except the LIKE predicate.

false—The data type cannot be used in a WHERE clause with any operator except the LIKE predicate.

IsSearch
ableWith
Like

bool true—The data type can be used with the LIKE predicate.

false—The data type cannot be used with the LIKE predicate.

IsUnsign
ed

bool true—The data type is unsigned.

false—The data type is signed.

DBNull.Value—Not applicable to data type.

Maximu
mScale

shor
t

If the type indicator is a numeric type, this is the maximum number of digits allowed to the right of the decimal
point. Otherwise, this is DBNull.Value.

Minimu
mScale

shor
t

If the type indicator is a numeric type, this is the minimum number of digits allowed to the right of the decimal
point. Otherwise, this is DBNull.Value.

IsConcur
rencyTy
pe

bool true–The data type is updated by the database every time the row is changed and the value of the column is diff
erent from all previous values

false–The data type is note updated by the database every time the row is changed

DBNull.Value–The database does not support this data type.

IsLiterals
Support
ed

bool true–The data type can be expressed as a literal.

false–The data type cannot be expressed as a literal.

LiteralPr
efix

strin
g

The prefix applied to a given literal.

LitteralS
uffix

strin
g

The suffix applied to a given literal.

NativeD
ataType

Stri
ng

An OLE DB-specific column for exposing the OLE DB type of the data type .

MetaDataCollections

Column Na
me

Data
Type

Description

CollectionNa
me

string The name of the collection to pass to the GetSchema method to return the collection.

NumberOfR
estriction

int The number of restrictions that can be specified for the collection.

NumberOfId
entifierParts

int The number of parts in the composite identifier/database object name. For example, in SQL Server, this wo
uld be 3 for tables and 4 for columns. In Oracle, it would be 2 for tables and 3 for columns.

ReservedWords

Column Name Data Type Description

Restrictions

Column Name Data Type Description

CollectionName string The name of the collection that these restrictions apply to.

RestrictionName string The name of the restriction in the collection.

RestrictionDefault string Ignored.

RestrictionNumber int The actual location in the collections restrictions that this particular restriction falls in.

Tables

Column Name Data Type Description

table_catalog String Catalog of the table.

table_schema String Schema that contains the table.

table_name String Table name.

table_type String Type of table. Can be VIEW or BASE TABLE.

Example
See Also
Other Resources
Obtaining Schema Information from the Host File System
BizTalk Adapter for Host Files

https://msdn.microsoft.com/en-us/library/aa704859(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753955(v=bts.10).aspx

Managed Provider for Host Files Tutorial
This tutorial shows how to access host file data by using the Managed Provider for Host Files. After completing the tutorial, you
will be able to do the following:

Configure a connection to a host file dataset

Build a simple XML Web service to expose host file data using ASP.NET

Retrieve a recordset of information from a host file and return that information as a .NET dataset through an XML Web
service.

Getting Started with the Managed Provider for Host Files Tutorial

Before you start the Managed Provider for Host Files tutorial, make sure to perform the following actions:

1. Install Microsoft® Visual Studio® 2005.

2. Ensure that Internet Information Services (IIS) is installed and ASP.NET 2.0 is configured.

3. Install Microsoft Host Integration Server 2009.

4. Ensure that you have access to a host dataset with permissions to query and modify data. For more information about
the dataset used in this tutorial, see the Appendix.

Running the Managed Data Provider for Host Files Tutorial

To access host file data, you must first define the metadata associated with the dataset. Then you can use the Data Access Tool
to configure a connection to the host file. After that, you can create the XML Web service and launch your application.

Step 1: Define the Structure of the Host File

To access the host dataset, you need to define the metadata associated with the dataset. After you have finished defining the
various structures used to access the host file system, you can define the connection string you will use to connect to the file
system.

To create the host file project

1. In Visual Studio, click File, point to New, and then click Project.

2. In the New Project dialog box, in the Project types pane, click Other Project Types.

3. In the Templates pane, click Blank Solution.

4. In the Name field, enter Data Integration Samples, and then click OK.

5. In Solution Explorer, right-click Data Integration Samples, point to Add, and then click New Project.

6. In the Add New Project dialog box, in the Project types pane, click Host Integration Projects.

7. In the Templates pane, click Host File Project.

8. In the Name field, type NorthwindHostFiles, and then click OK.

To add a host file library to the host file project.

1. In Solution Explorer, right-click NorthwindHostFiles, point to Add, and then click Add Host File Library.

2. In the Add New Item - NorthwindHostFiles dialog box, in the Name field, type NorthwindHostFiles_OS390, and
then click Add.

3. On the Welcome to the Host Files Library Wizard page, click Next.

4. On the Host Environment page, confirm that Host Files for OS390 is selected in the Host environment drop-down

box, click Next, and then click Create.

To import the host file definition

1. In Solution Explorer, double-click NorthwindHostFiles_OS390.DLL to bring up the Host File Designer.

2. In the Host File Designer, right-click NorthwindHostFiles_OS390, point to Import, and then click Host Definition.

3. On the Welcome to the COBOL Import Wizard page, click Next.

4. On the Import COBOL Source File page, click Browse to locate the COBOL file that defines the data structures on your
host file system, and then click Next.

5. On the Structures member page, select the COBOL group that represents the structure members, click Next, and then
click Modify.

To map the host file schema to a table

1. In Host File Designer, expand NorthwindHostFiles_OS390, right-click Tables, and then click Add Table.

2. Right-click the newly created table1, and then click Properties.

3. In the Properties toolbox, enter an alias in the Alias field, the host file name in the Host File Name field, and a schema
name in the Schema field.

To provide a strong key name to sign the host file project

1. In Host File Designer, right-click NorthwindHostFiles_OS390, and then click Properties.

2. In the Properties toolbox, expand Assembly Information, and then provide the path and file name to a key file.

To save and register the assembly

1. In Visual Studio, on the File menu, click Save.

2. Use the gacutil utility and the regasm tool to register the host file assembly.

Step 2: Create the Data Access String

After you have finished defining the structure of the host file, you can use the Data Access Tool to create a data access string.
After you confirm the creation of the string, you can then create the XML Web service.

To start the Data Access Tool and run the Data Source Wizard

1. Click Start, point to Programs, point to Microsoft Host Integration Server 2009, and then click Data Access Tool.

This starts the Data Access Tool, which you can use to configure connections in both DB2 and host file systems.

2. In the Data Access Tool, click File, point to New, and then click Data Source.

3. On the Welcome to the Data Source Wizard page, click Next.

4. On the Data Source page, in the Data Source Platform field, select Mainframe or AS/36 file system.

5. Confirm that the SNA LU6.2 (APPC) check box is selected, and then click Next.

6. On the APPC Network Connection page, enter the connection information for your mainframe, and then click Next.

7. On the Mainframe or AS/36 page, enter the default information into the Default library information field.

8. Enter the path of the host file assembly created in the preceding section into the Host File assembly field, and then click
Next.

9. On the Locale page, accept the default values, and then click Next.

10. On the Security page, in the Security Method field, confirm that Interactive sign-on is selected in the drop-down box.

11. Enter the connection information for your mainframe in the Properties fields, and then click Next.

12. On the Advanced Options page, click Next.

13. On the Validation page, click Connect to test your connection string, and then click Next.

14. On the Saving Information page, in the Data source name field, type HIS_TRAINING_HF.

15. Select the Initialization string file check box, and then click Next.

16. On the Completing the Data Source Wizard page, click Finish.

To view the data source string

1. Open Notepad and navigate to the directory the data source string is saved in.

By default, the data source string file is located in C:\Documents and Settings\<USERNAME>\My Documents\Host
Integration Projects\Data Sources.

2. Use Notepad to view the HIS_STRAINIGN_HF.txt file.

You should see the connection string created by the Data Access Tool. It should look something like the following:

User ID=myname;Password=mypassword;APPC Remote LU Alias=DFM; APPC Local LU Alias=L3888888;APPC Mode
Name=PA62KNU; Network Transport Library=SNA; Host CCSID=37;PC Code Page=1252;Network Port=446;Default
Library=MyLibrary;Metadata='C:\Work\DataIntegrationSamples\NortwindHost
Files\NortwindHostFiles_OS390.DLL'

Step 3: Create the XML Web Service

After you have created the data string, you can create the XML Web service and associated code. Then you can test your code
on a live Web site.

To start Visual Studio and create a new project

1. Click Start, point to All Programs, point to Microsoft Visual Studio 2005, and then click Microsoft Visual
Studio 2005.

2. In Visual Studio, on the File menu, point to New, and then click Project.

3. In the New Project dialog box, in the Project types pane, expand Other Project Types, and then click Visual Studio
Solutions.

4. In the Templates pane, confirm that Blank Solution is selected, enter HISTraining in the Name field, and then click
Next.

To add a class to hold the DB2 access logic

1. In Solution Explorer, right-click HISTraining, point to Add, and then click New Project.

2. In the Add New Project dialog box, in the Project types pane, expand Other Languages, and then click Visual Basic.

3. In the Templates pane, click Class Library.

4. In the Name field, type HFDAL, and then click OK.

To add a reference to the HostFileProvider

1. In Solution Explorer, right-click HFDAL, and then click Add Reference.

2. In the Add Reference dialog box, click the .NET tab, click the Microsoft.HostIntegration.HostFileProvider
component, and then click OK.

To write the code for the Data Access class

1. In Solution Explorer, click Class1.vb.

2. Enter the following code into the text editor window:

Public Class HFDAL
 Public Function executeSQL(ByVal sqlQuery As String, ByVal connString As String) A
s DataSet
 Dim hfConn As New HostFileConnection(connString)
 Dim hfCmd As New HostFileCommand(sqlQuery, hfConn)
 Dim hfDA As New HostFileDataAdapter(hfCmd)
 Dim returnDS As New DataSet

3. On the File menu, click Save All.

4. On the Build menu, click Rebuild Solution.

To create a Web service for the solution

1. In Solution Explorer, right-click HISTraining, point to Add, and then click New Web Site.

2. In the Add New Web Site dialog box, click ASP.NET Web Service.

3. In the Location combo box, confirm that HTTP is selected, type http://localhost/HFWebService in the associated text
box, and then click OK.

4. In Solution Explorer, right-click http://localhostHFWebService, and then click Add Reference.

5. On the Add Reference dialog box, click the Projects tab, click HFDAL, and then click OK.

6. In Solution Explorer, expand http://localhostHFWebService, expand App_Code, and then double-click Service.vb.

7. Add the following code to Service.vb:

8. On the File menu, click Save All.

Step 4: Launch the XML Web Service

After you are finished creating the XML Web service, you can launch the service and observe the resulting behavior.

To execute the Web service

1. In Solution Explorer, right-click Service.asmx, and then click View in Browser.

2. In the Web browser view of Service.asmx, click the hyperlink to executeSQLQuery.

3. On the executeSQLQuery page, copy the connection string from HIS_TRAINIGN_HF.TXT into the connString field.

 hfConn.Open()
 hfDA.Fill(returnDS)
 hfConn.Close()
 Return returnDS
 End Function

End Class

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://tempuri.org/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function executeSQLQuery(ByVal connString As String, ByVal sqlStatement As
String) As Data.DataSet
 Dim dal As New HFDAL.HFDAL

 Return dal.executeSQL(sqlStatement, connString)

 End Function

End Class

4. In the sqlStatement field, type SELECT* FROM CUSTOMERS, and then click Invoke.

Appendix

The following COBOL copybook is used in this tutorial as the host file dataset.

See Also
Other Resources
Managed Data Provider for Host Files Programmer's Guide

01 CUSTOMER
 05 CUSTIDPIC S9(9)COMP.
 05 COMPANYPIC X(40).
 O5 CONTACT PIC X(30).
 05 TITLE PIC X(30).
 05 ADDRESS PIC X(60).
 05 CITY PIC X(20).
 05 REGION PIC X(15).
 05 ZIP PIC X(10).
 05 COUNTRY PIC X(10).
 05 PHONE PIC X(15).
 05 FAX PIC X(24).
 05 WEBPINPIC X(5).

https://msdn.microsoft.com/en-us/library/aa771659(v=bts.10).aspx

.NET Framework Data Providers for Host Integration Server
In concept, a .NET Framework data provider is similar to an OLE DB provider: the provider runs as an interface between your
application and the data source. However, the .NET Framework data provider exposes only a single set of ADO.NET interfaces.

In This Section

Examining the Core Interface for a Managed Provider

See Also
Other Resources
Managed Provider Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744334(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx

Examining the Core Interface for a Managed Provider
A data provider in the .NET Framework serves as a bridge between an application and a data source. The data provider is used
to retrieve data from a data source and to reconcile changes to that data back to the data source.

ADO.NET exposes a common model for .NET Framework data provider objects so that a single set of code can be written to
work regardless of the .NET Framework data provider. The Connection, Command, DataReader, and DataAdapter objects
represent the core elements of the .NET Framework data provider model. The following table describes the purpose of these
objects, and how they are implemented in the Managed Provider for DB2 and Managed Provider for Host Files.

Common
model

Managed Provider for Host In
tegration Server

Description

Connection MsDb2Connection

HostFileConnection

Responsible for opening, closing, and maintaining a connection to a DB2 host.

Command MsDb2Command

HostFileCommand

Manages all parameters that a query may include, which includes both SQL para
meters and stored procedure parameters.

DataReade
r

MsDb2DataReader A server-side forward-only cursor implementation that inherits form the IDataR
eader and IDataRecord interfaces.

DataAdapt
er

MsDb2DataAdapter

HostFileDataAdapter

Acts as the gateway between the host data and a .NET Framework data set.

In addition, each provider has several interfaces specific to this implementation. These interfaces deal with exception and event
handling, setting up connections to a DB2 host over different types of networks, and passing parameters.

See Also
Other Resources
.NET Framework Data Providers for Host Integration Server
Managed Provider Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771645(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771643(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771776(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771647(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771780(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754101(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx

ADO.NET DataSet for Host Integration Server
The ADO.NET DataSet is the object that contains the data that a managed provider retrieves from a remote data source.
Specifically, the ADO.NET DataSet is a local cache of tables, similar to a collection of ADO disconnected recordsets, described
in the System.Data namespace. In addition, the DataSet records the relationships between the tables using keys and
constraints. The DataSet is central to supporting disconnected, distributed data scenarios with ADO.NET.

In This Section

DataTableCollection

DataRelationCollection

ExtendedProperties

XML Support

https://msdn.microsoft.com/en-us/library/aa753880(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705516(v=bts.10).aspx

DataTableCollection
An ADO.NET DataSet contains a collection of zero or more tables represented by DataTable objects. The
DataTableCollection contains all the DataTable objects in a DataSet.

A DataTable is defined in the System.Data namespace and represents a single table of memory-resident data. It contains a
collection of columns represented by a DataColumnCollection, and constraints represented by a ConstraintCollection,
which together define the schema of the table. A DataTable object also contains a collection of rows represented by the
DataRowCollection, which contains the data in the table. Along with its current state, a DataRow object retains both its
current and original versions to identify changes to the values stored in the row.

See Also
Concepts
ADO.NET DataSet for Host Integration Server
Other Resources
Managed Provider Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx

DataRelationCollection
A DataSet object contains relationships in its DataRelationCollection object. A relationship, represented by the
DataRelation object, associates rows in one DataTable with rows in another DataTable. It is analogous to a join path that
might exist between primary and foreign key columns in a relational database. A DataRelation identifies matching columns in
two tables of a DataSet.

Relationships enable navigation from one table to another within a DataSet. The essential elements of a DataRelation are the
name of the relationship, the name of the tables being related, and the related columns in each table. Relationships can be built
with more than one column per table by specifying an array of DataColumn objects as the key columns. When a relationship
is added to the DataRelationCollection, it may optionally add a UniqueKeyConstraint and a ForeignKeyConstraint to
enforce integrity constraints when changes are made to related column values.

See Also
Concepts
ADO.NET DataSet for Host Integration Server
Other Resources
Managed Provider Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx

ExtendedProperties
A DataSet object (like DataTable and DataColumn) has an ExtendedProperties property. ExtendedProperties is a
PropertyCollection where you can add customized information, such as the SELECT statement that was used to generate the
result set or a date/time stamp of when the data was generated. The ExtendedProperties collection is persisted with the
schema information for the DataSet (and also the DataTable and DataColumn).

See Also
Concepts
ADO.NET DataSet for Host Integration Server
Other Resources
Managed Provider Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx

XML Support
A DataSet object can persist and reload its contents as XML and its schema as XSD. The DataSet has direct support for
reading (shredding) and writing data using XML using the .NET Framework XmlReader and XmlWriter classes. When you are
writing XML, the output conforms to the W3C XSD schema. XML is a good method of moving data between application tiers.
The XMLDataDocument can use the XML services, such as XSL/T and XPath.

See Also
Concepts
ADO.NET DataSet for Host Integration Server
Other Resources
Managed Provider Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx

OLE DB Providers Programmer's Guides
This section of the Host Integration Server 2009 software development kit (SDK) provides information about using the OLE DB
providers for AS/400, VSAM, and DB2.

For more information about OLE DB providers, see the Data Access section of the Operations guide.

This section contains:

OLE DB Provider for AS/400 and VSAM Programmer's Guide

OLE DB Provider for DB2 Programmer's Guide

ADO Object, Method, Property, and Collection Support for AS/400, VSAM and DB2

https://msdn.microsoft.com/en-us/library/aa704865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744762(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745193(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745238(v=bts.10).aspx

OLE DB Provider for AS/400 and VSAM Programmer's Guide
The Microsoft® OLE DB Provider for AS/400 and VSAM enables you to directly access record-level data in mainframe VSAM,
partitioned data sets (PDSs), and midrange OS/400 files from within an OLE-aware application. The object linking and
embedding database (OLE DB) is a standard set of interfaces that provide heterogeneous access to disparate sources of
information located anywhere—file systems, e-mail folders, and databases. The OLE DB Provider for AS/400 and VSAM
combines the universal data access of OLE DB with the Record-Level Input/Output (RLIO) protocol of the IBM distributed data
management (DDM) architecture.

DDM is a set of rules for distributing or extending the data management from one computer to another, such as from a
mainframe to an AS/400 computer, or from one of these host computers to a server computer. By combining the OLE DB and
DDM architectures, Microsoft enables organizations to preserve their investments in an existing data management
infrastructure, while extending universal data access to all enterprise-wide data sources.

For API references and other technical information about the OLE DB provider, see the
OLE DB Providers Programmer's Reference section of the SDK.

For more information about using the OLE DB Provider for AS/400 and VASM, see OLE DB Provider for AS/400 and VSAM in
the Operations guide.

In This Section

Goals of the OLE DB Provider for AS/400 and VSAM

OLE DB Environment

DDM Record-Level Access

Platforms Supported by the OLE DB Provider for AS/400 and VSAM

Indexed File Access

File and Record Attributes

Configuring the OLE DB Provider for AS/400 and VSAM

Programming Considerations When Using the OLE DB Provider for AS/400 and VSAM

Host Column Description

Conversion from Host to OLE DB Data Types

Character Code Conversions

Using Package Designer with the OLE DB Provider for AS/400 and VASM

See Also
Other Resources
Data Integration Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770460(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771863(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745821(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746073(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705760(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746049(v=bts.10).aspx

Goals of the OLE DB Provider for AS/400 and VSAM
For the majority of enterprises today, much mission-critical information resides on IBM mainframe and AS/400 computers.
This information is stored in records on the OS/400 and VSAM file systems. This information is created, owned, and often
accessible by only host-based applications. In the mainframe environment, these applications include CICS and DB2; other
commercial applications; and a large number of custom applications written in COBOL, PL/I, and other languages. In the
AS/400 environment, these applications include primarily DB2 and commercial applications, plus a large number of custom
report program generator (RPG) applications. Not all of these data sources are SQL-accessible. Many of the host data stores
contain non-SQL-accessible data that is owned by something other than a traditional relational database management system
(RDBMS).

These same enterprises rely on vast networks of personal computers to enable their users to achieve business goals. End users
invariably rely on network e-mail, Microsoft Windows productivity applications such as Microsoft Office, and personal
database programs such as Microsoft Access, to accomplish their daily tasks. It is essential for these same users to incorporate
data stored on host systems into their regular correspondence, analysis, and reports.

Available methods of accessing host data do not provide the granular, record-level access required for cost-effective, more
secure, and meaningful integration of host and personal computer systems. In many cases, end users employ antiquated
means of data integration. These methods include copying and pasting data from a terminal emulation screen, retyping
information from host application reports, and importing text files containing comma-delimited values that use host EBCDIC-
to-computer ASCII file transfer. These methods are not efficient although widely used and are not supported by products from
independent software vendors (ISVs).

The challenge is how to provide direct record-level access to this valuable data without going through the host application.
Much of the renewed interest in improved access to host data sources is a result of the growth of local intranets, the use of the
Internet, and Web technology as a mechanism for delivering information. Fast and inexpensive methods of record-level access
are needed to deliver modern, three-tiered information systems during this era of cost-cutting and budget tightening.
Additional uses of this direct data access are specific queries and Web-based reporting.

It is common for corporate management to rethink host data storage and the appropriate software used to provide data
access. For many organizations, the answer to these issues is in rewriting the arguably outdated host-based business rules with
server-based, or even client-based, business logic.

The goal of the Microsoft OLE DB Provider for AS/400 and VSAM is to provide customers and solution providers with the
means to integrate desktop applications with this wealth of data residing on host computers.

OLE DB Environment
Three main roles are performed by software applications in an OLE DB environment:

OLE DB Consumer. The end-user or server-based program that uses (consumes) the OLE DB interfaces. An example is a
Web-based component that makes OLE DB calls to integrate host records with a Web-based report.

OLE DB Data Provider. A driver or other program that exposes OLE DB interfaces for use by consumer applications.
Data providers translate OLE DB interfaces to a language or commands that the target data source understands. An
example is the Microsoft® OLE DB Provider for AS/400 and VSAM, which translates OLE DB interfaces to distributed data
management (DDM) commands.

OLE DB Service Provider. An application that both uses (consumes) and exposes OLE DB interfaces. Service providers
typically act as proxies for the consumer, retrieving the data through the data provider and offering services to the
consumer by manipulating the target data. An example is a query-processing engine.

DDM Record-Level Access
The Microsoft® OLE DB Provider for AS/400 and VSAM provides record-oriented access to host files. There is no need to
perform bandwidth-intensive file transfers of entire host files to access data on the host.

The OLE DB interface provided by the OLE DB Provider for AS/400 and VSAM supports the following features:

Set attributes and a record description of a host file (column information).

Lock files and records.

Position to the first record or the last record in a file.

Navigate to the previous or next record in a file.

Seek to a record, based on an index.

Change records in a file.

Insert new records and delete records in a file.

Preserve file and record attributes.

The OLE DB Provider for AS/400 and VSAM is a source distributed data management (DDM) requester implementation that
can initiate DDM commands to be serviced by a remote host-based target DDM server. On the Microsoft® Windows
Server™ 2003 or Windows® 2000 operating system, the Microsoft DDM requester can run as a Windows service. This enables
the DDM service to integrate with other host applications using the IBM DDM protocol and DDM servers that are resident on
the host. Microsoft-based host software is not required. For more information, see
Platforms Supported by the OLE DB Provider for AS/400 and VSAM. IBM offers DDM servers for the most popular host
environments.

Providing users with direct record-level access reduces the development time to build and deploy new data integration
solutions. Accessing only the target records, as opposed to entire host files, helps ensure data integrity.

https://msdn.microsoft.com/en-us/library/aa770460(v=bts.10).aspx

Platforms Supported by the OLE DB Provider for AS/400 and
VSAM

On the mainframe platform, IBM offers a target distributed data management (DDM) server implementation in IBM Distributed
File Manager (DFM), a component of IBM Data Facility Storage Management Subsystem (DFSMS). The Microsoft OLE DB
Provider for AS/400 and VSAM requires DFSMS version 1 release 2 or later for MVS/ESA and OS/390 to support an SNA
LU 6.2 connection.

On midrange AS/400 computers, IBM has implemented target DDM servers directly in OS/400. The OLE DB Provider for
AS/400 and VSAM requires OS/400 Version 3 Release 2 or later to support an SNA LU 6.2 connection. The OLE DB Provider
for AS/400 and VSAM requires OS/400 Version 4 Release 2 or later to support a TCP/IP connection.

On the AS/400 platform, the OLE DB Provider for AS/400 and VSAM supports physical and logical files with an associated
external record description file. For specific limitations, see the AS/400 DDM User's Guide.

On the mainframe platform, the OLE DB Provider for AS/400 and VSAM supports the following data set types:

Sequential Access Method (SAM) data sets

Basic Sequential Access Method data sets (BSAM)

Queued Sequential Access Method data sets (QSAM)

Virtual Storage Access Method (VSAM) data sets

Entry-Sequenced Data Sets (ESDS)

Key-Sequenced Data Sets (KSDS)

Fixed-Length Relative Record Data Sets (RRDS)

Variable-Length Relative Record Data Sets (VRRDS)

Relative Record Data Set (RRDS)

VSAM Alternate Indexes for ESDS and KSDS data sets

Basic Partitioned Access Method (PDS) data sets

Partitioned Data Set Extended members (PDSE)

Partitioned data set (PDS) members

Read-only support for PDSE directories

Read-only support for PDS directories

The preceding data set types are supported by IBM DFM/MVS.

The following data set types are not supported by DFM/MVS and cannot be accessed using the OLE DB Provider for AS/400
and VSAM:

VSAM Linear Data Sets (LDS)

Generation Data Groups (GDG)

Generation Data Sets (GDS)

Basic Direct Access Method data sets (BDAM)

Indexed Sequential Access Method data sets (ISAM)

Sequential Data Striping data sets

OpenEdition MVS Hierarchical File System (HFS) files

Tape Media

All mainframe data sets accessible through IBM Distributed File Manager must be cataloged in an Intersystem communications
function (ICF) catalog and reside on direct access storage devices (DASD).

The OLE DB Provider for AS/400 and VSAM supplied with Host Integration Server 2009 supports the following OLE DB and
ADO versions:

OLE DB version 2.5. The Host Integration Server 2009 data access features require the run-time libraries for OLE DB
version 2.5. On Windows Server 2003 or Windows 2000, these OLE DB libraries are installed as part of the operating
system.

ADO version 2.5. The Host Integration Server data access features require the run-time libraries for ADO version 2.5. On
Windows Server 2003 or Windows 2000, these ADO libraries are installed as part of the operating system.

OLE DB version 2.0 or later and ADO version 2.0 or later are required to support indexed record access from an ADO consumer
application using the OLE DB Provider for AS/400 and VSAM. Indexed support through OLE DB is supported with OLE DB
versions 2.0 and later.

Indexed File Access
The Microsoft® OLE DB Provider for AS/400 and VSAM provides both sequential and indexed file access. Sequential file access
is provided for all supported file types on the Platforms Supported by the OLE DB Provider for AS/400 and VSAM.

Indexed file access is provided for the following host file types only:

Mainframe Virtual Storage Access Method (VSAM) data sets.

Key-Sequenced Data Sets (KSDS) only when the keys are unique.

Fixed-length Relative Record Data Sets (RRDS) only when the keys are unique.

Variable-length Relative Record Data Sets (VRRDS) only when the keys are unique.

AS/400 files.

Logical files.

Keyed physical files (externally described to the system).

OLE DB and ADO offer several interfaces that enable indexed file access.

The OLE DB Provider for AS/400 and VSAM supports integrated indexes based on the underlying rowset. OLE DB support for
indexed file access using the OLE DB Provider for AS/400 and VSAM is available using the IRowsetIndex, IViewFilter, and
IViewRowset interfaces.

For more information about indexes, see Chapter 8, "Indexes" and Chapter 16, "Integrated Indexes" in the OLE DB
Programmer's Reference. To obtain a list of available indexes in a target AS/400 library, a program can call the OLE DB
IDBSchemaRowset::GetRowset function of the Session object requesting a query type of DBSCHEMA_INDEXES.

ADO support for indexed file access using the OLE DB Provider for AS/400 and VSAM is available using the Find method, Filter
property, and Sort property on the ADO Recordset object. To obtain a list of available indexes in a target AS/400 library using
ADO, a program can call the OpenSchema method on the Connection object specifying a QueryType of adSchemaIndexes.

By default, the OLE DB Provider for AS/400 and VSAM uses a server-based cursor. This means that all indexed file access is
based on the cursor located over the host file and not a local computer copy of the host file. If you want to use the many client-
based cursor service providers available with the Microsoft® Data Access Components (MDAC), you must configure the
provider to use a client-based cursor. For example, a client-based cursor is required when using Remote Data Service (RDS)
and the Microsoft® Visual Studio® ADO data-bound controls. However, using these controls, an application can access the
host files for read-only purposes. If your application needs to access host files with an intent of both reading and writing, and
you require indexed file access, your application should use the OLE DB Provider for AS/400 and VSAM server-based cursor.

https://msdn.microsoft.com/en-us/library/aa770460(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx

File and Record Attributes
By definition, the record description is not part of the record I/O architecture in distributed data management (DDM).
Traditionally, applications must embed the record format as part of the application program. This creates a burden on the
application and is inconsistent with the existing computer-based data access standards, such as OLE DB and ODBC.

To solve this problem, the Microsoft® OLE DB Provider for AS/400 and VSAM uses an external host column description (HCD)
file stored on the computer that enables administrators to describe the host record format. At run time, the OLE DB Provider
for AS/400 and VSAM transparently converts the host data to computer data using the local HCD information. Before a user
program can view or open a VSAM file using the OLE DB Provider for AS/400 and VSAM, the user program must create a valid
record description file or entry for the target VSAM file.

The OLE DB Provider for AS/400 and VSAM includes a Microsoft Management Console (MMC) application designed to enable
administrators and developers to easily create these local record description files and the necessary registry settings for data
sources. The OLE DB DDM Management application makes it relatively easy to create HCD files without knowing the HCD file
format. The Host Column Description file format is documented in the Data Integration Programmer's Reference.

The conversion process occurs in two steps. The host data is converted from host EBCDIC to ASCII data by the DDM dynamic-
link library (DLL). The HCD file is used during this step to convert host data types to C data types, which are defined in ODBC
and based on the SQL data types defined in the ANSI/ISO SQL-92 standard. The second phase of this conversion occurs in the
SNAOLEDB DLL where these SQL C data types are converted to the defined OLE DB data types.

The use of an HCD file is not necessary to describe the record format for data stored in the AS/400 computer because the OLE
DB Provider for AS/400 and VSAM automatically detects that the target host system is an AS/400 and uses the appropriate
DDM commands to retrieve the record description. If the system administrator or the OLE DB application developer wants to
use an HCD file instead of retrieving the AS/400 record description, this behavior can be forced by setting the configuration of
the Host Column Description File property using Data Links.

https://msdn.microsoft.com/en-us/library/aa705519(v=bts.10).aspx

Configuring the OLE DB Provider for AS/400 and VSAM
Microsoft® Data Access Components (MDAC) includes Data Links, a generic method for managing and loading connections to
OLE DB data sources. Microsoft Data Links provide a uniform method of creating persistent OLE DB data source object
definitions stored in the form of universal data link (.udl) files. The Microsoft® OLE DB Provider for AS/400 and VSAM
normally uses Data Links and .udl files for loading and configuring data sources.

Data Links provide a flexible method for finding and saving connection information to OLE DB data sources.

The Data Source Wizard in the new Microsoft Data Access Tool can help to define .udl files. OLE DB consumer applications,
such as Data Transformation Services in Microsoft® SQL Server™ can then use the .udl file to connect to IBM data sources,
such as DB2 and the mainframe file system.

To use Microsoft OLE DB Provider for AS/400 and VSAM with an OLE DB consumer application, the user must either create a
Microsoft data link (.udl) file and call this from the application, or call the OLE DB provider from within the application using a
connection string that includes the provider name and other necessary parameters. If an application accesses VSAM data sets,
after configuring a data link, a host data description must also be configured using the Data Descriptions tool.

This section contains:

Creating Data Links for the OLE DB Provider for AS/400 and VSAM

Configuring Data Links for the OLE DB Provider for AS/400 and VSAM

Configuring Data Descriptions

Converting Existing Data Sources

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705201(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771942(v=bts.10).aspx

Creating Data Links for the OLE DB Provider for AS/400 and
VSAM

Data source information must be configured for each AS/400 or mainframe system data source object that is to be accessed
using the OLE DB provider. The default parameters for the OLE DB provider are used as the default values for data sources
when these parameters are not configured for each data source.

Microsoft Data Links, a core element of Microsoft Data Access Components (MDAC), provide a uniform method for creating
file-persistent OLE DB data source object definitions in the form of universal data link (.udl) files.

The Data Source Wizard in the new Microsoft Data Access Tool can help to define .udl files. OLE DB consumer applications,
such as Data Transformation Services in Microsoft SQL Server can then use the .udl file to connect to IBM data sources, such as
DB2 and the mainframe file system.

Applications, such as the RowsetViewer sample included with the Microsoft Data Access SDK and the MSDN Platform SDK, can
open created .udl files and pass the stored initialization string to the OLE DB Provider for AS/400 and VSAM at run time.

Creating New Data Links for the OLE DB Provider for AS/400 and VSAM

You create new Data Links using the Data Source Wizard from the Data Access Tool.

Browsing Data Links for the OLE DB Provider for AS/400 and VSAM

You can browse data sources using the Data Source Browser window in the Data Access Tool.

To find the physical location of the .udl file associated with a data source, right-click the data source and select Locate from the
context menu. Windows Explorer appears which will display the location of the file.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

Configuring Data Links for the OLE DB Provider for AS/400 and
VSAM

To edit the properties of a Data Link file, browse to that file in Windows Explorer, and right-click the file and then click Data
Link Properties. The Data Link Properties dialog box appears with several property tabs:

General

Security

Summary

Provider

Connection

Advanced

All

The General, Security, and Summary tabs provide access to general file information for the .udl file that is available for other
files and is not related to the Data Link properties. This information includes file location, file type, file size, file dates, file
security permissions for access, and descriptive summary information (description and origin properties and values such as
title, subject, and author) for the .udl file. The General tab has a text box with the name of the Data Link. This file name must
end with the .udl extension if the file is to be recognized as a Data Link file. Note that the Security and Summary tabs are
available on NTFS files systems, and not on the older FAT file systems.

This section contains:

Provider

Connection

Advanced

All

https://msdn.microsoft.com/en-us/library/aa754303(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705787(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771989(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754426(v=bts.10).aspx

Provider
 

The Provider tab enables you to select the OLE DB provider (the provider name string) to be used in this .udl file from a list of
possible OLE DB providers. Select the Microsoft OLE DB Provider for AS/400 and VSAM. The parameters and fields displayed
by the remaining tabs (Connection, Advanced, and All) are determined by the OLE DB provider that is selected.

Connection
The Connection tab enables you to configure the basic properties required to connect to a data source. For the Microsoft OLE
DB Provider for AS/400 and VSAM, the connection properties include the following values.

Pr
op
ert
y

Description

Da
ta
So
urc
e

This is an optional parameter that can be used to describe the data source.

Ne
tw
ork

This drop-down list box enables you to select the type of network connection to be used. The allowable options are TCP/I
P Connection or SNA Connection.

If TCP/IP Connection is selected, click More Options, to open a dialog box for configuring TCP/IP network settings. The
parameters you can configure include the IP address of the remote host (or a hostname alias for this computer) and the N
etwork Port (TCP/IP port) used for communication with the host. The default value for the Network Port is 446. The IP addr
ess of the host has no default value.

If SNA Connection is selected (using LU 6.2), click More Options to open a dialog box for configuring SNA network setti
ngs. The parameters you can configure include: the APPC local LU alias, the APPC remote LU alias, and the APPC mode use
d for communication with the host. The default value for the APPC mode normally defaults to QPCSUPP. The local and re
mote LU alias fields do not have default values.

 This button enables using the Host Integration Security features providing a to access this OLE DB data source.

When this button is selected, the User name and Password fields are dimmed and become inaccessible. The user name a
nd password fields are set based on the Windows Server 2003 or Windows 2000 logon values.

When this button is not selected, the User name and Password fields must normally contain appropriate values to access
data sources on hosts.

Us
er
na
me

A valid user name and password are normally required to access data sources on hosts. These values are case-sensitive. T
he user must click the button that requires a specific user name and password to be entered.

Pa
ss
wo
rd

A valid user name and password are normally required to access data sources on hosts. These values are case-sensitive. T
he Blank password check box is only applicable for a Test Connection.

To enter a password, the user needs to clear the Blank password check box if it is selected. If Blank password is selected,
a Test Connection with a blank password does not cause the OLE DB provider to prompt for a password.

Optionally, the user can choose to save the password in the .udl file by selecting the Allow saving password check box. U
sers and administrators should be warned that this option saves the authentication information (password) in plain text wi
thin the .udl file.

Lo
cat
ion

The remote database name used for connecting to OS/400 systems. In DB2/400, this property is referred to as RDBNAM.

This parameter is not used when connecting to mainframe systems.

It is possible to connect using a specific user name and password defined on the host system or use the feature (often referred
to as Windows integrated security). If a specific user name and password is to be used, this information may need to be saved
into the .udl file. The user name and password are saved in plain text in the .udl file. For security reasons in these cases, it is
imperative that the .udl file be protected with an access control list (ACL) that restricts access to only authorized users. Saving
the user name and password in the data link also forces this .udl file to be updated whenever the password associated with the
username is changed. So for a variety of reasons, specifying a user name and password is not the preferred authentication
option. Using the Windows integrated security option is the preferred method for authentication.

The Connection tab also includes a Test Connection button that can be used to test the connection parameters. The
connection can only be tested after all of the required parameters are entered. When you click this button, an APPC session or
a TCP/IP session attempts to be established to the host using the OLE DB Provider for AS/400 and VSAM.

Advanced
The Advanced tab enables you to set the network protection level and access permissions. You can set the protection level
from the list box of allowable values. Access permissions are set by selecting the appropriate check boxes. For the Microsoft
OLE DB Provider for AS/400 and VSAM, these properties include the values listed in the following table.

Prop
erty

Description

Host
CCSI
D

The character code set identifier (CCSID) matching the column data as represented on the remote host computer. The C
CSID property is required when processing binary data as character data. Unless the Process Binary as Character value is
set to true, character data is converted based on the column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

This parameter is equivalent to the DBPROP_SNAOLEDB_HOSTCCSID OLE DB property ID.

PC C
ode
Page

The PC Code Page parameter indicates the code page to be used on the personal computer for character code conversio
n. This parameter is required when processing binary data as character data. Unless the Process Binary as Character che
ck box is selected (value is set to true), character data is converted based on the default ANSI code page configured in Wi
ndows.

This parameter defaults to Latin 1 (1252).

This parameter is equivalent to the DBPROP_SNAOLEDB_PCCODEPAGE OLE DB property ID.

Read
only

When the Read-only parameter is selected in the Advanced tab, the OLE DB Provider for AS/400 and VSAM creates a re
ad-only data source by setting the Mode parameter to Read (DB_MODE_READ). A user has read access to files and cann
ot do update operations.

Repa
ir Ho
st Ke
ys

This parameter provides for repair of invalid key offsets received from OS/400 when keys have been defined using the
DDS "RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values set in t
he registry.

This parameter defaults to false.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

All
The All tab allows users to configure essentially all of the properties for the data source except for the OLE DB provider. The
properties available in the All tab include properties that can be configured using the Connection and Advanced tabs as well
as optional detailed properties used to connect to a data source. Some of the properties in the All tab are required.

These properties on the All tab may be edited by selecting a property from the list displayed and selecting Edit Value. This
button invokes a dialog box for the specific property containing a Property Description describing the property and a Property
Value box for making changes.

For the Microsoft OLE DB Provider for AS/400 and VSAM, these properties include the following values.

Prope
rty

Description

Affilia
te Ap
plicati
on

This property is only used when is enabled. It provides the application name to use when retrieving host credentials fro
m the database.

APPC
Local
LU Ali
as

The name of the local LU alias configured on the Host Integration Server 2009 computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_LOCALLU OLE DB property ID.

APPC
Mode
Name

When LU 6.2 (SNA) is selected for the Network Transport Library, this field is the APPC mode and must be set to a valu
e that matches the host configuration and Host Integration Server computer configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security
), #IBMRDB (DB2 remote database access), and custom modes.

The following modes that support bidirectional LZ89 compression are also legal: #INTERC (interactive with compressio
n), INTERCS (interactive with compression and minimal routing security), BATCHC (batch with compression), and BATC
HCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

This parameter is equivalent to the DBPROP_SNAOLEDB_APPCMODE OLE DB property ID.

APPC
Remo
te LU
Alias

When LU 6.2 (SNA) is selected for the Network Transport Library, this field is the name of the remote LU alias configur
ed in the Host Integration Server computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_REMOTELU OLE DB property ID.

Cache
Authe
nticati
on

This parameter determines whether the OLE DB provider caches authentication information such as a password in an i
nternal cache.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is not currently supported by the OLE DB provider and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_CACHE_AUTHINFO OLE DB property ID.

Conne
ct Tim
eout

The amount of time (in seconds) to wait for initialization to complete. This parameter is not currently supported by the
OLE DB provider and defaults to 0.

This parameter is equivalent to the DBPROP_INIT_TIMEOUT OLE DB property ID.

Data S
ource

The data source is an optional parameter that can be used to describe the data source.

This parameter is equivalent to the DBPROP_INIT_DATASOURCE OLE DB property ID.

Defau
lt Libr
ary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when c
onnecting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

Encry
pt Pas
sword

This parameter determines whether special security mechanisms are used to ensure password privacy.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is not currently supported by the OLE DB provider and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_ENCRYPT_PASSWORD OLE DB property ID.

Exten
ded Pr
operti
es

This parameter is a string containing provider-specific, extended connection information. Properties passed through thi
s parameter should be delimited by semicolons and will be interpreted by the provider's underlying network client.

The use of this property implies that the OLE DB consumer knows how this string is interpreted and used by the OLE D
B provider. This parameter should be used only for provider-specific connection information that cannot be explicitly d
escribed through the other property parameters.

This parameter is equivalent to the DBPROP_INIT_PROVIDERSTRING OLE DB property ID.

Host C
CSID

The character code set identifier (CCSID) matching the data as represented on the host. The CCSID property is required
when processing binary data as character data. Unless the Process Binary as Character value is set, character data is
converted based on the host column CCSID and default ANSI code page.

This parameter defaults to U.S./Canada (37).

This parameter is equivalent to the DBPROP_SNAOLEDB_HOSTCCSID OLE DB property ID.

Host C
olum
n Des
cripti
on Fil
e

The fully qualified file name of the distributed data management (DDM) Host Column Description (HCD) file. This para
meter can be a UNC string up to 256 characters in length. A path does not need to be included in the name if the HCD f
ile is located in the system directory below where the Host Integration Server or Client software was installed. This par
ameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

Imper
sonati
on Le
vel

The level of impersonation that the server is allowed to use when impersonating the client. This property applies only t
o network connections other than Remote Procedure Call (RPC) connections. These impersonation levels are similar to
those provided by RPC. The values of this property correspond directly to the levels of impersonation that can be speci
fied for authenticated RPC connections, but can be applied to connections other than authenticated RPC.

This parameter can be set to one of the following values:

Anonymous—The client is anonymous to the server. The server process cannot obtain identification information abou
t the client and cannot impersonate the client.

Delegate—The process can impersonate the client's security context while acting on behalf of the client. The server pr
ocess can also make outgoing calls to other servers while acting on behalf of the client.

Identity—The server can obtain the client's identity. The server can impersonate the client for access control list (ACL)
checking, but cannot access system objects as the client.

Impersonate—The server process can impersonate the client's security context while acting on behalf of the client. Thi
s information is obtained when the connection is established, and not on every call.

The value of this property is selected from the drop-down list box.

This parameter defaults to Impersonate.

This parameter is equivalent to the DBPROP_INIT_IMPERSONATION_LEVEL OLE DB property ID.

https://msdn.microsoft.com/en-us/library/aa705519(v=bts.10).aspx

Integr
ated S
ecurit
y

This parameter is a string containing the name of the authentication service used by the server to identify the user usin
g the identity provided by an authentication domain. For example, for Microsoft Windows Server 2003 or Windows 20
00 Integrated Security, this is "SSPI" (for Security Support Provider Interface). If this parameter is a null pointer, the def
ault authentication service should be used. When this property is used, no other DBPROP_AUTH* properties are neede
d and, if provided, their values are ignored.

This parameter is equivalent to the DBPROP_AUTH_INTEGRATED OLE DB property ID.

Locale
Identi
fier

This parameter specifies the locale to be used. OLE DB Provider for AS/400 and VSAM does not support this parameter
and defaults to 437.

This parameter is equivalent to the DBPROP_INIT_LCID OLE DB property ID.

Locati
on

The remote database name used for connecting to OS/400 systems. In DB2/400, this property is referred to as RDBNA
M. This parameter is not used when connecting to mainframe systems.

This parameter is equivalent to the DBPROP_INIT_LOCATION OLE DB property ID.

Mask
Passw
ord

This parameter indicates whether the password should be sent to the data source or enumerator in a masked form.

The value of this property (true or false) is selected from the drop-down list box.

The OLE DB provider does not support this parameter and defaults to false.

This parameter is equivalent to the DBPROP_AUTH_MASK_PASSWORD OLE DB property ID.

Mode After a connection is established, this parameter represents a bitmask of the access permissions that will be applied to
the data file. As implemented by the OLE DB Provider for AS/400 and VSAM, access permissions apply to host file lock
s and do not apply to record locks.

The allowable values include the following: Read, ReadWrite, Share Deny None, Share Deny Read, Share Deny Write, S
hare Exclusive, and Write. This parameter can be a combination of zero or more of the following:

DB_MODE_READ—Read-only.

DB_MODE_WRITE—Write-only.

DB_MODE_READWRITE—Read/write (DB_MODE_READ | DB_MODE_WRITE).

DB_MODE_SHARE_DENY_READ—Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE—Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE—Prevents others from opening in read/write mode (DB_MODE_SHARE_DENY_READ |
DB_MODE_SHARE_DENY_WRITE).

DB_MODE_SHARE_DENY_NONE—Neither read nor write access can be denied to others.

This parameter is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Netw
ork A
ddress

When TCP/IP has been selected for the Network Transport Library, this parameter is used to locate the target host com
puter. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. T
he network address is required when connecting through TCP/IP.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETADDRESS OLE DB property ID.

Netw
ork Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is used to locate the target DDM ser
vice access port when connecting through TCP/IP. This parameter represents the TCP/IP port used for communication
with the DDM service on the host. The default value is TCP/IP port 446.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETPORT OLE DB property ID.

Netw
ork Tr
anspo
rt Libr
ary

This parameter, which represents the dynamic-link library used for transport, designates whether the provider connect
s through SNA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCPIP or SNA.

If TCPIP is selected, values for Network Address and Network Port are required. The OLE DB Provider for AS/400 and V
SAM does not support TCP/IP connectivity to the mainframe.

If SNA is selected, values for APPC Local LU Alias, APPC Mode Name, and APPC Remote LU Alias are required.

The value of this property (SNA or TCPIP) is selected from the drop-down list box.

This value defaults to SNA.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETTYPE OLE DB property ID.

Passw
ord

A valid user name and password are normally required to access data sources on hosts. The password is case-sensitive
and is shown as asterisks in this dialog box for security purposes.

Optionally, you can choose to save the password in the .udl file by selecting the Allow saving password check box. Us
ers and administrators should be warned that this option persists the authentication information in plain text within th
e .udl file.

This parameter is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

PC Co
de Pa
ge

Indicates the code page used for character code conversion. This property is required when processing binary data as c
haracter data. Unless the Process Binary as Character value is set, character data is converted based on the default A
NSI code page configured in the Windows operating system.

If this parameter is set to Binary or 65535, no character code conversions takes place. This parameter defaults to Latin
1 (1252).

This parameter is equivalent to the DBPROP_SNAOLEDB_PCCODEPAGE OLE DB property ID.

Persis
t Secu
rity In
fo

This parameter indicates whether the data source object is allowed to persist sensitive authentication information such
as a password along with other authentication information.

Optionally, a user can choose to save the password in the .udl file by selecting the Allow saving password check box.
Users and administrators should be warned that this option persists the authentication information in plain text within
the .udl file.

The value of this property (true or false) is selected from the drop-down list box.

This parameter defaults to false.

This parameter is equivalent to the DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO OLE DB property ID.

Proce
ss Bin
ary as
Chara
cter

This parameter indicates whether to process binary fields (CCSID of 65535) as character data type fields on a per data
source basis. The Host CCSID and PC Code Page values are required input parameters when this parameter is true.

The value of this property (true or false) is selected from the drop-down list box.

The default for this parameter is false; do not process binary fields as character fields.

This parameter is equivalent to the DBPROP_SNAOLEDB_BINASCHAR OLE DB property ID.

Protec
tion L
evel

The level of protection of data sent between client and server. The values of this property correspond directly to the lev
els of protection that can be specified for authenticated RPC connections. This parameter can be set to one of the follo
wing values:

DB_PROT_LEVEL_NONE—Performs no authentication of data sent to the server.

DB_PROT_LEVEL_CONNECT—Authenticates only when the client establishes the connection with the server.

DB_PROT_LEVEL_CALL—Authenticates the source of the data at the beginning of each request from the client to the se
rver.

DB_PROT_LEVEL_PKT—Authenticates that all data received is from the client.

DB_PROT_LEVEL_PKT_INTEGRITY—Authenticates all data received is from the client and that it has not been changed i
n transit.

DB_PROT_LEVEL_PKT_PRIVACY—Authenticates all data received is from the client, that it has not been changed in tran
sit, and protects the privacy of the data by encrypting it.

The value of this property is selected from the drop-down list box.

This parameter is not supported by the OLE DB Provider for AS/400 and VSAM and defaults to the connect level of pro
tection.

This parameter is equivalent to the DBPROP_INIT_PROTECTION_LEVEL OLE DB property ID.

Read
only

When the Read only parameter is selected in the Advanced tab, the OLE DB Provider for AS/400 and VSAM creates a r
ead-only data source by setting the Mode parameter to Read (DB_MODE_READ). A user has read access to files and ca
nnot do update operations.

Repair
Host K
eys

This parameter provides for repair of invalid key offsets received from OS/400 when keys have been defined using the
DDS "RENAME" clause. This parameter indicates whether the OLE DB provider should repair any host key values set in
the registry.

This parameter defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Strict
Valida
tion

This parameter indicates whether strict validation should be used and defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This parameter is equivalent to the DBPROP_SNAOLEDB_STRICTVAL OLE DB property ID.

User I
D

A valid user name is normally required to access data sources on hosts. This value is case-sensitive.

This parameter is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

Configuring Data Descriptions
You use the Data Access Tool to describe the host data file format for mainframe access. Use of the host column description
(HCD) files is not required for AS/400 files because by default, the data file format is retrieved automatically from the host.

The data descriptions are stored in a local Host Column Description (HCD) file for each data source.

The following table provides the general parameters or attributes that can be configured describing each column in a data
description on the General property page.

General paramete
rs

Description

Name The character string that represents the name of the column. This parameter may be null.

Alias An optional character string that represents an alias label for the column string name. This parameter may
be null.

Comment An optional character string that represents a comment about the column. This attribute may be null.

The following table provides the data type parameters or attributes that can be configured describing each column in a data
description in the Host property page.

Host pa
rameter
s

Description

Type The data type on the host. The allowed data values for host data type are selected from a drop-down list box. (For allo
wed values, see Host Data Types.)

Length Length of the field in bytes. Depending on the selected host type, this parameter may not be editable.

Precisio
n

Total number of decimal digits in the column containing numeric data on the host. Depending on the selected host ty
pe, this parameter may not be editable.

The only numeric data types that require this information are the PACKED and ZONED data types. For these types, thi
s field cannot be null. It must contain a valid numeric value. For all other host types, this parameter is not editable.

Scale Number of decimal digits to the right of any decimal point for numeric data on the host. Depending on the selected h
ost type, this parameter may not be editable.

The only numeric data types that require this information are the PACKED and ZONED host data types. For these type
s, this field cannot be null. It must contain a valid numeric value. For all other host types, this parameter is not editabl
e.

CCSID The character code set identifier (CCSID) used on the host. The allowed data values for host CCSID are selected from
a drop-down list box.

This parameter defaults to the host CCSID configured for the OLE DB provider and is typically U.S./Canada (37).

The following table describes the parameters contained in the Local property page.

Local par
ameters

Description

Type Indicates the OLE DB data type on the local computer. The allowed data values for the local data type are selected f
rom a drop-down list box. (For allowed values, see Local OLE DB Data Types.)

The OLE DB provider limits the maximum length character field that can be accessed on an AS/400 computer to 32,745. On
mainframes, a limitation of the IBM DFM is that SAM data sets and PDSE members are inaccessible if the fixed record length is
greater than 32,760 or variable record lengths are greater than 32,756. DFM also limits all VSAM data sets on a mainframe to
have a maximum record length no greater than 32,760. If you attempt to access a character field greater than these lengths on

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705519(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754767(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746015(v=bts.10).aspx

an AS/400 or a mainframe, the attempt will fail and can have unpredictable results.

The CCSID setting used by the OLE DB provider must be set to match the CCSID actually used on the host—otherwise, data
loss will occur. Some AS/400 systems default to a CCSID of 937 for enabling double-byte character sets (DBCS).

This section contains:

Host Data Types

Local OLE DB Data Types

https://msdn.microsoft.com/en-us/library/aa754767(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746015(v=bts.10).aspx

Host Data Types
The Host Type parameter represents the data type used for this column on the host. The allowed values for Host Type that
can be selected from the drop-down list box are listed in the following table.

Host Type Description
Binary Fixed-length binary data (no character conversion). The length must be specified for this data type.

Character Fixed-length character data. The length must be specified for this data type.

Date The date represented as character data in the format yyyy-mm-dd that fits into 10 bytes.

DBCS Fixed-length character data that can contain only DBCS data. The length must be specified for this data type.

DCBS – Mi
xed Either

Fixed-length character data that can contain either DBCS or alphanumeric data. The length must be specified for th
is data type.

DCBS – Mi
xed Open

Fixed-length character data that can contain both DBCS and alphanumeric data. DBCS data is distinguished from al
phanumeric data with SHIFT+CTRL characters. The length must be specified for this data type.

DBCS – Va
riable

Variable-length character data with a prefix of 2 bytes for length that contains only DBCS data. The maximum poss
ible length for the column containing this data type must be specified.

DCBS – Va
riable Mixe
d Either

Variable-length character data with a prefix of 2 bytes for length that can contain either DBCS or alphanumeric dat
a. The maximum possible length for the column containing this data type must be specified.

DCBS – Va
riable Mixe
d Open

Variable-length character data with a prefix of 2 bytes for length that can contain both DBCS and alphanumeric dat
a. DBCS data is distinguished from alphanumeric data with SHIFT+CTRL characters. The maximum possible length
for the column containing this data type must be specified.

Double Floating-point data that fits in 8 bytes (64 bits).

Long Integer data that fits in 4 bytes (32 bits).

Packed Packed decimal numeric data where the precision and scale are exactly as specified.

Short Integer data that fits in 2 bytes (16 bits).

Single Floating-point data that fits in 4 bytes (32 bits).

Time The time represented as character data in the format hh:mm:ss that fits into 8 bytes.

Time Stam
p

Time stamp represented as characters in the format yyyy-mm-dd hh:mm:ss.ffffff that fits into 19 bytes.

Variable Bi
nary

Variable-length binary data represented as an unsigned character array with a prefix of 2 bytes for length. The max
imum possible length for the column containing this data type must be specified.

Variable C
haracter

Variable-length character data with a prefix of 2 bytes for length. The maximum possible length for the column co
ntaining this data type must be specified.

Zoned Zoned decimal numeric data where the precision and scale are exactly as specified.

Note
The floating-point data format assumed by the OLE DB Provider for AS/400 and VSAM depends on the host. For AS/400, the
host floating-point data format is assumed to be IEEE. On mainframe hosts, floating-point data types are assumed to be in IB
M floating-point formats. Because OLE DB supports the IEEE floating-point format, data conversion errors can occur when co
nverting the extreme values of VSAM floating-point data in IBM format to IEEE floating-point data by the OLE DB provider. Th
ese conversion errors occur because the default IBM floating-point formats and the IEEE floating-point format use a different
number of bits for the mantissa and exponent when representing a floating-point number.

Local OLE DB Data Types
The Local Type represents the OLE DB data type used for this column on the computer. The OLE DB data types are defined in
the OLE DB specifications and #defines can be found in the Oledb.h file. The allowed values for Local Type that can be
selected from the drop-down list box are listed in the following table.

Host Type Description
DBTYPE_BYTES Fixed-length binary data represented as an unsigned char array.

DBTYPE_DBDATE The OLE DB DBDATE typedef struct as defined in the Oledb.h file.

DBTYPE_DBTIME The OLE DB DBTIME typedef as defined in the Oledb.h file.

DBTYPE_DBTIMESTAMP The OLE DB DBTIMESTAMP typedef struct as defined in the Oledb.h file.

DBTYPE_DECIMAL The OLE DB DECIMAL typedef struct as defined in the Oledb.h file.

DBTYPE_I2 Integer data stored in 2 bytes (16 bits).

DBTYPE_I4 Integer data stored in 4 bytes (32 bits).

DBTYPE_NUMERIC The OLE DB NUMERIC typedef struct as defined in the Oledb.h file.

DBTYPE_R4 Single precision IEEE floating-point data stored in 4 bytes (32 bits).

DBTYPE_R8 Double precision floating-point data stored in 8 bytes (64 bits).

DBTYPE_STR Fixed and variable length character data.

Converting Existing Data Sources
The OLE DB management console that was previously used in SNA Server 4.0 and SNA Server 4.0 with Service Pack 1 (SP1) for
configuring OLE DB Provider for AS/400 and VSAM data sources has been removed and replaced by Microsoft Data Links and
the Data Access Tool. Microsoft Data Links is a component of Microsoft Data Access Components (MDAC) 2.5. On Windows
Server 2003 or Windows 2000, MDAC 2.5 is installed as part of the operating system.

Existing registry-based OLE DB Provider for AS/400 and VSAM data sources that were created in SNA Server 4.0 and SNA
Server 4.0 SP1 can be converted to .udl files using the Reg2udl tool supplied with Host Integration Server. The Reg2Udl tool is
not installed as part of Host Integration Server, but is located on the Host Integration Server 2009 CD in the
\Options\Maintenance folder.

When a duplicate .udl file is present in the destination folder, the Reg2udl tool will increment the file name by 1 (Data.udl will
become Datat1.udl, for example). This may cause existing applications to fail because the OLE DB Provider for AS/400 and
VSAM is looking for the existing name (Data.udl).

Manual conversion of registry-based data sources to .udl files may be necessary in some cases when Setup for Host
Integration Server 2009 is used. A version of the Reg2udl tool (for Intel) can be found in the \Support\Utilities folder on the
Host Integration Server 2009 CD.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

Programming Considerations When Using the OLE DB Provider
for AS/400 and VSAM

All the Microsoft® OLE DB objects exposed by the Microsoft® OLE DB Provider for AS/400 and VSAM support aggregation.
Each OLE DB object has two classes, one that delegates its IUnknown calls and one that controls the object as a whole.

The apartment-threading model is supported, allowing multiple threads to access the objects safely. This is the only threading
model supported.

When working with the Data Environment (DE) commands within Microsoft® Visual Studio® 6.0, you must use a period (.) as
a delimiter when specifying the AS/400 Library or File path. For example, the following is valid syntax when opening the
AUTHORS physical file in the PUBS library on an AS/400:

To use the ADO Recordset Findmethod or the ADO Filter property, an AS/400 logical file, an AS/400 keyed physical file, a
mainframe KSDS file with a unique key, or a mainframe RRDS file with a unique key must be used. If this method is used on an
AS/400 nonkeyed physical file or any other mainframe file type, this method fails.

When using RRDS files, the Find method fails when a search is executed using a column name. For example, the following
Microsoft® Visual Basic® code will fail on an RRDS file with a column called Area:

The error description indicates that a bookmark is invalid.

RRDS files do not have an index based on a column name and the value of the column data, so the syntax to the preceding
ADO Find method call does not work for RRDS files. In a COBOL program designed to dynamically find a record in an RRDS
file, the record position would be passed. For example, for the 75th record in the file, a COBOL program would pass a value of
75. The COBOL program would then use the returned record number and the record length to calculate the position of the first
byte of the record in the file.

The SQL command parser of the Data Environment does not accept the forward slash (/) character. The OLE DB Provider for
AS/400 and VSAM automatically substitutes a forward slash in place of the period and passes the correctly formatted path to
your AS/400 computer.

When using the Data Environment with Microsoft Visual Basic 6.0, it is possible to get the following error when accessing the
OLE DB Provider for AS/400 and VSAM:

This error can occur after a data source has been configured for the OLE DB Provider for AS/400 and VSAM using the Data
Links property page and a command is added using the Data Environment where the command added is the following:

Using the Data Environment and selecting Run for this command can result in the preceding error. The Data Environment is
opening the file and then trying to open it a second time based on the command to execute without closing the first copy.
Depending upon the share options of the data set and the DBPROP_INIT_MODE property set for this data source, this error can
occur and the user can be locked out of the AS/400 or VSAM file.

The OLE DB Provider for AS/400 and VSAM does not support the following Microsoft® SQL Server™ features:

Replication

Distributed queries as a linked server

However, the provider does support Data Transformation Services (DTS), with the following limitations:

EXEC OPEN PUBS.AUTHORS

RecordSet.Find "Area > '1111'", 0, adSearchForward, adBookmarkFirst

"File is in use by another process. Unspecified error"

"EXEC OPEN filename"

https://msdn.microsoft.com/en-us/library/aa770809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx

1. Only bulk table copy (Import/Export) is available.

2. Only one data conversion layout (HCD map) per dataset.

Specifically, there is no support for converting nested records, such as COBOL OCCURS or REDEFINE.

3. DTS can connect to DFM (a component of IMB SMS and Tivoli), but only over a SNA LU6.2 network connection.

4. Due to the architecture of the OLE DB provider, the SNAOLEDB connection is slower than Host File Transfer ActiveX
control.

When operating on large VSAM files and only querying data on a subset of the records, using the Filter property is not
desirable because of the performance impact. The entire VSAM file is transferred to the client for filtering. A better solution is
to use the server cursor engine and the Find method.

The syntax supported by the OLE DB Provider for AS/400 and VSAM for command text is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 using a 5250 terminal session. For a detailed list of possible commands, see
the OS/400 CL Reference for your platform.

The syntax supported by the OLE DB Provider for AS/400 and VSAM to open a rowset (table) using command text is as follows:

where FileName represents one of the following host file naming conventions listed in the following table.

Host file type File naming convention

VSAM Data Sets DATASETNAME.FILENAME

Partitioned data sets (PDSs) DATASETNAME.FILENAME(MEMBER)

OS/400 Files LIBRARY/FILE

OS/400 Files LIBRARY/FILENAME

OS/400 File Members LIBRARY/FILE(MEMBER)

OS/400 File Members LIBRARY.FILENAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double
quotes. For example, if the member name is NAMES.DAT, the proper syntax used to open a rowset using command text is as
follows:

The distributed queries feature of SQL Server is sometimes referred to as the Distributed Query Processor (DQP).

The AS/400 BIGINT data type is not supported in this release.

This section contains:

Record Access and Data Conversion

EXEC COMMAND DDMCmd

EXEC OPEN FileName

EXEC OPEN LIBRARY/FILE("NAMES.DAT")

https://msdn.microsoft.com/en-us/library/aa770957(v=bts.10).aspx

Record Locking

Client Cursor Engines Using the OLE DB Provider for AS/400 and VSAM

Error Codes Returned by the OLE DB Provider for AS/400 and VSAM

https://msdn.microsoft.com/en-us/library/aa770917(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771080(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771251(v=bts.10).aspx

Record Access and Data Conversion
The design of the OLE DB APIs is similar to the APIs provided by ODBC and other ISAM APIs. The APIs are handle-based. After
opening a file, the application can determine the buffer size required to store a row, use the cursor APIs to move, and
optionally retrieve one or more rows of data using the row-level binding.

Data is converted to default C data types as defined in ODBC, as illustrated in the following table.

Host data type Default C data type
Binary unsigned char binary[]

Character char string[]

Date (in character format) date struct

Double Double

Long Int

Packed unsigned char number[]

Short Short

Single Float

Time (in character format) time struct

Time Stamp (in character format) timestamp struct

Variable Binary unsigned char binary[]

Variable Character char string[]

Zoned unsigned char number[]

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example). However, truncation and conversion errors can occur that will not be reported by the OLE DB
Provider for AS/400 and VSAM.

The OLE DB Provider for AS/400 and VSAM has a number of other limitations:

Positive signed floating-point values cannot be read from ZONED DECIMAL fields.

No floating point values can be inserted into ZONED DECIMAL fields.

No values can be inserted into single-precision FLOATING POINT fields.

Positive signed floating-point values cannot be inserted into PACKED DECIMAL fields.

The ADO Find method fails to locate the first record when the key is multiple columns and the first column is a
VARCHAR or TIME data type.

You can use the OLE DB Provider for AS/400 and VSAM to access a System/36 computer. However, the automatic mapping
from host to client does not occur correctly when you attempt to access the System/36 host. Instead, you must manually map
the data types using a host column description (HCD) file. The following table indicates the data types you must map to when
accessing a System/36 computer.

Host data t
ype

OLE DB data t
ype

Comments

Character DBTYPE_STR Null-terminated ASCII character string.

Zoned DBTYPE_STR The NUMERIC typedef structure defined in OLEDB.H. This is an exact numeric value with a fixed p
recision and fixed scale.

Record Locking
 

Distributed data management (DDM) supports record locks so that a requester can perform intended operations on a record
without interference from concurrent users. Record locks are used only when the requester opens a file with intent to update
the file and specifies that the file is to be shared with another user. Two types of record locks are supported. Record locks are
handled automatically by the Microsoft OLE DB Provider for AS/400 and VSAM whenever users call IRowsetChange::SetData
(in immediate mode) or IRowsetUpdate (in the delayed mode). The OLE DB Provider for AS/400 and VSAM locks the record,
updates the record, and then releases the lock.

Client Cursor Engines Using the OLE DB Provider for AS/400
and VSAM

The Microsoft Data Access Components (MDAC) supports the option of a client cursor engine. This feature is implemented as
part of OLE DB, ADO, and Remote Data Services (RDS). When using ADO, a client cursor is enabled by setting the
CursorLocation property on the recordset to adUseClient.

The OLE DB Provider for AS/400 and VSAM does not support any updating capabilities when used with a client cursor engine.
If a client cursor engine is enabled using RDS or ADO, the OLE DB provider cannot be used to update data on the host. The
ADO recordset is treated as if it were read-only.

Error Codes Returned by the OLE DB Provider for AS/400 and
VSAM

The Microsoft OLE DB Provider for AS/400 and VSAM supports ranges of error codes, as listed in the following table.

Error code range Source Definition
1–100 Ddmapi.dll OLE DB error codes (see OLE DB Provider for AS/400 and VSAM).

256–511 Ddm.dll IBM DDM documentation.

512–higher Ddmwappc.dll Errors specific to the OLE DB Provider for AS/400 and VSAM.

An invalid local LU alias at connect time yields "Network Error" instead of "Invalid Local LU Alias" error. No error is reported
when connecting using a nonexistent default library value.

Host Column Description
The Microsoft® OLE DB Provider for AS/400 and VSAM uses a host column description (HCD) file to specify how data on the
host is converted by the OLE DB provider. These HCD files are not necessary when used with IBM AS/400 computers because
the host data format is automatically determined by the OLE DB provider. When used with AS/400 computers, the OLE DB
provider uses default conversions from host data type to OLE DB data types. However, HCD files can be used with AS/400
computers to override the host data format and specify a particular local OLE DB data type to which the data is to be converted.

The following topics describe the host column description file format in detail and provide an example of an HCD file for
illustration.

This section contains:

Host Column Description File Format

Host Column Description Attributes

Host Column Description Example File

https://msdn.microsoft.com/en-us/library/aa705689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705411(v=bts.10).aspx

Host Column Description File Format
The Microsoft® OLE DB Provider for AS/400 and VSAM uses a host column description (HCD) file to describe the format of
data files on IBM mainframes and dictate how the data in columns or fields in these files is to be converted by the OLE DB
provider. Host column description files can also be used for data on AS/400 computers to override the data format description
maintained by the AS/400 host.

The default naming convention for the HCD file is <data source>.hcd, where <data source> is the remote LU alias, and .hcd is
the file extension of the record description file. For example, if the remote LU alias configured on Host Integration Server is
named ABC01234, the host column description file would be named ABC01234.hcd as the default. Any name may be used for
an HCD file as long as the file extension is .hcd.

All the Virtual Storage Access Method (VSAM) files that have local record descriptions are listed in the [Files] section of the
record description file. Each file that is listed in the [Files] section has a record description section, and that section name is the
same as the file name. For example, a VSAM file named PUBS/AUTHORS has its record description saved in the
[PUBS/AUTHORS] section.

The first key of a record description section is the number of the columns for the file. The syntax is as follows:

Where <number of columns> is the actual number of columns described in the section. Each column of a file is described by
one key. The naming convention for the key name is as follows:

For example the ninth columns key is col9. Each key has an attribute list that contains eleven concatenated attributes that
describe the column. Attributes are separated by semicolons.

numcol=<number of columns>

col<column number>

Host Column Description Attributes
Attributes are shown in the following table.

Attribute Field number Description
Reserved 1 Always zero

Column Name 2 Character string

Alias 3 Character string

Precision 4 Numeric value

Scale 5 Numeric value

Length 6 Numeric value

Host Type 7 Keyword representing the host data type

OLE DB Type 8 Keyword representing the local OLE DB data type

Nullable 9 Y or N

CCSID 10 Numeric value

Title 11 Character string

Column Name
The Column Name attribute is the character string that represents the name of the column. This attribute may be null.

Alias
The Alias attribute is an optional character string that represents an alias label for the column string name. This attribute may
be null.

Precision
The Precision attribute is the total number of decimal digits in the column containing numeric data on the host. The only two
fixed-point numeric data types that require this information are the NUMERIC and DECIMAL keyword data types, and for
these types this field cannot be null and must contain a valid numeric value.

The precision must be set the same as the length attribute for CHAR and BINARY keyword data types, and set to zero for the
other types. (Note that under ODBC, the precision was also used to indicate the length of nonnumeric data types including
character, date, time, and binary data types.) Precision has no default value and must not be left null.

Scale
The Scale attribute is the number of decimal digits to the right of any decimal point for numeric data on the host. The only
two numeric data types that require this information are the NUMERIC and DECIMAL keyword data types, and for these
types this field cannot be null and must contain a valid numeric value. For other numeric (the SINGLE and DOUBLE
keywords, for example) and nonnumeric data types (binary, character, date, time, and timestamp), the scale should be set to
zero. This field must not be left null and must contain a numeric value.

Length
The Length attribute is the total length of the data on the host. This field must not be left empty and must contain a numeric
value.

Host Type
The Host Type attribute is a keyword value that represents the data type of the host data. This keyword value is based on
standard data types used on AS/400 and VSAM files. If no keyword is entered, this attribute defaults to the BINARY keyword.
The following table describes the allowable types for AS/400 and VSAM.

Host typ
e name

Keyw
ord

Comment

Binary BINAR
Y

Fixed-length binary data (no character code conversions). The length must be specified.

Character CHAR Fixed-length character data. The length must be specified.

Date DATE The date represented as character data in the format yyyy-mm-dd that fits in 10 bytes.

DBCS DBCS Fixed-length character data that can contain only DBCS data.

DCBS – M
ixed Either

MIXED
_EITHE
R

Fixed-length character data that can contain either DBCS or alphanumeric data.

DCBS – M
ixed Open

MIXED
_OPE
N

Fixed-length character data that can contain both DBCS and alphanumeric data. DBCS data is distinguishe
d from alphanumeric data with SHIFT+CTRL characters.

DBCS – V
ariable

VARD
BCS

Variable-length character data with a prefix of 2 bytes for length that contains only DBCS data. The maxim
um possible length for the column containing this data type must be specified.

DCBS – V
ariable Mi
xed Either

VARM
IXED_E
ITHER

Variable-length character data with a prefix of 2 bytes for length that can contain either DBCS or alphanu
meric data. The maximum possible length for the column containing this data type must be specified.

DCBS – V
ariable Mi
xed Open

VARM
IXED_
OPEN

Variable-length character data with a prefix of 2 bytes for length that can contain both DBCS and alphanu
meric data. DBCS data is distinguished from alphanumeric data with SHIFT+CTRL characters. The maximu
m possible length for the column containing this data type must be specified.

Double DOUB
LE

Floating-point data that fits in 8 bytes (64 bits).

Long LONG Integer data that fits in 4 bytes (32 bits).

Long Vari
able Binar
y

LONG
VARBI
NARY

Variable-length binary data represented as an unsigned character array with prefix 2 bytes for length. The
maximum possible length for the column containing this data type must be specified.

Long Vari
able Char
acter

LONG
VARC
HAR

Variable-length character data with a prefix of 2 bytes for the length. The maximum possible length for the
column containing this data type must be specified.

Packed PACKE
D

Packed decimal numeric data where the precision and scale are exactly as specified.

Short SHOR
T

Integer data that fits in 2 bytes (16 bits).

Single SINGL
E

Floating-point data that fits in 4 bytes (32 bits).

Time TIME The time represented as character data in the format hh:mm:ss that fits in 8 bytes.

Time Sta
mp

TIMES
TAMP

Timestamp represented as characters in the format yyyy-mm-dd hh:mm:ss.ffffff that fits in 19 bytes.

Variable B
inary

VARBI
NARY

Variable-length binary data represented as an unsigned character array with prefix 2 bytes for length. The
maximum possible length for the column containing this data type must be specified.

Variable C
haracter

VARC
HAR

Variable-length character data with a prefix of 2 bytes for length. The maximum possible length for the col
umn containing this data type must be specified.

Zoned ZONE
D

Zoned decimal numeric data where the precision and scale are exactly as specified.

Note that the OLE DB provider limits the maximum length character field that can be accessed on an AS/400 computer to
32,745. Attempting to access a character field greater than this length on an AS/400 computer can have unpredictable
results and can cause the OLE DB provider to stop responding.

Note that the floating-point data format assumed by the OLE DB Provider for AS/400 and VSAM depends on the host. For
AS/400, the host floating-point data format is assumed to be IEEE. On mainframe hosts, floating-point data types are
assumed to be in IBM floating-point formats. Because OLE DB supports the IEEE floating-point format, data conversion errors
can occur when converting the extreme values of VSAM floating-point data in IBM format to IEEE floating-point data by the
OLE DB provider.

Note that the DECIMAL, FLOAT, INTEGER, NUMERIC, REAL, and SMALLINT keywords should not be used in HCD files and
should be replaced with the newer keywords as follows:

The DOUBLE keyword replaces the FLOAT keyword.

The LONG keyword replaces the INTEGER keyword.

The PACKED keyword replaces the NUMERIC keyword.

The SHORT keyword replaces the SMALLINT keyword.

The SINGLE replaces the REAL keyword.

The ZONED keyword replaces the DECIMAL keyword.

The Data Descriptions management console snap-in provided with Host Integration Server does not work properly with HCD
files containing these older keywords and will give unpredictable results.

OLE DB Type
The OLE DB Type attribute is a keyword that represents the data type of the local personal computer data. This keyword
value is based on the standard OLE DB data types as defined in the OLEDB.H header file included with the OLE DB SDK
version 1.5 and later. The data structures for the date, time, and timestamp C data types are defined as typedefs in the
OLEDB.H header file included with the OLE DB SDK. Similar data types are also used by ODBC. If no keyword is entered, this
attribute defaults to the BINARY keyword.

For the decimal and numeric host data types, the OLE DB Type attribute must be set to DBTYPE_STR. These two fixed-point
numeric types are currently converted to character data strings by the DDM layer of the Microsoft OLE DB Provider for
AS/400 and VSAM. If these host types are converted to any of the defined OLE DB numeric C types, numeric accuracy can be
lost.

The allowable types are listed in the following table.

OLE DB type name Keyword Comment
DBTYPE_BYTES BINARY Fixed-length binary data represented as an unsigned char array.

DBTYPE_DBDATE DATE The OLE DB DBDATE typedef struct as defined in the OLEDB.H header file.

DBTYPE_DBTIME TIME The OLE DB DBTIME typedef as defined in the OLEDB.H header file.

DBTYPE_DBTIMESTAMP TIMESTAMP The OLE DB DBTIMESTAMP typedef struct as defined in the OLEDB.H header file.

DBTYPE_DECIMAL DECIMAL The OLE DB DECIMAL typedef struct as defined in the OLEDB.H header file.

DBTYPE_I2 SHORT Integer data stored in 2 bytes (16 bits).

DBTYPE_I4 LONG Integer data stored in 4 bytes (32 bits).

DBTYPE_NUMERIC NUMERIC The OLE DB NUMERIC typedef struct as defined in the OLEDB.H header file.

DBTYPE_R4 FLOAT Floating-point data stored in 4 bytes (32 bits).

DBTYPE_R8 DOUBLE Floating-point data stored in 8 bytes (64 bits).

DBTYPE_STR CHAR Character data.

DBTYPE_I1 Not applicable Not supported (signed tiny integer stored in one byte, 8 bits).

DBTYPE_I8 Not applicable Not supported (signed long integer stored in eight bytes, 64 bits).

DBTYPE_UI1 Not applicable Not supported (unsigned tiny integer stored in one byte, 8 bits).

DBTYPE_UI2 Not applicable Not supported (unsigned short integer stored in two bytes, 16 bits).

DBTYPE_UI4 Not applicable Not supported (unsigned long integer stored in four bytes, 32 bits).

DBTYPE_UI8 Not applicable Not supported (unsigned long integer stored in eight bytes, 64 bits).

Nullable
The Nullable attribute indicates whether this field can be a null value. Legal values for this field are Y or N. If this field is
empty, the default value for nullable is N. The current version of the OLE DB Provider for AS/400 and VSAM does support
nullable fields, so this value must be set to N.

CCSID
The character code set identifier (CCSID) attribute indicates the character set used on the host. If this field is empty, the
default value for CCSID is set to EBCDIC US English (37). The CCSID setting used by the OLE DB provider must be set to
match the CCSID actually used on the host, otherwise data loss will occur. Note that some AS/400 systems default to a
CCSID of 937, rather than 37, for enabling double-byte character sets (DBCS).

If the CCSID is set to 0 or 65535, no character translation will take place when converting character data from the host to the
personal computer by the OLE DB provider. The allowable values for CCSID when used with OLE DB Provider for AS/400 and
VSAM are listed in the following table.

EBCDIC character set CCSID value
U.S./Canada 37

Germany 273

Denmark/Norway 277

Finland/Sweden 278

Italy 280

Latin America/Spain 284

United Kingdom 285

France 297

International 500

Note that this value needs to correspond to the CCSID used on the host.

Title
The Title attribute is an optional character string that represents a comment describing the column. This attribute may be
null.

Host Column Description Example File
The following is an example for a host column description (HCD) file containing two sample database file descriptions—
SAMPLE/ACCOUNTS and PUBS/AUTHORS. The first sample file (SAMPLE/ACCOUNTS) has four columns of data while the
second example (PUBS/AUTHORS) has nine columns that must be described.

[files]
SAMPLE/ACCOUNTS=1
PUBS/AUTHORS=1

[SAMPLE/ACCOUNTS]
numcol=4
col1=0;CUST_NO;CUST_NO;8;0;0;ZONED;LONG;N;37;;
col2=0;CUST_NAME;CUST_NAME;0;0;40;CHAR;CHAR;N;37;;
col3=0;BALANCE;BALANCE;10;2;0;ZONED;FLOAT;N;37;;
col4=0;LAST_ACC;LAST_ACC;0;0;26;TIMESTAMP;TIMESTAMP;N;37;;

[PUBS/AUTHORS]
NumCol=9
Col1=0;AU_ID;AU_ID;11;0;11;CHAR;CHAR;N;37;;
Col2=0;AU_LNAME;AU_LNAME;0;0;40;VARCHAR;CHAR;N;37;;
Col3=0;AU_FNAME;AU_FNAME;0;0;20;VARCHAR;CHAR;N;37;;
Col4=0;PHONE;PHONE;0;0;12;CHAR;CHAR;N;37;;
Col5=0;ADDRESS;ADDRESS;0;0;40;VARCHAR;CHAR;N;37;;
Col6=0;CITY;CITY;0;0;20;VARCHAR;CHAR;N;37;;
Col7=0;STATE;STATE;2;0;2;CHAR;CHAR;N;37;;
Col8=0;ZIP;ZIP;0;0;5;CHAR;SHORT;N;37;;
Col9=0;CONTRACT;CONTRACT;0;0;9;BINARY;BINARY;N;37;;

Conversion from Host to OLE DB Data Types
The external record description for data files residing on mainframes is configured in a host column description (HCD) file
using the SNA OLE DB management snap-in. This HCD file is used to convert from host EBCDIC data types to ASCII C data
types for the computer in the Distributed Data Management (DDM) dynamic-link library (DLL). These C data types are then
mapped to OLE DB data types by the SNAOLEDB DLL.

This section contains:

Default OLE DB Data Types

DBDATE

DBTIME

DBTIMESTAMP

DECIMAL

NUMERIC

https://msdn.microsoft.com/en-us/library/aa771911(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745202(v=bts.10).aspx

Default OLE DB Data Types
The following table indicates the default OLE DB data types that result from the mapping of the host data types by the
Microsoft OLE DB Provider for AS/400 and VSAM.

Host data type OLE DB data ty
pe

Comments

Binary DBTYPE_BYTES A fixed-length array of bytes (unsigned char).

Character DBTYPE_STR Null-terminated ASCII character string.

Date DBTYPE_DBDATE The DBDATE typedef struct defined in OLEDB.H header file.

DBCS DBTYPE_STR Null-terminated ASCII character string.

DCBS – Mixed Either DBTYPE_STR Null-terminated ASCII character string.

DCBS – Mixed Open DBTYPE_STR Null-terminated ASCII character string.

DBCS – Variable DBTYPE_STR Null-terminated ASCII character string.

DCBS – Variable Mix
ed Either

DBTYPE_STR Null-terminated ASCII character string.

DCBS – Variable Mix
ed Open

DBTYPE_STR Null-terminated ASCII character string.

Double DBTYPE_R8 8-byte floating-point data.

Float DBTYPE_R8 8-byte floating-point data.

Long Integer DBTYPE_I4 4-byte signed integer.

Long Variable Binary DBTYPE_BYTES A fixed-length array of bytes (unsigned char).

Long Variable Chara
cter

DBTYPE_STR Null-terminated ASCII character string.

Packed DBTYPE_DECIMA
L

The DECIMAL structure typedef defined in OLEDB.H. This is an exact numeric value with
a fixed precision and fixed scale.

Real DBTYPE_R4 4-byte floating-point data.

Short DBTYPE_I2 2-byte signed integer.

Single DBTYPE_R4 4-byte floating-point data.

Time DBTYPE_DBTIME The DBTIME typedef defined in OLEDB.H header file.

Time Stamp DBTYPE_DBTIME
STAMP

The DBTIMESTAMP typedef defined in OLEDB.H header file.

Variable Binary DBTYPE_BYTES A fixed-length array of bytes (unsigned char).

Variable Character DBTYPE_STR Null-terminated ASCII character string.

Zoned DBTYPE_NUMER
IC

The NUMERIC typedef structure defined in OLEDB.H. This is an exact numeric value wit
h a fixed precision and fixed scale.

The host Binary, VarBinary, and Long VarBinary data types are converted to SQL_C_CHAR type by the DDM DLL and mapped
to the DBTYPE_BYTES data type by the SNAOLEDB DLL. The host Zoned data type is converted to SQL_C_CHAR type by the
DDM DLL and mapped to the DBTYPE_NUMERIC data type by the SNAOLEDB DLL. The host Packed data type is converted to
SQL_C_CHAR type by the DDM DLL and mapped to the DBTYPE_DECIMAL data type by the SNAOLEDB DLL.

DBDATE
The DBDATE structure typedef is defined as follows:

Syntax

Members
year

The year (0 to 9999) is measured from 0 A.D.

month

The month ranges from 1 to 12 representing January through December.

day

The day ranges from 1 to a maximum of 31, depending on the number of days in the month.

typedef struct tagDBDATE {
 SHORT year;
 USHORT month;
 USHORT day
} DBDATE;

DBTIME
The DBTIME structure typedef is defined as follows:

Syntax

Members
hour

The hour ranges from 0 to 23.

minute

The minute ranges from 0 to 59.

second

The second ranges from 0 to 59.

typedef struct tagDBTIME {
 USHORT hour;
 USHORT minute;
 USHORT second
} DBTIME;

DBTIMESTAMP
The DBTIMESTAMP structure typedef is defined as follows:

Syntax

Members
year

The year (0 to 9999) is measured from 0 A.D.

month

The month ranges from 1 to 12 representing January through December.

day

The day ranges from 1 to a maximum of 31, depending on the number of days in the month.

hour

The hour ranges from 0 to 23.

minute

The minute ranges from 0 to 59.

second

The second ranges from 0 to 59.

fraction

The fraction represents billionths of a second ranging from 0 to 999,999,999.

typedef struct tagDBTIMESTAMP {
 SHORT year;
 USHORT month;
 USHORT day;
 USHORT hour;
 USHORT minute;
 USHORT second;
 ULONG fraction
} DBTIMESTAMP;

DECIMAL
The DECIMAL typedef structure is an exact numeric value with a fixed precision and fixed scale, stored in the same way as in
OLE Automation. The DECIMAL typedef structure is defined as follows:

Syntax

Members
wReserved

This member is reserved and should be 0.

scale

Specifies the number of digits to the right of the decimal point and ranges from 0 to 28.

sign

The sign is 0 if positive, 0x80 if negative.

Hi32

The high part of the integer (32-bit aligned).

Mid32

The middle part of the integer (32-bit aligned).

Lo32

The low part of the integer (32-bit aligned).

For example, to specify the number 12.345, the scale is 3, the sign is 0, and the number stored in the 12-byte integer is 12345.

typedef struct tagDECIMAL {
 USHORT wReserved;
 union {
 struct {
 BYTE scale;
 BYTE sign;
 };
 USHORT signscale;
 };
 ULONG Hi32;
 union {
 struct {
 ULONG Lo32;
 ULONG Mid32;
 };
 ULONGLONG Lo64;
 };
} DECIMAL;

NUMERIC
The NUMERIC typedef structure is an exact numeric value with a fixed precision and fixed scale. The NUMERIC typedef
structure is defined as follows:

Syntax

Members
precision

The maximum number of digits in base 10.

scale

The number of digits to the right of the decimal point.

sign

The sign is 1 for positive numbers, and 0 for negative numbers.

val

A number stored as a 16-byte scaled integer, with the least significant byte on the left.

For example, to specify the base 10 number 20.003 with a scale of 4, the number is scaled to an integer of 200030 (20.003
shifted by four tens digits), which is 186AA in hexadecimal. The value stored in the 16-byte integer is 5E 0D 03 00 00 00 00 00
00 00 00 00 00 00 00 00, the precision is the maximum precision, the scale is 4, and the sign is 1.

typedef struct tagNUMERIC {
 BYTE precision;
 BYTE scale;
 BYTE sign;
 BYTE val[16];
} DB_NUMERIC;

Character Code Conversions
Character code conversions under the OLE DB Provider for AS/400 and VSAM are controlled by a hierarchy of parameters.
When connecting to mainframes all of these parameters are controlled on the personal computer. However, when connecting
to data sources on the AS/400, parameter settings on the AS/400 as well as parameter settings on the personal computer can
be involved.

The character code set identifier (CCSID) used by the host for a data source can be specified in several locations. The Host
CCSID setting used by the OLE DB provider must be set to match the CCSID actually used on the host; otherwise data loss will
occur. Note that some AS/400 systems default to a CCSID of 937 rather than 37 for enabling double-byte character sets
(DBCS).

The following table illustrates the separate hierarchy controlling the Host CCSID parameter on the SNA client, AS/400 host, and
mainframe host.

SNA client AS/400 host Mainframe host

SNA OLE DB provider (defaults to U.S./Canada 37) System (DSPSYSVA
L, QCCSID)

None. Determined by the Data Description (HC
D file) on the SNA Client.

Data Source (the Host CCSID parameter in the Data Links f
ile describing the Data Source)

User identifier (wrk
usrprf)

Data Description (HCD file) Job (dspjob, crtjobd
)

 File (dspfd, crtpf)

 Column (dspffd)

Note
Only those fields in a Data Source that contain character data are affected by the Host CCSID parameters and character conv
ersions. This section contains:

Host CCSID and SNA OLE DB Provider

Host CCSID and Data Source

Host CCSID and Data Description

Host CCSID and the Process Binary As Character Parameter

https://msdn.microsoft.com/en-us/library/aa745027(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771943(v=bts.10).aspx

Host CCSID and SNA OLE DB Provider
 

The Host CCSID setting at the OLE DB provider level defaults to U.S./Canada (37).

Host CCSID and Data Source
The Host CCSID setting at the Data Source level is configured using Data Links for each Data Source. The Host CCSID
parameter is configured under the All tab of the Data Links dialog box.

Valid values for the Host CCSID registry setting are any CCSID, including 65535. If the Host CCSID attribute is set to 65535, no
character conversion occurs (the data is treated as binary). If the Host CCSID setting at the Data Source level does not exist, the
value for Host CCSID defaults to the value at the SNA OLE DB provider level.

Host CCSID and Data Description
A Host CCSID attribute can be applied at the Data Description level. Each column in a host column description (HCD) file can
have a Host CCSID attribute that determines how the character data in the column is to be converted. These attributes in the
HCD file at the Data Description level should be configured using the SNA OLE DB management console snap-in. (For more
information, see Configuring Data Descriptions) Valid values are any CCSID including 65535.

The Host CCSID attribute at the column Data Description level can be any value and may be empty. A Host CCSID value at the
Data Description level overrides the value specified at the Data Source and OLE DB provider levels. If the Host CCSID is blank,
the value for Host CCSID defaults to the value at the Data Source level. If the Host CCSID attribute is set to 65535, no character
conversion occurs (the data is treated as binary).

https://msdn.microsoft.com/en-us/library/aa771993(v=bts.10).aspx

Host CCSID and the Process Binary As Character Parameter
There is a Data Source parameter configurable using Data Links that affects whether binary data is considered as character
data and is converted based on the Host CCSID setting. This Process Binary As Character parameter defaults to false. If this
parameter is false, binary data is not treated as character (binary data is not affected by the Host CCSID setting). If this
parameter is set to true, binary data is converted based on the Host CCSID setting.

This parameter is configured for each Data Source using Data Links under the All tab of the Data Links dialog box.

Using Package Designer with the OLE DB Provider for AS/400
and VASM

When using SQL Server Integration Services with the Microsoft OLE DB Provider for AS/400 and VSAM within the Package
Designer in Visual Studio 2005, SSIS may raise the following warning dialog:
Warning at {9C6AC00C-13CF-4EF8-B44A-72055CC508C2} [OLE DB Source [262]]: Cannot retrieve the column code page
info from the OLE DB provider. If the component supports the "DefaultCodePage" property, the code page from
that property will be used. Change the value of the property if the current string code page values are
incorrect. If the component does not support the property, the code page from the component's locale ID will
be used.

Server Integration Services supports the option of specifying a per-column Locale Identifier for string data types, such as
CHARACTER. However, the Microsoft OLE DB Provider for AS/400 and VSAM does not support this option. You can work
around this limitation by modifying the settings in the Advanced Editor.

To allow the OLE DB Provider for AS/400 and VASM to use the default code page

1. In the Data Flow Task Design surface, add a new OLE DB Source or OLE DB Destination for use with the Microsoft OLE DB
Provider for AS/400 and VSAM.

2. Right-click the OLE DB source or destination object, and then click Show Advanced Editor….

3. On the Advanced Editor screen, click the Component Properties page.

4. Set AlwaysUseDefaultCodePage to True.

5. Click OK.

Clicking OK saves the settings for use with the current OLE DB source or destination object within the SSIS package.

See Also
Other Resources
OLE DB Provider for AS/400 and VSAM Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744762(v=bts.10).aspx

OLE DB Provider for DB2 Programmer's Guide
Microsoft® OLE DB Provider for DB2 enables users to access IBM DB2 from within an OLE-aware application. The object
linking and embedding database (OLE DB) is a standard set of interfaces that provides heterogeneous access to disparate
sources of information located anywhere—file systems, e-mail folders, and databases. The OLE DB Provider for DB2 combines
the universal data access of OLE DB with the IBM Distributed Relational Database Architecture (DRDA).

Organizations have invested in secure, robust, enterprise-wide data storage and management systems. DRDA is a set of rules
for distributing or extending relational data from one computer to another, such as from a personal computer server to an IBM
DB2 database server running on a mainframe or an AS/400 computer. By combining the OLE DB and DRDA architectures,
Microsoft enables organizations to preserve their investments in existing data management infrastructure, while extending
universal data access to all enterprise-wide data sources.

For application programming interface (API) references and other technical information about OLE DB providers, see
theOLE DB Providers Programmer's Reference section of the software development kit (SDK).

For more information on using the OLE DB Provider for DB2, seethe OLE DB Provider for DB2 section of the Operations guide.

In This Section

Goals of the OLE DB Provider for DB2

Distributed Relational Database Architecture

Platforms Supported by the OLE DB Provider for DB2

OLE DB Provider for DB2 Requirements

Configuring the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa771258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746123(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753886(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753957(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770695(v=bts.10).aspx

Goals of the OLE DB Provider for DB2
Relational database management systems (RDBMS) are one of the major sources of mission-critical information in today's
enterprise organizations. Relational database technology enables departments and individual users to save their information in
centrally managed database stores that can be easily maintained by the organization's information systems group. Specific
query tools designed for accessing relational database systems have added greater flexibility and ease of access to this
information.

These same enterprises rely on vast networks of personal computers to enable their users to achieve business goals. End users
invariably rely on network e-mail; Microsoft® Windows® productivity applications, such as Microsoft Office; and personal
database programs, such as Microsoft Access, to accomplish their daily tasks. It is essential for these same users to incorporate
data stored in relational database systems into their regular correspondence, analysis, and reports.

The challenge you have is how to provide access to this valuable data without the effort involved in developing traditional
database applications. Much of the renewed interest in improved access to data sources is a result of the growth in the use of
Internet and Web technology as mechanisms for delivering information. Fast and inexpensive methods of accessing data
stored in RDBMS systems are necessary to deliver modern, three-tiered information systems during this era of cost cutting and
budget tightening. Additional uses of this relational database access include specific queries and Web-based reporting.

IBM DB2 is a popular RDBMS for a significant number of enterprise customers. Customers need a cost-effective and
manageable means to integrate DB2 with Microsoft SQL Server™, Microsoft Internet Information Services (IIS), and Microsoft
Office applications. The goal of the OLE DB Provider for DB2 is to provide customers and solution providers with the means to
integrate desktop applications with this wealth of data residing on DB2 database systems.

Distributed Relational Database Architecture
Database technology has enabled departments and individual users to save their information locally—as opposed to centrally
managed stores owned by the organization's information systems group. Along with local storage and database query tools
comes greater flexibility and ease of access to information. As more databases became distributed, a need emerged for users
to access data stored remotely. IBM devised the Distributed Relational Database Architecture (DRDA) to enable their customers
to access remote, distributed database systems across hardware platforms.

DRDA supports most dialects of the Structured Query Language (SQL) for access to relational database management systems
(RDBMS). SQL is an international standard that defines a standardized language for accessing database management systems
(DBMS). DRDA implementations generally support SQL in two ways: static (embedded) SQL, where the SQL commands are
embedded directly in the application program and prepared as an extra step in the process of compiling the application; and
dynamic or interactive (callable) SQL, where the user passes SQL commands as function calls at run time. One popular IBM
implementation of dynamic SQL is the Call Level Interface (CLI). With dynamic SQL or CLI, SQL preparation is not required.

Clients that comply with DRDA are referred to as application requesters (AR) because they request data from the DRDA server.
Servers that comply with DRDA are referred to as application servers (AS). Typically, application servers are implemented as
the link to the RDBMS. In some cases, products are implemented as both application requesters and application servers.

DRDA supports access to stored procedures on DB2. SQL applications can invoke stored procedures or user-written programs
on DB2 using the SQL CALL statement.

The OLE DB Provider for DB2 is an application requester implementation that can initiate DRDA commands to be serviced by a
remote target DRDA application server represented by IBM DB2. On the Microsoft® Windows Server™ 2003 and
Windows® 2000 Server operating systems, the Microsoft DRDA application requester can run as a service. This enables the
integration of the DRDA service with other host applications using the IBM DRDA protocols and DRDA servers resident on the
host. Microsoft host software is not required. (For more information, see
Platforms Supported by the OLE DB Provider for DB2). IBM offers DB2 servers for most popular environments.

https://msdn.microsoft.com/en-us/library/aa753886(v=bts.10).aspx

Platforms Supported by the OLE DB Provider for DB2
IBM and other software vendors have implemented Distributed Relational Database Architecture (DRDA) support into database
systems, such as IBM DB2, and database tools on a wide range of operating systems. DRDA is an open, published, and widely
supported protocol, which requires no additional license for development. This makes DRDA appealing to independent
software vendors (ISVs), solution providers, large corporate development groups, as well as their customers.

The Microsoft® OLE DB Provider for DB2 is implemented as an IBM DRDA application requester, which means it connects to
popular DRDA-compliant DB2 systems.

The Microsoft OLE DB Provider for DB2 can access DB2 systems through SNA LU 6.2 using Microsoft Host Integration Server,
and can access DB2 systems directly using TCP/IP.

OLE DB Provider for DB2 Requirements
When connecting over SNA using LU 6.2, the OLE DB Provider for DB2 requires the following computer-to-host connectivity
software:

Microsoft Host Integration Server 2009

Microsoft Host Integration Server Client

When connecting to a host system using TCP/IP, the OLE DB Provider for DB2 does not require any special host connectivity
software.

The OLE DB Provider for DB2 supports the following OLE DB and ADO versions:

OLE DB version 2.5. The Host Integration Server data access features require the run-time libraries for OLE DB
version 2.5. These OLE DB libraries are installed as part of the Windows Server 2003 and Windows 2000 operating
systems.

ADO version 2.5. The Host Integration Server data access features require the run-time libraries for ADO version 2.5. On
Windows Server 2003 and Windows 2000, these ADO libraries are installed as part of the Windows Server 2003 and
Windows 2000 operating systems.

Configuring the OLE DB Provider for DB2
Microsoft® Data Access Components (MDAC) include Data Links, a generic method for managing and loading connections to
OLE DB data sources. Microsoft Data Links provides a uniform method of creating persistent OLE DB data source object
definitions stored in the form of universal data link (.udl) files. The OLE DB Provider for DB2 normally uses Data Links and .udl
files for loading and configuring data sources.

The Data Source Wizard in the Microsoft Data Access Tool can help to define .udl files. OLE DB consumer applications, such as
Data Transformation Services in Microsoft SQL Server™ can use the .udl files to connect to IBM data sources, such as DB2 and
the mainframe file system.

To use Microsoft OLE DB Provider for DB2 with an OLE DB consumer application, the user must either create a Microsoft
universal data link (.udl) file and call this from the application, or call the OLE DB provider from within the application using a
connection string that includes the provider name and any other needed parameters.

This section contains:

Creating Data Links for the OLE DB Provider for DB2

Configuring Data Links for the OLE DB Provider for DB2

Creating Packages for Use with the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa754300(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705138(v=bts.10).aspx

Creating Data Links for the OLE DB Provider for DB2
Data source information must be configured for each DB2 system data source object that is to be accessed using the
Microsoft® OLE DB Provider for DB2. The default parameters for the OLE DB Provider for DB2 are used as the default values
for data sources when these parameters are not configured for each data source.

The Microsoft Data Links, a core element of the Microsoft Data Access Components, provides a uniform method for creating
file-persistent OLE DB data source object definitions in the form of universal data link (.udl) files.

The Data Source Wizard in the Microsoft Data Access Tool can help to define .udl files. OLE DB consumer applications, such as
Data Transformation Services in Microsoft SQL Server can use the .udl files to connect to IBM data sources, such as DB2 and
the mainframe file system.

Creating New Data Links for the OLE DB Provider for DB2

You create new Data Links using the Data Source Wizard from the Data Access Tool.

Browsing Data Sources for the OLE DB Provider for DB2

You can browse data sources using the Data Source Browser window in the Data Access Tool.

To find the physical location of the .udl file associated with a data source, right-click the DB2 OLE DB UDLs folder, and then
click Locate on the context menu. Windows Explorer opens which displays the location of the file.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

Configuring Data Links for the OLE DB Provider for DB2
To edit the properties of a universal data link (.udl) file, right-click the file using Windows Explorer and click Properties. The
Properties dialog box appears with property tabs:

General

Security

Summary

Provider

Connection

Advanced

All

The General, Security, and Summary tabs provide access to general file information for the .udl file that is available for other
files and is not related to the Data Link properties. This information includes file location, file type, file size, file dates, file
security permissions for access, and descriptive summary information (description and origin properties and values such title,
subject, and author) for the .udl file. The General tab has a text box with the name of the Data Link. This filename must end
with the .udl extension if the file is to be recognized as a Data Link file. Note that the Security and Summary tabs are available
on NTFS files systems, and not on the older FAT file systems.

The Provider, Connection, Advanced, and All tabs provide access to the Data Link properties that need to be configured to
connect to the DB2 system.

The NewSnaDS tool can also be used to open and modify an existing .udl file. The Data Link Properties dialog box appears
with property tabs.

This section contains:

Provider

Connection

Advanced

All

https://msdn.microsoft.com/en-us/library/aa746039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754755(v=bts.10).aspx

Provider
 

The Provider tab enables you to select the OLE DB provider (the provider name string) to use in the universal data link (.udl)
file from a list of possible OLE DB providers. Select the Microsoft OLE DB Provider for DB2. The parameters and fields
displayed in the remaining tabs (Connection, Advanced, and All) are determined by the OLE DB provider that is selected.

Connection
The Connection tab enables you to configure the basic properties required to connect to a data source. The Connection tab
dialog box contains several sections:

Data source and Network connectivity

Authentication

Database Properties

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for Data source and
Network connectivity values.

Pr
o
p
er
ty

Description

D
at
a
so
ur
ce

The data source is an optional property that can be used to describe the data source.

N
et
w
or
k

This drop-down list box allows selecting the type of network connection to be used. The allowable options are TCP/IP Con
nection or APPC Connection.

If TCP/IP Connection is selected, click More Options () to open a dialog box for configuring TCP/IP network settings. The
properties you can configure include the IP address of the DB2 host (or a hostname alias for this computer) and the Networ
k Port (TCP/IP port) used for communication with the host. The default value for the Network Port is 446. The IP address of
the host has no default value.

If APPC Connection is selected (using SNA LU 6.2), click More Options () to open a dialog box for configuring APPC netw
ork settings. The properties you can configure include: the APPC local LU alias, the APPC remote LU alias, and the APPC mo
de name used for communication with the host. The default value for the APPC mode normally defaults to QPCSUPP. The l
ocal and remote LU alias fields do not have default values. The default value for the APPC mode name normally defaults to
QPCSUPP. The APPC mode name can be selected from the drop-down list box.

The Data source in OLE DB is similar to a Data Source Name (DSN) in ODBC. The data source information is stored in a
Microsoft Data Links file and contains the connection information required for the OLE DB Provider for DB2 to access IBM DB2.

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for authentication
information:

Prop
erty

Description

Singl
e sig
n-on

Click this check box to enable using the Host Integration Server security features providing a Single Sign-On to access t
his OLE DB data source.

When this check box is selected, the User name and Password fields are dimmed and inaccessible. The user name and
password fields are set based on the logon name used for the Windows Server 2003 or Windows 2000 domain logon.

When this check box is not selected, the User name and Password fields must normally contain appropriate values to a
ccess data sources on hosts.

User
nam
e

A valid user name and password are normally required to access data sources on a host. These values are case-sensitive
.

Users must not check the Single sign-on option if a specific user name and password are to be entered.

Pass
word

A valid user name and password are normally required to access data sources on hosts. These values are case-sensitive.

The Blank password check box is only applicable for a test connection. To enter a password, the user will need to clear
the Blank password check box if it is selected. If Blank password is selected, a test connection with a blank password
does not cause the OLE DB provider to prompt for a password.

Optionally, users can choose to save the password in the .udl file by clicking the Allow saving password check box. Us
ers and administrators should be warned that this option saves the authentication information (password) in plain text
within the .udl file.

The AS/400 computer requires that the User name and Password properties be in uppercase. When connecting to DB2/400,
these parameters must be passed as uppercase strings. When connecting to DB2 on IBM mainframes, the User name and
Password parameters can be in mixed case.

It is possible to connect using a specific user name and password defined in DB2 on the host system or use the Single Sign-On
(SSO) feature (often referred to as integrated Windows security). If a specific DB2 user name and password is to be used, this
information may need to be saved into the .udl file. The user name and password are saved in plain text in the .udl file. For
security reasons in these cases, it is imperative that the .udl file be protected with an access control list (ACL) that restricts
access to only authorized users. Saving the user name and password in the data link also forces this .udl file to be updated
whenever the password associated with the user name is changed. So for a variety of reasons, specifying a user name and
password is not the preferred authentication option. Using the Single Sign-On option is the preferred method for
authentication.

For the Microsoft OLE DB Provider for DB2, the Connection tab includes the following properties for database property
values.

Pr
op
ert
y

Description

Ini
tia
l c
at
al
og

This field is the first entry in the Database section of the Connection properties.

This OLE DB property is used as the first part of a three-part fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locat
ions. To find the location of the DB2 to which you need to connect, ask the administrator to look in the TSO Clist DSNTINST
under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE
command from the console to the OS/400 system. If there is no RDBNAM value, one can be created using the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

If the provider supports changing the catalog for an initialized data source, the consumer can specify a different catalog na
me through the DBPROP_CURRENTCATALOG property in the DBPROPSET_DATASOURCE property set after initialization.

This is a required property.

This property is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.

Pa
ck
ag
e c
oll
ec
tio
n

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bi
nd DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA application requester, uses packages to iss
ue dynamic and static SQL statements. Package names are not restricted and can be uppercase, lowercase, or mixed case.

The OLE DB provider creates packages dynamically in the location to which the user points using the Package Collection pr
operty. By default, the OLE DB provider will automatically create one package in the target collection, if one does not exist,
at the time the user issues their first SQL statement. The package is created with GRANT EXECUTE authority to a single <A
UTH_ID> only, where AUTH_ID is based on the User ID value configured in the data source. The package is created for use
by SQL statements issued under the same isolation level specified when calling the OLE DB ITransactionLocal::StartTran
saction or ITransactionJoin::JoinTransaction methods, as well as when setting the ADO IsolationLevel property on th
e Connection object.

A problem can arise in multi-user environments. For example, if a user specifies a Package Collection value that represents
a DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages to o
ther users (the PUBLIC group on the DB2 system, for example), the package is created for use only by this user. This means
that other users may be unable to access the required package. The solution is for an administrative user with package ad
ministrative rights to create a set of packages for use by all users. (For more information, see
Creating Packages for Use with the OLE DB Provider for DB2).

The OLE DB Provider for DB2 ships with a tool program for use by administrators to create packages. The Data Access Tool
is used to create packages. This tool can be run using a privileged User ID to create packages in collections accessed by mul
tiple users. This tool creates a set of packages and grants EXECUTE privilege on these packages to the PUBLIC group repre
senting all users on the DB2 system. The packages (for more information, see descriptions under the isoLevel parameter of
the OLE DB ITransactionLocal::StartTransaction or ITransactionJoin::JoinTransaction methods, as well as the ADO
IsolationLevel property) created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)

READ UNCOMMITTED package (MSUR001)

READ COMMITTED package, (MSCS001)

REPEATABLE READ package, (MSRS001)

SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.SYSPACK
AGE, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be re-created using the Host Integrati
on Server CrtPkg tool to make them compatible with Host Integration Server 2009. The package names changed from SNA
Server 4.0.

This property is equivalent to the DBPROP_DB2OLEDB_PACKAGECOL OLE DB property ID.

De
fa
ult
sc
he
m
a

The name of the collection where the OLE DB Provider for DB2 looks for catalog information. The Default Schema is the SC
HEMA name for the target collection of tables and views. The OLE DB Provider uses Default Schema to restrict results sets f
or popular operations, such as enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or owner).

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, the OLE DB provider uses the USER_ID provided at logon. For DB2
/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Because this default is inapprop
riate in many cases, it is essential that the Default Schema value in the data source be defined.

This property is equivalent to the DBPROP_DB2OLEDB_CATALOGCOL OLE DB property ID.

The Connection tab also includes a Test Connection button that can be used to test the connection properties. The
connection can only be tested after all of the required parameters are entered. When this button is pressed, an APPC session or
a TCP/IP session attempts to be established with the host using the OLE DB Provider for DB2.

https://msdn.microsoft.com/en-us/library/aa705138(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx

Advanced
The Advanced tab enables users to select the character code set identifier used by the host, the personal C code page used on
the client, and some specific options when using the OLE DB Provider for DB2.

For the Microsoft OLE DB Provider for DB2, these properties include the following values.

Prop
erty

Description

DB
MS
Platf
orm

The target DB2 platform property value is used to optimize performance of the OLE DB provider when executing operati
ons such as data conversion. The default value is DB2/MVS.

Defa
ult
Qual
ifier

The name of the schema (collection/owner) with which to fully qualify unqualified object names. This attribute enables th
e user to access database objects without fully qualifying the objects using a collection (schema) qualifier. The OLE DB pr
ovider sends this value to DB2 using a SET CURRENT SQLID statement, instructing the DBMS to use this value when loc
ating unqualified objects (for example, tables and views) referenced in SQL statements. If you do not set a value for defa
ult qualifier, no SET statement is issued by the OLE DB Provider. This OLE DB property is only valid when connecting to D
B2 for MVS (OS/390, z/OS).

Host
CCSI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is set t
o true, character data is converted based on the DB2 column CCSID and default ANSI code page.

This property defaults to U.S./Canada (37).

This property is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

PC c
ode
pag
e

The PC code page property indicates the code page to be used on the computer for character code conversion. This prop
erty is required when processing binary data as character data. Unless the Process binary as character check box is sel
ected (value is set to true), character data is converted based on the default ANSI code page configured in Windows.

This property defaults to Latin 1 (1252).

This property is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Rea
d on
ly

When this option is selected, the OLE DB Provider for DB2 creates a read-only data source by setting the Mode property
to Read (DB_MODE_READ). A user has read access to objects such as tables, and cannot do update operations (INSERT,
UPDATE, or DELETE, for example).

This property defaults to a Mode property of Read/Write (DB_MODE_READ/WRITE).

This property is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Proc
ess
bina
ry as
char
acte
r

When this option is selected (property is set to true), the OLE DB Provider for DB2 treats binary data type fields (with a C
CSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and PC Code Page values are re
quired input and output parameters.

This property defaults to false.

This property is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Distr
ibut
ed tr
ansa
ctio
ns

When this option is selected, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handle
d using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and a Host Integration Server 2009
Resync Service. This option requires that an APPC Connection is selected as the network transport in the Connection t
ab and Microsoft Transaction Server (MTS) is installed.

Note that Host Integration Server supports 2PC over TCP/IP as well as SNA LU 6.2.

This property is equivalent to the DBPROP_DB2OLEDB_UNITSOFWORK OLE DB property ID.

All
The All tab enables users to configure essentially all of the properties for the data source except for the OLE DB provider. The
properties available in the All tab include properties that can be configured using the Connection and Advanced tabs as well
as optional detailed properties used to connect to a data source.

For the Microsoft OLE DB Provider for DB2, these properties include the following values.

Pro
pert
y

Description

Affi
liat
e A
ppli
cati
on

This property is only used when Single Sign-On is enabled. It contains the application name to use when retrieving host c
redentials from the Single Sign-On database.

This property is equivalent to the DBPROP_DB2OLEDB_AFFILIATEAPP OLE DB property ID.

Alte
rnat
e T
P N
am
e

The Alternate Transaction Program (TP) Name property represents the default transaction program name for the DB2 DR
DA application server (AS), which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an a
lternate TP name.

Host Integration Server 2009 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that ca
se, the Alternative TP Name is set to 0X07F9F9F9.

This property is equivalent to the DBPROP_DB2OLEDB_TPNAME OLE DB property ID.

APP
C L
oca
l LU
Alia
s

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the name of the
local LU alias configured in SNA services.

This property is equivalent to the DBPROP_DB2OLEDB_LOCALLU OLE DB property ID.

APP
C M
ode
Na
me

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the APPC mode
and must be set to a value that matches the host configuration and SNA services configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #I
NTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #I
BMRDB (DB2 remote database access), and custom modes. The following modes that support bi-directional LZ89 compre
ssion are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing
security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This property normally defaults to QPCSUPP.

This property is equivalent to the DBPROP_DB2OLEDB_APPCMODE OLE DB property ID.

APP
C R
em
ote
LU
Alia
s

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the name of the
remote LU alias configured in SNA services.

This property is equivalent to the DBPROP_DB2OLEDB_REMOTELU OLE DB property ID.

APP
C S
ecu
rity
Typ
e

When an APPC Connection using SNA LU 6.2 is selected for the Network Transport Library, this field is the security type
that is used when allocating an SNA connection.

The allowable values are: Program (default) and Same.

This property is equivalent to the DBPROP_DB2OLEDB_APPCSEC OLE DB property ID.

Cac
he
Aut
hen
tica
tion

This property determines whether the OLE DB provider caches authentication information. This property defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This property is equivalent to the DBPROP_AUTH_CACHE_AUTHINFO OLE DB property ID.

Clie
nt A
ppli
cati
on
Na
me

Use this property to specify a custom application name that the DB2 Network Client (DRDA AR) will pass to the DB2 Serv
er when connecting. When troubleshooting issues, you can use this value to help identify relevant portions within DB2 or
system logs.

This property is equivalent to the DBPROP_DB2OLEDB_CLIENTAPPNAME OLE DB property ID.

Con
nec
tion
Poo
ling

This property determines whether connection pooling is used. Connection pooling keeps a connection active after it is clo
sed in case another connection is opened with the same properties. The default value is False.

This property is equivalent to the DBPROP_DB2OLEDB_CONNPOOLING OLE DB property ID.

Dat
a S
our
ce

The data source is an optional property that can be used to describe the data source.

This property does not have a default value.

DB
MS
Plat
for
m

The target DB2 platform property value is used to optimize performance of the OLE DB provider when executing operatio
ns such as data conversion. The default value is DB2/MVS.

Def
ault
Qua
lifie
r

The name of the schema (collection/owner) with which to fully qualify unqualified object names. This attribute enables th
e user to access database objects without fully qualifying the objects using a collection (schema) qualifier. The OLE DB pro
vider sends this value to DB2 using a SET CURRENT SQLID statement, instructing the DBMS to use this value when locati
ng unqualified objects (for example, tables and views) referenced in SQL statements. If you do not set a value for default
qualifier, no SET statement is issued by the OLE DB Provider. This OLE DB property is only valid when connecting to DB2 f
or MVS (OS/390, z/OS).

Def
ault
Sch
em
a

The name of the collection where the OLE DB Provider for DB2 looks for catalog information. The Default Schema is the S
CHEMA name for the target collection of tables and views. The OLE DB Provider uses Default Schema to restrict results se
ts for popular operations, such as enumerating a list of tables in a target collection.

For DB2, the Default Schema is the target AUTHENTICATION (User ID or owner).

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, the OLE DB Provider uses the USER_ID provided at logon. For DB
2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Because this default is inappr
opriate in many cases, it is essential that the Default Schema value in the data source be defined.

This property is equivalent to the DBPROP_DB2OLEDB_CATALOGCOL OLE DB property ID.

Ext
end
ed
Pro
pert
ies

This property is a string containing provider-specific, extended connection information. The use of this property implies t
hat the OLE DB consumer knows how this string will be interpreted and used by the OLE DB provider. This parameter sho
uld be used only for provider-specific connection information that cannot be explicitly described through the other prope
rty values.

This property is equivalent to the DBPROP_INIT_PROVIDERSTRING OLE DB property ID.

Hos
t CC
SID

The character code set identifier (CCSID) matching the DB2 data as represented on the remote host computer. The CCSID
property is required when processing binary data as character data. Unless the Process Binary as Character value is set to
true, character data is converted based on the DB2 column CCSID and default ANSI code page.

This property defaults to U.S./Canada (37).

This property is equivalent to the DBPROP_DB2OLEDB_HOSTCCSID OLE DB property ID.

Initi
al C
atal
og

This OLE DB property is used as the first part of a three-part fully qualified table name.

In DB2 (MVS, OS/390), this property is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible loc
ations. To find the location of the DB2 to which you need to connect, ask the administrator to look in the TSO Clist DSNTI
NST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 installation manual.

In DB2/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIR
E command from the console to the OS/400 system. If there is no RDBNAM value, one can be created using the Add opti
on.

In DB2 Universal Database, this property is referred to as DATABASE.

If the provider supports changing the catalog for an initialized data source, the consumer can specify a different catalog n
ame through the DBPROP_CURRENTCATALOG property in the DBPROPSET_DATASOURCE property set after initializatio
n.

This is a required property.

This property is equivalent to the DBPROP_INIT_CATALOG OLE DB property ID.

Inte
grat
ed
Sec
urit
y

This property determines whether the OLE DB provider uses Host Security Integration (Single Sign-On).

When this property is set to SSPI, Single Sign-On is enabled and separate user ID and password parameters are not requi
red. The user name and password fields are set based on the logon name used for the Windows Server 2003 or Windows
 2000 domain logon.

When this property is null, this Single Sign-On feature is disabled.

This property defaults to null (host security integration is disabled) and a user ID and password are required.

This property is equivalent to the DBPROP_AUTH_INTEGRATED OLE DB property ID.

Mo
de

A Mode property is a bitmask specifying access permissions. This bitmask can be a combination of zero or more of the fol
lowing:

DB_MODE_READ—Read-only.

DB_MODE_READWRITE—Read/write (DB_MODE_READ | DB_MODE_WRITE).

DB_MODE_SHARE_DENY_NONE—Neither read nor write access can be denied to others.

DB_MODE_SHARE_DENY_READ—Prevents others from opening in read mode.

DB_MODE_SHARE_DENY_WRITE—Prevents others from opening in write mode.

DB_MODE_SHARE_EXCLUSIVE—Prevents others from opening in read/write mode (DB_MODE_SHARE_DENY_READ | DB
_MODE_SHARE_DENY_WRITE).

DB_MODE_WRITE—Write-only.

The following values for mode are supported by the OLE DB Provider for DB2: Read (DB_MODE_READ) and Read/Write (
DB_MODE_READ/WRITE). This property defaults to Read/Write.

When the Read Only property is selected in the Advanced tab, the OLE DB Provider for DB2 creates a read-only data so
urce by setting the Mode property to Read (DB_MODE_READ). A user has read access to objects such as tables, and cann
ot do update operations (INSERT, UPDATE, or DELETE, for example).

This property is equivalent to the DBPROP_INIT_MODE OLE DB property ID.

Net
wor
k A
ddr
ess

When TCP/IP has been selected for the Network Transport Library, this property indicates the IP address of the DB2 host
or a hostname alias for this computer.

This property is equivalent to the DBPROP_DB2OLEDB_NETADDRESS OLE DB property ID.

Net
wor
k P
ort

When TCP/IP has been selected for the Network Transport Library, this property is the TCP/IP port used for communicati
on with the DB2 host. The default value is TCP/IP port 446.

This property is equivalent to the DBPROP_DB2OLEDB_NETPORT OLE DB property ID.

Net
wor
k Tr
ans
por
t Li
brar
y

The network transport dynamic-link library property designates whether the OLE DB Provider for DB2 connects through
an APPC connection using SNA LU 6.2 or a TCP/IP connection. The possible values for this property are TCPIP or SNA.

The default value for this property is SNA.

If the default SNA is selected, values for APPC Local LU Alias, APPC Mode Name, and APPC Remote LU Alias are required.

If TCPIP is selected, values for Network Address and Network Port are required.

This property is equivalent to the DBPROP_DB2OLEDB_NETTYPE OLE DB property ID.

Ne
w P
ass
wor
d

This property allows an OLE DB connection to change the host password for the user account used for the connection. If t
his property is set, the account password will be changed to the property value.

This property is equivalent to the DBPROP_DB2OLEDB_NEWPWD OLE DB property ID.

Pac
kag
e C
olle
ctio
n

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and
bind DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA application requester, uses packages to is
sue dynamic and static SQL statements. Package names are not restricted and can be uppercase, lowercase, or mixed case
.

The OLE DB provider creates packages dynamically in the location to which the user points using the Package Collection
property. By default, the OLE DB provider automatically creates one package in the target collection, if one does not exist,
at the time the user issues the first SQL statement. The package is created with GRANT EXECUTE authority to a single <A
UTH_ID> only, where AUTH_ID is based on the User ID value configured in the data source. The package is created for use
by SQL statements issued under the same isolation level specified when calling the OLE DB ITransactionLocal::StartTra
nsaction or ITransactionJoin::JoinTransaction methods, as well as when setting the ADO IsolationLevel property on
the Connection object.

A problem can arise in multi-user environments. For example, if a user specifies a Package Collection value that represent
s a DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages t
o other users (the PUBLIC group on the DB2 system, for example), the package is created for use only by this user. This m
eans that other users may be unable to access the required package. The solution is for an administrative user with packa
ge administrative rights to create a set of packages for use by all users. (For more information, see Creating Packages f
or Use with the OLE DB Provider for DB2.)

The OLE DB Provider for DB2 ships with a tool program for administrators to create packages. You use the Data Access
Tool to create packages. This tool can be run using a privileged User ID to create packages in collections accessed by mul
tiple users. This tool creates a set of packages and grants EXECUTE privilege on these packages to the PUBLIC group repre
senting all users on the DB2 system . The packages (for more information, see descriptions under the isoLevel parameter
of the OLE DB ITransactionLocal::StartTransaction or ITransactionJoin::JoinTransaction methods, as well as the AD
O IsolationLevel property) created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400)

READ UNCOMMITTED package (MSUR001)

READ COMMITTED package, (MSCS001)

REPEATABLE READ package, (MSRS001)

SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.SYSPAC
KAGE, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be re-created using the Host Integr
ation Server Data Access Tool to make them compatible with Host Integration Server 2009. The package names change
d from SNA Server 4.0.

This property is equivalent to the DBPROP_DB2OLEDB_PACKAGECOL OLE DB property ID.

Pas
swo
rd

A valid user name and password are normally required to access data sources on hosts. The password is case-sensitive a
nd is displayed as asterisks in this dialog box for security purposes.

This property is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

PC
Cod
e P
age

The PC Code Page property indicates the code page to be used on the personal computer for character code conversion.
This property is required when processing binary data as character data. Unless the Process Binary as Character value is s
et to true, character data is converted based on the default ANSI code page configured in Windows.

This property defaults to Latin 1 (1252).

This property is equivalent to the DBPROP_DB2OLEDB_PCCODEPAGE OLE DB property ID.

Per
sist
Sec
urit
y In
fo

This property indicates whether the data source object is allowed to persist sensitive authentication information, such as a
password along with other authentication information. This property defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This property is equivalent to the DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO OLE DB property ID.

Pro
cess
Bin
ary
as C
har
act
er

When this property is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as ch
aracter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and outp
ut parameters.

This property defaults to false.

The value of this property (true or false) is selected from the drop-down list box.

This property is equivalent to the DBPROP_DB2OLEDB_BINASCHAR OLE DB property ID.

Uni
ts o
f W
ork

This property indicates whether two-phase commit (distributed unit of work) used for transactions is supported for this d
ata source. Distributed transactions are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Co
ordinator, and the Host Integration Server Resync Service.

The following values for this property are supported by the OLE DB Provider for DB2:

RUW (remote unit of work)

DUW (distributed unit of work)

This property defaults to RUW.

Distributed unit of work (two-phase commit) requires an APPC Connection using SNA LU 6.2 or 2PC over TCP/IP as the n
etwork transport. Microsoft Transaction Server (MTS) should also be installed.

This property is equivalent to the DBPROP_DB2OLEDB_UNITSOFWORK OLE DB property ID.

Use
r ID

A valid user name is normally required to access data sources on hosts. This value is case-sensitive.

This property is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

These properties on the All tab may be edited by selecting a property from the list displayed and selecting Edit Value. This
button invokes a dialog box for the specific property containing a property description describing the property and a property
value box for making changes.

Creating Packages for Use with the OLE DB Provider for DB2
The Microsoft OLE DB Provider for DB2, which is implemented as an IBM Distributed Relational Database Architecture (DRDA)
application requester, uses packages to issue SQL statements and call DB2 stored procedures. There is a provider-specific
property that the OLE DB Provider for DB2 uses to identify a location in which to create and store DB2 packages. The OLE DB
Provider for DB2 creates packages dynamically in the location to which the user points using the Package Collection property
corresponding to the DBPROP_DB2OLEDB_PACKAGECOL property ID of OLE DB. This location may be configured using the
Connection and Advanced tabs using Microsoft Data Links or can be passed as part of the connection string as an attribute
keyword and argument. This attribute keyword can be either pkgcol or the long form of this attribute, Package Collection.

There are two package creation options:

1. The OLE DB Provider for DB2 autocreates one package for the currently used isolation level at run time if no package
already exists. This autocreate process may fail if the user account does not have authority to create packages.

2. An administrator or user can manually creates all four packages (five packages on DB2/400) for use with all isolation
levels and for use by all users (the PUBLIC group on DB2 representing all users) or a specific set of users. The OLE DB
Provider for DB2 includes a program for use by users with appropriate administrative privilege that will create these
packages and grant access to the PUBLIC group for this purpose.

However, some users may not have the security level when manually creating packages to GRANT authority to the packages to
other users (grant authority to the DB2 PUBLIC group representing all users, for example). This can be a problem if two or
more users with different user IDs try to access a single collection of packages. The first user that created the packages will
have access to the packages, but the second user likely will not. The Host Integration Server 2009 CD includes a program for
use by an administrator to create packages. This tool can be run using a privileged User ID to create packages in collections
accessed by multiple users. You use the Data Access Tool to create packages for use with DB2.

A shortcut for this tool is added to the Programs menu off the Start button on the Windows taskbar under the
Host Integration Server\Data Integration folder with a name of Data Access Tool. This shortcut is created when the
Microsoft Host Integration Server or the Host Integration Client is first installed and support for Data Access is checked.

This tool creates a set of packages and grants EXECUTE privileges on these packages to the PUBLIC group. The PUBLIC group
on DB2 systems is a default group that represents all DB2 users. The following packages are created:

AUTOCOMMITTED package (MSNC001) is only applicable on DB2/400)

READ UNCOMMITTED package (MSUR001)

READ COMMITTED package (MSCS001)

REPEATABLE READ package (MSRS001)

SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNNC001) is only created on DB2 for OS/400.

The descriptive process name used by the Data Access Tool corresponds with the isolation levels defined in the ANSI SQL
standard. The following table indicates how these packages correspond with the terms used by IBM for isolation levels in DB2
documentation.

Package description Packa
ge na
me

IBM documentation

AUTOCOMMITTED (Note that this applies only to DB
2/400 and does not correspond with an ANSI SQL is
olation level)

MSNC
001

COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 autocommit mode only an
d has no corresponding isolation level on other DB2 platforms or
in ANSI SQL.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

READ UNCOMMITTED MSUR
001

UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOMMI
TTED.

READ COMMITTED MSCS
001

CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMITTE
D.

REPEATABLE READ MSRS
001

READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE REA
D.

SERIALIZABLE MSRR
001

REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be re-created using the Host Integration
Server Data Access Tool to make them compatible with Host Integration Server 2009. The package names used by the OLE DB
Provider for DB2 on SNA Server 4.0 are not compatible with the OLE DB Provider for DB2 included with Host Integration
Server. On SNA Server 4.0, these packages used different names as follows:

These isolation levels are described in detail in Support for Isolation Levels Using the OLE DB Provider for DB2. These isolation
levels are also described under the OLE DB isoLevel parameter and ADO IsolationLevel property. Note that the
AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Note that the Data Access Tool creates this set of packages and grants EXECUTE privileges to the PUBLIC group. There may be
cases for security reasons where EXECUTE privileges to this set of packages on the DB2 system should be restricted to a
different group of users or specific users. In these cases, execution privileges on these created packages need to be modified on
the host system.

The Data Access Tool creates all of these packages inside the Collection that is specified in the Package Collection property in
the data link file, or in the connection string. If the user does not have the appropriate authority to create packages in the
specified Collection, or if the specified Collection does not exist, the OLE DB Provider for DB2 will return an error.

In the case of DB2 on MVS or OS/390, the normal error text returned if the user does not have the appropriate authority would
be as follows:

In the case of DB2/400, the normal error text returned if the user does not have the appropriate authority would be as follows:

In the case of DB2/400, the normal error returned if the collection does not exist would be as follows:

AUTOCOMMITTED package (SNANC001) only applicable on DB2/400
READ UNCOMMITTED package (SNACH001)
READ COMMITTED package, (SNACS001)
REPEATABLE READ package, (SNARR001)
SERIALIZABLE package (SNAAL001)

A SQL error has occurred. Please consult the documentation for your specific DB2 version fo
r a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -56
7.

A SQL error has occurred. Please consult the documentation for your specific DB2 version fo
r a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -80
5.

Failed to create AUTOCOMMITTED (NC) package. RETCODE=-99.
SQL Error: Code=-204, State=42704, Error Text= A SQL error has occurred. Please consult th
e documentation for your specific DB2 version for a description of the associated Native Er

http://go.microsoft.com/fwlink/?LinkID=148814
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx

There are two authorities required to execute the create package process on MVS using the Data Access Tool:

The "authorization ID" is the user who needs the permission to create the packages. The "collection ID" is the name of the
collection, which the user specifies in the data link file for the Package Collection property. This collection should be a valid
collection within the DB2. If an administrator executes the preceding statements on behalf of a nonprivileged user, this
nonprivileged user can then run the CrtPkg tool. Once run, the CrtPkg process creates four sets of packages (one for each of
the four isolation levels supported on DB2 for MVS or OS/390) for use by all (PUBLIC) users of the Microsoft data access
features.

The following example illustrates this process on DB2 for MVS or DB2 for OS/390.

Grant rights to run the CrtPkg tool to authorization ID WNW999

Run the Data Access Tool using authorization ID WNW999.

To execute the Data Access Tool on DB2/400, a user ID must have one of the following authorities:

*CHANGE authority on the DB2 collection

*ALL authority on the DB2 collection

If the user has *USE authority or if the user has *EXCLUDE authority, the Create Package process will fail.

There are several steps required to change user authority on a DB2/400 collection (AS/400 library): From interactive SQL
(STRSQL command) while logged on as user with administrative privileges, create a new collection. This command can also be
issued using ADO, OLE DB, and ODBC. However, most administrators typically create collections from the AS/400 console
because the administrator must be logged on at the console to issue the Command Language (CL) command with which to
change the user authority on the collection.

From the AS/400 command console, type the CL WRKOBJ command with the <collection ID> as a parameter.

The "collection ID" is the name of the collection, which the user specifies in the data link file for the Package Collection
property. This collection should be a valid collection within DB2. The Work with objects dialog box appears. Place the cursor
on the *PUBLIC Object Authority line and change the authority from *USE to *ALL.

If an administrator executes the preceding statements on behalf of a nonprivileged user, this nonprivileged user can then run
the CrtPkg tool. Once run, the CrtPkg process creates five sets of packages (one for each of the five isolation levels supported
on DB2/400) for use by all (PUBLIC) users of the Microsoft data access features. On DB2/400, five packages are created
including the AUTOCOMMITTED packages.

The following example illustrates this process on DB2/400.

Grant rights to run the Data Access Tool to authorization ID WNW999

ror and SQL State. SQLSTATE: 42704, SQLCODE: -204

GRANT BINDADD TO <authorization ID>
GRANT CREATE IN COLLECTION <collection ID> TO <authorization ID>

GRANT BINDADD TO WNW999
GRANT CREATE IN COLLECTION MSPKG TO WNW999

CREATE COLLECTION <collection ID>

WRKOBJ <collection ID>

CREATE COLLECTION MSPKG

Run the Data Access Tool.

When using the Data Access Tool, if the package collection specified does not exist, DB2 returns SQLCODE -805.

When using auto-create packages, if a package collection is not specified or the package collection does not exist, during the
auto-create package process, the consumer application receives SQLSTATE HY000 and SQLCODE -385. The SQLSTATE HY000
is defined as a provider-specific error. The -385 Error Return Code is not a SQLCODE but rather a DDM DRDA AR (DB2 client)
return code. This error code is defined as DDM_VALNSPRM with the following associated text string:

The OLE DB Provider for DB2 client error codes are defined in the Db2oledb.h file located on the Host Integration Server CD.

Note that when upgrading from SNA Server 4.0, any existing SNA 4.0 packages must be re-created using the Host Integration
Server Data Access Tool to make them compatible with Host Integration Server.

WRKOBJ MSPKG

"The parameter value is not supported by the target system."

ADO Object, Method, Property, and Collection Support for
AS/400, VSAM and DB2

Microsoft® ActiveX® Data Objects (ADO) version 2.0 defines a number of objects, methods, properties, and collections.

Microsoft OLE DB Provider for AS/400 and VSAM supports the ADO objects, methods, properties, and collections that are
appropriate for an OLE DB data provider accessing a non-SQL host file system.

Microsoft OLE DB Provider for DB2 supports the ADO objects, methods, properties, and collections that are appropriate for an
OLE DB data provider accessing an SQL database.

Similar support for ODBC can be found in the topic ADO Object Support in the ODBC Driver for DB2.

This section contains:

ADO Object Support in the OLE DB Provider for AS/400 and VSAM

ADO Object Support in the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa705397(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745662(v=bts.10).aspx

ADO Object Support in the OLE DB Provider for AS/400 and
VSAM

The following table summarizes the Microsoft® ActiveX® Data Objects (ADO) version 2.0 objects that the current version of
Microsoft OLE DB Provider for AS/400 and VSAM supports.

ADO object Support

Collection Yes, most methods

Command Object Yes, some methods, some properties, and all collections

Connection Object Yes, some methods, some properties, and all collections

Error Object Yes, some properties

Field Object Yes, all methods, properties, and collections

Parameter Object No

Recordset Object Yes, most methods, most properties, and all collections

This section contains:

ADO Method Support in the OLE DB Provider for AS/400 and VSAM

ADO Property Support in the OLE DB Provider for AS/400 and VSAM

ADO Collection Support in the OLE DB Provider for AS/400 and VSAM

Command Object in the OLE DB Provider for AS/400 and VSAM (ADO)

Connection Object in the OLE DB Provider for AS/400 and VSAM (ADO)

Error Object in the OLE DB Provider for AS/400 and VSAM (ADO)

Field Object in the OLE DB Provider for AS/400 and VSAM (ADO)

Recordset Object in the OLE DB Provider for AS/400 and VSAM (ADO)

https://msdn.microsoft.com/en-us/library/aa705743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705528(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770489(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771697(v=bts.10).aspx

ADO Method Support in the OLE DB Provider for AS/400 and
VSAM

The following table summarizes the ActiveX® Data Objects (ADO) version 2.0 object methods that the current version of
Microsoft OLE DB Provider for AS/400 and VSAM supports.

ADO object Method Support
Collection object Append Method No

 Clear Method Yes

 Delete Method Yes

 Item Method Yes

 Refresh Method Yes

Command Object CreateParameter Method No

 Cancel Method No

 Execute Method Yes, but options must be adCmdText

Connection Object BeginTrans Method No

 Cancel Method No

 Close Method Yes

 CommitTrans Method No

 Execute Method Yes, but options must be adCmdText

 Open Method Yes

 OpenSchema Method Yes

 RollbackTrans Method No

Field Object AppendChunk Method Yes

 GetChunkMethod Yes

 ReadFromFile Method No

 WriteToFile Method No

Parameter Method AppendChunk Method No

Recordset Object AddNew Method Yes

 Cancel Method No

 CancelBatch Method Yes

 CancelUpdate Method Yes

 Clone Method Yes

 Close Method Yes

 Delete Method Yes

https://msdn.microsoft.com/en-us/library/aa746264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705245(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx

 Find Method Yes

 GetRows Method Yes

 Move Method Yes

 MoveFirst Method Yes

 MoveLast Method Yes

 MoveNext Method Yes

 MovePrevious Method Yes

 NextRecordset Method No

 Open Method Yes

 Requery Method Yes

 Resync Method No

 Save Method Yes

 Seek Method No

 Supports Method Yes

 Update Method Yes

 UpdateBatch Method Yes

Note
The Collection object is a special case, representing a collection of other ADO objects. These collection objects support sever
al methods:

Append to add an object to a collection

Clear to empty all objects from a collection

Delete to remove a single object from a collection

Item to return a specific member object of a collection by name or ordinal number

Refresh to update the objects in a collection to reflect objects available from and specific to the OLE DB provider

https://msdn.microsoft.com/en-us/library/aa770809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx

ADO Property Support in the OLE DB Provider for AS/400 and
VSAM

The following table summarizes the ActiveX® Data Objects (ADO) version 2.0 object properties that the current version of
Microsoft OLE DB Provider for AS/400 and VSAM supports.

ADO object Property Support
Command Object ActiveConnection Property Yes

 CommandText Property Yes

 CommandTimeout Property No

 CommandType Property Yes

 Prepared Property No

 State Property Yes

Connection Object Attributes Property Yes

 CommandTimeout Property No

 ConnectionString Property Yes

 ConnectionTimeout Property No

 CursorLocation Property Yes

 DefaultDatabase Property No

 IsolationLevel Property No

 Mode Property Yes

 Provider Property Yes

 State Property Yes

 Version Property Yes

Error Object Description Property Yes

 HelpContext Property No

 HelpFile Property No

 NativeError Property Yes

 Number Property Yes

 Source Property Yes

 SQLState Property No

Field Object ActualSize Property Yes

 Attributes Property Yes

 DataFormat Property No

 DefinedSize Property Yes

https://msdn.microsoft.com/en-us/library/aa705743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770488(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx

 Name Property Yes

 NumericScale Property Yes

 OriginalValue Property Yes

 Precision Property Yes

 Type Property Yes

 UnderlyingValue Property Yes

 Value Property Yes

Parameter Object Attributes Property No

 Direction Property No

 Name Property No

 NumericScale Property No

 Precision Property No

 Size Property No

 Type Property No

 Value Property No

Recordset Object AbsolutePage Property No

 AbsolutePosition Property No

 ActiveCommand Property Yes

 ActiveConnection Property Yes

 BOF Property Yes

 Bookmark Property Yes

 CacheSize Property Yes

 CursorLocation Property Yes

 CursorType Property Yes

 DataMember Property No

 DataSource Property No

 EditMode Property Yes

 EOF Property Yes

 Filter Property Yes

 Index Property No

 LockType Property Yes

 MarshalOptions Property No

 MaxRecords Property No

https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx

 PageCount Property No

 PageSize Property No

 RecordCount Property No

 Sort Property Yes

 Source Property Yes

 State Property Yes

 Status Property Yes

 StayInSync Property No

https://msdn.microsoft.com/en-us/library/aa770916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx

ADO Collection Support in the OLE DB Provider for AS/400 and
VSAM

The following table summarizes the ActiveX® Data Objects (ADO) version 2.0 object collections that the current version of
Microsoft OLE DB Provider for AS/400 and VSAM supports.

ADO object Collection Support
Command Object Parameters No

 Properties Yes

Connection Object Errors Yes

 Properties Yes

Field Object Properties Yes

Parameter Properties No

Recordset Object Fields Yes

 Properties Yes

https://msdn.microsoft.com/en-us/library/aa705743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771697(v=bts.10).aspx

Command Object in the OLE DB Provider for AS/400 and VSAM
(ADO)

The ActiveX® Data Objects (ADO) Command object is a definition of a specific command that is executed against an OLE DB
data source.

You use Command objects to create a Recordset object and obtain records, execute a bulk operation, or manipulate the
structure of a database. When using Microsoft OLE DB Provider for AS/400 and VSAM, some collections, methods, or
properties of a Command object may generate an error when called.

The primary purpose of the Command object in the context of OLE DB Provider for AS/400 and VSAM is to issue AS/400
command language (CL) commands for execution by the remote OS/400 DDM target server. For a listing of legal distributed
data management (DDM) command-line strings, see AS/400 DDM User's Guide published by IBM.

The following table lists the Command object methods, properties, and collections that the current version of OLE DB Provider
for AS/400 and VSAM supports.

Name Comment
Execute Method Evaluates command text as a text string. (The only supported Options parameter for this method is adCmdT

ext, which indicates that this is not an SQL command.)

ActiveConnection
Property

Sets or returns the information used to establish a connection to a data source. (For more information, see t
he notes that follow.)

CommandText Pr
operty

Sets or returns the command text to be executed.

CommandType P
roperty

Sets or returns the type of command in a CommandText property.

State Property Describes the current state of an object.

Properties collec
tion

Collections of properties on the command.

The Execute method executes a command and returns a Recordset object, if appropriate. You can use the Command object
to open tables or execute DDM commands on a remote DDM server. If errors occur, they can be examined with the Errors
collection on the Connection object.

A Command object can be created independently of a previously defined Connection object by setting the
ActiveConnection property of the Command object to a valid connection string. ADO still creates a Connection object, but it
does not assign that object to an object variable. However, if multiple Command objects are to be associated with the same
connection, the Connection object needs to be explicitly created and opened. This assigns the Connection object to an object
variable. If the ActiveConnection property of the Command object is not set to this object variable, ADO creates a new
Connection object for each Command object, even if the same connection string is used.

The ActiveConnection property associates an open connection with a Command object. The CommandText property
defines the text version of a command. The syntax for the string in the CommandText property when used with OLE DB
Provider for AS/400 and VSAM is as follows:

Where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands enable you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that you could type at the
command prompt if you were connected to an AS/400 computer through a 5250 terminal session. For a detailed list of
possible commands, see the OS/400 CL Reference for your platform.

The CommandType property specifies the type of command described in the CommandText property prior to execution to
optimize performance. The CommandType property must be set to adCmdText for use with OLE DB Provider for AS/400
and VSAM.

EXEC COMMAND DDMCmd

https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx

You can also use the Command object to open a data file after a Connection object has been opened and the
ActiveConnection property has been set to this open connection. The CommandText property defines the data file to open
(an EXEC OPEN DataSetNamestatement, for example, where DataSetName represents a valid data file or library member on
the host). You must set the CommandType property to adCmdText for use with OLE DB Provider for AS/400 and VSAM. If
you open a host data file from a Command object, the data file is opened as read-only. This results from the limitation that no
argument or option is passed by ADO that supplies a parameter describing whether the data set should be opened as read-
only or updateable.

Connection Object in the OLE DB Provider for AS/400 and
VSAM (ADO)

The ActiveX Data Objects (ADO) Connection object represents an open connection to an OLE DB data source. The Provider
property sets the OLE DB provider. You can configure the connection before opening the data source by setting the
ConnectionString properties. The Version property determines the version of the ADO implementation in use.

The Open method establishes the physical connection to the data source and the Close method terminates the connection. If
errors occur, you can examine them with the Errors collection.

The following table lists the methods, properties, and collections for the Connection object that the current version of
Microsoft OLE DB Provider for AS/400 and VSAM supports.

Name Comment
Close Method Closes a connection to a data source.

Execute Method Evaluates command text as a table name. (The only supported Options parameter for this method is adCmd
Table.)

Open Method Opens a connection to a data source and may optionally pass ConnectionString parameters with this meth
od. (The only supported Options parameter for this method is adCmdText.)

OpenSchema Me
thod

Obtains database schema information from the OLE DB provider.

Attributes Metho
d

Indicates one or more characteristics supported for a given Connection object.

ConnectionString
Property

Contains the information used to establish a connection to a data source. (For more information, see the not
e that follows.)

CursorLocation
property

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

Mode Property Indicates the available permissions for modifying data in a connection.

Provider Propert
y

Sets or returns the name of the provider for a connection.

State Property Describes the current state of an object.

Version Property Returns the version number of the ADO implementation in use.

Errors collection Collections of Error objects on the connection.

Properties collec
tion

Collections of properties on the connection.

Note that the information needed to establish a connection to a data source can be set in the ConnectionString property or
passed as part of the Open method. In either case, this information must be in a specific format for use with OLE DB Provider
for AS/400 and VSAM or OLE DB Provider for DB2. This information is either a data source name (DSN) or a detailed
connection string containing a series of argument=value statements separated by semicolons.

ADO supports several standard ADO-defined arguments for the ConnectionString property, as listed in the following table.

Argu
ment

Description

Data
Sourc
e

Name of the data source for the connection. This argument is optional when using OLE DB Provider for AS/400 and VS
AM.

https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx

File N
ame

Name of the provider-specific file containing preset connection information. This argument cannot be used if a Provider
argument is passed and is not supported by OLE DB Provider for AS/400 and VSAM.

Locati
on

The remote database name used for connecting to OS/400 systems. This parameter is optional when connecting to mai
nframe systems.

Pass
word

Valid mainframe or AS/400 password to use when opening the connection. Host Integration Server 2009 uses this pass
word to validate that the user can log on to the target host system and has appropriate access rights to the file.

Provi
der

Name of the provider to use for the connection. To use OLE DB Provider for AS/400 and VSAM, the Provider string mus
t be set to "SNAOLEDB." To use OLE DB Provider for DB2, the Provider string must be set to "DB2OLEDB."

User I
D

Valid mainframe or AS/400 user name to use when opening the connection. Host Integration Server 2009 uses this use
r name to validate that the user can log on to the target host system and has appropriate access rights to the file.

OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which default to
values in the registry. The following table lists these arguments.

Arg
um
ent

Description

BinA
sCh
ar

This parameter indicates whether to process binary fields as character fields. (The default is 0; do not process binary fields
as character fields.)

This parameter is equivalent to the DBPROP_SNAOLEDB_BINASCHAR OLE DB property ID.

CCS
ID

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If you omit this argument,
the default value is U.S./Canada (37).

This parameter is equivalent to the DBPROP_SNAOLEDB_HOSTCCSID OLE DB property ID.

Defa
ult L
ibra
ry

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when con
necting to AS/400 files.

This parameter is equivalent to the DBPROP_SNAOLEDB_LIBRARY OLE DB property ID.

HCD
File
Na
me

The fully qualified file name of the distributed data management (DDM) Host Column Description (HCD) file. This parame
ter can be a UNC string up to 256 characters in length. A path does not need to be included in the name if the HCD file is l
ocated in the Host Integration Server system directory. This parameter is required when connecting to mainframe system
s and is optional when connecting to OS/400.

This parameter is equivalent to the DBPROP_SNAOLEDB_HCDPATH OLE DB property ID.

Loca
lLU

The name of the local logical unit (LU) alias configured in the SNA server.

This parameter is equivalent to the DBPROP_SNAOLEDB_LOCALLU OLE DB property ID.

Mod
eNa
me

The Advanced Program-to-Program Communications (APPC) mode must be set to a value that matches the host configur
ation and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #
BATCHSC (batch), and custom modes.

This parameter is equivalent to the DBPROP_SNAOLEDB_APPCMODE OLE DB property ID.

Net
Add
r

When you select TCP/IP for the Network Transport Library (NTL), this parameter indicates the IP address of the host.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETADDRESS OLE DB property ID.

Net
Port

When you select TCP/IP for the NTL, this parameter is the TCP/IP port used for communication with the source. The defau
lt value is TCP/IP port 446.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETPORT OLE DB property ID.

Net
Lib

This parameter determines whether you use TCP/IP or SNA APPC for network communication. The possible values for thi
s parameter are TCPIP or SNA. The default value is SNA.

This parameter is equivalent to the DBPROP_SNAOLEDB_NETTYPE OLE DB property ID.
PCC
ode
Pag
e

The character code page to use on the computer. If you omit this argument, the default value is set to Latin 1 (1252).

This parameter is equivalent to the DBPROP_SNAOLEDB_PCCODEPAGE OLE DB property ID.

RDB The remote database name for OS/400. You only need to specify this value if it is different from the remote LU alias confi
gured in the SNA server.

Rep
air
Host
Keys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry, The default is
false.

This parameter is equivalent to the DBPROP_SNAOLEDB_REPAIRKEY OLE DB property ID.

Rem
oteL
U

The name of the remote logical unit (LU) alias configured in the Host Integration Server computer.

This parameter is equivalent to the DBPROP_SNAOLEDB_REMOTELU OLE DB property ID.

Stric
tVal

This parameter indicates whether strict validation should be used. The default is false.

This parameter is equivalent to the DBPROP_SNAOLEDB_STRICTVAL OLE DB property ID.

A sample ConnectionString for use with OLE DB Provider for AS/400 and VSAM is as follows:

Note
The &_ character combination is used for continuing long lines in Visual Basic®.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following
is valid with ADO 1.5 and ADO 2.0 and prompts the user for ConnectionString properties:

A sample Open method call with these parameters is as follows:

The last three parameters to the Open method correspond with the CursorType (for example, the adOpenDynamic enum
is 2), LockType (for example, the adLockReadOnly enum is 1), and Options (adCmdText is 1, which indicates that the source
name should be evaluated as a table name). The Options parameter must be set to adCmdText (1) when used with a data
source name with OLE DB Provider for AS/400 and VSAM.

The allowable values for CCSID when using SNA National Language Support (SNANLS) for character code conversions (the
default) are listed in the following table.

EBCDIC character set CCSID value
Arabic 20420

Binary (No Conversion) 65535

Conn.Provider="SNAOLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PCCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=SNAOLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

RS.Open "library/member",Conn,2,1,1

Chinese (Simplified) 935

Chinese (Traditional) 937

Cyrillic (Russian) 20880

Cyrillic (Serbian, Bulgarian) 21025

Denmark/Norway (Euro) 1142

Denmark/Norway 20277

Finland/Sweden (Euro) 1143

Finland/Sweden 20278

France (Euro) 1147

France 20297

Germany (Euro) 1141

Germany 20273

Greek (Modern) 875

Greek 20423

Hebrew 20424

Icelandic (Euro) 1149

Icelandic 20871

International (Euro) 1148

International 500

Italy (Euro) 1144

Italy 20280

Japanese (English-lower) 931

Japanese (Extend English) 939

Japanese (Extend Katakana) 930

Japanese (Katakana) 290

Japanese (Katakana-Kanji) 5026

Japanese (Latin-Kanji) 5035

Korean 933

Latin America/Spain (Euro) 1145

Latin America/Spain 20284

Latin-1 Open System (Euro) 20924

Latin-1 Open System 1047

Multilingual/ROECE (Latin-2) 870

Thai 20838

Turkish (Latin-5) 1026

Turkish 20905

U.S./Canada (Euro) 1140

U.S./Canada 37

United Kingdom (Euro) 1146

United Kingdom 20285

Note
SNANLS conversion uses the locale configured for the data sources using data links. For more information on SNANLS, see
SNA National Language Support Programmer's Guide.

https://msdn.microsoft.com/en-us/library/aa754707(v=bts.10).aspx

Error Object in the OLE DB Provider for AS/400 and VSAM
(ADO)

The ActiveX Data Objects (ADO) Error object contains details about data access errors pertaining to a single operation
involving ADO. You can read the properties of an Error object to obtain specific details about each error.

The Error object does not support any methods or collections. However, the Errors collection supported by other objects
provides the standard Collection methods (Clear and Delete). OLE DB Provider automatically appends Error objects to the
Errors collection when they occur.

The following table lists the Error object properties that the current version of Microsoft OLE DB Provider for AS/400 and
VSAM supports.

Property N
ame

Comment

Description
Property

The text of the error alert that is returned based on the minor error code (specific to OLE DB Provider for AS/400
and VSAM) contained in the Error object resulting from an error.

NativeError
Property

A Long integer value of the error code returned by OLE DB Provider for AS/400 and VSAM.

Number Pro
perty

The Long integer value of the error constant.

Source Prop
erty

A string that indicates the name of the object or application that originally generated an error.

https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx

Field Object in the OLE DB Provider for AS/400 and VSAM
(ADO)

The ActiveX Data Objects (ADO) Field object represents a column of data with a common data type. Each Field object
corresponds to a column in a Recordset object.

The following table lists the Field object methods, properties, and collections that the current version of Microsoft OLE DB
Provider for AS/400 and VSAM supports.

Name Comment
AppendChunk Method Appends data to a large text or binary data Field object.

GetChunk Method Returns all or portions of the contents of a large text or binary data Field object.

ActualSize Property Actual length of the value of a field.

Attributes Property One or more characteristics supported for a given Field object.

DefinedSize Property Defined size of a Field object.

Name Property Name of the Field object.

NumericScale Property Scale of numeric values in a Field object for numeric data.

OriginalValue Property Value of a Field object that existed in the record before changes were made.

Precision Property Degree of precision for numeric values in a Field object for numeric data.

Type Property Operational type or data type for a Field object.

UnderlyingValue Property Current value of a Field object.

Value Property Value assigned to a Field object in a Recordset.

Properties collection Collections of properties on the field.

https://msdn.microsoft.com/en-us/library/aa705245(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx

Recordset Object in the OLE DB Provider for AS/400 and VSAM
(ADO)

The ActiveX Data Objects (ADO) Recordset object represents the entire set of records from a base table. At any time, the
Recordset object refers to only one record within the set as the current record.

The following table lists the Recordset object methods, properties, and collections that the current version of Microsoft OLE
DB Provider for AS/400 and VSAM supports.

Name Comment
AddNew Method Creates a new record for an updateable Recordset object.

CancelBatch Met
hod

Cancels a pending batch update.

CancelUpdate M
ethod

Cancels any changes made to a current record or to a new record prior to calling the UpdateBatch method.

Clone Method Creates a duplicate Recordset object from an existing Recordset object.

Close Method Closes an open object and any dependent objects.

Delete Method Deletes the current record in an open Recordset object or an object from a collection.

Find Method Finds the next record to match a condition (ADO 1.5 and later).

GetRows Method Retrieves multiple records of a Recordset into an array.

Move Method Moves the position of the current record in a Recordset object.

MoveFirst Metho
d

Moves to the first record in a specified Recordset.

MoveLast Metho
d

Moves to the last record in a specified Recordset.

MoveNext Metho
d

Moves to the next record in a specified Recordset.

MovePrevious M
ethod

Moves to the previous record in a specified Recordset.

Open Method Opens a cursor on a Recordset.

Requery Method Updates the data in a Recordset object by re-executing the query on which the object is based (equivalent t
o calling the Close and Open methods in succession).

Save Method Saves a Recordset in a file or Stream object.

Seek method

Supports Method Determines whether a specified Recordset object supports a particular type of function.

Update Method Saves any changes you make to the current record of a Recordset object.

UpdateBatch Met
hod

Writes all pending batch updates to disk.

ActiveCommand
Property

Returns the Command object that created the specified Recordset.

https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx

ActiveConnection
Property

Sets or returns the Connection object that the specified Recordset object currently belongs.

BOF Property Indicates whether the current record position is before the first record in a Recordset object.

Bookmark Prope
rty

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the current rec
ord in a Recordset object identified by a valid bookmark.

CacheSize Proper
ty

Sets or returns the number of records from a Recordset object that are cached locally in memory.

CursorLocation P
roperty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

CursorType Prop
erty

Sets or returns the type of cursor used in a Recordset object. Only the adOpenDynamic CursorType is su
pported by the current version of OLE DB Provider for AS/400 and VSAM.

EditMode Proper
ty

Indicates the editing status of the current record type.

EOF Property Indicates whether the current record position is after the last record in a Recordset object.

Filter Property Indicates a filter for data in a Recordset (revised in ADO 1.5 and later).

LockType Propert
y

Sets or returns the types of locks placed on records during editing. All four lock types (adLockReadOnly, a
dLockOptimistic, adLockPessimistic,and adLockBatchOptimistic) are supported by the OLE DB Provide
r for AS/400 and VSAM. Note that the OLE DB provider internally maps adLockPessimistic to a LockType o
f adLockBatchOptimistic.

Sort Property Indicates the column names and order to sort data in a Recordset object (new property in ADO 1.5 and later
).

Source Property Sets or returns the source (table name or command object) for the data in a Recordset.

State Property Describes the current state of an object.

Status Property Indicates the status of the current record with respect to batch updates or other bulk operations.

Fields collection Collections of fields on the Recordset.

Properties collec
tion

Collections of properties on the Recordset.

The syntax supported by the OLE DB Provider for AS/400 and VSAM to open a recordset (table) using the Recordset.Open
method is as follows:

where TableName represents one of the host file naming conventions listed in the following table.

Host file type File naming convention
VSAM Data Sets DATASETNAME.FILENAME

Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)

OS/400 Files LIBRARY/FILE

OS/400 Files LIBRARY/FILE.NAME

OS/400 File Members LIBRARY/FILE(MEMBER)

OS/400 File Members LIBRARY/FILE.NAME(MEMBER)

Note that if a member of a library contains a dot in the member name, you must surround the member name with double

EXEC OPEN TableName

https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx

quotes. For example, if the member name is NAMES.DAT, the proper syntax for command text used for the Recordset.Open
method is:

You must specify the full path to the mainframe data set. In the preceding example, there are two path elements
(LIBRARY/FILE) and one name element (NAMES.DAT).

Whenever a data set is allocated, it is given a unique name composed of one or more segments. Each segment of the data set
name is joined by periods and represents a level of qualification. For example, the following data set has four segments that
comprise the fully qualified data set name (three path elements and one name element):

The high-level qualifier is SAMPLES. The low-level qualifier is TITLES. Each segment can be from 1 through 8 characters in
length. (The first character must be alphabetical, and the remainder can be alphanumeric or hyphens.) The full data set name
must be no more than 44 characters in length and contain no more than 22 segments.

The Recordset Bookmark method is supported for all AS/400 physical and logical files, as well as the following mainframe file
types:

KSDS if the file has a unique key

RRDS if the file has a unique key

You can use the Recordset AddNew method on Entry-Sequenced Data Sets (ESDS) files on the AS/400 only when you are
positioned at the end of the Recordset object (file). With Alternate Index files on the AS/400, you can use the AddNew
method to add records when at the end of the Recordset object or by key. With Key-Sequenced Data Sets (KSDS) or Fixed-
Length Relative Record Data Sets (RRDS) files on the mainframe, the AddNew method adds new records by key.

To use the Recordset Find method or the Filter property, an AS/400 logical file, an AS/400 keyed physical file, a mainframe
KSDS file with a unique key, or a mainframe RRDS file with a unique key must be used. If you use these methods or properties
on an AS/400 non-keyed physical file or any other mainframe file type, the method fails.

The Recordset Sort property is used with an open Recordset object based on an AS/400 physical file. The Sort property
enables the user to indicate which logical view to apply to an AS/400 physical file. The logical view must be a valid index
specified in the description of the AS/400 physical file. The AS/400 logical file provides the logical view. OLE DB Provider for
AS/400 and VSAM responds to the Sort property request by first closing the open physical file, and then opening the logical
file that points back to the data in the physical file.

The Recordset Sort property is only supported on AS/400 hosts. If the user opens a Recordset object based on an AS/400
logical file, there is probably no need to use Recordset.Sort. For performance reasons, applications should be written to open
the AS/400 logical file first, because the overhead is so much greater when opening a physical file first.

RecordSet.Open "EXEC OPEN LIBRARY/FILE(""NAMES.DAT"")",...

SAMPLES.DEMO.KSDS.TITLES

ADO Object Support in the OLE DB Provider for DB2
The following table summarizes the Microsoft® ActiveX® Data Objects (ADO) version 2.0 objects that the current version of
Microsoft OLE DB Provider for DB2 supports.

ADO object Support

Collection Yes, most methods

Command Object Yes, some methods, some properties, and all collections

Connection Object Yes, some methods, some properties, and all collections

Error Object Yes, some properties

Field Object Yes, no methods, most properties, and all collections

Parameter Object Yes, most methods, most properties, and all collections

Recordset Object Yes, most methods, most properties, and all collections

This section contains:

ADO Method Support in the OLE DB Provider for DB2

ADO Property Support in the OLE DB Provider for DB2

ADO Collection Support in the OLE DB Provider for DB2

Command Object in the OLE DB Provider for DB2 (ADO)

Connection Object in the OLE DB Provider for DB2 (ADO)

Error Object in the OLE DB Provider for DB2 (ADO)

Field Object in the OLE DB Provider for DB2 (ADO)

Recordset Object in the OLE DB Provider for DB2 (ADO)

https://msdn.microsoft.com/en-us/library/aa705251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705476(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771506(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745615(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771372(v=bts.10).aspx

ADO Method Support in the OLE DB Provider for DB2
The following table summarizes the ActiveX Data Objects (ADO) version 2.0 object methods that the current version of
Microsoft OLE DB Provider for DB2 supports.

ADO object Method Support
Collection Append No

 Clear Method Yes

 Delete Method Yes

 Item Method Yes

 Refresh Method Yes

Command Object CreateParameter Method Yes

 Cancel Method No

 Execute Method Yes

Connection Object BeginTrans Method Yes

 Cancel Method No

 Close Method Yes

 CommitTrans Method Yes

 Execute Method Yes

 Open Method Yes

 OpenSchema Method Yes

 RollbackTrans Method Yes

Field Object AppendChunk Method No

 GetChunk Method No

 ReadFromFile Method No

 WriteToFile Method No

Parameter Object AppendChunk Method No

Recordset Object AddNew Method Yes

 Cancel Method No

 CancelBatch Method Yes

 CancelUpdate Method Yes

 Clone Method Yes

 Close Method Yes

 Delete Method Yes

 Find Method No

https://msdn.microsoft.com/en-us/library/aa746264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx

 GetRows Method Yes

 Move Method Yes

 MoveFirst Method Yes

 MoveLast Method No

 MoveNext Method Yes

 MovePrevious Method No

 NextRecordset Method No

 Open Method Yes

 Requery Method Yes

 Resync Method No

 Save Method Yes

 Seek Method No

 Supports Method Yes

 Update Method Yes

 UpdateBatch Method Yes

Note
The Collection object is a special case, representing a collection of other ADO objects. These collection objects support sever
al methods:

Append to add an object to a collection

Clear to empty all objects from a collection

Delete to remove a single object from a collection

Item to return a specific member object of a collection by name or ordinal number

Refresh to update the objects in a collection to reflect objects available from and specific to the OLE DB provider

https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx

ADO Property Support in the OLE DB Provider for DB2
The following table summarizes the ActiveX Data Objects (ADO) version 2.0 object properties that the current version of
Microsoft OLE DB Provider for DB2 supports.

ADO object Property Support
Command Object ActiveConnection Property Yes

 CommandText Property Yes

 CommandTimeout Property No

 CommandType Property Yes

 Prepared Property Yes

 State Property Yes

Connection Object Attributes Property Yes

 CommandTimeout Property No

 ConnectionString Property Yes

 ConnectionTimeout Property No

 CursorLocation Property Yes

 DefaultDatabase Property No

 IsolationLevel Property Yes

 Mode Property Yes

 Provider Property Yes

 State Property Yes

 Version Property Yes

Error Object Description Property Yes

 HelpContext Property No

 HelpFile Property No

 NativeError Property Yes

 Number Property Yes

 Source Property Yes

 SQLState Property Yes

Field Object ActualSize Property Yes

 Attributes Property Yes

 DataFormat Property No

 DefinedSize Property Yes

 Name Property Yes

https://msdn.microsoft.com/en-us/library/aa705251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx

 NumericScale Property Yes

 OriginalValue Property Yes

 Precision Property Yes

 Type Property Yes

 UnderlyingValue Property Yes

 Value Property Yes

Parameter Object Attributes Property Yes

 Direction Property Yes

 Name Property Yes

 NumericScale Property Yes

 Precision Property Yes

 Size Property Yes

 Type Property Yes

 Value Property Yes

Recordset Object AbsolutePage Property No

 AbsolutePosition Property No

 ActiveCommand Property Yes

 ActiveConnection Property Yes

 BOF Property Yes

 Bookmark Property Yes

 CacheSize Property Yes

 CursorLocation Property Yes

 CursorType Property Yes

 DataMember Property No

 DataSource Property No

 EditMode Property Yes

 EOF Property Yes

 Filter Property No

 Index Property No

 LockType Property Yes

 MarshalOptions Property No

 MaxRecords Property Yes

 PageCount Property No

https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771066(v=bts.10).aspx

 PageSize Property No

 RecordCount Property No

 Sort Property No

 Source Property Yes

 State Property Yes

 Status Property Yes

 StayInSync Property No

https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx

ADO Collection Support in the OLE DB Provider for DB2
The following table summarizes the ActiveX Data Objects (ADO) version 2.0 object collections that Microsoft OLE DB Provider
for DB2 supports.

ADO object Collection Support
Command Object Parameters Collection Yes

 Properties Collection Yes

Connection Object Errors Collection Yes

 Properties Collection Yes

Field Object Properties Collection Yes

Parameter Object Properties Collection Yes

Recordset Object Fields Collection Yes

 Properties Collection Yes

https://msdn.microsoft.com/en-us/library/aa705251(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771372(v=bts.10).aspx

Command Object in the OLE DB Provider for DB2 (ADO)
The ActiveX Data Objects (ADO) Command object is a definition of a specific command that is to be executed against an OLE
DB data source.

You can use Command objects to create a Recordset object and obtain records, to execute a bulk operation, or to manipulate
the structure of a database. When using Microsoft OLE DB Provider for DB2, some collections, methods, or properties of a
Command object may generate an error when called.

The primary purpose of the Command object in the context of OLE DB Provider for DB2 is to issue SQL commands for
execution by the remote DB2 target server. Legal SQL commands are documented for the target DB2 platforms in SQL
Reference Guides published by IBM.

The following table lists the Command object methods, properties, and collections that the current version of OLE DB Provider
for DB2 supports.

Name Comment
Execute Method Evaluates command text (only supported Options parameter for this method is adCmdText, which indicat

es that this is an SQL text command).

ActiveConnection P
roperty

Sets or returns the information used to establish a connection to a data source. (For more information, see
the notes that follow.)

CommandText Pro
perty

Sets or returns the command text to be executed.

CommandType Pro
perty

Sets or returns the type of command in a CommandText property.

State Property Describes the current state of an object.

Properties collecti
on

Collections of properties on the command.

The Execute method executes a command and returns a Recordset object, if appropriate. You can use the Command object
to open tables or execute SQL commands on a remote DB2 server. If errors occur, you can examine these with the Errors
collection on the Connection object.

You can create a Command object independently of a previously defined Connection object by setting the
ActiveConnection property of the Command object to a valid connection string. (For the proper syntax, see the
ConnectionString property of the Connection object.) ADO still creates a Connection object, but it does not assign that
object to an object variable. However, if multiple Command objects are to be associated with the same connection, the
Connection object needs to be explicitly created and opened. This assigns the Connection object to an object variable. If the
ActiveConnection property of the Command object is not set to this object variable, ADO creates a new Connection object
for each Command object, even if the same connection string is used.

The ActiveConnection property associates an open connection with a Command object. The CommandText property
defines the text version of a command (for example, SELECT ALL FROM TABLE). The CommandType property specifies the
type of command described in the CommandText property prior to execution to optimize performance. The CommandType
property must be set to adCmdText for use with OLE DB Provider for DB2.

https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx

Connection Object in the OLE DB Provider for DB2 (ADO)
The ActiveX Data Objects (ADO) Connection object represents an open connection to an OLE DB data source. The Provider
property sets the OLE DB provider to use. The connection can be configured before opening the data source by setting the
ConnectionString properties. The version of the ADO implementation in use can be determined from the Version property.

The physical connection to the data source is established using the Open method and terminated with the Close method. If
errors occur, these can be examined with the Errors collection.

The following table lists the Connection object methods, properties, and collections that the current version of Microsoft OLE
DB Provider for DB2 supports.

Name Comment
Close Method Closes a connection to a data source.

Execute Method Evaluates command text.

Open Method Opens a connection to a data source and may optionally pass ConnectionString parameters with this
method.

OpenSchema Method Obtains database schema information from the OLE DB provider.

Attributes Property One or more characteristics supported for a given Connection object.

ConnectionString Pro
perty

Contains the information used to establish a connection to a data source. (For more information, see th
e notes that follow.)

CursorLocation Prope
rty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

IsolationLevel Propert
y

Sets or returns the level of isolation for a Connection object.

Mode Property Indicates the available permissions for modifying data in a connection.

Provider Property Sets or returns the name of the provider for a connection.

State Property Describes the current state of an object.

Version Property Returns the version number of the ADO implementation in use.

Errors collection Collections of Error objects on the connection.

Properties collection Collections of properties on the connection.

You can set the information needed to establish a connection to a data source in the ConnectionString property or pass it as
part of the Open method. In either case, this information must be in a specific format for use with OLE DB Provider for DB2.
This information can be a data source name (DSN) or a detailed connection string containing a series of argument=value
statements separated by semicolons. ADO supports several standard ADO-defined arguments for the ConnectionString
property as listed in the following table.

Argu
ment

Description

Data S
ource

Name of the data source for the connection. This argument is optional when using OLE DB Provider for DB2.

File N
ame

Name of the provider-specific file containing preset connection information. This argument cannot be used if a Provide
r argument is passed.

Locati
on

The remote database name used for connecting to OS/400 systems. This parameter is optional when connecting to mai
nframe systems.

https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx

Passw
ord

Valid mainframe or AS/400 password to use when opening the connection. This password is used to verify that the use
r can log on to the target DB2 host system and has appropriate access rights to the database.

This parameter is equivalent to the DBPROP_AUTH_PASSWORD OLE DB property ID.

Provid
er

Name of the provider to use for the connection. To use OLE DB Provider for DB2, you must set the Provider string to "D
B2OLEDB."

User I
D

Valid mainframe or AS/400 user name to use when opening the connection. This user name validates that the user can
log on to the target DB2 host system and has appropriate access rights to the database.

This parameter is equivalent to the DBPROP_AUTH_USERID OLE DB property ID.

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the following tables.

The following table lists the arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2009.

Ar
g
u
m
e
nt

Description

Bi
n
As
C
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as c
haracter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and outpu
t parameters.

This parameter defaults to false.

C
C
SI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If you omit this argument, the default value is U.S./Canada (37).

D
ef
Sc
h

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2, SYSIB
M, SYSTEM, CURLIB, or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

You use this parameter as the first part of a three-part fully qualified table name. In DB2 (MVS, OS/390), this property is ref
erred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referre
d to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the
OS/400 system. If there is no RDBNAM value, you can create one using the Add option. In DB2 Universal Database, this pro
perty is referred to as DATABASE.

This parameter has no default value.

Lo
ca
lL
U

The name of the local logical unit (LU) alias configured in Host Integration Server.

M
od
e
N
a
m
e

The Advanced Program-to-Program Communications (APPC) mode must be set to a value that matches the host configurat
ion and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

N
et
A
dd
r

When you select TCP/IP for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When you select TCP/IP for the Network Transport Library, this parameter is the TCP/IP port used for communication with t
he source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether you use TCP/IP or SNA APPC for network communication. The possible values for this
parameter are TCPIP or SNA.

This value defaults to SNA.

P
C
C
od
eP
ag
e

The character code page to use on the computer. If you omit this argument, the default value is set to Latin 1 (1252).

Pk
g
C
ol

The name of the Distributed Relational Database Architecture (DRDA) target collection (AS/400 library) where Microsoft OL
E DB Provider for DB2 should store and bind DB2 packages. This could be same as the Default Schema.

Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB provider create
s packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The transaction program name when used with SQL/DS.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are distributed u
nit of work (DUW) or remote unit of work (RUW).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in OLE DB Provider for DB2. Distributed transactions are
handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync Ser
vice. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is select
ed as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using OLE DB Provider for DB2 is as follows:

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_

Note
The &_ character combination is used for continuing long lines in Visual Basic®.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following
is valid with ADO 1.5 and ADO 2.0 and will prompt the user for ConnectionString properties:

A sample Open method call with these parameters is as follows:

The last three parameters to the Open method correspond with the CursorType (for example, the adOpenForwardOnly enum
is 0), LockType (for example, the adLockReadOnly enum is 1), and Options (adCmdText is 1, which indicates that the source
name should be evaluated as SQL text). The Options parameter must be set to adCmdText (1) when used with a data source
name with OLE DB Provider for DB2.

The allowable values for the Character Code Set Identifier (CCSID) when using SNA National Language Support (SNANLS) for
character code conversions (the default) are listed in the following table.

EBCDIC character set CCSID value
Arabic 20420

Binary (No Conversion) 65535

Chinese (Simplified) 935

Chinese (Traditional) 937

Cyrillic (Russian) 20880

Cyrillic (Serbian, Bulgarian) 21025

Denmark/Norway (Euro) 1142

Denmark/Norway 20277

Finland/Sweden (Euro) 1143

Finland/Sweden 20278

France (Euro) 1147

France 20297

Germany (Euro) 1141

Germany 20273

Greek (Modern) 875

Greek 20423

 "ModeName=QPCSUPP;CCSID=37;PcCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=DB2OLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

RS.Open "Accounting",Conn,0,1,1

Hebrew 20424

Icelandic (Euro) 1149

Icelandic 20871

International (Euro) 1148

International 500

Italy (Euro) 1144

Italy 20280

Japanese (English-lower) 931

Japanese (Extend English) 939

Japanese (Extend Katakana) 930

Japanese (Katakana) 290

Japanese (Katakana-Kanji) 5026

Japanese (Latin-Kanji) 5035

Korean 933

Latin America/Spain (Euro) 1145

Latin America/Spain 20284

Latin-1 Open System (Euro) 20924

Latin-1 Open System 1047

Multilingual/ROECE (Latin-2) 870

Thai 20838

Turkish (Latin-5) 1026

Turkish 20905

U.S./Canada (Euro) 1140

U.S./Canada 37

United Kingdom (Euro) 1146

United Kingdom 20285

Note that the SNA National Language Support (SNANLS) conversion uses the locale configured for the data sources using data
links. For more information, see the SDK documentation under the SNA National Language Support Programmer's Guide.

The allowable values for CCSID when using ANSI/OEM for character code conversions are listed in the following table.

ANSI/OEM character set CCSID value
ANSI - Arabic 1256

ANSI - Baltic 1257

ANSI - Cyrillic 1251

ANSI - Eastern Europe 1250

https://msdn.microsoft.com/en-us/library/aa754707(v=bts.10).aspx

ANSI - Greek 1253

ANSI - Hebrew 1255

ANSI - Latin I 1252

ANSI - Turkish 1254

ANSI/OEM - Korean (Extended Wansung) 949

ANSI/OEM - Japanese Shift-JIS 932

ANSI/OEM - Simplified Chinese GBK 936

ANSI/OEM - Traditional Chinese Big5 950

ANSI/OEM - Thai 874

ANSI/OEM - Vietnam 1258

Error Object in the OLE DB Provider for DB2 (ADO)
The ActiveX Data Objects (ADO) Error object contains details about data access errors pertaining to a single operation
involving ADO. You can read the properties of an Error object to obtain specific details about each error.

The Error object does not support any methods or collections. However, the Errors collection supported by other objects
provides the standard Collection methods (Clear and Delete). The OLE DB provider automatically appends Error objects to
the Errors collection when they occur.

The following table lists the Error object properties that the current version of Microsoft OLE DB Provider for DB2 supports.

Property Na
me

Comment

Description P
roperty

The text of the error alert that is returned based on the minor error code (specific to the OLE DB Provider for DB
2) contained in the Error object resulting from an error.

NativeError P
roperty

A Long integer value of the error code returned by the OLE DB Provider for DB2.

Number Prop
erty

The Long integer value of the OLE DB error constant.

Source Prope
rty

A string that indicates the name of the object or application that originally generated an error.

https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx

Field Object in the OLE DB Provider for DB2 (ADO)
The ActiveX Data Objects (ADO) Field object represents a column of data with a common data type. Each Field object
corresponds to a column in a Recordset object.

The following table lists the Field object methods, properties, and collections that the current version of Microsoft OLE DB
Provider for DB2 supports.

Name Comment
ActualSize Property Actual length of a field's value.

Attributes Property One or more characteristics supported for a given Field object.

DefinedSize Property Defined size of a Field object.

Name Property Name of the Field object.

NumericScale Property Scale of numeric values in a Field object for numeric data.

OriginalValue Property Value of a Field object that existed in the record before changes were made.

Precision Property Degree of precision for numeric values in a Field object for numeric data.

Type Property Operational type or data type for a Field object.

UnderlyingValue Property Current value of a Field object.

Value Property Value assigned to a Field object in a Recordset.

Properties collection Collections of properties on the field.

https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx

Recordset Object in the OLE DB Provider for DB2 (ADO)
The ActiveX Data Objects (ADO) Recordset object represents the entire set of records from a base table. At any time, the
Recordset object refers to only one record within the set as the current record.

The following table lists the Recordset object methods, properties, and collections that the current version of Microsoft OLE
DB Provider for DB2 supports.

Name Comment
AddNew Method Creates a new record for an updateable Recordset object.

CancelBatch Met
hod

Cancels a pending batch update.

CancelUpdate M
ethod

Cancels any changes made to a current record or to a new record prior to calling the UpdateBatch method.

Clone Method Creates a duplicate Recordset object from an existing Recordset object.

Close Method Closes an open object and any dependent objects.

Delete Method Deletes the current record in an open Recordset object or an object from a collection.

GetRows Method Retrieves multiple records of a Recordset into an array.

Move Method Moves the position of the current record in a Recordset object.

MoveFirst Metho
d

Moves to the first record in a specified Recordset.

MoveNext Metho
d

Moves to the next record in a specified Recordset.

Open Method Opens a cursor on a Recordset.

Requery Method Updates the data in a Recordset object by re-executing the query on which the object is based (equivalent t
o calling the Close and Open methods in succession).

Save Method Saves a Recordset in a file or Stream object.

Supports Method Determines whether a specified Recordset object supports a particular type of function.

Update Method Saves any changes you make to the current record of a Recordset object.

UpdateBatch Met
hod

Writes all pending batch updates to disk.

ActiveCommand
Property

Returns the Command object that created the specified Recordset.

ActiveConnection
Property

Sets or returns the Connection object that the specified Recordset object currently belongs.

BOF Property Indicates whether the current record position is before the first record in a Recordset object.

Bookmark Prope
rty

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the current rec
ord in a Recordset object identified by a valid bookmark.

CacheSize Proper
ty

Sets or returns the number of records from a Recordset object that are cached locally in memory.

CursorLocation P
roperty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx

CursorType Prop
erty

Sets or returns the type of cursor used in a Recordset object. The current version of OLE DB Provider for DB
2 supports only the adOpenForwardOnly CursorType.

EditMode Proper
ty

Indicates the editing status of the current record type.

EOF Property Indicates whether the current record position is after the last record in a Recordset object.

LockType Propert
y

Sets or returns the types of locks placed on records during editing. OLE DB Provider for DB2 supports locks
of type adLockReadOnly and adLockPessimistic.

MaxRecords Pro
perty

Sets or returns the maximum number of records to return to a Recordset from a query.

Source Property Sets or returns the source (table name or command object) for the data in a Recordset.

State Property Describes the current state of an object.

Status Property Indicates the status of the current record with respect to batch updates or other bulk operations.

Fields collection Collections of fields on the Recordset.

Properties collec
tion

Collections of properties on the Recordset.

https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx

ODBC Driver for DB2 Programmer's Guide
The Microsoft ODBC Driver for DB2 enables users to access IBM DB2 DB2 from within an ODBC-aware application. ODBC
defines a standard set of interfaces that provide access to disparate databases. The ODBC Driver for DB2 combines the data
access of ODBC with the underlying Microsoft Distributed Relational Database Architecture (DRDA) application requester also
used by the Microsoft OLE DB Provider for DB2. Using this combination of technologies, the ODBC Driver for DB2 can provide
database access to IBM's Distributed Relational Database Architecture and IBM DB2.

Organizations have invested in secure, robust, enterprise-wide data storage and management systems. DRDA is a set of rules
for distributing or extending relational data from one computer to another, such as a server computer to an IBM DB2 database
server running on a mainframe or an AS/400 computer. By combining the ODBC and DRDA architectures, Microsoft allows
organizations to preserve their investments in an existing data management infrastructure, while extending data access to all
enterprise-wide DB2 data sources.

The ODBC Driver for DB2 can be used interactively or from an application program to issue SQL statements and execute DB2
stored procedures. From Microsoft Excel, users can import DB2 tables into worksheets and use Excel graphing tools to analyze
the data. From Microsoft Access, users can import from and export to DB2. With Microsoft Internet Information Services (IIS),
developers can publish DB2-stored information to users through a Web browser.

For API reference and other technical information about the ODBC Driver for DB2, see the
ODBC Driver for DB2 Programmer's Reference section of the SDK.

For more information about how to use the ODBC Driver for DB2, see the ODBC Driver for DB2 section in the Operations
guide.

In This Section

Goals of the ODBC Driver for DB2

ODBC Driver for DB2 Architecture

Platforms Supported by the ODBC Driver for DB2

ODBC Driver for DB2 Requirements

Configuring ODBC Data Sources

Creating Packages for Use with the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/aa770807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754768(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744377(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754274(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771710(v=bts.10).aspx

Goals of the ODBC Driver for DB2
Relational database management systems (RDBMS) are one of the major sources of mission-critical information in today's
enterprise organizations. Relational database technology enables departments and individual users to save their information in
centrally managed database stores that can be maintained by the organization's information systems group.

IBM DB2 is a popular RDBMS for a significant number of enterprise customers. Customers need a cost-effective and
manageable means to integrate DB2 with Microsoft® SQL Server™, Microsoft Internet Information Services (IIS), and Microsoft
Office applications. The goal of Microsoft ODBC Driver for DB2 is to provide customers and solution providers with the means
to integrate desktop database applications with this wealth of data residing on IBM DB2 database systems.

ODBC Driver for DB2 Architecture
The Microsoft ODBC Driver for DB2 is an ODBC-compliant database driver for Microsoft Windows Server 2003 and
Windows 2000 that enables your existing ODBC applications access data residing in IBM DB2 database servers without
changing any code. The ODBC Driver for DB2 can connect ODBC-compliant applications with DB2 data sources using the
underlying Microsoft Distributed Relational Database Architecture (DRDA) application requester. The ODBC application
connects to the ODBC Driver for DB2. These ODBC requests are processed by the underlying Microsoft DRDA application
requester. The data is then passed by an SQL interface to the DB2 data store.

The ODBC Driver for DB2 shares the same DRDA application requester that is used by the Microsoft OLE DB Provider for DB2.
The DRDA application requester is the network client that provides remote database access to DB2 across an SNA LU 6.2 and
TCP/IP network.

The ODBC Driver for DB2 is compliant with the Microsoft Open Database Connectivity (ODBC) specification. ODBC is a
specification for an application program interface (API) that enables applications to access multiple database systems using
SQL.

See Also
Other Resources
ODBC Driver for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771231(v=bts.10).aspx

Platforms Supported by the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2 supports popular DB2 platforms supported by the Microsoft OLE DB Provider for DB2
because both use the same underlying Distributed Relational Database Architecture (DRDA) application requester.

The ODBC Driver for DB2 offers network connectivity using SNA APPC LU 6.2 connectivity, as well as native TCP/IP (not reliant
on any special IBM or third-party routers).

See Also
Other Resources
ODBC Driver for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771231(v=bts.10).aspx

ODBC Driver for DB2 Requirements
Information about hardware and software requirements for ODBC Driver for DB2 can be found in Host Integration
Server 2009.

When connecting over SNA using LU 6.2, the ODBC Driver for DB2 requires the following computer-to-host connectivity
software:

Microsoft Host Integration Server 2009

Microsoft Host Integration Server Client

Note that the ODBC Driver for DB2 does not require any special host connectivity software when connecting directly to a host
system using TCP/IP.

The ODBC Driver for DB2 supports the following OLE DB and ADO versions:

The ODBC Driver for DB2 supplied with Host Integration Server supports the following ADO version:

ADO version 2.5. The Host Integration Server data access features require the runtime libraries for ADO version 2.5. On
Windows Server 2003 and Windows 2000, these ADO libraries are installed as part of the Windows Server 2003
operating systems or Windows 2000.

Configuring ODBC Data Sources
A data source associates a particular ODBC driver with the data to be accessed through that driver. Data source information
must be configured for each DB2 system that is to be accessed using the ODBC Driver for DB2. The default parameters for the
ODBC Driver for DB2 are used for the data source only when these parameters are not configured for each data source.

An ODBC data source name (DSN) can be one of the following types:

User. A data source local to a computer and accessible only by the current user that created the data source.

System. A data source local to a computer but not dedicated to a specific user, so any user with appropriate privileges
can access a system DSN. A System data source is visible to all users on a computer, including Windows NT services.

File. A data source stored in a file that can be shared among all users who have the same ODBC drivers installed. These
data sources need not be dedicated to a specific user or local to a computer.

User and System data sources are stored in the registry. File data sources are stored as files with a file extension of .dsn. File
DSNs can be stored in any location on the file system including remotely mounted shares. By default, File DSNs are stored in
the following location:

C:\Program Files\Common Files\ODBC\Data Sources

ODBC data sources can be configured using the ODBC Data Source Administrator. On Microsoft Windows Server 2003 and
Windows 2000, a shortcut to the ODBC Data Source Administrator is located in the Control Panel under Administrative
Tools as Data Sources (ODBC). The Data Access Tool provided as part of the ODBC Driver for DB2 enables users to create
and modify ODBC data sources. This tool makes calls to the ODBC Data Source Administrator application to provide these
functions.

Using the Microsoft ODBC Driver for DB2 Configuration Dialog Box

Configuration Property Mappings Between the ODBC Driver for DB2 and the OLE DB Provider for DB2

ODBC Connection String Attributes

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744946(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754062(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705738(v=bts.10).aspx

Using the Microsoft ODBC Driver for DB2 Configuration Dialog
Box

The Microsoft ODBC Driver for DB2 Configuration dialog box contains five tabs, which are described in the following
topics.

This section contains:

General

Connection

Security

Target Database

Locale

https://msdn.microsoft.com/en-us/library/aa754476(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744354(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770533(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754265(v=bts.10).aspx

General
The General tab enables the user to configure the data source name required to connect to DB2. For the Microsoft ODBC
Driver for DB2 supplied with Host Integration Server 2009, the General tab contains the following fields.

Para
meter

Comments

Data
Sourc
e Na
me

A blank field for specifying the name of the data source. Enter a string that identifies this ODBC data source.

The data source is a required parameter that is used to define the data source. The ODBC driver manager uses this attri
bute value to load the correct ODBC data source configuration from the registry or from a file. For file data sources, this
field is used to name the DSN file, which is stored in C:\Program Files\Common Files\ODBC\Data Sources.

Descri
ption

A blank field to provide a comment describing this ODBC data source. The description is an optional parameter and ma
y be left blank.

Connection
The Connection tab enables the user to configure the basic attributes required to connect to a data source. For the Microsoft®
ODBC Driver for DB2, the Connection tab has the following fields.

Par
am
eter

Comments

Net
wor
k tr
ans
por
t

An option button is used to select the network transport. Valid options are APPC Connection (SNA LU 6.2) or TCP/IP C
onnection.

For the default, APPC Connection, the values for APPC local LU alias, APPC remote LU alias, and APPC mode name are r
equired.

For TCP/IP Connection, the values for IP address and Network port are required.

AP
PC l
oca
l LU
alia
s

When APPC Connection is selected, this field is the name of the local LU alias configured in Host Integration Server.

AP
PC r
em
ote
LU
alia
s

When APPC Connection is selected, this field is the name of the remote LU alias configured in Host Integration Server.

AP
PC
mo
de
na
me

When APPC Connection is selected, this field is the APPC mode and must be set to a value that matches the host config
uration and SNA service configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #I
NTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IB
MRDB (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compressi
on are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing se
curity), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

The default is QPCSUPP.

IP a
ddr
ess

When TCP/IP Connection is selected as the network transport, this field indicates the IP address of the host DB2 server.

Net
wor
k p
ort

When TCP/IP Connection is selected as the network transport, this field indicates the TCP/IP port used for communicati
on with the target DB2 DRDA service.

The default is IP port 446.

The Connection tab also includes a Test connection button that may be used to test the connection parameters. A
connection can only be tested after all of the required parameters for the Connection tab and other ODBC data source
parameters are configured properly. When this button is clicked, a session is established with the remote DB2 system using
ODBC Driver for DB2

Security
The Security tab enables the user to configure optional attributes used to restrict connections to a data source.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2009, the Security tab has the following fields.

Paramet
er

Comments

Authenti
cation

An option button is used to select the type of authentication. Valid options are Use this username or Use single si
gnon.

For the default Use this username option, the value for the user name is required.

Use this
usernam
e

When this option is selected, authentication is based on the user name entered in the text box. A valid user name is n
ormally required to access data on DB2.

A user name can remain optionally in the DSN. The ODBC Driver for DB2 prompts the user at run time to enter a vali
d password. Additionally, the prompt dialog box enables the user to override the user name that is stored in the DSN
.

Use Singl
e Sign-O
n

An option button to select whether Single Sign-On (SSO) or a specific user name should be used. SSO is an optional
Host Security feature.

SSO enables the administrator to create data source definitions that isolate the logon process from the end user.

The AS/400 computer is case-sensitive with regard to user IDs and passwords. When connecting to DB2 for OS/400, user
names and passwords must be in uppercase. The AS/400 only accepts a DB2 for OS/400 user ID and password in uppercase. If
a DB2 for OS/400 connection fails due to incorrect authentication, the ODBC driver resends the authentication, forcing the user
ID and password into uppercase.

When connecting to DB2 on IBM mainframes, user names and passwords can be of mixed case. The mainframe is not case-
sensitive. The ODBC driver sends these values in uppercase.

DB2 Universal Database (UDB) for Windows Server 2003 or for Windows 2000 is case-sensitive. The user ID is stored in
uppercase. The password is stored in mixed case and users must enter the password in the correct case. The ODBC driver
sends the password exactly in the case entered by the user. The user ID should contain only the user name, not a combination
of the Windows NT® domain name and user name.

It is possible to connect using a specific user name and password defined in DB2 on the host system or use the Single Sign-On
feature (often referred to as integrated Windows security). If a specific DB2 user name and password are to be used, this
information may need to be saved to a data source name (DSN) file. The user name and password are saved in plain text in the
DSN file or to registry keys if a System or User DSN is selected. For security reasons when using File DSNs, it is imperative that
the DSN file be protected with an access control list (ACL) that restricts access to only authorized users. System and User DSNs
are preferred for security reasons if the locations where these ODBC DSNs are stored in the registry have appropriate security
protections. Saving the user name and password in the DSN also forces this DSN to be updated whenever the password
associated with the user name is changed. So for a variety of reasons, specifying a user name and password is not the
preferred authentication option. Using the Single Sign-On option is the preferred method for authentication.

Target Database
The Target Database tab enables the user to configure required, as well as optional, attributes used to define the target DB2
system.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2009, the Target Database tab has the following fields.

Para
met
er

Comments

Initi
al ca
talo
g

This parameter is used as the first part of a three-part fully qualified DB2 table name. It is referred to by different names
depending on the DB2 platform.

In DB2 for OS/390 and DB2 for MVS, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all t
he accessible locations. To find the location of the DB2 that you need to connect to on these platforms, ask the administr
ator to look in the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel i
n the DB2 Installation Manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the
WRKRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, a value can be created us
ing the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

Pack
age
coll
ecti
on

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bin
d DB2 packages. This can be the same as the default schema.

The ODBC Driver for DB2, which is implemented as an IBM DRDA application requester, uses packages to issue dynamic
and static SQL statements. The ODBC driver creates packages dynamically in the location that the user points to using th
e Package Collection parameter.

By default, the ODBC Driver for DB2 automatically creates one package in the target collection, if one does not exist, at th
e time the user issues the first SQL statement. The package is created with GRANT EXECUTE authority to a single <AUTH
_ID> only, where AUTH_ID is based on the user ID value configured in the data source. The package is created for use by
SQL statements issued under the same isolation level based on the Isolation Level value specified in the connection.

Problems can arise in multi-user environments. For example, if a user specifies a Package Collection value that represent
s a DB2 collection used by multiple users, but this user does not have authority to GRANT execute rights to the packages
to other users (the PUBLIC group on the DB2 system, for example), the package is created only for use by this user. This
means that other users may be unable to access the required package. The solution is for an administrative user with pac
kage administrative rights to create a set of packages for use by all users. (For more information, see Creating Packages f
or Use with the ODBC Driver for DB2.)

The ODBC Driver for DB2 supplied with Host Integration Server 2009 includes the Data Access Tool for use by administr
ators to create packages. This tool can be run using a privileged User ID to create packages in collections accessed by mu
ltiple users. This tool will create a set of packages and grant EXECUTE privilege on these packages to the PUBLIC group re
presenting all users on the DB2 system. The packages (see descriptions under the SQL_ATTR_TXN_ISOLATION connectio
n attribute) created are as follows:

AUTOCOMMITTED package (MSNC001 is only applicable on DB2/400) READ UNCOMMITTED package (MSUR001) REA
D COMMITTED package (MSCS001) REPEATABLE READ package (MSRS001) SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

Once created, the packages are listed in the DB2 (mainframe) SYSIBM.SYSPACKAGE, the DB2 for OS/400 QSYS2.SYSPAC
KAGE, and the DB2 Universal Database (UDB) SYSIBM.SYSPACKAGE catalog tables.

Note that when upgrading from SNA Server 4.0, any existing SNA Server 4.0 packages must be re-created using the Hos
t Integration Server Data Access Tool to make them compatible with Host Integration Server 2009. The package names c
hanged from SNA Server 4.0.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

Defa
ult S
che
ma

The name of the collection where the ODBC Driver for DB2 looks for catalog information. Default schema is the SCHEMA
name for the target collection of tables and views. The ODBC driver uses the Default Schema to restrict results sets for p
opular operations, such as enumerating a list of tables in a target collection (for example, ODBC Catalog SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or owner).

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, the ODBC driver uses the USER_ID provided at log on. For DB2/
400, the driver uses QSYS2 if no collection is found matching the USER_ID value. This default is inappropriate in many ca
ses so it is essential that the Default Schema value in the data source be defined.

DB
MS
Platf
orm

The target DB2 platform property value is used to optimize performance of the ODBC driver when executing operations
such as data conversion. The default value is DB2/MVS.

Defa
ult
Qual
ifier

The name of the schema (collection/owner) with which to fully qualify unqualified object names. This attribute enables th
e user to access database objects without fully qualifying the objects using a collection (schema) qualifier. The ODBC driv
er sends this value to DB2 using a SET CURRENT SQLID statement, instructing the DBMS to use this value when locatin
g unqualified objects (for example, tables and views) referenced in SQL statements. If you do not set a value for the defa
ult qualifier, no SET statement is issued by the ODBC driver. This ODBC connection attribute is only valid when connectin
g to DB2 for MVS (OS/390, z/OS).

Alte
rnat
e TP
Na
me

The Alternate Transaction Program (TP) Name property represents the default transaction program name for the DB2 D
RDA application server (AS), which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an
alternate TP name.

Host Integration Server 2009 uses the Alternate TP Name in the offline demo configuration (DRDADEMO.UDL). In that ca
se, the Alternative TP Name is set to 0X07F9F9F9.

Distr
ibut
ed tr
ansa
ctio
ns

When this option is checked, two-phase commit (distributed unit of work) is enabled. Distributed transactions are handle
d using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the Host Integration Server 20
09 Resync Service.

Proc
ess
bina
ry as
char
acte
r

When this option is checked, it indicates that binary data fields should be processed as characters. This option treats bina
ry data type fields (with a CCSID of 65535) as character data type fields on a per-data source basis. The Host CCSID and
PC Code Page values are required input and output parameters. For more information, see the Locale tab.

https://msdn.microsoft.com/en-us/library/aa754265(v=bts.10).aspx

Locale
The Locale tab enables the user to configure the parameters used for character conversion between the client and the DB2
server.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2009, the Locale tab has the following fields.

Par
ame
ter

Comments

Host
CCSI
D

The coded character set identifier (CCSID) matching the DB2 data as represented on the remote computer. This property i
s required when processing binary data as character data. Unless the Process Binary as Character value is set, character d
ata is converted based on the DB2 column CCSID and configured ANSI code page.

This parameter defaults to U.S./Canada (37).

PC c
ode
pag
e

This parameter indicates the personal computer code page to use. It is required when processing binary data as character
data. Unless the Process Binary as Character value is set, character data is converted based on the default ANSI code page
configured in Windows.

The default value for this property is Latin 1 (1252).

Configuration Property Mappings Between the ODBC Driver
for DB2 and the OLE DB Provider for DB2

This table compares the configuration parameters used by the ODBC Driver for DB2 and the OLE DB Provider for DB2.

Microsoft ODBC Driver for DB2 Microsoft OLE DB Provider for DB2
General General

Data Source Name Data Source

Data Source Description None

Connection Connection

Connection Network Transport Library

APPC Connection SNA

TCP/IP Connection TCPIP

APPC local LU Alias APPC Local LU Alias

APPC remote LU Alias APPC Remote LU Alias

APPC mode name APPC Mode Name

IP address Network Address

Network port Network Port

Security Security

Use this username None

User Name User ID

Use Single Sign-on Integrated Security

Affiliate Application Affiliate Application

Target Database Target Database

Initial catalog Initial Catalog

Package collection Package Collection

Default schema Default Schema

Default qualifier Default qualifier

DBMS Platform DBMS Platform

Alternate TP name Alternate TP Name

Distributed transactions Distributed transactions

Process binary as character Process binary as character

Locale Locale

Host CCSID Host CCSID

PC code page PC Code Page

Extended Extended

Client Application Name None

Connection Pooling None

ODBC Connection String Attributes
The ODBC SQLBrowseConnect and SQLDriverConnect functions allow passing in a connection string containing a series of
attribute/value pairs to the ODBC Driver Manager to establish a connection with a data source. An example of a connection
string is as follows:

Some ODBC attributes are required as part of the connection string when used with the ODBC Driver for DB2.

The following tables compare the configuration parameters used by the ODBC Driver for DB2 and the ODBC attribute
keywords that are supported by the OLE DB Driver for DB2 as part of the passed-in connection string.

For the Microsoft ODBC Driver for DB2 in Host Integration Server 2009, these attribute keywords compare as follows.

Microsoft
ODBC Driv
er for DB2

ODBC at
tribute k
eyword

Comments

General General General

Data Source
Name

DSN Required parameter.

Data Source
Description

DESC None.

Connectio
n

Connecti
on

Connection

Connection NTL Required parameter.

APPC conne
ction

NTL=SN
A

None.

TCP/IP conn
ection

NTL=TCP
IP

None.

APPC local L
U alias

LLU Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA).

APPC remot
e LU alias

RLU Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA).

APPC mode
name

MN Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA).

APPC Securi
ty Type

AST Applicable only if SNA (an APPC connection) is used for the network transport library (NTL=SNA). Vali
d values are PROGRAM (the default), or SAME.

IP address NA Applicable only if TCPIP (a TCP/IP connection) is used for the network transport library (NTL=TCPIP).

Network po
rt

NP Applicable only if TCPIP (a TCP/IP connection) is used for the network transport library (NTL=TCPIP).

Security Security Security

Use this use
rname

None None.

User Name UID None.

"DSN=MYDATA;NTL=SNA;LLU=Local;RMU=Remote;RDB=BigData;PC=QSYS2;
DS=QSYS2;RO=false;UID=myname;PWD=Secret"

 PWD The Password parameter is not on the Security tab and is not configurable from the ODBC Administrat
or tool used to configure ODBC data sources. This parameter can only be preset using the ODBC conne
ction string. Most applications prompt the user for this parameter.

Use Single S
ign-On

None Not applicable.

Affiliate app
lication

AAP Applicable only if using Single Sign-On.

Target Dat
abase

Target D
atabase

Target Database

Initial Catalo
g

RDB Required parameter.

Package Col
lection

PC Required parameter.

Default Sch
ema

DS Required parameter.

Default Qua
lifier

DQ None.

DBMS Platf
orm

DP Can be one of the following values: DB2/AS400, DB2/MVS (the default), DB2/6000, or DB2/NT.

Alternate TP
Name

TPN None.

Distributed t
ransactions

RUW None.

Process bin
ary as chara
cter

BAC None.

Locale Locale Locale

Host CCSID CCSID Required parameter.

PC code pag
e

CP Required parameter.

Creating Packages for Use with the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2, which is implemented as an IBM Distributed Relational Database Architecture (DRDA)
application requester, uses packages to issue SQL statements and call DB2 stored procedures. There is a configuration
parameter that the ODBC Driver for DB2 uses to identify a location in which to create and store DB2 packages. The ODBC
Driver for DB2 creates packages dynamically in the location to which the user points using the Package Collection parameter.
This location may be configured using the Target Database tab from the Microsoft ODBC Data Source Administrator tool or
can be passed as part of the ODBC connection string as an attribute keyword and argument. The attribute keyword for
Package Collection is PC.

There are two package creation options:

The ODBC Driver for DB2 autocreates one package for the currently used isolation level at run time if no package already
exists. This auto-create process may fail if the user account does not have authority to create packages.

An administrator or user can manually create all four packages (five packages on DB2/400) for use with all isolation
levels and for use by all users (the PUBLIC group on DB2 representing all users) or a specific set of users. The ODBC
Driver for DB2 includes a utility program for use by users with appropriate administrative privilege that will create these
packages and grant access to the PUBLIC group for this purpose.

However, some users may not have the security level when manually creating packages to GRANT authority to the packages to
other users (grant authority to the DB2 PUBLIC group representing all users, for example). This can be a problem if two or
more users with different user IDs try to access a single collection of packages. The first user that created the packages will
have access to the packages, but the second user likely will not. The Host Integration Server 2009 CD includes a program for
use by an administrator or a user with appropriate privileges to create packages. This tool can be run using a privileged user ID
to create packages in collections accessed by multiple users. The Data Access Tool can be used to create packages for use with
DB2.

This tool creates a set of packages and grants EXECUTE privileges on these packages to the PUBLIC group. The PUBLIC group
on DB2 systems is a default group that represents all DB2 users. The following packages are created:

AUTOCOMMITTED package (MSNC001), only applicable on DB2/400

READ UNCOMMITTED package (MSUR001)

READ COMMITTED package (MSCS001)

REPEATABLE READ package (MSRS001)

SERIALIZABLE package (MSRR001)

Note that the AUTOCOMMITTED package (MSNC001) is only created on DB2 for OS/400.

The descriptive process name used by the Data Access Tool corresponds with the isolation levels defined in the ANSI SQL
standard. The following table indicates how these packages correspond with the terms used by IBM for isolation levels in DB2
documentation.

Package description Packa
ge na
me

IBM documentation

AUTOCOMMITTED (Note that this applies only to DB
2/400 and does not correspond with an ANSI SQL is
olation level)

MSNC
001

COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 autocommit mode only an
d has no corresponding isolation level on other DB2 platforms or
in ANSI SQL.

https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

READ UNCOMMITTED MSUR
001

UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOMMI
TTED.

READ COMMITTED MSCS
001

CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMITTE
D.

REPEATABLE READ MSRS
001

READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE REA
D.

SERIALIZABLE MSRR
001

REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

Note that when upgrading from SNA Server 4.0, any existing SNA Server 4.0 packages must be re-created using the Host
Integration Server Data Access Tool to make them compatible with Host Integration Server 2009. The package names used by
the ODBC Driver for DB2 on SNA Server 4.0 are not compatible with the ODBC Driver for DB2 included with Host Integration
Server. On SNA Server 4.0, these packages used different names as follows:

These isolation levels are described in detail in Support for Isolation Levels Using the ODBC Driver for DB2. These isolation
levels are also described in IsolationLevel Property (ADO). Note that the AUTOCOMMITTED package (MSNC001) is only
created on DB2 for OS/400.

Note that the Data Access Tool tool creates this set of packages and grants EXECUTE privileges to PUBLIC. There may be cases
for security reasons where EXECUTE privileges to this set of packages should be restricted to a certain group of users or
specific users. In these cases, execution privileges on these created packages will need to be modified on the host system.

The Data Access Tool creates all of these packages inside the collection that is specified in the Package Collection property in
the datalink file, or in the connection string. If the user does not have the appropriate authority to create packages in the
specified collection, or if the specified collection does not exist, the ODBC Driver for DB2 returns an error.

In the case of DB2 on MVS or OS/390, the normal error text returned if the user does not have the appropriate authority is as
follows:

In the case of DB2/400, the normal error text returned if the user does not the appropriate authority is as follows:

In the case of DB2/400, the normal error returned if the collection does not exist is as follows:

AUTOCOMMITTED package (SNANC001) only applicable on DB2/400
READ UNCOMMITTED package (SNACH001)
READ COMMITTED package, (SNACS001)
REPEATABLE READ package, (SNARR001)
SERIALIZABLE package (SNAAL001)

A SQL error has occurred. Please consult the documentation for your specific DB2 version fo
r a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -56
7.

A SQL error has occurred. Please consult the documentation for your specific DB2 version fo
r a description of the associated Native Error and SQL State. SQLSTATE: 51002, SQLCODE: -80
5.

Failed to create AUTOCOMMITTED (NC) package. RETCODE=-99.
SQL Error: Code=-204, State=42704, Error Text= A SQL error has occurred. Please consult th

https://msdn.microsoft.com/en-us/library/aa705391(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771272(v=bts.10).aspx

There are two authorities required to execute the create package process on OS/390 or MVS using the Data Access Tool:

The authorization ID is the user who needs the permission to create the packages. The collection ID is the name of the
collection, which the user specifies in the datalink file for the Package Collection property. This collection should be a valid
collection within the DB2.

If an administrator executes the preceding statements on behalf of a nonprivileged user, this nonprivileged user can then run
the Data Access Tool. Once run, the process creates four sets of packages (one for each of the four isolation levels supported
on DB2 for MVS or OS/390) for use by all (PUBLIC) users of the Microsoft data access features.

The following example illustrates this process on DB2 for MVS or DB2 for OS/390:

Grant rights to run the Data Access Tool to authorization ID WNW999:

Run the Data Access tool using authorization ID WNW999 .

To execute the Data Access Tool on DB2/400, a user ID must have one of the following authorities:

*CHANGE authority on the DB2 collection

*ALL authority on the DB2 collection

If the user only has *USE authority or if the user has *EXCLUDE authority, the Create Package process will fail.

There are several steps required to change user authority on a DB2/400 collection (AS/400 library). From interactive SQL
(STRSQL command) while logged in as user with administrative privileges, create a new collection. This command can also be
issued using ADO, OLE DB, and ODBC. However, most administrators typically create collections from the AS/400 console
because the administrator must be logged in at the console to issue the Command Language (CL) command with which to
change the user authority on the collection:

From the AS/400 command console, issue the CL WRKOBJ command with the <collection ID> as a parameter:

The collection ID is the name of the collection, which the user specifies in the datalink file for the Package Collection property.
This collection should be a valid collection within DB2. The Work with objects window appears. Place the cursor on the *PUBLIC
Object Authority line and change the authority from *USE to *ALL.

If an administrator executes the preceding statements on behalf of a nonprivileged user, this nonprivileged user can run the
Data Access Tool. Once run, the process creates five sets of packages (one for each of the five isolation levels supported on
DB2/400) for use by all (PUBLIC) users of the Microsoft data access features. On DB2/400, five packages are created including
the AUTOCOMMITTED packages.

The following example illustrates this process on DB2/400:

Grant rights to run the Data Access Tool to authorization ID WNW999:

e documentation for your specific DB2 version for a description of the associated Native Er
ror and SQL State. SQLSTATE: 42704, SQLCODE: -204

GRANT BINDADD TO <authorization ID>
GRANT CREATE IN COLLECTION <collection ID> TO <authorization ID>

GRANT BINDADD TO WNW999
GRANT CREATE IN COLLECTION MSPKG TO WNW999

CREATE COLLECTION <collection ID>

WRKOBJ <collection ID>

Run the Data Access tool.

When using the create package tool, if the package collection specified does not exist, DB2 returns SQLCODE -805.

When using autocreate packages, if a package collection is not specified or the package collection does not exist, during the
autocreate package process, the consumer application receives SQLSTATE HY000 and SQLCODE -385. The SQLSTATE HY000 is
defined as a driver-specific error. The -385 Error Return Code is not a SQLCODE but rather a DDM DRDA AR (DB2 client)
return code. This error code is defined as DDM_VALNSPRM with the following associated text string:

Note that when upgrading from SNA Server 4.0, any existing SNA Server 4.0 packages must be re-created using the Host
Integration Server Data Access Tool to make them compatible with Host Integration Server 2009.

CREATE COLLECTION MSPKG
WRKOBJ MSPKG

"The parameter value is not supported by the target system."

ActiveX Controls Programmer's Guide
This section provides information about how to integrate your applications using the Data Queue and Host File Transfer
ActiveX® controls.

For API references and other technical information about ActiveX controls, see the ActiveX Controls Programmer's Reference
section in the SDK.

For sample code using ActiveX controls, see the Data Integration Samples section in the SDK.

This section contains:

Host File Transfer ActiveX Control Programmer's Guide

Data Queue ActiveX Control Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa753872(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745366(v=bts.10).aspx

Host File Transfer ActiveX Control Programmer's Guide
The Microsoft Host File Transfer ActiveX control provides the ability to transfer files between a local computer and an MVS,
OS/390, AS/400, or AS/36 host system. Host Integration Server 2009 provides this service via a single ActiveX control that
depends on other core Host Integration Server DLLs. This extends the ability for a client application to perform file transfer
operations from a large number of client development environments.

The Microsoft Host File Transfer ActiveX control uses the record-level input/output (RLIO) protocol of IBM's Distributed Data
Management (DDM) architecture to transfer files. The Host File Transfer ActiveX control is implemented as a Distributed Data
Management (DDM) source requester, which communicates through APPC LU 6.2 or TCP/IP to a DDM target server.

DDM is a set of rules for distributing or extending data management from one computer to another, such as from a mainframe
to an AS/400 computer or from one of these host computers to a server computer. By combining the Microsoft File Transfer
ActiveX control and DDM architectures, Microsoft enables organizations to preserve their investments in existing data
management infrastructure, while extending universal file transfer to all enterprise-wide data sources.

The information in this section is required to develop applications with Host Integration Server that use ActiveX or COM
objects to transfer files from local machines to hosts in a Systems Network Architecture (SNA) environment or over TCP/IP
using RLIO and DDM.

In This Section

Platforms Supported by the Host File Transfer ActiveX Control

Configuring Data Descriptions for Host File Transfer

Registry Settings Used By Host File Transfer

Object Support Using Host File Transfer

Programming Considerations When Using Host File Transfer

https://msdn.microsoft.com/en-us/library/aa705510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754085(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771671(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753928(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771688(v=bts.10).aspx

Platforms Supported by the Host File Transfer ActiveX Control
On the mainframe platform, IBM offers a target DDM server implementation in IBM Distributed File Manager (DFM), a
component of IBM Data Facility Storage Management Subsystem (DFSMS).

On the mainframe platform, the Host File Transfer ActiveX control supports the following data set types:

Sequential Access Method (SAM) data sets

Basic Sequential Access Method data sets (BSAM)

Queued Sequential Access Method data sets (QSAM)

Basic Partitioned Access Method (PDS) data sets

Partitioned Data Set Extended members (PDSE)

Partitioned Data Set members (PDS)

Virtual Storage Access Method (VSAM) data sets

Entry-Sequenced Data Sets (ESDS)

Key-Sequenced Data Sets (KSDS)

Fixed-Length Relative Record Data Sets (RRDS)

Variable-Length Relative Record Data Sets (VRRDS)

Relative Record Data Set (RRDS)

VSAM Alternate Indexes for ESDS and KSDS data sets

The preceding data set types are supported by IBM DFM/MVS. The following data set types are not supported by DFM/MVS
and cannot be accessed using the Host File Transfer ActiveX control.

VSAM Linear Data Sets (LDS)

Generation Data Groups (GDG)

Generation Data Sets (GDS)

Basic Direct Access Method data sets (BDAM)

Indexed Sequential Access Method data sets (ISAM)

Sequential Data Striping data sets

OpenEdition MVS Hierarchical File System (HFS) files

Tape Media

All mainframe data sets accessible through IBM Distributed File Manager must be cataloged in an Intersystem communications
function (ICF) catalog and reside on direct access storage devices (DASD).

Configuring Data Descriptions for Host File Transfer
In order to use the Microsoft® Host File Transfer ActiveX® control to transfer files, a user or client application must describe
the data format of the host file to transfer. A host data description is normally configured using the Data Access Tool.

The Data Access Tool contains one high-level object for configuring Host Column Description files:

Host Column Descriptions—Stored in Host Column Description (HCD) files that contain the information required to
convert host data types to PC computer data types.

When creating a Data Description for use with the Host File Transfer ActiveX control, the Use Table for File Transfer check
box must be selected and values must be entered for the following additional parameters:

Par
ame
ter

Comment

Fiel
dDe
limi
ter

This value represents the delimiter used to mark the end of one field and the beginning of another within a single record.
The position of the field elements within a record is assumed to be absolute as configured and variable-length fields are
not supported. This element is used in order to inform the conversion routine to remove this character if it is found at the
position within the record as indicated by the Data Description.

This parameter is required and has no default value.

The comma character "," or tab character "\t" is commonly used with desktop applications as a field separator.

Rec
ord
Deli
mit
er

This value represents the character or characters that appear at the ending of a record. This element is used in order to in
form the conversion routine to remove this character if it is found in the last position of the record as indicated by the Da
ta Description.

This parameter is required and has no default value.

The end-of-line character sequence is commonly used as a record delimiter. The carriage return and linefeed character se
quence "\n\r" is commonly used with desktop applications. The newline character "\n" is standard for use on UNIX syste
ms and with some desktop applications.

Text
Qua
lifie
r

This value is used in order to allow elements that may contain the FieldDelimiter character to be properly parsed by the
parsing engine. If this element is enabled on a particular field, then the inclusion of this character at the beginning of the f
ield is an indication to the parsing engine that all characters up to the next instance of the TextQualifier should be treate
d as part of the current field being processed.

This parameter has no default value.

The single quote or double quote character is sometimes used as a text qualifier to protect a comma character included i
n a field from being misinterpreted as a field delimiter.

https://msdn.microsoft.com/en-us/library/aa705519(v=bts.10).aspx

Registry Settings Used By Host File Transfer
The Microsoft® Host File Transfer ActiveX® control uses a number of registry settings for configuration and proper operation.
The configuration registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA
Server\CurrentVersion\Setup key. These registry settings include the following subkey:

Sub
key

Comment

Roo
tDir

Stores the path to root directory where the Host Integration Server was installed. The system directory below this root dir
ectory is the location where the Host File Transfer ActiveX control DLL and other support DLLs are installed.

Object Support Using Host File Transfer
The Microsoft® Host File Transfer ActiveX® control supports a number of standard COM interfaces as well some custom
objects and interfaces.

This section contains:

COM Interface Support Using Host File Transfer

IEIGFileTransferCtl Object

IEIGFileTransferCtlEvents Notification

https://msdn.microsoft.com/en-us/library/aa705139(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771053(v=bts.10).aspx

COM Interface Support Using Host File Transfer
The Microsoft Host File Transfer ActiveX control supports a number of standard COM interfaces as well as a single custom
interface, IEIGFileTransferCtl. The ActiveX control object has the ability to register and de-register itself via standard control
mechanisms. Support for a number of standard COM interfaces makes it easy to develop applications using the Host File
Transfer ActiveX control with Visual Basic and Visual C++ as well as from Internet Explorer and Access. Supporting a variety of
standard COM interfaces also provides different ways for a client to save information.

The following table summarizes the standard COM interfaces supported by the Host File Transfer ActiveX control.

COM int
erface

Comments

ICategor
izeProp
erties

This interface divides up the properties into an intelligent presentation to the client.

IConnec
tionPoin
tContain
er

None.

IDispatc
h

A dual interface deriving from IDispatch is exposed to provide support and flexibility to clients. Clients that provide
support for automation interfaces will utilize the IDispatch interface, while more robust clients may use the custom
interface. Using the custom interface provides for the greatest execution speed.

IOleCon
trol

None.

IOleInPl
aceActiv
eObject

None.

IOleInPl
aceObje
ct

None.

IOleInPl
aceObje
ctWindo
wless

None.

IOleObj
ect

None.

IOleWin
dow

None.

IPerProp
ertyBro
wsing

This interface provides support for client browsing of properties in an intelligent manner. This interface exposes to t
he client property lists used in the population of a dropdown list. This interface is required for the control to be hoste
d by Microsoft Access.

IPropert
yNotify
Sink

The interface is implemented by a sink object to receive notifications about property changes from an object that su
pports IPropertyNotifySink as an outgoing interface. The client that needs to receive the notifications in this interfa
ce (from a supporting connectable object) creates a sink with this interface and connects it to the connectable object
through the connection point mechanism.

IPersist None.

IPersistP
ropertyB
ag

This interface is the preferred method of property persisting for Internet Explorer and Visual Basic. Using this interfa
ce, persisted properties are stored as a set of name/VARIANT value pairs.

IPersistS
torage

This interface stores persistent properties into a structured storage object.

IPersistS
treamIni
t

This interface is responsible for saving the persisted properties in binary form using a stream interface. This is the m
ethod used by the Microsoft Visual C/C++ compiler to persist properties.

IProvide
ClassInf
o

None.

IProvide
ClassInf
o2

None.

IQuickA
ctivate

None.

ISupport
ErrorInf
o

This interface is the preferred method to return error indications to scripting clients. Using this interface, error codes
and explanation text are returned to the client. This information may be used in order to provide diagnostic informat
ion to the user and in cases of failure.

IViewOb
ject

None.

IViewOb
ject2

None.

IViewOb
jectEx

None.

IEIGFileTransferCtl Object
The Microsoft Host File Transfer ActiveX control supports a number of standard COM interfaces as well as a single custom
interface. The IEIGFileTransferCtl object supports a number or properties and methods that provide the ability to transfer files
to and from MVS, OS/390, AS/400, or AS/36 hosts. The Host File Transfer ActiveX control also supports a set of events
notifying a client application of connection status, file transfer status, and error reporting. These events are handled by the
client supporting several callback functions and setting these callbacks using the IConnectionPointContainer.

The following IEIGFileTransferCtl object methods are supported by the Microsoft Host File Transfer ActiveX control:

Method name Comment
Cancel method Terminates a file transfer operation that is already in progress.

Connect method Establishes a connection to the configured host and reports to the user an indication of the success or failure
of the action.

Disconnect meth
od

Terminates an existing connection to a host machine.

GetFile method Copies a file from host storage to local storage. This method requires the two file names as parameters.

PutFile method Copies a file from local storage to host storage. This method requires the two file names as parameters.

The following IEIGFileTransferCtl object properties are supported by the Microsoft Host File Transfer ActiveX control:

Property name Comment
AppendToEnd prop
erty

Sets or returns whether a file transfer should append to the end of a file (eigAnswerYes) if the file exists, o
r should it overwrite the existing contents replacing the data with the new information (eigAnswerNo).

This property defaults to eigAnswerYes (0).

CCSID property Sets or returns the character code set identifier (CCSID) that must match the data in the file as represented
on the remote host computer.

This property defaults to U.S./Canada (37).

ConnectionState pr
operty

Returns the current state of the connection. The state of a connection can be unspecified, idle, connecting,
connected, or disconnecting.

ConnectionType pr
operty

Sets or returns the network transport used for this connection. The ConnectionType property designates
whether the Host File Transfer ActiveX control connects through APPC (SNA LU 6.2) or TCP/IP. The possibl
e values for this parameter are a TCP/IP or an APPC connection using an enumerated value.

The default value for this parameter is an APPC (SNA) connection type.

If APPC is selected, then values for the LocalLU, ModeName, and RemoteLU properties are required.

If TCP/IP is selected, then values for the NetAddr and NetPort properties are required.

CreateIfNonExisting
property

Sets or returns whether a file operation should create a new destination file if one does not already exist (
eigAnswerYes).

This property defaults to eigAnswerNo (1)

LocalLU property Sets or returns the Local LU Alias. When LU 6.2 (SNA) is selected for the ConnectionType property, this pr
operty must match the name of the local LU alias configured using SNA Manager.

This property defaults to the string value of "LOCAL" represented as a BSTR.

https://msdn.microsoft.com/en-us/library/aa754052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754256(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754287(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744665(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx

ModeName proper
ty

Sets or returns the APPC mode. When APPC (LU 6.2 SNA) is selected for the ConnectionType property, thi
s field must bet set to the APPC mode that matches the host configuration and Host Integration Server co
nfiguration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER
(interactive), #INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch wit
h minimal routing security), #IBMRDB (DB2 remote database access), and custom modes. The following m
odes that support bi-directional LZ89 compression are also legal: #INTERC (interactive with compression),
INTERCS (interactive with compression and minimal routing security), BATCHC (batch with compression),
and BATCHCS (batch with compression and minimal routing security).

This property defaults to the string value of "QPCSUPP" represented as a BSTR.

NetAddr property Sets or returns the IP address of the host computer. When TCP/IP has been selected for the ConnectionT
ype property, this property indicates the IP address of the host. This property can be an IP address or the
name representing the host IP address using the Domain Name System (sna.microsoft.com, for example).

This property is a string (BSTR) and has no default value.

NetPort property Sets or returns the TCP/IP port used for communication with the host. When TCP/IP has been selected for
the ConnectionType property, this parameter is the TCP/IP port used for communication with the host.

The default value for this property is the string (BSTR) "446" representing TCP/IP port 446.

OverwriteHostFile
property

Sets or returns whether a file operation request to copy a file that will write over an existing file will fail. W
hen this property is set to eigAnswerNo, a request to write a file over an existing file will fail.

This property defaults to eigAnswerNo (1)

Password property Sets or returns the password used for authentication. A valid user name and password are normally requi
red to access files on a host computer. The password is case sensitive and is normally displayed as asteris
ks in a dialog box for security purposes.

This property is a string (BSTR) and has no default value.

PCCodePage prope
rty

Sets or returns the PC codepage The PCCodePage property indicates the codepage to be used on the PC
for character code conversion.

This property defaults to Latin 1 (1252).

RDBName property Sets or returns the name of the remote database name and the host column description (HCD) file that de
scribes the data types and data conversions used to transfer this file. The HCD file describing the data sho
uld be located in the system subdirectory below the root directory where Host Integration Server was inst
alled. Setup defaults to the following location: C:\Program Files\Host Integration Server

When TCP/IP is selected for the ConnectionType property, the RDBName must also match the name of
the remote database system.

RemoteLU property Sets or returns the Remote LU Alias. When APPC (LU 6.2 SNA) is selected for the ConnectionType prope
rty, this property is the name of the local LU alias configured using SNA Manager.

This property is a string (BSTR) has no default value.

UserID property Sets or returns the user name used for authentication. A valid user name and password are normally requ
ired to access files on a host computer. This value is case sensitive.

This property is a string (BSTR) and has no default value.

https://msdn.microsoft.com/en-us/library/aa770454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745365(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754094(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771517(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771940(v=bts.10).aspx

IEIGFileTransferCtlEvents Notification
The Microsoft Host File Transfer ActiveX control also supports a set of events notifying a client application of connection status,
file transfer status, and error reporting. These events are handled by the client supporting several callback interfaces and
setting these callbacks derived from the standard IConnectionPointContainer COM object.

The following IEIGFileTransferCtlEvents notification interface methods are supported by the Microsoft Host File Transfer
ActiveX control:

Event n
otificat
ions

Comment

Connec
tionSta
teChan
ge

This event is fired when the state of a connection has changed. A ConnectionState parameter is passed to the client ca
llback function that receives this event method call. This parameter is an eigConnectionStateEnum value representing
the new state of the ConnectionState property.

Report
Error

This event is used in order to return error conditions that occur during the synchronous processing of methods. This
event passes two parameters to the client callback function that receives this event method call. The first parameter is
a long value representing an error code. The second parameter is a BSTR string containing a brief text description of t
he error.

Transfe
rCompl
ete

This event is an indication to the client that the requested transfer operation has completed.

Transfe
rProgre
ss

This event will be fired periodically in order to inform the client of the progress of an unattended file transfer. A Perce
ntageDone parameter is passed to the client callback function that receives this event method call. This parameter is a
short value representing the percentage complete of the requested operation ranging from 0 to 100.

A client application has the option to terminate a file transfer when this event is fired.

https://msdn.microsoft.com/en-us/library/aa753894(v=bts.10).aspx

Programming Considerations When Using Host File Transfer
The Microsoft® Host File Transfer ActiveX® control exposes a dual interface deriving from IDispatch. This provides support
and flexibility to clients wishing to use the object. Clients that provide support automation interfaces can use the IDispatch
interface while more robust clients may use the custom interface. Using the custom interface offers the greatest execution
speed.

The single-threading model is supported, allowing only single threads to access the objects safely.

The Host File Transfer ActiveX control does not support uploading Direct Relative Record Data Set (RRDS) files on System/36.
An error (381) will occur and the following error message will be received.

The Host File Transfer ActiveX control also does not support uploading RRDS files with the CreateIfNonExisting property option
set to yes on System/36. An error will occur (381) and the following message will be received.

If there is existing data in a file on OS/390, setting the OverwriteHostFile and AppendToEnd properties to "no" should cause an
error (58) to occur and the following error message should be received.

On OS/390, this error is not triggered for sequential or KSDS files. Instead the data is appended to the existing data in the file
for sequential files and duplicate records are not appended to KSDS files.

The AppendToEnd property and the OverwriteHostFile property are mutually exclusive, so it is not possible to enable (set to
yes) one of these properties before the opposing property is disabled (set to no). The AppendToEnd property takes
precedence over the OverwriteHostFile property, since AppendToEnd defaults to yes and OverwriteHostFile defaults to no.
Consequently, the order in which these properties are set will affect the outcome. For example, the following order will result in
the properties being set correctly:

In contrast, setting the properties in the improper order will cause the properties to be set incorrectly as follows:

In this second case, the OverwriteHostFile property cannot be set to yes (enabled) until the AppendToEnd property is set to
no (disabled).

Using the Data Descriptions tool, setting the Ascending/Descending option on an OS/390 or MVS/ESA key sequenced file has
no effect. Using the Host File Transfer ActiveX control, data is always uploaded and downloaded in the ascending key order.

If the Cancel method is executed while uploading a file with the AppendToEnd property set to yes, this will result in no
change to the host file. However, if the Cancel method is executed while uploading a file with the OverwriteHostFile property
set to yes, this will result in an empty host file. The Cancel method implies the transfer has been stopped and all the files are at
their original values, but this is not really the case when the OverwriteHostFile property is set to yes.

This section contains:

Code Page Support Using Host File Transfer

Data Conversion Using Host File Transfer

Usernames and Passwords Using Host File Transfer

"Target Not Supported"

"Target Not Supported"

"File contains existing data. Upload not configured to append data - upload aborted"

FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no
FileTransfer.OverwriteHostFile = eigAnswerYes // correctly set to yes

FileTransfer.OverwriteHostFile = eigAnswerYes // remains at no
// AppendToEnd defaults to eigAnswerYes, so this change is illegal
FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no

https://msdn.microsoft.com/en-us/library/aa704827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746068(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770740(v=bts.10).aspx

Troubleshooting the Host File Transfer ActiveX Control

https://msdn.microsoft.com/en-us/library/aa771901(v=bts.10).aspx

Code Page Support Using Host File Transfer
When using the Host File Transfer ActiveX control, the Host CCSID (character code set identifier) property should be configured
to match the data as represented on the remote host computer. The Host CCSID parameter defaults to EBCDIC U.S./Canada
(37) when using the Host File Transfer ActiveX control.

This section contains:

ISO Code Page Support Using Host File Transfer

DBCS Code Page Support Using Host File Transfer

https://msdn.microsoft.com/en-us/library/aa771751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704729(v=bts.10).aspx

ISO Code Page Support Using Host File Transfer
Host Integration Server 2009 includes support for some ISO code pages for purposes of ISO-to-UNICODE-to-ANSI, ANSI-to-
UNICODE-to-ISO, and ISO-to-UNICODE-to-ISO conversions when using the Host File Transfer ActiveX control. These ISO code
pages can be used when accessing host files containing ISO code pages.

Depending on the version of Windows being used, to support ISO-to-UNICODE-to-ANSI (Windows), ANSI-to-UNCODE-to-ISO,
and ISO-to-UNICODE-to-ISO code page conversions, you may need to install the appropriate ISO National Language Support
(NLS) file for your locale.

On Microsoft Windows 2000, the appropriate ISO NLS file for your locale is installed automatically when you install a localized
version of Windows 2000. On Windows Server 2003, the appropriate ISO NLS file for your locale is installed automatically
when you install the US-English version.

The following table shows the ISO character code set identifiers (CCSIDs) supported by Host File Transfer ActiveX control in
Host Integration Server 2009.

Microsoft dis
play name

Microsoft N
LS code pag
e

IBM
CCSI
D

Comments

ISO 8859-1 Lat
in 1

28591 819

ISO 8859-2 Ce
ntral europe

28592 912

ISO 8859-5 Cy
rillic

28595 915

ISO 8859-6 Ar
abic

28596 1089

ISO 8859-7 Gr
eek

28597 813

ISO 8859-8 He
brew

28598 916

ISO 8859-9 Tu
rkish

28599 920

ISO 6937 Non-
Spacing Accent

20269 819 Note that ISO 6937 (CCSID 20269) is not supported by the OLE DB Provider for DB2, but i
s displayed in the list of configuration options when creating or modifying data sources.

ISO 8859-15 L
atin 9 (euro)

20865 923 NLS Code Page 819 with support for the euro.

The Microsoft display name is the name found in the Windows 2000 definitions for these NLS files.

The Microsoft NLS code page column represents the code page number that is registered and associated with an ISO-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when using the Host File Transfer
ActiveX control. When setting the Host CCSID or PC Code Page property, use the Microsoft NLS number for this parameter.

The IBM CCSID column represents the CCSID given to the ISO code page in IBM publications. IBM lists their ISO support in
publications by referencing the locale name (Bulgaria for ISO8859-5 and 915, for example) rather than simply using ISO 8859-
5 Cyrillic as used by Microsoft. The Host File Transfer ActiveX control does not recognize or display the IBM CCSID values.

The Host File Transfer ActiveX control maps the Microsoft NLS numbers to ISO NLS files which correspond with the
appropriate IBM CCSID numbers. The Host File Transfer ActiveX control passes the corresponding IBM CCSID to the host
system at run time even though you configure this property using the Microsoft NLS number.

Note
The IBM CCSID 819 is associated with both ISO 8859-1 Latin 1 and ISO 6937 Non-Spacing Accent. It is up to the user to choo
se the standard ISO 8859-1 Latin 1 code page by selecting NLS code page 28591 or the modified code page ISO 6937 Non-
Spacing Accent by selecting NLS code page 20269.

Note
The ISO 6937 Non-Spacing Accent (CCSID 20269) is not currently supported by the Host File Transfer ActiveX control.

IBM CCSID 916 (ISO 8859-8) supports Hebrew "visual sort order". IBM CCSID 920 (ISO 8859-8 derivation) supports Hebrew
"logical sort order". Although Microsoft supports the logical sort order with NLS 38598, this NLS file is only distributed with
Internet Explorer 5 or Windows 2000.

The Host File Transfer ActiveX control has not been tested using the ISO 8859-8 derivation matching IBM CCSID 920 and does
not support this configuration.

These are the only ISO pages currently supported in Host Integration Server 2009. Microsoft supports a number of additional
ISO pages. IBM also supports additional ISO pages. However, the code pages listed in the table above are the only cases where
the Microsoft NLS pages and IBM CCSIDs match.

DBCS Code Page Support Using Host File Transfer
 

Support for Double-Byte Character String (DBCS) data is limited using the Host File Transfer ActiveX control. Conversions
between DBCS and ANSI code pages are not supported. Conversions between DBCS and ISO code pages are not supported.

Data Conversion Using Host File Transfer
Using the Host File Transfer ActiveX control, host data is converted to default C data types as defined in ODBC and OLE DB and
illustrated in the following table:

Host data type (descriptio
n in HCD file)

Default C data
type

Comments

BINARY A free-form binary data type of specified length.

This data type is transferred without being converted.

CHAR char string[] A fixed-length string.

This data type is converted to a DBTYPE_BSTR for use by Host File Transfer Activ
eX control.

DATE date struct A 10-byte date string.

This data type is converted to a DBTYPE_DATE for use by OLE DB.

DOUBLE double An 8-byte double-precision floating-point number.

This data type is converted to a DBTYPE_R8 for use by OLE DB.

FLOAT double An 8-byte double-precision floating point number. This data type is the same as
a DOUBLE.

This data type is converted to a DBTYPE_R8 for use by OLE DB.

LONG int A 4-byte integer ranging in value from -2,147,463,648 to +2,147,483,647.

This data type is converted to a DBTYPE_I4 for use by OLE DB.

LONG VARBINARY char string[] A varying-length binary string up to 32,740 bytes in length.

This data type is converted to a DBTYPE_STR for use by OLE DB.

LONG VARCHAR char string[] A varying-length character string up to 32,740 characters in length.

This data type is converted to a DBTYPE_STR for use by OLE DB.

PACKED unsigned char n
umber[]

A packed decimal number.

This data type is converted to a DBTYPE_DECIMAL for use by OLE DB

REAL float A 4-byte single-precision floating-point number.

This data type is converted to a DBTYPE_R4 for use by OLE DB.

SHORT short A SMALLINT (small integer) is a two-byte integer with a precision of 5 digits ran
ging from -32,768 to +32,767.

This data type is converted to a DBTYPE_I2 for use by OLE DB.

SINGLE float A 4-byte single-precision floating-point number.

This data type is converted to a DBTYPE_R4 for use by OLE DB.

TIME time struct An 8-byte time string.

This data type is converted to a DBTYPE_TIME for use by OLE DB.

When using ActiveX Data Objects to return data from a DB2 TIME data type, AD
O returns a DATETIME value.

TIMESTAMP timestamp stru
ct

A 26-byte string representing the date, time, and microseconds.

This data type is converted to a DBTYPE_DBTIMESTAMP for use by OLE DB.

VARBINARY char string[] A varying-length binary field. The maximum length of the binary is dependent o
n the version and the host platform.

This data type is transferred without being converted.

This data type is converted to a DBTYPE_STR for use by OLE DB.

VARCHAR char string[] A varying-length character string. The maximum length of the string is depende
nt on the version and the host platform.

This data type is converted to a DBTYPE_STR for use by OLE DB.

ZONED unsigned char n
umber[]

A zoned numeric number.

This data type is converted to a DBTYPE_NUMERIC for use by OLE DB

Note
The maximum length of fixed-length BINARY, fixed-length CHAR, VARBINARY, and VARCHAR data types is dependent on the
version of the host software that is being accessed. For example, the maximum length of the CHAR data type on OS/390 is 2
54 characters, while the maximum length of this same host data type is 32,765 on OS/400.

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example), however truncation and conversion errors can occur that will not be reported by the Host File
Transfer ActiveX control.

Using the Host File Transfer ActiveX control, certain conversions of strings from EBCDIC to ASCII and then back to EBCDIC are
asymmetric, and can result in strings that are different from the original. The EBCDIC specification contains ordinals for which
there is no defined character. The Host File Transfer ActiveX control translates all such undefined characters to the question
mark character ("?"). So when ASCII strings containing these characters are converted back to EBCDIC, these undefined
characters will be replaced with question marks. To protect EBCDIC strings containing undefined characters, these fields should
be tagged as binary strings and mapped by the application.

The ANSI to EBCDIC character conversions affected include the following:

Character value (decim
al)

Character value (hexadecim
al)

ANSI code page 12
52

EBCDIC character after conversion to CCSI
D 37

128 0x80 Not used ?

130 0x82 Single low quote ?

131 0x83 Latin F with hook ?

132 0x84 Double low quote ?

133 0x85 Ellipsis ?

134 0x86 Dagger ?

135 0x87 Double dagger ?

136 0x88 Per mile ?

137 0x89 S with caron ?

138 0x8A Left angle ?

139 0x8B Ligature OE ?

140 0x8C Not used ?

142 0x8E Not used ?

145-156 0x91-0x9C ?

158-159 0x9E-0x9F ?

Usernames and Passwords Using Host File Transfer
When connecting to host systems, most users must be authenticated by the remote system by passing a valid user ID and
password.

The AS/400 computer is case-sensitive with regard to user ID and password. The AS/400 only accepts a user ID and password
in uppercase. The Microsoft Host File Transfer ActiveX control forces the User ID and Password into uppercase when it knows
that it is connecting to an AS/400 system.

The mainframe is not case-sensitive. This means that on mainframe computers, one can enter the user ID and password in any
case.

Troubleshooting the Host File Transfer ActiveX Control
The Microsoft Host File Transfer ActiveX control supplied with Host Integration Server 2009 has the ability to trace DRDA data
flows when used over TCP/IP.

This tracing capability is accessible from the SNADDM Service tracing inside the Trace tool. This facility will show the same data
as an APPC trace but without the control indicators (For example, What_Received). Socket errors are traced and the error codes
can be looked up in Winsock2.h supplied with the Platform SDK.

The Host File Transfer ActiveX control can return the following types of errors:

Errors from the remote hosts

Microsoft Host File Transfer-specific errors

Errors from the underlying DDM application requester network client

Data Queue ActiveX Control Programmer's Guide
A data queue is an AS/400 system object that is used for inter-process communications between multiple programs or jobs.
Data queues allow multiple programs to send and receive shared messages via a central repository without first writing the
message data to a physical database file. Typically, when a data record is read from the queue, the record is erased from the
queue. The advantage of using data queues to share data in comparison with using database files is that data queues require
much less file I/O and therefore improve overall system performance.

The Microsoft Data Queue ActiveX control provides the ability to access AS/400 data queues. Microsoft Host Integration
Server 2009 provides this service via a single ActiveX control that depends on other core Host Integration Server DLLs.
Developers can move part or all of their AS/400 applications from an AS/400 computer to a PC platform, while retaining
access in the program running on the PC to a remote data queue on the AS/400.

The Data Queue ActiveX control is implemented as a Distributed Data Management (DDM) Application Requester. The Data
Queue ActiveX control uses the Data Queue interfaces in the DDM Level 4 architecture, which are extensions to the record-level
input/output (RLIO) protocol of IBM's Distributed Data Management architecture.

DDM is a set of rules for distributing or extending data management from one computer to another, such as from a mainframe
to an AS/400 computer or from one of these host computers to a server computer. By combining the Microsoft Data Queue
ActiveX control and DDM architectures, Microsoft enables organizations to preserve their investments in existing data
management infrastructure, while extending universal file and data transfer to all enterprise-wide data sources.

The information in this section is required to develop applications with Host Integration Server that use ActiveX or COM
objects to transfer data from local machines to AS/400 Data Queues in a Systems Network Architecture (SNA) environment.

In This Section

Advantages of Data Queues

Object Support Using Data Queues

Programming Considerations When Using the Data Queue ActiveX Control

https://msdn.microsoft.com/en-us/library/aa744369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770726(v=bts.10).aspx

Advantages of Data Queues
Data queues provide a fast means of inter-process communication, requiring low system overhead and minimal setup. AS/400
Data Queues are designed to provide a flexible, highly efficient, yet temporary means of inter-process communication. Data
queues are familiar to most AS/400 programmers as a simple method of passing information to another program.

Data queues provide considerable flexibility to the application programmer. The data queues interfaces require no
communications programming and can be used either for connected or disconnected communication. AS/400 and PC
applications can be developed using any supported language, yet still communicate with each other. PC programs can
communicate with AS/400 programs through a common AS/400 data queue. The use of data queues requires little knowledge
of communication and no knowledge of APPC if the programmer utilizes the Microsoft® Data Queue ActiveX® control. The
data queue messages are merely described at the record level, allowing the application programmer to define the field-level
structure as required.

By default, when one program reads an entry in the queue, the entry is then deleted. Pointers to the queue entries are then
updated to reflect the change in the record stack. A data queue can exist with no entries, a single entry, or multiple entries.
Multiple concurrent jobs and programs can access data queues.

When receiving data, the requesting application can set a time-out value to wait for data to arrive in the queue. Waits can be
applied based on entry of the data record or for a time period (zero seconds to many days in length). A program that reads
from a queue need not be running when the queue is created or when records are inserted. A single data queue can support
many separate interactive jobs. At regular intervals or at the end of the day, records in the data queue can be persisted to a file
by a single automated batch process.

See Also
Other Resources
Data Queue ActiveX Control Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa745366(v=bts.10).aspx

Object Support Using Data Queues
The Microsoft® Data Queue ActiveX® control supports a number of standard COM interfaces as well some custom objects
and interfaces.

This section contains:

COM Interface Support Using Data Queues

IEIGDataQueueCtl Object

IEIGDataQueue Object

IEIGDataQueueItem Object

IEIGDataQueueCtlEvents Notifications

IEIGDataQueueEvents Notifications

https://msdn.microsoft.com/en-us/library/aa754323(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705744(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753877(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705720(v=bts.10).aspx

COM Interface Support Using Data Queues
The Microsoft Data Queue ActiveX control supports a number of standard COM interfaces as well as several custom interfaces,
IEIGDataQueueCtl, IEIGDataQueue, and IEIGDataQueueItem. The ActiveX control object has the ability to register and de-
register itself via standard control mechanisms. Support for a number of standard COM interfaces makes it easy to develop
applications using the Data Queue ActiveX control with Visual Basicand Visual C++ as well as from Internet Explorer and
Access. Supporting a variety of standard COM interfaces also provides different ways for a client to save information.

The following table summarizes the standard COM interfaces supported by the Data Queue ActiveX control.

COM in
terface

Comments

ICatego
rizePro
perties

This interface divides up the properties into an intelligent presentation to the client.

IConne
ctionPo
intCont
ainer

IDispat
ch

A dual interface deriving from IDispatch is exposed to provide support and flexibility to clients. Clients that provide s
upport for automation interfaces will utilize the IDispatch interface, while more robust clients may use the custom in
terface. Using the custom interface provides for the greatest execution speed.

IPerPro
pertyBr
owsing

This interface provides support for client browsing of properties in an intelligent manner. This interface exposes to th
e client property lists used in the population of a drop-down list. This interface is required for the control to be hosted
by Microsoft Access.

IProper
tyNotif
ySink

The interface is implemented by a sink object to receive notifications about property changes from an object that sup
ports IPropertyNotifySink as an outgoing interface. The client that needs to receive the notifications in this interface
(from a supporting connectable object) creates a sink with this interface and connects it to the connectable object thr
ough the connection point mechanism.

IPersist

IPersist
Propert
yBag

This interface is the preferred method of property persisting for Internet Explorer and Visual Basic. Using this interfac
e persisted properties are stored as a set of name/VARIANT value pairs.

IPersist
Storage

This interface stores persistent properties into a structured storage object.

IPersist
StreamI
nit

This interface is responsible for saving the persisted properties in binary form using a stream interface. This is the me
thod used by the Microsoft Visual C/C++ compiler to persist properties.

ISuppor
tErrorIn
fo

This interface is the preferred method to return error indications to scripting clients. Using this interface, error codes
and explanation text are returned to the client. This information may be used in order to provide diagnostic informati
on to the user and in cases of failure.

See Also
Other Resources
Object Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx

IEIGDataQueueCtl Object
The IEIGDataQueueCtl object supports a number of properties and methods that provide the ability to connect with a host
and communicate with OS/400 Data Queues. The IEIGDataQueueCtl also supports a set of events notifying a client
application of connection status and error reporting. These events are handled by the client supporting several callback
functions and setting these callbacks using the IConnectionPointContainer.

The following IEIGDataQueueCtl object methods are supported by the Microsoft Data Queue ActiveX control.

Method name Comment
Connect Establishes a connection to the configured host and reports to the user an indication of the success or f

ailure of the action.

CreateQueueContainer Creates an instance of an IEIGDataQueue container object and optionally initializes the QueueName pr
operty. The created queue object is assumed to be associated with the connection object that created it
for the life of the connection or the life of the queue object.

Disconnect Terminates an existing connection to a host machine.

The following IEIGDataQueueCtl object properties are supported by the Microsoft Data Queue ActiveX control.

Property name Comment
CCSID Sets or returns the character code set identifier (CCSID) that must match the data in the AS/400 data queue a

s represented on the remote host computer.

This property defaults to U.S./Canada (37).

ConnectionState Returns the current state of the connection. The state of a connection can be unspecified, idle, connecting, con
nected, or disconnecting.

ConnectionType Sets or returns the network transport used for this connection.

The default value for this parameter is SNA. Note that TCP/IP is not supported.

If APPC is selected, then values for the LocalLU, ModeName, and RemoteLU properties are required.

LocalLU Sets or returns the Local LU Alias. When APPC (SNA LU 6.2) is selected for the ConnectionType property, this
property must match the name of the local LU alias configured using SNA Manager.

This property defaults to the string value of "LOCAL" represented as a BSTR.

ModeName Sets or returns the APPC mode. When APPC (LU 6.2 SNA) is selected for the ConnectionType property, this
field must be set to the APPC mode that matches the host configuration and Host Integration Server configur
ation.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (int
eractive), #INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with mini
mal routing security), #IBMRDB (DB2 remote database access), and custom modes. The following modes that
support bi-directional LZ89 compression are also legal: #INTERC (interactive with compression), INTERCS (int
eractive with compression and minimal routing security), BATCHC (batch with compression), and BATCHCS (
batch with compression and minimal routing security).

This property defaults to the string value of "QPCSUPP" represented as a BSTR.

Password Sets or returns the password used for authentication. A valid user name and password are normally required
to access data on a host computer. The password is case sensitive and is normally displayed as asterisks in a
dialog box for security purposes.

This property is a string (BSTR) and has no default value.

PCCodePage Sets or returns the PC code page The PC Code Page property indicates the code page to be used on the PC fo
r character code conversion.

This property defaults to Latin 1 (1252).

https://msdn.microsoft.com/en-us/library/aa772081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771686(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705629(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745840(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705577(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754769(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746180(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704818(v=bts.10).aspx

RemoteLU Sets or returns the Remote LU Alias. When APPC (LU 6.2 SNA) is selected for the ConnectionType property,
this property is the name of the remote LU alias configured using SNA Manager.

This property is a string (BSTR) and has no default value.

UserID Sets or returns the user name used for authentication. A valid user name and password are normally require
d to access data on a host computer. This value is case sensitive.

This property is a string (BSTR) and has no default value.

See Also
Other Resources
Object Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa772014(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705811(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx

IEIGDataQueue Object
The IEIGDataQueue object represents a logical queue and supports a number of properties and methods that provide the
ability to communicate with a specific data queue. The QueueName property is the name of the physical queue. All methods
and events are related to the queue that is represented by the individual instance of the object. The Data Queue ActiveX control
also supports a set of events notifying a client application of connection status, data transfer status, and error reporting. These
events are handled by the client supporting several callback functions and setting these callbacks using the
IConnectionPointContainer.

The following IEIGDataQueue object methods are supported by the Microsoft Data Queue ActiveX control.

Method nam
e

Comment

AddQueueItem Adds a record to the current queue.

Cancel Terminates a request to receive information from the queue that is already in progress.

CancelQueue Indicates that an application no longer wants to be notified of an incoming queue data item. This can be used t
o stop pending notifications that were queued as a result of calling GetQueueItem.

ClearAll Removes all items from the queue.

CreateQueue Creates a data queue.

DeleteQueue Clears all messages from the queue and then deletes the queue.

GetQueueItem Retrieves an item from the queue.

QueryAttribute Requests information on one of the queue's attributes

SetAttribute Changes the attributes associated with a data queue.

StopQueue Stops the queue from responding to client requests.

The following IEIGDataQueue object property is supported by the Microsoft Data Queue ActiveX control.

Property name Comment
QueueName This is the name of the data queue this object is associated with.

See Also
Other Resources
Object Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa705629(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771660(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753885(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704830(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771315(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705629(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx

IEIGDataQueueItem Object
The IEIGDataQueueItem object represents a specific queue item and supports a number of properties and methods.

The following IEIGDataQueueItem object method is supported by the Microsoft Data Queue ActiveX control.

Method name Comment
Reset Resets the queue item properties to default values.

The following IEIGDataQueueItem object properties are supported by the Microsoft Data Queue ActiveX control.

Property name Comment
ExtUser The external job user name.

ExtJobName The external job name.

ExtJobNumber The external job number.

InactiveRec Indicates an Inactive record.

Keyval The key value.

Message The queue message.

QItemType The type of queue item this represents.

Record The entire queue data.

RecordAttribute The list of record attributes.

RecCount The record count.

RecNumber The record number.

ReplyRequest Indicates if the reply message should be returned.

UsrProf The user profile.

See Also
Other Resources
Object Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx

IEIGDataQueueCtlEvents Notifications
The IEIGDataQueueCtl object of the Microsoft Data Queue ActiveX control also supports a set of events notifying a client
application of connection status and error reporting. These events are handled by the client supporting several callback
interfaces and setting these callbacks derived from the standard IConnectionPointContainer COM object.

The following IEIGDataQueueCtlEvents notification interface methods are supported by the Data Queue ActiveX control:

Event n
otificat
ions

Comment

Connec
tionSta
teChan
ge

This event is fired when the state of a connection has changed. A ConnectionState parameter is passed to the client ca
llback function that receives this event method call. This parameter is an eigConnectionStateEnum value representi
ng the new state of the ConnectionState property.

Report
Error

This event is fired when an error condition needs to be reported during non-blocking (asynchronous) functions. This
event passes two parameters to the client callback function that receives this event method call. The first parameter is
a long value representing an error code. The second parameter is a BSTR string containing a brief text description of t
he error.

See Also
Other Resources
Object Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa754769(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx

IEIGDataQueueEvents Notifications
The IEIGDataQueue object of the Microsoft Data Queue ActiveX control also supports a set of events notifying a client
application of when transfers are completed, requests are received, and error reporting. These events are handled by the client
supporting several callback interfaces and setting these callbacks derived from the standard IConnectionPointContainer
COM object.

The following IEIGDataQueueEvents notification interface methods are supported by the Data Queue ActiveX control:

Event
notifi
catio
ns

Comment

Repor
tError
2

This event is fired when an error condition needs to be reported during non-blocking (asynchronous) functions. This ev
ent passes two parameters to the client callback function that receives this event method call. The first parameter is a lo
ng value representing an error code. The second parameter is a BSTR string containing a brief text description of the err
or.

Requ
estRe
ceive
d

This event is fired when a request is received.

Send
Comp
lete

This event is fired as an indication to the client that the requested transfer operation has completed.

See Also
Other Resources
Object Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa772094(v=bts.10).aspx

Programming Considerations When Using the Data Queue
ActiveX Control

The Microsoft® Data Queue ActiveX® control exposes a dual interface deriving from IDispatch. This provides support and
flexibility to clients wishing to use the object. Clients that provide support for automation interfaces can use the IDispatch
interface while more robust clients may use the custom interface. Using the custom interface offers the greatest execution
speed.

The single-threading model is supported, allowing only single threads to access the objects safely.

Asynchronous read operations are not currently supported. The BlockComplete parameter of the GetQueueItem method must
be set to a value of 0 (eigAnswerYes), indicating that the GetQueueItem operation should block until the completion status is
known.

This section contains:

Code Page Support Using Data Queues

User Names and Passwords Using Data Queues

Troubleshooting the Data Queue ActiveX Control

https://msdn.microsoft.com/en-us/library/aa754280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754474(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754401(v=bts.10).aspx

Code Page Support Using Data Queues
When using the Data Queue ActiveX control, the Host CCSID (character code set identifier) property should be configured to
match the data as represented on the remote host computer. The Host CCSID parameter defaults to EBCDIC U.S./Canada (37)
when using the Data Queue ActiveX control.

This section contains:

DBCS Code Page Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa745798(v=bts.10).aspx

DBCS Code Page Support Using Data Queues
Support for Double-Byte Character String (DBCS) data is limited using the Data Queue ActiveX control. Conversions between
DBCS and ANSI code pages are not supported. Conversions between DBCS and ISO code pages are not supported.

The DB2 GRAPHIC data types (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC) are not supported. These DB2 data types
support DBCS (not mixed) data. Mixed data types are supported using CHAR FOR MIXED DATA, VARCHAR FOR MIXED DATA,
and LONGVARCHAR FOR MIXED DATA.

See Also
Other Resources
Code Page Support Using Data Queues

https://msdn.microsoft.com/en-us/library/aa770688(v=bts.10).aspx

User Names and Passwords Using Data Queues
When connecting to host systems, most users must be authenticated by the remote system by passing a valid User ID and
Password.

The AS/400 computer is case-sensitive with regard to user ID and password. The AS/400 only accepts a user ID and password
in uppercase. The Microsoft Data Queue ActiveX control forces the user ID and password into uppercase when it knows that it
is connecting to an AS/400 system.

See Also
Other Resources
Programming Considerations When Using the Data Queue ActiveX Control

https://msdn.microsoft.com/en-us/library/aa770726(v=bts.10).aspx

Troubleshooting the Data Queue ActiveX Control
The Microsoft Data Queue ActiveX control supplied with Host Integration Server 2009 has the ability to trace DRDA data flows.

This tracing capability is accessible from the DB2 Network Librarytracing inside the Trace tool. This facility shows the same data
as an APPC trace but without the control indicators (for example, What_Received). Socket errors are traced and the error codes
can be looked up in Winsock2.h supplied with the Platform SDK.

The Data Queue ActiveX control can return the following types of errors:

Errors from the remote hosts

Microsoft Data Queue-specific errors

Errors from the underlying DDM application requester network client

See Also
Other Resources
Programming Considerations When Using the Data Queue ActiveX Control

https://msdn.microsoft.com/en-us/library/aa770726(v=bts.10).aspx

Using Data Design Tools
The Data Design Tools are a set of technologies exposed in Visual Studio that enable you to visually create database
connections and queries, browse tables, view data, execute stored procedures, and access other database features. The
following table describes the level of support the Server Explorer for Visual Studio provides for Host Integration Server 2009.

Provider Visual Studio Data Design Support

ODBC Driver for DB2 None

OLE DB Provider for DB2 High

Managed Provider for DB2 Low

OLE DB Provider for AS/400 and VSAM Low

Data Queues None

File Transfer ActiveX controls None

In This Section

Using Data Design Tools for the OLE DB Provider for DB2

Using Data Design Tools for the Managed Provider for DB2

Using Data Design Tools for the Microsoft OLE DB Provider for AS/400 and VSAM

https://msdn.microsoft.com/en-us/library/aa745856(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704714(v=bts.10).aspx

Using Data Design Tools for the OLE DB Provider for DB2
The OLE DB Provider for DB2 is the provider that the Microsoft Visual Studio Data Design Tools most heavily support. The
following list describes the different Data Design Tools available in Visual Studio, and how they interact with the OLE DB
Provider for DB2.

Database Designer

With this visual tool, you can design and visualize a DB2 database to which you are connected. When designing a
database, you can use the Database Designer to create, edit, or delete tables, columns, keys, indexes, relationships, and
constraints. To visualize a database, you can create one or more diagrams illustrating some or all of the tables, columns,
keys, and relationships.

Table Designer

With this visual tool, you can design and visualize a single table in a DB2 database to which you are connected.

Query and View Designer

With this visual tool, you can design a query, view, in-line function, or single-statement stored procedure.

SQL Editor

This integrated tool provides a variety of SQL text-editing features.

Server Explorer

With this Visual Explorer window, you can view and manipulate data links, database connections, and system resources
on any server to which you have network access. Features include the ability to open data connections, log onto servers
and display system resources, make database connections, and create data components that describe remote resources
for your Visual Studio projects.

Solution Explorer

Provides an organized view of your projects and their files as well as ready access to the commands that pertain to them.

See Also
Other Resources
Using Data Design Tools

https://msdn.microsoft.com/en-us/library/aa705385(v=bts.10).aspx

Using Data Design Tools for the Managed Provider for DB2
The Data Design Tools included in Microsoft® Visual Studio® .NET 2003 do not currently support the Managed Provider for
DB2. However, you can partially prototype and design your data connections with System.Data and ADO.NET using the
available tools.

To use the Data Design Tools for the Managed Provider for DB2

1. Use the Data Design Tools for the OLE DB Provider for DB2 to outline your data connection.

The OLE DB Provider for DB2 and the Managed Provider for DB2 are similar enough that the generated scripts and
objects can provide a starting point for your Managed Provider for DB2 connection.

2. Manually alter the autogenerated files for use with the Managed Provider for DB2.

See Also
Concepts
Using Data Design Tools for the OLE DB Provider for DB2
Other Resources
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa745856(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

Using Data Design Tools for the Microsoft OLE DB Provider for
AS/400 and VSAM

The Microsoft OLE DB Provider for AS/400 and VASM is a non-SQL command provider. As such, this provider does not
integrate well with the Microsoft Visual Studio Data Design Tools. While you can create a data connection from the supplied
menus in Visual Studio, very few of the generated scripts and objects are useful for a Host Integration Server 2009 application.
Instead, it is recommended that you manually create the connections using the standard programming technologies.

See Also
Other Resources
OLE DB Provider for AS/400 and VSAM Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744762(v=bts.10).aspx

Data Integration Security Guide
This section covers security issues that programmers working with the data integration features of Host Integration
Server 2009 should understand.

In This Section

Managed Provider Security

OLE DB Provider for DB 2, AS/400, and VSAM Security

Host File Transfer Object Security

https://msdn.microsoft.com/en-us/library/aa705511(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745447(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705485(v=bts.10).aspx

Managed Provider Security
The following topics discuss security as it applies to the Managed Provider for DB2 section of the Host Integration Server 2009
SDK.

About Managed Provider security for developers

A Managed Provider is a .NET Framework data provider used for connecting Host Integration Server 2009 applications to a
database, executing commands, and retrieving results. Those results are either processed directly, or placed in an ADO.NET
DataSet.

The Managed Provider for DB2 is built on the .NET Framework, and because of this it can take advantage of many of the
security features that a managed environment provides. This section discusses security features and issues that you should be
aware of when using the Managed Provider.

Threats and mitigations for the Managed Provider

Programmers who use the Managed Provider for DB2 should be aware of the following security practices and issues.

Protect Components Store Connection Information in Plain Text

Generic data access components, such as the Data Tools and Data Bound controls in Microsoft Visual Studio store sensitive
DB2 connection data in plain text. This is done to grant third parties easy access to host data when using the control.

Storing connection data in plain text is a security concern because there is the potential for another application or user to read
the active memory belonging to the control, and retrieve sensitive information from the plain text stored in the control. You
can improve the security of your Host Integration Server application using one or more of the following techniques:

Store any file known to contain connection information, such as a .UDL file, in a secure location.

Design your applications so that you release and destroy any components known to store data in plain text as soon as
the user is finished with the component.

OLE DB Provider for DB 2, AS/400, and VSAM Security
The following topics discuss security as it applies to the following sections of Host Integration Server 2009 SDK.

OLE DB Provider for DB2

OLE DB Provider for AS/400 and VASM

About OLE DB Provider Security for Developers

These Microsoft OLE DB providers enable users to access IBM DB2 from within an OLE-aware application. The object linking
and embedding database (OLE DB) is a standard set of interfaces that provides heterogeneous access to disparate sources of
information located anywhere—file systems, e-mail folders, and databases. The OLE DB Provider for DB2 combines the
universal data access of OLE DB with the IBM Distributed Relational Database Architecture (DRDA).

This section discusses security features and issues that you should be aware of before programming the OLE DB Provider for
DB2.

Single Sign-On

Enterprise Single Sign-On provides services that request and verify your credentials after you log on to the network, and use
your credentials to determine the actions that you can perform based on your user rights. Single Sign-On is supported for the
OLE DB provider for DB2.

For information on how you can configure Single Sign-On for the OLE DB Providers, see Connection.

Threats and mitigations for the OLE DB Provider

Programmers who use these features should be aware of the following security practices and issues.

The OLE DB Provider for DB2 stores host configuration data in OLE DB properties collection

The OLE DB Provider for DB2 stores host and PC configuration data in an OLE DB property collection, and then returns this
data to the calling program. Your program should not pass this sensitive information on to the end user.

The OLE DB Provider for DB2 DTS and DQP consumers persist configuration data

Generic consumers such as DTS, DQP, Replication, and OLAP persist sensitive host configuration information in the following
insecure ways:

Most SQL Server consumers use the SQL Server Repository to store data source information.

DTS can persist DTS packages (which include data source configuration info) as files and Visual Basic programs (plain
text).

To minimize the risks mentioned above, generic consumers should encrypt sensitive OLE DB connection information using the
crypto API (DP, data protection API).

The OLE DB Provider for AS/400 and VSAM stores host configuration data in an OLE DB properties collection

The OLE DB Provider for AS/400 and VSAM stores host and computer configuration data in an OLE DB property collection, and
then returns this data to the calling program. Your program should not pass this sensitive information on to the end user.

Use provider-specific connection pooling

It is a best practice to use the provider-specific connection pooling in Host Integration Server rather than the system provided
resource pooling provided by the OLE DB Provider for DB2. This avoids possible security risks in the OLE DB Provider for DB2.

The OLE DB Provider for DB2 DTS and DQP consumers persist configuration data

Generic consumers such as DTS, DQP, Replication and OLAP stores sensitive host configuration information in the following
insecure ways:

Most SQL Server consumers utilize the SQL Server Repository to store data source information.

DTS can store DTS packages (which include data-source configuration info) as files and Visual Basic programs (plain text).

https://msdn.microsoft.com/en-us/library/aa770727(v=bts.10).aspx

To minimize the risks mentioned above, Generic consumers should encrypt sensitive OLE DB connection information using the
crypto API (DP, data protection API).

Host File Transfer Object Security
The Microsoft Host File Transfer ActiveX control provides the ability to transfer files between a local computer and an MVS,
OS/390, AS/400, or AS/36 host system. Host Integration Server 2009 provides this service through a single ActiveX control
that depends on other core Host Integration Server DLLs.

This section discusses security features and issues that you should be aware of before you use with the Host File Transfer
object in your programs.

Threats and mitigations for the Host File Transfer object

Programmers who use these features should be aware of the following security practices and issues.

Validate input parameters for the Host File Transfer control

You should validate all input parameters before passing them on to the Host File Transfer control.

You should verify all values received from end users before passing values (such as filenames) to the ActiveX control.

The SAM and VSAM data sets, as well as PDS/PDSE members, must be referenced in the host column description (HCD) file the
same way as they are referenced in the command text of the OLE DB command object, using the following command text
syntax:

where FileName represents one of the following host file naming conventions:

Host file type File naming convention

VSAM Data Sets:

Partitioned Data Sets:

OS/400 Files:

OS/400 Files:

OS/400 File Members:

OS/400 File Members:

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double
quotes. For example, if the member name is NAMES.DAT, the proper syntax used to open a rowset using command text is as

EXEC OPEN FileName

DATASETNAME.FILENAME

DATASETNAME.FILENAME(MEMBER)

LIBRARY/FILE

LIBRARY/FILENAME

LIBRARY/FILE(MEMBER)

LIBRARY.FILENAME(MEMBER)

follows:

Please note that you must utilize the full path to the mainframe data set. In the example below, there are two path elements
and one name element to describe the target data set:

Whenever you allocate a data set, it is given a unique name composed of one or more segments. Each segment of a data set
name is joined by periods and represents a level of qualification. For example, the following data set has four segments that
comprise the fully qualified data set name.

The high-level qualifier is WNW999. The low-level qualifier is TITLES. Each segment can be from 1-8 characters in length (first
character must be alphabetic; remainder can be alphanumeric or hyphens). The data set name must be no more than 44
characters in length and contain no more than 22 segments.

Store the HCD files for the Host File Transfer control in a secure location

File Transfer reads host column description (HCD) files at run time as a means to support data conversion from host data types
to OLE DB data types. You should store HCD files in a secure location that only the application can access at run time. This
ensures that a malicious user may not modify the file to submit embedded commands.

EXEC OPEN LIBRARY/FILE("NAMES.DAT")

XXXXX.XXX.XXX

WNW999.DEMO.KSDS.TITLES

Network Integration Programmer's Guide
This section describes how to create applications in a Systems Network Architecture (SNA) environment.

For API references and other technical information about network integration, see the
Network Integration Programmer's Reference section of the SDK.

For sample code that illustrates network integration, see the Network Integration Samples section of the SDK.

For additional information about network integration, see the Network Integration User's Guide section of the Operations
guide.

In This Section

APPC Programmer's Guide

CPI-C Programmer's Guide

LUA Programmer's Guide

3270 Emulation Programmer's Guide

SNA Internationalization Programmer's Guide

SNA Print Server Data Filter Programmer's Guide

SNADIS Programmer's Guide

Network Integration Security Guides

Session Integrator Programmer's Guide

Client-Based BizTalk Adapter for WebSphere MQ Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa746022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705620(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754776(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753887(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770924(v=bts.10).aspx

APPC Programmer's Guide
This section of the Host Integration Server 2009 Developer's Guide provides information about using the Advanced Program-
to-Program Communications (APPC) in a distributed processing environment.

For API references and other technical information about APPC, see APPC Programmer's Reference.

For sample code using APPC, see APPC Samples.

This section contains:

About the APPC Guide

Introduction to APPC

About Transaction Programs

Windows CSV Overview

Support for APPC Automatic Logon

https://msdn.microsoft.com/en-us/library/aa771668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745677(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771060(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746115(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770718(v=bts.10).aspx

APPC Guide
This section provides information required to develop C-language applications that use Advanced Program-to-Program
Communications (APPC) to exchange data in a Systems Network Architecture (SNA) environment.

This section is intended for the developer writing applications that use Common Programming Interface for Communications
(CPI-C) to exchange data. It provides conceptual information and detailed reference information.

To use this section effectively, you should be familiar with:

Microsoft Host Integration Server 2009

Microsoft Windows Server 2003 or Windows 2000

SNA concepts

This section contains:

Operating Systems Support for APPC Development

Finding Further Information about APPC

https://msdn.microsoft.com/en-us/library/aa705722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705012(v=bts.10).aspx

Operating Systems Support for APPC Development
Microsoft Host Integration Server 2009 supports the development of Advanced Program-to-Program Communications (APPC)
applications for Microsoft Windows Server 2003 and Microsoft Windows 2000.

Finding Further Information about APPC
This section does not describe the products, architectures, or standards developed by other companies or organizations.

For more information about SNA and about 3270 information display systems, see the following manuals:

IBM 3270 Information Display System: 3274 Control Unit Description and Programmers Guide

IBM 3270 Information Display System: Color and Programmed Symbols

IBM 3270 Information Display System: 3274 Control Unit Display Station: Operators Guide

IBM Systems Network Architecture: Technical Overview

IBM Systems Network Architecture: Concepts and Products

IBM Advanced Communications Function Products Installation Guide

IBM Installation and Resource Definition

IBM 9370 LAN Token Ring Support

IBM SNA Format and Protocol Reference Manual: Architectural Logic

For background information about logical unit (LU) 6.2, APPC, or the Common Programming Interface for Communications
(CPI-C), see the following manuals:

IBM Systems Network Architecture: Introduction to APPC

IBM Systems Network Architecture: Transaction Programmers Reference Manual for LU Type 6.2

IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2

IBM SNA: Formats

IBM SNA: Technical Overview

IBM SNA: ACF/VTAM Programming for LU Type 6.2

Introduction to APPC
This section introduces the fundamental concepts of Advanced Program-to-Program Communications (APPC) in a distributed
processing environment. These concepts include the following:

APPC verbs

Microsoft® Windows® APPC extensions

Using APPC verbs in C programs

Operating system considerations

Detailed descriptions of APPC verbs are provided in:

APPC Management Verbs

APPC TP Verbs

APPC Conversation Verbs

APPC is an application programming interface (API) that enables peer-to-peer communications in a Systems Network
Architecture (SNA) environment. Through APPC, programs distributed across a network can work together, communicating
with each other and exchanging data, to accomplish a single processing task such as querying a remote database, copying a
remote file, or sending and receiving electronic mail.

This section contains:

APPC Verb Overview

APPC Verb Summary

Windows APPC Overview

Using APPC Verbs in C Programs

Windows Server 2003, Windows XP, and Windows 2000 Considerations

https://msdn.microsoft.com/en-us/library/aa705496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771917(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745813(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746237(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746261(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771687(v=bts.10).aspx

APPC Verb Overview
APPC verbs fall into three categories: management, transaction program (TP), and conversation.

Management Verbs

Management verbs provide management functions. They are:

ACTIVATE_SESSION

CNOS

DEACTIVATE_SESSION

DISPLAY

TP Verbs

TP verbs start and end TPs, and get and set TP properties. They are:

GET_TP_PROPERTIES

SET_TP_PROPERTIES

TP_ENDED

TP_STARTED

Conversation Verbs

Conversation verbs enable TPs to allocate and deallocate conversations, send and receive data, and change conversation states.
The conversation verbs are listed in the following table.

Conversation verbs fall into two groups: mapped conversation verbs and basic conversation verbs. The mapped conversation
is intended for programs that use the conversation directly. The basic conversation is intended for more complex programs
that provide services to other users. In typical situations, end-user TPs use mapped conversations and service TPs use basic
conversations.

Mapped conversation verbs can only be issued by a TP in mapped conversations, while basic conversation verbs are reserved
for basic conversations. There is one exception to this rule: ALLOCATE can be used to start either a basic or a mapped
conversation.

Mapped conversation verbs Basic conversation verbs

MC_ALLOCATE ALLOCATE

MC_CONFIRM CONFIRM

MC_CONFIRMED CONFIRMED

MC_DEALLOCATE DEALLOCATE

MC_FLUSH FLUSH

MC_GET_ATTRIBUTES GET_ATTRIBUTES

GET_LU_STATUS GET_LU_STATUS

GET_STATE GET_STATE

GET_TYPE GET_TYPE

MC_POST_ON_RECEIPT POST_ON_RECEIPT

MC_PREPARE_TO_RECEIVE PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE RECEIVE_ALLOCATE

MC_RECEIVE_AND_POST RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE RECEIVE_IMMEDIATE

MC_RECEIVE_LOG_DATA RECEIVE_LOG_DATA

MC_REQUEST_TO_SEND REQUEST_TO_SEND

MC_SEND_CONVERSATION SEND_CONVERSATION

MC_SEND_DATA SEND_DATA

MC_SEND_ERROR SEND_ERROR

MC_TEST_RTS TEST_RTS

Mapped and basic verbs have the same functions in their respective types of conversation. For example, MC_CONFIRM
performs the same function in a mapped conversation that CONFIRM performs in a basic conversation.

APPC Verb Summary
This section briefly describes each APPC verb, grouped by function.

Verbs for Starting Conversations
ALLOCATEor MC_ALLOCATE

Issued by the local transaction program (TP). This verb allocates a session between the local logical unit (LU) and a partner
LU, and establishes a conversation between the local TP and the partner TP.

ALLOCATE can establish either a basic or a mapped conversation. MC_ALLOCATE can start only a mapped conversation.
After the conversation is allocated, APPC uses this verb to return a conversation identifier (conv_id).

RECEIVE_ALLOCATE

Issued by the partner TP. This verb confirms that the partner TP is ready to begin a conversation with the local TP that issued
ALLOCATE or MC_ALLOCATE. Upon successful execution, this verb returns a TP identifier (tp_id) for the partner TP and the
conv_id.

TP_STARTED

Issued by the local TP. This verb notifies APPC that the local TP is starting. Upon successful execution, this verb returns a
tp_id for the local TP.

Verbs for Sending Data
CONFIRMor MC_CONFIRM

Sends the contents of the local LU's send buffer and a confirmation request to the partner TP.

FLUSHor MC_FLUSH

Flushes the local LU's send buffer, sending the contents of the buffer to the partner LU and TP. If the send buffer is empty, no
action takes place.

PREPARE_TO_RECEIVEor MC_PREPARE_TO_RECEIVE

Changes the state of the conversation from SEND to RECEIVE. Before changing the conversation state, this verb performs the
equivalent of FLUSH, MC_FLUSH, CONFIRM, or MC_CONFIRM. After this verb has successfully executed, the local TP can
receive data.

REQUEST_TO_SENDor MC_REQUEST_TO_SEND

Informs the partner TP that the local TP wants to send data. The local TP must wait until the partner TP issues
PREPARE_TO_RECEIVE, MC_PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, or MC_RECEIVE_AND_WAIT, and the
conversation state changes to RECEIVE for the partner TP, before the local TP begins sending data.

SEND_DATAor MC_SEND_DATA

Puts data in the local LU's send buffer for transmission to the partner TP.

The data collected in the local LU's send buffer is transmitted to the partner LU and partner TP when one of the following
occurs:

The send buffer fills up.

The local TP issues FLUSH, MC_FLUSH, CONFIRM, MC_CONFIRM, DEALLOCATE, MC_DEALLOCATE, or another verb
that flushes the local LU's send buffer.

Verbs for Receiving Data
POST_ON_RECEIPTor MC_POST_ON_RECEIPT

Issuing this verb allows the application to register to receive a notification when data or status arrives at the local LU without
actually receiving it at the same time. This verb can only be issued while in RECEIVE state and it never causes a change in
conversation state.

When the TP issues this verb, APPC returns control to the TP immediately. When the specified conditions are satisfied, the
Win32® event specified as a parameter is signaled and the verb completes. Then the TP looks at the return code in the verb
control block to determine whether or not any data or status notification has arrived at the local LU and issues a

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771985(v=bts.10).aspx

RECEIVE_IMMEDIATE or RECEIVE_AND_WAIT verb to actually receive the data or status notification.

RECEIVE_AND_POSTor MC_RECEIVE_AND_POST

Issuing this verb while the conversation is in RECEIVE state changes the conversation state to PENDING_POST and causes the
local TP to receive data asynchronously. This allows the local TP to proceed with processing while data is still arriving at the
local LU.

Issuing this verb while the conversation is in SEND state flushes the LU's send buffer and changes the conversation state to
PENDING_POST. The local TP then begins to receive data asynchronously.

RECEIVE_AND_WAITor MC_RECEIVE_AND_WAIT

Issuing this verb while the conversation is in RECEIVE state causes the local TP to receive any data that is currently available
from the partner TP. If no data is available, the local TP waits for data to arrive.

Issuing this verb while the conversation is in SEND state flushes the LU's send buffer and changes the conversation state to
RECEIVE. The local TP then begins to receive data.

RECEIVE_IMMEDIATEor MC_RECEIVE_IMMEDIATE

Receives any data that is currently available from the partner TP. If no data is available, the local TP does not wait.

TEST_RTSor MC_TEST_RTS

Determines whether a REQUEST_TO_SEND or MC_REQUEST_TO_SEND or notification has been received.

Verbs for Confirming Data or Reporting Errors
CONFIRMEDor MC_CONFIRMED

Replies to a confirmation request from the partner TP. It informs the partner TP that the local TP has received and processed
the data without error.

RECEIVE_LOG_DATAor MC_RECEIVE_LOG_DATA

Issuing this verb allows the user to register to receive the log data associated with an inbound Function Management Header
7 (FMH7) error report. The verb passes a buffer to APPC, and any log data received is placed in that buffer. APPC continues to
use this buffer as successive FMH7s arrive until it is provided with another buffer (that is, until the TP issues another
RECEIVE_LOG_DATA or MC_RECEIVE_LOG_DATA specifying a different buffer or no buffer at all).

SEND_CONVERSATIONor MC_SEND_CONVERSATION

Issued by the invoking TP, this verb allocates a session between the local LU and partner LU, sends data on the session, and
then deallocates the session.

SEND_ERRORor MC_SEND_ERROR

Notifies the partner TP that the local TP has encountered an application-level error.

Verbs for Getting and Setting Information
GET_ATTRIBUTESor MC_GET_ATTRIBUTES

Used by a TP to get the attributes of the conversation.

GET_LU_STATUS

Used to report the status of a particular remote LU.

GET_STATE

Used by a TP to interrogate the state of a particular conversation.

GET_TP_PROPERTIES

Returns attributes of the TP and the current transaction.

GET_TYPE

Used by a TP to determine the conversation type (basic or mapped) of a particular conversation. With this information, the TP
can decide whether to issue basic or mapped conversation verbs.

SET_TP_PROPERTIES

Used to set the attributes of the TP and the current transaction.

https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771859(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754490(v=bts.10).aspx

Verbs that Provide Management Functions
ACTIVATE_SESSION

Activates a session between the local LU and a specified partner LU, using a specified mode.

CNOS(Change Number of Sessions)

Establishes APPC LU 6.2 session limits.

DEACTIVATE_SESSION

Deactivates a particular session, or all sessions on a particular mode.

DISPLAY

Returns configuration information and current operating values for the SNA node.

Verbs for Ending Conversations
DEALLOCATEor MC_DEALLOCATE

Deallocates a conversation between two TPs. Before deallocating the conversation, this verb performs the equivalent of
FLUSH, MC_FLUSH, CONFIRM, or MC_CONFIRM.

TP_ENDED

Issued by both the local and partner TPs. It notifies APPC that the TP is ending. Issuing this verb also terminates any active
conversations.

https://msdn.microsoft.com/en-us/library/aa754409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705541(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

Windows APPC Overview
The information provided in this guide is source code and executable code compatible with the following implementations of
APPC:

APPC applications based on Host Integration Server 2009 residing on the server or on a client. These applications run on
Microsoft Windows Server, Windows XP, and Windows 2000.

Programs written to use this implementation of APPC can exchange data with programs written to use other implementations
of APPC that adhere to the SNA LU 6.2 architecture.

The use of the Windows APPC interface on Windows Server 2003 and Windows 2000 causes additional threads to be created
within the calling process. These other threads perform interprocess communication with the Host Integration Server 2009 or
SNA service over the LAN interface that the client is configured to use (TCP/IP, IPX/SPX, or named pipes, for example).

If an application using Windows APPC is running on Windows Server 2003 and Windows 2000, stopping the SNABASE service
causes the application to be unloaded from memory.

In This Section

Windows APPC Asynchronous Support

APPC Verbs and Windows Extensions

https://msdn.microsoft.com/en-us/library/aa745996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771454(v=bts.10).aspx

Windows APPC Asynchronous Support
A program that issues a call and does not regain control until the call completes cannot perform any other operations. This
type of operation, referred to as blocking, is not suited to a server application designed to handle multiple requests from many
clients. Asynchronous call completion returns the initial call immediately so the application can continue with other processes.

Host Integration Server 2009 uses the RegisterWindowsMessage function for asynchronous support for APPC applications.
With "WinAsyncAPPC" as the input string, an application passes a window handle by which it can be notified of verb
completion. The application then issues the verb. When the verb completes, a message is posted to the window handle that
was passed, notifying the application that the verb is complete.

With the exception of asynchronous RECEIVE_AND_WAIT, MC_RECEIVE_AND_WAIT, RECEIVE_AND_POST, and
MC_RECEIVE_AND_POST, which can issue certain other verbs while pending, a conversation can have only one incomplete
operation at any time.

https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

APPC Verbs and Windows Extensions
This topic describes the APPC verbs and Windows extensions that are supported by Host Integration Server 2009:

APPC Verbs

The following APPC verb descriptions contain important features and should be read before using this version of Windows
APPC.

ALLOCATEor MC_ALLOCATE

Issued by the invoking transaction program (TP), this verb allocates a session between the local logical unit (LU) and partner
LU and (in conjunction with RECEIVE_ALLOCATE) establishes a conversation between the invoking TP and the invokable TP.
After this verb executes successfully, APPC generates a conversation identifier (conv_id). The conv_id is a required
parameter for all other APPC conversation verbs.

For a user or group using TPs, 5250 emulators, or APPC applications, you can assign default local and remote LUs. In this
case, the field for LU alias is left blank or null and the default LUs are accessed when the user or group member starts an
APPC program. For more information about using default LUs, see the Network Integrationsection of the Microsoft Host
Integration Server Help.

RECEIVE_ALLOCATE

Issued by the invokable TP to confirm that it is ready to begin a conversation with the invoking TP that issued ALLOCATE or
MC_ALLOCATE. This must be the first APPC verb issued by the invokable TP. The initial state is RESET. If the verb executes
successfully (primary_rc is AP_OK), the state changes to RECEIVE.

RECEIVE_AND_POSTor MC_RECEIVE_AND_POST

Receives application data and status information asynchronously. This enables the local TP to proceed with processing while
data is still arriving at the local LU. RECEIVE_AND_POST and MC_RECEIVE_AND_POST are only supported by the Windows
2000 operating system.

While an asynchronous RECEIVE_AND_POST or MC_RECEIVE_AND_POST is outstanding, the following verbs can be issued:

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

GET_TYPE

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

TEST_RTS or MC_TEST_RTS

DEALLOCATE

SEND_ERROR or MC_SEND_ERROR

TP_ENDED

RECEIVE_AND_WAITor MC_RECEIVE_AND_WAIT

Receives any data that is currently available from the partner TP. If no data is currently available, the local TP waits for data to
arrive.

RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT have been altered to act like RECEIVE_AND_POST and
MC_RECEIVE_AND_POST. While an asynchronous RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT is outstanding, the
following verbs can be issued:

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

GET_TYPE

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

TEST_RTS or MC_TEST_RTS

DEALLOCATE

SEND_ERROR or MC_SEND_ERROR

TP_ENDED

TP_STARTED

Issued by the invoking TP, this verb notifies APPC that the TP is starting. For a user or group using TPs, 5250 emulators, or
APPC applications, you can assign default local and remote APPC LUs. These default LUs are accessed when the user or
group member starts an APPC program (a TP, 5250 emulator, or APPC application) and the program does not specify LU
aliases. For more information about using default LUs, see Network Integration Help.

Limits

Host Integration Server 2009 permits one outstanding Windows APPC asynchronous call per connection and one blocking
verb per thread. For example:

Note
The exceptions to the rule of one outstanding asynchronous call are RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECE
IVE_AND_WAIT, and MC_RECEIVE_AND_WAIT. While these verbs are outstanding, certain other verbs can also be called.

void ProcessVerbCompletion (WPARAM wParam, LPARAM lParam)
{
 int i;
 for (i = 0; i < nPendingVerbs; i++)
 if (pPendingVerbs[i].hAsync == wParam)
 ProcessVCB((LPVCB) lParam);
} . . .
LRESULT CALLBACK SampleWndProc (...)
{
 if (msg == uAsyncAPPC) {
 ProcessVerbCompletion(wParam; lParam);
 }
 else switch (msg) {
 case WM_USER:
 if (hAsync = WinAsyncAPPC(hwnd, &vcb))
 pPendingVerbs [nPendingVerbs++].hAsync = hAsync;
 break;
 }
}
WinMain (...)
{
 if ((WinAPPCStartup (...) = = FALSE) {
 return FALSE ;
 }
 uAsyncAPPC = RegisterWindowsMessage ("WinAsyncAPPC") ;
 while (GetMessage (...)) {
 ...
 WinAPPCCleanup (...)
}

Using APPC Verbs in C Programs
This implementation of APPC is available for programs written in Microsoft® C version 5.1 or later. A C program calls APPC
through the external function APPC. For compatibility with previous versions of Microsoft C, the external function APPC_C is
also supported.

Note
Compilers other than the Microsoft C compiler can also be used to build applications using this implementation of APPC.

This section contains:

Verb Control Block

APPC Definition

Issuing an APPC Verb

https://msdn.microsoft.com/en-us/library/aa745378(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771120(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705740(v=bts.10).aspx

Verb Control Block
The only parameter passed to the APPC function is the address of a verb control block (VCB). The VCB is a structure made up
of variables that:

Identify the APPC verb to be executed.

Supply information to be used by the verb.

Contain information returned by the verb when execution is complete.

Each APPC verb has its own VCB structure, which is declared in the WINAPPC.H header file. For compatibility with earlier
versions, the APPC_C.H header file is also supported.

The WINAPPC.H file is supplied as part of the Host Integration Server 2009 Software Development Kit (SDK).

APPC Definition
The prototype definitions of the APPC function are as follows:

Syntax

Remarks

The verb control block (VCB) address parameter, a 32-bit pointer, is declared as a long integer and thus requires casting from a
pointer to a long integer.

void WINAPI APPC(long);
HANDLE WINAPI WinAsyncAPPC (hWnd, LPAPPC);

Issuing an APPC Verb
The following procedure is required to issue a blocking APPC verb. In the sample code, the verb issued is MC_SEND_DATA.

To issue a blocking APPC verb

1. Create a structure variable from the verb control block (VCB) structure that applies to the APPC verb to be issued.

2. Clear (set to zero) the variables within the VCB structure.

3. Assign values to the VCB variables that supply information to APPC.

The values AP_MAPPED_CONVERSATION and AP_M_SEND_DATA are symbolic constants representing integers. These
constants are defined in WINAPPC.H.

4. Invoke the APPC function. The only parameter is a pointer to the address of the structure containing the VCB for the
desired verb.

Use WinAsyncAPPC if you are running the application under Windows version 3.x.

To call WinAsyncAPPC:

When the asynchronous operation is complete, the application's window hWnd receives the message returned by
RegisterWindowMessage with "WinAsyncAPPC" as the input string.

5. Use the variables that were returned by APPC.

#include <winappc.h>
 .
 .
struct mc_send_data mcsend;
The VCB structures are declared in WINAPPC.H; one of these structures is:
mc_send_data

memset(mcsend, '\0', sizeof(mcsend));

mcsend.opcode = AP_M_SEND_DATA;
mcsend.opext = AP_MAPPED_CONVERSATION;
memcpy(mcsend.tp_id, tp_id, sizeof(tp_id));
mcsend.conv_id = conv_id;
mcsend.dlen = datalen;
mcsend.dptr = sharebufptr;

APPC ((long) (void FAR *) &mcsend);

HANDLE WINAPI WinAsyncAPPC (hWnd, 1pVCB)

if(mcsend.primary_rc != AP_OK)
/* Do error routine */
 .
 .
 .

https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx

Windows Server 2003, Windows XP, and Windows 2000
Considerations

This topic summarizes information about developing transaction programs (TPs) using APPC on the following operating
systems:

Microsoft Windows Server 2003

Microsoft Windows XP Professional

Microsoft Windows 2000

Byte ordering

The values of constants defined in WINAPPC.H and WINCSV.H are dependent on the byte ordering of the hardware used.
Macros are used to set the constants to the correct value.

By default, Intel little-endian byte ordering is used, with the low byte of a 16-bit value followed by the high byte. However,
when defining inline macros, the NON_INTEL_BYTE_ORDER macro used in WINAPPC.H and WINCSV.H will not reverse (flip)
the byte order for constants. Non-constant input parameters in verb control blocks (VCBs) (such as lengths, pointers, and so
on) are always in the native format.

For example, the primary return code of AP_PARAMETER_CHECK is defined to have a value of 0x0001. Depending on the
environment (byte ordering), the constant AP_PARAMETER_CHECK may or may not be 0x0001. Some formats define the
value as it appears in memory; others define it as a 2-byte variable. Because you cannot assume that the application always
uses provided constants rather than hardwired values, you can define a macro to swap the bytes. The following is an
example of using the macro:

Events

To receive data asynchronously, an event handle is passed in the semaphore field of the VCB. This event must be in the
nonsignaled state when passed to APPC, and the handle must have EVENT_MODIFY_STATE access to the event.

Library names

In order to support the coexistence of Win16 and Win32 API libraries on the same computer, the Win32 DLL names have
been changed.

Old DLL names New DLL names

WINAPPC.DLL WAPPC32.DLL

WINCSV.DLL WINCSV32.DLL

The new DLL names should be used for Win32-based applications that are intended to run only on Host Integration
Server 2009.

Limits

For Windows Server 2003 and Windows 2000, the number of simultaneous common service verbs (CSVs) allowed per
process is 64. Only one of these verbs per thread can be synchronous (blocking).

/* when NON_INTEL_BYTE_ORDER is specified, the APPC_FLIPI macro defined in WINAPPC.H macr
o becomes */
#define APPC_FLIPI(x) (x)

/* otherwise this macro flips bytes by defining */
#define APPC_FLIPI(X) APPC_MAKUS(APPC_HI_UC(X),APPC_LO_UC(X))

/* the AP_PARAMETER_CHECK macro is now defined using the APPC_FLIPI macro */
#define AP_PARAMETER_CHECK APPC_FLIPI (0X0001) /* X '0001' */

Using APPC, the maximum number of simultaneous conversations per process is 15,000. Each process supports up to
15,000 simultaneous TPs.

Multiple threads

A TP can have multiple threads that issue verbs. Windows APPC makes provisions for multithreaded Windows-based
processes. A process contains one or more threads of execution. All references to threads refer to actual threads in the
multithreaded Windows Server 2003 and Windows 2000 environments.

With the exception of RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, and MC_RECEIVE_AND_WAIT,
only one conversation verb can be outstanding at a time on any conversation; however, other verbs can be issued for other
conversations. This guideline also applies to TP verbs and TPs. Although multiple TP verbs can be issued, only one TP verb
can be outstanding at a time on a TP. This applies to both multithreaded applications and single-threaded applications that
use asynchronous calls.

Packing

For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or DWORD (4-byte) boundaries, whichever is smaller. As a result, DWORDs are
aligned on DWORD boundaries, WORDs are aligned on WORD boundaries, and BYTEs are aligned on BYTE boundaries. This
means, for example, that there is a 2-byte gap between the primary and secondary return codes. Therefore, the elements in a
VCB should only be accessed using the structures provided.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers. For
compatibility with the supplied logical unit application (LUA) libraries, make sure to use an equivalent structure and union
member packing option when using other C/C++ compilers or when explicitly specifying a structure alignment option when
using Microsoft compilers.

Registering and deregistering applications

All Windows APPC applications must call WinAPPCStartup at the beginning of the session to register the application and
WinAPPCCleanup at the end of the session to deregister the application.

All Windows CSV applications must call the Windows SNA extension WinCSVStartup at the beginning of the session to
register the application and WinCSVCleanup to deregister the application when the session is finished.

Run-time linking

For a TP to be dynamically linked to APPC at run time, the TP must issue the following calls:

LoadLibrary to load the dynamic-link libraries WINAPPC.DLL or WAPPC32.DLL.

GetProcAddress to specify APPC on all the desired entry points to the DLL such as APPC, WinAsyncAPPC,
WinAPPCStartup, and WinAPPCCleanup.

For a TP to be dynamically linked to CSV at run time, the TP must issue the following calls:

LoadLibrary to load WINCSV.DLL or WINCSV32.DLL, the dynamic-link libraries for Windows CSV.

GetProcAddress to specify CSV on all the desired entry points to the DLL such as ACSSVC, WinAsyncCSV,
WinCSVStartup, and WinCSVCleanup.

The TP must issue the FreeLibrary call when the APPC or CSV library is no longer required.

Yielding to other components

Because the Windows Server 2003 and Windows 2000 environments are multithreaded, there is no need to yield to other
components.

https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705564(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705565(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705783(v=bts.10).aspx

Transaction Programs Overview
A processing task accomplished by programs using Advanced Program-to-Program Communications (APPC) is called a
transaction. Consequently, programs that use APPC are called transaction programs (TP)s. These programs communicate as
peers, on an equal (rather than hierarchical) basis. The TPs use APPC verbs to exchange status information and application
data. Each TP uses APPC verbs to supply parameters to APPC, which performs the desired function and returns parameters to
the TP.

TPs distributed across a local or wide area network perform distributed transaction processing.

This section describes how to write TPs and how to configure the systems on which TPs run. The topics in this section cover the
following general areas:

Understanding fundamental concepts related to TPs

Designing and coding TPs

Configuring registry and environment variables for invokable TPs

Configuring Host Integration Server 2009 to work with your TPs

Sync Point Level 2 support

This section contains:

Communication between TPs

Designing and Coding TPs

Configuring Invokable TPs

Configuring TPs on Host Integration Server

Arranging TPs Within an SNA Network

Sync Point Level 2 Support in Host Integration Server

https://msdn.microsoft.com/en-us/library/aa771081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705637(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754054(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772077(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771938(v=bts.10).aspx

Communication between TPs
Various hardware and software elements in the SNA environment are required for two transaction programs (TPs) to
communicate with each other. The following figure shows several fundamental elements.

Fundamental communications elements between type 6.2 logical units

Each TP is associated with a logical unit (LU) of type 6.2. The LU allows the TP to access the network. Several TPs can be
associated with the same LU.

A partner TP can invoke another TP, which, in turn, invokes another TP, and so on. In the following figure, TP A invokes TP B
and TP B invokes TP C.

TP A invoking TP B and TP B invoking TP C.

This section contains:

Fundamental Terms for TPs and LUs

Sample TPs Illustrating Fundamental Concepts

Configuring and Controlling TPs

Creating TPs and Their Supporting Configuration

https://msdn.microsoft.com/en-us/library/aa745607(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770967(v=bts.10).aspx

Fundamental Terms for TPs and LUs
The following terms describe some fundamental characteristics of transaction programs (TPs) communicating through logical
units (LUs):

asynchronous verb
An APPC verb for which the initial function call returns immediately, so that the normal operation of the program is not
blocked while processing of the verb completes. For more information, see Receiving Data Asynchronously.

basic conversation
A type of conversation more complex than a mapped conversation and generally used by service TPs (SNA-based programs
that provide services to other programs). For more information, see Basic and Mapped Conversations Compared.

conversation
The interaction between TPs carrying out a specific task. Each conversation requires an LU-LU session. A TP can be involved
in several conversations simultaneously, as shown with TP B in Communication between TPs.

invokable TP
A TP that can be invoked by another TP. Invokable TPs are usually server-type applications; that is, they work in the same
general way that an application such as CICS works. Parameters for an invokable TP are configured through registry or
environment variables.

There are several types of invokable TPs:

operator-started invokable TP

A TP that is started manually in preparation for being invoked.

autostarted invokable TP

A TP that is automatically started by APPC when invoked.

queued TP

A TP that, when invoked multiple times, loads once and then queues up subsequent requests to be dealt with one at a time.
All operator-started TPs and some autostarted TPs are queued.

nonqueued TP

A TP loaded multiple times, once for every time it is invoked. Some autostarted TPs are nonqueued but no operator-started
TPs are nonqueued.

For more information, see Invokable TPs.

invoking TP
A TP that can invoke (that is, initiate a conversation with) other TPs. Invoking TPs are usually client-type applications; that is,
they work in the same general way that an emulator works. For more information, see Invoking TPs.

local LUand local TP
An LU and TP working together, when viewed as the "home base" for a particular conversation. From this viewpoint, some
other LU and TP are seen as the "partner" or "remote" LU and TP.

LU alias
The string that identifies an LU to a TP. The alias can be up to eight characters long.

LU-LU session
The communication between two LUs over a specific connection for a specific amount of time. An LU-LU session is needed
for two TPs to interact. One session can be used serially by many pairs of TPs.

An LU 6.2 can have multiple sessions (two or more concurrent sessions with different partner LUs) and parallel sessions (two
or more concurrent sessions with the same partner LU).

LUs as well as LU-LU pairs and modes are configured using the SNA Manager on Host Integration Server.

mapped conversation
A type of conversation simpler than a basic conversation and generally used by application TPs (programs that accomplish

https://msdn.microsoft.com/en-us/library/aa771963(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771750(v=bts.10).aspx

tasks for end users). The characters MC_ at the beginning of a verb stand for mapped conversation. For more information,
see Basic and Mapped Conversations Compared.

partner LUand partner TP, or remote LUand remote TP
An LU and TP working together, when viewed as being at the far end of a particular conversation.

synchronous verb
An APPC verb that blocks further program operations until the processing of the verb is complete.

https://msdn.microsoft.com/en-us/library/aa705448(v=bts.10).aspx

Sample TPs Illustrating Fundamental Concepts
A set of sample transaction programs (TPs) is provided on the Host Integration Server CD-ROM in the \SDK\SAMPLES
directory. Included with the sample code in the \SDK\SAMPLES\SNA\TPSETUP directory on the Host Integration Server CD-
ROM is TPSETUP, a program that simplifies the setting of registry or environment variables needed by autostarted invokable
TPs. Without an interface like that provided by TPSETUP, configuring such variables can be complicated and error-prone.
Therefore, it is recommended that you use code like TPSETUP in installation programs for autostarted invokable TPs.

The source code for TPSETUP (INSTALL.C) can be compiled to work in the Microsoft Windows Server™ 2003 and Windows®
2000 environment.

For information about TPSETUP and about the sample TPs, see APPC Samples.

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

Configuring and Controlling TPs
The following table shows how the characteristics of the transaction programs (TPs) and selection of the logical units (LUs) for
a conversation are controlled.

Characteristic How controlled
Type of verb: synchronou
s or asynchronous

Written into the code. Synchronous verbs use blocking calls; asynchronous verbs avoid blocking cal
ls. See Receiving Data Asynchronously and WinAsyncAPPC.

Type of conversation: basi
c or mapped

Written into the code. The MC_ prefix is used on verbs in mapped conversations and omitted on ver
bs in basic conversations. For two TPs to communicate successfully, both must use the same type of
conversation, basic or mapped. See Basic and Mapped Conversations Compared.

Type of TP: invoking or in
vokable

Written into the code. Invoking TPs start with TP_STARTED, which identifies the invoking TP, and
ALLOCATE or MC_ALLOCATE, which identifies the requested invokable TP. Invokable TPs start with
RECEIVE_ALLOCATE, which identifies the invokable TP. See Invoking TPs and Invokable TPs.

The local LU alias to be us
ed by an invoking TP

Three options:

Written into the code in TP_STARTED.

Configured (in Host Integration Server Manager as the default local APPC LU for the user who
starts the invoking TP.

Configured as a member of the default outgoing local APPC LU pool using the SNA Manager
on Host Integration Server 2009.

See Configuring Invoking TPs on Host Integration Server.

The invokable TP requeste
d by an invoking TP

Written into the ALLOCATE or MC_ALLOCATE request in the invoking TP.

The LU alias to be used by
an invokable TP

Two options:

Written into the invoking TP (not the invokable TP), in ALLOCATE or MC_ALLOCATE.

Configured as the default remote APPC LU for the user who starts the invoking TP.

See Configuring Invoking TPs on Host Integration Server and Matching Invoking and Invokable TPs.

Type of autostarted invok
able TP: queued or nonqu
eued

Configured with registry or environment variables. See Configuring Invokable TPs.

Local LU and remote LU a
liases

Configured using SNA Manager on Host Integration Server 2009.

The pairing of local and re
mote LUs, and the mode
used for each LU-LU pair

Configured using SNA Manager on Host Integration Server 2009.

https://msdn.microsoft.com/en-us/library/aa771963(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771750(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705619(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744721(v=bts.10).aspx

Creating TPs and Their Supporting Configuration
The following procedure describes how to create transaction programs (TPs) and set up a supporting configuration.

To create TPs and set up a supporting configuration

1. Write, compile, and link each TP.

2. Place each TP on an appropriate computer.

For TPs that you start many times or that are started by a user, arrange for the TP to be started easily. That is, for
graphical interfaces, create a program icon for starting the TP; for non-graphical interfaces, make sure the TP is in the
path.

3. On one or more servers running Host Integration Server, configure logical units (LUs), modes, and LU-LU pairs for use by
the TPs.

For information about how to set up LU-LU pairs to support TPs, see Using Invoking and Invokable TPs.

4. Set any registry or environment variables needed for the invokable TP.

For autostarted invokable TPs, it is recommended that you use the sample TP configuration program, TPSETUP, for this
step. When you write an installation program for autostarted invokable TPs, it is recommended that you include code
similar to TPSETUP.

For information about registry or environment variables, see Configuring Invokable TPs. For information about TPSETUP,
see APPC Samples.

5. If the invokable TP is operator-started, start it, or arrange for it to be started when the computer is restarted and then
restart the computer.

If the invokable TP is autostarted, Host Integration Server 2009 will start it when needed.

6. Start the invoking TP.

https://msdn.microsoft.com/en-us/library/aa745635(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

Designing and Coding TPs
The following topics provide background information about designing and coding transaction programs (TPs).

This section contains:

Conversation States

Confirmation Processing

Receiving Data Asynchronously

Conversation Security

Basic and Mapped Conversations Compared

Using Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/aa704671(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754489(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771963(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754309(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745635(v=bts.10).aspx

Conversation States
The state of the conversation (as viewed by a particular TP) governs which APPC verbs the TP can issue at a particular time. For
example, a TP cannot issue MC_SEND_DATA if the conversation is not in SEND state for that TP.

The state of a conversation depends on the TP from which it is viewed. A local TP can view a conversation as being in SEND
state while the partner TP views the conversation as being in RECEIVE state. A particular TP can be in several conversations,
each of which is in a different state.

The possible conversation states are summarized here.

CONFIRM
The TP has received a request for confirmation of receipt of data; it must respond positively or send error information to the
partner TP.

CONFIRM_DEALLOCATE
The TP has received a request for confirmation; it must respond positively or send error information. If the TP responds
positively, the conversation is automatically deallocated.

CONFIRM_SEND
The TP has received a request for confirmation; it must respond positively or send error information. After responding, the TP
can begin to send data.

PENDING_POST
The TP is receiving data asynchronously. The TP can perform other processing not related to this conversation.

RECEIVE
The TP can receive application data and status information from the partner TP. When the conversation is in RECEIVE state,
the TP can also send error information and request permission to send data.

RESET
The conversation has not started or has been terminated.

SEND
The TP can send data to the partner TP and request confirmation. When the conversation is in SEND state, the TP can also
begin to receive data, which changes the state to RECEIVE.

SEND_PENDING
The TP issued a receive verb and the what_rcvd parameter returned by that verb indicated both data received and a status
indication of SEND. This only affects the use of the err_dir parameter for SEND_ERROR and MC_SEND_ERROR. Otherwise,
the state is the same as the SEND state.

This section contains:

State Checks

Changing Conversation States

https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745991(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705726(v=bts.10).aspx

State Checks
A state check occurs when a TP issues an APPC verb and the conversation is not in the appropriate state. For example, a state
check occurs if a TP issues MC_SEND_DATA while the conversation is in RECEIVE state. When a state check occurs, APPC does
not execute the verb; it returns state check information through primary and secondary return codes.

https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx

Changing Conversation States
A change in the conversation state can result from:

A verb issued by the local TP.

A verb issued by the partner TP.

An error condition.

The following example shows how APPC verbs can change the state of the conversation from SEND to RECEIVE and from
RECEIVE to SEND.

Note
Any TP can send or receive data, regardless of whether it is the invoking TP (the TP that started the conversation) or the invok
able TP (the TP that responded to a request to start a conversation).

This example shows how APPC verbs can change the conversation state. In this table, each conversation state appears in bold
and precedes the APPC verbs that are used while in that state.

Issued by the invoking TP Issued by the invokable TP

TP_STARTED

Conversation state: RESET

MC_ALLOCATE

(synclevel=AP_CONFIRM_SYNC_LEVL)

Conversation state: SEND

MC_SEND_DATA

MC_PREPARE_TO_RECEIVE

(ptr_type=AP_SYNC_LEVEL)

 Conversation state: RESET

 RECEIVE_ALLOCATE

 Conversation state: RECEIVE

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_OK)

 (what_rcvd=AP_DATA_COMPLETE)

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_OK)

 (what_rcvd=AP_CONFIRM_SEND)

 Conversation state: CONFIRM_SEND

 MC_CONFIRMED

 Conversation state: SEND

 MC_SEND_DATA

 MC_CONFIRM

Conversation state: RECEIVE

MC_RECEIVE_AND_WAIT

(primary_rc=AP_OK)

(what_rcvd=AP_DATA_COMPLETE)

MC_RECEIVE_AND_WAIT

(primary_rc=AP_OK)

(what_rcvd=AP_CONFIRM_WHAT_RECEIVED)

Conversation state: CONFIRM

MC_REQUEST_TO_SEND

MC_CONFIRMED

 (rts_rcvd=AP_YES)

 MC_PREPARE_TO_RECEIVE

 (ptr_type=AP_SYNC_LEVEL)

Conversation state: RECEIVE

MC_RECEIVE_AND_WAIT

(primary_rc=AP_OK)

(what_rcvd=AP_CONFIRM_SEND)

Conversation state: CONFIRM_SEND

MC_CONFIRMED

Conversation state: SEND

MC_SEND_DATA

MC_DEALLOCATE

(dealloc_type=AP_SYNC_LEVEL)

 Conversation state: RECEIVE

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_OK)

 (what_rcvd=AP_DATA_COMPLETE)

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_OK)

 (what_rcvd=AP_CONFIRM_DEALLOCATE)

 Conversation state: CONFIRM_DEALLOCATE

 MC_CONFIRMED

Conversation state: RESET Conversation state: RESET

TP_ENDED TP_ENDED

Initial States

Before the conversation is allocated, the state is RESET for both TPs.

In the example, after the conversation is allocated, the initial state is SEND for the invoking TP and RECEIVE for the invokable
TP.

Changing to RECEIVE State

MC_PREPARE_TO_RECEIVE allows a TP to change the conversation from SEND to RECEIVE state. This verb:

Flushes the local LU's send buffer.

Sends the AP_CONFIRM_SEND indicator to the partner TP through the what_rcvd parameter of a receive verb. This
indicator tells the partner TP that an MC_CONFIRMED response is expected before the partner TP can begin to send data.

Confirmation processing is performed when the following conditions are true:

The ptr_type parameter is set to AP_SYNC_LEVEL.

The synchronization level of the conversation is set to AP_CONFIRM_SYNC_LEVEL.

For more information about confirmation processing, see Confirmation Processing.

Note
Issuing MC_RECEIVE_AND_WAIT while the conversation is in SEND state flushes the LU's send buffer and changes the conve
rsation state to RECEIVE. Changing the conversation state in this manner does not support confirmation processing.

Changing to SEND State

MC_REQUEST_TO_SEND informs the partner TP (for which the conversation is in SEND state) that the local TP (for which the
conversation is in RECEIVE state) wants to send data. This request is communicated to the partner TP through the rts_rcvd

https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754489(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx

parameter of MC_CONFIRM. (The rts_rcvd parameter is also returned to MC_SEND_DATA and other verbs.)

When the partner TP issues MC_PREPARE_TO_RECEIVE, the conversation state changes to RECEIVE for the partner TP, making
it possible for the local TP to send data.

Note
Issuing MC_REQUEST_TO_SEND does not change the state of the conversation. Upon receiving a request to send, the partner
TP is not required to change the conversation state; it can ignore the request.

https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx

Confirmation Processing
The sequence of events for confirmation processing is as follows:

1. Establish the synchronization level.

2. Send a confirmation request.

3. Receive data and confirmation request.

4. Respond to the confirmation request.

5. Deallocate the conversation.

Using confirmation processing, a TP sends a confirmation request with the data; the partner TP confirms receipt of the data or
indicates that an error occurred. Each time the two TPs exchange a confirmation request and response, they are synchronized.

Note
Although the example in this section does not show this, any TP can send or receive data, regardless of whether the TP is the
invoking TP or the invokable TP.

The following example illustrates confirmation processing.

Issued by the invoking TP Issued by the invokable TP

TP_STARTED

MC_ALLOCATE

(synclevel=AP_CONFIRM_SYNC_LEVEL)

MC_SEND_DATA

(type=AP_SEND_DATA_CONFIRM)

 RECEIVE_ALLOCATE

 MC_RECEIVE_AND_WAIT

MC_SEND_DATA

(type=AP_SEND_DATA_DEALLOC_SYNC_LEVEL)

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_OK)

 (rtn_status=AP_YES)

 (what_rcvd= AP_DATA_COMPLETE_CONFIRM_ DEALLOCATE)

 MC_CONFIRMED

TP_ENDED TP_ENDED

Establishing the Synchronization Level

The synclevel parameter of MC_ALLOCATE determines the synchronization level of the conversation. There are three possible
synchronization levels:

AP_NONE, under which confirmation processing does not occur.

AP_CONFIRM_SYNC_LEVEL, under which the TPs can request confirmation of receipt of data and respond to requests for
confirmation of data.

AP_SYNCPT, under which the TPs operate under Sync Point Level 2 support for confirmation of receipt of data.

Sending a Confirmation Request

MC_SEND_DATA with type AP_SEND_DATA_CONFIRM has two effects:

It flushes the local LU's send buffer and sends any data contained in the buffer to the partner TP.

It sends a confirmation request that the partner TP receives through the what_rcvd parameter of a receive verb.

After issuing MC_SEND_DATA, the local TP waits for confirmation from the partner TP.

Receiving Data and Confirmation Request

The what_rcvd parameter of MC_RECEIVE_AND_WAIT indicates:

Status of the data received: complete or incomplete.

Future processing expected of the local TP.

In the example, what_rcvd is AP_DATA_COMPLETE_CONFIRM, indicating that the status is complete and a confirmation is
requested.

Responding to a Confirmation Request

The partner TP issues MC_CONFIRMED to confirm receipt of data. This frees the local TP to resume processing.

Deallocating the Conversation

MC_SEND_DATA sends a confirmation request with the data when all of the following conditions are true:

The conversation's synchronization level (established by the synclevel parameter of MC_ALLOCATE) is
AP_CONFIRM_SYNC_LEVEL.

The type parameter of MC_SEND_DATA is set to AP_SEND_DATA_DEALLOC_SYNC_LEVEL.

The what_rcvd parameter of the final MC_RECEIVE_AND_WAIT is AP_DATA_COMPLETE_CONFIRM_DEALLOCATE,
indicating that a confirmation of receipt of data is required before APPC will deallocate the conversation. The local TP
waits for this confirmation until the partner TP issues MC_CONFIRMED.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx

Receiving Data Asynchronously
When using Windows 2000, a TP can receive data asynchronously, without regard to other events occurring within the TP. The
following table shows the methods by which a TP can receive data asynchronously. The table also indicates how asynchronous
methods can be applied to actions other than receiving data.

Operatin
g system

Method

Windows
2000

Through a Windows message: Issue RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT with WinAsyncAPPC;
the application is notified of completion through a PostMessage to the defined window handle.

This method is not restricted to RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT, but can be applied to any AP
PC verb.

Windows
2000

Through a Win32® event: Issue RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT with WinAsyncAPPCEx; t
he application is notified of completion through a Win32 event.

This method is not restricted to RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT, but can be applied to any AP
PC verb.

Windows
2000

With RECEIVE_AND_POST or MC_RECEIVE_AND_POST: Issue the RECEIVE_AND_POST or MC_RECEIVE_AND_
POST verb.

The following list gives details about these methods of receiving data asynchronously. For complete information, see the verb
descriptions.

RECEIVE_AND_WAITor MC_RECEIVE_AND_WAITwith WinAsyncAPPC
This method enables an application to issue a verb and be notified through a PostMessage when the action is complete. To
retrieve the message number that will be posted to the window, call RegisterWindowMessage with "WinAsyncAPPC" as
the input string. Then issue RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT using the WinAsyncAPPC entry point.

RECEIVE_AND_WAITor MC_RECEIVE_AND_WAITwith WinAsyncAPPCEx
This method enables an application to be notified through a Win32 event. This is particularly useful when writing
applications that need to service multiple conversations simultaneously. The event must be in the nonsignaled state when
passed to APPC, and the handle must have EVENT_MODIFY_STATE access to the event.

RECEIVE_AND_POSTor MC_RECEIVE_AND_POST
When using RECEIVE_AND_POST or MC_RECEIVE_AND_POST with Windows 2000, the application is notified through a
Win32 event. The event must be in the nonsignaled state when passed to APPC, and the handle must have
EVENT_MODIFY_STATE access to the event.

While receiving data asynchronously, the TP performs tasks not related to this conversation; the TP cannot issue most APPC
verbs until notification is received. For information about the verbs that can be issued, see the descriptions of WinAsyncAPPC
or WinAsyncAPPCEx.

After a verb has completed asynchronously, check the primary_rc to find out whether the data was received without error.

Note
If the initial call to issue the verb returns successfully, the application is guaranteed to be notified (by the applicable method)
when the verb completes, regardless of whether the verb is ultimately successful.

https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771422(v=bts.10).aspx

Conversation Security
You can use conversation security to require that the invoking TP provide a user identifier and password before APPC will
allocate a conversation with the invokable TP. If security is activated, the invoking TP must supply a combination of the user
identifier and password as parameters of ALLOCATE or MC_ALLOCATE. Conversation security is activated and configured
through registry or environment variables on the computer where the invokable TP is located.

With communication involving more than two TPs, the verification of a user identifier and password can be passed from one
TP to another. Suppose that TP A invokes TP B, which requires security information, and TP B in turn invokes TP C, which also
requires security information. Through ALLOCATE or MC_ALLOCATE, TP B can inform TP C that conversation security has
already been verified.

For information about the registry or environment variables affecting conversation security, see Configuring Invokable TPs.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744721(v=bts.10).aspx

Basic and Mapped Conversations Compared
The following table offers some guidelines for choosing between basic and mapped conversations for your TPs. For definitions
of basic and mapped conversations, see Fundamental Terms for TPs and LUs.

Characte
ristic

Basic conversations Mapped conversations

Common
use

Generally used for service TPs. Generally used for application TPs.

Partnerin
g

Must be used to communicate with an existing TP that uses basic verbs. Must be used to communicate with an existi
ng TP that uses mapped verbs.

Sending
and recei
ving met
hod

Before a TP can begin a send operation, it must convert data records int
o logical records. The TP does this by adding a 2-byte prefix that indicat
es the length of the record. A TP can send several logical records at one
time.

When a partner TP receives logical records, it must reconstruct them in
to usable data records. For more information, see
Logical Records Used in Basic Conversations.

A TP sends data one record at a time. Neithe
r the sending TP nor the receiving TP needs
to convert data records between different fo
rms.

Abnorma
l terminat
ion

In the DEALLOCATE verb, a TP can indicate whether an error or ABEND
(abnormal program termination) was caused by a TP or by a program
using the TP.

A TP can indicate an error or ABEND, but ca
nnot tell whether a problem was caused by
a TP or by a program using a TP.

 A TP can indicate whether an ABEND was caused by a timeout or by a c
ritical error.

A TP cannot indicate the cause of an ABEND.

Error log
ging

For an error or ABEND, a TP can send an error message, in the form of
a general data stream (GDS) error log variable, to the local log and to t
he partner LU.

For an error or ABEND, a TP cannot send an
error message to the local log or to the part
ner LU.

This section contains:

Logical Records Used in Basic Conversations

An Example of a Mapped Conversation

https://msdn.microsoft.com/en-us/library/aa745607(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744989(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744989(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745833(v=bts.10).aspx

Logical Records Used in Basic Conversations
Logical records are sent and received in basic conversations only.

A TP can send or receive multiple logical records with a single SEND_DATA or receive verb. The receive verbs are
RECEIVE_AND_POST (Windows 2000), RECEIVE_IMMEDIATE, and RECEIVE_AND_WAIT. A TP can also send or receive a logical
record in successive portions: beginning, middle, and end.

A logical record is made up of:

A 2-byte record-length (LL) field.

A data field that can range in length from 0 bytes through 32765 bytes.

The LL field contains a hexadecimal value that is the length of the data field plus two bytes (for the LL field). For example, if a
record contains 228 bytes of application data, the logical record length is 230. The LL field is 0x00E6, the hexadecimal
equivalent of 230. If the length of the data field is 0, the value contained in the LL field is 0x0002.

Logical records are sent from or received in a data buffer established by the TP. In the data buffer, the LL field must not be in
Intel byte-swapped format. For example, a length of 230 must be 0x00E6, not 0xE600.

The LL field cannot be 0x0000 or 0x0001, which allow less than the two bytes required for the LL field itself. The LL field also
cannot be greater than or equal to 0x8000, which is equivalent to decimal 32768 and therefore allows for a data field greater
than 32765 or an LL field greater than 2.

Setting the most significant bit of the LL field to 1 indicates that the information contained in the current logical record is
continued in the next logical record.

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx

An Example of a Mapped Conversation
For background information about mapped conversations, see Basic and Mapped Conversations Compared.

The following example of a mapped conversation shows the APPC verbs used to start a conversation, exchange data, and end
the conversation. APPC verb parameters are in parentheses.

Issued by the invoking TP Issued by the invokable TP

TP_STARTED

MC_ALLOCATE

MC_SEND_DATA

MC_DEALLOCATE

TP_ENDED RECEIVE_ALLOCATE

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_OK)

 (rtn_status=AP_NO)

 (what_rcvd=AP_DATA_COMPLETE)

 MC_RECEIVE_AND_WAIT

 (primary_rc=AP_DEALLOC_NORM)

 TP_ENDED

The following paragraphs describe the verbs that are used in a mapped conversation.

Verbs for Starting a Mapped Conversation

To start a mapped conversation, the invoking TP issues the following verbs:

TP_STARTED, which notifies APPC that the local TP is beginning a conversation.

MC_ALLOCATE, which requests that APPC establish a conversation between the local TP and the partner TP.

The invokable TP issues RECEIVE_ALLOCATE, which informs APPC that it is ready to begin a conversation with the invoking TP.

Verbs for Sending Data in a Mapped Conversation

MC_SEND_DATA puts one data record (a record containing application data to be transmitted) in the send buffer of the local
LU. Data transmission to the partner TP does not happen until one of the following events occurs:

The send buffer fills up.

The sending TP issues a verb that forces APPC to flush the buffer and send data to the partner TP.

In the preceding example, the send buffer contains both the data record and the MC_ALLOCATE request (which precedes the
data record). Therefore, in the example, MC_DEALLOCATE flushes the buffer, sending the MC_ALLOCATE request and data
record to the partner TP. Other verbs that flush the buffer are MC_CONFIRM and MC_FLUSH.

https://msdn.microsoft.com/en-us/library/aa705448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx

Verbs for Receiving Data in a Mapped Conversation

The MC_RECEIVE_AND_WAIT verb allows a TP to receive a data record or status information. If no data is currently available,
the TP waits for data to arrive. For Windows 2000 systems, issue MC_RECEIVE_AND_WAIT in conjunction with
WinAsyncAPPC rather than the blocking version of this call.

In the example, the receiving TP issues MC_RECEIVE_AND_WAIT twice. The first time, it issues the verb to receive data. When
it finishes receiving the complete data record (what_rcvd is AP_DATA_COMPLETE), it issues MC_RECEIVE_AND_WAIT again
to receive a return code. The return code AP_DEALLOC_NORMAL indicates that the conversation has been deallocated.

Note
MC_RECEIVE_IMMEDIATE performs the same function as MC_RECEIVE_AND_WAIT, except that it does not wait if data is no
t currently available from the partner TP. Instead, it returns a no-data-available response to the calling TP.

Verbs for Ending a Mapped Conversation

To end a mapped conversation, one of the TPs issues MC_DEALLOCATE, which causes APPC to deallocate the conversation
between the two TPs.

After the conversation has been deallocated, both TPs issue TP_ENDED.

Note
A TP can participate in multiple conversations simultaneously. In this case, the TP issues TP_ENDED after all conversations h
ave been deallocated.

https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

Using Invoking and Invokable TPs
There are two kinds of TPs: TPs that can invoke (that is, initiate a conversation with) other TPs, and TPs that can be invoked. A
TP that can invoke another TP is called an invoking TP, and a TP that can be invoked is called an invokable TP.

The topics in this section describe the following:

How invoking TPs request invokable TPs.

How invokable TPs identify themselves to Host Integration Server in preparation for being invoked.

How an invokable TP is matched to an invoking TP's request.

For information about how to configure LUs to support TPs, see Configuring TPs on Host Integration Server and Host
Integration Server 2009 Help.

InThis Section

Invoking TPs

Invoking TPs and Contention

Invokable TPs

Subcategories for Invokable TPs

Matching Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/aa754054(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771750(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744366(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705393(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705619(v=bts.10).aspx

Invoking TPs
An invoking TP can be located on any system on the SNA network. An invoking TP identifies itself by issuing TP_STARTED,
which specifies the name of the invoking TP and can specify the LU alias that the TP uses. If the LU alias is not specified in
TP_STARTED, Host Integration Server must be configured to supply it through one of two types of default local LU; otherwise,
TP_STARTED will fail. For more information, see Configuring Invoking TPs on Host Integration Server.

Next, the invoking TP initiates the invoking process by issuing ALLOCATE or MC_ALLOCATE, in which it specifies the name of
the invokable TP, and can also specify the partner LU alias (the LU alias to be used by the invokable TP). If the partner LU is not
specified in ALLOCATE or MC_ALLOCATE, Host Integration Server 2009 must be configured to supply one through the default
remote APPC LU assigned to the user who started the invoking TP; otherwise, ALLOCATE or MC_ALLOCATE will fail. For more
information, see Configuring Invoking TPs on Host Integration Server.

After a TP successfully issues an ALLOCATE or MC_ALLOCATE verb, an allocation request flows. For more information about
what happens after an invoking TP requests an invokable TP, see Matching Invoking and Invokable TPs.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705619(v=bts.10).aspx

Invoking TPs and Contention
The following information applies only to cases where LUs are communicating in complex ways (such as chains of LUs) over
multiple sessions. In such cases, two LUs may attempt to allocate a conversation on the same session at the same time. If this
happens, one LU must win (the contention winner) and one must lose (the contention loser). The contention-winner LU and the
contention-loser LU are determined for each session when the session is established. During that particular session, the
contention-loser LU must receive permission from the contention-winner LU before allocating a conversation. In contrast, the
contention-winner LU on that session allocates a conversation as needed.

Note that when two LUs are communicating over multiple sessions, one LU can be the contention winner for some of the
sessions, and the other LU the contention winner for others.

An invoking TP will operate most efficiently if the number of concurrent ALLOCATE or MC_ALLOCATE requests that the TP
issues is matched by the number of sessions on which the local LU is the contention winner. The choice of contention winner is
controlled through the modes configured at the two ends of the communication. The mode is configured using SNA Manager
on Host Integration Server 2009. A mode must be configured to work with the mode on the remote system for communication
to begin between two LUs. For more information about modes, see Microsoft Host Integration Server Help.

Invokable TPs
An invokable TP is a TP that can be invoked by another TP. Invokable TPs are written or configured through registry or
environment variables to supply their names to Host Integration Server 2009 as a notification that they are available for
incoming requests. Invokable TPs can be run on any Host Integration Server client or server running Windows 2000.

There are two types of invokable TPs:

Operator-started invokable TPs
An operator-started invokable TP must be started by an operator before the TP can be invoked. When the operator-started
invokable TP is started, it notifies Host Integration Server of its availability by issuing a RECEIVE_ALLOCATE verb. The
RECEIVE_ALLOCATE causes the name of the invokable TP, along with the alias of an associated LU if one has been
configured through a registry or environment variable, to be communicated to all the servers running Host Integration
Server in the SNA domain.

Autostarted invokable TPs
An autostarted invokable TP can be started by Host Integration Server when needed. The TP must be registered through
registry entries or environment variables on its local system, so that it can be identified to the SnaBase component of the
Host Integration Server client software. The registered information defines the TP as autostarted and must specify the TP
name. The registered information can also specify the local LU alias that the invokable TP will use.

The recommended method for setting registry or environment variables for autostarted invokable TPs is to use the sample
TP configuration program, TPSETUP, or similar code written into your own installation program. For more information about
registry or environment variables for invokable TPs, see Configuring Invokable TPs. For information about TPSETUP, see
APPC Samples.

If no local LU alias is registered with autostarted TPs, the resulting Host Integration Server configuration can be more flexible
in responding to invoking requests. For more information about such flexible configurations, see
TP Name Not Unique; Local LU Alias Unspecified.

After an autostarted invokable TP is started by Host Integration Server, the TP issues RECEIVE_ALLOCATE just as an operator-
started TP does. RECEIVE_ALLOCATE must provide the TP name that was registered for the TP.

Autostarted TPs must be configured through registry or environment variables to be either queued or nonqueued. All
operator-started TPs act as queued TPs.

Queued TPs
If an autostarted TP is configured as queued, or if the TP is operator-started, incoming allocation requests are queued and
then sent only when the invokable TP issues RECEIVE_ALLOCATE. For autostarted invokable TPs, if a copy of the TP is not
yet running, one is started when an incoming allocation request specifies that TP.

Note
For Windows 2000, only one copy of a service can be running at any given time; this means that all autostarted TPs that ru
n as services under Windows 2000 must be queued. To write an autostarted TP so it will run under Windows 2000 as a ser
vice and also run in a nonqueued way, write a multithreaded program with a RECEIVE_ALLOCATE always outstanding.

Nonqueued TPs
If an autostarted TP is configured as nonqueued, a new copy will be started every time an ALLOCATE or MC_ALLOCATE is
received for the TP. Nonqueued TPs should process the conversation they have been allocated and then exit, since they will
not receive any additional ALLOCATE or MC_ALLOCATE requests.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745605(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Subcategories for Invokable TPs
The following figure shows subcategories for invokable TPs.

Queued or nonqueued Application or service Starting method
Queued Running as an application or a service Autostarted or operator-started

Nonqueued Running as an application Autostarted

The concept of a TP "running as a service" or "running as an application" is distinct from a service TP or an application TP.
Service TP and application TP are SNA terms that describe how a TP is used: either as a supportive service program for other
APPC programs, or directly by a user, as an application. For detailed information about services and applications on Windows,
see the Microsoft Developer Network (MSDN®) Platform Software Development Kit.

To write an autostarted TP so it will run under Windows as a service and also run in a nonqueued way, write a multithreaded
program with a RECEIVE_ALLOCATE always outstanding. See Invokable TPs.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770459(v=bts.10).aspx

Matching Invoking and Invokable TPs
Each computer running Host Integration Server 2009 maintains a list of available invokable TP names and any LU aliases to be
associated with the TP names. This information is obtained as follows:

For autostarted invokable TPs, registry or environment variables identify a TP name containing a maximum of eight
characters, and can specify an associated LU. This information is sent from the client to the server that sponsors the
client. A client learns about the domain through a sponsor connection to a server; clients must establish the sponsor
connection before proceeding with any other tasks.

For operator-started invokable TPs, a TP name (with a maximum of 64 characters) is specified with the
RECEIVE_ALLOCATE verb. The TP name is truncated to eight characters and sent from the client to the server that
sponsors the client, along with the alias of an associated LU if one has been configured through a registry or
environment variable.

Note
If you want a TP name to be unique, it is recommended that you limit the name to eight characters or fewer, or make th
e name unique within the first eight characters. This is because the preliminary routing of allocation requests is carried
out using the first eight characters. Although further matching is later carried out between the full TP names specified i
n ALLOCATE or MC_ALLOCATE and RECEIVE_ALLOCATE, it is inefficient to allow the preliminary routing to succeed w
hen in some cases the later matching will fail.

The next step in the matching of invoking and invokable TPs is that the invoking TP issues the ALLOCATE or MC_ALLOCATE
verb. After an invoking TP in a Host Integration Server domain successfully issues this verb, an allocation request flows to the
partner LU specified in the ALLOCATE or MC_ALLOCATE verb, stating the name of the invokable TP that has been requested.

When an allocation request arrives, Host Integration Server compares the requested invokable TP name and LU alias to the list
of available invokable TPs (which can include associated LU aliases). The comparison can be modified by registry variables, but
by default is carried out as follows:

Although the TP name requested in the ALLOCATE or MC_ALLOCATE verb can be as long as 64 characters, any name
received through a registry or environment variable is limited to eight characters or less. Therefore, only the first eight
characters of TP names are used in comparisons.

The comparison is carried out first on both the TP name and the LU alias. An invokable TP for which there is a match on
both TP name and LU alias will be chosen ahead of a TP for which no LU alias has been configured through a registry or
environment variable. A TP for which no LU alias has been configured can be matched with any request that specifies
that TP name, since there cannot be a mismatch based on LU alias.

The comparison of requested and available TP names is carried out in a specific order:

1. Host Integration Server first checks for operator-started invokable TPs on the local system (the local computer
running Host Integration Server 2009).

2. If no match is found, Host Integration Server checks for autostarted invokable TPs on the local system (the local
computer running Host Integration Server 2009).

3. If no match is found, Host Integration Server checks for operator-started invokable TPs on other Host Integration
Server 2009 clients or servers.

4. If no match is found, Host Integration Server checks for autostarted invokable TPs on other Host Integration Server
clients or servers.

This comparison can be modified somewhat by registry entries for the SnaServer service. The entries are called
DloadMatchTPOnly and DloadMatchLocalFirst, and are described in the Microsoft Host Integration Server Reference online

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

book.

If a match is found, Host Integration Server signals the system containing the requested TP to connect to that server running
Host Integration Server 2009. If no match is found, Host Integration Server rejects the incoming request.

For suggestions about specific ways to handle TP names and LU aliases, see Arranging TPs Within an SNA Network.

Note
Because of the way APPC works, an allocation request will not flow until local data buffers are full, or a confirm or flush verb i
s issued. This can mean that the allocation request does not flow until some time after the ALLOCATE or MC_ALLOCATE verb
is issued. Therefore, any allocation failure caused by the rejection of the allocation request at the partner LU will be observed
as the failure of a later verb with one of the allocation failure return codes.

https://msdn.microsoft.com/en-us/library/aa772077(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Configuring Invokable TPs
The following topics discuss how to configure invokable transaction programs (TPs) for Microsoft Host Integration Server 2009
clients.

This section contains:

Clients Running Windows

https://msdn.microsoft.com/en-us/library/aa754084(v=bts.10).aspx

Clients Running Windows
On clients running Microsoft® Windows® 2000, Windows XP, and Windows Server 2003, invokable TPs are configured
through the Windows registry.

Note
The recommended method for setting registry variables for autostarted invokable TPs is to use the sample TP configuration
program, TPSETUP. Compile INSTALL.C, the source code for TPSETUP, for the Windows environment. When you write an inst
allation program for autostarted invokable TPs, it is recommended that you add code similar to TPSETUP to the installation p
rogram. For information about TPSETUP, see APPC Samples.

It is recommended that autostarted invokable TPs be written as Windows services. Be sure to include code like that in TPSETUP
in the program that installs your TPs. Among other things, TPSETUP shows how to use the CreateService function when
installing a TP. For important information about how services work under Windows, see the Microsoft Developer Network
(MSDN®) Platform Software Development Kit.

The following table lists the registry entries used for the types of invokable TPs that can be run on Windows clients:

Type of TP Location in registry Possible registry entries
Autostarted
invokable TP
running as a
service

HKEY_LOCAL_MACHINE SY
STEM CurrentControlSet S
ervices TPName

(and subkeys)

Registry entries created by the CreateService call, including entries that specify the
path, display name, and other characteristics of the service.

—plus—

Linkage OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters SNAServiceType:REG_DWORD:0x5LocalLU:REG_SZ:LUaliasParame
ters:REG_SZ:ParameterListTimeout:REG_DWORD:numberConversationSecurity:
REG_SZ:{ YES | NO }AlreadyVerified:REG_SZ:{ YES | NO }2Username1:REG_SZ:Pas
sword12 ...UsernameX:REG_SZ:PasswordX2

Autostarted
invokable TP
running as a
n applicatio
n

HKEY_LOCAL_MACHINE SY
STEM CurrentControlSet S
ervices SnaBase Paramete
rs TPs TPName Parameters

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 }PathName:REG_EXPAND_SZ:pathLoc
alLU:REG_SZ:LUaliasParameters:REG_SZ:ParameterListTimeOut:REG_DWORD:nu
mberConversationSecurity:REG_SZ:{ YES | NO }AlreadyVerified:REG_SZ:{ YES |
NO }2Username1:REG_SZ:Password12 ...UsernameX:REG_SZ:PasswordX2

Operator-st
arted invoka
ble TP runni
ng as a servi
ce

HKEY_LOCAL_MACHINE SY
STEM CurrentControlSet S
ervices TPName

(and subkeys)

Registry entries created by the CreateService call, including entries that specify the
path, display name, and other characteristics of the service.

—plus—

Linkage OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters SNAServiceType:REG_DWORD:0x1ALocalLU:REG_SZ:LUaliasTimeo
ut:REG_DWORD:numberConversationSecurity:REG_SZ:{ YES | NO }AlreadyVerif
ied:REG_SZ:{ YES | NO }2Username1:REG_SZ:Password12 ...UsernameX:REG_SZ:P
asswordX2

Operator-st
arted invoka
ble TP

HKEY_LOCAL_MACHINE SY
STEM CurrentControlSet S
ervices SnaBase Paramete
rs TPs TPName Parameters

SNAServiceType:REG_DWORD:0x1ALocalLU:REG_SZ:LUaliasTimeOut:REG_DW
ORD:numberConversationSecurity:REG_SZ:{ YES | NO }AlreadyVerified:REG_SZ:
{ YES | NO }2Username1:REG_SZ:Password12 ...UsernameX:REG_SZ:PasswordX2

Note
Before an autostarted TP can be started as an application on a Windows client, the TPSTART program must be started. For m
ore information, see APPC Samples.

Note
AlreadyVerified and Username/Password entries are used only if ConversationSecurity is set to YES.

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

This section contains:

Registry Entries for Clients Running Windows 2000

Example of Windows 2000 Registry Entries for an Invokable TP

https://msdn.microsoft.com/en-us/library/aa771122(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745869(v=bts.10).aspx

Registry Entries for Clients Running Windows 2000
The following list gives details about registry entries for clients running Windows 2000. For each TP type, the applicable
variables and their locations are shown in Clients Running Windows.

Registry Entries for TPName on Clients Running Windows 2000
TPName:REG_MULTI_SZ

The name of the transaction program (TP) that is executed. A TP name is up to 64 ASCII characters in length and cannot
contain spaces or nulls.

SNA service TPs are a special set of TPs defined by the SNA protocols. Each service TP is a specially-defined function with a
special name. An SNA service TP name is represented by up to four EBCDIC bytes; the first byte is a hexadecimal number in
the range 0x00 to 0x3F, and the remaining bytes are EBCDIC characters. The first byte defines the function class of the TP.
Therefore, to convert a service TP name to an ASCII TP name form, convert the first byte as shown in the following table, and
convert the EBCDIC values to ASCII letter equivalents.

First byte of TP name (hexadecimal number) ASCII character equivalent for WIN.INI

0x07 DDM

0x20 DIA

0x21 SNAD

0x24 FS

0x30 PO

All others UN

For example, an EBCDIC service TP name of 0x21 0xD7 0xD7 is equivalent to a TP name of SNADPP (0x21 converts to SNAD
and each 0xD7 converts to P).

Registry Entries for the TPName Subtree on Clients Running Windows 2000
OtherDependencies:REG_MULTI_SZ:SnaBase

For a TP running as a service, ensures that the SnaBase service will be started before the TP is started. This entry belongs
under the Linkage subkey.

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 | 0x1A }

Indicates the type of TP. Use a value of 0x5 for an autostarted queued TP, 0x6for an autostarted nonqueued TP, and 0x1A for
an operator-started TP.

Note that the value for an autostarted TP running as a service must be 0x5, because these TPs are always queued, as
described in Invokable TPs.

PathName:REG_SZ :path

For an autostarted TP running as an application, specifies the path and file name of the TP. The data type of REG_EXPAND_SZ
means that the path can contain an expandable data string; for example, %SystemRoot% represents the directory containing
the Windows 2000 system files. Note that for a TP running as a service, an equivalent entry is inserted by the CreateService
call; no additional path entry is needed.

LocalLU:REG_SZ: LUalias

Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters:REG_SZ: ParameterList

Lists parameters to be used by the TP. Separate parameters with spaces.

Timeout:REG_DWORD: number

Specifies the time, in milliseconds, that a RECEIVE_ALLOCATE will wait before timing out. Specify number in decimal; the

https://msdn.microsoft.com/en-us/library/aa754084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

registry editor converts this to hexadecimal before displaying it. The default is infinity (no limit).

ConversationSecurity:REG_SZ:{ YES | NO }

Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified:REG_SZ:{ YES | NO }

Indicates whether this TP can be invoked with a user identifier and password that have already been verified.
AlreadyVerified is ignored if ConversationSecurity is set to NO. The default value is NO.

For a diagram of three TPs in a conversation, where the third TP can be invoked with a password that is already verified by
the second TP, see Communication between TPs. The following table shows the requirements for using password verification
in a chain of TPs.

First TP (invoking TP) Second TP (invokable TP that confirms p
assword and then invokes another TP)

Third and subsequent TPs (invokab
le TPs that invoke other TPs)

Does not need registry or environment
variables.

ConversationSecurity setting must be YES. ConversationSecurity setting must b
e YES.

Does not need registry or environment
variables.

AlreadyVerified setting can be YES or NO. AlreadyVerified setting must be YES.

ALLOCATE or MC_ALLOCATE in this TP
has a security parameter of AP_PGM;
as a result, the TP passes along the use
r_id and pwd values supplied in ALLO
CATE or MC_ALLOCATE.

ALLOCATE or MC_ALLOCATE in this TP has
a security parameter of AP_SAME; as a resul
t, after confirming the user identifier and pas
sword, the TP passes along the user identifier
and an already-verified flag.

ALLOCATE or MC_ALLOCATE in this
TP has a security parameter of AP_SA
ME; as a result, the TP passes along the
user identifier as received, along with t
he already-verified flag.

If you set AlreadyVerified to NO, this TP cannot join in a chain of conversations where password verification is already
done. The exception to this is when ConversationSecurity is set to NO, in which case the TP could be the final TP in such a
chain, since it performs no checking.

If you are configuring a TP that sometimes needs to confirm a password and sometimes accepts an already-verified flag, set
AlreadyVerified to YES and configure the UsernameX variable appropriately. In this case, whenever the TP is invoked
without the already-verified flag set, AlreadyVerified is ignored; verification is attempted with the user identifier and
password configured for the TP.

If you want to have a chain of conversations where the user identifier and password are reverified at every step, carry out the
following. For all the TPs, set ConversationSecurity to YES, and in each ALLOCATE or MC_ALLOCATE issued, set the
security parameter to AP_PGM and the pwd and user_id parameters to valid combinations.

If you set AlreadyVerified to YES, make sure that ConversationSecurity is also set to YES.

Username1:REG_SZ:Password1 ...UsernameX:REG_SZ:PasswordX

Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and
password can each be as many as 10 characters. Both parameters are case-sensitive.

This variable is ignored if conversation security is not activated or if the password has already been verified, as described for
the AlreadyVerified entry.

https://msdn.microsoft.com/en-us/library/aa771081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Example of Windows 2000 Registry Entries for an Invokable TP
For an autostarted invokable TP called BounceTP and running as a service, the following registry entries might be added to a Windows 2000-based client. The entries would be added to
HKEY_LOCAL_MACHINE\ SYSTEM\ CurrentControlSet\ Services\ SnaBase, under the subkeys shown in bold type.

Note
In the following list, the parameters listed directly under the BounceTP key (such as DisplayName and ErrorControl) are service parameters created when TPSETUP or similar code is run to install the T
P. These parameters should be created by TPSETUP or similar code; they should not be set manually. For more information about TPSETUP, see APPC Samples.

BounceTP
DisplayName:REG_SZ:BounceTPErrorControl:REG_DWORD:0x1ImagePath:REG_EXPAND_SZ:c:\sna\system\bouncetp.exeObjectName:REG_SZ:LocalSystemStart:REG_DWORD:0x3Type:REG_DWORD:0x10

Linkage

OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters

SNAServiceType:REG_DWORD:0x5LocalLU:REG_SZ:JohnDoeParameters:REG_SZ:Arg1 Arg2
Arg3Timeout:REG_DWORD:0x100ConversationSecurity:REG_SZ:yesAlreadyVerified:REG_SZ:noJohnDoe:REG_SZ:SecretPassword

Security

Security:REG_BINARY:

For an autostarted invokable TP called BounceTP running as an application, the following registry entries might be added to a Windows 2000-based client. The entries would be added to
HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSet\Services\SnaBase\Parameters\Tps, under the subkeys shown in bold type.

Note
In the following list, the parameters listed under the BounceTP key (such as PathName and ConversationSecurity) are parameters created when TPSETUP or similar code is run to install the TP. These
parameters should be created by TPSETUP or similar code; they should not be set manually. For more information about TPSETUP, see APPC Samples.

BounceTP
Parameters

SNAServiceType:REG_DWORD:0x5PathName:REG_SZ:C:\sna\system\bouncetp.exeLocalLU:REG_SZ:JohnDoeParameters:REG_SZ:Arg1 Arg2
Arg3Timeout:REG_DWORD:0x100ConversationSecurity:REG_SZ:yesAlreadyVerified:REG_SZ:noJohnDoe:REG_SZ:SecretPassword

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

Configuring TPs on Host Integration Server
The following topics describe how configuration of invoking and invokable transaction programs (TPs) works on Host
Integration Server 2009.

This section contains:

Configuring Invoking TPs on Host Integration Server

Configuring Invokable TPs on Host Integration Server

https://msdn.microsoft.com/en-us/library/aa771011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746233(v=bts.10).aspx

Configuring Invoking TPs on Host Integration Server
For a server running Host Integration Server 2009 to support the beginning of the invoking process (that is, to accept the
TP_STARTED and ALLOCATE or MC_ALLOCATE verbs issued by an invoking TP), the following parameters must be configured
correctly:

If the invoking TP specifies in TP_STARTED the LU alias that it uses, that LU alias must match a local APPC LU alias on the
supporting server running Host Integration Server 2009. If the invoking TP leaves the LU alias blank in TP_STARTED, one
of two methods for designating a default LU must be carried out on the supporting server running Host Integration
Server 2009:

Assign a default local APPC LU to the user or group that starts the invoking TP (that is, the user or group logged
on at the system from which TP_STARTED is issued).

Designate one or more LUs as members of the default outgoing local APPC LU pool. The Host Integration Server
first attempts to determine the default local APPC LU of the user who started the TP, and then attempts to assign
an available LU from the default outgoing local APPC LU pool; if these attempts fail, the Host Integration Server
rejects the request.

In most situations, the supporting Host Integration Server must contain an appropriate connection to another system
(host or peer). Sometimes, for testing purposes, the server running Host Integration Server 2009 contains two local LUs
paired together (for invoking and invokable TPs that are in the same domain); in this situation, a connection to a host or
peer is not necessary.

If the invoking TP specifies in ALLOCATE or MC_ALLOCATE the partner LU alias, that LU alias must match an LU alias that
is paired with the local LU alias specified in TP_STARTED. If the partner LU alias is left unspecified in ALLOCATE or
MC_ALLOCATE, a default remote APPC LU must be assigned to the user who started the invoking TP. The default remote
APPC LU is configuring using SNA Manager on Host Integration Server 2009. If the default remote APPC LU is used, it
must be paired with the local LU that will be used. Otherwise, ALLOCATE or MC_ALLOCATE fails.

The preceding parameters support the beginning of the invoking process. For the invoking process to successfully complete,
additional parameters must be configured as described in Configuring Invokable TPs on Host Integration Server.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746233(v=bts.10).aspx

Configuring Invokable TPs on Host Integration Server
For a computer running Host Integration Server 2009 to receive allocation requests from an invoking TP on another system
and route those requests to an invokable TP, certain parameters must be configured correctly:

The Host Integration Server must have a connection to the system from which the invoking TP's request is sent.

The Host Integration Server must have a remote LU capable of receiving the incoming request. This remote LU can be
configured either explicitly or implicitly.

When configured explicitly, there is an explicit match between a remote LU alias on the Host Integration Server and the
alias of the LU that conveys the invoking TP's request.

When configured implicitly, an implicit incoming remote LU (with its implicit incoming mode) is used. This means that
several items must work together. First, the LU alias specified in the incoming request (the LU alias requested for the
invokable TP) must match a local LU alias on the Host Integration Server receiving the request. Second, the local LU on
the Host Integration Server 2009 server must have an implicit incoming remote LU assigned to it. The properties of the
implicit incoming remote LU will be used for that LU-LU session. For more details about how an implicit incoming
remote LU works, see Microsoft Host Integration Server 2009 Help.

Appropriate local LUs must be defined in the Host Integration Server configuration. For descriptions of several ways to
set up these local LUs, see Arranging TPs Within an SNA Network.

https://msdn.microsoft.com/en-us/library/aa772077(v=bts.10).aspx

Arranging TPs Within an SNA Network
If your installation of Microsoft® Host Integration Server contains multiple systems (multiple clients and/or multiple
computers running Host Integration Server), you can place a given invokable transaction program (TP) on more than one
system. When an invoking request is received in such an installation, there can be a choice of systems on which to run the
invokable TP.

You can maintain specific control over this choice or you can allow Host Integration Server to make the choice randomly to
distribute the load. To do this, follow the instructions in TP Name Not Unique; Local LU Alias Unspecified.

You can maintain specific control over the choice of system by setting up invokable TPs with unique names, or by setting up
each invokable TP to run only with a specific, unique LU alias. With this arrangement, the information provided by the invoking
TP (in the ALLOCATE or MC_ALLOCATE verb) specifies the system on which the invokable TP should run.

You can allow Host Integration Server to make the system choice randomly by setting the DloadMatchLocalFirst registry
entry to NO and using invokable TPs that leave the local logical unit (LU) alias unspecified. Then, when an incoming request is
received, it is routed randomly, rather than preferentially to the local Host Integration Server; in addition, no matter what LU
alias is requested for the invokable TP, there cannot be a mismatch. Host Integration Server starts one instance of the
requested TP, choosing randomly among the available systems.

This section contains:

TP Name Unique for Each TP

TP Name Not Unique; Local LU Alias Unique

TP Name Not Unique; Local LU Alias Unspecified

https://msdn.microsoft.com/en-us/library/aa745605(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705651(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745605(v=bts.10).aspx

TP Name Unique for Each TP
One way to specify the intended system where the invokable TP will run is to use a unique TP name for each invokable TP. In
this arrangement, the invoking TP identifies the intended invokable TP (and system) simply by naming the TP. This makes it
unnecessary for an invokable TP to specify any LU alias in registry or environment variables.

TP Name Not Unique; Local LU Alias Unique
Another way to specify the intended system where the invokable TP will run is to give the same name to multiple invokable
TPs, but associate each TP with a unique local LU alias. To do this, configure each invokable TP (through registry or
environment variables) to use a unique local LU alias. Then set up the invoking TPs so that each one is routed not only to the
correct TP name but also to the correct partner LU alias for the intended invokable TP.

TP Name Not Unique; Local LU Alias Unspecified
If it does not matter on which system an invokable TP runs, use the same name for multiple invokable TPs and do not specify
an LU alias in the registry or environment variables for the TPs. In this situation, there are no associated LU aliases in the list of
available invokable TP names on a Host Integration Server. Thus, a request received from an invoking TP cannot cause a
mismatch on the LU alias, and will match according to the TP name.

In this situation, if you set the DloadMatchLocalFirst registry entry to NO, Host Integration Server randomly routes the
request to one of the available TPs. This spreads the processing load among multiple systems and provides hot backup (the
ability to take systems online and offline without disrupting service).

Troubleshooting for Invokable TPs
If there are difficulties with starting an invokable TP, there may be a mismatch between the information for the invokable TP,
the invoking TP, and/or LUs in the Host Integration Server 2009 configuration. That is, there may be a mismatch between the
parameters for RECEIVE_ALLOCATE, TP_STARTED, ALLOCATE, or MC_ALLOCATE and/or LU aliases specified in server
configuration. LU aliases are configured using SNA Manager on Host Integration Server 2009.

Simplifying APPC Configuration

There are several features in Host Integration Server 2009 that can simplify configuration for APPC:

The implicit incoming remote LU and the implicit incoming mode, which allow Host Integration Server to accept requests
that arrive by unrecognized remote LUs and modes.

The default local APPC LU and the default remote APPC LU, which allow LU aliases to be associated with user or group
names, simplifying the routing of incoming requests and the configuration of client systems.

The default outgoing local APPC LU pool, which allows LUs to be allocated dynamically to any invoking TP that does not
specify a local LU.

Automatic partnering, which automatically creates LU-LU pairs and assigns modes to the pairs.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Sync Point Level 2 Support in Host Integration Server
The following topics describe additions to Host Integration Server 2009 that enable Sync Point Level 2 support to the LU 6.2
protocol stack.

This section assumes familiarity with the existing Host Integration Server APPC basic and mapped conversation interfaces. It
does not attempt to explain the SNA formats and protocols for implementing Sync Point protocols, which are described in SNA
LU6.2 Reference: Peer Protocols published by IBM (Document SC31-6808-1).

This section contains:

Sync Point Functional Overview

Sync Point Support Architecture

Sync Point Session Support

Starting Local Sync Point TPs

Sync Point Conversation Activation

Sync Point Level 2 Confirm Support

Sync Point Backout Support

LUWID, Conversation Correlators, and Session Identifiers

Configuration Changes for Sync Point Support

Accepting Incoming Attaches

Sync Point Examples

https://msdn.microsoft.com/en-us/library/aa753878(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771992(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754233(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746054(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704863(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771325(v=bts.10).aspx

Sync Point Functional Overview
The Sync Point support additions to Host Integration Server allow vendors to provide Sync Point services over LU 6.2
conversations provided by the LU 6.2 protocol stack in Host Integration Server. These additions do not implement the
architected Sync Point components and TPs necessary for a complete Sync Point implementation. In particular, the following
Sync Point components are not implemented, and must be provided by the vendor.

Sync Point Services (SPS)

Conversation-Protected Resource Manager (C-PRM)

Resynchronization TP

These vendor-supplied components and applications are expected to implement the SYNCPT and BACKOUT verbs used for
Sync Point services. The SYNCPT verb is used to synchronize transactions. The BACKOUT verb is used to back out of a
transaction.

SPS, C-PRM, and the Resynchronization TP are specific components of the SNA Sync Point architecture described in SNA LU6.2
Reference: Peer Protocols published by IBM.

Host Integration Server has been modified to add the features necessary to support these components, namely:

Additions to the existing APPC API to support implementation of Sync Point verbs.

Accounting support for Sync Point protocols.

Modifications to invokable transaction program (TP) initiation.

Changes to the APPC basic and mapped conversation APPC APIs are made so as to ensure backward compatibility with
existing APPC applications that adhere strictly to the API.

Note
Applications must zero all reserved verb control block (VCB) members before issuing an APPC verb. If this is not done, the ap
plication may inadvertently invoke one of the new APPC features.

Sync Point Support Architecture
The Sync Point support provided by Host Integration Server 2009 assumes a particular implementation architecture by the
vendor, as follows:

The vendor provides a communication interface to its own clients requiring Sync Point Services (SPS).

The vendor API maps its communication and Sync Point requests to the Host Integration Server APPC API.

The vendor provides a single Microsoft Windows 2000 process, the Transaction Monitor, that is responsible for:

Issuing all APPC verbs.

Implementing the architected Resynchronization TP.

Implementing the architected Conversation-Protected Resource Manager (C-PRM) component of the logical unit
(LU).

Implementing the architected SPS component of the LU.

The Transaction Monitor must reside on the same computer as the Host Integration Server containing the LUs for which
it is providing Sync Point services. Both incoming and outgoing Sync Point conversations for this Transaction Monitor
will be routed through this Host Integration Server 2009 server only.

Detailed descriptions of the three architected Sync Point components can be found in SNA LU6.2 Reference: Peer Protocols
published by IBM.

Sync Point Session Support
This section discusses support for Sync Point session activation and deactivation in Host Integration Server 2009.

In This Section

Sync Point Session Activation

Sync Point Session Deactivation

https://msdn.microsoft.com/en-us/library/aa771507(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705438(v=bts.10).aspx

Sync Point Session Activation
If Host Integration Server 2009 is to support Sync Point conversations, this must be specified at session activation time. The
configuration of Host Integration Server is modified to allow the system administrator to specify which (if any) local LUs will be
used for Sync Point conversations.

The Local LU Configuration property page in Host Integration Server contains a new check box. When checked, it indicates
that the local LU can participate in Sync Point sessions. Host Integration Server uses this option to determine the parameters it
sends on BIND requests and responses.

When Host Integration Server initiates an LU 6.2 session on an LU designated as supporting Sync Point, it sets the
synchronization level on BIND requests to indicate that the session can support Sync Point and Backout. If the partner LU also
supports Sync Point and Backout, the session is available for conversations requiring Sync Point support. If the partner LU does
not support Sync Point, the session will not be used for Sync Point conversations.

Similarly, if the local LU is configured for Sync Point and the partner LU's BIND request indicates that it supports Sync Point,
Host Integration Server sends BIND responses specifying that Sync Point is supported. In this case, the session can be used for
Sync Point conversations.

Sync Point Session Deactivation
A Sync Point implementation needs to determine whether it has lost connectivity to a partner when establishing Sync Point
conversations so that it can know whether or not to resynchronize. To obtain this information, Host Integration Server provides
a new APPC verb, GET_LU_STATUS that reports the status of a particular remote LU. The information returned by this verb is as
follows:

Current number of active LU 6.2 sessions between the remote LU and the TP's local LU.

Whether or not the number of active sessions dropped to zero at any time since this verb was last issued for the remote
LU.

Note that the zero sessions indicator is reset to AP_NO each time the verb is issued by any process. It is therefore imperative
that only one process issues this verb; otherwise information may be lost.

https://msdn.microsoft.com/en-us/library/aa770692(v=bts.10).aspx

Starting Local Sync Point TPs
Local TPs are created by issuing the TP_STARTED verb to Host Integration Server. The TP_STARTED verb has been modified by
adding the new verb control block (VCB) member syncpoint_rqd to allow a TP to specify that it requires Sync Point services.

By setting syncpoint_rqd to AP_YES, a TP indicates that it requires Sync Point services from Host Integration Server. A value of
AP_NO (the default) indicates that Sync Point services are not required.

Since this member cannot be incorporated within the existing TP_STARTED VCB, the TP must use a larger VCB structure. To
indicate that the VCB is longer than usual, the opext member of the VCB must be combined using OR with the value
AP_EXTD_VCB before calling APPC.

Conversations started by TPs requiring Sync Point support will be routed only by the Host Integration Server software running
on the same computer. They will not be routed to other LAN-attached servers.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Sync Point Conversation Activation
This section discusses support for Sync Point conversation activation in Host Integration Server.

This section contains:

Locally Initiated Conversations

Remotely Initiated Conversations

Already Verified Support

Presentation Header Support in Data Transfers

User Control Data

Implied Forget

https://msdn.microsoft.com/en-us/library/aa704949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771238(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754405(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746096(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705644(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705693(v=bts.10).aspx

Locally Initiated Conversations
Conversations are initiated locally by issuing an ALLOCATE or MC_ALLOCATE verb. The ALLOCATE and MC_ALLOCATE verbs
are modified to support additional parameters required by Sync Point support. The supplied synclevel parameter of the
ALLOCATE and MC_ALLOCATE verbs can take on a value of AP_SYNCPT, which specifies that the conversation requested is a
Sync Point conversation.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Remotely Initiated Conversations
Applications that want to receive remotely initiated conversations (incoming Attaches) issue a RECEIVE_ALLOCATE verb. To
accommodate Sync Point support, the RECEIVE_ALLOCATE verb is modified in a number of ways as follows:

The returned sync_level parameter of the RECEIVE_ALLOCATE verb can take on a value of AP_SYNCPT, specifying that
the conversation is a Sync Point conversation. The value of the sync_level parameter can also be determined by issuing
a GET_ATTRIBUTES verb on the new conversation.

Support is added for the receipt of program initiation parameters (PIP) data by a new parameter to the
RECEIVE_ALLOCATE verb:

The pip_incoming parameter is set by the application to indicate whether it is willing to accept incoming PIP data, and is
returned by Host Integration Server to indicate whether PIP data is available to be received. If the application does not
want to receive PIP data, this member should be set to AP_NO, the default, before issuing the RECEIVE_ALLOCATE verb.
If it is willing to accept PIP data, this member should be set to AP_YES. On completion of the RECEIVE_ALLOCATE verb,
this member will be set to AP_YES if PIP data is available to be received by the application and to AP_NO otherwise.

If PIP data is available, the application can receive it by issuing one of the verbs for receiving data on completion of the
RECEIVE_ALLOCATE verb. For basic conversations, these receive verbs include RECEIVE_AND_POST, RECEIVE_AND_WAIT,
and RECEIVE_IMMEDIATE. On basic conversations the PIP data will be returned inclusive of the general data stream
(GDS) header for PIP data (GDS identifier 0x12F5). For mapped conversations, these receive verbs include
MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE. On mapped conversations, Host
Integration Server 2009 removes the 4-byte GDS header, and returns the PIP data only.

For basic conversations, if the application issues a SEND_ERROR, DEALLOCATE, or TP_ENDED verb before the PIP data is
received, the PIP data will be discarded. For mapped conversations, if the application issues an MC_SEND_ERROR,
MC_DEALLOCATE, or TP_ENDED verb before the PIP data is received, the PIP data will be discarded.

If PIP data is received for a TP that cannot or does not want to receive it, the conversation is rejected with a primary
return code of AP_ALLOCATION_ERROR, and a secondary return code of AP_PIP_NOT_ALLOWED.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

Already Verified Support
In an implementation where a Host Integration Server application acts as a gateway between an SNA network and a non-SNA
network, it is possible that non-Host Integration Server clients of the gateway may require Sync Point Level 2 conversation
security. Since the originating client will have validated the relevant user identifier and password, the gateway application
should specify conversation security of AP_SAME when starting a conversation on behalf of the client. In this case, however,
Host Integration Server assumes that the user identifier to be used has previously been received on an Attach targeted at the
TP. In the case of a non-Host Integration Server client this is not the case.

To allow such a gateway to support Sync Point Level 2 conversation security, Host Integration Server provides a new verb,
SET_TP_PROPERTIES, which allows the gateway application to set the user identifier for the TP before allocating a conversation
with security of AP_SAME. This verb will normally be issued once, immediately after TP_STARTED, to set the user identifier for
all the TP's conversations.

https://msdn.microsoft.com/en-us/library/aa754490(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Presentation Header Support in Data Transfers
For basic conversations, Sync Point commands are sent by means of presentation headers (PS) across LU 6.2 conversations
using the SEND_DATA or MC_SEND_DATA verb. All presentation headers contain length fields that specify a length of 1, which
is usually illegal. To support Sync Point conversations, the following modifications are made to the Host Integration Server
presentation services component:

On basic conversations with a synclevel of AP_SYNCPT, data transferred specifying a general data stream (GDS) variable
length of 1 will not be rejected. If the synclevel is not AP_SYNCPT, they will be rejected as before.

On mapped conversations, PS headers will not be wrapped as mapped conversation application data logical records
(with GDS identifier 0x12FF) when they are sent, or have the GDS header stripped off when they are received.

On mapped conversations, it is the responsibility of the application to provide the complete PS header including the
length field. Similarly, the length field will be included in PS header data returned by receive verbs.

To achieve the latter the MC_SEND_DATA verb and the receive verbs (MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT, and
MC_RECEIVE_IMMEDIATE) require modifications as follows:

A new parameter, data_type, is added to the MC_SEND_DATA verb. When this is set to AP_APPLICATION (the default,
0x00), the data is sent as application data (GDS identifier 0x12FF) as usual. When it is set to AP_PS_HEADER, the data is
sent as described above.

The following two new values are added for the what_rcvd member of the receive verbs to specify that the received data
is a PS header:

AP_PS_HEADER_COMPLETE

AP_PS_HEADER_INCOMPLETE

If an application issues a receive verb with rtn_status set to AP_YES, Host Integration Server will return status in
combination with AP_PS_HEADER_COMPLETE, with the exception of AP_DEALLOCATE_NORMAL and
AP_CONFIRM_DEALLOCATE. This is to prevent the conversation being prematurely disconnected from the LU 6.2 session
when a COMMIT PS header arrives with the end of conversation indication.

It is the responsibility of the vendor-supplied Sync Point support component to convert these PS headers into the appropriate
Sync Point return codes (for example, TAKE_SYNCPT).

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx

User Control Data
For mapped conversations, the MC_SEND_DATA verb and the receive verbs (MC_RECEIVE_AND_POST,
MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE) are modified to allow applications to send and receive data in user
control data general data stream (GDS) variables instead of the regular application data GDS variables. The MC_SEND_DATA
verb is modified as follows:

A new parameter, data_type, is added. When data_type is set to AP_USER_CONTROL_DATA, the data is sent as user
control data (GDS identifier 0x12F2). When it is set to AP_APPLICATION (the default), the data is sent as application data
(GDS identifier 0x12FF). Note that the APPC library automatically creates the GDS header on behalf of the application for
both AP_APPLICATION and AP_USER_CONTROL_DATA data records.

The mapped conversation receive verbs are modified to allow applications to receive user control data by adding two
new values for the what_rcvd parameter, as follows:

AP_USER_CONTROL_DATA_COMPLETE

AP_USER_CONTROL_DATA_INCOMPLETE

https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx

Implied Forget
LU 6.2 Sync Point sessions can use an optimization of the architected message flows known as implied forget. When the
protocol specifies that a FORGET presentation header (PS) is required, the next data flow on the session implies that a FORGET
has been received, even though it has not. In the normal situation, the TP is aware of the next data flow when data is received
or sent on one of its Sync Point conversations.

However it is possible that the last message that flows is caused by the conversation being deallocated. In this case, the TP is
unaware when the next data flow on the session occurs. To provide the TP with this notification, the DEALLOCATE and
MC_DEALLOCATE verbs are modified to allow the TP to register a callback function which will be called:

On the first normal flow transmission (request or response) over the session used by the conversation.

If the session is unbound before any other data flows.

If the session is terminated abnormally due to a data link control (DLC) outage.

The callback procedure can take any name because the address of the procedure is passed into the APPC DLL.

Note that the DEALLOCATE and MC_DEALLOCATE verbs will probably complete before the callback routine is called. The
conversation is considered to be in RESET state and no further verbs can be issued using the conversation identifier. If the
application issues a TP_ENDED verb before the next data flow on the session, the callback routine will not be invoked.

The DEALLOCATE and MC_DEALLOCATE verbs are modified as follows to support implied forget:

A new member, callback, is added to allow the TP to specify the address of the function to call on the next data flow on
the session being used by the conversation being deallocated. If this member is NULL, no notification will be provided. A
vendor would normally supply this callback function.

The DEALLOCATE and MC_DEALLOCATE verbs also contain a correlator member which is returned as one of the
parameters when the callback function is invoked. The application can use this parameter in any way (for example, as a
pointer to a control block within the application).

Host Integration Server allows TPs to deallocate conversations immediately after sending data by specifying the type member
in the SEND_DATAand MC_SEND_DATAverbs as AP_SEND_DATA_DEALLOC_FLUSH, AP_SEND_DATA_DEALLOC_SYNC_LEVEL,
AP_SEND_DATA_DEALLOC_ABEND, and AP_SEND_DATA_DEALLOC_CONFIRM. However, the SEND_DATA and
MC_SEND_DATA verbs do not contain the implied forget callback function. TPs wishing to receive implied forget notification
must issue a DEALLOCATE or MC_DEALLOCATE verb explicitly.

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

Sync Point Level 2 Confirm Support
The current APPC implementation in Host Integration Server supports conversations with synclevel of AP_NONE,
AP_CONFIRM_SYNC_LEVEL, or AP_SYNCPT. The DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, and
MC_PREPARE_TO_RECEIVE verbs specify a type member indicating the synchronization level required. This parameter is
interpreted as follows:

Allocated synclevel Type spec
ified

Action performed

AP_NONE AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_NONE AP_SYNCL
EVEL

Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_SYNCPT AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_SYNCPT or AP_CON
FIRM_SYNC_LEVEL

AP_CONFI
RM_TYPE

Action of CONFIRM or MC_CONFIRM verb before deallocation or change of direction.

AP_SYNCPT AP_SYNCL
EVEL

It is assumed that a Sync Point implementation built using the APPC API in Host Integratio
n Server implements the defer states appropriately. See the note below.

Note
With an allocated synclevel of AP_SYNCPT and a specified type of AP_SYNCLEVEL, it is assumed that a vendor-supplied Sy
nc Point component implements the defer states appropriately. A vendor-supplied Sync Point system must:

Intercept DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, and MC_PREPARE_TO_RECEIVE verbs on Sync Point
Level 2 conversations when type AP_SYNCLEVEL is specified for synclevel.

Maintain the defer state until one of the verbs valid in that state completes.

On completion of the verb, issue the original DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, or
MC_PREPARE_TO_RECEIVE verb to Host Integration Server 2009.

Host Integration Server does not implement the defer states directly. In particular, when a DEALLOCATE, MC_DEALLOCATE,
PREPARE_TO_RECEIVE, or MC_PREPARE_TO_RECEIVE verb is received with a type specified as AP_SYNCLEVEL on a Sync
Point conversation, this is treated as if the conversation has a synclevel of AP_NONE.

So that Sync Point Level 2 conversations can use confirm type synchronization, the DEALLOCATE, MC_DEALLOCATE,
PREPARE_TO_RECEIVE, and MC_PREPARE_TO_RECEIVE verbs are modified to support a type member of
AP_CONFIRM_TYPE.

The DEALLOCATE, MC_DEALLOCATE, PREPARE_TO_RECEIVE, and MC_PREPARE_TO_RECEIVE verbs specify a type member
indicating the synchronization level required. This parameter is interpreted as follows:

Allocated synclevel Type specifie
d

Action performed

AP_NONE AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_NONE AP_SYNCLEVE
L

Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_CONFIRM_SYNC_LEVE
L

AP_FLUSH Action of FLUSH or MC_FLUSH verb before deallocation or change of direction.

AP_CONFIRM_SYNC_LEVE
L

AP_SYNCLEVE
L

Action of CONFIRM or MC_CONFIRM verb before deallocation or change of directi
on.

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx

Sync Point Backout Support
This section describes back out support for Sync Point conversations.

This section contains:

Additional Sync Point Return Codes

Sending Backout on Sync Point Conversations

https://msdn.microsoft.com/en-us/library/aa704981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771259(v=bts.10).aspx

Additional Sync Point Return Codes
When a remote transaction program (TP) issues a BACKOUT verb, the back out is reported to the local TP as a new primary
return code value, AP_BACKED_OUT, on the next (current) verb issued. The local TP is provided access to the sense code
information contained in the Backout FMH-7 by setting the secondary_rc field as follows:

AP_BO_NO_RESYNC for sense code 0x08240000

AP_BO_RESYNC for sense code 0x08240001

This new return code will only be supplied on conversations with synclevel AP_SYNCPT, and therefore will not be presented
to existing applications.

The verbs on which this new return code can be returned are:

CONFIRM

MC_CONFIRM

MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_SEND_DATA

MC_SEND_ERROR

PREPARE_TO_RECEIVE

RECEIVE_AND_POST

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

SEND_DATA

SEND_ERROR

https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

Sending Backout on Sync Point Conversations
To send a Backout, an FMH-7 containing a sense code of 0x08240000 or 0x08240001 is sent on the session. This is done using
the SEND_ERROR or MC_SEND_ERROR verb. To enable Host Integration Server 2009 to send the appropriate sense data, the
SEND_ERROR and MC_SEND_ERROR verbs are modified as follows:

A new field, err_type, is added to allow the TP to specify the type of error. The default is AP_PROG (0x00), which means
existing TPs will continue to work unmodified.

The err_type field in both verbs can take one of two new values, specifying the sense codes to be generated by Host
Integration Server 2009:

AP_BACKOUT_NO_RESYNC for sense code 0x08240000

AP_BACKOUT_RESYNC for sense code 0x08240001

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx

LUWID, Conversation Correlators, and Session Identifiers
The logical unit-of-work identifier (LUWID), conversation correlators, and session identifiers are important for all Sync Point
operations and accounting purposes. The following sections describe how Host Integration Server provides access to these
components and, where appropriate, facilities to modify this information.

This section contains:

Generating and Setting LUWIDs

Extracting LUWIDs

Session Identifiers

https://msdn.microsoft.com/en-us/library/aa745008(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705796(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705530(v=bts.10).aspx

Generating and Setting LUWIDs
The unit-of-work identifier (LUWID) is used to identify conversations that are part of a single Sync Point transaction. All
conversations with the same LUWID are committed (or backed out) at the same time.

Host Integration Server assigns two LUWIDs to a transaction program when the TP is started. For locally started TPs, this is
when the TP_STARTED verb is issued. The first LUWID is the TP's protected LUWID. It is used by Host Integration Server 2009
as the LUWID for all synclevel AP_SYNCPT conversations allocated by the TP. When the TP issues an ALLOCATE or
MC_ALLOCATE verb with a synclevel of AP_SYNCPT, Host Integration Server generates an Attach containing the TP's current
protected LUWID.

The second LUWID is the TP's unprotected LUWID. It is used on all conversations allocated by the TP with a synclevel other
than AP_SYNCPT.

For remotely initiated TPs, the incoming Attach may contain an LUWID for the TPit is mandatory if the conversation has a
synclevel of AP_SYNCPT. For Sync Point conversations, Host Integration Server saves the LUWID as the TP's protected LUWID
and generates a new unprotected LUWID for it. For conversations with a synclevel other than Sync Point (AP_SYNCPT), Host
Integration Server saves the LUWID as the TP's unprotected LUWID and generates a new protected LUWID.

Host Integration Server generates LUWIDs by concatenating the following:

The fully qualified name of the local LU, preceded by a single byte indicating its length (exclusive of the length byte).

A 6-byte LUW instance number, generated from the current date and time (modified to ensure uniqueness if necessary).

A 2-byte LUW sequence number, initialized to 1.

If the fully qualified LU name component of the LUWID is not 17 bytes long, Host Integration Server does not add any padding
between it and the LUW instance number. The application can determine the length of the LUWID, and the offsets within it of
the LUW instance number and LUW sequence number, by examining the first byte of the LUWID, which indicates the length of
the fully qualified LU name.

When Host Integration Server generates both a protected and an unprotected LUWID for a TP, the unprotected LUWID is
created by incrementing the protected LUWID's instance number.

The protected LUWID needs to be changed by a TP for one of four reasons:

When a transaction is backed out or committed, the LUWID sequence number must be incremented.

If the transaction tree is split, a new LUWID must be generated for the TP.

If the application uses multiple logical TPs to implement a transaction, each TP must have the same LUWID (different
from that assigned by Host Integration Server).

If the application is acting as a gateway from a non-SNA environment and LUWIDs are received by a means other than
an Attach.

To allow a TP to set or generate new LUWIDs, a new verb, SET_TP_PROPERTIES, is provided by the APPC API. This verb allows
the TP to either set its LUWIDs to an existing value, by providing the LUWIDs, or generate new ones and use them from then
on. When a new LUWID is generated by Host Integration Server, it is guaranteed to be unique.

Note that it is the responsibility of the application (the Sync Point system component) to transmit the new LUWID PS header to
the partner Sync Point system when the protected LUWID is changed. Similarly, when a new LUWID PS header is received, the
application must inform the LU by issuing SET_TP_PROPERTIES.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754490(v=bts.10).aspx

Extracting LUWIDs
Both LUWIDs for a particular TP can be determined by issuing the GET_TP_PROPERTIES verb. The GET_TP_PROPERTIES verb
returns the TP's unprotected LUWID in the luw_id field.

If the TP needs to access the protected LUWID, it must combine the opext member of the verb control block (VCB) with the
value AP_EXTD_VCB using OR before issuing the verb. The protected LUWID will then be returned in the prot_luw_id field. If
the opext field does not contain the AP_EXTD_VCB bit, the verb control block is presumed to end immediately before the
prot_luw_id field.

The LUWID for a particular conversation can be determined by issuing a GET_ATTRIBUTES or MC_GET_ATTRIBUTES verb on the
conversation. These verbs are modified as follows:

A new field, luw_id, is added in which the LUWID is returned. The LUWID returned is the protected one if the
conversation was allocated with synclevel field of the ALLOCATE or MC_ALLOCATE verb set to Sync Point (AP_SYNCPT);
otherwise it is the unprotected one.

Since the luw_id field cannot be incorporated within the existing verb control blocks, the TP must use a larger VCB
structure. To indicate that the VCB is longer than usual, the opext field of the VCB must be combined with the value
AP_EXTD_VCB using OR before calling APPC.

The sync_level field of the GET_ATTRIBUTES or MC_GET_ATTRIBUTES verb can take an additional value, AP_SYNCPT,
when the conversation was allocated with the synclevel field of the ALLOCATE or MC_ALLOCATE verb of Sync Point
(AP_SYNCPT).

https://msdn.microsoft.com/en-us/library/aa770965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Session Identifiers
Host Integration Server maintains a unique identification for every LU 6.2 session it has with a remote LU. This 8-byte identifier
is generated by Host Integration Server every time it starts a new session (or is received by Host Integration Server when a
session is initiated remotely). The Sync Point resynchronization protocols require knowledge of the session identifier.

To provide this, the MC_GET_ATTRIBUTES and the GET_ATTRIBUTES verbs have been modified to return the session identifier
of the session over which a particular conversation is allocated. The MC_GET_ATTRIBUTES and GET_ATTRIBUTES verbs can
be used to retrieve this sess_id field of the VCB if the opext field of the VCB is combined with the value AP_EXTD_VCB using
OR before calling APPC.

https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx

Configuration Changes for Sync Point Support
A new check box is added to the Local LU Configuration dialog box. When selected, this indicates that the local LU is able to
participate in synclevel Sync Point sessions. Host Integration Server uses this option to determine the synclevel BIND
parameters it sends on BIND requests and responses.

This field is added to the Host Integration Server configuration file in a field that is no longer used by Host Integration Server.
Existing configurations from earlier versions of Host Integration Server will therefore continue to work unmodified.

Accepting Incoming Attaches
The Sync Point support in Host Integration Server is intended for use only by gateway applications that implement the
architected SNA Sync Point components, including Conversation-Protected Resource Manager (C-PRM). In a Sync Point
implementation, it is necessary for C-PRM to be aware of all protected conversations, both locally initiated and remotely
initiated. This can be achieved in Host Integration Server by C-PRM intercepting the conversation allocation and deallocation
verbs and issuing them on behalf of the transaction program (TP). Note that since Host Integration Server does not allow TP or
conversation identifiers to be shared across processes, this also means that the process containing C-PRM must also intercept
all APPC verbs issued by the client TPs.

For locally initiated TPs, this is straightforward. However for incoming Attaches, the situation is made more complex by the
requirement that the RECEIVE_ALLOCATE verb specify the name of the TP to be matched with the Attach.

In some implementations, this will not be an issue, as the gateway will be aware of the names of all the transactions passing
through it. To support this situation, the RECEIVE_ALLOCATE verb has been enhanced as described in the following topic to
permit the gateway to indicate that it can accept Sync Point conversations.

In other implementations, the gateway does not know the names of the transactions passing through it. This is particularly so
when the gateway is providing a conversion between SNA and another communications protocol. In this case, Host Integration
Server allows the gateway process to register itself as a Sync Point Attach Service, indicating that it is willing to accept
incoming Attaches for any Sync Point conversation. In this case, the gateway must be implemented as a
Sync Point Attach Manager.

This section contains:

Sync Point Knows Transaction Names

Sync Point Attach Manager

Rejecting Remotely Initiated Conversations

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754458(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746108(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754458(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770652(v=bts.10).aspx

Sync Point Knows Transaction Names
A Sync Point implementation that knows the names of all the transactions that can be supported (for example, through
configuration of the gateway) may accept incoming Sync Point conversations by issuing a RECEIVE_ALLOCATE verb specifying
the name of the transaction and indicating that it is willing to accept Sync Point conversations.

The RECEIVE_ALLOCATE verb was modified to allow a TP to specify that it can accept Sync Point conversations by adding a
new syncpoint_rqd field to the VCB. When this field is set to AP_YES it indicates that the transaction program can accept Sync
Point conversations from Host Integration Server. When this field is set to AP_NO (the default), it indicates that Sync Point
conversations are not supported.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Sync Point Attach Manager
Instead of issuing separate RECEIVE_ALLOCATE verbs for each possible transaction name, a Sync Point implementation may
instead register as the Sync Point Attach Manager for Host Integration Server 2009. It does so by issuing a
RECEIVE_ALLOCATE verb specifying a TP name consisting of all 0x00s.

When a Sync Point Attach Manager is registered, the following changes are effected in server's incoming Attach support on
Host Integration Server:

When an Attach message arrives for any TP name on a conversation with the syncpoint_rqd field of the VCB set to
AP_YES, Host Integration Server matches it with the application that issued the special RECEIVE_ALLOCATE verb
registering itself as the Sync Point Attach Manager.

Any Attach message arriving for the Resynchronization TP (0x06F2) will automatically be routed to the Sync Point Attach
Manager.

If no RECEIVE_ALLOCATE has been issued for the Sync Point Attach Manager, or for the specific TP name, Host
Integration Server will queue the Attach for a configured period of time. If no RECEIVE_ALLOCATE is issued in that time,
the Attach will be rejected with a return code of TP_NOT_AVAILABLE_RETRY.

If a RECEIVE_ALLOCATE is matched with the Attach message, the verb is returned to the TP with the tp_name field of
the VCB set to the TP name contained in the Attach message.

Applications using this feature must adhere to two restrictions:

All verbs issued on conversations started in this manner must be issued by the same process, as Host Integration Server
cannot pass tp_ids between processes.

Only a single process may register as the Sync Point Attach Manager on any server running Host Integration Server. If a
second process attempts to register, its RECEIVE_ALLOCATE verb will return immediately with the primary return code
set to AP_SYNCPOINT_MANAGER_ACTIVE.

Sync Point Attach Manager applications must reside on a Host Integration Server 2009 server. They may not be distributed
across Host Integration Server clients. This restriction is imposed to ensure that only a single instance of Sync Point Services
(SPS) and Conversation-Protected Resource Manager (C-PRM) exists for each LU on the Host Integration Server (which might
not be the case if Sync Point Attach Managers were visible from multiple servers in the Host Integration Server domain).

The structure of the RECEIVE_ALLOCATE verb control block does not require modification to support this function.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Rejecting Remotely Initiated Conversations
In an environment where a Sync Point Attach Manager is receiving all Attach messages as described above, it may be
necessary for it to reject an Attach for a particular TP name, either because the TP name is not valid or because there is another
problem with the received Attach message. To enable the application to generate the correct return code at the initiating TP,
the DEALLOCATE and MC_DEALLOCATEverbs are enhanced with new deallocate_type field values in the VCB that allow the
application to specify the return code to be sent to the initiating TP. The new values for deallocate_type are:

AP_TP_NOT_AVAIL_RETRY

AP_TP_NOT_AVAIL_NO_RETRY

AP_TPN_NOT_RECOGNIZED

AP_PIP_DATA_NOT_ALLOWED

AP_PIP_DATA_INCORRECT

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

Sync Point Examples
This section contains example verb sequences for implementing the architected Sync Point verbs using the Sync Point facilities
provided by Host Integration Server.

In the following figures, TP is the transaction program that requires Sync Point services. Vendor API is the vendor-supplied
APPC API. This component provides the SPS and C-PRM components and a mapping between the vendor's APPC syntax and
that of Host Integration Server. APPC API is the Host Integration Server APPC basic and mapped conversation interface.

This section contains:

SYNCPT Verb Issued Locally

SYNCPT Verb Issued Remotely

BACKOUT Verb Issued Locally

BACKOUT Verb Issued Remotely

https://msdn.microsoft.com/en-us/library/aa746010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744317(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770319(v=bts.10).aspx

SYNCPT Verb Issued Locally
This section provides an example verb sequence with a verb issued locally.

SYNCPT verb issued locally.

1. The transaction program issues a SEND_DATA or MC_SEND_DATAverb depending on whether a basic or mapped
conversation is being used.

2. The SEND_DATA or MC_SEND_DATA VCB is passed transparently through the vendor API to Host Integration
Server 2009. When the verb completes, the return code from Host Integration Server is returned to the transaction
program.

3. The transaction program issues a SYNCPT verb to the vendor API.

4. The vendor API creates a PREPARE PS header and transmits it by issuing a SEND_DATA or MC_SEND_DATA verb. For a
mapped conversation, the data_type field of the MC_SEND_DATA VCB must be set to AP_PS_HEADER.

5. On completion of the SEND_DATA or MC_SEND_DATA verb, the vendor API issues a RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT verb.

6. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with the what_rcvd field of the VCB with a
value of AP_PS_HEADER. The data buffer is filled with the received REQUEST_COMMIT PS header.

7. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued to get send direction. Note that the vendor
API can combine these two verbs into a single request by setting the rtn_status field of the VCB to AP_YES in order to
receive status with data on the first RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT.

8. A COMMITTED PS header is then transmitted using a SEND_DATA or MC_SEND_DATA verb.

9. The Vendor API issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb to receive the FORGET PS header
from the remote TP.

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx

10. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued with the what_rcvd field of the VCB set to
AP_SEND to get send direction (again the rtn_status RECEIVE_AND_WAIT field of the VCB can be set to AP_YES to
combine these two verbs).

11. When send indication is received, the vendor API returns the SYNCPT verb to the local transaction program with an OK
return code.

SYNCPT Verb Issued Remotely
 

SYNCPT verb issued remotely.

1. The local TP issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAITverb (depending on whether a basic or mapped
conversation is being used) to receive data from the remote transaction program. The vendor API passes the verb
transparently to Host Integration Server.

2. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with what_rcvd = AP_PS_HEADER. The data
buffer contains a PREPARE PS header.

3. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued by the vendor API to receive the send
indication from the remote TP.

4. The vendor API returns the transaction program's RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb with the
what_rcvd field of the VCB set to TAKE_SYNCPT.

5. The transaction program issues a SYNCPT verb.

6. The vendor API generates a REQUEST_COMMIT PS header and transmits it using a SEND_DATA or MC_SEND_DATA verb.
If the conversation is mapped, the MC_SEND_DATA verb is issued with the data_type field of the VCB set to
AP_PS_HEADER.

7. The vendor API then issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb to give the remote TP direction to
send.

8. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with the what_rcvd field of the VCB set to
AP_PS_HEADER. The data buffer contains a COMMITTED PS header.

9. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued to get permission to send.

https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx

10. A FORGET PS header is prepared and sent to the remote transaction program.

11. The FORGET is flushed and direction given to the remote transaction program by issuing a PREPARE_TO_RECEIVE or
MC_PREPARE_TO_RECEIVE with the ptr_type field of the VCB set to AP_FLUSH.

12. When the PREPARE_TO_RECEIVE or MC_PREPARE_TO_RECEIVE verb completes, the vendor API returns the SYNCPT
verb to the local transaction program.

https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx

BACKOUT Verb Issued Locally
 

BACKOUT verb issued locally.

1. The local transaction program issues a RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb (depending on whether a
basic or mapped conversation is being used) to receive data from the remote transaction program. The vendor API
passes the verb transparently to Host Integration Server.

2. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb completes with the what_rcvd field of the VCB set to
AP_PS_HEADER. The data buffer contains a PREPARE PS header.

3. Another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb is issued by the vendor API to receive the send
indication from the remote TP.

4. The vendor API returns the transaction program's RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb with the
what_rcvd field of the VCB set to TAKE_SYNCPT.

5. The transaction program issues a BACKOUT verb to back out the transaction.

6. The vendor API generates a SEND_ERROR or MC_SEND_ERROR verb of type BACKOUT_RESYNC to send the Backout
sense code 0x08240001.

7. The vendor API then issues a CONFIRM or MC_CONFIRM verb to flush the SEND_ERROR or MC_SEND_ERROR verb
and request a response from the remote transaction program.

8. The CONFIRM or MC_CONFIRM verb completes when the remote transaction program issues a CONFIRMED or
MC_CONFIRMED verb. The vendor API then returns the BACKOUT verb to the local transaction program.

https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx

BACKOUT Verb Issued Remotely
BACKOUT verb issued remotely.

1. The transaction program issues a SEND_DATA or MC_SEND_DATAverb depending on whether a basic or mapped
conversation is being used.

2. The SEND_DATA or MC_SEND_DATA VCB is passed transparently through the vendor API to Host Integration Server.
When the verb completes the return code from Host Integration Server is returned to the transaction program.

3. The transaction program issues a SYNCPT verb to the vendor API.

4. The vendor API creates a PREPARE PS header and transmits it by issuing a SEND_DATA or MC_SEND_DATA verb. For a
mapped conversation, the data_type field of the MC_SEND_DATA VCB must be set to AP_PS_HEADER.

5. On completion of the SEND_DATA or MC_SEND_DATA verb, the vendor API issues a RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT verb.

6. The RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb returns with a return code of AP_BACKED_OUT, indicating
that the remote transaction program issued a BACKOUT verb.

7. The vendor API issues another RECEIVE_AND_WAIT or MC_RECEIVE_AND_WAIT verb to receive the Confirm
indication.

8. When the verb completes with the what_rcvd field of the VCB set to AP_CONFIRM, the vendor API issues a CONFIRMED
or MC_CONFIRMED verb to acknowledge the BACKOUT verb.

9. The SYNCPT verb is returned to the transaction program with a BACKED_OUT return code when the CONFIRMED or
MC_CONFIRMED verb completes.

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx

Windows CSV Overview
Common service verbs (CSVs) are a set of programming functions provided by Host Integration Server 2009. The CSVs
provide convert, log, trace, and transfer services to applications.

The CSVs and information presented in this section represent an evolving CSV API that is composed of IBM Extended Services
for OS/2 and a set of Microsoft Windows extensions that allow for registering and deregistering the application, and that
provide an asynchronous entry point for TRANSFER_MS_DATA.

This section describes the verbs available to you and explains how to use them with your applications. A detailed description of
each verb is provided in the reference portion of the SDK.

The CSVs are as follows:

CONVERT

Converts a character string from ASCII to EBCDIC or from EBCDIC to ASCII.

COPY_TRACE_TO_FILE

Concatenates the contents of the individual application programming interface (API)/link service trace files to form a single
trace file.

DEFINE_TRACE

Enables or disables tracing for specific APIs.

GET_CP_CONVERT_TABLE

Creates and returns a 256-byte conversion table to translate character strings from a source code page to a target code page.

LOG_MESSAGE

For OS/2 only, takes a message from a message file, adds specified data to it, and records the message in the error log file.
This verb optionally displays the message on the user's screen.

TRANSFER_MS_DATA

Builds a Systems Network Architecture (SNA) request unit (RU) containing Network Management Vector Transport (NMVT)
data. The verb can send the NMVT data to NetView for centralized problem diagnosis and resolution. The data is optionally
logged in the event log for Windows 2000.

This section contains:

Host Integration Server Asynchronous Support

Before Using Windows CSV

Creating Specific NetView User Alerts

Using CSVs in C Programs

Sample Programs

CSV Verb Control Block

Bit Ordering

WINCSV Definition

WINCSV.H File

Issuing a CSV

https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754306(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770663(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754106(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770754(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771979(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771492(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771966(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744349(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745200(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744382(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770558(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771852(v=bts.10).aspx

Host Integration Server Asynchronous Support
Asynchronous call completion returns the initial call immediately so the application can continue with other processes. An
application that issues a call and does not regain control until the operation completes is not able to perform any other
operations. This type of operation, referred to as blocking, is not suited to a server application designed to handle multiple
requests from many clients.

Through RegisterWindowsMessage with "WinAsyncCSV" as the string, you pass a window handle by which you will be
notified of call completion. You then make your call and when it completes, a message is posted to the window handle that you
passed, notifying you that the call is complete.

Before Using Windows CSV
The following Microsoft® Windows® extensions are of particular importance and should be reviewed before using Windows
CSV:

WinAsyncCSV
Provides an asynchronous entry point for TRANSFER_MS_DATA only. If used for any other verb, the behavior will be
synchronous. Use this extension instead of the blocking version of the verb if you run your application under Microsoft®
Windows® version 3.x.

When the asynchronous operation is complete, the application's window hWnd receives the message returned by
RegisterWindowMessage with "WinAsyncCSV" as the input string. The wParam argument contains the asynchronous task
handle returned by the original function call. The lParam argument contains the original verb control block (VCB) pointer
and can be dereferenced to determine the final return code.

If the function returns successfully, a "WinAsyncCSV" message is posted to the application when the operation completes or
the conversation is canceled.

WinCSVCleanup
Terminates and deregisters an application from a Windows CSV implementation.

Important
An application must call this function to deregister itself from the Windows CSV implementation.

WinCSVStartup
Allows an application to specify the version of Windows CSV required and to retrieve details of the specific CSV
implementation.

Important
An application must call this function to register itself with a Windows CSV implementation before issuing any further Win
dows CSV calls.

https://msdn.microsoft.com/en-us/library/aa704592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705783(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705565(v=bts.10).aspx

Creating Specific NetView User Alerts
You can create NetView user alerts for users to send. Users identify the alerts by number; each number corresponds to a
specific collection of information or requests that the user wants to send via NetView to a host operator.

Microsoft® Host Integration Server leaves blank fields for the user alert information in the structure that is returned from the
sepdcrec function. To create specific user alerts, create appropriate data structures and call the TRANSFER_MS_DATA verb to
send the user alert to NetView.

https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx

Using CSVs in C Programs
CSVs are available to C applications through the external function WINCSV.

Sample Programs
A collection of sample programs is delivered with the Microsoft® Host Integration Server Software Development Kit (SDK) in
the \SDK\SAMPLES directory on the Host Integration Server CD. For more information, see APPC Samples.

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

CSV Verb Control Block
The only parameter passed to the WINCSV function is the address of a verb control block (VCB). The VCB is a structure made
up of variables that identify the verb to be executed, supply information to be used by the verb, and contain information
returned by the verb when execution is complete. Each verb has its own VCB structure, which is declared in the file WINCSV.H.

Bit Ordering
Bit 0 refers to the high-order bit in a byte or word. To set bit 0 on in a byte, use the bitwise OR operation (=) with a value of
128.

WINCSV Definition
The prototype definition of the WINCSV function is as follows:

The verb control block (VCB) address parameter, a 32-bit pointer, is declared as a long integer and requires casting from a
pointer to a long integer.

extern void WINAPI WINCSV (LPCSV);

WINCSV.H File
Use the #include command to include the WINCSV.H file in any application that issues CSVs.

The WINCSV.H file, which is included with the Microsoft® Host Integration Server Software Development Kit (SDK), contains:

The CSV function prototype.

The structure declarations for the CSV verb control blocks (VCBs).

The #define statements that substitute meaningful symbolic constants for hexadecimal values supplied to and returned
by CSVs.

If a #define statement pertains to a hexadecimal value that is longer than one byte, a comment shows how the hexadecimal
value is stored in memory.

When setting or testing CSV parameters, use the symbolic constants defined by the WINCSV.H file. When examining trace files
or the contents of memory, use the hexadecimal values.

Issuing a CSV
The procedure for issuing a CSV is shown in the following sample code that uses CONVERT.

To issue a CSV

1. Create a structure variable from the verb control block (VCB) structure that applies to the verb to be issued.

The VCB structures are declared in the WINCSV.H file; one of these structures is named CONVERT.

2. Clear (set to zero) the variables within the structure.

This procedure is not required. However, it helps in debugging and reading the contents of memory. It also eliminates the
possibility that future versions of a verb are sensitive to fields that are ignored in the current version.

3. Assign values to the required VCB variables.

The values SV_CONVERT, SV_ASCII_TO_EBCDIC, and SV_AE are symbolic constants representing integers. These
constants are defined in the WINCSV.H file.

The character array TPSTART_NAME contains an ASCII string to be converted to EBCDIC and placed in the character array
TPSTART.TP_NAME.

4. Invoke the verb. The only parameter is a pointer to the address of the structure containing the VCB for the verb.

You can also use the following statement:

5. Use the values returned by the verb.

#include <wincsv.h>
 .
 .
struct convert conv_block;

memset(conv_block, '\0', sizeof(conv_block));

conv_block.opcode = SV_CONVERT;
conv_block.direction = SV_ASCII_TO_EBCDIC;
conv_block.char_set = SV_AE;
conv_block.len = sizeof(tpstart_name);
conv_block.source = (LPBYTE) tpstart_name;
conv_block.target = (LPBYTE) tpstart.tp_name;

ACSSVC((LONG) &conv_block);

ACSSVC_C((LONG) &conv_block);

if(conv_block.primary_rc == SV_OK) {
/* other statements */
 .
 .
 .

https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx

Support for APPC Automatic Logon
This section describes the support for automatic logon for Advanced Program-to-Program Communications (APPC)
applications available in Host Integration Server 2009. This feature requires specific configuration by the network
administrator.

The APPC application must be invoked on the local area network (LAN) side from a client of Host Integration Server. The client
must be logged on to a Microsoft Windows Server 2003, Microsoft Windows XP, or Windows 2000 domain.

The client application is coded to use "program" level security, with a special hard-coded APPC user name (MS$SAME) and
password (MS$SAME). When this session allocation flows from client to Host Integration Server, the server looks up the host
account and password corresponding to the Windows 2000 account under which the client is logged on, and substitutes the
host account information into the APPC attach message it sends to the host.

To use this feature for an APPC application, the user_id and pwd fields in the ALLOCATE or MC_ALLOCATE verbs must be
hard-coded to use the string mentioned above, and security must be set to AP_PGM.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

CPI-C Programmer's Guide
This section of the Host Integration Server 2009 Developer's Guide provides information about developing applications with
the Common Programming Interface for Communications (CPI-C).

For API references and other technical information for CPI-C, see the CPI-C Programmer's Reference section of the SDK.

For sample code using CPI-C, see CPI-C Samples section of the SDK.

In This Section

Introduction to CPI-C

CPI-C Call Summary

Writing CPI-C Applications

Support for CPI-C Automatic Logon

https://msdn.microsoft.com/en-us/library/aa745359(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770811(v=bts.10).aspx

Introduction to CPI-C
Common Programming Interface for Communications (CPI-C) is an application programming interface (API) that enables peer-
to-peer communications among programs in a Systems Network Architecture (SNA) environment.

Through CPI-C, programs distributed across a network can work together, communicating with each other and exchanging
data, to accomplish a single processing task such as querying a remote database, copying a remote file, or sending and
receiving electronic mail.

The CPI-C calls and information presented in this section represent an evolving Microsoft® Windows® CPI-C that is composed
of CPI-C version 1.2 and a set of Windows extensions that enable multiple applications and asynchronous call completion.

CPI-C version 1.0 was first introduced to provide a means by which two applications could speak and listen to each other; in
other words, have a conversation. A conversation is the logical connection between two programs that enables the programs
to communicate with each other. Programs using CPI-C converse with each other by making program calls. These calls are
used to establish the full characteristics of the conversation, to exchange data, and to control the information flow between the
two programs.

CPI-C version 1.1 includes four new areas of function:

Support for resource recovery (not supported in Windows CPI-C).

Automatic parameter conversion.

Support for communicating with non-CPI-C programs.

Local and remote transparency.

Built upon CPI-C version 1.1, X/Open CPI-C provided the following:

Support for nonblocking calls.

The ability to accept multiple conversations.

Support for data conversion (beyond parameters).

Support for security parameters.

CPI-C version 1.2 consolidated CPI-C version 1.1 and X/Open CPI-C and provided all the functions described previously.
Windows CPI-C adds to this functionality by providing a set of extensions for asynchronous communication in addition to
supporting most features in CPI-C version 1.2 with the exception of the following features:

Full duplex operation.

Nonblocking call behavior (as defined in the CPI-C 1.2 specification).

Some data conversion functions.

For a complete list of unsupported functions, see CPI-C Functions Not Supported.

The use of the Windows CPI-C interface on Microsoft® Windows Server™ 2003 and Windows 2000 causes additional threads
to be created within the calling process. These other threads perform interprocess communication with the SNA service over
the local area network (LAN) interface that the client is configured to use (TCP/IP, IPX/SPX, or named pipes, for example).

Stopping the SNABASE service causes the application to be unloaded from memory.

This section contains:

Windows CPI-C Asynchronous Support

https://msdn.microsoft.com/en-us/library/aa704690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771683(v=bts.10).aspx

Before Using Windows CPI-C

Using Asynchronous Call Completion

Initial Conversation Characteristics

Side Information for CPI-C Programs

Configuration for CPI-C Programs

CPI-C Considerations on Windows Server 2003, Windows XP, and Windows 2000

Operating Systems Support for CPI-C Development

Finding Further Information about CPI-C

https://msdn.microsoft.com/en-us/library/aa754696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745626(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746050(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746187(v=bts.10).aspx

Windows CPI-C Asynchronous Support
A program that issues a call and does not regain control until the call completes cannot perform any other operations. This
type of operation, referred to as blocking, is not suited to a server application designed to handle multiple requests from many
clients. Asynchronous call completion returns the initial call immediately, so the application can continue with other processes.

Windows Common Programming Interface for Communications (CPI-C) support is related to asynchronous communications
and includes the following calls and extensions:

Set_Processing_Mode

Specify_Windows_Handle

Wait_For_Conversation

WinCPICExtractEvent

WinCPICIsBlocking

WinCPICSetBlockingHook

WinCPICSetEvent

WinCPICUnhookBlockingHook

Two methods under Microsoft Windows Server 2003 and Windows 2000 are available for asynchronous verb completion:

Message posting using window handles.

Waiting for Win32 events.

The traditional method uses messages posted to a window handle to notify an application of verb completion. This method
was used in earlier versions of the product to support Windows 3.x.

Asynchronous support using message posting is appended to the Set_Processing_Mode call and enables an application to be
notified of call completion on a window handle. Calling RegisterWindowsMessage with "WinAsyncCPIC" as the string, an
application passes a window handle by which the application is notified of call completion. The application then makes the CPI-
C call, and when it completes a message is posted to the window handle that was passed, notifying the application that the call
is complete.

With the exception of an asynchronous Receive call that can issue certain other calls while pending, a conversation can have
only one incomplete operation at any time. For more information about using an asynchronous Receive call, see
Using Asynchronous Call Completion. In the case of an incomplete operation, the program can issue Wait_For_Conversation to
test for its completion or Cancel_Conversation to end the conversation and the incomplete operation.

A second method using Win32 events for notification is supported in Host Integration Server 2009.

If an event has been registered with the conversation using WinCPICSetEvent, an application can call the Win32
WaitForSingleObject or WaitForMultipleObjects function to wait to be notified of the completion of the verb.

The only Windows extension functions required for Windows CPI-C are for initialization (WinCPICStartup) and termination
(WinCPICCleanup) purposes. Depending on your application, other Windows extensions for handling asynchronous verb
completion can be useful, but they are not required. For an example of how to use Windows CPI-C asynchronous calls and
Windows extensions, see Using Asynchronous Call Completion. For a complete description of all Windows CPI-C calls and
extensions, see CPI-C Calls and Extensions for the Windows Environment.

https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744901(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770796(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745540(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744344(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754740(v=bts.10).aspx

Before Using Windows CPI-C
The following Common Programming Interface for Communications (CPI-C) calls and Windows extensions are of particular
importance. You should review them before using Host Integration Server 2009.

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonym. For examp
le, Set_Processing_Mode is the pseudonym for a call. The actual function name is cmspm.

Set_Processing_Mode(cmspm)

Specifies for the conversation whether subsequent calls are returned when the operation they request is complete (blocking)
or immediately after the operation is initiated (nonblocking). A program is notified of the completion of nonblocking calls
when it issues Wait_For_Conversation or through a Windows message sent to a WndProc identified by hwndNotify in
Specify_Windows_Handle. When the processing mode is set for a conversation, it applies to all subsequent calls on the
conversation until the mode is set again.

Specify_Windows_Handle(xchwnd)

Sets the window handle to which a message is sent on completion of an operation in nonblocking mode.

Wait_For_Conversation(cmwait)

Waits for the completion of an operation that was initiated when theprocessing mode conversation characteristic was set to
CM_NON_BLOCKING and CM_OPERATION_INCOMPLETE was returned in the return_code parameter. Use
Wait_For_Conversation when running a background thread or a single-threaded application for Microsoft Windows
Server 2003 or Windows 2000. This most likely occurs when porting code from older versions of Host Integration Server
and SNA Server.

Important
An application can set the processing mode by calling Set_Processing_Mode. If the window handle is set to NULL, or this
call is never issued, the application must call Wait_For_Conversation to be notified when the outstanding operation comp
letes.

When an asynchronous operation is complete, the applications window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the conversation return
code from the operation that is completing. Its values depend on which operation was originally issued. The lParam
argument contains the CM_PTR to the conversation identifier specified in the original function call.

WinCPICCleanup

Terminates and unregisters an application from a Windows CPI-C implementation.

Important
This function must be called by an application when finished to unregister the application from the Windows CPI-C implem
entation.

WinCPICExtractEvent

Provides a method for an application to determine the event handle being used for a CPI-C conversation.

WinCPICIsBlocking

Determines if a task is executing while waiting for a previous blocking call to finish. This was used when Windows version 3.x
went into a PeekMessageLoop while allowing Windows to continue. Although a call issued on a blocking function appears
to an application as though it blocks, the Windows CPI-C dynamic-link library (DLL) has to relinquish the processor to allow
other applications to run. This means that it is possible for the application that issued the blocking call to be re-entered,
depending on the messages it receives. In this instance, WinCPICIsBlocking can be used to determine whether the
application task currently has been re-entered while waiting for an outstanding blocking call to finish.

This extension is intended to provide help to an application written to use the CM_BLOCKING characteristic of the Windows
Specify_Processing_Mode function. WinCPICIsBlocking serves the same purpose as InSendMessage in the Windows

https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744901(v=bts.10).aspx

API.

Older applications that were originally targeted at Windows version 3.x and that support multiple conversations must specify
CM_NONBLOCKING in Specify_Processing_Mode so they can support multiple outstanding operations simultaneously.
Applications are still limited to one outstanding operation per conversation in all environments.

Note
Windows CPI-C prohibits more than one outstanding blocking call per thread.

WinCPICSetBlockingHook

Allows a Windows CPI-C implementation to block CPI-C function calls by means of a new function. Blocking calls apply only
if you do not use asynchronous calls. If a function needs to block, the blocking call is called repeatedly until the original
request completes. This allows Windows to continue to run while the original application waits for the call to return. Note
that while inside the blocking call, the application can be re-entered. WinCPICSetBlockingHook was used by Windows
version 3.x applications that went into a PeekMessageLoop to make blocking calls without blocking the rest of the system.

Note
By default, Windows Server2003 and Windows2000 do not go into a PeekMessageLoop. Rather, they block an event wait
ing for the call to complete. The only time you need to use WinCPICSetBlockingHook for Windows Server 2003 or Wind
ows 2000 is when a single-threaded application for Windows Server 2003 or Windows 2000 shares common source code.
In this case, you must explicitly make this call. Contrast this call with WinCPICIsBlocking and WinCPICUnhookBlocking
Hook.

WinCPICSetEvent

Associates a Win32 event handle with a verb completion.

WinCPICStartup

Allows an application to specify the version of Windows CPI-C required and to retrieve details of the specific CPI-C
implementation.

Important
An application must call this function to register itself with a Windows CPI-C implementation before issuing any further Wi
ndows CPI-C calls.

WinCPICUnhookBlockingHook

Removes any previous blocking hook that has been installed and reinstalls the default blocking mechanism.

https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770796(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744344(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745540(v=bts.10).aspx

Using Asynchronous Call Completion
With one exception, Microsoft® Host Integration Server permits one outstanding Windows® SNA asynchronous call per
connection and one blocking verb per thread. The exception to this is that when issuing an asynchronous Receive call, the
following calls can be issued while the Receive is outstanding:

Cancel_Conversation

Deallocate

Request_To_Send

Send_Error

Test_Request_To_Send_Received

This enables an application, in particular a 5250 emulator, to use an asynchronous Receive to receive data. Use of this feature
is strongly recommended.

The following example illustrates how to use asynchronous call completion with Host Integration Server:

void ProcessVerbCompletion (WPARAM wParam LPARAM lParam)
{
 for (i = 0; i<nPendingVerbs; i++)
 if (memcmp (pPending [i].ConvID, (Conversation_ID) lParam)== 0)
 ProcessCommand (wParam, lParam);
}

LRESULT CALLBACK SampleWndProc (. . .)
{
 if (msg = = uAsyncCPIC) {
 ProcessVerbCompletion (wParam, lParam);
 }
 else switch (msg) {
 case WM_USER:
 Initialize_Conversation (lpConvId, "GORDM", &lError);
 if (lError ! = CM_OK) {
 ErrorDisplay () ;
 break ;
 }
 Set_Processing_Mode (lpConvId, CM_NON_BLOCKING, &lError) ;
 if (lError ! = CM_OK) {
 ErrorDisplay () ;
 break ;
 }
 Allocate (lpConvId, &lError) ;
 switch (lError) {
 case CM_OK:
 break ;
 case CM_OPERATION_INCOMPLETE:
 memcopy (pPending [nPending ++].ConvId, lpConvId, sizeof (C) ;
 break ;
 default:
 ErrorDisplay () ;
 }
 break ;
}
WinMain (. . .)
{
 if ((WinCPICStartup (. . .) = = FALSE) {
 return FALSE;
 }
 uAsyncCPIC = RegisterWindowMessage ("WinAsyncCPIC"");

https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770979(v=bts.10).aspx

For more information about CPI-C calls and Windows extensions, see CPI-C Calls and
Extensions for the Windows Environment. For additional information about using CPI-C, see the IBM Systems Application
Architecture Common Programming Interface Communications Reference, part number SC26-4399-04.

 Specify_Windows_Handle (hwndSample) ;
 while (GetMessage (. . .)) {

 }
 WinCPICCleanup (. . .)
}

https://msdn.microsoft.com/en-us/library/aa744726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754740(v=bts.10).aspx

Initial Conversation Characteristics
Common Programming Interface for Communications (CPI-C) maintains a set of internal values called characteristics for each
conversation. Some characteristics affect the overall operation of the conversation, such as the conversation type. Others affect
the behavior of specific calls, such as the receive type.

Many of these characteristics are initially derived from the side information table (see Side Information for CPI-C Programs) in
memory. Initialize_Conversation specifies the symbolic destination name (sym_dest_name) associated with the wanted side
information table entry.

The following table lists the initial values of the conversation characteristics and tells which call can change a given value.

Character
istic

Initial value set by Initialize_Conversatio
n

Initial value set by Accept_C
onversation

Can be changed by

Conversati
on state

CM_INITIALIZE_STATE CM_RECEIVE_STATE Depends on call

Conversati
on type

CM_MAPPED_ CONVERSATION The value specified by the invok
ing program.

Set_Conversation_Type

Deallocate
type

CM_DEALLOCATE_ SYNC_LEVEL CM_DEALLOCATE_ SYNC_LEVE
L

Set_Deallocate_Type

Error direc
tion

CM_RECEIVE_ERROR CM_RECEIVE_ ERROR Set_Error_Direction

Fill CM_FILL_LL CM_FILL_LL Set_Fill

Log data Null Null Set_Log_Data

Log data le
ngth

0 0 Set_Log_Data

Mode nam
e

The mode name contained in the side infor
mation. If no sym_dest_name is specified, thi
s is a null string.

The mode name for the session
on which the conversation start
up request arrived.

Set_Mode_Name

Mode nam
e length

Length of mode name. If no sym_dest_name
is specified, this is zero.

Length of mode name. Set_Mode_Name

Partner LU
name

The partner logical unit (LU) name contained
in the side information. If no sym_dest_name
is specified, this is a single blank.

The partner LU name for the se
ssion on which the conversatio
n startup request arrived.

Set_Partner_LU_Name

Partner LU
name leng
th

Length of partner LU name. If no sym_dest_n
ame is specified, this is 1.

Length of partner LU name. Set_Partner_LU_Name

Partner pr
ogram na
me

The program name contained in the side inf
ormation. If no sym_dest_name is specified, t
his is a single blank.

Not applicable. Set_TP_Name

Partner pr
ogram na
me length

Length of partner program name. If no sym_
dest_name is specified, this is 1.

Not applicable. Set_TP_Name

Password The password contained in the side informat
ion. If no sym_dest_name is specified, this is
a single blank.

The value specified by the invok
ing program.

Set_Conversation_Security_Password

Password l
ength

Length of password. If no sym_dest_name is
specified, this is 1.

Length of password. Set_Conversation_Security_Password

https://msdn.microsoft.com/en-us/library/aa771265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx

Prepare-to
-receive ty
pe

CM_PREP_TO_ RECEIVE_SYNC_ LEVEL CM_PREP_TO_ RECEIVE_SYNC_
LEVEL

Set_Prepare_To_Receive_Type

Receive ty
pe

CM_RECEIVE_AND_ WAIT CM_RECEIVE_AND_ WAIT Set_Receive_Type

Return con
trol

CM_WHEN_SESSION_ ALLOCATED Not applicable. Set_Return_Control

Security ty
pe

The security type contained in the side infor
mation.

The value specified by the invok
ing program.

Set_Conversation_Security_Type

Send type CM_BUFFER_DATA CM_BUFFER_DATA Set_Send_Type

Synchroni
zation leve
l

CM_NONE The value specified by the invok
ing program.

Set_Sync_Level

User identi
fier

The user identifier contained in the side infor
mation. If no sym_dest_name is specified, thi
s is a single blank.

The value specified by the invok
ing program.

Set_Conversation_Security_User_ID

User identi
fier length

Length of user identifier. If no sym_dest_na
me is specified, this is 1.

Length of user identifier. Set_Conversation_Security_User_ID

https://msdn.microsoft.com/en-us/library/aa771731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754400(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx

Side Information for CPI-C Programs
The information required for two Common Programming Interface for Communications (CPI-C) programs to communicate is
stored as a table, called the side information table, in memory. The table is derived from the symbolic destination name
(configured in Host Integration Server) and from the Set_CPIC_Side_Information, Extract_CPIC_Side_Information, and
Delete_CPIC_Side_Information calls.

The side information is maintained by the system administrator.

If you are developing commercial programs or programs that will be installed on multiple computers within your organization,
it is recommended that you include logic that enables a user or system administrator to specify configuration information for
each copy of the program.

Each side information entry contains the following fields:

Symbolic destination name
This is the sym_dest_name parameter specified by Initialize_Conversation. It is the identifier for the side information entry.
The name can be up to eight ASCII characters. See Set_CPIC_Side_Information for the allowed characters.

Partner LU name
This is the name by which the partner logical unit (LU) is known to the local program. It can be an alias of up to eight ASCII
characters or a fully qualified network name of up to 17 characters. For the allowed characters, see Set_Partner_LU_Name.

Partner program type and name
These fields indicate whether the partner program is an application transaction program (TP) or an SNA service TP, and
provide the partner program name. An application TP name can contain up to 64 ASCII characters. A service TP name can
contain up to four characters. For the allowed characters, see Set_TP_Name.

Mode name
This name represents a set of characteristics to be used in an LU-to-LU session. The mode name can contain up to eight
ASCII characters. For the allowed characters, see Set_Mode_Name.

Conversation security type
This field indicates whether security will be used and if so, what type.

You can use conversation security to require that the invoking program provides a user identifier and password before CPI-C
allocates a conversation with the invoked program.

For an invoked program that in turn invokes another program, the security type can inform the second invoked program
that security has already been verified.

For further information about conversation security, see Set_Conversation_Security_Type.

Security user identifier and password
If you intend to use conversation security, a valid combination of user identifier and password is required to access the
invoked program. The user identifier and password can be up to 10 ASCII characters. For information about allowed
characters, see Set_Conversation_Security_User_ID and Set_Conversation_Security_Password.

https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705616(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx

Configuration for CPI-C Programs
In addition to maintaining the side information (specified by sym_dest_name), the system administrator must define the
following entities during configuration:

Modes

Local logical units (LUs)

Partner LUs

Invokable programs

User identifiers and passwords

Note
For a user or group using transaction programs (TPs), 5250 emulators, or Advanced Program-to-Program Communications (
APPC) applications, you can assign a default local APPC LU and a default remote APPC LU. These default LUs are accessed wh
en the user or group member starts an APPC program (TP, 5250 emulator, or APPC application) and the program does not s
pecify LU aliases by leaving the field NULL or filling with blanks.

CPI-C Considerations on Windows Server 2003, Windows XP,
and Windows 2000

This topic summarizes information you should keep in mind when you develop programs based on Microsoft® Windows
Server™ 2003, Windows® XP, and Windows 2000.

Asynchronous completion notification using message posting
When an asynchronous operation is complete, the applications window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the
conversation_return_code from the operation that is completing. Its values depend on which operation was originally issued.
The IParam argument contains the CM_PTR to the conversation_ID specified in the original function call.

Asynchronous completion notification using Win32® events
When a verb is issued on a nonblocking conversation, it returns CM_OPERATION_INCOMPLETE if it is going to complete
asynchronously. If an event has been registered with the conversation, the application can call WaitForSingleObject or
WaitForMultipleObjects to be notified of the completion of the verb. WinCPICExtractEvent allows a Common
Programming Interface for Communications (CPI-C) applicationto determine this event handle. After the verb has completed,
the application must call Wait_For_Conversationto determine the return code for the asynchronous verb. The
Cancel_Conversationfunction can be called to cancel an operation and the conversation itself.

It is the responsibility of the application to reset the event, as it is with other APIs.

If no event has been registered, the asynchronous verb completes as it does at present, which is by posting a message to the
window that the application has registered with the CPI-C library.

Byte ordering
By default, Intel-byte ordering is used. For inline environments, defining NON_INTEL_BYTE_ORDER does all the required
flipping for constants. Nonconstant input parameters in verb control blocks (VCBs)—for example, lengths and pointers—are
always in the native format.

Events
To receive data asynchronously, an event handle is passed in the semaphore field of the VCB. This event must be in the
nonsignaled state when passed to CPI-C, and the handle must have EVENT_MODIFY_STATE access to the event.

Library name
The Win32® DLL name is WINCPIC32.DLL.

Multiple threads
A transaction program (TP) can have multiple threads that issue verbs. Windows CPI-C makes provisions for multithreaded
Windows-based processes. A process contains one or more threads of execution. All references to threads refer to actual
threads in a multithreaded Windows environment.

Packing
For performance reasons, the VCBs are not packed. As a result, DWORDs are on DWORD boundaries, WORDs on WORDs,
and BYTEs on BYTEs. VCBs should be accessed using the structures provided.

Run-time linking
For a TP to be dynamically linked to CPI-C at run time, the TP must issue:

LoadLibrary to dynamically load WINCPIC.DLL or WINCPIC32.DLL, the libraries for WINCPIC.

GetProcAddress to specify WINCPIC as the desired entry point to the dynamic-link library (DLL).

FreeLibrary when the CPI-C library is no longer required.

Simultaneous conversations
A program can simultaneously participate in as many as 64 conversations per process.

Terminating applications
In Microsoft® Windows Server™ 2003 and Windows® 2000, CPI-C cannot tell when an application terminates. Therefore, if
an application must close (for example, it receives a WM_CLOSE message as a result of an ALT+F4 from a user), the
application should call WinCPICCleanup.

https://msdn.microsoft.com/en-us/library/aa746181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx

Yielding to other components
When processing CPI-C and Common Service Verbs (CSV), it may be necessary for the library code to yield to enable
another component, such as the SnaBase, to receive messages and pass them to the application. This can be accomplished by
using the Windows extensions WinCPICSetBlockingHook and WinCPICUnhookBlockingHook.

WinCPICSetBlockingHook enables a Windows CPI-C implementation to block CPI-C function calls by means of a new
function. To call WinCPICSetBlockingHook:

WinCPICUnhookBlockingHook removes any previous blocking hook that has been installed and reinstalls the default
blocking mechanism. To call WinCPICUnhookBlockingHook:

FARPROC WINAPI WinCPICSetBlockingHook (FARPROC 1pBlockFunc)

BOOL WINAPI WinCPICUnhookBlockingHook (void)

https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745540(v=bts.10).aspx

Operating Systems Support for CPI-C Development
Host Integration Server 2009 supports the development of CPI-C applications for Microsoft Windows Server 2003, Windows
XP and Windows 2000. Support for CPI-C applications is provided only for the Win32 system.

The previous Microsoft SNA Server products also supported the development of CPI-C applications for Microsoft Windows NT,
Windows 98, Windows 95, Windows 3.x, and OS/2. Most CPI-C applications developed for Windows 3.x and OS/2 with SNA
Server can be used with Host Integration Server.

Finding Further Information about CPI-C
For information about SNA architecture, refer to your system network documentation.

The following topics provide additional information about Host Integration Server 2009 application programming interfaces
(APIs) based on SNA architecture:

APPC Guide

LUA Guide

For more information about SNA and about 3270 information display systems, see the following manuals:

IBM 3270 Information Display System: 3274 Control Unit Description and Programmers Guide

IBM 3270 Information Display System: Color and Programmed Symbols

IBM 3270 Information Display System: 3274 Control Unit Display Station: Operators Guide

IBM Systems Network Architecture: Technical Overview

IBM Systems Network Architecture: Concepts and Products

IBM Advanced Communications Function Products Installation Guide

IBM Installation and Resource Definition

IBM 9370 LAN Token Ring Support

IBM SNA Format and Protocol Reference Manual: Architectural Logic

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), or CPI-C, see
the following manuals:

IBM Systems Network Architecture: Introduction to APPC

IBM Systems Network Architecture: Transaction Programmers Reference Manual for LU Type 6.2

IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2

IBM SNA: Formats

IBM SNA: Technical Overview

IBM SNA: ACF/VTAM Programming for LU Type 6.2

https://msdn.microsoft.com/en-us/library/aa745677(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705241(v=bts.10).aspx

CPI-C Call Summary
This section briefly describes each Common Programming Interface for Communications (CPI-C) call. The features provided by
a CPI-C call can be broader than this section indicates. The calls are grouped in categories according to the function they
perform. There are calls that start and stop a conversation, send and receive data, get information, and get side information.

This section contains:

Starting a Conversation

Sending Data

Receiving Data

Confirming Receipt of Data and Reporting Errors

Getting Information

Ending a Conversation

Administering Side Information

https://msdn.microsoft.com/en-us/library/aa771133(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754253(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705279(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745192(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745877(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770637(v=bts.10).aspx

Starting a Conversation
The calls in this category are used to start a conversation between two programs.

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Accept_Conversation(cmaccp)
Issued by the invoked program to accept the incoming conversation and set certain conversation characteristics. Upon
successful execution of this call, Common Programming Interface for Communications (CPI-C) generates a conversation
identifier.

Allocate(cmallc)
Issued by the invoking program to allocate a conversation with the partner program, using the current conversation
characteristics. CPI-C can also start a session between the local logical unit (LU) and partner LU if one does not already exist.
The type of conversation allocated depends on the conversation type characteristic—mapped or basic.

Initialize_Conversation(cminit)
Issued by the invoking program to obtain a conversation identifier and to set the initial values for the conversation's
characteristics. The initial values are derived from side information associated with the symbolic destination name or are CPI-
C defaults.

After issuing Initialize_Conversation, the invoking program can issue any of the following Set_ calls to change the initial
conversation characteristics. These calls cannot be issued after Allocate has been issued.

Call Sets
Set_Conversation_Security_Password (cmscsp) Security password

Set_Conversation_Security_Type(cmscst) Conversation security type

Set_Conversation_Security_User_ID (cmscsu) Security user identifier

Set_Conversation_Type (cmsct) Conversation type

Set_Mode_Name (cmsmn) Mode name

Set_Partner_LU_Name (cmspln) Partner LU name

Set_Return_Control (cmsrc) Return control

Set_Sync_Level (cmssl) Synchronization level

Set_TP_Name (cmstpn) Program name

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754400(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771457(v=bts.10).aspx

Sending Data
The following calls are used to send data to the partner program:

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Confirm(cmcfm)
Sends the contents of the local logical unit's (LU) send buffer and a confirmation request to the partner program and waits
for confirmation.

Flush(cmflus)
Sends the contents of the local LU's send buffer to the partner LU (and partner program). If the send buffer is empty, no
action takes place.

Prepare_To_Receive(cmptr)
Changes the state of the conversation for the local program from SEND to RECEIVE, making it possible for the local program
to begin receiving data. Before changing the conversation state, this call performs the equivalent of the Flush or Confirm
call.

Request_To_Send(cmrts)
Notifies the partner program that the local program wants to send data. The partner program may or may not act on this
request.

Send_Data(cmsend)
Puts data in the local LU's send buffer for transmission to the partner program. The data collected in the local LU's send
buffer is transmitted to the partner LU (and partner program) when one of the following occurs:

The send buffer fills up.

The local program issues a Flush, Confirm, or Deallocate call or other call that flushes the LU's send buffer. (Some
send types, set by Set_Send_Type, include flush functionality.)

Set_Prepare_To_Receive_Type(cmsptr)
Sets the conversation's prepare-to-receive type, which specifies whether subsequent Prepare_To_Receive calls will include
Flush or Confirm functionality. The prepare-to-receive type affects all subsequent Prepare_To_Receive calls. It can be
changed by reissuing Set_Prepare_To_Receive_Type.

Set_Send_Type(cmsst)
Sets the conversation's send type. The send type specifies how data will be sent by Send_Data. The send type can specify
that only data be sent or that, in addition to sending data, Common Programming Interface for Communications (CPI-C)
executes the equivalent of Flush, Confirm, Prepare_To_Receive, or Deallocate. The send type value affects all subsequent
Send_Data calls. It can be changed by reissuing Set_Send_Type.

https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

Receiving Data
The following calls or extensions enable a program to receive data from its partner program:

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Receive(cmrcv)
Issuing this call while the conversation is in RECEIVE state causes the local program to receive any data that is currently
available from the partner program. If no data is available and the receive type is set to CM_RECEIVE _AND_WAIT, the local
program waits for data to arrive. If the receive type is set to CM_RECEIVE_IMMEDIATE, the program does not wait.

Issuing this call while the conversation is in SEND or SEND_PENDING state is allowed only if the receive type is set to
CM_RECEIVE_AND_WAIT. This flushes the logical unit's (LU) send buffer and changes the conversation state to RECEIVE. The
local program then begins to receive data.

Set_Fill(cmsf)
Used in a basic conversation, this call sets the conversation's fill type, which specifies whether programs will receive data in
the form of logical records or as a specified length of data. This call has an effect only in basic conversations. The fill value
affects all subsequent Receive calls. It can be changed by reissuing Set_Fill.

Set_Processing_Mode(cmspm)
Specifies for the conversation whether subsequent calls will be returned when the operation they have requested is complete
(blocking) or immediately after the operation is initiated (non-blocking). A program is notified of the completion of non-
blocking calls when it issues Wait_For_Conversation or through a Microsoft® Windows® message sent to a WndProc
identified by the hwndNotify parameter in Specify_Windows_Handle.

Set_Receive_Type(cmsrt)
Sets the conversation's receive type, which specifies whether a program issuing a Receive call will wait for data to arrive if
data is not available. The receive type value affects all subsequent Receive calls. It can be changed by reissuing
Set_Receive_Type.

Specify_Windows_Handle(xchwnd)
Sets the window handle to which a message is sent on completion of an operation in non-blocking mode. An application can
set the processing mode by calling Set_Processing_Mode. If the window handle is set to NULL or this call is never issued,
then the application must call Wait_For_Conversation to be notified when the outstanding operation completes.

WinCPICSetBlockingHook
Allows a Windows Common Programming Interface for Communications (CPI-C) implementation to block CPI-C function
calls by means of a new function. This call had to be explicitly issued for Windows version 3.x applications to make blocking
calls without blocking the rest of the system. Under Windows 2000 and later, this is not necessary.

A Windows CPI-C implementation has a default mechanism by which blocking CPI-C functions are implemented. This
function enables the application to execute its own function at blocking time in place of the default function.

https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx

Confirming Receipt of Data and Reporting Errors
The following calls confirm receipt of data or report an error:

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Confirmed(cmcfmd)
Replies to a confirmation request from the partner program. It informs the partner program that the local program has not
detected an error in the received data. Because the program issuing the confirmation request waits for a confirmation,
Confirmed synchronizes the processing of the two programs.

Send_Error(cmserr)
Notifies the partner program that the local program has encountered an application-level error. The local program can use
Send_Error to inform the partner program of an error encountered in received data, to reject a confirmation request, or to
truncate an incomplete logical record it is sending.

Set_Error_Direction(cmsed)
Specifies whether a program detected an error while receiving data or while preparing to send data. Error direction is
relevant only when a program issues Send_Error in SEND_PENDING state—immediately after issuing Receive and receiving
data as well as a status_received value of CM_SEND_RECEIVED.

Set_Log_Data(cmsld)
Used in a basic conversation, this call specifies a log message (log data) and its length to be sent to the partner logical unit
(LU). This call has an effect only in basic conversations. If present, log data is sent when Send_Error is issued or when the
conversation is abnormally deallocated. After the log data is sent, Common Programming Interface for Communications
(CPI-C) resets the log data to NULL and the log data length to zero.

https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx

Getting Information
The following calls retrieve information about the characteristics of a specified conversation:

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Extract_Conversation_Security_Type(xcecst)
Retrieves security type.

Extract_Conversation_Security_User_ID(cmecsu)
Retrieves security user identifier.

Extract_Conversation_State(cmecs)
Retrieves conversation state.

Extract_Conversation_Type(cmect)
Retrieves conversation type.

Extract_Mode_Name(cmemn)
Retrieves mode name.

Extract_Partner_LU_Name(cmepln)
Retrieves partner LU name.

Extract_Sync_Level(cmesl)
Retrieves synchronization level.

Test_Request_To_Send_Received(cmtrts)
Determines whether a request-to-send notification has been received from the partner program.

https://msdn.microsoft.com/en-us/library/aa745448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745832(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705640(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770979(v=bts.10).aspx

Ending a Conversation
The following calls end a conversation:

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Deallocate(cmdeal)
Deallocates a conversation between two programs. Before deallocating the conversation, this call performs the equivalent of
the Flush or Confirm call, depending on the current conversation synchronization level and deallocate type.

Set_Deallocate_Type(cmsdt)
Specifies how the conversation is to be deallocated. The deallocation instructions specified by this call take effect when
Deallocate is issued or when the send type is set to CM_SEND_AND_DEALLOCATE and Send_Data is issued.

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx

Administering Side Information
The following calls let CPI-C applications add, replace, retrieve, or delete side information entries from memory:

Note
The names of the calls are pseudonyms. The actual C function names appear in parentheses after the pseudonyms. For exam
ple, Accept_Conversation is the pseudonym for a call. The actual function name is cmaccp.

Delete_CPIC_Side_Information (xcmdsi)
Deletes side information entry.

Extract_CPIC_Side_Information (xcmesi)
Retrieves side information.

Set_CPIC_Side_Information (xcmssi)
Adds or replaces side information entry.

See Also
Reference
Side Information for CPI-C Programs

https://msdn.microsoft.com/en-us/library/aa771465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705616(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771265(v=bts.10).aspx

Writing CPI-C Applications
A processing task accomplished by programs using Common Programming Interface for Communications (CPI-C) is called a
transaction. Consequently, programs that use CPI-C are called transaction programs (TPs). These programs communicate as
peers, on an equal (rather than hierarchical) basis. The TPs use CPI-C calls to exchange status information and application data.
Each TP uses CPI-C calls to supply parameters to CPI-C, which performs the preferred function and returns parameters to the
TP.

TPs distributed across a local or wide area network perform distributed transaction processing.

This section describes how to write transaction programs using CPI-C and how to configure the systems on which TPs run. The
topics in this section cover the following general areas:

Understanding fundamental concepts related to TPs.

Designing and coding TPs.

Configuring registry and environment variables for invokable TPs.

Configuring Microsoft® Host Integration Server to work with your TPs.

This section contains:

Communication Between TPs

Designing and Coding TPs

Configuring Invokable TPs

Configuring Host Integration Server to Support TPs

Simplifying CPI-C Configuration

https://msdn.microsoft.com/en-us/library/aa754408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746208(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771840(v=bts.10).aspx

Communication Between TPs
Various hardware and software elements in the SNA environment are required for two transaction programs (TPs) to
communicate with each other. The following figure illustrates several fundamental elements.

Fundamental hardware and software elements in the SNA environment

Each TP is associated with a logical unit (LU) of type 6.2. The LU enables the TP to access the network. Note that several TPs can
be associated with the same LU.

A partner TP can invoke another TP, which, in turn, invokes another TP, and so on. In the following figure, TP A invokes TP B,
and TP B invokes TP C.

Partner TP's invoking other partners

This section contains:

Fundamental Terms for TPs and LUs

Sample TPs Illustrating Fundamental Concepts

Configuring and Controlling TPs

Creating TPs and Their Supporting Configuration

https://msdn.microsoft.com/en-us/library/aa705143(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744654(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754428(v=bts.10).aspx

Fundamental Terms for TPs and LUs
The following terms describe some fundamental characteristics of transaction programs (TPs) communicating through logical
units (LUs):

basic conversation

A type of conversation more complex than a mapped conversation and generally used by service TPs (SNA-based programs
that provide services to other programs). For a basic conversation, use Set_Conversation_Type and specify
CM_BASIC_CONVERSATION for the conversation_type. For more information, see
Basic and Mapped Conversations Compared.

conversation

The interaction between TPs carrying out a specific task. Each conversation requires an LU-LU session. A TP can be involved
in several conversations simultaneously, as shown with TP B in Communication Between TPs.

invokable TP

A TP that can be invoked by another TP. Invokable TPs are usually server-type applications. That is, they work in the same
general way that an IBM CICS application works. Parameters for an invokable TP are configured through registry or
environment variables.

There are several types of invokable TPs:

operator-started invokable TP

A TP that is started manually in preparation for being invoked.

autostarted invokable TP

A TP that is automatically started by Common Programming Interface for Communications (CPI-C) when invoked.

queued TP

A TP that, when invoked multiple times, loads once, and then queues up subsequent requests to be dealt with one at a time. All
operator-started TPs and some autostarted TPs are queued.

nonqueued TP

A TP loaded multiple times, once for every time it is invoked. Some autostarted TPs are nonqueued but no operator-started TPs
are nonqueued.

For more information, see Invokable TPs.

invoking TP

A TP that can invoke (that is, initiate a conversation with) other TPs. Invoking TPs are usually client-type applications. That is,
they work in the same general way that an emulator works. For more information see Invoking TPs.

local LU and local TP

An LU and TP working together, when viewed as the home base for a particular conversation. From this viewpoint, some
other LU and TP are seen as the partner or remote LU and TP.

LU alias

The string that identifies an LU to a TP. The alias can be up to eight characters long.

LU-LU session

The communication between two LUs over a specific connection for a specific amount of time. An LU-LU session is needed
for two TPs to interact. One session can be used serially by many pairs of TPs.

An LU 6.2 can have multiple sessions (two or more concurrent sessions with different partner LUs) and parallel sessions (two
or more concurrent sessions with the same partner LU).

LUs are configured through SNA Manager on Host Integration Server 2009. This administration tool is also used to configure
LU-LU pairs and modes. The LU and mode configurations control how many sessions a particular LU-LU pair supports.

mapped conversation

https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770648(v=bts.10).aspx

A type of conversation simpler than a basic conversation and generally used by application TPs (programs that accomplish
tasks for end users). The default for conversation type is mapped. The conversation type can be changed with the
Set_Conversation_Type call. For more information, see Basic and Mapped Conversations Compared.

partner LU and partner TP, or remote LU and remote TP

An LU and TP working together, when viewed as being at the far end of a particular conversation.

https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705224(v=bts.10).aspx

Sample TPs Illustrating Fundamental Concepts
A set of sample transaction programs (TPs) is provided on the Host Integration Server 2009 CD in the \SDK\Samples\SNA
subdirectory. Included with the sample code is TPSETUP, a program that simplifies the setting of registry or environment
variables needed by autostarted invokable TPs. Without an interface like that provided by TPSETUP, configuring such variables
can be complicated and error-prone. Therefore, it is recommended that you use code like TPSETUP in installation programs for
autostarted invokable TPs.

For information about TPSETUP and about the sample TPs, see CPI-C Samples.

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

Configuring and Controlling TPs
The following table shows how the characteristics of the transaction programs (TPs) and selection of the logical units (LUs) for
a conversation are controlled.

Characteristic How controlled
Type of conversation: basic or
mapped.

Written into the code. For two TPs to communicate successfully, both must use the same type
of conversation, basic or mapped. The default for conversation type is mapped. The type can b
e changed with the Set_Conversation_Type call. For more information, see
Basic and Mapped Conversations Compared.

Type of TP: invoking or invokabl
e.

Written into the code. Invoking TPs start with Initialize_Conversation and Allocate. Invokable T
Ps start with Accept_Conversation. For more information, see Invoking TPs and Invokable TPs.

The local LU alias to be used by
an invoking TP.

Three options:

Configured with a registry or environment variable.

Configured (using SNA Manager) as the default local APPC LU for the user who starts th
e invoking TP.

Configured (using SNA Manager) as a member of the default outgoing local APPC LU p
ool.

For more information, see Invoking TPs and SNA Service Configuration.

The symbolic destination name
used by an invoking TP.

Written into the code, in Initialize_Conversation.

The invokable (partner) TP requ
ested by an invoking TP.

Specified within the symbolic destination name, which can be configured using SNA Manager
.

The LU alias to be used by an in
vokable TP (the partner LU alias
from the point of view of the in
voking TP).

Specified within the symbolic destination name, which can be configured through SNA Mana
gement using SNA Manager. For more information, see
Invoking TPs and SNA Service Configuration and Matching Invoking and Invokable TPs.

Type of autostarted invokable T
P: queued or nonqueued.

Configured with registry or environment variables. For more information, see
Configuring Invokable TPs.

Local LU and remote LU aliases. Configured using SNA Manager.

The pairing of local and remote
LUs, and the mode used for eac
h LU-LU pair.

Configured using SNA Manager.

https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753883(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753883(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771677(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771472(v=bts.10).aspx

Creating TPs and Their Supporting Configuration
The following procedure describes how to create transaction programs (TPs) and set up a supporting configuration.

To create TPs and set up a supporting configuration

1. Write, compile, and link each TP.

2. Place each TP on an appropriate computer.

For TPs that you start many times or that are started by a user, arrange for the TP to be started easily. That is, for
graphical interfaces, create a program icon for starting the TP and for non-graphical interfaces, make sure the TP is in the
path.

3. On one or more computers running Host Integration Server, configure logical units (LUs), modes, LU-LU pairs, and a
symbolic destination name for use by the TPs.

For information about how to set up LU-LU pairs to support TPs, see Using Invoking and Invokable TPs.

For information about symbolic destination names and side information, see Side Information for CPI-C Programs.

4. Set any registry or environment variables needed for the invoking and invokable TPs.

For autostarted invokable TPs, it is recommended that you use the sample TP configuration program, TPSETUP, for this
step. When you write an installation program for autostarted invokable TPs, it is recommended that you include code
similar to TPSETUP.

For information about registry or environment variables, see Configuring Invokable TPs and Invoking TPs. For
information about TPSETUP, see CPI-C Samples.

5. If the invokable TP is operator-started, start it, or arrange for it to be started when the computer is restarted, and then
restart the computer.

If the invokable TP is autostarted, Host Integration Server will start it when needed.

6. Start the invoking TP.

https://msdn.microsoft.com/en-us/library/aa705153(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

Designing and Coding TPs
The following topics provide background information about designing and coding transaction programs (TPs).

This section contains:

CPI-C Calls in C Programs

CPI-C and LU 6.2

Conversation States

Confirmation Processing

Conversation Security

Basic and Mapped Conversations Compared

Using Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/aa745983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770958(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705224(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705153(v=bts.10).aspx

CPI-C Calls in C Programs
This implementation of Common Programming Interface for Communications (CPI-C) is available to programs written in
Microsoft® C version 6 or later.

The WINCPIC.H header file defines the prototypes for each CPI-C function. Other definitions include:

Types specifically defined for use by CPI-C parameters.

The structure of the side information entries.

Symbolic names defined for integer parameters.

To use CPI-C calls, the C program must include WINCPIC.H and declare the variables to be used in passing parameters on CPI-
C calls.

Note that you must define WIN32® before including WINCPIC.H

For example:

Note also that previous operating systems such as Microsoft® Windows® 98, Windows 95 and OS/2 are no longer supported.

In the case of strings, the program must also determine the preferred string length.

 #define WIN32
 #include <wincpic.h>

CPI-C and LU 6.2
Common Programming Interface for Communications (CPI-C) applications can communicate with non-CPI-C LU 6.2
applications, such as Advanced Program-to-Program Communications (APPC).

CPI-C supports all functions of logical unit (LU) 6.2 except for the following:

Sync Point/back out processing

PIP data

LOCKS=LONG

MAP_NAME

FMH_DATA

Conversation States
The state of the conversation (as viewed by a particular transaction program (TP)) governs which Common Programming
Interface for Communications (CPI-C) calls can be made by the TP at a particular time. For example, a TP cannot issue
Send_Data if the conversation is not in SEND or SEND_PENDING state for that TP.

The state of a conversation depends on the TP from which it is viewed. A local TP can view a conversation as being in SEND
state while the partner TP views the conversation as being in RECEIVE state. A particular TP can be in several conversations,
each of which is in a different state.

The possible conversation states are summarized in this topic.

CONFIRM
The TP has received a request for confirmation of receipt of data. It must respond positively or send error information to the
partner TP.

CONFIRM_DEALLOCATE
The TP has received a request for confirmation and must respond positively or send error information. If the TP responds
positively, the conversation is automatically deallocated.

CONFIRM_SEND
The TP has received a request for confirmation. It must respond positively or send error information. After responding, the TP
can begin to send data.

INITIALIZE
The conversation has been initialized successfully.

RECEIVE
The TP can receive application data and status information from the partner TP. When the conversation is in RECEIVE state,
the TP can also send error information and request permission to send data.

RESET
The conversation has not started or has been terminated.

SEND
The TP can send data to the partner TP and request confirmation. When the conversation is in SEND state, the TP can also
begin to receive data, which can cause the state to change to RECEIVE.

SEND_PENDING
The TP issued a Receive call and received data as well as a send indicator (status_received = CM_SEND_RECEIVED), indicating
that the TP can begin to send data. This state differs from the SEND state, which occurs when the TP receives data on one
Receive call and the send indicator on a subsequent Receive call.

This section contains:

State Checks

Changing Conversation States

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771904(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771947(v=bts.10).aspx

State Checks
A state check occurs when a transaction program (TP) issues a Common Programming Interface for Communications (CPI-C)
call and the conversation is not in the appropriate state. For example, a state check occurs if a TP issues Send_Data while the
conversation is in RECEIVE state. When a state check occurs, CPI-C does not execute the call. It returns state check information
through the return_code parameter.

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx

Changing Conversation States
A change in the conversation state can result from:

A call made by the local transaction program (TP).

A call made by the partner TP.

An error condition.

The following example shows how Common Programming Interface for Communications (CPI-C) calls can change the state of
the conversation from SEND to RECEIVE and from RECEIVE to SEND.

Note
Any TP can send or receive data, regardless of whether it is the invoking TP (the TP that started the conversation) or the invok
able TP (the TP that responded to a request to start a conversation).

This example shows how CPI-C calls can change the conversation state. In this table, each conversation state appears in bold
and precedes the CPI-C calls that are used while in that state.

Issued by the invoking TP Issued by the invokable TP

Conversation state: RESET

Initialize_Conversation

Conversation state: INITIALIZE

Set_Sync_Level

(sync_level=CM_CONFIRM)

Allocate

Conversation state: SEND

Send_Data

Prepare_to_Receive Conversation state: RESET

 Accept_Conversation

 Conversation state: RECEIVE

 (status_received= CM_CONFIRM_SEND_RECEIVED)

 Conversation state: CONFIRM_SEND

 Confirm

 Conversation state: SEND

(return_code=CM_OK) Send_Data

Conversation state: RECEIVE Confirm

(status_received= CM_CONFIRM_RECEIVED)

Conversation state: CONFIRM

Request_To_Send

Confirmed

Conversation state: RECEIVE (return_code=CM_OK)

 (request_to_send_received= CM_REQ_TO_SEND_RECEIVED)

 Prepare_To_Receive

Receive

(status_received= CM_CONFIRM_SEND_RECEIVED)

Conversation state: CONFIRM_SEND

Confirmed

Conversation state: SEND (return_code=CM_OK)

 Conversation state: RECEIVE

Send_Data

Deallocate

 Receive

 (status_received= CM_CONFIRM_DEALLOC_RECEIVED)

 Conversation state: CONFIRM_DEALLOCATE

 Confirmed

(return_code=CM_OK) Conversation state: RESET

Conversation state: RESET

Initial States

Before the conversation is allocated, the state is RESET for both TPs.

In the example, after the conversation is allocated, the initial state is SEND for the invoking TP and RECEIVE for the invokable
TP.

Changing to RECEIVE State

The Prepare_To_Receive call allows a TP to change the conversation from SEND to RECEIVE state. This call:

Flushes the local LU's send buffer.

https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx

Sends a CM_CONFIRM_SEND indicator to the partner TP through the status_received parameter of a Receive call,
because the synchronization level is set to CM_CONFIRM. This indicator tells the partner TP that a Confirmed response is
expected before the partner TP can begin to send data.

Changing to SEND State

The Request_To_Send call informs the partner TP (for which the conversation is in SEND state) that the local TP (for which the
conversation is in RECEIVE state) wants to send data. This request is communicated to the partner TP through the
request_to_send_received parameter of the Confirm call. (The request_to_send_received parameter is also returned to
Send_Data and other calls.)

When the partner TP issues the Prepare_To_Receive call, the conversation state changes to RECEIVE for the partner TP, making
it possible for the local TP to send data.

Important
Issuing Request_To_Send does not change the state of the conversation. Upon receiving a request to send, the partner TP is n
ot required to change the conversation state. It can ignore the request.

https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx

Confirmation Processing
The sequence of events for confirmation processing is as follows:

1. Establish the synchronization level.

2. Send a confirmation request.

3. Receive data and confirmation request.

4. Respond to the confirmation request.

5. Deallocate the conversation.

Using confirmation processing, a transaction program (TP) sends a confirmation request with the data. The partner TP confirms
receipt of the data or indicates that an error occurred. Each time the two TPs exchange a confirmation request and response,
they are synchronized.

Note
Although the example in this section does not show this, any TP can send or receive data, regardless of whether the TP is the
invoking TP or the invokable TP.

The following table illustrates the steps involved in confirmation processing.

Ste
p

Issued by the invoking TP Issued by the invokable TP

1 Initialize_Conversation

2 Set_Sync_Level (sync_level=CM_C
ONFIRM)

3 Allocate

4 Send_Data

5 Confirm

6 Accept_Conversation

7 Receive (data_received= CM_COMPLETE_DATA_RECEIVED) (status_received= CM_CO
NFIRM_RECEIVED)

8 Confirmed

9 (return_code=CM_OK)

10 Send_Data

11 Deallocate

12 Receive

13 (status_received= CM_CONFIRM_DEALLOC_RECEIVED)

14 Confirmed

15 (return_code=CM_OK)

Establishing the Synchronization Level

The Set_Sync_Level call lets you override the default synchronization level of the conversation. The synchronization level is one
of the conversation's characteristics. There are two possible synchronization levels:

CM_CONFIRM, under which the TPs can request confirmation of receipt of data and respond to such requests.

CM_NONE, the default, under which confirmation processing does not occur.

The Initialize_Conversation call sets the default characteristics of a conversation. There are several calls that begin with Set_.
These calls let you override the default conversation characteristics.

Sending a Confirmation Request

Issuing the Confirm call has two effects:

It flushes the local LU's send buffer and sends any data contained in the buffer to the partner TP.

It sends a confirmation request that the partner TP receives through the status_received parameter of a Receive call.

After issuing Confirm, the local TP waits for confirmation from the partner TP.

Receiving a Confirmation Request

The status_received parameter of the Receive call indicates any future action required by the local TP.

In the example, the first Receive has a status_received of CM_CONFIRM_RECEIVED, indicating that a confirmation is required
before the partner TP can continue.

Responding to a Confirmation Request

The partner TP issues the Confirmed call to confirm receipt of data. This frees the local TP to resume processing.

Deallocating the Conversation

Because the synchronization level of the conversation is set to CM_CONFIRM, Deallocate sends a confirmation request with the
data flushed from the buffer.

For the second Receive call, status_received is CM_CONFIRM_DEALLOC_RECEIVED, indicating that the partner TP requires a
confirmation, generated by the Confirmed call, before the conversation can be deallocated.

https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx

Conversation Security
You can use conversation security to require that the invoking transaction program (TP) provides a user identifier and
password before Common Programming Interface for Communications (CPI-C) allocates a conversation with the invokable TP.

For the invoking TP, conversation security is activated and configured (with user identifier and password) through the symbolic
destination name in SNA Manager or by the following calls, which override the symbolic destination name:

Set_Conversation_Security_Type

Set_Conversation_Security_User_ID

Set_Conversation_Security_Password

For the invokable TP, conversation security is activated and configured through registry or environment variables on the
computer where the invokable TP is located.

With communication involving more than two TPs, the verification of a user identifier and password can be passed from one
TP to another. Suppose that TP A invokes TP B, which requires security information, and TP B in turn invokes TP C, which also
requires security information. TP B can inform TP C that conversation security has already been verified.

For information about the registry or environment variables affecting conversation security, see Configuring Invokable TPs. For
information about symbolic destination names and side information, see Side Information for CPI-C Programs.

https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771265(v=bts.10).aspx

Basic and Mapped Conversations Compared
The following table offers some guidelines for choosing between basic and mapped conversations for your transaction
programs (TPs). The default for conversation type is mapped. To change to a basic conversation, use Set_Conversation_Type,
and specify CM_BASIC_CONVERSATION for the conversation_type. For definitions of basic and mapped conversations, see
Fundamental Terms for TPs and LUs.

Characte
ristic

Basic conversations Mapped conversations

Common
use

Generally used for service TPs. Generally used for application TPs.

Partnerin
g

Must be used to communicate with an existing TP that uses basic verbs. Must be used to communicate with an existi
ng TP that uses mapped verbs.

Sending
and recei
ving met
hod

Before a TP can begin a send operation, it must convert data records int
o logical records. The TP does this by adding a 2-byte prefix that indicat
es the length of the record. A TP can send several logical records at one
time.

When a partner TP receives logical records, it must reconstruct them in
to usable data records. For more information, see
Logical Records Used in Basic Conversations.

A TP sends data one record at a time. Neithe
r the sending TP nor the receiving TP needs
to convert data records between different fo
rms.

Abnorma
l terminat
ion

In theDeallocate call, a TP can indicate whether an error or ABEND (abn
ormal program termination) was caused by a TP or by a program using
the TP.

A TP can indicate an error or ABEND, but ca
nnot tell whether a problem was caused by
a TP or by a program using a TP.

ABEND A TP can indicate whether an ABEND was caused by a time-out or by a
critical error.

A TP cannot indicate the cause of an ABEND.

Error log
ging

For an error or ABEND, a TP can send an error message, in the form of
a general data stream (GDS) error log variable, to the local log and to t
he partner logical unit (LU).

For an error or ABEND, a TP cannot send an
error message to the local log or to the part
ner LU.

This section contains:

Logical Records Used in Basic Conversations

An Example of a Mapped Conversation

https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705143(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771303(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771303(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744750(v=bts.10).aspx

Logical Records Used in Basic Conversations
Logical records are sent and received in basic conversations only.

A transaction program (TP) can send or receive multiple logical records with a single Send_Data or Receive call. A TP can also
send or receive a logical record in successive portions: beginning, middle, and end.

A logical record is made up of:

A 2-byte record-length (LL) field.

A data field that can range in length from 0 bytes through 32765 bytes.

The LL field contains a hexadecimal value that is the length of the data field plus two bytes (for the LL field). For example, if a
record contains 228 bytes of application data, the logical record length is 230. The LL field is 0x00E6, the hexadecimal
equivalent of 230. If the length of the data field is 0, the value contained in the LL field is 0x0002.

Logical records are sent from or received in a data buffer established by the TP. In the data buffer, the LL field must not be in
Intel byte-swapped format. For example, a length of 230 must be 0x00E6, not 0xE600.

The LL field cannot be 0x0000 or 0x0001, which allow less than the two bytes required for the LL field itself. The LL field also
cannot be greater than or equal to 0x8000, which is equivalent to decimal 32768 and therefore allows for a data field greater
than 32765 or an LL field greater than 2.

Setting the most significant bit of the LL field to 1 indicates that the information contained in the current logical record is
continued in the next logical record.

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

An Example of a Mapped Conversation
The following example of a mapped conversation shows the Common Programming Interface for Communications (CPI-C)
calls used to start a conversation, exchange data, and end the conversation. Call parameters are in parentheses.

Issued by the invoking TP Issued by the invokable TP

Initialize_Conversation

Allocate

Send_Data

Deallocate Accept_Conversation

 Receive

 (data_received=

 CM_COMPLETE_DATA_RECEIVED)

 (return_code=

 CM_DEALLOCATED_NORMAL)

The following paragraphs describe the calls that are used in a mapped conversation.

Calls for Starting a Mapped Conversation

To start a conversation, the invoking transaction program (TP) issues the following calls:

Initialize_Conversation, which requests CPI-C to set the values defining the characteristics of the conversation. The
Initialize_Conversation call specifies a symbolic destination name that is associated with an entry in a side information
table in memory. The side information specifies partner TP, partner LU, mode, security, and so on.

Allocate, which requests that CPI-C establish a conversation between the invoking TP and the invokable TP.

The invokable TP issues the Accept_Conversation call, which informs CPI-C that it is ready to begin a conversation with the
invoking TP.

Calls for Sending Data in a Mapped Conversation

The Send_Data call puts one data record (a record containing application data to be transmitted) in the send buffer of the local
logical unit (LU). Data transmission to the partner TP does not happen until one of the following events occurs:

The send buffer fills up.

The sending TP makes a call that forces CPI-C to flush the buffer and send data to the partner TP.

In addition to the data record, the send buffer also contains the allocation request (which precedes the data record).

In the preceding example, Deallocate flushes the send buffer, sending the allocation request and data to the partner TP. Other
calls that flush the buffer are Confirm and Flush.

Calls for Receiving Data in a Mapped Conversation

The Receive call receives the data record and status information from the partner TP. If no data or status information is
currently available, the local TP, by default, waits for data to arrive.

The data_received parameter of Receive tells the program whether it received data and if so, whether or not the data is

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

complete.

Calls for Ending a Mapped Conversation

To end a conversation, one of the TPs issues Deallocate, which causes CPI-C to deallocate the conversation between the two
TPs.

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

Using Invoking and Invokable TPs
There are two kinds of transaction programs (TPs): TPs that can invoke (that is, initiate a conversation with) other TPs, and TPs
that can be invoked. A TP that can invoke another TP is called an invoking TP, and a TP that can be invoked is called an
invokable TP.

The following topics describe how:

Invoking TPs request invokable TPs.

Invokable TPs identify themselves to the SNA service in preparation for being invoked.

An invokable TP is matched to an invoking TP's request.

For information about how to configure logical units (LUs) to support TPs, see
Configuring Host Integration Server to Support TPs.

This section contains:

Invoking TPs

Invoking TPs and Contention

Invokable TPs

Subcategories for Invokable TPs

Matching Invoking and Invokable TPs

https://msdn.microsoft.com/en-us/library/aa746208(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754086(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705214(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771677(v=bts.10).aspx

Invoking TPs
An invoking transaction program (TP) can be located on any system on the SNA network. An invoking TP identifies itself by
issuing Initialize_Conversation, which specifies the name of the invoking TP and the symbolic destination name to be used. A
local logical unit (LU) alias can be specified for the invoking TP by using a registry or environment variable, as shown in the
following table.

Operating system on c
omputer that contains
invoking TP

Location and name of variable

Windows 2000, Window
s XP and Windows serve
r 2003

Location in Windows 2000 registry:

HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services SnaBase Parameters Client <exename>
:REG_SZ:localLUalias

Any exename registry entries under the Client key represent the file names of Win32 executable files
(without the file extension) for any invoking TPs. A REG_SZ value associated with each exename regis
try entry specifies the local LU alias for the invoking TP.

For example, the APING.EXE Common Programming Interface for Communications (CPI-C) sample in
cluded with the Microsoft® Host Integration Server software development kit (SDK) would have the f
ollowing registry entry:

HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Services SnaBase Parameters Client APING:REG_
SZ:localLUalias

The registry parameter for the local LU alias takes greatest precedence when associating a local LU to an invoking CPI-C
application. If a registry value is not configured, two other methods are used to associate a local LU to the CPI-C application.

A local APPC LU can be associated with the user context under which the CPI-C application is running A local APPC LU can be
configured by checking the member of default local APPC LU pool check box. Of the two possible options, a local LU
associated with user context has the higher precedence.

If the local LU alias is not specified in a registry or environment variable, SNA service must be configured to supply it through
one of these two types of default local LUs. Otherwise, Initialize_Conversation will fail. For more information, see
Invoking TPs and SNA Service Configuration.

Next, the symbolic destination name specified in Initialize_Conversation provides the name of the invokable (or partner) TP and
the partner LU alias (the LU alias to be used by the invokable TP). With this information available, the invoking TP can issue the
Allocate call.

After a TP successfully issues an Allocate call, an allocation request flows. For more information about what happens after an
invoking TP requests an invokable TP, see Matching Invoking and Invokable TPs.

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753883(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771677(v=bts.10).aspx

Invoking TPs and Contention
The following information applies only to cases where logical units (LUs) are communicating in complex ways (such as chains
of LUs) over multiple sessions. In such cases, two LUs may attempt to allocate a conversation on the same session at the same
time. If this happens, one LU must win (the contention winner) and one must lose (the contention loser). The contention-winner
LU and the contention-loser LU are determined for each session when the session is established. During that particular session,
the contention-loser LU must receive permission from the contention-winner LU before allocating a conversation. In contrast,
the contention-winner LU on that session allocates a conversation as needed.

Note that when two LUs are communicating over multiple sessions, one LU can be the contention winner for some of the
sessions, and the other LU the contention winner for others.

An invoking transaction program (TP) operates most efficiently if the number of concurrent Allocate requests that the TP issues
is matched by the number of sessions on which the local LU is the contention winner. The choice of contention winner is
controlled through the modes configured at the two ends of the communication. A mode must be configured to work with the
mode on the remote system for communication to begin between two LUs.

https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Invokable TPs
An invokable transaction program (TP) is a TP that can be invoked by another TP. Invokable TPs are written or configured
through registry or environment variables to supply their names to the SNA service as a notification that they are available for
incoming requests. An SNA service invokable TP can be run on any computer running Host Integration Server or client.

There are two types of invokable TPs:

Operator-started invokable TPs
An operator-started invokable TP must be started by an operator before the TP can be invoked. When the operator-started
invokable TP is started, it notifies the SNA service of its availability by issuing an Accept_Conversation call. The
Accept_Conversation call causes the name of the invokable TP to be communicated to all the SNA services in the domain,
along with the alias of an associated LU if one has been configured through a registry or environment variable.

Autostarted invokable TPs
An autostarted invokable TP can be started by the SNA service when needed. The TP must be registered through registry
entries or environment variables on its local system, so that it can be identified to the SnaBase component of the SNA
service. The registered information defines the TP as autostarted and must specify the TP name. The registered information
can also specify the local LU alias that the invokable TP will use.

The recommended method for setting registry or environment variables for autostarted invokable TPs is to use the sample
TP configuration program, TPSETUP, or similar code written into your own installation program. For more information about
registry or environment variables for invokable TPs, see Configuring Invokable TPs. For information about TPSETUP, see
CPI-C Samples.

If no local LU alias is registered with autostarted TPs, the resulting SNA service configuration can be more flexible in
responding to invoking requests. For more information about such flexible configurations, see
TP Name Not Unique; Local LU Alias Unspecified.

After an autostarted invokable TP is started by SNA service, the TP issues Accept_Conversation just as an operator-started TP
does. Accept_Conversation must provide the TP name that was registered for the TP.

Autostarted TPs must be configured through registry or environment variables to be either queued or nonqueued. All
operator-started TPs act as queued TPs.

Queued TPs
If an autostarted TP is configured as queued, or if the TP is operator-started, incoming allocation requests are queued, and
then sent only when the invokable TP issues Accept_Conversation. For autostarted invokable TPs, if a copy of the TP is not
yet running, one is started when an incoming allocation request specifies that TP.

Note
For the Microsoft® Windows Server™2003 and Windows2000 system, only one copy of a service can be running at any gi
ven time. This means that all autostarted TPs that run as services under Windows Server2003 and Windows2000 must be
queued. To write an autostarted TP so it runs under Windows Server2003 and Windows2000 as a service and also runs in
a nonqueued way, write a multithreaded program with an Accept_Conversation always outstanding.

Nonqueued TPs
If an autostarted TP is configured as nonqueued, a new copy will be started every time an Allocate is received for the TP.
Nonqueued TPs should process the conversation they have been allocated, and then exit, because they will not receive any
additional Allocate requests.

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771472(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Subcategories for Invokable TPs
The following table shows subcategories for invokable transaction programs (TPs).

Queued or nonqueued Application or service Starting method
Queued Running as an application or a service Autostarted or operator-started

Nonqueued Running as an application Autostarted

The concept of a TP running as a service or running as an application is distinct from a service TP or an application TP. Service
TP and application TP are SNA terms that describe how a TP is used: either as a supportive service program for other Common
Programming Interface for Communications (CPI-C) programs, or directly by a user, as an application. For detailed information
about services in Windows Server 2003 and Windows 2000, see the documentation for Windows Server 2003 and
Windows 2000.

To write an autostarted TP so it runs under Windows Server 2003 and Windows 2000 as a service and also runs in a
nonqueued way, write a multithreaded program with an Accept_Conversation always outstanding. For more information, see
Invokable TPs.

To run an autostarted TP as an application under Windows Server 2003 and Windows 2000, make sure the TPSTART program
is always started before the TP. For more information, see CPI-C Samples.

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

Matching Invoking and Invokable TPs
Each SNA service maintains a list of available invokable transaction program (TP) names and any logical unit (LU) aliases to be
associated with the TP names. This information is obtained as follows:

For autostarted invokable TPs, registry or environment variables identify a TP name containing a maximum of eight
characters, and can specify an associated LU. This information is sent from the client to the server that sponsors the
client. A client learns about the domain through a sponsor connection to a server. Clients must establish the sponsor
connection before proceeding with any other tasks.

For operator-started invokable TPs, a TP name (with a maximum of 64 characters) is specified in Specify_Local_TP_Name.
The TP name is truncated to eight characters and sent from the client to the server that sponsors the client, along with the
alias of an associated LU if one has been configured through a registry or environment variable.

Note
If you want a TP name to be unique, it is recommended that you limit the name to eight characters or fewer, or make th
e name unique within the first eight characters. This is because the preliminary routing of allocation requests is carried
out using the first eight characters. Although further matching is later carried out between the full TP names, it is ineffic
ient to allow the preliminary routing to succeed when in some cases the later matching will fail.

The next step in the matching of invoking and invokable TPs is the creation of a side information table from the parameters in
the symbolic destination name. Then the invoking TP issues the Allocate call and an allocation request flows to the partner LU
specified in the side information table, stating the name of the invokable TP that has been requested (also listed in the side
information table).

When an allocation request arrives, the SNA service compares the requested invokable TP name and LU alias to the list of
available invokable TPs (which can include associated LU aliases). The comparison can be modified by registry variables, but by
default is carried out as follows:

Although the TP name requested in the symbolic destination name can be as long as 64 characters, any name received
through a registry or environment variable is limited to eight characters or less. Therefore, only the first eight characters
of TP names are used in comparisons.

The comparison is carried out first on both the TP name and the LU alias. An invokable TP for which there is a match on
both TP name and LU alias will be chosen ahead of a TP for which no LU alias has been configured through a registry or
environment variable. A TP for which no LU alias has been configured can be matched with any request that specifies
that TP name, because there cannot be a mismatch based on LU alias.

The comparison of requested and available TP names is carried out in a specific order:

1. The SNA service first checks for operator-started invokable TPs on the local system (the local Host Integration
Server).

2. If no match is found, the SNA service checks for autostarted invokable TPs on the local system (the local Host
Integration Server).

3. If no match is found, the SNA service checks for operator-started invokable TPs on other computers running Host
Integration Server or clients.

4. If no match is found, the SNA service checks for autostarted invokable TPs on other computers running Host
Integration Server or clients.

This comparison can be modified somewhat by registry entries for the SnaServr service. The entries are called
DloadMatchTPOnly and DloadMatchLocalFirst.

https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

If a match is found, the SNA service signals the system containing the requested TP to connect to that SNA service. If no match
is found, the SNA service rejects the incoming request.

For suggestions about specific ways to handle TP names and LU aliases, see Arranging TPs Within an SNA Network.

Note
Because of the way Common Programming Interface for Communications (CPI-C) works, an allocation request does not flow
until local data buffers are full, or a Confirm or Flush call is made. This may mean that the allocation request does not flow un
til some time after the Allocate call is made. Therefore, any allocation failure caused by the rejection of the allocation request
at the partner LU will be observed as the failure of a later call with one of the allocation failure return codes.

https://msdn.microsoft.com/en-us/library/aa705655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Configuring Invokable TPs
The following topics tell how to configure invokable transaction programs (TPs) for the various Microsoft® SNA service client
types.

This section contains:

Clients Running Windows XP or Windows 2000

https://msdn.microsoft.com/en-us/library/aa754043(v=bts.10).aspx

Clients Running Windows XP or Windows 2000
On clients running Microsoft® Windows® XP or Windows 2000, invokable transaction programs (TPs) are configured through
the Windows XP or Windows 2000 registry.

Note
With WindowsXP and Windows2000, the recommended method for setting registry variables for autostarted invokable TPs i
s to use the sample TP configuration program, TPSETUP. Compile INSTALL.C, the source code for TPSETUP, for the Windows
XP and Windows2000 environment. When you write an installation program for autostarted invokable TPs, it is recommende
d that you add code similar to TPSETUP to the installation program. For information about TPSETUP, see CPI-C Samples.

For clients running Windows XP or Windows 2000, it is recommended that autostarted invokable TPs be written as
Windows XP or Windows 2000 services. Be sure to include code like that in TPSETUP in the program that installs your TPs.
Among other things, TPSETUP shows how to use the CreateService function when installing a TP. For important information
about how services work under Windows 2000, see the documentation for Windows 2000.

The following table lists the registry entries used for the types of invokable TPs that can be run on Windows XP or
Windows 2000 clients.

Type of TP Location in registry Possible registry entries
Autostarted invokable TP run
ning as a service on Windows
XP or Windows 2000 client.

HKEY_LOCAL_MACHI
NE SYSTEM CurrentC
ontrolSet Services T
PName

(and subkeys)

Registry entries created by the CreateService call, including entries that
specify the path, display name, and other characteristics of the service.

—plus—

Linkage OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters SNAServiceType:REG_DWORD:0x5 LocalLU:REG_SZ:LUalias
Parameters:REG_SZ:ParameterList Timeout:REG_DWORD:number Accep
tNames:REG_SZ:TPNameList ConversationSecurity:REG_SZ:{ YES | NO }
AlreadyVerified:REG_SZ:{ YES | NO }Username1:REG_SZ:Password1 ...Us
ernameX:REG_SZ:PasswordX

For more information, see the notes following this table.

Autostarted invokable TP run
ning as an application on a Wi
ndows XP or Windows 2000 c
lient. For more information, se
e the notes following this tabl
e.

HKEY_LOCAL_MACHI
NE SYSTEM CurrentC
ontrolSet Services S
naBase Parameters T
Ps TPName Paramete
rs

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 }PathName:REG_EXPAND_
SZ:pathLocalLU:REG_SZ:LUaliasParameters:REG_SZ:ParameterListTim
eOut:REG_DWORD:numberAcceptNames:REG_SZ:TPNameListConver
sationSecurity:REG_SZ:{ YES | NO }AlreadyVerified:REG_SZ:{ YES | N
O }Username1:REG_SZ:Password1 ...UsernameX:REG_SZ:PasswordX

For more information, see the notes following this table.

Operator-started invokable TP
running as a service on a Win
dows XP or Windows 2000 cli
ent.

HKEY_LOCAL_MACHI
NE SYSTEM CurrentC
ontrolSet Services T
PName

(and subkeys)

Registry entries created by the CreateService call, including entries that
specify the path, display name, and other characteristics of the service.

—plus—

Linkage OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters SNAServiceType:REG_DWORD:0x1A LocalLU:REG_SZ:LUalia
s Timeout:REG_DWORD:number ConversationSecurity:REG_SZ:{ YES | N
O } AlreadyVerified:REG_SZ:{ YES | NO }Username1:REG_SZ:Password1 ..
.UsernameX:REG_SZ:PasswordX

For more information, see the note following this table.

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

Operator-started invokable TP
running as an application on a
Windows XP or Windows 200
0 client.

HKEY_LOCAL_MACHI
NE SYSTEM CurrentC
ontrolSet Services S
naBase Parameters T
Ps TPName Paramete
rs

SNAServiceType:REG_DWORD:0x1ALocalLU:REG_SZ:LUaliasTimeOut
:REG_DWORD:numberConversationSecurity:REG_SZ:{ YES | NO }Alre
adyVerified:REG_SZ:{ YES | NO }Username1:REG_SZ:Password1 ...User
nameX:REG_SZ:PasswordX

For more information, see the note following this table.

Note
Before an autostarted TP can be started as an application on a Windows 2000 or later client, the TPSTART program must be s
tarted. For more information, see CPI-C Samples.

Note
AlreadyVerified and Username/Password entries are used only if ConversationSecurity is set to YES.

This section contains:

Registry Entries for Clients Running Windows XP or Windows 2000

Example of Registry Entries for Windows XP or Windows 2000

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704784(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771744(v=bts.10).aspx

Registry Entries for Clients Running Windows XP or Windows
2000

The following list gives details about registry entries for clients running Windows XP or Windows 2000. For each transaction
program (TP) type, the applicable variables and their locations are shown in Clients Running Windows XP or Windows 2000.

OtherDependencies:REG_MULTI_SZ:SnaBase
For a TP running as a service, ensures that the SnaBase service is started before the TP is started. This entry belongs under
the Linkage subkey.

SNAServiceType:REG_DWORD:{ 0x5 | 0x6 | 0x1A }
Indicates the type of TP. Use a value of 0x5 for an autostarted queued TP, 0x6 for an autostarted nonqueued TP, and 0x1A for
an operator-started TP.

Note that the value for an autostarted TP running as a service must be 0x5, because these TPs are always queued, as
described in Invokable TPs.

PathName:REG_EXPAND_SZ: path
For an autostarted TP running as an application, specifies the path and file name of the TP. The data type of REG_EXPAND_SZ
means that the path can contain an expandable data string For example, %SystemRoot% represents the directory containing
the Windows 2000 system files. Note that for a TP running as a service, an equivalent entry is inserted by the CreateService
call. No additional path entry is needed.

LocalLU:REG_SZ: LUalias
Specifies the alias of the local LU to be used when this TP is started on this computer.

Parameters:REG_SZ: ParameterList
Lists parameters to be used by the TP. Separate parameters with spaces.

Timeout:REG_DWORD: number
Specifies the time, in milliseconds, that an Accept_Conversation will wait before timing out. Specify number in decimal. The
registry editor converts this to hexadecimal before displaying it. The default is infinity (no limit).

AcceptNames:REG_SZ: TPNameList
With Windows 2000, used for autostarted TPs only. Lists additional names under which the invokable TP can be invoked.
Separate TP names with spaces. The default is none. If an invokable TP does not issue a Specify_Local_TP_Name for each
name configured under AcceptNames in the registry, that TP will fail.

ConversationSecurity:REG_SZ:{ YES | NO }
Indicates whether this TP supports conversation security. The default is NO.

AlreadyVerified:REG_SZ:{ YES | NO }
Indicates whether this TP can be invoked with a user identifier and password that have already been verified.
AlreadyVerified is ignored if ConversationSecurity is set to NO.

For a diagram of three TPs in a conversation, where the third TP can be invoked with a password that is already verified by
the second TP, see Communication Between TPs. The following table shows the requirements for using password verification
in a chain of TPs.

First TP (an invoking TP) Second TP (invokable TP that confirms
password, and then invokes another T
P)

Third and subsequent TPs (invoka
ble TPs that invoke other TPs)

Does not need registry or environment vari
ables.

ConversationSecurity setting must be Y
ES.

ConversationSecurity setting must
be YES.

Does not need registry or environment vari
ables.

AlreadyVerified setting can be YES or N
O.

AlreadyVerified setting must be YE
S.

https://msdn.microsoft.com/en-us/library/aa754043(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745340(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754408(v=bts.10).aspx

Symbolic destination name or Set_Conver
sation_ Security_Type in this TP specifies
PROGRAM for the security type. As a result,
the TP passes along the user identifier and
password supplied in the symbolic destinat
ion name (or through calls (1)).

Symbolic destination name or Set_Conve
rsation_ Security_Type in this TP specifie
s SAME for the security type. As a result, af
ter confirming the user identifier and pass
word, the TP passes along the user identifi
er and an already-verified flag.

Symbolic destination name or Set_C
onversation_ Security_Type in this
TP specifies SAME for the security ty
pe. As a result, the TP passes along th
e user identifier as received, along wi
th the already-verified flag.

Note
Set_Conversation_Security_User_ID or Set_Conversation_Security_Password overwrites the user identifier and passwor
d specified in the symbolic destination name.

Note
If you set AlreadyVerified to NO, this TP cannot join in a chain of conversations where password verification is already do
ne. (The exception to this is when ConversationSecurity is set to NO, in which case the TP could be the final TP in such a c
hain, because it performs no checking.)

Note
If you are configuring a TP that sometimes needs to confirm a password and sometimes accepts an already-verified flag, se
t AlreadyVerified to YES and configure the UsernameX variable appropriately. In this case, whenever the TP is invoked with
out the already-verified flag set, AlreadyVerified is ignored. Verification is attempted with the user identifier and password
configured for the TP.

Note
The default for AlreadyVerified is NO. If you set AlreadyVerified to YES, make sure that ConversationSecurity is also set to Y
ES.

Username1 :REG_SZ: Password1... UsernameX:REG_SZ: PasswordX
Sets one or more user names and passwords to be compared with those sent by the invoking TP. The user name and
password can each be as many as 10 characters. Both parameters are case-sensitive.

This variable is ignored if conversation security is not activated or if the password has already been verified, as described for
the AlreadyVerified entry.

Example of Registry Entries for Windows XP or Windows 2000
For an autostarted invokable transaction program (TP) called BounceTP and running as a service, the following registry entries might be added to a client running Windows XP or Windows 2000. The
entries would be added to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services, under the subkeys shown in bold type.

Note
In the following list, the parameters listed directly under the BounceTP key (such as DisplayName and ErrorControl) are service parameters created when TPSETUP or similar code is run to install the T
P. These parameters should be created by TPSETUP or similar code. They should not be set manually. For more information about TPSETUP, see CPI-C Samples.

BounceTP
DisplayName:REG_SZ:BounceTPErrorControl:REG_DWORD:0x1ImagePath:REG_EXPAND_SZ:c:\sna\system\bouncetp.exeObjectName:REG_SZ:LocalSystemStart:REG_DWORD:0x3Type:REG_DWORD:0x10

Linkage

OtherDependencies:REG_MULTI_SZ:SnaBase

Parameters

SNAServiceType:REG_DWORD:0x5LocalLU:REG_SZ:JohnDoeParameters:REG_SZ:Arg1 Arg2
Arg3Timeout:REG_DWORD:0x100ConversationSecurity:REG_SZ:yesAlreadyVerified:REG_SZ:noJohnDoe:REG_SZ:SecretPassword

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

Configuring Host Integration Server to Support TPs
The following topics describe how the Host Integration Server 2009 configuration works with invoking and invokable
transaction programs (TPs.)

In This Section

Invoking TPs and SNA Service Configuration

Invokable TPs and the SNA Service Configuration

Arranging TPs Within an SNA Network

Troubleshooting for Invokable TPs

https://msdn.microsoft.com/en-us/library/aa753883(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705655(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745001(v=bts.10).aspx

Invoking TPs and SNA Service Configuration
For an SNA service to support the beginning of the invoking process, the following parameters must be configured correctly:

If the invoking transaction program (TP) specifies the logical unit (LU) alias that it uses (in a registry or environment
variable), that LU alias must match a local Advanced Program-to-Program Communications (APPC) LU alias on the
supporting SNA service. If the invoking TP does not specify a local LU alias, one of two methods for designating a default
LU must be carried out on the supporting SNA service:

Assign a default local APPC LU to the user or group that starts the invoking TP (that is, the user or group logged
on at the system from which Initialize_Conversation is issued).

—or—

Designate one or more LUs as members of the default outgoing local APPC LU pool. Host Integration Server or
SNA service first attempts to determine the default local APPC LU of the user who started the TP, then attempts to
assign an available LU from the default outgoing local APPC LU pool. If these attempts fail, SNA service rejects
the request.

In most situations, the supporting SNA service must contain an appropriate connection to another system (host or peer).
Sometimes, for testing purposes, the SNA service contains two local LUs paired together (for invoking and invokable TPs
that are in the same domain). In this situation, a connection to a host or peer is not necessary.

The partner LU alias specified in the symbolic destination name must match an LU alias that is paired with the local LU
alias used by the invoking TP.

The preceding parameters support the beginning of the invoking process. For the invoking process to successfully complete,
additional parameters must be configured as described in Invokable TPs and the SNA Service Configuration.

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754326(v=bts.10).aspx

Invokable TPs and the SNA Service Configuration
For an SNA service to receive allocation requests from an invoking transaction program (TP) on another system and route
those requests to an invokable TP, certain parameters must be configured correctly:

The SNA service must have a connection to the system from which the invoking TP's request is sent.

The SNA service must have a remote logical unit (LU) capable of receiving the incoming request. This remote LU can be
configured either explicitly or implicitly.

When configured explicitly, there is an explicit match between a remote LU alias on the SNA service and the alias of the
LU that conveys the invoking TP's request.

When configured implicitly, an implicit incoming remote LU (with its implicit incoming mode) is used. This means that
several items must work together. First, the LU alias specified in the incoming request (the LU alias requested for the
invokable TP) must match a local LU alias on the SNA service receiving the request. Second, the local LU on the server
must have an implicit incoming remote LU assigned to it. The properties of the implicit incoming remote LU will be used
for that LU-LU session.

Appropriate local LUs must be defined in the SNA service configuration. For descriptions of several ways to set up these
local LUs, see Arranging TPs Within an SNA Network.

https://msdn.microsoft.com/en-us/library/aa705655(v=bts.10).aspx

Arranging TPs Within an SNA Network
If your Host Integration Server installation contains multiple systems (clients or SNA services), you can place a given invokable
transaction program (TP) on more than one system. When an invoking request is received in such an installation, there can be
a choice of systems on which to run the invokable TP. You can maintain specific control over this choice. Alternatively, by
following the instructions in TP Name Not Unique; Local LU Alias Unspecified, you can enable SNA service to make the choice
randomly to distribute the load.

You can maintain specific control over this choice of system by setting up invokable TPs with unique names, or by setting up
each invokable TP to run only with a specific, unique logical unit (LU) alias. With this arrangement, the information provided by
the invoking TP (in the symbolic destination name) specifies the system on which the invokable TP should run.

You can allow the SNA service to make the system choice randomly by setting the DloadMatchLocalFirst registry entry to
NO and using invokable TPs that leave the local LU alias unspecified. Then, when an incoming request is received, it is routed
randomly, rather than preferentially to the local server. In addition, no matter what LU alias is requested for the invokable TP,
there cannot be a mismatch. SNA service starts one instance of the requested TP, choosing randomly among the available
systems.

The following topics describe some of the possible arrangements that can be made for running TPs.

This section contains:

TP Name Unique for Each TP

TP Name Not Unique; Local LU Alias Unique

TP Name Not Unique; Local LU Alias Unspecified

https://msdn.microsoft.com/en-us/library/aa746057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705148(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770516(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746057(v=bts.10).aspx

TP Name Unique for Each TP
One way to specify the intended system where the invokable transaction program (TP) will run is to use a unique TP name for
each invokable TP. In this arrangement, the invoking TP identifies the intended invokable TP (and system) simply by naming
the TP. This makes it unnecessary for an invokable TP to specify any logical unit (LU) alias in registry or environment variables.

TP Name Not Unique; Local LU Alias Unique
Another way to specify the intended system where the invokable transaction program (TP) will run is to give the same name to
multiple invokable TPs, but associate each TP with a unique local logical unit (LU) alias. To do this, configure each invokable TP
(through registry or environment variables) to use a unique local LU alias. Then set up the invoking TPs so that each one is
routed not only to the correct TP name but also to the correct partner LU alias for the intended invokable TP.

TP Name Not Unique; Local LU Alias Unspecified
If it does not matter on which system an invokable transaction program (TP) runs, use the same name for multiple invokable
TPs and do not specify a logical unit (LU) alias in the registry or environment variables for the TPs. In this situation, there are no
associated LU aliases in the list of available invokable TP names on a computer running Host Integration Server. Thus, a
request received from an invoking TP cannot cause a mismatch on the LU alias, and will match according to the TP name.

In this situation, if you set the DloadMatchLocalFirst registry entry to NO, the SNA service randomly routes the request to
one of the available TPs. This spreads the processing load among multiple systems and provides hot backup (the ability to take
systems online and offline without disrupting service).

Troubleshooting for Invokable TPs
 

If there are difficulties with starting an invokable transaction program (TP), there may be a mismatch between the information
for the invokable TP, the invoking TP, or logical units (LUs) in the SNA service configuration. That is, there may be a mismatch
between the symbolic destination parameters, the registry or environment variables, or LU aliases specified in SNA Manager.
For details about how to specify LU aliases in SNA Manager, see Invoking TPs and SNA Service Configuration.

https://msdn.microsoft.com/en-us/library/aa753883(v=bts.10).aspx

Simplifying CPI-C Configuration
There are several features in Host Integration Server 2009 that can simplify configuration for Common Programming Interface
for Communications (CPI-C):

The implicit, incoming remote logical unit (LU) and the implicit, incoming mode which allow SNA service to accept
requests that arrive by unrecognized remote LUs and modes.

The default local Advanced Program-to-Program Communications (APPC) LU and the default remote APPC LU, which
allow LU aliases to be associated with user or group names, simplifying the routing of incoming requests and the
configuration of client systems.

The default outgoing local APPC LU pool, which enables LUs to be allocated dynamically to any invoking TP that does not
specify a local LU.

Automatic partnering, which automatically creates LU-LU pairs and assigns modes to the pairs.

Support for CPI-C Automatic Logon
This section describes the support for automatic logon for Common Programming Interface for Communications (CPI-C)
applications that is available in Host Integration Server 2009. This feature requires specific configuration by the network
administrator. The CPI-C application must be invoked on the local area network (LAN) side from a client of Host Integration
Server. The client must be logged into a Microsoft Windows domain, and the client application must be running on Windows
Server 2003, Windows XP, or Windows 2000.).

To use this feature, the CPI-C client application is coded to use program level security, with a special hard-coded user name of
MS$SAME and password of MS$SAME. When this session allocation flows from client to SNA services, Host Integration Server
looks up the host account and password corresponding to the Windows 2000 account under which the client is logged on, and
substitutes the host account information into the APPC attach message it sends to the host.

Use the following function calls to use CPI-C:

Call the Set_Conversation_Security_Type function with the conversation_security_type parameter set to
CM_SECURITY_PROGRAM.

Call the Set_Conversation_Security_User_ID function with the security_user_ID parameter set to the MS$SAME string and
the security_user_ID_length parameter set to 7.

Call the Set_Conversation_Security_Password function with the security_password parameter set to the MS$SAME string
and the security_password_length parameter set to 7.

https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx

LUA Programmer's Guide
This section of the Host Integration Server 2009 Developer's Guide provides the programmatic techniques and procedures for
creating applications with the logical unit application (LUA) programming interface.

For API references and other technical information about LUA, see LUA Programmer's Reference.

For sample code using LUA, see LUA Samples.

This section contains:

LUA Guide

LUA Concepts

Writing LUA Applications

Support for LUA Single Sign-On

https://msdn.microsoft.com/en-us/library/aa745364(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705241(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704954(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746200(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705791(v=bts.10).aspx

LUA Guide
This section provides information required to develop C-language applications that use the conventional logical unit
application (LUA) programming interface to exchange data in a Systems Network Architecture (SNA) environment.

This implementation of LUA is compatible with the Request Unit Interface (RUI) and the Session Level Interface (SLI) of earlier
versions of the LUA for the Microsoft Windows NT and Microsoft Windows 95 operating systems, the Windows graphical
environment, and the IBM Extended Services for OS/2 version 1.0.

This section provides conceptual information and detailed reference information.

To use this section effectively, you should be familiar with:

Microsoft Host Integration Server 2009

Microsoft Windows Server™ 2003 and Windows 2000 Server

SNA concepts

General concepts for the communications software you have installed. (Refer to your product documentation for
information.)

Microsoft Visual C++ version 6.0 or later

In This Section

Operating Systems Support for LUA Development

Finding Further Information about LUA

https://msdn.microsoft.com/en-us/library/aa746081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754100(v=bts.10).aspx

Operating Systems Support for LUA Development
This section contains information relating to Microsoft Windows Server 2003 and Windows 2000 Server.

Host Integration Server 2009 supports the development of logical unit application (LUA) applications for Windows Server
2003 and Windows 2000 Server. Support for LUA applications is provided only for the Win32 system.

Finding Further Information about LUA
This section does not provide a detailed explanation of products, architectures, or standards other than those directly
pertaining to the Microsoft® Windows® logical unit application (LUA) programming interface. For information about specific
operating environments, refer to your system documentation. For information about SNA, refer to your system network
documentation.

The following topics provide additional information about Microsoft Host Integration Server application programming
interfaces (APIs) based on SNA architecture:

About the APPC Guide

APPC Programmer's Guide

CPI-C Programmer's Guide

For more information about SNA and about 3270 information display systems, see the following manuals:

IBM 3270 Information Display System: 3274 Control Unit Description and Programmers Guide

IBM 3270 Information Display System: Color and Programmed Symbols

IBM 3270 Information Display System: 3274 Control Unit Display Station: Operators Guide

IBM Systems Network Architecture: Technical Overview

IBM Systems Network Architecture: Concepts and Products

IBM Advanced Communications Function Products Installation Guide

IBM Installation and Resource Definition

IBM 9370 LAN Token Ring Support

IBM SNA Format and Protocol Reference Manual: Architectural Logic

For background information about logical unit (LU) 6.2, Advanced Program-to-Program Communications (APPC), and/or the
Common Programming Interface for Communications (CPI-C), see the following manuals:

IBM Systems Network Architecture: Introduction to APPC

IBM Systems Network Architecture: Transaction Programmers Reference Manual for LU Type 6.2

IBM SNA: Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2

IBM SNA: Formats

IBM SNA: Technical Overview

IBM SNA: ACF/VTAM Programming for LU Type 6.2

https://msdn.microsoft.com/en-us/library/aa745677(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754719(v=bts.10).aspx

LUA Concepts
The conventional logical unit application (LUA) programming interface is an application programming interface (API) that
enables you to write LUA applications to communicate with host applications.

The interface is provided at the request/response unit and session levels, enabling programmable control over the Systems
Network Architecture (SNA) messages sent between your communications software and the host. It can be used to
communicate with any of the logical unit types 0, 1, 2, or 3 at the host. The application must send the appropriate SNA
messages as required by the host.

For example, you can use LUA to write a 3270 emulation program that communicates with a host 3270 application.

This section contains:

Windows LUA Overview

LUs and Sessions

Configuring for LUA

LUA Verb Summary

A Sample LUA Communication Sequence

https://msdn.microsoft.com/en-us/library/aa771898(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771972(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705578(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772093(v=bts.10).aspx

Windows LUA Overview
To provide one common application programming interface (API) to port applications from various operating environments to
Microsoft® Windows Server™ 2003 or Windows® 2000 Server, a Windows Systems Network Architecture (SNA) standard
was created. As a direct result of this work, Windows logical unit application (LUA) was developed. The LUA verbs, routines, and
information presented in this guide represent an evolving Windows LUA that is based on IBM Extended Services for OS/2
version 1.0 and includes a set of Windows extensions.

The use of the Windows LUA interface on Windows Server 2003 or Windows 2000 causes additional threads to be created
within the calling process. These other threads perform interprocess communication with the SNA service over the LAN
interface that the client is configured to use (for example, TCP/IP, IPX/SPX, or named pipes).

If an application using Windows LUA is running on Windows Server 2003 or Windows 2000, stopping the SNABASE service
causes the application to be unloaded from memory.

This section contains:

Windows LUA Asynchronous Support

Before Using Windows LUA

Using LUA and Asynchronous Verb Completion

https://msdn.microsoft.com/en-us/library/aa754748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771050(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705157(v=bts.10).aspx

Windows LUA Asynchronous Support
Asynchronous verb completion returns immediately from issuing an initial verb (before results have been received) so the
application can continue with other processes. A program that issues a verb and does not regain control until the operation
completes cannot perform any other operations. This synchronous type of operation, called blocking, is not suited to a server
application designed to handle multiple requests from many clients.

By design, logical unit application (LUA) is asynchronous and uses semaphores for notification messages. Semaphores work
well for Windows Server 2003 or Windows 2000. Windows LUA provides the following functions for issuing the Request Unit
Interface (RUI) and Session Level Interface (SLI) verbs:

RUI

SLI

WinRUI

WinSLI

WinRUI and WinSLI provide asynchronous message notification for all Windows-based RUI and SLI verbs, while RUI and SLI
provide support for event notification. Windows version 3.x applications use WinRUI and WinSLI for asynchronous message
notification.

Asynchronous support allows you to be notified of verb completion based on a window handle. You can register a window
handle using the RegisterWindowsMessage function with "WinRUI" or "WinSLI" as the string. You then issue a verb using the
WinRUI or WINSLI function and passing a window handle. When the LUA verb conversation completes, a message is posted to
the window handle that you passed, notifying you that the verb is complete.

The only other Windows extension functions required for Windows LUA are for initialization (WinRUIStartup or WinSLIStartup)
and termination (WinRUICleanup or WinSLICleanup) purposes. Depending on your application, other Windows extensions
may be useful, but they are not required. A complete description of all Windows LUA verbs, routines, and extensions is
provided in LUA RUI Verbs, LUA SLI Verbs, and LUA Extensions for the Windows Environment.

https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771965(v=bts.10).aspx

Before Using Windows LUA
The following Windows extensions are of particular importance and should be reviewed before using the logical unit
application (LUA) application programming interface (API) and this version of Host Integration Server 2009:

RUI

Provides event notification for all Request Unit Interface (RUI) verbs. The application must provide a handle to an event in
the lua_post_handle member of the verb control block (VCB). The event must be in the not-signaled state. When the
asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of the
event, examine the primary return code and secondary return code for any error conditions.

SLI

Provides event notification for all Session Level Interface (SLI) verbs. The application must provide a handle to an event in
the lua_post_handle member of the VCB. The event must be in the not-signaled state. When the asynchronous
operation is complete, the application is notified through the signaling of the event. Upon signaling of the event, examine
the primary return code and secondary return code for any error conditions.

WinRUI

Provides asynchronous notification for all Windows-based RUI verbs. When the asynchronous operation is complete, the
application's window hWnd receives the message returned by RegisterWindowMessage with "WinRUI" as the input
string. The lParam argument of the message contains the address of the VCB being posted as complete. The wParam
argument of the message is undefined.

An application must call WinRUIStartup for initialization before calling WinRUI.

WinRUICleanup

An application must call this function when finished using RUI verbs to deregister itself from the Windows LUA
implementation. This function terminates and deregisters an application from a Windows LUA implementation.

WinRUIStartup

An application must call this function to register itself with a Windows LUA implementation before issuing any further
Windows LUA calls using RUI verbs. This function allows an application to specify the version of Windows LUA required
and to retrieve details of the specific LUA implementation.

WinSLI

Provides asynchronous notification for all Windows-based SLI verbs. When the asynchronous operation is complete, the
application's window hWnd receives the message returned by RegisterWindowMessage with "WinSLI" as the input
string. The lParam argument of the message contains the address of the VCB being posted as complete. The wParam
argument of the message is undefined.

An application must call WinSLIStartup for initialization before calling WinSLI.

WinSLICleanup

An application must call this function when finished using SLI verbs to deregister itself from the Windows LUA
implementation. This function terminates and deregisters an application from a Windows LUA implementation.

WinSLIStartup

An application must call this function to register itself with a Windows LUA implementation before issuing any further
Windows LUA calls using SLI verbs. This function allows an application to specify the version of Windows LUA required

https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx

and to retrieve details of the specific LUA implementation.

Using LUA and Asynchronous Verb Completion
Host Integration Server permits one outstanding Windows SNA asynchronous call per connection and one blocking verb per
thread. When the asynchronous verb completes, logical unit application (LUA) does the following for a Windows Server 2003
or Windows 2000 system.

Two types of notification are possible:

The preferred type is the event method, in which the LUA application issues
WaitForSingleObject/WaitForMultipleObject.

The application can also post the"WinRUI"/"WinSLI" notification message to the window handle of the WinRUI/WinSLI
message.

LUs and Sessions
The following figure shows the SNA components required for logical unit application (LUA) communications.

SNA components required for LUA communications

An LUA application uses a local LU, which uses Host Integration Server 2009 to communicate with the host system. There are
three progressive sessions when Host Integration Server connects to the host node:

The PU-SSCP session, between the Host Integration Server physical unit (PU) and the host's system services control point
(SSCP). This is used mainly for diagnostic information. LUA communications require only the capabilities of PU 2.0. Host
Integration Server provides these capabilities, plus the additional capabilities included in PU 2.1.

The SSCP-LU session, between the LUA LU at the computer and the SSCP. This is used for controlling the LU.

The LU-LU session, between the LUA LU at the computer and the host LU. This is used for data transfer between the
computer and the host application.

LUA allows applications to send and receive data on the SSCP-LU session and on the LU-LU session. An LUA application can
send data on this session using the common service verb TRANSFER_MS_DATA. LUA does not provide access to the PU-SSCP
session.

The SSCP and LU sessions each provide two priorities of messages, normal and expedited. Expedited messages take
precedence over other messages waiting to be transmitted on the same session. There are four different flows on which a
message can be sent or received:

SSCP session (expedited flow)

LU session (expedited flow)

SSCP session (normal flow)

LU session (normal flow)

The LU session normal flow carries most of the data. The other flows are used only for control purposes.

Note
The implementation of LUA in Host Integration Server 2009 does not allow applications to send data on the SSCP expedited f
low and does not return data to an application on this flow.

https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx

Configuring for LUA
The Host Integration Server 2009 configuration file, which is set up and maintained by the system administrator, contains
information that is required for logical unit application (LUA) applications to communicate. An LUA LU is configured by the link
service to use a connection to the host, and is given an LU number that matches that of an LU on the host.

The configuration can include LUA LU pools. A pool is a group of LUs with similar characteristics, and it enables an application
to use any free LU from the pool. This feature can be used to allocate LUs on a first-come, first-served basis when there are
more applications than LUs available, or to provide a choice of LUs on different connections.

The following communications components are configured for use with an LUA application.

Compo
nent

Description

Link ser
vice

A link service for communicating with the host. This component is normally configured by the Setup program during
Host Integration Server 2009 installation.

Connect
ion

A connection to the host that uses the link service.

Local no
de

A local node that owns the connection. This component is configured automatically.

LUA LU An LUA LU on the local node, configured to use the connection, with an LU number that matches an LU on the host.

LUA LU
pool (op
tional)

If necessary, you can configure more than one LUA LU for the application, and group the LUs into a pool. This means
that an application can specify the pool rather than a specific LU when issuing the RUI_INIT verb to start a session. Ho
st Integration Server 2009 uses this name in one of the following ways:

If the name supplied is the name of an LU that is not in a pool, a session is assigned using that LU if it is availabl
e (that is, if it is not already in use by an LUA application).

If the name supplied is the name of an LU pool, or the name of any LU within the pool, a session is assigned usi
ng the first available LU in the pool (if one is available). Note that this may not be the LU whose name was speci
fied by the RUI_INIT verb.

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

LUA Verb Summary
Logical unit application (LUA) application programs can establish and use SNA sessions with either the Request Unit Interface
(RUI) application programming interface (API) or the Session Level Interface (SLI) API. If an LUA application establishes an SNA
session using RUI_INIT, it cannot issue any SLI verbs for that session. Likewise, if an LUA application establishes an SNA
session using SLI_OPEN, it cannot issue any RUI verbs for that session.

Following is a brief summary of each LUA verb or user-supplied routine. Each verb supplies parameters to LUA, which
performs the desired function and returns parameters to the application:

RUI_BID
Allows the application to determine when information from the host is available to be read.

RUI_INIT
Sets up the SSCP-LU session for an LUA application.

RUI_PURGE
Cancels an outstanding RUI_READ.

RUI_READ
Receives data or status information sent from the host to the LUA application's LU, on either the SSCP session or the LU
session.

RUI_TERM
Ends the SSCP session for an LUA application. It also terminates the LU session if it is active.

RUI_WRITE
Sends data to the host on either the SSCP session or the LU session.

SLI_BID
Notifies the SLI application that a message is waiting to be read using SLI_RECEIVE. It also provides the current status of the
session to the LUA application.

SLI_BIND_ROUTINE
An optional, user-supplied exit routine that notifies the LUA application that a BIND request has come from the host. It allows
the routine to examine the request and formulate a response.

SLI_CLOSE
Ends a session opened with SLI_OPEN.

SLI_OPEN
Transfers control of the specified LU to the LUA application. It establishes a session between the SSCP and the specified LU,
as well as an LU-LU session.

SLI_PURGE
Cancels SLI_RECEIVE verbs issued with a wait condition.

SLI_RECEIVE
Receives responses, SNA commands, and data into the buffer of an LUA application. It also provides the current status of the
session to the LUA application.

SLI_SEND
Sends responses, SNA commands, and data from an LUA application to a host LU.

SLI_STSN_ROUTINE
An optional, user-supplied exit routine that notifies the LUA application that a set and test sequence number (STSN)
command has come from the host. It allows the routine to examine the request and formulate a response.

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771941(v=bts.10).aspx

A Sample LUA Communication Sequence
This section illustrates how Request Unit Interface (RUI) and Session Level Interface (SLI) verbs are used for a logical unit
application (LUA) communication sequence. The two figures illustrate the LUA verbs used to start a session, to exchange data,
and to end the session, as well as the SNA messages sent and received. The arrows indicate the direction in which SNA
messages flow.

Communication Sequence Using RUI Verbs
SNA components required for LUA communications

In this example, the application performs the following tasks:

Issues an RUI_INIT verb to establish the system services control point (SSCP) session. (RUI_INIT does not complete until
the LUA application has received an ACTLU message from the host and sent a positive response. However, these
messages are handled by Host Integration Server 2009 and are not exposed to the LUA application.)

Sends an INITSELF message to the SSCP to request a BIND and reads the response.

Reads a BIND message from the host and writes the response. This establishes the LU session.

Reads an SDT message from the host, which indicates that initialization is complete and data transfer can begin.

Sends a chain of data consisting of three request/response units (RUs) and reads the response. The last RU indicates that
a definite response is required.

Reads a chain of data consisting of three RUs and writes the response.

Reads an UNBIND message from the host and writes the response. This terminates the LU session.

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Issues RUI_TERM to terminate the SSCP session. (Host Integration Server sends a NOTIFY message to the host and waits
for a positive response. However, these messages are handled by Host Integration Server and are not exposed to the LUA
application.)

Communication Sequence Using SLI Verbs
Communication sequence using SLI verbs

In the example shown here, the application performs the following tasks:

Issues an SLI_OPEN verb to establish the SSCP session.

Sends an INITSELF message to the SSCP to request a BIND and reads the response.

Reads a BIND message from the host and writes the response. This establishes the LU session.

Reads an SDT message from the host, which indicates that initialization is complete and data transfer can begin.

Note
INITSELF, BIND, and SDT messages are handled by Host Integration Server if the application is using SLI. The SLI_OPE
N does not return until Host Integration Server has sent an SDT and response.

Issues SLI_SEND and SLI_RECEIVE to transfer data, SNA commands, or SNA responses between the host and the
application.

Issues SLI_CLOSE to terminate the SSCP session. (Host Integration Server sends a NOTIFY message to the host and waits
for a positive response. However, these messages are handled by Host Integration Server and are not exposed to the LUA
application.)

https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

Writing LUA Applications
The information contained in this section will help you write logical unit application (LUA) application programs for use with
Microsoft® Host Integration Server.

This section contains:

Using LUA Verbs

LUA VCB Format

LUA Synchronous and Asynchronous Verb Completion

Compiling and Linking an LUA Application

Resetting LUA LUs

Multiple Processes and Multiple Sessions Using LUA

Programming Techniques for LUA Pools

Writing Portable LUA Applications

LUA System Considerations on Microsoft Windows Server 2003 or Windows 2000

SNA Considerations Using LUA

https://msdn.microsoft.com/en-us/library/aa754407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705463(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754095(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746197(v=bts.10).aspx

Using LUA Verbs
This implementation of logical unit application (LUA) is available to applications written in Microsoft® C++® version 6.0 or
later. Applications access all LUA functions on Microsoft Windows™ Server 2003 or Windows® 2000 Server by issuing verbs
using the external C functions RUI,SLI,WinRUI, and WinSLI.

Symbolic constants are defined in the WINLUA.H header file for many parameter values. Refer to the WINLUA.H file (contained
in the Microsoft Host Integration Server SDK) for a list of LUA constants.

You should use the symbolic constant and not the hexadecimal value when setting values for supplied parameters, or when
testing values of returned parameters.

Parameters marked as reserved should always be set to zero.

This section contains:

RUI and SLI Definitions

Using an LUA Verb

https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745432(v=bts.10).aspx

RUI and SLI Definitions
The definitions of the RUI and SLI functions are as follows:

The WINLUA.H header file supplied with your Host Integration Server SDK includes prototypes of these functions.

The only parameter passed to the RUI or SLI function is the address of a verb control block (VCB). The VCB is a structure made
up of variables that:

Identify the logical unit application (LUA) verb to be executed.

Supply information used by the verb.

Contain information returned by the verb when execution is complete.

The parameters passed to the WinRUIor WinSLI function are a window handle and the address of a VCB. The window handle is
used for message notification when the issued verb has completed.

The VCB structure is declared in the WINLUA.H header file. For general VCB information, see LUA VCB Format. For verb-
specific VCB information, see the reference documentation for each verb.

void WINAPI RUI(struct LUA_VERB_RECORD FAR * verb);
void WINAPI SLI(struct LUA_VERB_RECORD FAR * verb);
int WINAPI WinRUI(HWND handle, struct LUA_VERB_RECORD FAR * verb);
int WINAPI WinSLI(HWND handle, struct LUA_VERB_RECORD FAR * verb);

https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754407(v=bts.10).aspx

Issuing an LUA Verb
The following procedure is required to issue a logical unit application (LUA) verb. In this example, the verb issued is RUI_INIT.

To issue an LUA verb

1. Create a variable for the verb control block (VCB) structure. For example:

2. The LUA_VERB_RECORD structure is declared in the WINLUA.H header file.

3. Clear (set to zero) the variables within the VCB:

LUA requires that all reserved parameters, and all parameters not required by the verb being issued, must be set to zero.
The simplest way to do this is to set the entire VCB to zeros before setting the parameters required for this particular
verb.

4. Assign values to the VCB parameters that supply information to LUA:

The values LUA_VERB_RUI and LUA_OPCODE_RUI_INIT are symbolic constants. These constants are defined in the
WINLUA.H header file in the Host Integration Server SDK. To ensure portability between different systems, use symbolic
constants and not integer values.

5. Invoke LUA. The only parameter is a pointer to the address of the structure containing the VCB for the desired verb.

6. Check the asynchronous flag (rui_init.common.lua_flag2.async) to determine whether the verb completed
asynchronously. If events are being used and the verb did complete asynchronously, wait for the event to complete.

Do not check the return code. It may have changed from LUA_IN_PROGRESS to LUA_OK by the time you check it.

7. Check the variables returned by LUA.

#include <winlua.h>
 .
 .
struct LUA_VERB_RECORD rui_init;

memset(&rui_init, 0, sizeof(rui_init));

rui_init.common.lua_verb = LUA_VERB_RUI;
rui_init.common.lua_verb_length = sizeof(struct LUA_COMMON);
rui_init.common.lua_opcode = LUA_OPCODE_RUI_INIT;
memcpy (rui_init.common.lua_luname, "THISLU ", 8);

RUI(&rui_init);

if (rui_init.common.lua_flag2.async)
{
/* verb will complete asynchronously so continue
with other processing */
/* then wait */
WaitForSingleObject (...)
}

if(rui_init.common.lua_prim_rc == LUA_OK)
{
/* Init OK */

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754272(v=bts.10).aspx

 .
 .
}
else
{
/* Do error routine */
 .
 .
}

LUA VCB Format
The logical unit application (LUA) verb control block (VCB) is called LUA_VERB_RECORD. It is a structure with two parts:

A structure, LUA_COMMON, which is used for all the LUA verbs.

A union, LUA_SPECIFIC, which is used only by RUI_BID,SLI_BID,SLI_OPEN, and SLI_SEND.

This section contains:

LUA_VERB_RECORD

LUA_COMMON

LUA_SPECIFIC

https://msdn.microsoft.com/en-us/library/aa754272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754708(v=bts.10).aspx

LUA_VERB_RECORD
The logical unit application (LUA) verb control block (VCB) structure is as follows:

Remarks

To access parameters in the common part of the VCB, you need to include the structure member name common. For example,
when using a verb record structure named Lua_Verb, you access its lua_prim_rc member as
Lua_Verb.common.lua_prim_rc.

To access parameters in the specific part of the VCB, you need to include the union member name specific. For example, when
issuing RUI_BID using a verb record structure named Lua_Verb, you access its lua_peek_data member as
Lua_Verb.specific.lua_peek_data.

For a complete listing of the structures and related values in the LUA VCB, see LUA Verb Control Blocks.

typedef struct LUA_VERB_RECORD {
 struct LUA_COMMON common;
 union LUA_SPECIFIC specific;
} LUA_VERB_RECORD;

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744355(v=bts.10).aspx

LUA_COMMON
The following structure lists the common data structure parameters used by all the logical unit application (LUA) verbs.

Remarks

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs or LUA_VERB_SLI for
Session Level Interface (SLI) verbs. For both of these macros the value is 0x5200.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, for example,
LUA_OPCODE_RUI_BID for the RUI_BID verb.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_OPEN and RUI_INIT require this parameter. Other Windows LUA verbs only require this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
} LUA_COMMON;

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Specifies the offset from the start of the VCB to the extension list of user-supplied dynamic-link libraries (DLLs). Not used by
RUI in Host Integration Server and should be set to zero.

lua_cobol_offset

Offset of the COBOL extension. Not used by LUA in Host Integration Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Specifies the length of received buffer for RUI_READand SLI_RECEIVE. For other RUI and SLI verbs, it is not used and should
be set to zero.

lua_data_length

Returned parameter. Specifies the length of data returned in lua_peek_data for the RUI_BID verb.

lua_data_ptr

Pointer to the application-supplied buffer that contains the data to be sent for SLI_SEND and RUI_WRITE or that will receive
data for SLI_RECEIVE and RUI_READ. For other RUI and SLI verbs, this parameter is not used and should be set to zero.

lua_post_handle

Supplied parameter. Used under Windows Server 2003 or Windows 2000 if asynchronous notification is to be accomplished
by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various sub parameters
are set for write functions and returned for read and bid functions.

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits.

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions.

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx

RU category, two bits.

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is
used by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs, this parameter is not
used and should be set to zero.

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. This is a returned parameter for RUI_INIT and
SLI_OPEN and a supplied parameter for SLI_SEND. For other LUA verbs, this variable is not used and should be set to zero.

Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. This parameter is returned by RUI_BID, RUI_READ,
RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not used and should be set to zero.

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Supplied parameter. Reserved field used by SLI_OPEN and RUI_INIT. For all other LUA verbs, this parameter is reserved and
should be set to zero.

lua_encr_decr_option

Field for cryptography options. On RUI_INIT, only the following are supported:

lua_encr_decr_option = 0

lua_encr_decr_option = 128

For all other LUA verbs, this parameter is reserved and should be set to zero.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

LUA_SPECIFIC
The following union shows the specific data structure that is included for functions that use the LUA_SPECIFIC part of a verb
control block. The only logical unit application (LUA) verbs that use this union are RUI_BID,SLI_BID,SLI_OPEN, and SLI_SEND.

Remarks

Members
open

The union member of LUA_SPECIFIC used by the SLI_OPEN verb.

lua_sequence_number

The union member of LUA_SPECIFIC used by the SLI_SEND verb. Returned parameter. Sequence number of the RU to the
host.

lua_peek_data

The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BID verbs. Returned parameter. Contains up to 12 bytes
of the data waiting to be read.

union LUA_SPECIFIC {
 struct SLI_OPEN open;
 unsigned char lua_sequence_number[2];
 unsigned char lua_peek_data[12];
} LUA_SPECIFIC;

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

LUA_SPECIFIC.SLI_OPEN
The following structure shows the SLI_OPEN fields of the LUA SPECIFIC union member for the SLI_OPEN verb.

Remarks

Members
lua_init_type

Type of session initiation.

lua_resv65

Reserved field.

lua_wait

Secondary retry wait time.

lua_open_extension

Supplied parameter. Specifies any user-supplied dynamic-link libraries (DLLs) used to process specific LUA messages.

lua_ending_delim

Extension list delimiter.

struct SLI_OPEN {
 unsigned char lua_init_type;
 unsigned char lua_resv65;
 unsigned short lua_wait;
 struct LUA_EXT_ENTRY lua_open_extension[3];
 unsigned char lua_ending_delim;
} SLI_OPEN;

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

LUA_EXT_ENTRY
The following structure shows the LUA_EXT_ENTRY fields of the LUA SPECIFIC.SLI_OPEN union member for the SLI_OPEN
verb.

Remarks

Members
lua_routine_type

Extension routine type.

lua_module_name

Extension DLL module name.

lua_procedure_name

Procedure name to call in the extension DLL module.

struct LUA_EXT_ENTRY {
 unsigned char lua_routine_type;
 unsigned char lua_module_name[9];
 unsigned char lua_procedure_name[33];
};

https://msdn.microsoft.com/en-us/library/aa744364(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

LUA Synchronous and Asynchronous Verb Completion
Logical unit application (LUA) verbs can complete execution either synchronously or asynchronously.

Synchronous Verb Completion

When LUA is able to complete all the processing for a verb as soon as it is issued, the verb has completed synchronously.
When this happens, the primary return code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to zero.

The value of the lua_flag2.async bit should be tested, not the primary return code being not equal to LUA_IN_PROGRESS. (For
information about these returned parameters, see individual verb descriptions.)

Asynchronous Verb Completion

Some LUA verbs (for example, RUI_PURGE) complete quickly after local processing. However, most verbs take some time to
complete because they require messages to be sent to and received from the local node or the host application.

When LUA must wait for information from the remote LU or from the local node before it can complete a verb, the verb
completes asynchronously.

When this happens, the lua_flag2.async bit is set to 1. The primary return code is also normally set to LUA_IN_PROGRESS, but
this value cannot be relied on. The value of the lua_flag2.async bit should be tested. The application can now perform other
processing, or wait for notification from LUA that the verb has completed. LUA issues this notification by setting the primary
return code to its final value and leaving lua_flag2.async set to 1.

When the verb completes, LUA does the following depending on your environment:

For Windows Server 2003 or Windows 2000, two types of notification are possible. The LUA application either:

Issues WaitForSingleObject or WaitForMultipleObject.

—or—

Posts the "WinRUI/WinSLI" notification message to the window handle of the WinRUI/WinSLI message.

The event method using WaitForSingleObject or WaitForMultipleObject is the preferred way to receive
asynchronous notification on Windows Server 2003 or Windows 2000.

In the Windows environment, it notifies the completion of an asynchronous request by posting the "WinRUI/WinSLI"
notification message to the window handle of the WinRUI/WinSLI message. A window handle has been added as the
first parameter passed to the WinRUI and WinSLI entry points.

https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx

Compiling and Linking an LUA Application
Use the following procedure to compile and link a logical unit application (LUA) application.

To compile and link an LUA application for use with Host Integration Server

1. Update the path statement to include the directory containing the LUA application.

2. Set any required environmental variables.

3. Compile the application, including the WINLUA.H header file provided in the Host Integration Server SDK, to produce the
.obj files.

4. Link the application with the WINLUA.LIB library to produce an .exe file.

Resetting LUA LUs
Microsoft® Host Integration Server provides a facility for resetting logical unit application (LUA) LUs or forcing off LUA
applications, which is useful if an application has become deadlocked or is looping.

The NetView command deactivate-oldlu can also be used to reset an LUA LU. These facilities interact with the LUA
application as described in the following paragraphs.

When an LUA LU is reset through Host Integration Server or by using the deactivate-oldlu command, Host Integration Server
sends an UNBIND message to the application (as though the host had issued it).

The UNBIND message sent to the application is 0x32 0x0E, indicating a recoverable LU failure, and is returned to the
application on a subsequent RUI_READ. The LU session is terminated, but the system services control point (SSCP) session
remains active. (The LU is returned to the same state as if RUI_INIT has just completed.)

https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Multiple Processes and Multiple Sessions Using LUA
Two processes cannot use the same logical unit application (LUA) session. Only the process that issues RUI_INIT can use the
session that is started by the verb. Before another process can use LUA, it must issue RUI_INIT to obtain a new session.
However, different threads of the same process can issue verbs for the same LUA session.

A single process can simultaneously use more than one LUA session by issuing multiple RUI_INIT verbs. Win32® processes
support for up to 15,000 sessions for applications based on the Microsoft® Windows Server™ 2003 or Windows® 2000
Server. Each session must use a different LU. Two or more sessions can use the same pool, but the lua_luname member
(which is either the name of the pool or the name of an LU within the pool) must be different for each RUI_INIT.

Two or more instances of the same LUA application can run as different processes, but they must use different LUs. This can be
done by using LU pools. The two processes can specify the same pool, but are allocated different LUs from that pool.

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Programming Techniques for LUA Pools
When working with a logical unit application (LUA) LU pool, specify the pool name at the beginning of the conversation and
then use the lua_sid member (not the pool name) with subsequent calls. This is necessary because the lua_sid member is a
unique identifier, but the pool name is not, because a pool is designed to supply LUs for multiple conversations.

When using RUI_INIT or SLI_OPEN with an LUA pool, specify the pool name with the lua_luname member. For subsequent
calls in the same conversation, use the lua_sid member returned from RUI_INIT or SLI_OPEN to specify the conversation.

Note
On completion of RUI_INIT or SLI_OPEN, the lua_luname member contains the actual name of the LU used. This allows you t
o create code for a display for the user, showing the actual LU name used in a particular conversation.

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

Writing Portable LUA Applications
Use the following guidelines for writing logical unit application (LUA) applications that are portable to other environments:

Use the symbolic constant names for parameter values and return codes, and not the numeric values shown in the
WINLUA.H file. (For more information, see the WINLUA.H file in the Microsoft® Host Integration Server SDK.)

When accessing SNAsense codes in a data buffer, use the symbolic constants rather than the numeric values. This
ensures that the byte storage order is correct for your particular system. You should use memcpy to set the values, and
memcmp to test them. For example:

Ensure that any parameters shown as reserved are set to zero.

Set the lua_verb_length parameter as described in the verb description.

memcpy (this_verb.common.lua_data_ptr, LUA_INCORRECT_REQ_CODE, 4);
if (memcmp (this_verb.common.lua_data_ptr,
LUA_INCORRECT_REQ_CODE, 4) == 0)
{
.....
}

LUA System Considerations on Microsoft Windows Server 2003
or Windows 2000

This section provides specific information about developing logical unit application (LUA) applications for the following
operating systems.

This section contains:

LUA Considerations on Microsoft Windows Server 2003 or Windows 2000

https://msdn.microsoft.com/en-us/library/aa745678(v=bts.10).aspx

LUA Considerations on Windows Server 2003 or Windows 2000
This topic summarizes information for developing Win32 logical unit application (LUA) applications for Microsoft Windows
Server 2003 or Windows 2000 Server.

Byte ordering

The values of constants defined in the WINLUA.H file are dependent on the byte ordering of the hardware used. Macros are
used to set the constants to the correct value.

Currently, the include files in Windows Server 2003 or Windows 2000 to indicate the hardware. These same macros are used
by Host Integration Server 2009, along with the Win32 macro, to indicate the byte ordering needs. The macros must be
defined in the application or on the command line when building the application.

For example, the primary return code of LUA_PARAMETER_CHECK is defined to have a value of 0x0001. Depending on the
environment, the constant LUA_PARAMETER_CHECK may or may not be 0x0001. Some formats define the value as it appears
in memory. Others define it as a 2-byte variable. Because it cannot be assumed that an application will always use provided
constants rather than hardwired values, a macro can be defined to swap the bytes. The following example shows how the
macro can be used:

Events

To receive data asynchronously, an event handle is passed in the semaphore field of the verb control block (VCB). This event
must be in the non-signaled state when passed to LUA, and the handle must have EVENT_MODIFY_STATE access to the event.

Library names

To support the coexistence of Win16 and Win32 API libraries on the same computer, the Win32 dynamic-link library (DLL)
names were changed from the names used by Win16 API libraries. Win32 stub DLL libraries using the old names are supplied
with Host Integration Server 2009 so that older applications will still run, although these platforms are no longer supported.

Old DLL names New DLL names

WINRUI.DLL WINRUI32.DLL

WINSLI.DLL WINSLI32.DLL

The new DLL names should be used for all new applications intended to run on Host Integration Server.

Load-time linking

To be dynamically linked to LUA at load time, you must do one of the following at link time:

Insert the following IMPORTS statements in the definition (.def) file used to link the application:

(For RUI)

(For SLI)

#define LUA_PARAMETER_CHECK LUA_FLIPI (0X0001)

IMPORTS WINRUI.RUI
IMPORTS WINRUI WinRUI
IMPORTS WINRUI.WinRUIStartup
IMPORTS WINRUI.WinRUICleanup

IMPORTS WINSLI.SLI
IMPORTS WINSLI.WinSLI
IMPORTS WINSLI.WinSLIStartup
IMPORTS WINSLI.WinSLICleanup

Link the application to WINRUI.LIB (for RUI) or WINSLI.LIB (for SLI), which contain the entry-point linkage information.

Multiple threads

An LUA application can have multiple threads that issue verbs. LUA for the Win32 system makes provisions for multithreading
processes on Windows Server 2003 or Windows 2000. A process contains one or more threads of execution. All references to
threads refer to actual threads in a multithreaded Windows Server 2003 or Windows 2000.

Packing

For performance considerations, the VCBs are not packed. VCB structure member elements after the first element are aligned
on either the size of the member type or DWORD boundaries, whichever is smaller. As a result, DWORDs are aligned on
DWORD boundaries, WORDs are aligned on WORD boundaries, and BYTEs are aligned on BYTE boundaries. This means, for
example, that there is a 2-byte gap between the primary and secondary return codes. Therefore, the elements in a VCB should
only be accessed using the structures provided.

This option for structure and union member alignment is the default behavior for Microsoft C/C++ compilers. For
compatibility with the supplied LUA libraries, make sure to use an equivalent structure and union member packing option
when using other C/C++ compilers or when explicitly specifying a structure alignment option when using Microsoft compilers.

Registering and deregistering applications

All LUA applications for the Windows Server 2003 or Windows 2000 system must call the Windows SNA extension
WinRUIStartup or WinSLIStartup at the beginning of the session to register the application and WinRUICleanup or
WinSLICleanup at the end of the session to deregister the application.

Restrictions on 3270-style LUs

A Windows Server 2003 or Windows 2000 process cannot access 3270-style LUs from both the function management
interface (FMI) and LUA APIs at the same time. However, the process can use the LUA APIs to access LUA LUs while using FMI
APIs to access 3270-style LUs.

Run-time linking

For an application to be dynamically linked to LUA at run time, it must issue the following calls:

LoadLibrary to load the specified library module for Windows LUA. That is, WINRUI32.DLL (for RUI), and WINSLI32.DLL
(for SLI).

GetProcAddress to retrieve the address of the LUA function entry points exported by the DLL. For RUI, the function entry
points are RUI, WinRUI, WinRUIStartup, and WinRUICleanup. For SLI, the function entry points are SLI, WinSLI,
WinSLIStartup, and WinSLICleanup.

https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745653(v=bts.10).aspx

SNA Considerations Using LUA
This section explains SNA information you need to consider when writing logical unit application (LUA) applications.

BIND checking

During initialization of the LU session, the host sends to the LUA application a BIND message that contains information such as
request/response unit (RU) sizes for use by the LU session. Microsoft® Host Integration Server returns this message to the
LUA application on RUI_READ. The LUA application must verify that the parameters specified on the BIND are suitable. The
application has the following options:

It can accept the BIND as it is, by issuing RUI_WRITE containing an OK response to the BIND. No additional BIND data can
be sent on the response.

It can try to negotiate one or more BIND parameters. (This is only permitted if the BIND is negotiable.) To do this, the
application issues RUI_WRITE containing an OK response, but including the modified BIND as data.

It can reject the BIND by issuing RUI_WRITE containing a negative response, using an appropriate SNA sense code as
data.

Validating the BIND parameters and ensuring that all messages sent are consistent with them is the responsibility of the
LUA application. However, the following two restrictions apply:

Host Integration Server rejects any RUI_WRITE that specifies an RU length greater than the size specified on the BIND.

Host Integration Server requires the BIND to specify that the secondary LU is the contention winner and that error
recovery is the responsibility of the contention loser.

Note
For SLI, an application must specify that it will use SLI_BIND_ROUTINE on the SLI_OPEN if it will do any BIND checking.

Courtesy acknowledgments

Host Integration Server keeps a record of requests received from the host to correlate any response sent by the application
with the appropriate request. When the application sends a response, Host Integration Server correlates the response with the
data from the original request, and can then free the storage associated with it.

If the host specifies exception response only (a negative response can be sent but a positive response should not be sent), Host
Integration Server must still keep a record of the request in case the application subsequently sends a negative response. If the
application does not send a response, the storage associated with this request cannot be freed.

Because of this, Host Integration Server enables the LUA application to issue a positive response to an exception-response-only
request from the host. (This is known as a courtesy acknowledgment.) The response is not sent to the host, but is used by LUA
to clear the storage associated with the request.

Note
The application does not need to send a courtesy acknowledgment for each exception-response-only request. For efficiency, t
he application can respond less frequently. The node treats a courtesy acknowledgment as an implicit acknowledgment for al
l prior pending requests.

Distinguishing SNA sense codes from other secondary return codes

A secondary return code that is not a sense code always contains a value of zero in its first two bytes.

An SNA sense code always contains a nonzero value in its first two bytes. The first byte gives the sense code category and the
second identifies a particular sense code within that category. (The third and fourth bytes can contain additional information or
can be zero.)

Information on SNA sense codes

https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

If you need information about a returned sense code, see

Status-Error Message

Error and Sense Codes

Negative responses and SNA sense codes

SNA sense codes can be returned to an LUA application in the following cases:

When the host sends a negative response to a request from the LUA application, it includes an SNA sense code indicating
the reason for the negative response. This is reported to the application on a subsequent RUI_READ or SLI_RECEIVE with
the following information.

Sense code Description

Primary return code LUA_OK.

Request/response indicator, response type indicator, and sense dat
a included indicator

All set to 1, indicating a negative response that inclu
des sense data.

Data returned The SNA sense code.

When Host Integration Server receives invalid data from the host, it generally sends a negative response to the host and
does not pass the invalid data to the LUA application. This is reported to the application on a subsequent
RUI_READ,SLI_RECEIVE, RUI_BID,orSLI_BID with the following information:

Sense code Description

Primary return code LUA_NEGATIVE_RESPONSE.

Secondary return code The SNA sense code sent to the host.

In some cases, Host Integration Server detects that data supplied by the host is invalid, but cannot determine the correct
sense code to send. In this case, it passes the invalid data in an exception request (EXR) to the LUA application on
RUI_READ or SLI_RECEIVE with the following information.

Sense code Description

Request/response indicator Set to 0, indicating a request.

Sense data included indicat
or

Set to 1, indicating that sense data is included. (This indicator is normally used only for a res
ponse.)

Message data A suggested SNA sense code.

The application must then send a negative response to the message. It can use the sense code suggested by Host
Integration Server, or it can alter the sense code.

Host Integration Server can send a sense code to the application to indicate that data supplied by the application was
invalid. This is reported to the application on RUI_WRITE or SLI_SEND with the following information.

Sense code Description

Primary return code LUA_UNSUCCESSFUL.

Secondary return code SNA sense code.

The sense codes that can be returned as secondary return codes on LUA verbs are listed in the WINLUA.H header file. For
this file, see the Host Integration Server or SNA SDK.

https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

Pacing

Pacing is handled by the LUA interface. An LUA application does not need to control pacing and should never set the pacing
indicator flag.

If pacing is being used on data sent from the LUA application to the host (determined by the BIND), RUI_WRITE or SLI_SEND
may take some time to complete. This is because LUA has to wait for a pacing response from the host before it can send more
data.

If an LUA application transfers large quantities of data in one direction, either to the host or from the host (for example, a file
transfer application), the host configuration should specify that pacing is used in that direction. This ensures that the node
receiving the data is not flooded with data and does not run out of data storage.

Purging data to end of chain

When the host sends a chain of request units to an LUA application, the application can wait until the last RU in the chain is
received before sending a response, or it can send a negative response to an RU that is not the last in the chain. If a negative
response is sent mid-chain, LUA purges all subsequent RUs from this chain and does not send them to the application.

When LUA receives the last RU in the chain, it indicates this to the application by setting the primary return code of RUI_READ
or RUI_BID to LUA_NEGATIVE_RESPONSE with a zero secondary return code.

The host can terminate the chain by sending a message such as CANCEL while in mid-chain. In this case, the CANCEL message
is returned to the application on RUI_READ. The LUA_NEGATIVE_RESPONSE return code is not used.

Segmentation

Segmentation of RUs is handled by the LUA interface. LUA always passes complete RUs to the application, and the application
should pass complete RUs to LUA.

https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

Support for LUA Single Sign-On
This section describes the logical unit application (LUA) support for Single Sign-On using 3270 display sessions that is
available in Host Integration Server 2009.

Over 3270 LUs, a Single Sign-On feature for LUA applications is supported to automate the overall logon process. When
configured for this feature, Host Integration Server 2009 automatically replaces special keywords in the data stream with the
actual host user name and password at appropriate points in the session.

Note
Single Sign-On is not supported over LUA logical units (LUs).

To open 3270 LUs from an LUA application using Request Unit Interface (RUI), the lua_resv56[1] field must be set to a
nonzero value when this verb control block (VCB) is passed to RUI_INIT. To open 3270 LUs from an LUA application using a
Session Level Interface (SLI), the lua_resv56[2] field must be set to a nonzero value when this VCB is passed to SLI_OPEN. For
details, see the reference sections in RUI_INIT and SLI_OPEN.

This section contains:

Prerequisites for LUA Single Sign-On

Registry Settings Used for LUA Single Sign-On

LUA User Name and Password Replacement

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754257(v=bts.10).aspx

Prerequisites for LUA Single Sign-On
In preparation for using Single Sign-On over 3270 logical units (LUs), the system administrator must define a host security
domain containing host connections. This host security domain must be initially created or modified to enable the Single Sign-
On feature. The system administrator must enable a users Microsoft® Windows Server™ 2003 or Windows® 2000 Server
account in the host security domain and either the administrator or the user must establish a mapped host account for the
Windows Server 2003 or Windows 2000 domain user name.

The user must be logged on to a Windows Server 2003 or Windows 2000 domain with a user name and password. Note that
this Single Sign-On feature is only supported over 3270 LUs.

Registry Settings Used for LUA Single Sign-On
The logical unit application (LUA) Single Sign-On feature depends on Host Integration Server 2009 scanning 3270 logical units
(LUs) used in the logon process for special keywords that are defined in the registry on the computer running Host Integration
Server 2009. The values for these special keywords can be defined by the system administrator on the computer running Host
Integration Server 2009.

The registry settings used by the LUA Single Sign-On process are located under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services registry node. Installed under the
SNASERVR\PARAMETERS subkey are the following entries:

3270SSOPadByte

This entry should be set to an ASCIIZ string to use as the character for padding replacement text in the user name or
password if these strings are shorter than the length of the special tag strings. The default value for this pad character is the
ASCII space character.

3270SSOPostReplaceCount

This entry should be set to a DWORD that represents the number of message chains of request/response units (RUs) to scan
after replacement of text for user name or password. The default value for this number is 10.

3270SSOPrefix

This entry should be set to an ASCIIZ string to use as the special prefix tag string in combination with the user name and
password tags. The default value of this string is MS$.

3270SSOPwdTag

This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special host password string that will be replaced. The default value of this string is SAMEP, so the default host
password string that is scanned for and replaced is MS$SAMEP. Note that length of the password string that is scanned for
(MS$SAMEP, for example) determines the maximum length of the password string that can sent to the host using Single
Sign-On. This limit occurs because the password substitution cannot change the length of the data message. Note that the
value of this string must be different from the value of the 3270SSOUserTag entry for Single Sign-On to function properly.

3270SSOReplaceCount

A DWORD value that affects the time-out value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can be reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries.
The timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceCount registry entry is defined and the 3270SSOReplaceTimer registry entry is not defined, the
node counts this number of RUs (on PLU-SLU session only) before time-out occurs. If both the 3270SSOReplaceCount and
3270SSOReplaceTimer registry entries are defined, the value for 3270SSOReplaceCount will be used to determine when
a time-out will occur. By default, this key is not defined, and the node defaults to a time-out of 30 seconds.

3270SSOReplaceTimer

A DWORD value that affects the time-out value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can be reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries.
The timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceTimer registry entry is defined and 3270SSOReplaceCount is not defined, the node uses this value
in seconds before time-out occurs. If both the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries are
defined, the value for 3270SSOReplaceCount will be used to determine when a time-out will occur. By default, this key is
not defined and the node defaults to a time-out of 30 seconds.

3270SSOUserTag

This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special user name string that will be replaced. The default value of this string is SAMEU, so the default user
name string that is scanned for and replaced is MS$SAMEU. Note that length of the user name string that is scanned for
(MS$SAMEU, for example) determines the maximum length of the user name string that can sent to the host using Single
Sign-On. This limit occurs because the user name substitution cannot change the length of the data message. Note that the
value of this string must be different from the value of the 3270SSOPwdTag entry for Single Sign-On to function properly.

LUA User Name and Password Replacement
The SNA node on the host monitors the inbound session for a replacement sequence consisting of the 3270SSOPrefix string
immediately followed by one of the strings 3270SSOUserTag or 3270SSOPwdTag. Thus, the default user name string that
would be scanned for and replaced is MS$SAMEU. When this string is found in the inbound session data, the node looks up
the corresponding information (host user name in the current host security domain) and overwrites MS$SAMEU with this
information. The same process occurs for the password string that would be scanned for and replaced, which defaults to
MS$SAMEP.

Note that this operation cannot change the length of the data message. If the actual user name or password that is retrieved
from the current host security domain is shorter than the replacement sequence, it is padded out with the first character of the
3270SSOPadByte string used as a padding character. If the actual host user name or password string is longer than the string
that is scanned for, these strings are truncated to the length of the scanned string so that the data message length is not
affected.

Note that because the user name and password can be sent in any order, the registry string values for the 3270SSOUserTag
and 3270SSOPwdTag entries must be different for Single Sign-On to function properly.

The SNA node monitors the SSCP-LU session for these special tag strings at all times and replaces all occurrences of these
strings with corresponding looked-up data. On the LU-LU session, the node starts monitoring at start of session (BIND). The
node stops monitoring when it has received 3270SSOPostReplaceCount chains of request/response units (RUs) without
seeing a substitution tag. The node will not restart monitoring until it receives an UNBIND–BIND sequence for that session.

Note that the node considers the sequence:

as a continuation of the same LU-LU session and does not restart monitoring on receipt of the second BIND. This sequence is
often used by host session managers handing off a session to an application system, and is considered a single terminal
session.

User IDs and passwords will be substituted in each chain on the LU-SSCP and PLU-SLU sessions until the node has received
3270SSOPostReplaceCount chains of RUs without seeing a substitution tag or a timer expires. By default the timer is set to
30 seconds, but this behavior can be reconfigured in the registry using the 3270SSOReplaceCount and
3270SSOReplaceTimer registry entries. The timer is started when the OPEN SSCP is received by the node. After the timer
expires, the node will stop scanning messages for the 3270 replacements strings for the user ID and password. If the
replacement strings arrive after the timer expires, the replacement strings will be sent to the host unmodified causing the sign-
on to fail. The application will not receive any notification that the timer has expired. The only indication of a problem will likely
be that the sign-on to the host session has failed.

Note
All strings are specified in the registry in ASCII, but the node translates them to EBCDIC through AE character mapping befor
e scanning for a match.

BIND, data, UNBIND(BIND FORTHCOMING), BIND

3270 Emulation Programmer's Guide
This section provides information for independent software vendors who are developing their own 3270 Emulator client
software to work with Microsoft Host Integration Server 2009 or Microsoft SNA Server.

To use this section of the guide effectively, you should be familiar with:

Host Integration Server 2009

Microsoft Windows Server™ 2003 or Windows® 2000

System Network Architecture (SNA) concepts

Operating systems support for 3270 development

Host Integration Server 2009 supports the development of 3270 client applications for Windows Server 2003, Windows XP,
and Windows 2000.

Network operating systems support for 3270 development

Host Integration Server 2009 supports the following network operating systems:

Native TCP/IP

Novell NetWare

For API references and other technical information about the 3270 Emulator, see the3270 Emulator Programmer's Reference
section of the SDK.

In This Section

Host Integration Server Concepts for 3270 Client Access

DL-BASE/DMOD Interface

Function Management Interface

FMI Status, Error, and Sense Codes

Configuration Information

Compiling and Linking 3270 Client Applications

Support for 3270 Single Sign-On

https://msdn.microsoft.com/en-us/library/aa704931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746083(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745379(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705130(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745043(v=bts.10).aspx

Host Integration Server Concepts for 3270 Client Access
This section describes some key concepts used in Host Integration Server 2009 when providing 3270 client access. The
purpose of this section is to provide information that enables independent software vendors to integrate their 3270 emulators
with Host Integration Server. Only the relevant parts of the Host Integration Server architecture are described.

In This Section

Structure of 3270 Client Access Components

Messages

LPI Connections

https://msdn.microsoft.com/en-us/library/aa770828(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705218(v=bts.10).aspx

Structure of 3270 Client Access Components
The components of Host Integration Server 2009 that apply to 3270 client access are:

Local nodes

Link services

3270 emulation program

This section introduces the structure of these components and explains specialized terms.

In This Section

Role of the Base

Localities and DMODs

Application Localities

Partners

https://msdn.microsoft.com/en-us/library/aa770948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705145(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705159(v=bts.10).aspx

Role of the Base
The Base is a part of each Host Integration Server gateway component, such as the local 2.1 node or a link service that provides
the operating environment for the core functions of that component. It passes messages between components and provides
functions common to all components, such as diagnostic tracing.

The Base type used with Host Integration Server 3270 emulation programs is DL-BASE. The Host Integration Server DL-BASE
supports a single Host Integration Server component or a single user application, and has entry points for initialization,
sending messages, receiving messages, and termination.

Localities and DMODs
A Base and the components within it are called a locality. The Host Integration Server system consists of one or more
communicating localities, all running Host Integration Server executable programs within the local area network (LAN)
Manager domain. For each Host Integration Server system, there is a single configuration file.

In a system such as Host Integration Server 2009, where the number of localities and their types are not configured in advance,
the relationships between the localities are set up dynamically. Localities that can enter and leave a system in this way are
called dynamic localities. Dynamic localities can enter or leave the system at any time.

Dynamic localities communicate using the Dynamic Access Module (DMOD) component, which provides the communications
facilities needed to pass messages between the Bases. The following figure shows a system consisting of three dynamic
localities.

DMOD component providing communications

This figure shows a system consisting of three dynamic localities. Dynamic localities can enter or leave this system at any time.

The DMOD is implemented as a dynamic-link library (DLL). The preceding figure can therefore be represented as follows.

DMOD implemented as a .DLL

Application Localities
Applications such as 3270 emulators can enter dynamically into an SNA server system. The application, in conjunction with the
Base, acts as a whole locality and communicates with the other localities in the system using a Dynamic Access Module
(DMOD).

The topic DL-BASE/DMOD Interface describes the interface to the Base and the DMOD that enables an application to
participate in an SNA server system.

https://msdn.microsoft.com/en-us/library/aa745379(v=bts.10).aspx

Partners
For Host Integration Server components and applications to communicate with each other, it must be possible to identify a
partner within a locality. A partner is an addressable component of a locality; that is, code to which messages can be sent. In a
Host Integration Server system, there is generally only one partner within a locality (such as a link service or the 3270
emulation program). However, separate functions within the local 2.1 node (such as the 3270 and APPC functions) can be
considered to be separate partners.

Messages
Messages are used to pass data between partners in Microsoft Host Integration Server 2009. This section provides information
about message formats.

This section contains:

Overview of Message Formats

Buffer Header Format

Buffer Element Format

https://msdn.microsoft.com/en-us/library/aa753926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705233(v=bts.10).aspx

Overview of Message Formats
A message always contains fixed-format header information such as a message type and addressing information. It can also
contain other header information specific to a particular message type (such as the message subtype) and an indefinite
amount of extra data.

Messages are saved in buffers that consist of one header and zero or more elements:

The header contains the fixed-format information and a pointer to an element. (This pointer is NULL if there are no
elements associated with the message.)

An element contains any extra data for a message and a pointer to another element if the data continues into another
element.

Buffer headers and elements are regarded as contiguous (8-bit) byte sequences. Messages of any length can be built by
chaining sufficient elements to a header.

The following figure shows a typical message with two elements.

Typical message with two elements

Buffer Header Format
The following table lists the common fields that always occur at the start of a buffer header. These are followed by further
fields specific to the particular message. For details about individual message formats, see FMI Message Formats.

Fie
ld

Typ
e

Description

nxt
qp
tr

PTR
BFH
DR

When the buffer is in a queue, this field points to the header of the next buffer in the queue (NULL if it is the last buffe
r in the queue). When the buffer is not in a queue, this field points to itself. The SNA server buffer management routin
es use this field to check for buffer corruption.

hd
rep
tr

PTR
BFE
LT

Pointer to the first buffer element in the associated chain of buffer elements. NULL if the message consists only of a b
uffer header.

nu
me
lts

CH
AR

Number of buffer elements chained from the header. Zero if the message consists only of a buffer header.

ms
gty
pe

CH
AR

Message type. For details, see individual message descriptions in FMI Message Formats.

src
l

CH
AR

Source locality. For details, see LPI Addresses.

src
p

CH
AR

Source partner. For details, see LPI Addresses.

src
i

INT
EGE
R

Source index. For details, see LPI Addresses.

de
stl

CH
AR

Destination locality. For details, see LPI Addresses.

de
stp

CH
AR

Destination partner. For details, see LPI Addresses.

de
sti

INT
EGE
R

Destination index. For details, see LPI Addresses.

Note
Fields that occupy two bytes, such as opresid in Open(PLU) Request are normally represented with the arithmetically most si
gnificant byte in the lowest byte address, irrespective of the normal orientation used by the processor on which the software
executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte address. However, the following fields are exc
eptions:

The srci and desti fields in buffer headers are stored in the local format of the application that assigns them (only the
assigning application needs to interpret these values).

The startd and endd fields in elements are always stored in low-byte, high-byte orientation (the normal orientation of an
Intel processor).

https://msdn.microsoft.com/en-us/library/aa744987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx

Buffer Element Format
The following table lists the common fields that always occur at the start of a buffer element. The dataru field contains
information specific to the particular message. For details about individual message formats, see FMI Message Formats.

Field Type Description
hdreptr
->eltep
tr

PTRB
FELT

Pointer to next buffer element in the chain. NULL if this element is the last or only element in the chain.

hdreptr
->start
d

INTE
GER

Start of valid data in this element. The index into dataru of the first byte of valid data.

hdreptr
->endd

INTE
GER

End of valid data in this element. The index into dataru of the last byte of valid data.

hdreptr
->trpad

CHA
R

Pad byte (reserved).

hdreptr
->datar
u

CHA
R[26
8]

An array of characters that contains the data for this element. Note that the valid data might not occupy the wh
ole of the element. The startd and endd fields give the indexes into this array of the start and end of the valid d
ata.

Use the following information to help you interpret the message formats:

Certain messages are shown as having two elements in the message formats. For example, the Open(PLU) Request has
the CICB field in the first element and the BIND RU in the second element. This indicates that the message consists of
two distinct linked element chains. The elteptr field in the first element points to the second element.

Fields that occupy two bytes are represented with the arithmetically most significant byte in the lowest byte address,
irrespective of the normal orientation used by the processor on which the software executes. That is, the 2-byte value
0x1234 has the byte 0x12 in the lowest byte address. The exceptions to this are the startd and endd fields in elements,
which are always stored in low-byte, high-byte orientation (the normal orientation of an Intel processor).

The offsets indicated by the startd and endd fields are expressed in terms of the first byte of dataru being offset 1. The
first byte of valid data is at dataru[startd–1]. For example, if startd is 11 and endd is 18, dataru begins with 10 bytes
that are not valid data, followed by 8 bytes of valid data.

It is possible for an element to arrive with startd greater than endd. This indicates there is no valid data in dataru.

In the sample message format shown in Overview of Message Formats, each element has a startd of 13, indicating 12 bytes of
padding before the start of the valid data. This leaves room for 256 bytes of data, and so the element data (300 bytes long in
this example) requires two elements.

https://msdn.microsoft.com/en-us/library/aa744987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753926(v=bts.10).aspx

LPI Connections
Partners communicate by passing messages to each other. If two partners want to communicate with each other, a locality
partner index (LPI) connection is set up between the two partners. Messages then flow between the partners over this
connection. The term LPI connection is explained in LPI Addresses. Note that this is not related to the Microsoft® Host
Integration Server concept of a connection between the local node and a remote system.

This section contains:

Paths and DMODs

LPI Addresses

Making Connections

https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771971(v=bts.10).aspx

Paths and DMODs
Dynamic Access Modules (DMODs) are responsible for the communication between localities. When the DMODs in two
localities can successfully pass messages between them, a path exists between the two localities. A path must exist between
two localities before a connection can exist between partners in those localities.

Host Integration Server establishes a path using an appropriate method for the network operating system in use. For example,
with Microsoft LAN Manager, a named pipe is used. With NetWare, an SPX connection is used. When the two localities are on
the same computer, a local pipe is used. This is implemented using shared buffers to increase performance, but is used by the
application in exactly the same way as communication with a remote locality.

The DMOD provides communication between dynamic localities and provides guaranteed in-order delivery of messages
flowing over paths between localities. If the DMOD loses its path to another locality, it informs the Base.

The following figure illustrates the paths and connections between an SNA services local node and two 3270 emulation
programs. Program A has two connections to the local node (one for each of two sessions). Program B has one connection to
the local node.

Paths and connections between an SNA server local node and two 3270 emulation programs

LPI Addresses
An LPI address is used to identify each end of a connection. It has three components: locality (L), partner (P), and index (I), as
described in the following list:

Locality is a 1-byte identifier that uniquely identifies a locality within a system. This locality corresponds to an SNA
services component (local node, link service, 3270 emulator, and so on).

Partner is a 1-byte identifier that uniquely identifies a partner within the locality. This is not always used, but can be used
to distinguish between parts of a component (for example, the 3270 functions in the local node rather than the Advanced
Program-to-Program Communications (APPC) functions).

Index is a 2-byte identifier that uniquely identifies a logical entity within the partner. The meaning and use of this field is
defined by the communicating partners. It is used to distinguish multiple connections between the same partners (for
example, to identify one of many 3270 sessions between the local node and a particular 3270 emulator). The value of
zero should not be used as an index value. Applications must assign unique index values for every active LPI connection
with the node.

A message flowing over a connection carries a pair of LPIs that identify the source and destination of the message. These are
the source LPI and destination LPI of the message. Together they identify the connection on which the message is flowing.

More than one connection can exist between any pair of partners. The I values are then used to distinguish the connections. For
example, in communications between the local node and a 3270 emulator, the L and P values identify the message as being
3270 data for that local node, and the I value indicates which session the data is intended for.

The LPIs are assigned by a combination of the partners and the DMODs when the connection is opened, as described in
Making Connections.

Because they are assigned dynamically for each component, the L values are not the same across an entire system. For
example, a local 2.1 node locality could be known as locality 4 to one 3270 locality, and locality 6 to a second 3270 locality.
However, from the viewpoint of any locality, there exists a unique L value for each remote locality within which a path exists.
This L value is used as an index into an internal table that identifies the path to that locality.

The following figures show an example of the L values that could be used between the components shown in
Paths and DMODs, and examples of the LPI values that would be used by the local node on messages flowing between the
components. (For more information about how the LPI values are assigned and used, see Opening the PLU Connection.)

Example L values

Example L values

L values specified on messages between the local node and 3270 B

L values specified on messages between the local node and 3270 B

LPI values specified on messages flowing on two different connections between the local node and 3270 A

https://msdn.microsoft.com/en-us/library/aa771971(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx

LPI values specified on messages flowing on two different connections between the local node and 3270 A

The Base is called by any piece of code that wants to send a message. It uses the destination L value on the message to
determine where to send it. When the message reaches the remote locality, the Base in that locality routes it to the appropriate
partner if the locality contains more than one partner.

Making Connections
Before messages can flow across a connection, the connection must be established or opened. This is necessary because a
partner (P1) does not initially know the locality partner index (LPI) address of the partner with which it wants to communicate.
There may not even be a suitable partner with which to communicate.

A component of the Base, known as the Resource Locator, and a message with a type of Open, known as an Open message, are
used to establish a connection between partners.

The following procedure outlines how a connection is established. More specific information is available in
Function Management Interface.

To establish a connection between partners

1. The Open message has two forms: an Open request and an Open response. The Open request contains information on
the type of partner P1 is looking for.

P1 fills in an Open request and calls the Base with it. Because it does not know the LPI address of its partner, it sets the
destination LPI values to zero.

2. The Base cannot forward the Open to a particular partner, because it has no destination LPI address. Therefore it passes
the Open to the Resource Locator, which attempts to find a locality that will accept the Open. The Dynamic Access
Module (DMOD) has a record of all the localities that could accept this type of Open. The Resource Locator tries each of
these localities until the Open is accepted. If no locality is found, the Resource Locator returns a negative response to the
Open to inform the sender that no partner could be found.

3. When a remote locality receives an Open, the Base passes the Open to the partner (P2). If P2 can accept the Open, it
responds by sending a positive Open response message to P1.

4. The Open response message returned to P1 contains both the source and destination LPI values for the particular
connection. At the end of this exchange, both P1 and P2 know each other's addresses and can communicate over the
connection.

The terms source and destination in the context of LPIs refer to the source and destination of the particular message. When the
3270 emulator builds a message to send to the local 2.1 node, it needs to swap the source and destination LPIs received on the
Open response from the local 2.1 node.

For a detailed example of how LPI addresses are assigned during initialization of the system services control point (SSCP) and
primary logical unit (PLU) sessions, see Opening the PLU Connection.

https://msdn.microsoft.com/en-us/library/aa705695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx

DL-BASE/DMOD Interface
This section describes the interface to the Host Integration Server 2009 DL-BASE. It includes a listing of the entry points that an
application such as a 3270 emulator can call. These entry points allow messages to be sent to and received from services such
as the local 2.1 node.

In This Section

DL-BASE/DMOD

DL-BASE/DMOD Entry Point Summary

Sample Code: Initialization and Routing Procedure

https://msdn.microsoft.com/en-us/library/aa754709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744904(v=bts.10).aspx

DL-BASE/DMOD
The following topics describe an example in which a 3270 emulator is to be adapted to use Host Integration Server 2009. The
emulator must communicate with the local 2.1 node.

In This Section

Initialization

Sending Messages

Receiving Messages

Opening a Connection

Termination

https://msdn.microsoft.com/en-us/library/aa771359(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771126(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770816(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705674(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745204(v=bts.10).aspx

Initialization
The 3270 emulator should initialize the DL-BASE and then call the Dynamic Access Module (DMOD) to obtain the necessary
configuration information. This also registers the user name with the DMOD. It can then obtain further system information
such as the Host Integration Server version number, if required.

The following table lists the functions involved with this process.

Function Description
sbpuinit Initializes the DL-BASE.

sepdcrec Gets configuration information.

sepdgetinfo Gets system information.

The sbpuinit entry point should always be called before any other DL-BASE/DMOD entry points except SNAGetVersion. For
new emulators, sepdcrec should be called after sbpuinit. (Because of the order of calls used in older emulators, a call to
sepdcrec before sbpuinit is still supported, but this order is not recommended.)

https://msdn.microsoft.com/en-us/library/aa744681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746128(v=bts.10).aspx

Sending Messages
The 3270 emulator inserts a message in a buffer and then calls the DL-BASE to send it. The message contains source and
destination locality partner indexes (LPIs), which are set up when the connection is opened. For more information, see
LPI Connections.

The application can either obtain a new buffer to contain the message to be sent (using sepdbubl), or reuse a buffer in which it
previously received a message. The application is responsible for any buffer it has obtained or in which it has received a
message. The application must either use (or reuse) the buffer to send a message or release it (using sepdburl). If the buffer to
be reused does not contain the correct number of elements for the message to be sent, the application can obtain additional
elements (using sbpibegt) or release existing ones (using sbpiberl). In this case, it must also ensure that the numelts field in
the buffer header indicates the correct number of elements.

The function used to send the message is sbpusend.

https://msdn.microsoft.com/en-us/library/aa705218(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746114(v=bts.10).aspx

Receiving Messages
The following figure shows the method for receiving messages from the Dynamic Access Module (DMOD).

Receiving messages using a routing procedure

After DMOD initialization, the 3270 emulator registers the routing procedure by calling sepdrout. When the DMOD receives a
message, it calls the 3270 emulator routing procedure, which can then process the message.

With this approach, there is no context switch between the DMOD thread and the 3270 emulator thread. However, the routing
procedure must return control to the DMOD quickly. For instance, it cannot suspend waiting for a keyboard input.

The application must determine whether the received message is for this application or for another application. If the message
is not for this application, the routing procedure must return, indicating that the message was not processed. If the application
processes the message, it is responsible for freeing the buffer when the processing is finished.

In some cases, the routing procedure can process the message to completion. An alternative is for the routing procedure to put
the message on an application queue and then clear an application semaphore. The application can then subsequently process
the message.

Performance can be improved further by sending a Status-Resource message (to return credit to the local node, enabling it to
send further data) from the routing procedure when a message is received, rather than waiting until the message is processed
to completion. This usage is illustrated in Sample Code: Initialization and Routing Procedure. For more information about credit
and flow control, see Pacing and Chunking.

After the application has received a message, the application is responsible for the buffer in which the message was received.
The application must either reuse the buffer to send a message (using sbpusend) or release it (using sepdburl). If the buffer to
be reused does not contain the correct number of elements for the message to be sent, the application can obtain additional
elements (using sbpibegt) or release existing ones (using sbpiberl). In this case, the application must also ensure that the
numelts field in the buffer header indicates the correct number of elements.

https://msdn.microsoft.com/en-us/library/aa754382(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744904(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746114(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754468(v=bts.10).aspx

Opening a Connection
Before a locality partner index (LPI) connection can be used to transfer data, it needs to be opened. This is performed by
sending Open messages, starting with an Open request. The format of an Open message is defined by the interface being used.
For example, the 3270 emulator uses the function management interface (FMI) to communicate with the local 2.1 node.

The interface also defines the initiator of the Open request. In this case, the 3270 emulator sends the Open(SSCP) Request, and
the local 2.1 node sends the Open(PLU) Request.

On the Open(SSCP) Request, the 3270 emulator sets all the source and destination LPIs to zero, except for the source index,
which can be used by the 3270 emulator for internal routing (for example, to distinguish between two sessions).

The DL-BASE and Dynamic Access Module (DMOD) ensure that Open messages are routed to a suitable destination. If a
routing procedure is used, it should always first call sbpurcvx to process Open responses. When sbpurcvx indicates that it has
not processed a received message, and the received message is an Open OK response, the application is informed that the
connection was established successfully.

https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753924(v=bts.10).aspx

Termination
The 3270 emulator must call sbputerm to free DL-BASE/Dynamic Access Module (DMOD) resources before it terminates.

https://msdn.microsoft.com/en-us/library/aa753916(v=bts.10).aspx

DL-BASE/DMOD Entry Point Summary
The following table shows entry points divided into the categories DL-BASE, Dynamic Access Module (DMOD), and buffer
management, and listed in alphabetical order within each category.

DL-BASE entry points
DL-BASE entry points Description
sbpuinit Initializes the DL-BASE.

sbpurcvx Processes Open from routing procedure.

sbpusend Sends message.

sbputerm Terminates.

DMOD entry points
DMOD entry points Description
routproc Sample routing procedure.

sepdchnk Gets the function management interface (FMI) chunk size.

sepdcrec Gets user and diagnostics records from configuration file.

sepdgetinfo Gets SNA server system information.

sepdrout Sets up the routing procedure (Microsoft® Windows Server™ 2003 and Windows® 2000 Server only).

Buffer management entry points
Buffer management entry points Description
sbpibegt Gets the buffer element.

sbpiberl Releases the buffer element.

sepdbubl Gets the buffer.

sepdburl Releases the buffer.

Note
The standard-call convention (CDECL) is used on Windows Server2003 and Windows2000.

Note
The format of buffer headers and elements is described in Messages. The formats of individual messages contained in buffer
s are defined in FMI Message Formats.

https://msdn.microsoft.com/en-us/library/aa744681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746114(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705163(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754382(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704612(v=bts.10).aspx

Sample Code: Initialization and Routing Procedure
This topic contains an outline of source code for receiving messages from the Dynamic Access Module (DMOD).

Note
TRACEn() is a macro used to specify data to be traced. This data can include variable parameters. The value n identifies the se
verity level of the trace. The unmatched parentheses are deliberate. They are resolved by the expansion of the macro.

/**/
/* Sample code for initialization and routing procedure. */
/**/

HSEM dummysem = NULL; /* This semaphore is never used */

/**/
/* Initialization procedure */
/**/
USHORT init_proc()
{
 COM_ENTRY("initp");
 rc = sbpuinit(&dmodsem, CLIENT, CES3270, username);
 TRACE4()"DMOD initialized, rc=%d",rc));
 if (rc == NO_ERROR)
 {

 /**/
/* The procedure routproc will be called whenever a message is */
/* received by the DMOD. This is used to post back the application, */
/* but take care to protect any queues against concurrent access by */
/* multiple threads. */
/**/
 rc = sepdrout(routproc);
 TRACE4()"Rout proc set up, rc=%d",rc));
 if (rc == NO_ERROR)
 {
 /* Other initialization here */
 }
 }
 return (rc);
}
/**/
/* The routine routproc is called whenever the DMOD receives a */
/* message or a status indication. */
/**/
USHORT FAR _loadds routproc(buf, srcl, status)
BUFHDR FAR *buf; /* Buffer that has been received */
USHORT srcl; /* Locality from which buffer was received */
USHORT status; /* Reason for call */
 /* CEDINMSG = message received */
 /* CEDINLLN = path error occurred (on srcl) */
{
 COM_ENTRY("routp"); /* initialize rc=FALSE */

 /* Call the DL BASE to handle re-resource */
 /* location */
 if (!sbpurcvx(&buf, srcl, status))
 {
 switch (status) {
 case CEDINMSG:
 if (buf->destp == S3PROD) /* Is the message for us? */
 {
 /**/
 /* Process the received message. */
 /* */

 /* If the message is DATAFMI on the PLU-SLU session, and the */
 /* application has requested to use flow control on the */
 /* session, then this processing should include: */
 /* */
 /* - increment number of messages received by the client */
 /* - check whether the number received exceeds the threshold */
 /* for normally returning credit to the node. If so, check */
 /* whether it is OK to return credit (for example, not short of */
 /* buffers), and if OK send a status-resource message to */
 /* the node to give it credit to send more messages to the */
 /* client. */
/**/
 rc = TRUE;
 TRACE2()"Routing proc got message at %p",buf));
 }
 else
 {
 TRACE2()"Routing proc did not take message at %p",buf));
 }
 break;

 case CEDINLLN:
 TRACE2()"Path error on %d",srcl));
 /**/
 /* Process the path error status. */
/**/
 break;
 }

 /**/
 /* If the message/status cannot be completely processed here, */
 /* the application can queue the message and clear a semaphore for the */
 /* main thread to continue the processing. */
/**/
 } else {
 rc = TRUE; /* DLBase handled the message on our behalf */
 }
 /* Returning a value of TRUE indicates that we processed the */
 /* event return(rc);
}

Function Management Interface
The function management interface (FMI) provides applications with direct access to SNA data flows and information about
SNA control flows by means of status messages. This section provides information about the SNA sessions and connections
over which FMI messages can flow, and summarizes the messages. The FMI is particularly suited to the requirements of 3270
emulation applications.

In This Section

FMI Concepts

SSCP Connection

PLU Connection

Data Flow

Status Messages

FMI Message Summary

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754079(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745046(v=bts.10).aspx

FMI Concepts
The local node provides the SNA layers of path control, transmission control, and data flow control (DFC), as well as logical unit
(LU) services as shown in the following figure. In terms of the SNA layers, the function management interface (FMI) is between
presentation services and DFC. This means that most of the SNA protocol handling is performed by the local node. In
particular, the DFC layer of the local node is responsible for the state changes associated with chaining, bracket, and quiesce
protocols.

The FMI is defined in terms of the messages that are sent across the interface. Note that this is logically distinct from the
definition of the DL-BASE/Dynamic Access Module (DMOD) interface, which defines the mechanism for sending messages
between two components in Microsoft® Host Integration Server (for example, between the local node and the 3270 emulator).

The FMI is used by LU types 0, 1, 2, and 3, but not by LU type 6.2. It provides access to the system services control point
(SSCP)-LU session as well as the main primary logical unit (PLU)-SLU session. (For more information about these sessions, see
Sessions and Connections.) An application can use the FMI to access multiple sessions and hence multiple LUs, simultaneously.

Emulator communicating with the local node, which communicates with the link service

In this example, the 3270 emulator on the client communicates over the local area network (LAN) with the local node on the
server by exchanging messages. The content and format of the messages are defined by the FMI. The DMOD is used to
transport the messages, but does not interpret them. The local node provides the SNA service for formatting the message. The
link service and the data link control (DLC) driver are responsible for transferring data between the local node and the DLC
adapter.

In This Section

Sessions and Connections

Application Flags

https://msdn.microsoft.com/en-us/library/aa772039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx

Sessions and Connections
An application using the function management interface (FMI) can communicate with the host on two SNA sessions as
described in the following list:

The system services control point (SSCP) session, between an SNA server logical unit (LU) and the host SSCP, provides
information about the activation of the LU and supports communication with the SSCP for commands such as character-
coded and field-formatted logon and logoff commands. There is one SSCP session for each SNA server LU.

The primary logical unit (PLU) session, between an SNA server LU and the host PLU, is the main session for data transfer
between the local application and the host application. There is one PLU session for each SNA server LU.

The local node communicates directly with the host on the physical unit (PU)-SSCP session:

The PU-SSCP session, between the PU (local node) and the host SSCP, supports the reporting of alert information and
link statistics to the host SSCP.

The following figure shows the three sessions.

Three sessions

The application can communicate with the local node by means of two locality, partner, index (LPI) sessions. Rather than
specifying the session on which a message is to flow, the application sends the message to the local node on one of these
connections. The local node then routes it to the appropriate SNA session.

The connections are used as follows:

The SSCP session is used for the initial startup and logon information for a 3270 session. The Host Integration Server
3270 emulation programs also send network management information, such as user alerts and Response Time Monitor
(RTM) statistics, to the local node on this session. For more information about this connection, see SSCP Connection.

The PLU session is used for the transfer of application data, and for status and flow control messages between the
application and the local node. For more information about this connection, see PLU Connection.

The following figure shows these sessions.

Connections between an Application and a local node

These sessions are specific to the local node and the application. Data and status messages passed across a connection result in
SNA data and SNA control requests being sent on the appropriate SNA session. Similarly, SNA data and SNA control
responses received on an SNA session result in data and control messages being passed to the application on the appropriate
connection.

The relationship between the three SNA sessions and the two connections is as follows:

SNA messages on the SSCP session from the host to the local node result in messages from the local node to the
application on the SSCP connection. Messages from the application to the local node on the SSCP connection normally

https://msdn.microsoft.com/en-us/library/aa754336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754235(v=bts.10).aspx

result in SNA messages on the SSCP session from the local node to the host (with the exception of network management
information, which results in messages on the PU-SSCP session).

SNA messages on the PLU session from the host to the local node result in messages from the local node to the
application on the PLU connection. Messages from the application to the local node on the PLU connection result in SNA
messages on the PLU session from the local node to the host.

SNA messages on the PU-SSCP session from the local node to the host are generated by messages from the application
to the local node on the SSCP connection. When the application sends network management information such as 3270
user alerts on the SSCP connection, the local node distinguishes it from other data on this connection (which normally
corresponds to the SSCP session) and sends the appropriate information about the PU-SSCP session to the host. For
more information, see 3270 User Alerts.

Note the distinction between these SNA sessions and 3270 emulation sessions. A 3270 emulator can have more than one
3270 emulation session. For each emulation session, there are separate SSCP and PLU sessions.

Each connection between the application and the local node is opened, managed, and closed separately. This means that an
application must maintain a separate internal control block containing the LPI pair, message keys, and state of the connection
for each of the SNA sessions associated with each 3270 emulation session. For example, an application using three 3270
emulation sessions, each with an SSCP session and a PLU session, will require six control blocks.

An application identifies the connection (and hence the session) to which a particular message belongs using the LPI pair
present in the message. On a received message, the destination index (I) value contains the application's identifier for the
connection, and the source I value contains the local node's identifier for the connection. These are reversed for messages sent
by the application.

The application selects the LU within the local node that it can use for communications by the relationship in the configuration
table between the LU record and APPL record. (For more information, see Opening the SSCP Connection.) The application may
be unaware of which LU it accesses if the LUs are arranged within LU groups.

See Also
Reference
Application Flags

https://msdn.microsoft.com/en-us/library/aa705443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx

Application Flags
Application flags are included on the following messages:

All Data messages (both inbound and outbound)

Status-Acknowledge(Ack) (outbound only)

Status-Acknowledge(Nack-1) (outbound only)

All Status-Control messages (both inbound and outbound)

These flags represent key indicators of the state of the session to which the message relates and are closely related (but not
always equivalent) to the request header or response header (RH) indicators in the SNA request or response. Note that for
inbound messages, applications need to set the flags on Data messages and Status-Control messages only.

For outbound messages, the local node sets the application flags to reflect the contents of the RH in the corresponding SNA
message. The local node performs checks on the SNA message before sending it to the application. Therefore, the application
can assume that the RH indicators follow the SNA protocols and need not perform its own checks. The application's task in
interpreting the application flags is much simpler than if the local node presented the message with the uninterpreted RH. For
example:

If the application specified the segment delivery option when the primary logical unit (PLU) connection was opened, the
end chain indicator (ECI) on an SNA request will occur on the first segment of the last request/response unit (RU) in a
chain, but the chain is not complete until the last segment of that RU is received. In this case, the local node manipulates
the application flags so that the ECI flag is set in the last segment rather than the first. (For more information, see
Opening the PLU Connection.)

Applications using Transmission Service profile 4 (TS profile 4) on the PLU session can receive the definite response 2
(DR2) RH indicator in combination with definite response 1 (DR1) or exception response (ER) to give RQD2, RQD3, RQE2,
and RQE3 requests. The local node interprets the RH indicators and sets the COMMIT application flag accordingly.

For inbound Data and Status-Control messages, you should set the application flags to control session characteristics such as
chaining, direction control, and brackets. For Status-Acknowledge messages, the local node generates an SNA response and
sets the RH indicators using information saved from the corresponding request. The application does not need to set the flags
on this message.

For information about application flag usage when you are using function management interface (FMI) chunking, see
Chunking.

In most cases, the application does not need to use the application flags on Status-Acknowledge(Ack) messages, which derive
from the response header indicators on the corresponding response. However, certain applications do require access to the
response header flags on responses. For example, transaction-processing applications using TS profile 4 can receive the DR2
flag on responses, which appear as the COMMIT flag in the application flags.

Application flag usage on Status-Control (SC) messages is derived from the response header indicators in the corresponding
data flow control or session control request unit. Applications may need to be aware of the response header flags for Status-
Control messages. For example, LUSTAT request type 6 is a no-op used solely to enable response header flags to be sent when
no other request is allowed. The local node delivers the request to the application as a Status-Control(LUSTAT) Request with
the relevant application flags set. For summaries of valid request header usage for data flow control request units and of valid
response header indicators for SC requests, see SNA Format and Protocol Reference Manual: Architectural Logic (IBM
publication SC30-3112).

In the summary of the application flags in the table that follows, bits are numbered with bit 0 as the most significant bit in a
byte and bit 7 as the least significant. An application flag is set if the relevant bit for the flag is 1 and not set if the bit is 0.

Flag 1 occurs in all messages.

The following table lists the meanings of the individual bits.

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771108(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx

Bits in flag 1 Meaning
FMHI [bit 0, fl
ag 1] Value:
AF_FMH (0x8
0)

Function management header indicator. Set if a function management header is present in the message, or if th
e message is a function management data network services (FMD NS) request. Only valid on Data messages. Thi
s flag is always set for 3270 user alerts, which are sent on the system services control point (SSCP) connection. F
or more information, see 3270 User Alerts.

BCI [bit 1, fla
g 1] Value: A
F_BC (0x40)

Begin chain indicator. Set if this message starts a chain. For more information, see Outbound Chaining and
Inbound Chaining.

ECI [bit 2, fla
g 1] Value: A
F_EC (0x20)

End chain indicator. Set if this message ends a chain. For more information, see Outbound Chaining and
Inbound Chaining.

COMMIT [bit
3, flag 1] Val
ue: AF_COM
M (0x10)

Commit indicator. Set if chain carries DR2.

BBI [bit 4, fla
g 1] Value: A
F_BB (0x08)

Begin bracket indicator. Set if chain carries begin bracket (BB). Note that this does not necessarily indicate that th
e bracket has been initiated. For more information, see Brackets.

EBI [bit 5, flag
 1] Value: AF_
EB (0x04)

End bracket indicator—set if chain carries end bracket (EB). Note that this does not indicate that the bracket has t
erminated. For more information, see Brackets .

CDI [bit 6, fla
g 1] Value: A
F_CD (0x02)

Change direction indicator. Set if chain carries change direction (CD). For more information, see Direction.

SDI [bit 7, fla
g 1] Value: A
F_SD (0x01)

System detected error indicator. Set if the local node detects an error in outbound data. For more information, s
ee Outbound Data.

Flag 2 occurs in all messages except Status-Control(STSN), where the indicators included in this byte are not applicable.

The meanings of the individual bits are listed in the following table.

Bits in flag 2 Meaning
CODE [bit 0, fl
ag 2] Value: A
F_CODE (0x80
)

Alternate code indicator. Set if the alternate code set (usually ASCII) is used for this Data message. Note that fun
ction management headers are unaffected by the code selection indicator.

ENCRYP [bit 1
, flag 2] Value:
AF_ENCR (0x4
0)

Enciphered data indicator. Set to indicate that the information in the Data message is enciphered under session
level cryptography protocols. You must provide the necessary support for data encryption. The Host Integration
Server local node does not support cryptography.

ENPAD [bit 2,
flag 2] Value:
AF_ENPD (0x2
0)

Padded data indicator. Set in conjunction with the ENCRYP flag to indicate that the data was padded at the end
to the next integral multiple of eight bytes before enciphering.

QRI [bit 3, flag
 2] Value: AF_
QRI (0x10)

Queued response indicator. Set if the response to this request is to be queued in the transmission control and d
ata flow control layers. This flag is only significant for inbound messages.

CEI [bit 4, flag
2] Value: AF_C
EI (0x08)

Chain ending indicator. Set on a message corresponding to an outbound SNA request with EC and begin basic i
nformation unit (BBIU). This flag is provided solely for the use of SNA server components. Your application sho
uld not attempt to use it.

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

BBIUI [bit 5, fl
ag 2] Value: A
F_BBIU (0x04)

Begin basic information unit indicator. Set on a message corresponding to an outbound SNA request with BBIU.
This flag is provided for the use of SNA server components and for applications using segment delivery and out
bound pacing together. Your application should not attempt to use it. (For more information, see
Pacing and Chunking.)

EBIUI [bit 6, fl
ag 2] Value: A
F_EBIU (0x02)

End basic information unit indicator. Set on a message corresponding to an outbound SNA request with end ba
sic information unit (EBIU). This flag is provided solely for the use of SNA server components. Your application s
hould not attempt to use it.

RBI [bit 7, flag
 2] Value: AF_
RBI (0x01)

Real BID indicator. Set on Status-Control(BID) Request messages from the local node only. 0x01 indicates tha
t the message is due to an SNA BID RU. 0x00 indicates that the message is due to an outbound function manag
ement data (FMD) RU with BB set.

See Also
Concepts
Sessions and Connections

https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772039(v=bts.10).aspx

SSCP Connection
The system services control point (SSCP) connection of the application to the local node provides access to the SSCP session
between the Microsoft® Host Integration Server secondary logical unit (LU) and the host SSCP.

For simplicity, this section describes the SSCP connection as if an application only uses a single SNA server LU (and therefore a
single SSCP connection). In practice, applications can use multiple LUs.

In This Section

Opening the SSCP Connection

Closing the SSCP Connection

Using the SSCP Session

RTM Parameters

3270 User Alerts

https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771504(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705443(v=bts.10).aspx

Opening the SSCP Connection
An application gains access to the system services control point (SSCP) session by opening an SSCP connection to the local
node. To do this, an application sends an Open(SSCP) Request message to the local node, which responds with an
Open(SSCP) Response. The local node follows a positive Open(SSCP) Response with a Status-Session message reporting the
current state of the SSCP session. (For more information, see Using the SSCP Session.)

The following figure shows the message flow. For a figure showing a more detailed message flow, including locality, partner,
index (LPI) values used during initialization of both the SSCP and primary logical unit (PLU) sessions, see
Opening the PLU Connection.

Message flow between a local node and an application

In This Section

LU Groups

Resource Location for Open SSCP

https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771504(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705127(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705532(v=bts.10).aspx

LU Groups
Note that Host Integration Server supports logical unit (LU) groups. An LU group consists of a number of LUs of the same type,
such as 3270 display LUs or logical unit application (LUA) LUs. Any of the LUs in the group can be used for the same task.

If an application sends an Open(SSCP) Request specifying the name of a 3270 display LU group, the local node can select any
LU within the group to be used by the application. LUA LU groups are used in the same way, except that the application can
specify either the name of the group or the name of any LU within the group to access the group.

See Also
Concepts
Resource Location for Open SSCP

https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705532(v=bts.10).aspx

Resource Location for Open SSCP
When attempting to find a free logical unit (LU) across more than one local node, the application does not need to know which
local node owns the LU. The DL-BASE is responsible for finding a suitable local node, using the mechanism described. The
description is intended to assist in interpreting traces of the message flows involved, and is not needed to write an application

The open force type field in the Open(SSCP) Request specifies either a forced or nonforced Open. If the LU for which the Open
is intended does not have an active system services control point (SSCP) session because its link is inactive, a forced Open
instructs the local node to attempt to activate the link and the SSCP session. A nonforced Open succeeds only if the SSCP
session is already active, and otherwise returns with an error code indicating the state of the LU's connection.

When the application issues the Open(SSCP) Request, it does not set the open force type field. The DL-BASE issues a
nonforced Open to each node in turn until it finds an LU that already has an active SSCP session. If none of these Opens
succeeds, the DL-BASE issues a forced Open to the node that returned the best error code—that is, the one most likely to be
able to activate the session.

The sample message flows in the following figure show this process for two local nodes. The DL-BASE tries each in turn, using
nonforced Opens. The error code from node #2 indicates that it is more likely to be able to activate the SSCP session than node
#1, so the DL-BASE sends a forced Open to node #2. The application is aware only of the first request and its response.

Sample message flow for two local nodes

To enable applications to restart after a disastrous failure (such as terminating the 3270 emulation program), the local node
also accepts an Open(SSCP) Request from an application that has failed and has been restarted, providing the same source
locality, partner, index (LPI) fields are used. In this case, a TERM-SELF message is sent to the host if the LU is bound.

The SNA server LU through which the application communicates is selected by the relationship between the APPL record and
the LU or LU group record in the configuration file. The application specifies its name using the source name field on the
Open(SSCP) Request. The local node fills in the LU or LU group number, selects an unused LU within the LU group (if the
association is to an LU group), and informs the application of this LU number on the Open(SSCP) Response.

The Open(SSCP) Request specifies the following:

The source application name.

A resource identifier that can be used by the application to correlate the Open(PLU) Request that is sent to the
application. (For more information, see Opening the PLU Connection.)

A connection information control block, which specifies the response header usage, checks that the local node should
perform for the LU. If the field for a code is set to 0x01, that receive check will be carried out by the data flow control
layer of the local node on data arriving from the host. The corresponding send checks are unaffected and are always
performed. The connection information control block is provided because these receive checks are optional in SNA.

https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx

However, it is anticipated that most applications will require all these checks to be performed (all values set to 0x01).

An indicator that specifies whether the application is to be treated as high or low priority. All SNA server 3270 LUs are
marked as high priority (printers do not send significant data inbound). The effect of high priority is to enable data to be
progressed faster to the host when the link is busy.

An indicator that specifies whether the application is an LUA. This determines whether the local node and the application
will communicate using the LUA variant of the function management interface (FMI). (For more information, see
FMI Concepts.)

An indicator that specifies a nonforced or forced Open. This determines whether the local node will attempt to activate
the SSCP session if it is not currently active.

The Open(SSCP) Request can fail for one of several reasons, which can be determined from the error codes on the
Open(SSCP) Response sent to the application, as detailed in the following list:

The local node may still be initializing (retrieving information from the configuration file). In this case, the application can
retry immediately.

The configuration file may not have an entry for the application, or the application record in the configuration file may
not point to an LU or LU group record.

For a nonforced Open, the SSCP session may be inactive.

See Also
Reference
Resource Location for Open SSCP

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772070(v=bts.10).aspx

Closing the SSCP Connection
To close the system services control point (SSCP) connection, an application sends a Close(SSCP) Request to the local node,
which responds with a Close(SSCP) Response. The Close(SSCP) Request is unconditional. The Close(SSCP) Response always
reports that the connection was successfully closed. The Close(SSCP) Response is provided so that applications can
determine when outstanding data and status messages on the session have been delivered.

If the logical unit (LU) is bound, the local node sends a TERM-SELF message to the SSCP on behalf of the application to elicit
an UNBIND. An application that needs to be unbound can issue Close(PLU). (For more information, see
Closing the PLU Connection.) Normally, the SSCP connection can be maintained while the application task is active, even if it is
idle.

Closing the connection invalidates the locality, partner, index (LPI) pair for the connection, but does not alter the state of the
SSCP session. The following figure shows the message flow.

Message flow for closing a connection

See Also
Concepts
RTM Parameters
3270 User Alerts
Other Resources
Opening the SSCP Connection
Using the SSCP Session

https://msdn.microsoft.com/en-us/library/aa771510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744315(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771504(v=bts.10).aspx

Using the SSCP Session
When the application has opened a system services control point (SSCP) connection, it has access to the SSCP session and can
send data to the host SSCP.

In This Section

SSCP Session Characteristics

SSCP Session Status

https://msdn.microsoft.com/en-us/library/aa771463(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705280(v=bts.10).aspx

SSCP Session Characteristics
For SNA type 2.1 nodes, the system services control point (SSCP) session uses function management (FM) profile 0 and
Transmission Service profile (TS profile) 1. This combination of profiles provides the following session characteristics:

The primary and secondary half-sessions both use immediate request mode.

The primary and secondary half-sessions both use immediate response mode.

Only definite-response single request unit chains are allowed.

The maximum request unit size is limited to 256 bytes.

Data flow control request units are not supported.

Pacing is not supported.

Identifiers are used (rather than sequence numbers) on the normal flows.

This implies that the SSCP connection has the following characteristics:

All Data messages have the acknowledgment required (ACKRQD) field set.

All Data messages have the begin chain indicator (BCI) and end chain indicator (ECI) application flags set.

Status-Control messages do not flow on the connection.

Status-Session messages from the local node to the application only report changes in the activation state of the session.

The chaining, bracket, confirmation, and recovery protocols (described in PLU Connection) do not apply.

Using the SSCP connection, the application can send and receive Data messages corresponding to function management data
network services (FMD NS) (session services) requests and FMD data requests. Examples of FMD NS (session services)
requests are:

INIT-SELF. Requests from the secondary to the host SSCP requesting that the SSCP assist in the initiation of a session to
the host PLU, effectively requesting a BIND. (For more information, see Opening the PLU Connection.)

TERM-SELF. Requests from the secondary to the host SSCP requesting that the PLU-SLU session be terminated with an
UNBIND. (For more information, see Closing the PLU Connection.)

Character-coded requests. Requests such as logon, logoff, or test commands from the secondary display, or a logon
prompt from the host application.

NOTIFY. Requests used by the secondary to notify the host SSCP that a device is available after a BIND was rejected
with sense code 0x0845, for example, where a device emulator supports logical power-off.

The local node sends a NOTIFY request to the SSCP on behalf of the LU whenever the application's SSCP connection state
changes while the LU is active. A NOTIFY (vector key 0x0C with byte 5 set to 0x03), which can act as secondary LU, is sent in
the following cases:

When an Open(SSCP) Request is received when the LU is already active.

When an ACTLU request is accepted when the SSCP connection is already opened.

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx

A NOTIFY (vector key 0x0C with byte 5 set to 0x01), which cannot currently act as secondary LU, is sent in the following cases:

When an ACTLU is received when the SSCP connection is not open.

When a Close(SSCP) Request is received when the PLU session is not bound.

When an UNBIND request is received when the SSCP connection is not open.

When the long response including the NOTIFY vector is used for ACTLU requests.

These NOTIFY messages can be used by the host in conjunction with the negative response 0x0845 that the local node gives
to a BIND received when the SSCP connection is not open. (For more information, see Opening the PLU Connection.)

https://msdn.microsoft.com/en-us/library/aa771510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx

SSCP Session Status
While the system services control point (SSCP) connection is open, the local node reports the initial state and any subsequent
changes of state of the SSCP session to the application using Status-Session messages. There are four distinct Status-Session
status codes that can occur for the SSCP connection:

No-Session. The SSCP session between the SNA server logical unit (LU) and the host SSCP is not active because the
SNA server physical unit (PU) or LU is not activated. The Status-Session carries a qualifying status code to indicate why
the SSCP session is inactive. The application cannot use the SSCP connection to send data to the host SSCP. The qualifiers
are:

PU-INACTIVE. Activate PU (ACTPU) has not been received or Deactivate PU (DACTPU) has been received.

PU-ACTIVE. ACTPU(COLD) has been received from the SSCP.

PU-REACTIVATED. ACTPU(COLD) has been received while the PU was active. (The application is not informed if
ACTPU(ERP) is received while the PU is active.)

LU-INACTIVE. ACTLU has not been received, or DACTLU has been received.

Link-Error. The SSCP session between the SNA server LU and the host SSCP is not active, due to a data link control
(DLC) error. The Status-Session carries a qualifying status code that gives the error code reported by the DLC. The
application cannot use the SSCP connection to send data to the host SSCP.

Note that this session state is reported when the local node is informed that the locality containing the Host Integration
Server Synchronous Data Link Control (SDLC) link service has been lost due to a path failure. The qualifier 0x0D is used.
The link service will close the link when it is informed of the path error so the application can treat this as an outage.

LU-Active. The SSCP session is active due to the receipt of ACTLU. The application can use the SSCP connection to send
data to the host SSCP.

LU-Reactivated. The SSCP session has been reactivated due to the receipt of an ACTLU from the host SSCP. The SSCP
connection is still active, but data may have been lost.

For more information, see Status-Session Codes.

https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771508(v=bts.10).aspx

RTM Parameters
The Status-RTM message is sent to the application by the local node to indicate the Response Time Monitor (RTM) parameters
being used by the host. The host can specify the following parameters:

Whether RTM measurement is active or inactive.

Whether local display of RTM data by the application is permitted.

The definition by which response times are to be measured:

Until the first character of a response is written to the screen.

Until the keyboard is unlocked.

Until the application is allowed to send data. Change direction (CD) or end bracket (EB) is received.

The boundaries by which response times are to be classified into time bands.

The initial values of the counters, which indicate how many responses have been received in each time band (as defined
by the boundaries).

The local node is responsible for interpreting the response times reported to it by the application, and for sending RTM
statistics to the host when required. The application is responsible for measuring the response times and reporting them to the
local node. (The application reports response times to the local node using the Status-Acknowledge message. For more
information about measuring and reporting response times, see Response Time Monitor Data.)

If the application does not need to provide a local display of RTM data, it only needs to determine whether RTM measurement
is active. If active, it needs to determine the definition by which response times are measured. It can ignore the other
parameters. If RTM measurement is not active, the application need not measure and report response times.

If the application needs to provide a local display of RTM data, it should use the information from the Status-RTM message to
ensure that the local interpretation of response times matches the interpretation used by the host. In particular, it should not
display RTM data at all if the Status-RTM message indicates that local display is not permitted (or if the permission to view
RTM data field in the 3270 user configuration record indicates that it is not permitted). The application is responsible for
maintaining its own RTM statistics for local display, that is, for classifying the response times according to the boundaries
specified by the host and maintaining counts of responses in each category. Although the local node maintains these statistics
for sending to the host when required, it does not report them to the application.

Note
RTM statistics are maintained for a specific logical unit (LU), not for a specific application's use of that LU. This means that wh
en the Status-RTM message is received at start of day, the counters can be nonzero to include a previous use of the LU. The
counters are only reset when the host requests the local node to reset them or when the local node sends unsolicited RTM da
ta to the host.

See Also
Concepts
Closing the SSCP Connection
3270 User Alerts
Other Resources
Opening the SSCP Connection
Using the SSCP Session

https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771504(v=bts.10).aspx

3270 User Alerts
The Host Integration Server 3270 emulation program can send 3270 user alerts to the local node on the system services
control point (SSCP) connection. This enables the local node to route each alert to the appropriate host for the 3270 session on
which it was sent.

To send a 3270 user alert, the application should send it as a Data message on the SSCP connection. The local node will
recognize it as a 3270 user alert if both of the following are true:

The function management header indicator (FMHI) bit in the application flag is set.

The first three bytes of the data are 0x41038D, indicating a Network Management Vector Transport (NMVT).

The local node sends the alert to the appropriate host for the 3270 session on which it was received. If a relative time subvector
is present (0x42) with increment type 0xEF (sequence), the local node sets the sequence number in each message (starting at
one from power-up and incrementing by one for each message sent). Host Integration Server 2009 allows sequence number
values up to 2^16. Apart from this, the local node does not alter the contents of the alert.

Note
There can be some delay before the application receives a response to the alert. The response is sent on the SSCP connection
in the same way as other data on this connection. The application must not send further data on the SSCP connection (includi
ng further alerts) until it has received a response to this alert.

See Also
Concepts
Closing the SSCP Connection
RTM Parameters
Other Resources
Opening the SSCP Connection
Using the SSCP Session

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771504(v=bts.10).aspx

PLU Connection
The primary logical unit (PLU) connection of the application to the local node provides access to the PLU session between the
Microsoft® Host Integration Server's logical unit (LU) and a PLU in the host.

This section describes how an application opens and closes its PLU connection, and the use of the PLU connection.

For simplicity, this section describes the PLU connection as if an application uses only a single SNA server LU (and therefore a
single PLU connection). In practice, applications can use multiple LUs.

In This Section

Opening the PLU Connection

Closing the PLU Connection

Using the PLU Session

Outbound Chaining

Inbound Chaining

Segment Delivery

Brackets

Direction

Pacing and Chunking

Confirmation and Rejection of Data

Shutdown and Quiesce

Recovery

Application-Initiated Termination

LUSTATs

Response Time Monitor Data

https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx

Opening the PLU Connection
The opening of the primary logical unit (PLU) connection is closely associated with the establishment of the PLU session. The
local node opens the PLU connection when it receives a BIND command from the host for a logical unit (LU) for which an
application has previously opened a system services control point (SSCP) connection. Possible sequences are:

An application opens its SSCP connection and sends a character-coded logon request or INIT-SELF request to the host
SSCP. A host PLU subsequently sends a BIND request to the SNA server LU, and the local node opens the PLU
connection.

A host PLU sends an unsolicited BIND command to the SNA server LU. If the SSCP connection for the LU is open, the
local node opens the PLU connection. If the local node is supporting NOTIFY, the host can be configured to send a BIND
when it receives the NOTIFY message sent by the local node when the application opens its SSCP connection. (For more
information, see SSCP Connection.)

A host PLU sends a BIND command to the SNA server LU. If the SSCP connection for the LU is not open, the local node
returns a negative response to the BIND request. The sense code used is 0x0845 (NOTIFY will be sent). The local node
does not open the PLU connection. In this case, the local node sends NOTIFY when the SSCP connection is opened. (For
more information, see SSCP Connection.)

To successfully open the PLU connection, the local node sends an Open(PLU) Request to the application. The application
responds with an Open(PLU) OK Response. Finally the local node sends an Open(PLU) OK Confirm to the application. This
exchange of messages opens the PLU connection and establishes the PLU session. It should be noted that a successful PLU
opening sequence is a three-way handshake, in comparison to the opening of the SSCP connection, which is a two-way
handshake.

The Open(PLU) Request is delivered to the application using the SSCP connection for the LU. The Open(PLU) Request
contains the application name and open resource identifier to allow applications to correlate the PLU and SSCP connections.

The Open(PLU) Request indicates the logical unit that the BIND request was directed to, references the resource identifier
supplied in the Open(SSCP) Request for that LU, and carries the actual BIND request/response unit (RU) received from the
host. (For more information, see Open(PLU).) It also carries the maximum RU sizes, chunk sizes (if appropriate), and pacing
windows for the PLU session, to enable the application to determine the initial credit if it needs to be involved in outbound
pacing. (For more information, see Pacing and Chunking.)

The message flow for a successful opening of the PLU connection (on receipt of a nonnegotiable BIND) is shown in the
following figure. Note that the BIND parameters are verified (at [1]) only when the application has supplied the BIND check
table index as part of the connection information control block (CICB).

Message flow for opening a PLU connection

The following figure shows the message sequence for the initiation of both the SSCP and PLU sessions, including details of
where the Locality Partner Index (LPI) values are assigned. (The application's source P value of 0x12 indicates that it is a 3270
emulator. For more information about how the source LPI values are set, see Open(SSCP) Request.) The message flow shown
assumes that the connection to the host is already established and that both the configuration and the BIND are valid.

After this message sequence, there are two valid sets of LPI values, one for the SSCP session and one for the PLU session. The
application can access either session at any time until UNBIND and can use the LPI values to distinguish between received
data on the two sessions.

Message sequence for the initiation of both the SSCP and PLU sessions

https://msdn.microsoft.com/en-us/library/aa754336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx

In This Section

BIND Checking

https://msdn.microsoft.com/en-us/library/aa772074(v=bts.10).aspx

BIND Checking
The Open(PLU) OK Response contains the connection information control block (CICB), which enables the application to
customize certain characteristics of the connection and contains information used in BIND verification. Note that the local
node verifies the BIND parameters carried on the Open(PLU) OK Response. It does not maintain a copy of the original BIND
request/response unit (RU) from the host. If the BIND is negotiable, the application is permitted to modify the parameters in
the BIND RU, but if it is nonnegotiable the application should return the BIND RU unmodified. A negotiable BIND flag is
provided in the Open(PLU) Request.

Although many characteristics of the PLU session are determined by the BIND parameters, the application can select certain
characteristics by specifying fields in the CICB. For more information, see the following table. More detailed information about
CICB usage and the effect on the PLU session of selecting various CICB options is given in context in the topics of this section
that deal with PLU session characteristics such as chaining and pacing.

The BIND is verified using a BIND check table entry (whose index is specified in the CICB). The entries in this correspond to the
various fields in the BIND. The BIND check table entries are stored in the configuration file. For example, the BIND check table
entry can specify that the BIND be accepted if the secondary chain response protocol is either "definite response" or "definite
or exception response" (byte 5 bits 2 and 3 = B10 or B11). This would be appropriate if the application did not want to send
Request Exception (RQE) chains.

Connection information control block usage is shown in the following table.

Field Explanation
Segment deliver
y option

A value of 0x00 indicates that the local node should perform outbound segment assembly and only deliver co
mplete RUs. A value of 0x01 indicates that the application wants the local node to deliver RU segments. For m
ore information, see Segment Delivery.

Application paci
ng option

A value of 0x00 indicates that the application requires the local node to handle pacing. A value of 0x01 indicat
es that the application needs to be involved with outbound pacing through Status-Resource messages. For m
ore information, see Pacing and Chunking.

Application canc
el option

A value of 0x00 indicates that the local node should automatically generate CANCEL. A value of 0x01 indicate
s that the application will generate CANCEL. For more information, see Inbound Chaining.

Application tran
saction number
s option

A value of 0x00 indicates that the application does not support transaction numbers. A value of 0x01 indicate
s that the application does support transaction numbers. For more information, see Recovery.

BIND check ind
ex

Gives the index of the BIND check table entry against which the BIND parameters should be verified. One of t
he following values should be used:

0x01 —3270 printer session

0x02 —3270 display session

0x10 —LUA (LU type 0) application

The Open(PLU) Confirm from the local node to the application indicates whether the BIND verification was successful, and if
so, supplies the bind information control block (BICB). The BICB summarizes the session BIND parameters in a format suitable
for high-level languages and effectively defines the characteristics of the PLU session. The application not negotiating the
BIND should usually not require to examine the BIND on the Open(PLU) Request and should use the BICB on the
Open(PLU) OK Confirm.

The following table summarizes the fields in the BICB and their correspondence to the parameters in the BIND RU. For more
detailed information, see the IBM manual Systems Network Architecture: Formats, (GA27-3136).

Position on Open(PLU) OK Co
nfirm

Position in Bind RU [byte
,bit]

Description

dataru[0] [2,] Function management (FM) profile

https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx

dataru[1] [3,] Transmission Service profile

dataru[2] [4, 0] Primary chaining use

dataru[3] [4, 1] Primary request control mode

dataru[4] [4,2-3] Primary chain response protocol

dataru[5] [4, 4] Primary two-phase commit

dataru[6] [4, 6] Primary compression indicator

dataru[7] [4, 7] Primary send End Bracket (EB) indicator

dataru[8] [5, 0] Secondary chaining use

dataru[9] [5, 1] Secondary request control mode

dataru[10] [5,2-3] Secondary chain response protocol

dataru[11] [5, 4] Secondary two-phase commit

dataru[12] [5, 6] Secondary compression indicator

dataru[13] [5, 7] Secondary send EB indicator

dataru[14] [6, 1] FM header usage

dataru[15] [6, 2] Bracket usage1

dataru[16] [6, 2] Bracket reset state2

dataru[17] [6, 3] Bracket termination rule

dataru[18] [6, 4] Alternate code set indicator

dataru[19] [6, 5] Sequence number availability

dataru[20] [7,0-1] Normal-flow send/receive mode

dataru[21] [7, 7] Half-duplex flip-flop reset

dataru[22] [8,2-7] Secondary pacing send window

dataru[23] [9,2-7] Secondary pacing receive window

dataru[24-25]* [10,] Secondary send maximum request unit size

dataru[26-27]* [11,] Primary send maximum request unit size

dataru[28] [14,1-7] LU-LU session type

dataru[29] [27,] PLU name size

dataru[30-37] [28,] PLU name in Extended Binary Coded Decimal Interchange Code
(EBCDIC)

dataru[38] [15,0-3] Session type 1: PS Function Management Header (FMH) type

dataru[39] [15,4-7] PS data stream profile

dataru[40] [16, 0] Number of outstanding destinations

dataru[41] [16, 1] Compacted data indicator

dataru[42] [16, 2] Peripheral Device Information Record (PDIR) allowed indicator

dataru[43] [15, 0] Session type 2 or 3: query support

dataru[44] [24,1-7] Dynamic screen size

dataru[45] [20,] Basic row size

dataru[46] [21,] Basic column size

dataru[47] [22,] Alternate row size

dataru[48] [23,] Alternate column size

Note
10x00 = Brackets not used. 0x01 = Brackets used.

Note
20x01 = Bracket reset state is BETB (between-brackets). 0x02 = Bracket reset state is INB (in-bracket).

Note
These values are of type INTEGER (all others are of type CHAR).

The opening PLU sequence can fail if the application rejects the Open(PLU) Request (for example, if the BIND parameters are
unacceptable on a nonnegotiable BIND) by sending Open(PLU) Error Response and appropriate sense codes. The local node
sends to the host a negative response to the BIND request containing the supplied sense codes. The PLU connection is
considered to be closed after an Open(PLU) Error Response, and the local node does not generate an Open(PLU) Confirm.
The following figure shows a failure to open the PLU connection (for a nonnegotiable BIND), due to the application rejecting
the Open(PLU) Request.

Failure to open the PLU connection

The opening PLU sequence can also fail if the BIND verification against the BIND check table entry specified by the
application fails. In this case, the local node does the following: Sends to the host a negative response to the BIND
request with appropriate sense codes.

Sends to the application an Open(PLU) Error Confirm with the first word of the sense codes as the first error code and
the index of the BIND parameter in error as the second error code.

The PLU connection is considered to be closed after the Open(PLU) Error Confirm. The following figure shows failure to open
the PLU connection due to BIND verification failure. Note that error code 2 gives the index in the RU of the BIND parameter in
error.

Failure to open the PLU connection due to BIND verification failure

https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745399(v=bts.10).aspx

Closing the PLU Connection
Either the application or the local node can terminate the primary logical unit (PLU) connection. The criteria for closing are:

The local node closes the PLU connection if it receives an UNBIND request from the host PLU, which terminates the PLU
session. If the UNBIND type is BIND forthcoming (0x02), the local node sets the BIND-forthcoming indicator in the
Close(PLU) Request, so that the application can reserve any necessary resources.

The local node closes the PLU connection if it receives a Deactivate Logical Unit (DACTLU) or Deactivate Physical Unit
(DACTPU) request from the system services control point (SSCP).

The local node closes the PLU connection if it receives an outage notification from data link control.

The local node closes the PLU connection if it detects a critical error in a message from the application, putting the
application in a critically failed state. In this case, the local node sends a TERM-SELF request to the host to elicit an
UNBIND.

The application should close the PLU connection for logical power-off conditions. For example, if its resources are
temporarily unavailable, or when the user finishes using the session.

When the local node issues a Close(PLU) Request, the application can determine the reason from the Close control field. There
may be an associated status message on either the PLU connection (a Status-Acknowledge(Nack-2)) or the SSCP connection (a
Status-Session message if the LU has been deactivated).

Whether the local node or the application closes the connection, the message is the same. The initiator of the Close sequence
sends a Close(PLU) Request to its partner, which responds with a Close(PLU) Response. The Close(PLU) Request is
unconditional. The Close(PLU) Response always reports that the connection was successfully closed.

The Close(PLU) Response is provided so that the initiator of the Close sequence can determine when outstanding data and
status messages have been delivered. To avoid possible race conditions, the application should discard all messages it receives
on the PLU connection after issuing a Close(PLU) Request, including any Close(PLU) Request messages from the local node,
until it receives the Close(PLU) Response.

Note that, if the application sends a Close(SSCP) Request while the PLU session is active, the local node will close the PLU
connection (as if Close(PLU) Request had been sent) as well as the SSCP connection.

The message sequence for an application-initiated Close is shown in the following figure. The local node sends a TERM-SELF
request to the host to elicit an UNBIND.

If the host generates an UNBIND automatically on receipt of a TERM-SELF, the application can view Close(PLU) as equivalent
to the termination of the PLU-SLU session.

Message sequence for an application-initiated Close

The message flow for a local node-initiated Close after receiving an UNBIND request from the host is shown in the following
figure.

Message flow for a local node-initiated Close after receiving an UNBIND request

https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771510(v=bts.10).aspx

When an application is using the logical unit application (LUA) variant of the FMI, issuing a Close(PLU) Request causes the
node to immediately unbind the PLU session by sending an UNBIND request to the PLU. The Close(PLU) Response is
returned to the application on receipt of the UNBIND response, as shown in the following figure.

Message flow for the Close(PLU) Response

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Using the PLU Session
When the primary logical unit (PLU) connection is open, the application has access to the PLU session and can communicate
with the host PLU.

In This Section

PLU Session Characteristics

PLU Session Status

https://msdn.microsoft.com/en-us/library/aa704705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746256(v=bts.10).aspx

PLU Session Characteristics
The local node provides support on the primary logical unit (PLU) session for function management (FM) profiles 2, 3, 4, and 7
and Transmission Service profiles (TS profiles) 2, 3, 4, and 7. Support of these profiles means that the local node supports LU-
LU session types 0, 1, 2, and 3. Using the PLU connection, the application can send and receive any FM data that is valid for
these LU-LU types.

The protocols appropriate to a particular session are determined by the parameters in the BIND request that establishes the
session. The BIND parameters are reported to the application in the bind information control block (BICB) on the
Open(PLU) OK Confirm message. It is the application's responsibility to conform to the session protocols reported in the BICB.

Due to the wide range of BIND parameters allowable on a session and the options available to an application in the CICB on
the Open(PLU) OK Response, this section does not attempt a complete description of the protocols for a particular session. The
remaining topics in this section describe the general protocol characteristics of the PLU session, such as chaining, brackets, and
so on.

Most of the protocol descriptions in the remainder of this section are accompanied by figures to illustrate the important
features. The figures show:

The relevant response header flags in SNA requests/responses.

The sequence number of SNA requests/responses.

Any sense data (shown as "SENSE=...") on SNA responses or Data messages.

The acknowledgment required (ACKRQD) field in Data and Status-Control messages.

The relevant application flags in Data and Status-Control messages. (For more information, see Application Flags.)

The message key field in Data messages.

Any error codes (shown as "ERROR=...") in Status-Acknowledge or Status-Control messages.

For simplicity, it is assumed that all messages are function management data flowing on the same PLU session that:

Uses half-duplex flip-flop protocols.

Uses brackets, with reset state of between-bracket.

Does not use the PLU CICB segment delivery option. (For more information, see Segment Delivery).

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

PLU Session Status
While the primary logical unit (PLU) connection is open, the local node reports any changes of state to the application through
Status-Session messages. There is only one Status-Session status code that can occur on the PLU connection, which is listed
in the following table.

Status co
de

Description

BETB The PLU session has made the transition from the in-bracket state to the between-bracket state. (For more informa
tion, see Brackets.)

Status-Session Codes describes the Status-Session status codes.

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Outbound Chaining
The local node checks that outbound chains of requests conform to the correct SNA usage, to the chaining usage for the
session, and to the current state of the session. The local node will accept valid outbound chains of data from the host if one of
the following is true:

Data traffic is active on a full-duplex session.

The session is in a state where it can receive data.

The session is between brackets with neither half-session currently sending, or the session is in contention for a half-
duplex contention session. (For more information, see Brackets.)

The session is waiting for the host to initiate a recovery procedure. For example, the local node has sent a negative
response to an outbound chain. (For more information, see Recovery.)

The local node sends a Data message to the application for each outbound request, but note the effects of the application
specifying the segment delivery option in the connection information control block. (For more information, see
Segment Delivery.) If the application does not specify segment delivery, the begin chain indicator (BCI) and end chain indicator
(ECI) application flags in the message header reflect the chaining indicators in the request header of the request.

An outbound chain can terminate in several ways:

The chain is received complete and without error. All the requests in the chain have been passed to the application as
Data messages and have been acknowledged where applicable.

The application detects an error in a Data message while receiving the chain. The application should send a
Status-Acknowledge(Nack-1) with associated sense data to the local node, which sends a negative response plus the
sense data to the host for the request corresponding to the Data message in error. The local node will not purge the
remainder of the chain, so the application will see End Chain (EC). Alternatively, the host can terminate the chain with a
CANCEL, which is delivered to the application as a Status-Control(CANCEL) with ACKRQD set.

The local node detects an error in a request and presents the application with a system detected error Data message to
report the premature termination of the chain. This message carries the system detected error indicator (SDI) and ECI
application flags, the sense codes for the error, and the ACKRQD indicator. It does not carry user data. When the
application responds with Status-Acknowledge(Ack), the local node generates a negative response to the chain using the
appropriate sense code. The application can use the reported sense codes to generate diagnostic information for the
user. (For example, a 3270 emulator would generate PROG check codes.) The local node will purge the remainder of the
chain, so the application may not see EC. Alternatively, the host can terminate the chain with a CANCEL, which is
delivered to the application as a Status-Control(CANCEL) with ACKRQD set.

The host can cancel the chain while sending, by sending the CANCEL request. The local node sends a Status-
Control(CANCEL) message to the application, which the application must acknowledge.

If an error occurs while receiving a chain, and the session uses half-duplex flip-flop protocols, the application must assume an
error-recovery-pending state. (For more information, see Recovery.)

For a session using half-duplex flip-flop protocols, if the application flags in the last Data message of the chain have the CDI
(change direction) flag set:

If the chain was received without error, the application has direction.

If the application rejected any message in the chain, the host retains direction.

The following four figures illustrate outbound chaining protocols between the local node and the application and how those
protocols relate to the underlying SNA protocols.

https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

In the first figure, a complete outbound chain is received without error and accepted by the application. Note that after sending
Status-Acknowledge(Ack), the application has direction.

Outbound chain received without error and accepted by the application

In the following figure, a complete outbound chain is received without error, but is rejected by the application. Note that even
though the chain carried CD, the application does not have direction.

Outbound chain received without error, but is rejected by the application

In the following figure, the local node detects the invalid use of RQD without EC and converts the request to a Data message
with the SDI application flag set, plus ACKRQD and appropriate sense codes. The application's Status-Acknowledge(Ack)
drives the negative response to the host. This example assumes that the receive check 4007 has been specified in the CICB on
the Open (SSCP).

Local node detects invalid use and converts request

In the following figure, the host cancels the outbound chain.

Host canceling the outbound chain

See Also
Reference
LUSTATs
Concepts
Inbound Chaining
Segment Delivery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx

Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Inbound Chaining
The division of application data into Data messages and the control of inbound chaining are the responsibility of the
application.

The secondary maximum send request unit size for the session is a parameter in the BIND from the host and is available in the
bind information control block (BICB) on the Open(PLU) OK Confirm message. The application should ensure that each
inbound Data message corresponds to a single request unit. It does not contain more data than the maximum request unit
size given in the BICB.

The application should use the begin chain indicator (BCI) and end chain indicator (ECI) application flags in the Data message
headers to control chaining. (For more information, see Application Flags.) The chain is the unit of recovery, and if recoverable
errors occur in the chain, the application should assume responsibility for recovery. (For more information, see Recovery.)

An inbound chain can terminate in the following ways:

The complete chain is sent without errors. All the Data messages in the chain have been passed to the host. If the session
allows the secondary to send definite-response chains, and the application sets the ACKRQD field in the last Data
message of the chain, the application receives a Status-Acknowledge(Ack) from the local node when the host supplies a
response.

The local node detects a critical error in the format of a Data message from the application or in the state of the session.
The local node rejects the Data message with a Status-Acknowledge(Nack-2) containing an error code and closes the
PLU connection. Note that the local node will generate an inbound CANCEL request before closing the PLU connection.
The local node will send a TERM-SELF request to the host to elicit an UNBIND.

The host sends a negative response to a request in the chain. The local node sends a Status-Acknowledge(Nack-1)
message to the application with the sense codes and sequence number from the negative response. If the host rejects a
request that does not carry the ECI application flag, and the application does not specify the application cancel option in
the PLU CICB, the local node also generates an inbound CANCEL request. When the application specifies application
cancel, it must send EC or Status-Control(CANCEL) to terminate the chain. Any subsequent inbound chains are rejected
with a noncritical Status-Acknowledge(Nack-2), sense code 0x2002 or 0x2004 (chaining or direction). When the
application receives the Status-Acknowledge(Nack-1) message, it should stop sending data after this chain for half-
duplex flip-flop sessions because the direction has passed to the host. (For more information, see Direction.)

The application cancels the chain while sending, by sending a Status-Control(CANCEL) message to the local node. The
local node sends a CANCEL request to the host and sends a Status-Control(CANCEL) Acknowledge to the application
on receiving a positive response from the host. Responses from the host to requests sent before the CANCEL will
generate appropriate Status-Acknowledge messages to the application if the original Data messages had the ACKRQD
field set.

The application closes the PLU connection while sending the chain. The local node sends a Close(PLU) Response to the
application. Responses from the host to requests sent before the Close(PLU) message will not generate Status-
Acknowledge messages to the application. Note that the local node will also generate an inbound CANCEL request and
a TERM-SELF request to elicit an UNBIND.

If the local node detects a noncritical error in the format of a Data message from the application or the state of the session, it
does not close the PLU connection. Instead, it rejects the Data message in error with a Status-Acknowledge(Nack-2)
containing an appropriate error code. No data is sent to the host.

If an inbound chain terminates with an error, when the session uses half-duplex protocols, the application must assume a
receive state. (For more information, see Recovery.)

The following six figures illustrate inbound chaining protocols between the local node and the application, and how those
protocols relate to the underlying SNA protocols.

In the first figure, a complete inbound chain is sent without error and accepted by the host. Note that after receiving Status-
Acknowledge(Ack) the application relinquishes direction to the host.

Inbound chain is sent without error and accepted by the host

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

In the following figure, the local node detects a critical error in the format of the second Data message in the chain (ACKRQD
without the ECI application flag), sends a Status-Acknowledge(Nack-2) to the application with the appropriate error code,
and closes the PLU connection. Note that the local node only generates the CANCEL if the session's function management
(FM) profile supports CANCEL.

Local node detects error, sends a Status message, and closes the PLU connection

In the following figure, a complete inbound chain is sent without error, but is rejected by the host. After the negative response,
the application must enter receive state, pending error recovery. (For more information, see Recovery.)

Inbound chain is sent without error but is rejected by host

In the following figure, the application cancels the chain by sending Status-Control(CANCEL). Note that the application still
has direction and can start a new chain.

Application cancels the chain with a Status-Control(CANCEL)

https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

In the following figure, the application closes the PLU session while sending the chain. The local node only generates the
CANCEL if the session's FM profile supports CANCEL.

Application closes the PLU connection while sending the chain

In the following figure, the local node detects a noncritical error in the format of the second Data message in the chain and
sends a Status-Acknowledge(Nack-2) to the application with the appropriate error code.

Local node detects a noncritical error and sends a Status-Acknowledge(Nack-2)

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Segment Delivery
If the maximum request/response unit (RU) size for a session (supplied in the BIND parameters) allows RUs that are larger
than the maximum size of a data link control transmission unit, for example, a Synchronous Data Link Control (SDLC) frame,
the local node's path control is responsible for assembling outbound segments into RUs and segmenting inbound RUs where
required.

However, certain IBM products (for example, SNA models of the 3270 controllers) do not perform outbound segment
assembly, to improve perceived response times at display terminals by displaying each segment as soon as it is received. This
feature is referred to as window shading.

The local node allows an application to specify a segment delivery option in the connection information control block (CICB) on
the Open(PLU) OK Response. If an application specifies this option, the local node's path control does not assemble outbound
segments into complete RUs, and the local node delivers the segments to the application in Data messages. This enables an
application emulating a 3270 device to reproduce the perceived response characteristics of the IBM device. In cases where
throughput is high, such as 3270 file transfer, segment delivery can give improved performance compared to RU delivery.

Note that there is no comparable feature for inbound data. The application must present Data messages containing complete
RUs to the local node. Also, there is no support for segment delivery on the system services control point (SSCP) session and
connection (where the maximum RU size is limited to 256 bytes).

The local node supports the segment delivery option in such a way that the constraints placed on an application receiving data
in either form are identical. If complete RUs are required, the local node rebuilds the RUs from segments in path control. If
segments are required, the local node handles all segmentation indicators and modifies processing within its SNA layers to
cater for segmented RUs.

All Data messages delivered to the application contain application flags, whereas only the first segment in an RU contains a
response header (RH). The local node delays the end chain (EC) and change direction (CD) indicators if they occur in the RH of
the RU's first segment, and sets the corresponding ECI and CDI application flags in the Data message corresponding to the last
segment of the RU. Therefore, the Data messages corresponding to RU segments have application flags set as if they
corresponded to whole RUs. This considerably simplifies the handling of chaining, bracket, and half-duplex protocols for an
application using the segment delivery option.

Note
EB is not delayed until end basic information unit (EBIU), because the application should use the Status-Session between-bra
ckets message to determine when to enter the between-brackets state.

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Brackets
This section primarily describes the bracket protocols between the local node and an application for a session supporting half-
duplex flip-flop with brackets.

The local node enforces no bracket protocols for full-duplex sessions. Therefore, messages with begin bracket (BB) are not
presented as Status-Control(BID) messages, and there are no Status-Session(BETB) messages.

The management of this protocol for a generalized application is complex, and there is a significant amount of code in the local
node to simplify the application's perception of the protocol. An application is only aware of two states:

In-bracket

Between-bracket

The local node, in addition to the states of in-bracket and between-bracket, maintains transient states with a large state
transition matrix, or finite-state machine, governing the half-session's state at a particular time.

In This Section

Bracket Initiation

Bracket Termination

https://msdn.microsoft.com/en-us/library/aa746230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754028(v=bts.10).aspx

Bracket Initiation
While a session is in the between-bracket state, contention exists. Either the application or the host primary logical unit (PLU)
can attempt to initiate a bracket, as follows:

The application initiates a bracket by sending a Data message with the begin bracket indicator (BBI) application flag and
ACKRQD set while in the between-bracket state. The local node sends a request corresponding to the Data message to
the host PLU. The application has successfully initiated a bracket and is in the in-bracket state. Flip-flop protocols are now
in force until the bracket is terminated.

The application initiates a bracket by sending a Status-Control(LUSTAT) with the BBI application flag set while in the
between-bracket state. The local node sends an LUSTAT request to the host PLU. The application has successfully
initiated a bracket and is in the in-bracket state. Flip-flop protocols are now in force until the bracket is terminated.

The host PLU sends a BID request while in the between-bracket state. The local node sends a Status-Control(BID) with
ACKRQD to the application. (For more information, see Status-Control Message.) The application replies with a Status-
Control(BID) Acknowledge, to indicate that it is willing to accept a bracket. The local node sends a positive response to
the BID request. The host PLU has successfully initiated a bracket, and the application's state is in-bracket, with flip-flop
protocols applying until the bracket is terminated.

The host PLU sends data in an RU carrying the BB indicator in the RH while in the between-bracket state. The local node
presents this method of initiating a bracket in the same way as if the host PLU had initiated the bracket with BID. The
local node sends a Status-Control(BID) with ACKRQD to the application. The application replies with a Status-
Control(BID) Acknowledge to indicate that it is willing to accept the bracket. The local node sends the Data message
corresponding to the RU to the application and sends a positive response to the data RU. The host PLU has successfully
initiated a bracket, and the application's state is in-bracket, with flip-flop protocols applying until the bracket is
terminated.

The host PLU sends an LUSTAT request carrying the BB indicator in the RH. The local node presents this method of
initiating a bracket in the same way as if the host PLU had initiated the bracket with BID. The local node sends a Status-
Control(BID) with ACKRQD to the application. The application replies with a Status-Control(BID) Acknowledge to
indicate that it is willing to accept the bracket. The local node sends a Status-Control(LUSTAT) to the application, which
requires an acknowledgment. The host PLU has successfully initiated a bracket, and the application's state is in-bracket,
with flip-flop protocols applying until the bracket is terminated.

The host attempts to initiate a bracket using a BID request or an RU carrying BB, which the local node sends to the
application as a Status-Control(BID), but the application cannot accept the bracket. The application should send a
negative Status-Control(BID) response with an appropriate sense code. The local node sends a negative response to the
BID carrying the sense code supplied by the application. The application's state is still between-bracket. The application
should use one of the following sense codes:

0x081B if it has already committed resources for an inbound transfer. For example, a terminal operator has
begun typing.

0x0814 if it currently cannot begin a bracket but will notify the host when resources become available. For
example, a 3270 printer is being used for local copy in between-bracket printer sharing mode. At a later stage
when the resources become available, the application should temporarily reserve the resources and send a
Status-Control(RTR) to the local node. If the host rejects the RTR, the local node returns a Status-Control(RTR)
Negative-Acknowledge-1 response, and the application can release the resources. Otherwise, the host
attempts to initiate a bracket that the application must now accept.

If the application has successfully initiated a bracket, a bracket race may occur due to the host PLU attempting to initiate a
bracket. The application gets a Status-Control(BID) Request, which it should reject with 0x080B or 0x0813. The
application retains direction after race negative responses. (For more information, see Recovery.) The application's
bracket state remains as in-bracket.

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

The application needs to be aware of one further complication in bracket initiation. All the cases relate to sessions whose
bracket reset state is between-bracket. A state of contention exists, and either half-session can attempt to begin a bracket.

However, the BIND parameters for the session can specify a bracket reset state of in-bracket. If the bracket reset state is in-
bracket, one half-session is considered to have already successfully initiated a bracket. Flip-flop protocols will then apply until a
Status-Session(BETB) is received, at which time the session reverts to a contention state and bracket initiation proceeds as
described earlier.

The application must set its bracket state when the PLU connection is opened (on receipt of the Open(PLU) OK Confirm
message) and reset it each time the session is reset (after receipt of a Status-Control(CLEAR) Request). The appropriate
bracket reset state for the session is supplied to the application in the BICB on the Open(PLU) OK Confirm message.

The following six figures illustrate bracket initiation protocols between the local node and the application and how those
protocols relate to the underlying SNA protocols.

In the first figure, the application initiates a bracket by sending an inbound chain with the BBI application flag set when its state
is between-bracket. The application's state is in-bracket until it receives a Status-Session(BETB). (If the application can send
RQE chains, a bracket can be opened by sending an RQE chain.)

Application initiates a bracket by sending an inbound chain

In the following figure, the application initiates a bracket by sending a Status-Control(LUSTAT) with the begin bracket
indicator (BBI) application flag set when its state is between-bracket. The application's state is in-bracket until it receives a
Status-Session(BETB). The LUSTAT can be sent NOACKRQD (RQE) if required.

Application initiates a bracket by sending a Status-Control(LUSTAT)

In the following figure, the host initiates a bracket by sending BID, which the application accepts. The application's state is in-
bracket and the host can send.

Host initiates a bracket by sending BID

In the following figure, the host PLU initiates a bracket by sending a request with begin bracket (BB), which the application
accepts. The application's state is in-bracket, and the host can send.

Host PLU initiates a bracket by sending a request with BB

https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx

In the following figure, the host initiates a bracket by sending an LUSTAT with BB, which the application accepts. The
application's state is in-bracket, and the host can send.

Host initiates a bracket by sending an LUSTAT with BB

In the following figure, the host and application both attempt to initiate a bracket in between-bracket state. The application
rejects the host bids with sense code 0x0813, and the local node delivers the application's data. After sending the data, the
application's state is in-bracket, and the application can send.

Host and application both attempt to initiate a bracket in between-bracket state

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx

Recovery

https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Bracket Termination
The local node supports bracket termination rule one (conditional) and bracket termination rule two (unconditional), as
specified in the BIND request. Some sessions only allow bracket termination by one session partner. This is a BIND option,
supplied in the bind information control block (BICB) on Open(PLU) OK Confirm), and it is the application's responsibility to
determine if (and when) it should request bracket termination.

If an application is allowed by its BIND to terminate brackets, it does so by setting the End Bracket Indicator (EBI) application
flag in an inbound Data or Status-Control(LUSTAT/CHASE/QC/CANCEL) message. The bracket is only terminated when the
application receives a Status-Session (BETB) from the local node.

If the host terminates a bracket successfully, the local node sends a Status-Session(BETB) to the application. Note that the EBI
application flag on outbound messages does not indicate bracket termination, but indicates that the corresponding
request/response unit (RU) carried End Bracket (EB). The bracket is only terminated when the application receives Status-
Session(BETB).

Note that if the application queues data, it should also queue Status-Session(BETB) messages. They must not be processed as
expedited.

The following two figures illustrate bracket termination protocols between the local node and the application and how those
protocols relate to the underlying SNA protocols.

In the following figure, the application successfully terminates a bracket by sending an EBI data chain when the application's
state is in-bracket, which the host accepts. The local node sends a Status-Session(BETB) to indicate that the application's state
is now between-bracket.

Application successfully terminates a bracket by sending an EBI data chain

In the following figure, the host successfully terminates a bracket by sending an EBI data chain when the application's state is
in-bracket, which the application accepts. The local node sends a Status-Session(BETB) to indicate that the application's state
is now between-bracket.

Application successfully terminates a bracket by sending an EBI data chain

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session

https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx

Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Direction
When an function management interface (FMI) application is communicating on its primary logical unit (PLU) connection with
a normal flow request mode other than full-duplex (that is, half-duplex flip-flop or half-duplex contention), it must obey the
SNA direction protocol. These two modes are treated separately.

In This Section

Half-Duplex Flip-Flop Direction

Half-Duplex Contention

https://msdn.microsoft.com/en-us/library/aa754342(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772041(v=bts.10).aspx

Half-Duplex Flip-Flop Direction
The BIND used to establish the session carries information about the initial state of the bracket and direction machines. This
can be specified in the BIND if either of the following conditions are satisfied:

Brackets are not used.

Brackets reset state is in-bracket.

If neither of the conditions hold, the initial direction state is contention.

When the direction is specified in the BIND, the application should assume the direction state specified in the half-duplex reset
state as soon as data can flow. This field can be obtained indirectly by using a BIND check index that only accepts a particular
direction, or directly by reading the HDXRSET field in the bind information control block (BICB) on the Open(PLU) OK Confirm
message or by reading the BIND on the Open(PLU) Request. For more information about opening the PLU connection, see
Opening the PLU Connection.

When in contention state, either the PLU or the application can initiate a bracket. (For more information, see Brackets.) The
successful initiator of the bracket obtains direction unless direction is relinquished when opening the bracket by sending Begin
Bracket (BB), Begin Chain (BC), End Chain (EC), or Change Direction (CD). Because the secondary is assumed to be the
contention winner, the application can assume send state from contention sending BB and rejecting any subsequent Status-
Control(BID) Request from the local node before receiving Status-Session(BETB). When the application accepts a Status-
Control(BID) Request in contention state, it must assume receive state.

Half-duplex flip-flop direction can change through the following actions:

Sending or receiving data with the change direction (CD) indicator in the RH, and the corresponding change direction
indicator (CDI) flag on the DATAFMI and Status-Control messages. Note that CD is only used at the end of a chain (and
for applications receiving segments that will be delivered with ECI, EBIUI). Also note that CD is valid on the following
normal flow Status-Control requests: LUSTAT, CANCEL, CHASE and QC.

Receiving a negative response when the application should assume receive state (error recovery pending state). For
more information, see Recovery.

If the application rejects data from the host carrying CDI, it must remain in receive state.

Providing the FM profile is correct (3, 4, or 7), the application can request direction from the host using a Status
Control(SIGNAL) Request with CODE1 set to 0x0001. CODE2 is set to a user-defined value.

The following three figures illustrate the direction protocol for applications using the half-duplex flip-flop mode.

In the first figure, the application issues and receives the CD without error.

Application issues and receives the CD without error

https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

In the following figure, the host sends a negative response to inbound data. The application assumes receive state, and then the
host sends CD to give the application direction.

Host sends negative response to inbound data

In the following figure, a complete outbound chain is received without error, but is rejected by the application. Note that even
though the chain carried CD, the application does not have direction.

Complete outbound chain received without error, but is rejected by application

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx

Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Half-Duplex Contention
For half-duplex contention, the initial direction state is contention. Half-duplex protocol operates during a chain (only one
partner can send), but the direction state normally returns to contention at the end of each chain. The change direction
indicator (CDI) in the response header (RH) is thus not required. However, if the CDI is used, direction is reserved for the
receiving half-session. Therefore, if the application receives change direction (CD), it should assume send state and not expect
to receive data. Conversely, if the application sends CD, it cannot send again until it has received a chain from the host.

In the event of an error being discovered by either half-session, the application must assume receive state, because the host is
responsible for recovery.

If both half-sessions attempt to start a chain when the direction state is contention, the race is resolved in favor of the
secondary application using a sense code of 0x081B. However, the possible window between the local node and the
application means that the local node cannot determine when outbound Request Exception (RQE) data is received by the
application. Therefore, if the local node receives data from the application while it determines that the half-duplex contention
state is receive, it will reject it with a noncritical NACK-2 (0x2004 direction).

The following two figures illustrate the direction protocol for applications using half-duplex contention mode. The three figures
in the previous topic would also be valid although CD does not need to be specified.

In the following figure, the application issues and receives data using half-duplex contention protocol without error.

Application issues and receives data using half-duplex contention protocol without error

In the following figure, the half-duplex contention race is resolved in favor of the application.

Resolving half-duplex contention race in favor of the application

See Also

Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Pacing and Chunking
The local node supports session pacing inbound and outbound, according to the pacing values in the BIND parameters for the
session. The application can be involved in outbound pacing through the use of the Status-Resource message. Inbound pacing
is handled transparently by the local node and need not concern the application.

In This Section

Outbound Pacing

Chunking

https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771306(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771108(v=bts.10).aspx

Outbound Pacing
If the application has enough resources to handle outbound data as fast as the network can provide it (for example, a screen),
or if a higher level protocol (for example, immediate request mode) constrains the data flow, the application need not be
involved in pacing, and it is possible for the local node to handle outbound pacing transparently.

However, certain types of applications may require involvement in outbound pacing. If the application has limited resources
(for example, a printer), the application should specify the application pacing option in the connection information control
block (CICB) on the Open(PLU) OK Response. (For more information, see Opening the PLU Connection.) The application should
also provide the local node with information about the state of these resources initially on the Open(PLU) OK Response and
periodically using Status-Resource messages.

To assist the application in calculating the initial credit field in the Open(PLU) OK Response, the local node delivers the pacing
window sizes and the primary and secondary maximum request/response unit (RU) sizes on the Open(PLU) Request. The initial
credit must be at least as large as the primary to secondary pacing window size. Otherwise, the BIND will be rejected and the
application will be sent an Open(PLU) Error Confirm message. The local node fills in a suggested initial credit value of one
more than the pacing window (to try to avoid stop-start situations).

Note that the local node will also reject the BIND if the application specifies that it needs to be involved in pacing (of whatever
initial credit), but the BIND specifies that there is no outbound pacing.

Only function management data (FMD) requests are part of the credit scheme, so the application must maintain space within
its buffer for one Status-Control request per RU in addition to the number of RUs specified by the initial credit count. (A
Status-Control message takes up 36 bytes.)

Each unit of credit that the application delivers to the local node allows the local node to give the application a single RU (or a
single chunk if chunking is being used). Note that if the application is receiving segments, this may correspond to several
DATAFMI messages. The application can count RUs for the purpose of outbound flow control by using the begin basic
information unit (BBIU) and end basic information unit (EBIU) flags.

The application should maintain a credit-used count, which it should report to the local node on Status-Resource messages.
The application needs to take the following actions:

On processing (not receiving) DATAFMI messages with EBIU set (corresponding to FMD requests), increment the credit-
used count by one.

On processing Status-Control messages and all other messages from the local node, do not increment the credit-used
count.

Periodically report the current credit-used count on a Status-Resource message.

Report the credit-used count when its buffer becomes empty (whatever the last message processed was), unless the
credit-used count is zero.

When the credit-used count is reported to the local node, reset it to zero.

The frequency at which the application provides Status-Resource messages is not architected. However, the local node will only
send the application as many Data messages as it has received credit for. When the application's credit-used count reaches the
initial credit value, the local node will not send any more data. The application should attempt to send a Status-Resource
message before this happens, because if the local node cannot send a Data message to the application and the host is still
sending requests, the local node may not be able to send a pacing response to the host when required, with a consequent
degradation of performance.

If the pacing window is small, such as one or two, the application should send a Status-Resource after processing each
DATAFMI message to enable the local node to send the suitable pacing response.

The following figure shows the local node handling outbound pacing when the application is not involved (APPLPAC = 0x00).
The pacing window is assumed to be two.

Local node handling outbound pacing

https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745399(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

The following figure shows the local node and the application handling outbound pacing with the outbound pacing window
assumed to be two and the initial credit from the local node to the application assumed to be four. Note that the local node can
send an isolated pacing response (IPR) to the host to get another window full of data as soon as the application has sufficient
credit for the rest of the present window and the next window.

Local node and application handling outbound pacing

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Chunking
Chunking can be thought of as similar to segmentation. (For more information, see Segment Delivery.) The distinction is that
segmentation is determined by the communications link between the local node and the remote system, whereas chunking is
determined by the communications link between the application and the local node.

The application indicates on the Open(SSCP) Request whether it supports chunking, and, if so, the chunk size in bytes that it
wants to use. The local node then uses the request/response unit (RU) size, the chunk size, and the segment size (if applicable)
to determine whether chunking is necessary. It then specifies the chunk sizes used for inbound and outbound flow (which need
not be the same) on the Open(PLU) Request. These values are specified in units of elements. (For more information, see
Messages.) A value of zero for either of these sizes indicates that chunking is not necessary because the chunk size is not the
limiting factor. Note that in chunking data, an RU will not be split in the middle of an element. This avoids data copying.

For example, assume that the local node is using an RU size of 8 kilobytes (KB) and segments of 2 KB, and the application's
Open(SSCP) Request specifies segment delivery and a chunk size of 4 KB. Chunking will be used on inbound data flow
(because the chunk size is smaller than the RU size), but is not necessary on outbound data flow (because data will be delivered
in segments that are smaller than the chunk size).

If chunking is being used in either direction, all credit values specify the number of chunks that can be sent in that direction, not
the number of RUs. Note that the segment delivery option is included on the Open(SSCP) Request to enable the local node to
calculate the initial chunk credit values on the corresponding PLU connection. The application must also set this option on the
Open(PLU) Response. If the Open(SSCP) Request and the Open(PLU) Response have different settings of this option, the
setting from the Open(PLU) Response will be used. This can mean that the initial credit value used is not appropriate.

If session-level pacing is being used, the local node links this to the chunking credit. In particular, if the application withholds
credit, the local node will delay sending a pacing response to the host, thereby applying back pressure to the host. This linkage
is handled by the local node and need not concern the application.

Application flags on chunks of RUs are handled in the same way as those on segments. (For more information, see
Application Flags and Segment Delivery.) In particular:

FMHI, BCI, COMMIT, BBI, EBI, CODE, ENCRYP, ENPAD, QRI, and CEI are only set on the first chunk of an RU.

ECI and CDI are only set on the last chunk of an RU.

BBIUI is always set on the first chunk of an RU.

EBIUI is always set on the last chunk of an RU.

Note that EBI is set on the first chunk of the last RU in a bracket and not on the last chunk as might be expected. This is the
same behavior as for segment delivery. The application should use the Status-Session(BETB) message, not the EBI flag, to
determine when a bracket has ended.

Chunks are identified using the segmentation flags BBIUI and EBIUI, and therefore the application cannot distinguish between
chunks and segments if both segmentation and chunking are being used outbound. However, there is generally no need for
the distinction. The application can perform window shading by displaying each unit of data as it is received, whether the unit
of data is a segment or a chunk. (For more information, see Segment Delivery.)

Note
Previous versions of this document indicated this as a future feature. The support is enabled in Host Integration Server 2009.
Applications can test the product version returned on a call to sepdgetinfo for version 1.2 or later before using the chunking
system.

In some cases, the RU size used by the local node may be too large for the length of the path between the local node and an
FMI application, for example, when using a 16 megabyte (MB) token-ring link, which can support 16 kilobyte (KB) frames. The
local node allows an FMI application to specify that data transfer should be in smaller units, called chunks.

See Also
Reference
LUSTATs
Concepts

https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx

Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Confirmation and Rejection of Data
The following topics describe conditions under which inbound and outbound data is confirmed or rejected.

In This Section

Confirmation and Rejection of Inbound Data

Confirmation and Rejection of Outbound Data

https://msdn.microsoft.com/en-us/library/aa704958(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705750(v=bts.10).aspx

Confirmation and Rejection of Inbound Data
For every SNA chain of data sent or received for which responses are outstanding, such as Request Exception (RQE) or Definite
Response Required (RQD), the local node maintains a correlation table entry. If the table entries become depleted, the local
node will terminate the session using the most table entries. A Status-Error message (code 0x46) and a Close(PLU) Request are
sent to the application, and a TERM-SELF message is sent to the host. Table entry shortages (inbound) can be avoided by
sending change direction (CD) (for half-duplex) data, or data ACKRQD, or any Status-Control(CHASE), or Status-
Control(LUSTAT) with ACKRQD. Outbound shortages can be avoided by sending courtesy acknowledge messages as
described in Opening the PLU Connection.

The local node sends chains of data to the host with their chain response mode specified as follows:

1. Definite

If the application sends a Data message to the local node with the ACKRQD field set, and the BIND parameters specified
that the secondary uses definite or definite/exception response mode.

2. Exception

If the application sends a Data message to the local node without the ACKRQD field set, and the BIND parameters
specified that the secondary uses exception or definite/exception response mode.

3. No-Response

If the application sends a Data message to the local node without the ACKRQD field set, and the BIND parameters
specified that the secondary uses no-response mode.

If the setting of ACKRQD on a Data message from the application does not reflect the chain response mode specified in the
BIND parameters, the local node returns a Status-Acknowledge(Nack-2) indicating a noncritical error code. For example, if the
application specifies ACKRQD but the BIND parameters do not permit the local node to send definite response chains.

In case 1, the application receives an acknowledgment to all function management data (FMD) chains it sends to the local node:

Positive responses from the host are returned to the application as Status-Acknowledge(Ack) messages.

Negative responses from the host are returned as Status-Acknowledge(Nack-1) messages carrying the SNA sense codes.

Errors detected by the local node when attempting to send the message are returned as Status-Acknowledge(Nack-2)
messages carrying the equivalent error code.

In case 2, the application only receives an acknowledgment of an FMD chain it sends to the local node for:

Negative responses from the host, which are returned as Status-Acknowledge(Nack-1) messages carrying the SNA
sense codes.

Errors detected by the local node when attempting to send the message, which are returned as Status-
Acknowledge(Nack-2) messages carrying the equivalent error code.

In case 3, the application only receives an acknowledgment of an FMD chain it sends to the local node when the node detects
an error in the message and sends the application a Status-Acknowledge(Nack-2). The only dissent that the host can make
is to send a subsequent LUSTAT 0x400A (no response not supported) with the sequence number of the request in the sense
qualifier field. This is presented to the application as a Status-Control(LUSTAT) as usual.

Whenever an application receives a Status-Acknowledge(Ack) or Status-Acknowledge(Nack-1), it implicitly confirms
receipt by the partner half-session in the host of all previously sent chains.

In case 2, the application does not usually receive such responses from the host to chains it has sent, and in case 3, the
application never receives such responses. Therefore, to get the host to confirm receipt of all previously sent chains, the

https://msdn.microsoft.com/en-us/library/aa705002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx

application should issue a Status-Control(CHASE) Request with ACKRQD set. This causes the local node to generate an SNA
CHASE request to the host. The receipt of the response to this CHASE confirms that the host has received this CHASE request
and all previous chains sent by the application. The local node issues a Status-Control(CHASE) Acknowledge to notify the
application that this is so.

The following three figures illustrate the inbound data confirmation and rejection protocols between the local node and the
application, and how those protocols relate to the underlying SNA protocols.

In the first figure, an application sets the ACKRQD field in an inbound data chain to get the host to confirm receipt of the chain
and all previously sent chains.

Application sets ACKRQD field

In the following figure, the Status-Acknowledge(Nack-1) rejects the last chain, but confirms receipt by the host of all
previously sent data chains.

Status-Acknowledge(Nack-1) rejects the last chain, but confirms receipt

In the following figure, the application uses a Status-Control(CHASE) to get the host to confirm receipt of the corresponding
CHASE request and all previously sent chains.

Using a Status-Control(CHASE) to get the host to confirm receipt of the corresponding CHASE request

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Confirmation and Rejection of Outbound Data
The local node sends chains of data from the host to the application with their ACKRQD field set as follows:

ACKRQD set

If the corresponding SNA request was received specifying definite response, and the BIND parameters specify that the
primary uses definite or definite/exception chain response mode.

1. ACKRQD not set, response mode

If the corresponding SNA request was received specifying exception response, and the BIND parameters specify that the
primary uses exception or definite/exception chain response mode.

2. ACKRQD not set, no-response mode

If the corresponding SNA request was received specifying no response, and the BIND parameters specify that the
primary uses no-response chain response mode.

In case 1, the application should always send an acknowledgment as follows:

If the application accepts the data, it should return a Status-Acknowledge(Ack) message.

If the application wants to reject the data, it should return a Status-Acknowledge(Nack-1) message carrying the
appropriate SNA sense codes.

In case 2, the application should only send an acknowledgment in the following cases:

If the application wants to reject the data, it should return a Status-Acknowledge(Nack-1) message carrying the
appropriate SNA sense codes.

The application can send a courtesy acknowledgement to a Request Exception (RQE) message to clear up correlation data
within the local node. (For more information, see Outbound Data.)

In case 3, the application should not send acknowledgments. However, the sending of a Status-Acknowledge(Ack) or
Status-Acknowledge(Nack-1) by the application has no effect. It is discarded.

Whenever an application sends a Status-Acknowledge(Ack) or Status-Acknowledge(Nack-1) to a received Data message,
it implicitly confirms receipt of this and all previously received Data messages.

In case 2, the host can issue a CHASE request. The local node sends a Status-Control(CHASE) Request with ACKRQD set to
the application. When the application is in a position to confirm receipt of all outstanding data, it should issue a Status-
Control(CHASE) Acknowledge message, which the local node converts into a positive response to CHASE for the host.

In cases 1 and 2, if the local node detects an error in a received request, it converts the request into a special Data message,
which it passes to the application. Regardless of the chain response mode specified for the secondary in the BIND parameters,
this Data message has the following characteristics:

ACKRQD is set. The application must confirm receipt using a Status-Acknowledge(Ack) message.

The Sense Data Indicator (SDI) application flag is set to indicate that this is a special Data message used to inform the
application of an error detected by the local node.

The End Chain Indicator (ECI) application flag is set to indicate that the received chain has now terminated.

The first four bytes of the buffer element hold the SNA sense codes detected by the local node that caused the
termination.

https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx

This mechanism enables:

The application to reject any previously received Data messages.

The local node to inform the application of any errors it detects in received requests.

The local node to send negative responses in the correct order.

The following three figures illustrate the outbound data confirmation and rejection protocols between the local node and the
application and how those protocols relate to the underlying SNA protocols.

In the first figure, the host sends a definite response chain to get the application to confirm receipt of the RQD request and all
previously sent RQE chains.

Host sends a definite response chain

In the following figure, a Status-Acknowledge(Nack-1) from the application rejects the last chain and confirms receipt of all
previously sent data chains.

Status-Acknowledge(Nack-1) rejects the last chain and confirms receipt

In the following figure, the host sends a CHASE request to get the application to confirm receipt of the CHASE and all
previously sent chains.

Host sends a CHASE request

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Shutdown and Quiesce
Both shutdown and quiesce protocols involve a half-session entering a quiesced state, in which it cannot send any more
normal flow requests, but must continue to receive and respond to requests from its session partner. The essential differences
are that shutdown can only be initiated by the host and only requires that the secondary quiesce as soon as is convenient
(usually at the end of a bracket). Quiesce can be initiated by both the host and the application and requires that the recipient
quiesce at the end of the chain.

If the application has been quiesced but still attempts to send inbound Data messages, they will be rejected with
Status-Acknowledge(Nack-2) messages. The application can, however, continue to generate status messages.

In This Section

Shutdown

Quiesce

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745705(v=bts.10).aspx

Shutdown
The shutdown protocol provides a means for the host application to stop the application from sending any further normal flow
requests. This protocol is used when the host application wants to end the session in an orderly manner and is only available
for sessions using function management (FM) profile 3 or 4.

If the local node receives a SHUTD request from the host, it issues a Status-Control(SHUTD) Request (without ACKRQD) to
request the application to enter a quiesced state at a convenient time. The application determines what is convenient. For
example, it could be after a Status-Session(BETB) has been received.

When the application decides it is ready to quiesce, it should issue a Status-Control(SHUTC) Request (again without
ACKRQD) to indicate this transition. The local node will notify the host of this change by sending a SHUTC request. The host
can continue sending normal flow outbound requests and can subsequently take one of the following actions:

The host terminates the primary logical unit (PLU) session by sending an UNBIND request. The local node closes the PLU
connection by sending a Close(PLU) Request to the application. The system services control point (SSCP) session remains
active.

The host abandons the shutdown procedure by sending an RELQ request. The local node sends a Status-
Control(RELQ) Request (with ACKRQD) to the application to indicate that it can now resume sending on the PLU
session. RELQ is only supported on sessions using FM profile 4.

The host resets the session by sending CLEAR, a Transmission Service profile (TS profile) 3 or 4. One of the effects of this
is to release the quiesced state. (For more information, see Recovery.)

The following two figures illustrate the shutdown protocols between the local node and the application and how those
protocols relate to the underlying SNA protocols.

In the following figure, the host sends SHUTD while the application is sending in the in-bracket state. The application
completes the bracket, sends Status-Control(SHUTC) Request, and the host terminates the PLU session by sending
UNBIND. The local node closes the PLU connection.

Host sends SHUTD while the application is sending in the in-bracket state

In the following figure, the host sends SHUTD while the application is sending in the in-bracket state. The application
completes the bracket, sends Status-Control(SHUTC) Request, and then the host releases the application from the quiesced
state by sending RELQ. The local node sends a Status-Control(RELQ) Request to the application, which initiates a new
bracket.

https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Host sends SHUTD while the application is sending in the in-bracket state

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Quiesce
The quiesce protocol is only supported on sessions using function management (FM) profile 4. The quiesce protocol can be
initiated by either half-session.

When an application wants to quiesce its partner half-session in the host, it sends a Status-Control(QEC) Request to the local
node. The node generates a QEC request to the host, which asks the host to quiesce after completing the current outbound
chain.

If the host quiesces, it sends a QC request, which the local node presents to the application as a Status-Control(QC) Request
(with ACKRQD). The host remains in a quiesced state until the application sends a Status-Control(RELQ) Request. The local
node sends the RELQ request to the host, and the host resumes communications on the primary logical unit (PLU) session.

If the attempt to quiesce the host fails, the host responds with a negative QEC response, which the local node presents to the
application as a Status-Control(QEC) Negative-Acknowledge-1.

Conversely, a Status-Control(QEC) Request (without ACKRQD) is presented to the application if a QEC request is received
from the host. In this direction, QEC cannot be rejected. The local node will always force the application to quiesce after
presenting it with a Status-Control(QEC) Request by rejecting further attempts to send inbound data. When the application
has quiesced, it should send a Status-Control(QC) Request to the local node, which sends a QC request to the host. The
application can subsequently be released by an RELQ request from the host, which the local node presents to the application
as a Status-Control(RELQ) Request.

The receipt of a CLEAR or UNBIND–BIND sequence, Close(PLU)–Open(PLU), causes the quiesced state to be released.

The following three figures illustrate the quiesce protocols between the local node and the application and how those protocols
relate to the underlying SNA protocols.

In the first figure, the application quiesces the host and then releases the quiesce.

Application quiesces the host and releases the quiesce

In the following figure, the application attempts to quiesce the host, but the host rejects the quiesce and continues with the next
chain.

Application attempts to quiesce the host, but the host rejects and continues with the next chain

In the following figure, the host sends QEC while the application is sending a chain. The application completes the chain and
sends a Status-Control(QC) Request. The host releases the quiesce by sending RELQ, and the local node sends a Status-
Control(RELQ) Request to the application, which then initiates a new chain.

Host sends QEC while the application is sending a chain

See Also
Reference
LUSTATs
Concepts
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Recovery
This section covers a variety of issues pertaining to error recovery.

In This Section

Application CANCEL

Direction after Receiving a Negative Response

Direction after Sending a Negative Response

Critical Failure

RQR and CLEAR

STSN

Link Service Failure

Local Node Failure

Client Failure

https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Application CANCEL
One of the parameters on the Open(PLU) OK Response, which the application sends to the local node, specifies whether the
application generates CANCEL (or EC) to terminate an inbound chain that has received a negative response. If this option is
not selected, the local node generates a CANCEL request when it receives a negative response from the host to an incomplete
chain.

See Also
Reference
RQR and CLEAR
STSN
Concepts
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Critical Failure
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Direction after Receiving a Negative Response
Within the local node, error recovery for a half-duplex application (as specified by byte 7 bit 2 of the BIND) is assumed to be
the responsibility of the host. However, the application must be aware that an error recovery state has been entered to obey
the direction protocol.

When an application using half-duplex protocols (flip-flop or contention) receives a negative response to an inbound chain that
it sent that does not refer to a race, it must assume receive state. The sense codes used for race conditions that do not require
the transition to receive state are listed in the following table.

Sense code Description
0x080B Bracket race error

0x081B Receiver in transmit mode

See Also
Reference
RQR and CLEAR
STSN
Concepts
Application CANCEL
Direction after Sending a Negative Response
Critical Failure
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Direction after Sending a Negative Response
When an application using half-duplex flip-flop protocol sends a negative response to an outbound chain (or sends a
Status-Acknowledge(Ack) to a DATAFMI message with SDI set) that does not refer to a race, the application must assume an
error recovery pending state. The sense codes used for race conditions that do not require the transition to error recovery
pending state are listed in the following table.

Sense code Description
0x080B Bracket race error

0x0813 Bracket bid reject (no RTR forthcoming)

0x0814 Bracket bid reject (RTR forthcoming)

0x081B Receiver in transmit mode

The application must therefore examine the sense code on an SDI message to detect such races.

Error recovery pending state differs from receive state only in one respect: The application can convey sense information to the
host using Status-Control(LUSTAT). (For more information, see LUSTATs.) The LUSTAT must not have the change direction
(CD) or end bracket (EB) flags set. (The host already has direction, and the bracket must not be terminated prematurely by the
application.) Host Integration Server also enables the function management interface (FMI) application to send Status-
Control(LUSTAT) in receive state.

An application using the half-duplex contention protocol does not have an error recovery pending state, and must enter
contention state whenever it sends a negative response.

Note
If the chain is canceled by the host with CD on the CANCEL , the application must assume send state.

See Also
Reference
RQR and CLEAR
STSN
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Critical Failure
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Critical Failure
When an application makes a protocol error in sending data, the local node rejects the data using a
Status-Acknowledge(Nack-2) with a sense code indicating the reason for failure. This message has a critical failure flag that
indicates whether the local node has marked the session as unrecoverable. The sense codes are listed in
FMI Status, Error, and Sense Codes.

If the error is noncritical, the application can proceed as if the message that caused the error had not been sent. If the error is
critical, the local node issues a Close(PLU) Request to the application (providing that the primary logical unit (PLU) connection
is open), which means that the application cannot communicate on the PLU-SLU session until an UNBIND–BIND sequence is
received from the host. The local node also sends a TERM-SELF request to the host to elicit an UNBIND. Therefore, the
application does not need to issue a LOGOFF request on the system services control point (SSCP) session.

See Also
Reference
RQR and CLEAR
STSN
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

RQR and CLEAR
An application using Transmission Service profile (TS profile) 4 can request the session to be recovered by sending Status-
Control(RQR). The local node presents this to the host as an RQR request. Note that, if the application has received a critical
Status-Acknowledge(Nack-2), this option cannot be taken because the local node will send a Close(PLU) Request immediately
following the Status-Acknowledge(Nack-2) to the application, and the primary logical unit (PLU) connection will no longer
be valid. The RQR message requests the host to reset the session by sending a CLEAR request, as shown in the following
figure.

The receipt of CLEAR causes the application to reset its session state to that following the BIND, the Open(PLU).

Another way for the application to deal with error conditions is to ask for an UNBIND by sending Status-Control(RSHUTD).
(For more information, see Application-Initiated Termination.) Note that this may not require the host to supply a new BIND,
depending on the host configuration. A new SSCP request may be required (such as LOGON).

In the following figure, the application requests recovery by issuing Status-Control(RQR). The host sends CLEAR, and the
application must reset its session to state that it was following the BIND (Open(PLU)). In this case, the application is now
between brackets and awaiting start data traffic (SDT).

Application requests recovery by issuing Status-Control(RQR)

See Also
Reference
STSN
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Critical Failure
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

STSN
Set and test sequence numbers (STSN) are used on sessions with Transmission Service profile (TS profile) 4 for applications to
maintain transaction processing sequence numbers between sessions. This enables both partners on the session to discover
the amount of data lost after a CLEAR or UNBIND–BIND sequence.

The STSN message is the only one that can reset such transaction processing sequence numbers. BIND, UNBIND, and CLEAR
do not affect them.

If the application wants to maintain such transaction numbers, it must specify the APPLTRAN option in the
Open(PLU) OK Response. The host can send STSN after a BIND or CLEAR before sending SDT to set or test the application's
transaction numbers. The local node resets its internal session sequence numbers to zero on receipt of BIND or CLEAR. When
the local node receives an STSN specifying SET (or SET and TEST) for one half-session, it resets the corresponding internal
session sequence number.

Unless both half-session actions are ignore (the action byte is 0x00), the STSN request is passed to the application (provided
that it specified APPLTRAN), with the action byte and the two sequence numbers from the request, as a Status-
Control(STSN). (For more information, see Status-Resource.) The application must examine the action byte to determine
whether the action is ignore, set, test, or set and test. The application must send a positive response (Status-Control(STSN)
Acknowledge) to the STSN, with the sensed sequence numbers if required (sense or set and test). The local node is
responsible for generating the correct result code for the STSN RSP.

Note that the application should perform the sense part of STSN first (by examining bits 0 and 2 of the action byte for the
secondary-to-primary flow and primary-to-secondary flow respectively). The set part of the STSN is then performed (by
examining bits 1 and 3 of the action byte).

The application should increment its transaction numbers when sending and receiving normal flow request/response units
(RUs) from the host. (Note that Status-Control messages corresponding to normal flow data flow control (DFC) requests
cause the transaction numbers to be incremented.) The sequence number is reported on DATAFMI messages and Status-
Acknowledge messages. The application should be aware that, if a message from the host fails receive checks (and is
converted to an SDI message), sub-network access protocol (SNAP)-2.1 will purge the remainder of the chain from the host,
and the application may miss some sequence numbers. Therefore, the application should reset its primary-to-secondary
transaction number from the next outbound data after processing an SDI message.

Note that the second application flag byte is not valid for Status-Control(STSN). It is used for the STSN control byte.

See Also
Reference
RQR and CLEAR
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Critical Failure
Link Service Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Link Service Failure
When the server running a link service fails, the local node is informed of this. It treats the problem as a link outage with
outage code 0x0D. This is reported to any active 3270 emulation sessions as a communications check code (–+z_nnn). The
local node will attempt periodically to reconnect to the link service.

See Also
Reference
RQR and CLEAR
STSN
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Critical Failure
Local Node Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Local Node Failure
If the local node fails, applications are informed of this by the path error return code from the Dynamic Access Module (DMOD)
on the sbpurcvx call, or from the routing procedure. All connections that use the destination locality value for which the path
error is reported are closed. The application must do the following:

Clean up resources related to the closed connections, including resetting presentation spaces and displaying a
communications check code

(–+z_nnn) on the status line.

Attempt to reestablish connection with a local node by reinitiating the resource location process.

See Also
Reference
RQR and CLEAR
STSN
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Critical Failure
Link Service Failure
Client Failure

https://msdn.microsoft.com/en-us/library/aa753924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753876(v=bts.10).aspx

Client Failure
If the client computer fails, the local node terminates the application's PLU-SLU session (if it is active) by sending TERM-SELF.
The system services control point (SSCP) and primary logical unit (PLU) connections are both marked as closed and cannot be
reused without being reopened. Internally, the local node treats such a failure in the same way as the receipt of a
Close(SSCP) Request from the application.

See Also
Reference
RQR and CLEAR
STSN
Concepts
Application CANCEL
Direction after Receiving a Negative Response
Direction after Sending a Negative Response
Critical Failure
Link Service Failure
Local Node Failure

https://msdn.microsoft.com/en-us/library/aa771510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705542(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746239(v=bts.10).aspx

Application-Initiated Termination
An application on a session with function management (FM) profile 3 or 4 can request termination of the primary logical unit
(PLU) session. It should only do so if it has previously ensured that it is in a state where the PLU session can be terminated, that
is, between-chain and between-bracket. Terminating the PLU session does not affect the state of the system services control
point (SSCP) session.

Note that an application can issue a character coded or field formatted LOGOFF command on the SSCP session or send a
Close(PLU) Request to get the local node to send TERM-SELF on the application's behalf. All of these will elicit an UNBIND,
either immediately or after session clean-up in the host.

The application requests termination of the PLU session by sending a Status-Control(RSHUTD) Request to the local node,
which generates an SNA RSHUTD request to the host.

After sending the Status-Control(RSHUTD) Request, the application must remain capable of accepting and responding to all
outbound data it receives. The application can now expect one of two messages, depending on whether the state of the PLU
session allows it to be terminated and whether the host wants to terminate the PLU session:

If the state of the PLU session allows it to be terminated, and the host wants to terminate the PLU session, the host
generates a positive response to the RSHUTD request, which can be followed by an UNBIND request. The local node
closes the PLU connection. For more information, see Closing the PLU Connection.

If the state of the PLU session does not allow it to be terminated (for example, if the session is in-bracket), or the host
does not want to terminate the PLU session at this time, the host generates a negative response to the RSHUTD request,
which the local node presents to the application as a Status-Control(RSHUTD) Negative-Acknowledge-1 carrying the
sense codes supplied on the negative response. This indicates that the request to terminate the PLU session has been
rejected by the host, and communication on the PLU session continues unaffected.

The following two figures illustrate the application-initiated termination protocol between the local node and the application
and how this protocol relates to the underlying SNA protocols.

In the first figure, the application requests termination of the PLU session, and the host sends UNBIND. The local node closes
the PLU connection.

Application requests termination of the PLU session, and the host sends UNBIND

In the following figure, the application requests termination of the PLU session, but the session is not in an appropriate state.
The host sends a negative response to the RSHUTD request, which the local node presents as Status-Control(RSHUTD)
Negative-Acknowledge-1. Communication continues on the PLU session.

Application requests termination of the PLU session, but the session is not in an appropriate state

https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx

See Also
Reference
LUSTATs
Concepts
Closing the PLU Connection
Outbound Chaining
Inbound Chaining
Segment Delivery
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

LUSTATs
The data flow control (DFC) logical unit status LUSTAT message is used within SNA to convey four bytes of sense data to the
other session partner. It can also be used simply to send a response header (RH) to the other session partner (for example, to
open a bracket). (For more information, see the figures in Bracket Initiation.) The message flows on the normal flow and so is
subject to direction restrictions. However, it can be sent without end bracket (EB) or change direction (CD) on a half-duplex flip-
flop session that is in error recovery pending state. (For more information, see Recovery.)

The local node allows the application to send Status-Control(LUSTAT) Request messages at any time that data traffic is
active, except while sending data in chain. If the application is in a receiving state (using half-duplex protocol), the LUSTAT is
queued up and used to provide the sense codes, which are filled into the next outbound request, and the SDI flag is set. The
application can therefore present the sense codes for an error state without waiting for the next outbound data if required.

The first byte of sense data must be 0x08 to generate a DATAFMI message with SDI (to be converted to a negative response).
Other LUSTATs are left queued on the session until they can be sent.

If multiple Status-Control(LUSTAT) messages are sent by the application while in a receive state, the local node queues them
all. When outbound data has been delivered to the application with SDI set, as indicated earlier, and the application has
converted it to a Status-Acknowledge(Ack), the local node sends the negative response and the remaining LUSTATs (which can
now flow because the half-duplex flip-flop state is error recovery pending).

If the application intends to send multiple Status-Control(LUSTAT) messages to the host, it is possible that the host will
attempt to initiate recovery before the last LUSTAT has been sent. In this case, the error recovery chain will be rejected by the
next LUSTAT.

Note that the application can send Status-Control(LUSTAT) Request with or without ACKRQD. The local node will map these
to RQD and RQE LUSTATs respectively.

The following three figures illustrate the use of Status-Control(LUSTAT) messages by an application using the half-duplex
flip-flop mode.

In the first figure, the application issues Status-Control(LUSTAT) when it has direction.

Application issues Status-Control(LUSTAT) when it has direction

In the following figure, the application sends Status-Control(LUSTAT) request when receiving data between chain. Next,
outbound data is delivered with SDI set, which gets converted to negative RSP.

Application issues Status-Control(LUSTAT) request when receiving data between chain

https://msdn.microsoft.com/en-us/library/aa746230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx

In the following figure, the application sends several Status-Control(LUSTAT) requests when receiving data in chain. Next,
outbound data is delivered with SDI set which gets converted to negative response. Subsequent LUSTATs are sent to host.

Application sends several Status-Control(LUSTAT) requests when receiving data in chain

See Also
Concepts
Closing the PLU Connection
Outbound Chaining
Inbound Chaining

https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx

Segment Delivery
Application-Initiated Termination
Response Time Monitor Data
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Response Time Monitor Data
For a 3270 display application, the local node maintains statistics on host response times—the time it takes the host to
respond after the 3270 user presses ENTER or an AID key to send data to the host. These statistics can then be sent to the host
for analysis.

The Status-RTM message, sent by the local node to the application, informs the application of the Response Time Monitor
(RTM) parameters specified by the host. (For more information, see RTM Parameters.) These parameters specify whether RTM
data is to be collected, whether the application is permitted to display RTM statistics locally, the time boundaries by which
response times are to be grouped, and the definition of response time. The time can be measured until the first character of the
host response reaches the screen, until the keyboard is unlocked, or until the user can send further data (change direction (CD)
or end bracket (EB) received by the application).

If the host specifies that response times are to be measured for this session, the application is responsible for measuring
response times and for reporting them to the local node. This involves:

Starting a timer when the user presses the ENTER key or an AID key to send data to the host.

Stopping the timer when the host's response to the inbound data is received, as defined by the RTM definition specified
on the Status-RTM message.

Reporting the response time to the host on the Status-Acknowledge(Ack) message, which acknowledges the host's
response. One of the fields on this message specifies the last response time measured by the application, or specifies that
no response time is to be reported.

Optionally displaying the most recent response time as a last transaction time indicator (LTTI) on the 3270 emulation
status line.

If the application wants to provide a local display of RTM data, it is responsible for maintaining its own response time statistics.
It should use the same definition and boundaries as those specified on the Status-RTM message to ensure that the local data
matches the data sent to the host by the local node. Note that the Status-RTM message can indicate that a local display of
response times is not permitted. In this case, the application should not display either the response times or the LTTI.

See Also
Reference
LUSTATs
Concepts
Closing the PLU Connection
Outbound Chaining
Inbound Chaining
Segment Delivery
Application-Initiated Termination
Other Resources
Opening the PLU Connection
Using the PLU Session
Brackets
Direction
Pacing and Chunking
Confirmation and Rejection of Data
Shutdown and Quiesce
Recovery

https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Data Flow
The following topics describe data flows between the application and the local node.

In This Section

Outbound Data

Inbound Data

Inbound Data from LUA Applications

https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745547(v=bts.10).aspx

Outbound Data
This section describes the outbound data flows from the local node to the application. The overall structure of the protocols
described applies to the system services control point (SSCP) and primary logical unit (PLU) connections, but certain features
(such as the use of delayed request mode) are only applicable to the PLU connection.

The local node presents data originating at the host to the application on different connections, depending on the SNA session
on which the data flows, as follows:

Function management data network services (FMD NS) (session services) data and function management data (FMD)
originating at the host SSCP and directed to the Host Integration Server logical unit (LU) is sent to the application on the
SSCP connection.

FMD data originating at the host PLU and directed to an SNA server LU is sent to the application on the PLU connection.

For all connections, only FMD requests are presented to the application as Data messages (with message-type = DATAFMI).
DFC and session control requests are used to generate Status-Control messages. (For more information, see
Status-Control Message.)

The local node performs the data flow control state changes required by the response header (RH) indicators in the request,
before sending a Data message to the application.

The SNA request transmission header (TH) and RH indicators are not available to the application on outbound Data messages.
Instead, the local node provides application flags in the Data message header that reflect the settings of a subset of the RH
indicators, but are interpreted by the local node to shield the application from the more obscure aspects of chaining and
bracket usage. For a description of the available flags and the way in which the local node uses them on outbound data, see
Application Flags.

For outbound data, the first byte is RU[0] for standard function management interface (FMI), and TH[0] for the logical unit
application (LUA) variant of FMI.

All Data messages from the local node to an application contain a message key. The local node maintains a unique message
key sequence for each outbound data flow to an application. When the local node sends a Data message to an application on a
particular connection, it places the next message key in the outbound sequence into the message header, sets the application
flags, and sends the message to the application. This means that the message key uniquely identifies a Data message on a
particular connection between the local node and the application. Note that the local node also places message keys on
outbound Status-Control Request messages.

The acknowledgment protocol enforced by Host Integration Server reflects the chain response protocol and request mode in
use on the SNA session, as follows:

Outbound RQD requests generate Data messages with ACKRQD set in the message header.

Outbound RQE requests generate Data messages without ACKRQD set.

Outbound RQN requests generate Data messages without ACKRQD set.

If the session uses primary immediate request mode, a Data message with ACKRQD set must be acknowledged by the
application before further Data messages will be received.

If the session uses primary delayed request mode, a Data message with ACKRQD set need not be immediately
acknowledged by the application. Data messages will continue to be received.

Note that Host Integration Server enforces the equivalent of immediate response mode for the outbound data
acknowledgment protocol for all connections. The application must send acknowledgments in order.

If the local node sets the ACKRQD field in the message header of a Data message to the application, it indicates that an
acknowledgment to this Data message is required. The application acknowledges an outbound Data message by sending a
Status-Acknowledge message to the local node on the same connection, which contains the same message key and
sequence number fields as the Data message.

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

On receipt of a Status-Acknowledge(Ack), the local node correlates the message key with outstanding outbound messages and
generates an SNA positive response to the appropriate SNA request.

The application should use the Status-Acknowledge(Nack-1) message as a negative acknowledgment. On receipt of a Status-
Acknowledge(Nack-1), the local node correlates the message with outstanding outbound messages and generates an SNA
negative response plus sense data to the appropriate SNA request. The application supplies the sense data that should
accompany the negative response as part of the Status-Acknowledge(Nack-1) message and must include the same
message key, application flags, and sequence number fields as the Data message to which this is a negative acknowledgment.

Status-Control messages caused by expedited-flow requests can be sent at any time and do not affect the sending of positive
or negative acknowledgment to normal flow outbound Data messages. The fact that they can occur between an outbound
Data message and the matching Status-Acknowledge message is purely coincidental. For details about which Status-
Control messages correspond to SNA requests, see Status-Control Message.

If errors are detected in the format of a normal flow request from the host or the request is inappropriate for the state of the
session, the local node generates an error Data message for the application with the following characteristics:

The SDI and ECI application flags are set.

The sense code associated with the error occupies the first four bytes of the Data message. (For more information, see
Status-Control Message.)

ACKRQD is set.

The application should return a Status-Acknowledge(Ack), and the local node generates a negative response carrying the sense
code appropriate to the detected error. This mechanism does the following:

Informs the application of the detected error.

Allows the application to respond to any previously received data before the local node sends the negative response to
this Data message.

On sessions where the application is receiving a series of RQE chains, the local node will be retaining correlation information
for each chain (in case the application wants to send negative responses to any of the chains). If the local node runs out of
correlation table entries, it will attempt to allocate more entries and (if this fails) will be forced to terminate sessions. To prevent
this, the application should provide Status-Acknowledge(Ack) messages for RQE data that it does not want to reject in this
case. A response after five consecutive RQE chains should be sufficient. Such messages are referred to as courtesy
acknowledgements and do not give rise to a response to the host, but merely free internal correlation data.

The following six figures illustrate the data acknowledgment protocol enforced between the local node and the application, and
show the effects of the application generating positive and negative Status-Acknowledge messages.

The figures show:

The relevant RH flags in SNA requests/responses.

The sequence number of SNA requests/responses.

Any sense data (shown as "SENSE=...") on SNA requests/responses and Status-Acknowledge messages.

The ACKRQD field in Data messages.

The message key field in Data messages.

For simplicity, all messages are assumed to be FM data flowing on the same PLU session.

In the following figure, the application accepts a Data message corresponding to a definite-response RU.

Application sends a Data message corresponding to a definite-response RU

https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

In the following figure, the application accepts a Data message corresponding to a multi-RU definite-response chain.

Application accepts a Data message corresponding to a multi-RU definite-response chain

In the following figure, the application rejects a Data message corresponding to a definite-response chain.

Application rejects a Data message corresponding to a definite-response chain

In the following figure, the application rejects a Data message corresponding to a multi-RU definite-response chain.

Application rejects a Data message corresponding to a multi-RU definite-response chain

In the following figure, the local node enforces immediate response mode. Responses must be sent in sequence. The
application rejects the second exception-response chain and accepts the definite-response chain, which implies acceptance of
the third exception-response chain.

Local node enforces immediate response mode

In the following figure, the local node detects a chaining error (RQD but not EC) in data destined for the application. (This
example requires the receive check 0x4007 to be in force. For more information, see Opening the SSCP Connection.)

Local node detects a chaining error in data destined for the application

See Also
Concepts
Inbound Data
Inbound Data from LUA Applications

https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745547(v=bts.10).aspx

Inbound Data
This section describes inbound data flows from the application to the local node. The overall structure of the protocols
described applies to the system services control point (SSCP) and primary logical unit (PLU) connections, but more complex
aspects (such as the use of delayed request mode) are only applicable to the PLU connection.

The application can send inbound data on any of the connections, as follows:

Function management data network services (FMD NS) (session services) and function management data (FMD)
character-coded data intended for the host SSCP should be sent to the local node on the SSCP connection.

FMD data intended for the host PLU should be sent to the local node on the PLU connection.

The application cannot use Data messages to send data flow control (DFC) or session control request messages to the host.
Instead it must use Status-Control messages. (For details, see Status-Control Message.)

For all connections, the application must fill in certain key fields in the Data message's header. In particular it must:

Set the message-type to DATAFMI.

Allocate a new message key for inbound Data messages on this connection.

Set the ACKRQD field if required.

Set the application flags. (For more information, see Application Flags.)

The nxtqptr, hdreptr and numelts fields in the message header, and the elteptr and startd fields in the message elements
are set up by the Host Integration Server buffer management routines. (For more information, see DL-BASE/DMOD Interface.)
The application is responsible for setting the endd field.

If the application does not have access to these routines (for example, when the operating environment does not support
intertask procedure calls and shared memory), all the fields in the header must be set by the application.

The transmission header (TH) and response header (RH) indicators are not available to the application on inbound Data
messages. The application should set the appropriate application flags in the message header to control chaining, direction,
and so on. For a description of the available application flags for inbound data and later topics in this section for a description
of how the flags are used to control inbound data flows, see Application Flags.

For inbound data, the first byte is RU[0] for standard function management interface (FMI).

The message key supplied by the application in the inbound Data message header is used by the local node to indicate which
Data message on this connection an outbound Status-Acknowledge refers to. The application should maintain a unique
message key sequence for the inbound data flow on each connection it has with the local node, so that the application can use
the message key to correlate inbound Data messages and outbound Status-Acknowledge messages on the connection. Note
that the application must also provide a message key on Status-Control Request messages to differentiate between multiple
RQE LUSTAT messages.

The inbound data acknowledgment protocol reflects the secondary chain response protocol and request mode in use on the
session, as follows:

Inbound Data messages with ACKRQD set in the header generate RQD requests.

Inbound Data messages without ACKRQD set in the header generate RQE or RQN requests depending on the chain
response protocol.

The application should only set ACKRQD on Data messages that have the end chain indicator (ECI) application flag set.

If the session specifies that the secondary uses immediate request mode, the application can still send further Data
messages after sending data with ACKRQD set, even though it has not received a Status-Acknowledge message for
that Data message. The messages are queued within the local node and are progressively sent as positive responses are

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745379(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

received.

If the session specifies that the secondary uses delayed request mode, after sending a Data message with ACKRQD set,
the application can continue to send Data messages.

If the application sets the ACKRQD field in the message header of a Data message, it indicates that it requires an
acknowledgment to this Data message. The local node acknowledges an inbound Data message by sending a Status-
Acknowledge message to the application on the same connection and using the same message key as the Data message.
(For an illustration, see the first figure at the end of this topic.)

The local node processes inbound Data messages from the application through its internal state computers, assigns the
correct SNA sequence number or an identifier for this flow, and sends the data in a request to the host. The chain-response
type of the request depends on whether ACKRQD was set in the Data message and the session parameters.

The local node maps a positive response from the host to a Status-Acknowledge(Ack) to the application. The application can
use the message key in the Status-Acknowledge to correlate the acknowledgment with the original Data message.
Therefore, receipt of a Status-Acknowledge(Ack) for a particular Data message implies that the local node has received a
positive SNA response from the host to the inbound SNA request. (For an illustration, see the second figure at the end of this
topic.)

Note that responses are absorbed on the SSCP-PU session.

Note that outbound Status-Acknowledge(Ack) messages contain application flags and a sequence number. The application
flags reflect the RH indicators in the response. The sequence number is the SNA sequence number from the response, and
provides a mechanism for applications using Transmission Service profile (TS profile) 4 to track the SNA secondary sequence
number corresponding to a unit of work.

The local node maps a negative response from the host to a Status-Acknowledge(Nack-1) message to the application. The
application can use the message key in the Status-Acknowledge to correlate the negative acknowledgment with the original
Data message. The outbound Status-Acknowledge(Nack-1) message contains the SNA sense codes and sequence number
from the negative response. (For an illustration, see the third and fourth figures at the end of this topic.)

If the local node detects an error in the format of an inbound Data message, or the Data message is not appropriate to the
current state of the session, it sends a Status-Acknowledge(Nack-2) to the application containing an error code. (For a list of
error codes, see Error and Sense Codes.) The local node does not send a request to the host corresponding to the Data
message in error and does not advance the SNA sequence number for the session. The application can use any message key in
its next inbound Data message (assuming the error does not cause a critical failure).

An example of a serious chaining error, where the application sends a Data message with ACKRQD but without ECI in the
application flags, is shown in the last figure at the end of this topic. Note that after detecting this particular error, the local node
marks the application's connection as critically failed, closes the connection, and sends a TERM-SELF request to the SSCP to
elicit an UNBIND. (For more information, see Recovery.)

Inbound Status-Control messages, which cause the generation of expedited-flow requests, can be sent at any time and do not
affect the sending of a positive or negative acknowledgment to inbound Data messages. For details about which Status-
Control messages correspond to SNA expedited-flow requests, see Status-Control Message.

The following five figures illustrate examples of the inbound data acknowledgment protocols (and the underlying SNA
protocols) for different chain-response types and secondary session request modes.

The figures show:

The ACKRQD field on Data messages.

The message key on Data messages.

Any relevant application flags on Data messages.

Error codes (shown as "ERROR=...") on Data messages.

Relevant RH flags on SNA requests/responses.

Sequence numbers on SNA requests/responses.

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

Sense codes (shown as "SENSE=....") on SNA requests/responses.

For simplicity, all messages are assumed to be flowing on the same PLU session.

In the following figure, the application successfully sends a Data message.

Application successfully sends a Data message

In the following figure, the application successfully sends a chain of Data messages.

Application successfully sends a chain of Data messages

In the following figure, the host rejects a chain of Data messages.

Host rejects a chain of Data messages

In the following figure, the host rejects the first definite-response chain and rejects the third exception-response chain on a
delayed request session. Note that the negative response to the third chain implies a positive response to the second chain.

Host rejects the first definite-response chain

In the following figure, the local node detects the application's invalid use of ACKRQD without the ECI application flag on a
Data message. Note that no data is sent to the host. However, because the error is critical, the local node will send a TERM-
SELF message to the SSCP.

Local node detects the application's invalid use of ACKRDQ without the ECI application flag on a Data message

See Also
Concepts
Outbound Data
Inbound Data from LUA Applications

https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745547(v=bts.10).aspx

Inbound Data from LUA Applications
The local node performs certain checks on data supplied by a client application before sending it to the host and rejects it with
a Status-Acknowledge(Nack-2) message if the checks fail. It does not return any acknowledgment to the application if the data
passes the checks (although the host may do so later).

If the client application is providing a logical unit application (LUA) API, the design of the API may require that an LUA verb
sending data inbound to the application does not complete until the local node has checked the data. Because of this, the local
node will always respond to a client application that uses the LUA variant of the function management interface (FMI), after it
has completed its send checking of the inbound message. This allows the client application to complete processing of the LUA
verb and return control to the LUA application program.

If the inbound message passed the local node's send checks and will be sent to the host, the local node sends a
Status-Acknowledge(ACKLUA) message to the client application to indicate this. The client application can then complete the
LUA verb processing with an OK return code. Note that the Status-Acknowledge(ACKLUA) message does not imply that the
data was successfully sent to the host or that the host received it. It may later be followed by a Status-Acknowledge(Nack-1)
message indicating that the host rejected the data.

If the inbound message fails the local nodes send checking, a Status-Acknowledge(Nack-2) message will be returned as for
non-LUA client applications. The client application can then report this to the LUA application program by a non-OK return
code to the LUA verb that sent the message.

If the client application is providing an LUA API, it should therefore wait for either Status-Acknowledge(ACKLUA) or Status-
Acknowledge(Nack-2) to determine whether to return an OK or error return code to the LUA send verb. If this dependence
on the local node's send checks is not required, the client application can ignore the Status-Acknowledge(ACKLUA)
message.

Note that there are certain race conditions in which the local node cannot complete its send checks before replying to the client
application. In these cases, the local node returns a Status-Acknowledge(ACKLUA), but may subsequently send a
Status-Acknowledge(Nack-2) if it detects an error during the remaining send checks. The client application may therefore
receive a Status-Acknowledge(ACKLUA) followed by a Status-Acknowledge(Nack-2) for the same inbound message.

In the transmission header (TH) for the LUA variant of FMI, the expedited flow indicator (EFI), the destination-address field
(DAF), and the origin-address field (OAF) are used. Other fields (including the sequence number field) are ignored. In the RH
for the LUA variant of FMI, all fields except the queued-response indicator (QRI) and pacing indicator (PI) are used.

For inbound data, the first byte is TH[0] for the LUA variant of FMI.

The following three figures illustrate the Status-Acknowledge(ACKLUA) acknowledgment protocol for different messages
that the application can send.

In the first figure, the application sends a Data message that passes the local node's send checks.

Application sends a Data message that passes the local node's send checks

In the following figure, the application sends a Status-Acknowledge(Ack) message that passes the local node's send checks.

Application sends a Status-Acknowledge(Ack) message that passes the local node's send checks

In the following figure, the application sends a Status-Acknowledge(Nack-1) message that passes the local node's send
checks.

https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745651(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745651(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx

Application sends a Status-Acknowledge(Nack-1) message that passes the local node's send checks

See Also
Concepts
Outbound Data
Inbound Data

https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705457(v=bts.10).aspx

Status Messages
The local node uses status messages to provide the application with information about the state of its sessions and to give the
application control, in association with the host system services control point (SSCP) and primary logical unit (PLU), over the
progress of the session. The status messages are designed to allow the application to use all the protocols allowed in the
function management (FM) and Transmission Service profiles (TS profiles) supported by the Microsoft® Host Integration
Server local node.

Most applications only need to use a subset of the available status messages. For example, a 3270 device emulator would not
require the status messages used in quiesce protocols.

In This Section

Status-Acknowledge Message

Status-Control Message

Status-Error Message

Status-Resource Message

Status-Session Message

Status-RTM Message

https://msdn.microsoft.com/en-us/library/aa745855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754331(v=bts.10).aspx

Status-Acknowledge Message
Status-Acknowledge messages are the basic mechanism used to enforce inbound and outbound data acknowledgment
protocols on all connections. For details about the use of Status-Acknowledge messages, see Outbound Data and
Inbound Data.

For a 3270 emulation application, Status-Acknowledge messages sent from the application to the local node (acknowledging
outbound data from the host) can also carry information about host response times. This allows the local node to maintain
response time statistics for sending to the host when required. For details, see Response Time Monitor Data.

See Also
Reference
Status-Error Message
Status-Resource Message
Status-Session Message
Status-RTM Message
Other Resources
Status-Control Message

https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Control Message
Status-Control messages provide access to session control and data flow control protocols on the primary logical unit (PLU)
session using the PLU connection. They are not used on the other connections. Status-Control messages map directly to the
equivalent SNA session control and data flow control request/response units (RUs).

All Status-Control messages that correspond to SNA requests on the normal flow with the exception of LUSTAT-sent Request
Exception (RQE), and Status-Control messages corresponding to CLEAR and STSN request on the expedited flow, have the
ACKRQD (acknowledgment required) field set. Status-Control messages that correspond to SNA requests on the expedited
flow (with the exception of CLEAR and STSN) do not have the ACKRQD field set by the local node. However, the application
can set ACKRQD when sending these Status-Control messages. The last figure in this topic summarizes which Status-
Control requests always have ACKRQD set.

If a Status-Control request has ACKRQD set in the message header, the recipient must supply a Status-Control response
(Acknowledge, Negative-Acknowledge-1 or Negative-Acknowledge-2) before the sender sends further Data messages
or further Status-Control requests on the flow. The sender can still send Status-Control responses, Status-Acknowledge,
Status-Error, and Status-Resource messages on the flow. This applies to both normal and expedited flows and all request
modes (including delayed-request mode). The message key received on the request must be returned on the response. (This is
to allow multiple RQE LUSTAT messages to be outstanding.) The local node increments the message key on Status-Control
requests and DATAFMI messages that it sends to the application on the PLU connection.

For the logical unit application (LUA) variant of the function management interface (FMI), the message key field is used in a
different way, as follows:

For inbound expedited flow requests, the local node sets the SNA sequence number to the value supplied by the
application in the message key field. The application must ensure that this field is set to the correct sequence number.

For inbound Status-Control responses, the local node sets the SNA sequence number to the value supplied by the
application in the message key field. The application must ensure that this field is set to the sequence number of the
request for which a response is being sent.

Except in the case of Status-Control(LUSTAT), if a Status-Control request does not have ACKRQD set, the application should
not reply, because a positive response has already been sent by the local node.

For example, if the application sends a Status-Control(QC) Request with ACKRQD set (corresponding to an SNA request on
the normal flow), this blocks further data and Status-Control requests corresponding to the inbound normal flow until the
Status-Control(QC) response is received. It does not block other messages on the normal flow, or messages on the expedited
flow. For example, the application could still send Status-Control(SIGNAL).

The receipt of the Status-Control response implies an acknowledgment to all outstanding messages (including Data
messages) on the flow.

The use of ACKRQD on Status-Control messages effectively enforces definite-response and immediate request mode. This is
appropriate for:

Status-Control messages that correspond to the SNA requests CLEAR and STSN (because the expedited flow is RQD).

Status-Control messages corresponding to all the DFC requests (which are RQD) except LUSTAT (which can be RQE).

The application can set ACKRQD on Status-Control requests that correspond to SNA requests on the expedited flow, even
where ACKRQD is not required. For example, when an application is signaling for direction (for example, a 3270 emulator with
a terminal operator repeatedly pressing the ATTN key), it can generate multiple Status-Control(SIGNAL) Request messages,
which would adversely affect the performance of other users. The application can set ACKRQD on the first Status-
Control(SIGNAL) Request and ignore events that would cause further Status-Control(SIGNAL) Request messages until the
Status-Control(SIGNAL) Response is received from the local node.

The message flows in the following six figures show outbound and inbound Status-Control sequences with and without
ACKRQD and the corresponding SNA RUs.

In the first figure, the application sends Status-Control(CHASE).

Application sends Status-Control(CHASE)

https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx

In the following figure, the host sends BID request.

Host sends BID request

In the following figure, the application sends Status-Control(SHUTC).

Application sends Status-Control(SHUTC)

In the following figure, the host sends SNA SIGNAL request.

Host sends SNA SIGNAL request

In the following figure, the host sends multiple RQE LUSTAT requests, and the application rejects the first one.

Application rejects the first RQE LUSTAT request

In the following figure, the application sends Status-Control(LUSTAT) NOACKRQD.

Application sends Status-Control(LUSTAT) NOACKRQD

The following table summarizes the Status-Control requests supported by the local node and SNA session control (SC) and
data flow control (DFC) requests. For each Status-Control request, the table gives:

The SNA category of the corresponding SNA request (SC or DFC).

The flow used by the corresponding SNA request (normal or expedited).

The TS or FM profiles on which the corresponding SNA request is supported.

The directions for which it is valid (NODE <–> APPL).

Whether it requires ACKRQD. Note that the application can set ACKRQD on a Status-Control request that does not
require it.

The hexadecimal code used in the control-type field of the Status-Control message. (For more information, see
FMI Message Formats.)

Status-Control SNA RQ flow TS profile FM profile Direction node–appl ACKRQD Code

CLEAR SC,Exp 2,3,4 – –> ACKRQD CCLEAR (0x01)

SDT SC,Exp 3,4 – –> – CSDT (0x02)

RQR SC,Exp 4 – <– – CRQR (0x03)

STSN SC,Exp 4 – –> ACKRQD CSTSN (0x04)

CANCEL DFC,Norm – 3,4,7 <–> ACKRQD CCANCEL (0x10)

LUSTAT DFC,Norm – 3,4,7 <–> – CLUSTAT (0x11)

SIGNAL DFC,Exp – 3,4,7 <–> – CSIGNAL (0x12)

RSHUTD DFC,Exp – 3,4,7 <– – CRSHUTD (0x13)

BID DFC,Norm – 3,4 –> ACKRQD CBID (0x14)

CHASE DFC,Norm – 3,4 <–> ACKRQD CCHASE (0x15)

SHUTC DFC,Exp – 3,4 <– – CSHUTC (0x16)

SHUTD DFC,Exp – 3,4 –> – CSHUTD (0x17)

RTR DFC,Norm – 3,4 <– ACKRQD CRTR (0x18)

QC DFC,Norm – 4 <–> ACKRQD CQC (0x20)

QEC DFC,Exp – 4 <–> – CQEC (0x21)

RELQ DFC,Exp – 4 <–> – CRELQ (0x22)

The requests in the following table are used only with LUA. (For more information, see FMI Concepts.)

Status-Control SNA RQ flow TS profile FM profile Direction node–appl ACKRQD Code

CRV SC,Exp 3,4 – –> ACKRQD CCRV (0x05)

BIS DFC,Norm – 18 <–> ACKRQD CBIS (0x19)

https://msdn.microsoft.com/en-us/library/aa744987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

SBI DFC,Exp – 18 <–> ACKRQD CSBI (0x1A)

The use of particular Status-Control messages is described in following topics of this section, in the context of PLU session
protocols such as chaining, brackets, recovery, and so on.

For the formats of Status-Control messages, see Status-Control.

In This Section

Status-Control (ACKLUA) Message

https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770966(v=bts.10).aspx

Status-Control (ACKLUA) Message
When a logical unit application (LUA) application sends a Status-Control message inbound to the local node, the LUA verb
used to send the message cannot complete until the local node acknowledges the message. Because of this, the local node will
always respond to the LUA application after it has completed its send checking of the inbound message. If the inbound
message passes the local node's send checks, and the corresponding SNA message will be sent to the host, the local node
sends a Status-Control(...) ACKLUA message to the application to indicate this. Note that the ACKLUA message does not imply
that the SNA message was successfully sent to the host, or that the host received it.

The format of the Status-Control(...) ACKLUA message is explained in Status-Control(...) ACKLUA. Note that the use of the
message key field in Status-Control(...) ACKLUA is different from other Status-Control messages. It contains the sequence
number from the transmission header (TH) of the Status-Control message sent by the LUA application, not the message key.

If the inbound message fails the local nodes send checking, a Status-Control(...) Negative-Acknowledge-2 message will be
returned as for non-LUA applications. (This is then reported to the LUA application by a non-OK return code to the LUA verb
that sent the message.)

The following three figures illustrate the ACKLUA acknowledgment protocol for different messages that the application can
send.

In the first figure, the application sends a Status-Control(...) Request message that passes the send checks of the local node.

Application sends a Status-Control() Request message

In the following figure, the application sends a Status-Control(...) Acknowledge message that passes the send checks of the
local node.

Application sends a Status-Control(...) Acknowledge message

In the following figure, the application sends a Status-Control(...) Negative-Acknowledge-1 message that passes the send
checks of the local node.

Application sends a Status-Control() Negative Acknowledge-1 message

See Also
Reference
Status-Error Message
Status-Resource Message
Status-Session Message
Status-RTM Message
Other Resources
Status-Acknowledge Message
Status-Control Message

https://msdn.microsoft.com/en-us/library/aa704867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Error Message
Status-Error messages flow from the local node to the application to report request reject and response header (RH) usage
error conditions for:

Errors in outbound expedited data flow control (DFC) requests.

Errors in outbound session control (SC) requests.

Errors in inbound responses.

The Status-Error message contains four bytes of error code information that contain the appropriate SNA sense codes for the
detected error. For a list of error codes, see Error and Sense Codes.

See Also
Reference
Status-Resource Message
Status-Session Message
Status-RTM Message
Other Resources
Status-Acknowledge Message
Status-Control Message

https://msdn.microsoft.com/en-us/library/aa705002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Resource Message
Status-Resource messages flow between an application and the local node to enable the local node to pace the primary logical
unit (PLU) session of the application. They provide the local node with an indication of the buffer resources available at the
application to receive outbound messages. With this information, the local node can determine when to send a pacing
response. (For more information, see Pacing and Chunking.)

Note
Flow control is an option. Inbound pacing is handled by the local node, transparently to the application, and outbound pacing
can be handled similarly. This is appropriate when only a limited number of messages flows from end-to-end of the SNA ses
sion between definite responses, such as with a 3270 screen.

See Also
Reference
Status-Error Message
Status-Session Message
Status-RTM Message
Other Resources
Status-Acknowledge Message
Status-Control Message

https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Session Message
Status-Session messages always flow from the local node to the application and provide information about changes in the
state of the session. There are separate Status-Session flows for each connection between the application and the local node.

The local node uses only one Status-Session message on the primary logical unit (PLU) connection. This is the Status-
Session(BETB) message, used to report when the PLU session returns to the between-bracket state after the application or the
PLU initiated a bracket. (For more information, see Brackets.)

The local node reports the activation and deactivation states of the system services control point (SSCP) session and PU-SSCP
session using Status-Session messages. For example, it reports the receipt of an ACTLU request from the host SSCP using a
Status-Session (LU-Active) message on the SSCP connection. (For more information, see SSCP Connection.)

By providing Status-Session messages rather than requiring the application to interpret the relevant information in the SNA
request, the local node shields the application from decisions affecting conditional state transitions and from the necessity for a
detailed understanding of SNA protocols.

A Status-Session message contains a status code, and for some status codes, an additional status code that qualifies the
meaning of the primary status code. For example, the Link-Error status code, which occurs on the SSCP connection, is qualified
by a status code that reports the link outage code supplied by the data link control layer of the local node. Applications such as
3270 device emulators use the qualifying status codes to display communications check codes (–+z_nnn) on the status line of
the display.

The Status-Session codes are summarized in Status-Session Codes.

See Also
Reference
Status-Error Message
Status-Resource Message
Status-RTM Message
Other Resources
Status-Acknowledge Message
Status-Control Message

https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754331(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-RTM Message
The Status-RTM message is used by the local node to inform the application of the Response Time Monitor (RTM) parameters
being used by the host. It flows from the local node to the application on the system services control point (SSCP) connection
and is sent only for 3270 display logical units (LUs), or LUs in a pool of display LUs.

The Status-RTM message is sent at the following times:

After the OK response to the Open(SSCP) Request message, to inform the application of the initial RTM parameters.

When the RTM counters are reset, either due to a request from the host or when the local node sends unsolicited RTM
data to the host.

When any of the RTM parameters are changed by the host.

For more information about the use of the Status-RTM message, see RTM Parameters. For more information about how the
application supplies RTM data to the local node, see Response Time Monitor Data.

See Also
Reference
Status-Error Message
Status-Resource Message
Status-Session Message
Other Resources
Status-Acknowledge Message
Status-Control Message

https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745569(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

FMI Message Summary
This section lists each of the messages used at the function management interface (FMI) and gives a reference to a topic in the
section where each message is described. The formats of the messages are given in FMI Message Formats.

For each message the direction of flow is indicated. IN means from the application to the local node, and OUT means from the
local node to the application. The connection on which the message flows is also given.

Message Direction Connection Reference
Open(SSCP) Request IN SSCP Opening the SSCP Connection

Open(SSCP) Response OUT SSCP Opening the SSCP Connection

Open(SSCP) Error Response OUT SSCP Opening the SSCP Connection

Open(PLU) Request OUT PLU Opening the PLU Connection

Open(PLU) OK Response IN PLU Opening the PLU Connection

Open(PLU) Error Response IN PLU Opening the PLU Connection

Open(PLU) OK Confirm OUT PLU Opening the PLU Connection

Open(PLU) Error Confirm OUT PLU Opening the PLU Connection

Close(SSCP) Request IN SSCP Closing the SSCP Connection

Close(SSCP) OK Response OUT SSCP Closing the SSCP Connection

Close(PLU) Request IN/OUT PLU Closing the PLU Connection

Close(PLU) OK Response IN/OUT PLU Closing the PLU Connection

Data-FMI IN/OUT SSCP/PLU Data Flow

Status-Acknowledge(Ack) IN/OUT SSCP/PLU Data Flow, Confirmation and Rejection of Data

Status-Acknowledge(Nack-1) IN/OUT SSCP/PLU Data Flow, Confirmation and Rejection of Data

Status-Acknowledge(Nack-2) OUT SSCP/PLU Inbound Data

Status-Control(CLEAR) Request OUT PLU Recovery

Status-Control(CLEAR) Ack IN PLU Recovery

Status-Control(CLEAR) Nack-1 IN PLU Recovery

Status-Control(SDT) Request OUT PLU Status-Control Message

Status-Control(RQR) Request IN PLU Recovery

Status-Control(RQR) Ack OUT PLU Recovery

Status-Control(RQR) Nack-1 OUT PLU Recovery

Status-Control(RQR) Nack-2 OUT PLU Recovery

Status-Control(STSN) Request OUT PLU Recovery

Status-Control(STSN) Ack IN PLU Recovery

Status-Control(STSN) Nack-1 IN PLU Recovery

Status-Control(CANCEL) Request IN/OUT PLU Outbound Chaining, Inbound Chaining

https://msdn.microsoft.com/en-us/library/aa744987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754746(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754042(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx

Status-Control(CANCEL) Ack IN/OUT PLU Outbound Chaining, Inbound Chaining

Status-Control(CANCEL) Nack-1 IN/OUT PLU Outbound Chaining, Inbound Chaining

Status-Control(CANCEL) Nack-2 OUT PLU Inbound Chaining

Status-Control(LUSTAT) Request IN/OUT PLU LUSTATs

Status-Control(LUSTAT) Ack IN/OUT PLU LUSTATs

Status-Control(LUSTAT) Nack-1 IN/OUT PLU LUSTATs

Status-Control(LUSTAT) Nack-2 OUT PLU LUSTATs

Status-Control(SIGNAL) Request IN/OUT PLU Direction

Status-Control(SIGNAL) Ack OUT PLU Direction

Status-Control(SIGNAL) Nack-1 OUT PLU Direction

Status-Control(SIGNAL) Nack-2 OUT PLU Direction

Status-Control(RSHUTD) Request IN PLU Application-Initiated Termination

Status-Control(RSHUTD) Ack OUT PLU Application-Initiated Termination

Status-Control(RSHUTD) Nack-1 OUT PLU Application-Initiated Termination

Status-Control(RSHUTD) Nack-2 OUT PLU Application-Initiated Termination

Status-Control(BID) Request OUT PLU Brackets

Status-Control(BID) Ack IN PLU Brackets

Status-Control(BID) Nack-1 IN PLU Brackets

Status-Control(CHASE) Request IN/OUT PLU Confirmation and Rejection of Data

Status-Control(CHASE) Ack IN/OUT PLU Confirmation and Rejection of Data

Status-Control(CHASE) Nack-1 IN/OUT PLU Confirmation and Rejection of Data

Status-Control(CHASE) Nack-2 OUT PLU Confirmation and Rejection of Data

Status-Control(SHUTC) Request IN PLU Shutdown and Quiesce

Status-Control(SHUTC) Ack OUT PLU Shutdown and Quiesce

Status-Control(SHUTC) Nack-1 OUT PLU Shutdown and Quiesce

Status-Control(SHUTC) Nack-2 OUT PLU Shutdown and Quiesce

Status-Control(SHUTD) Request OUT PLU Shutdown and Quiesce

Status-Control(RTR) Request IN PLU Brackets

Status-Control(RTR) Ack OUT PLU Brackets

Status-Control(RTR) Nack-1 OUT PLU Brackets

Status-Control(RTR) Nack-2 OUT PLU Brackets

Status-Control(QC) Request IN/OUT PLU Shutdown and Quiesce

Status-Control(QC) Ack IN/OUT PLU Shutdown and Quiesce

https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705216(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx

Status-Control(QC) Nack-1 IN/OUT PLU Shutdown and Quiesce

Status-Control(QC) Nack-2 OUT PLU Shutdown and Quiesce

Status-Control(QEC) Request IN/OUT PLU Shutdown and Quiesce

Status-Control(QEC) Ack OUT PLU Shutdown and Quiesce

Status-Control(QEC) Nack-1 OUT PLU Shutdown and Quiesce

Status-Control(QEC) Nack-2 OUT PLU Shutdown and Quiesce

Status-Control(RELQ) Request IN/OUT PLU Shutdown and Quiesce

Status-Control(RELQ) Ack OUT PLU Shutdown and Quiesce

Status-Control(RELQ) Nack-1 OUT PLU Shutdown and Quiesce

Status-Control(RELQ) Nack-2 OUT PLU Shutdown and Quiesce

Status-Error OUT SSCP/PLU Status-Error Message

Status-Resource IN PLU Pacing and Chunking

Status-Session OUT SSCP/PLU Status-Session Message, Status-Session Codes

Status-RTM OUT SSCP RTM Parameters

The following table lists the messages that are used for LUA only.

Message Direction Connection Reference
Status-Acknowledge(ACKLUA) OUT SSCP/PLU Inbound Data from LUA Applications

Status-Control(...) ACKLUA OUT PLU Inbound Data from LUA Applications

Status-Control(CRV) Request OUT PLU Status-Control Message

Status-Control(CRV) Ack IN PLU Status-Control Message

Status-Control(CRV) Nack-1 IN PLU Status-Control Message

Status-Control(BIS) Request IN/OUT PLU Status-Control Message

Status-Control(BIS) Ack IN/OUT PLU Status-Control Message

Status-Control(BIS) Nack-1 IN/OUT PLU Status-Control Message

Status-Control(SBI) Request IN/OUT PLU Status-Control Message

Status-Control(SBI) Ack IN/OUT PLU Status-Control Message

Status-Control(SBI) Nack-1 IN/OUT PLU Status-Control Message

See Also
Reference
FMI Message Summary
Other Resources
FMI Concepts
SSCP Connection
PLU Connection
Data Flow
Status Messages

https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745547(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754079(v=bts.10).aspx

FMI Status, Error, and Sense Codes
This section lists the function management interface (FMI) status codes, error codes, and sense codes used on Open messages,
Status messages, and Data messages with the system detected error indicator (SDI) set.

This section contains:

Status-Session Codes

Error and Sense Codes

https://msdn.microsoft.com/en-us/library/aa771508(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx

Status-Session Codes
For the status codes used on Status-Session messages, the following table lists:

The value for the status code.

The valid qualifying codes (if any) and their values.

On which sessions the combinations of primary and qualifying status codes can occur.

For an overall description of the role of the Status-Session message, see Status-Session Message. The individual codes are
discussed in SSCP Connection and PLU Connection.

Status code Value Qualifying code Value Usage
STNOSESS (no session) 0x01 STPUINAC STPUACT STPUREAC STLUINAC 0x10 0x03 0x04 0x11 SSCP SSCP SSCP SSCP

STLINERR (link error) 0x02 DLC ERROR (See Note 1) SSCP

STLUACT (LU active) 0x05 - - SSCP

STLUREAC (LU reactivated) 0x06 - - SSCP

STBETB (between brackets) 0x07 - - PLU

Note
The qualifying status code supplied on a Status-Session link error is the error code supplied by the data link control layer of
the local node.

Note
Status-Session link error code 20 is generated by the node rather than by the link service. It indicates that the link service is
not yet available, but is being activated. Ignore this error code during session activation. Otherwise, all Status-Session link er
rors (including 20) will cause the emulator to send a Close(SSCP). When the emulator receives the Close(SSCP) Response, it
will start again and send a new Open(SSCP).

Note
The session status identifier is obsolete. It was used by the Microsoft® SNA Server OS/2 and Microsoft MS-DOS®-based 32
70 emulators. Its value was obtained by adding 484 (decimal) to the qualifying status code shown in the preceding table.

https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744315(v=bts.10).aspx

Error and Sense Codes
This section describes the error and sense codes that are reported to the application in the following messages:

Error Codes for Open(SSCP) Error Response

Error Codes for Open(PLU) Error Confirm

Error Codes for Nack-2 Messages

Error Codes for Status-Error Messages

Sense Codes for SDI Messages

Where the reported codes are SNA sense codes, a more complete description is given in Chapter 8 of the IBM document
Systems Network Architecture: Reference Summary (GA27-3136). These SNA sense codes are also documented in Host
Integration Server 2009 Help.

In addition, the local node delivers negative responses from the host as Status-Acknowledge(Nack-1) and Status-
Control(...) Negative-Acknowledge-1, which can have any SNA sense code.

Application designers should note that error codes listed here that are specific to Host Integration Server always have an initial
byte value of 0x00, and therefore can be easily distinguished from SNA sense codes, which have nonzero initial bytes.

The error codes are listed in topics for each type of message with an indication of the reason for the error.

This section contains:

Error Codes for Open Messages

Error Codes for Nack-2 Messages

Error Codes for Status-Error Messages

Sense Codes for SDI Messages

https://msdn.microsoft.com/en-us/library/aa746052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705425(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705425(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753921(v=bts.10).aspx

Error Codes for Open Messages
The possible error codes for Open(SSCP) Error Response and Open(PLU) Error Confirm are shown in the following topics.

This section contains:

Error Codes for Open(SSCP) Error Response

Error Codes for Open(PLU) Error Confirm

https://msdn.microsoft.com/en-us/library/aa746052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704664(v=bts.10).aspx

Error Codes for Open(SSCP) Error Response
The following table gives the values for error code 1 and error code 2 that can be returned on the Open(SSCP) Error
Response.

Error c
ode 1

Description Error co
de 2

Description

0 No servers found. CSRENO
SR (0)

No servers found.

0x0053 Logical unit (LU) not verified. CSRECBS
H (3)

LU not verified.

0x0055 System services control point (SSCP) connection already open. CSRECBS
H (3)

Control block / resou
rce shortage.

0x0057 No LU in group free.

0x0812 No free session control block available.

0x1001 A connection activation failed recently.

0x1002 The connection is inactive.

0x1008 The link service is active remotely. This error return code is not supported by this leve
l of Host Integration Server.

0x1009 The SNA server is active, but the connection on which the requested LU is defined is n
ot active.

0x100B The connection is in the process of activating as the result of another Open(SSCP) or
operator activation or recovery from an outage.

0x1010 The connection is active, but an activate physical unit (ACTPU) has not yet been receiv
ed.

0x1011 The connection is active, but an activate logical unit (ACTLU) has not yet been receive
d.

0x0063 Unrecognized Open request. CSRESER
V (1)

Service not present.

0x0A0E LU/LU group not found in configuration.

Note
The error code 1 values 0x1001 to 0x1011 are returned when the Open(SSCP) Request specifies a nonforced Open. They do
not indicate errors, but indicate that the LU-SSCP session is not active. The application can retry the Open(SSCP) Request sp
ecifying a forced Open, in which case the local node will attempt to activate the connection if possible.

https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx

Error Codes for Open(PLU) Error Confirm
The following table gives the values for error code 1 that can be returned on the Open(PLU) Error Confirm message. Error
code 2 is zero, except when error code 1 is 0x0821. In this case it contains the byte offset in the BIND where the BIND failed to
match the BIND check table.

Error code Description
0x0051 Fewer than two buffer elements were present on Open(PLU) Response.

0x0052 System services control point (SSCP) connection is no longer active.

0x0821 BIND checking failed: error code 2 gives byte offset in BIND at which the error occurred.

https://msdn.microsoft.com/en-us/library/aa745399(v=bts.10).aspx

Error Codes for Nack-2 Messages
The possible error codes delivered to the function management interface (FMI) application on Status-Acknowledge(Nack-2)
and Status-Control(...) Negative-Acknowledge-2 messages are tabulated in the following table. A Nack-2 is delivered to the
application in response to data that is sent in error (or a Status-Control(...) Request that is in error). The data has not been sent
to the host. The table indicates whether the error is critical, applying to the primary logical unit (PLU) connection only. If the
error is critical, the critical failure indicator will be set in the message, and the application will receive a Close(PLU) Request as
the next message.

All Nack-2 messages have the second word of information as 0x0000.

Error / Sense code Critical YES/NO Description

0x0040 YES No buffer element on DATAFMI message.

0x0042 YES DATAFMI message sent when no credit.

0x0043 YES Invalid status-control for Transmission Service profile (TS profile).

0x0044 YES Invalid status-control from application.

0x004A YES Half-duplex (HDX) contention and -QR,-BB,EB, or BKTFSM in pending-term-session.

0x0809 YES Mode inconsistency.

0x1002 YES Request/response unit (RU) length error.

0x1003 YES Function not supported, invalid function management (FM) profile.

0x2002 NO Chaining error.

0x2003 NO Bracket error.

0x2004 NO Direction error.

0x2005 YES Data traffic reset.

0x2006 YES Data traffic quiesced.

0x200D YES Response owed before sending request (half-duplex).

0x4003 YES Begin bracket (BB) not allowed.

0x4004 YES End bracket (EB) not allowed.

0x4006 YES Exception response not allowed.

0x4007 YES Definite response not allowed.

0x4009 YES Change direction (CD) not allowed.

0x400A YES No-response not allowed.

0x400B YES Chaining not supported.

https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx

0x400C YES Brackets not supported.

0x400D YES CD not supported.

0x400F YES Incorrect use of FI.

0x4014 YES Incorrect use of DR1, DR2, ER.

0x8005 NO System services control point (SSCP) data sent when logical unit (LU) inactive.

Error Codes for Status-Error Messages
The possible error codes delivered to the function management interface (FMI) application on Status-Error messages are
tabulated in the following table. A Status-Error message is delivered to the application in one of several cases, as shown in the
following list:

The local node detects an error in a response sent from the application (as a Status-Acknowledge or Status-Control
Ack/Nack-1 message).

The local node detects an error in some data from the host that will not be delivered to the application as an system
detected error indicator (SDI) message (such as an expedited flow request).

The application sends an invalid Status message.

For inbound responses, the Status-Error codes have first byte 0x00. When the application is in error, the table indicates
whether the error is critical, applying to the primary logical unit (PLU) connection only. If the error is critical, the application will
receive a Close(PLU) Request as the next message.

The sense codes beginning with 0x40 will only be delivered if the corresponding receive check has been enabled in the
connection information control block (CICB) on the Open(SSCP) Request from the application.

Where the sense code is marked with the * symbol, the second word of sense information carries the request code of the
expedited flow request that was in error (for example 0x00C9 for SIGNAL).

Error / Sense co
de

Critical YES/
NO

Description

0x0008 NO Negative response already sent to this chain.

0x0040 YES Invalid Status message from application.

0x0046 YES Session failure due to correlation table shortage.

0x0050 YES Invalid sequence number on Status-Ack.

0x0053 YES Application may not send status control (STSN) negative acknowledge if it supports transacti
on numbers.

0x0056 YES Status-Ack sent when previous RQD chains are outstanding. (For more information, see
Outbound Data.)

0x0801 NO Message received when pacing count is zero.

0x0805 NO BIND from another PLU when already bound.

0x0809 * NO Mode inconsistency (QEC or SHUTD).

0x0815 NO BIND from same PLU when already bound.

0x0821 NO Incorrect ACTLU type (SSCP connection).

0x1003 * NO Wrong profile/network control request/invalid session control message.

0x2005 NO Data traffic reset.

0x2007 NO Data traffic not reset (STSN after SDT).

0x4009 * NO Change direction (CD) not allowed.

0x400B * NO Chaining not supported.

0x400C * NO Brackets not supported.

https://msdn.microsoft.com/en-us/library/aa705002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744280(v=bts.10).aspx

0x400F * NO Incorrect use of FI.

0x4011 * NO Incorrect use of request/response unit (RU) category.

0x4014 * NO Incorrect use of definite response 1 (DR1), definite response 2 (DR2), exception response (ER)
.

Sense Codes for SDI Messages
When the local node detects an error in a normal flow request from the host, the message is converted into a DATAFMI
message with the system detected error indicator (SDI) set to inform the application and to allow data to be processed serially.
The application must convert the message to a Status-Acknowledge(Ack) to allow the local node to send the required negative
response to the host. The possible error codes delivered to the function management interface (FMI) application on such SDI
messages are tabulated in the following table.

The sense codes beginning with 0x40 will only be delivered if the corresponding receive check has been enabled in the
connection information control block (CICB) on the Open(SSCP) Request from the application. If a receive check has been
disabled, the message can still be converted to an SDI message. For example, a message with begin bracket (BB), -begin chain
(BC) would fail as 2002 or 2003 if 4003 were disabled.

When the application uses a Status-Control(LUSTAT) Request to reject outbound data, the sense codes supplied by the
application will be present on the SDI message generated by the local node. For more information, see LUSTATs.

Sense code Description
0x0809 Mode inconsistency.

0x080B Bracket race error.

0x081B Contention race condition.

0x1003 Incorrect FM profile for request.

0x2001 Sequence number error.

0x2002 Chaining error.

0x2003 Bracket error.

0x2004 Direction error.

0x2006 Data traffic quiesced.

0x4003 BB not allowed.

0x4004 End bracket (EB) not allowed.

0x4006 Exception response not allowed.

0x4007 Definite response not allowed.

0x4009 Change direction (CD) not allowed.

0x400B Chaining not supported.

0x400C Brackets not supported.

0x400D CD not supported.

0x400F Incorrect use of FI.

0x4011 Incorrect use of RU category.

0x4014 Incorrect use of definite response 1 (DR1), definite response 2 (DR2), exception response (ER).

https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744293(v=bts.10).aspx

Configuration Information
To obtain information about the Microsoft® Host Integration Server 3270 configuration, the application uses the calls listed in
the following table.

Function Description

sepdcrec Returns a data structure that contains the 3270 user record for this user and the diagnostics record from the runni
ng configuration file.

sepdgetinfo Returns general information about the version of Host Integration Server currently running, such as the release le
vel, the network operating system, and the directory of the running configuration file.

If the return code from sepdcrec indicates that no 3270 user record was found for this user, the emulation program should
terminate and not allow the user to use 3270 emulation. The Host Integration Server error message COM0438 is provided to
log this error.

In This Section

3270 User Record Format

Diagnostics Record Format

Creating NetView User Alerts

https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705707(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770334(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754337(v=bts.10).aspx

3270 User Record Format
Two structures make up the 2370 user record:

Tecwrksd, a logical unit (LU)/session information record, which includes details of a 3270 LU.

Tecwrkus, a 3270 user record, which includes a number of Tecwrksd LU/session information records.

Note that the user record is not a fixed length, because the number of LU/session information records in the remap list is
variable. The structures described in the following sections are provided simply as a template to allow you to map to the
correct offset in the record.

In This Section

tecwrksd

tecwrkus

https://msdn.microsoft.com/en-us/library/aa771254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745799(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745799(v=bts.10).aspx

tecwrksd
Tecwrksd is a logical unit (LU)/session information record, which includes details of a 3270 LU.

Syntax

Members
cwshost[9]

LU/pool name accessed.

cwsestyp

Session type (M2, M3, M4, M5, printer).

cwsmodov

Whether the user has override permission.

cwspad

Two bytes of padding.

Remarks
For Windows 2000

The following "Members" list explains the meaning of each field in the structures and indicates how the application should use
each field. For more information about Host Integration Server 3270 configuration, see Configuration Information.

Members
cwshost

The name (up to eight characters) of the LU or LU pool that this session is configured to use. The application specifies this
name on the Open(SSCP) Request.

cwsestyp

The LU type (display or printer) of the LU used by this session and (if it is a display LU or a pool of display LUs) the screen
model. The possible values are:

CERTMOD2 (0) Model 2 display (24 by 80)

CERTMOD3 (1) Model 3 display (32 by 80)

CERTMOD4 (2) Model 4 display (43 by 80)

CERTMOD5 (3) Model 5 display (27 by 132)

CERTPRNT (4) Host printer

The application should use this value to distinguish between display and printer sessions and to set the appropriate screen
model for display sessions.

cwsmodov

TRUE if the user has permission to override the screen model for display sessions—that is, to change the session to use a
different screen model from the one configured. If this value is FALSE, the user should not be permitted to change the screen
model. This field is not used for printer sessions and should not be checked.

typedef struct tecwrksd {
 UCHAR cwshost[9];
 USHORT cwsestyp;
 USHORT cwsmodov;
 USHORT cwspad;
} TECWRKSD;

https://msdn.microsoft.com/en-us/library/aa745652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx

tecwrkus
Tecwrkus is a 3270 user record, which includes a number of Tecwrksd LU/session information records.

Syntax

Members
cwlen

Length of record.

cwtype

Type of record.

cwname[21]

User name.

cwremark[26]

Comment field.

cwstylef[9]

Initial style file name.

cwvewrtm

Whether user can view Response Time Monitor (RTM) information.

cwalert

Whether user has ALERT permission.

cwchghan

Whether user can change LU/pool name accessed.

cwmaxses

Maximum number of active sessions (1–10).

cwnumrec

Number of sessions for user.

cwsesdat[10]

Session information records.

cwmodisf

typedef struct tecwrkus {
 USHORT cwlen;
 USHORT cwtype;
 UCHAR cwname[21];
 UCHAR cwremark[26];
 UCHAR cwstylef[9];
 USHORT cwvewrtm;
 USHORT cwalert;
 USHORT cwchghan;
 USHORT cwmaxses;
 USHORT cwnumrec;
 TECWRKSD cwsesdat[10];
 USHORT cwmodisf;
 UCHAR cwstatus;
 UCHAR cwpad;
 USHORT cwnumrmp;
 TECWRKSD cwremap[1];
} TECWRKUS;

Permission to modify initial style.

cwstatus

Status byte: user or group.

cwpad

One byte of padding.

cwnumrmp

Number of LUs/pools in remap list.

cwremap[1]

LU/pool remap list.

Remarks
For Windows 2000

Microsoft® Host Integration Server permits configuration of more than 10 sessions per user when used with clients running
Microsoft Windows® 2000. The first 10 sessions are placed in the cwsesdat array with cwnumrec set to 10 and the
remainder are placed in the location of the remap list. The cwnumrmp member indicates the number of Tecwrksd structures
in the remap list. Note that this permits cwmaxses to be greater than cwnumrec.

The following "Members" list explains the meaning of each field in the structures and indicates how the application should use
each field. For more information about Host Integration Server 3270 configuration, see Configuration Information.

Members
cwlen

The length of the 3270 user record (this is variable because it contains a variable number of LU/session records in the remap
list). The application should use this value to locate the start of the next 3270 user record when searching for the correct
record.

cwtype

Identifies this as a 3270 user record.

cwname

The Local Area Network (LAN) Manager user name, or other identifying name, of the 3270 user (up to 20 characters). The
application uses this to search for the correct 3270 user record.

cwremark

An optional comment field (up to 25 characters), used in the configuration program to give more information about the user
(for example, the user's full name).

cwstylef

The name (up to eight characters) of the default style file used by this user (a file containing the user's 3270 customization
settings, used by the Host Integration Server 3270 emulation programs). This field can be used to identify the equivalent file
for your 3270 emulator, if appropriate.

If this field is blank, no style file is used and the 3270 emulator should revert to its default settings (unless overridden by a
style file specified by the user).

cwvewrtm

TRUE if this user is permitted to view a display of RTM statistics for his or her 3270 sessions. If this field is FALSE, the
application should not display RTM statistics and should not display a last transaction time indicator (LTTI) on the status line
of display sessions. For more information about the use of Response Time Monitor (RTM), see Diagnostics Record Format.

cwalert

TRUE if the user is permitted to send NetView user alerts. If this field is FALSE, the user should not be permitted to send
alerts. For more information about the use of alerts, see Diagnostics Record Format.

cwchghan

TRUE if the user is permitted to remap a 3270 session to use a different LU (in which case it can be changed to use any LU in
the remap list—see cwremap). If this field is FALSE, the application should not allow the user to remap sessions.

https://msdn.microsoft.com/en-us/library/aa771254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770334(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770334(v=bts.10).aspx

cwmaxses

The maximum number of active sessions permitted to this user. If the number of sessions configured (see cwnumrec) is
greater than this, the user must not be allowed to activate more sessions at a time than this field specifies.

cwnumrec

The total number of sessions configured for this user. The user record always contains 10 LU/session records (see
cwsesdat), but only this number of the records will be used—the remainder will be filled with zeros.

cwsesdat

Ten LU/session records. Some of these records can be filled with zeros, indicating that they are unused (cwnumrec gives the
number of sessions that are used). The application should list, and allow the user to use, only the sessions that have valid
session records here.

cwmodisf

TRUE if the user is permitted to modify the initial 3270 customization. If this field is FALSE, the application should use the
customization defined by cwstylef (if specified); the user should not be allowed to make changes to this style, or to override
it by loading a different style file.

cwstatus

Indicates whether the user name in this record is a LAN Manager user name or group name. The least significant bit of this
byte is CERTGRUP (1) for a group, and zero for a user. Other bits are not used.

cwpad

Pad byte—not used by the application.

cwnumrmp

The number of LU/session records in the remap list (see cwremap).

cwremap

The list of LU/session records, which indicates the LUs to which the user can remap sessions (if any). If the user is not
permitted to remap sessions (see cwchghan), this list is not used and should not be checked by the application.

Diagnostics Record Format
Two structures make up the Diagnostics record:

The Alert information record tedalert, which includes details of a 3270 NetView user alert, and tediagns, the diagnostics record,
which includes a number of tedalert information records.

In This Section

tedalert

tediagns

https://msdn.microsoft.com/en-us/library/aa771439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705523(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705523(v=bts.10).aspx

Tedalert
The alert information record tedalert includes details of a 3270 NetView user alert.

Syntax

Remarks

The following "Members" list explains the meaning of each field in the structures that is relevant to the application and
indicates how the application should use each field. Fields that are not included in the list are used by other Microsoft® Host
Integration Server components and need not concern the application; in particular, the network management connection name
and the times at which RTM data is sent to the host are handled by the local node on behalf of the application.

Note that the application should determine whether the user is permitted to send NetView user alerts and/or view RTM data
(see 3270 User Record Format). It should not display the appropriate information, as described below, if the user does not have
permission to use that information. The host can also override whether the application is permitted to send and/or to display
RTM data (for more information, see RTM Parameters).

For more information about how the application uses the RTM parameters, see RTM Parameters, Response Time Monitor Data,
and Status-RTM.

Members
dalrtnam[53]

The description (up to 52 characters) of the alert corresponding to a particular alert number. The application should display
this information to help the user determine which alert to send.

daparam1[33]

The descriptions (each up to 32 characters) of up to three parameters.

daparam2[33]

Required for the alert; depending on the specific alert.

daparam3[33]

One or more of these descriptions can be blank, indicating that the parameter is not used. For each of these descriptions that
is not blank, the application should display this string to prompt the user for the appropriate parameter.

typedef struct tedalert {
 UCHAR dalrtnam[53];
 UCHAR daparam1[33];
 UCHAR daparam2[33];
 UCHAR daparam3[33];
} TEDALERT;

https://msdn.microsoft.com/en-us/library/aa705707(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx

tediagns
The diagnostics record tediagns includes a number of tedalert information records.

Syntax

Members
dilen

Length of record.

ditype

Type of record.

dinetmgt[9]

Network management connection name.

disrtmco

Send Response Time Monitor (RTM) data at counter overflow.

disrtmub

Send RTM data at UNBIND.

diwruldr

The definition by which response times are to be measured. The application should measure the response time from the time
the user presses ENTER or an AID key to send data to the host, until one of the following events as defined by this field:

CERTWRIT (0)

The first host data reaches the 3270 display.

CERTUNLK (1)

The host unlocks the user's keyboard.

CERTDIRE (2)

The host gives the application direction so that the user can send further data.

Note that the host can override these definitions; for more information, see RTM Parameters.

dirtmth1

The thresholds that define the bands into which response times are to be classified. Note that the host can override these
definitions; for more information, see RTM Parameters.

dirtmth2

RTM threshold #2.

typedef struct tediagns {
 USHORT dilen;
 USHORT ditype;
 UCHAR dinetmgt[9];
 USHORT disrtmco;
 USHORT disrtmub;
 USHORT diwruldr;
 USHORT dirtmth1;
 USHORT dirtmth2;
 USHORT dirtmth3;
 USHORT dirtmth4;
 TEDALERT dialerts[20];
 UCHAR diaudit[128];
 UCHAR dierror[128];
 USHORT diaudlev;
 UCHAR dipad[16];
} TEDIAGNS;

https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx

RTM threshold #2.

dirtmth3

RTM threshold #3.

dirtmth4

RTM threshold #4.

dialerts[20]

Up to 20 alert records that define the alerts that Host Integration Server users can send to a host. There are always 20
records, but some of these can be blank, indicating that they are not used. The application should display the descriptions of
any nonblank alerts together with the alert number (from 1 to 20) defined by the position of the alert record in this array.

diaudit[128]

Audit log file name.

dierror[128]

Error log file name.

diaudlev

Default audit level.

dipad[16]

16 bytes of padding.

Creating NetView User Alerts
You can create NetView user alerts for users to send. Users identify the alerts by number. Each number corresponds to a
specific collection of information or requests that the user wants to send through NetView to a host operator.

Microsoft® Host Integration Server leaves blank fields for the user alert information in the structure that is returned from
sepdcrec. To create specific user alerts, create appropriate data structures and call the TRANSFER_MS_DATA common service
verb to send the user alert to NetView.

https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx

Compiling and Linking 3270 Client Applications
This section describes the 3270 client samples included with Host Integration Server 2009. The samples are located in the
\SDK\Samples\SNA folder on the Host Integration Server CD.

This section lists and explains the header files and libraries needed to develop 3270 client applications for use with Host
Integration Server client applications. It also provides information about compiling and linking the 3270 client applications.

In This Section

Building the 3270 Client Samples

Client Interface Files for 3270 Applications

3270 Include Files

Compiler Options for 3270 Applications

Linking 3270 Client Applications

https://msdn.microsoft.com/en-us/library/aa744724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771437(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754080(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704804(v=bts.10).aspx

Building the 3270 Client Samples
When installed from the Microsoft Host Integration Server 2009 CD, all the 3270 client samples are built in a similar way, as
described in this section. First, set the environment variables listed in the following table.

Variable Description
ISVLIBS The directory containing the Host Integration Server LIB files for Microsoft Windows 2000.

ISVINCS The directory containing the Host Integration Server header files.

SAMPLEROOT The root directory where the sample code provided as part of the SDK has been installed on a local hard disk.

For example, after copying the contents of the SDK folder on the Host Integration Server 2009 CD to C:\SNASDK, use the
following lines to set the variables:

Next, run NMAKE on the .mak file in each subdirectory below this root directory containing the actual sample source code. For
example, for APING and APINGD, change to the Samples\aping directory and type the following:

nmake -f makeping.mak

ISVLIBS=C:\SNASDK\Lib
ISVINCS=C:\ SNASDK\Include
SAMPLEROOT=C:\SNASDK\Samples\SNA

Client Interface Files for 3270 Applications
The files listed in the following table are required to build 3270 client applications for use with Microsoft® Host Integration
Server.

File Description
FMI.H Main header file containing the definitions of buffer and message formats, function prototypes for the DL-BASE/DM

OD interface calls, and constant definitions.

TRACE.H Definitions of the logging and tracing macros.

FMISTR3
2.LIB

Function Management Interface (FMI) string library for use with Microsoft Windows® 2000.

SNACLI.LI
B

Main interface library for developing 3270 client applications on Windows 2000.

3270 Include Files
To compile the application, the header files FMI.H and TRACE.H are required. In addition, one of the standard operating system
header files may be required. To include the required files, use the following lines in your application:

#include <fmi.h>
#include <trace.h>

Compiler Options for 3270 Applications
When compiling the 3270 client application, the compiler options listed in the following table are required.

Option Explanation
/c Compile only, without linking. Linking is normally done as a separate phase to include the require

d Microsoft® Host Integration Server libraries.

/D NOTRC The NOTRC macro specifies that internal tracing should not be compiled into the application.

The /D NOTRC option should be used for building a final system (internal tracing should not be i
ncluded because it will degrade performance and require more memory and resources). For a de
velopment system, you may want to compile with internal tracing; if so, remove the /D NOTRC o
ption.

/D WIN32_SUPPORT /D M
SWIN_SUPPORT, /D OS2_
SUPPORT, /D DOS_SUPPO
RT

These macros are used in the header files FMI.H and TRACE.H supplied with SNA services to supp
ort variants of the client interface for the different operating systems supported. One of these opti
ons must be defined, depending on the operating system for which the application is intended.

/Gzs c: Use stdcall calling conventions on i386/i486 and Pentium class processors.

 S: Remove stack check calls.

The compiler flags listed in the following table are required, but any of the valid options for each flag may be used, as
appropriate to your application.

Flag Description
/A Compiler model (Does not apply to Microsoft Windows® 2000)

/O Optimization

/W Warning level

Linking 3270 Client Applications
This topic describes how to link 3270 client applications using different platforms.

The SNACLI.LIB library must be linked with the application.

The DMOD is implemented as a DLL. SNACLI.LIB contains import definitions for the APIs in the DLL, and some global variables
required for the logging and tracing macros.

It is possible to create a DLL that is dynamically loaded when the user starts a session for an LU. In this case, to make the log
and trace macros available, the application structure needs to be as shown in the following figure.

Application Structure

Support for 3270 Single Sign-On
This section describes the support for Single Sign-On for 3270 display sessions that is available in Microsoft Host Integration
Server 2009.

Over 3270 LUs, a Single Sign-On feature is supported to automate the overall logon process. When configured for this feature,
Host Integration Server automatically replaces special keywords in the data stream with the actual host user name and
password at appropriate points in the session.

This section contains:

Prerequisites for 3270 Single Sign-On

Registry Settings Used for 3270 Single Sign-On

3270 User Name and Password Replacement

https://msdn.microsoft.com/en-us/library/aa744704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704942(v=bts.10).aspx

Prerequisites for 3270 Single Sign-On
In preparation for using 3270 Single Sign-On, the system administrator must define a host security domain containing host
connections. This host security domain must be initially created or modified to enable the Single Sign-On feature. The system
administrator must enable a user's Microsoft® Windows Server™ 2003 or Microsoft Windows® 2000 account in the host
security domain and either the administrator or the user must establish a mapped host account for the Microsoft® Windows
Server™ 2003 or Windows 2000 domain user name.

The user must be logged on to a Microsoft® Windows Server™ 2003 or Windows 2000 domain with a user name and
password. Note that this Single Sign-On feature is only supported over 3270 LUs.

Registry Settings Used for 3270 Single Sign-On
The 3270 Single Sign-On feature depends on Microsoft® Host Integration Server scanning 3270 logical units (LUs) used in the
logon process for special keywords that are defined in the registry on the computer running Host Integration Server. The
values for these special keywords can be defined by the system administrator on the computer running Host Integration
Server.

The registry settings used by the 3270 Single Sign-On process are located under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services registry node. The following entries are installed under the
SNASERVR\PARAMETERS subkey:

3270SSOPadByte
This entry should be set to an ASCIIZ string to use as the character for padding replacement text in the user name or
password if these strings are shorter than the length of the special tag strings defined below. The default value for this pad
character is the ASCII space character.

3270SSOPostReplaceCount
This entry should be set to a DWORD that represents the number of message chains of RUs to scan after replacement of text
for user name or password. The default value for this number is 10.

3270SSOPrefix
This entry should be set to an ASCIIZ string to use as the special prefix tag string in combination with the user name and
password tags. The default value of this string is MS$.

3270SSOPwdTag
This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special host password string that will be replaced. The default value of this string is SAMEP, so the default host
password string that is scanned for and replaced is MS$SAMEP. Note that length of the password string that is scanned for
(MS$SAMEP, for example) determines the maximum length of the password string that can sent to the host using Single
Sign-On. This limit occurs because the password substitution cannot change the length of the data message. Note that the
value of this string must be different from the value of the 3270SSOUserTag entry for Single Sign-On to function properly.

3270SSOReplaceCount
A DWORD value that affects the time-out value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries.
The timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceCount registry entry is defined and the 3270SSOReplaceTimer registry entry is not defined, the
node counts this number of RUs (on PLU-SLU session only) before time-out occurs. If both the 3270SSOReplaceCount and
3270SSOReplaceTimer registry entries are defined, the value for 3270SSOReplaceCount will be used to determine when
a time-out will occur. By default, this key is not defined and the node defaults to a time-out of 30 seconds.

3270SSOReplaceTimer
A DWORD value that affects the time-out value for password substitution. User IDs and passwords will be substituted in each
chain on the LU-SSCP and PLU-SLU sessions until the timer expires. By default the timer will be set to 30 seconds, but this
behavior can reconfigured in the registry using the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries.
The timer is started when the OPEN SSCP is received by the node.

If the 3270SSOReplaceTimer registry entry is defined and 3270SSOReplaceCount is not defined, the node uses this value
in seconds before time-out occurs. If both the 3270SSOReplaceCount and 3270SSOReplaceTimer registry entries are
defined, the value for 3270SSOReplaceCount will be used to determine when a time-out will occur. By default, this key is
not defined and the node defaults to a time-out of 30 seconds.

3270SSOUserTag
This entry should be set to an ASCIIZ string to use as the special tag string in combination with the 3270SSOPrefix tag in
defining the special user name string that will be replaced. The default value of this string is SAMEU, so the default user
name string that is scanned for and replaced is MS$SAMEU. Note that length of the user name string that is scanned for
(MS$SAMEU, for example) determines the maximum length of the username string that can sent to the host using Single
Sign-On. This limit occurs because the user name substitution cannot change the length of the data message. Note that the
value of this string must be different from the value of the 3270SSOPwdTag entry for Single Sign-On to function properly.

3270 User Name and Password Replacement
The SNA node on the host monitors the inbound session for a replacement sequence consisting of the 3270SSOPrefix string
immediately followed by one of the strings 3270SSOUserTag or 3270SSOPwdTag. Thus, the default user name string that
would be scanned for and replaced is MS$SAMEU. When this string is found in the inbound session data, the node looks up
the corresponding information (host user name in the current host security domain) and overwrites MS$SAMEU with this
information. The same process occurs for the password string that would be scanned for and replaced, which defaults to
MS$SAMEP.

Note that this operation cannot change the length of the data message. If the actual user name or password that is retrieved
from the current host security domain is shorter than the replacement sequence, it is padded out with the first character of the
3270SSOPadByte string used as a padding character. If the actual host user name or password string is longer than the string
that is scanned for, these strings are truncated to the length of the scanned string so that the data message length is not
affected.

Note that since the user name and password can be sent in any order, the registry string values for the 3270SSOUserTag and
3270SSOPwdTag entries must be different for Single Sign-On to function properly.

The SNA node monitors the SSCP-LU session for these special tag strings at all times and replaces all occurrences of these
strings with corresponding looked-up data. On the LU-LU session, the node starts monitoring at start of session (BIND). The
node stops monitoring when it has received 3270SSOPostReplaceCount chains of request/response units (RUs) without
seeing a substitution tag. The node will not restart monitoring until it receives an UNBIND–BIND sequence for that session.

Note that the node considers the sequence:

As a continuation of the same LU-LU session and does not restart monitoring on receipt of the second BIND. This sequence is
often used by host session managers handing off a session to an application system, and is considered a single terminal
session.

User IDs and passwords will be substituted in each chain on the system services control LU-SSCP and PLU-SLU sessions until
the node has received 3270SSOPostReplaceCount chains of RUs without seeing a substitution tag or a timer expires. By
default the timer is set to 30 seconds, but this behavior can reconfigured in the registry using the 3270SSOReplaceCount and
3270SSOReplaceTimer registry entries. The timer is started when the OPEN SSCP is received by the node. After the timer
expires, the node will stop scanning messages for the 3270 replacements strings for the user ID and password. If the
replacement strings arrive after the timer expires, the replacement strings will be sent to the host unmodified causing the
Single Sign-On to fail. The application will not receive any notification that the timer has expired. The only indication of a
problem will likely be that the Single Sign-On to the host session has failed.

Note that all strings are specified in the registry in ASCII, but the node translates them to Extended Binary Coded Decimal
Interchange Code (EBCDIC) through AE character mapping before scanning for a match.

BIND, data, UNBIND(BIND FORTHCOMING), BIND

SNA Internationalization Programmer's Guide
This section describes the features available in Host Integration Server 2009 for supporting international languages and
different national language character sets.

The SNANLS API uses the language support features provided with Microsoft Windows 2000 and Microsoft Windows XP.
SNANLS supports European languages that use single-byte encoding, as well as East Asian languages that use double-byte or
Unicode encoding.

For API references and other technical information about SNA Internationalization, see
SNA Internationalization Programmer's Reference.

In This Section

SNA National Language Support Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa770678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754707(v=bts.10).aspx

SNA National Language Support Programmer's Guide
The SNA National Language Support (SNANLS) API standardizes the way in which national languages and locales are
supported. SNANLS handles string conversion necessary for supporting a wide range of host and code pages. Components
such as the Host Print service and Shared Folders service use SNANLS API to convert strings from EBCDIC to ANSI and from
ANSI to EBCDIC.

The SNANLS API is the standard means to convert strings in Host Integration Server 2009. SNANLS presents a single interface
to applications that need strings converted from one code page to another. These conversions may be EBCDIC-to-ANSI, ANSI-
to-EBCDIC, EBCDIC-to-OEM code pages, OEM-to-EBCDIC, EBCDIC-to-ISO code pages, and ISO-to-EBCDIC. Additionally,
SNANLS supports the broadest possible range of host and PC code page conversions.

SNANLS provides a uniform interface for programmers, hiding the details and difficulties of string conversion. SNANLS
supports both SBCS and DBCS conversions. Two other lower-level APIs handle the actual string conversion. For SBCS
conversions, SNANLS uses the system-provided Win32 NLS API that is resident on Microsoft Server 2003, Windows XP, and
Windows 2000.

For DBCS conversions, SNANLS uses the TrnsDT API. The TrnsDT API is installed with Host Integration Server.

SNANLS is supported on Windows Server 2003, Windows XP, and Windows 2000.

In This Section

National Language Support in Windows Server 2003, Windows XP, and Windows 2000

https://msdn.microsoft.com/en-us/library/aa704997(v=bts.10).aspx

National Language Support in Windows Server 2003, Windows
XP, and Windows 2000

National Language Support (NLS) provides a standardized method of supporting multiple international locales, code pages,
input methods, sort orders, and number/currency/time/date formats.

The Win32 NLS API provides developers with a way to access system-provided Unicode-to-ANSI and ANSI-to-Unicode
conversion services. Microsoft Windows Server 2003, Windows XP, and Windows 2000 supply EBCDIC-to-Unicode and
Unicode-to-EBCDIC translation tables for all of the popular host code pages.

The SNANLS API leverages the existing work done to support the NLS API on Windows Server 2003, Windows XP, and
Windows 2000. Host Integration Server 2009 takes advantage of these EBCDIC-to-Unicode-to-ANSI and ANSI-to-Unicode-to-
EBCDIC code page conversion services.

Currently, the Win32 NLS API only supports SBCS EBCDIC code pages. However, future versions of the NLS API will support
DBCS EBCDIC. SNANLS currently uses TrnsDT for DBCS conversions.

SNA Print Server Data Filter Programmer's Guide
The Host Print service of Microsoft® Host Integration Server 2009 provides server-based 3270 and 5250 printer emulation,
enabling host applications to print to Local Area Network (LAN) printers supported by Microsoft Windows Server™ and Novell
NetWare. This section introduces the SNA Print Server Data Filter API (sometimes referred to as the Print Exit API). This API can
be used to extend the capabilities of the Host Print service in Host Integration Server 2009.

The user can provide a print data filter DLL that will be called by Host Print service when a print job is initiated, when data is
sent to the printer, and when the print job is completed. This print data filter DLL can:

Send data to the printer when a job starts (print a banner page, for example).

Perform special processing on the data to be printed.

Send data to the printer upon print job completion (print a trailer page, for example).

SNADIS Programmer's Guide
This section enables original equipment manufacturers (OEMs) and adapter vendors who are developing their own SNALink
software to work with Host Integration Server 2009 SNA Services.

SNALink software must be written as a Microsoft Windows 2000 device driver. For information about writing Windows 2000
device drivers, see the Windows 2000 Device Driver Kit (DDK).

This section provides the following information:

Internal concepts of Host Integration Server 2009 that are required to integrate new communications adapters into the
server environment.

Definitions of the interfaces used by Host Integration Server 2009 to communicate with SNALinks.

Information about using the configuration and diagnostics features included in Host Integration Server 2009.

Instructions for compiling and linking the SNALink support software.

The network operating systems currently supported by Host Integration Server 2009 include Microsoft LAN Manager (as
implemented in Microsoft Windows 2000) and TCP/IP. Future versions of Host Integration Server may support other network
operating systems. Because of this, it is recommended that you develop link support that is independent of the network
operating system.

For API references and other technical materials for programming SNALink applications, see the
SNADIS Drivers Programmer's Reference section of the SDK.

This section contains:

SNALink Concepts in Host Integration Server

SNALink Interface

SNALink Configuration Information

Data Link Control Interface

Setup Information

Compiling and Linking a SNALink

Synchronous Dumb Card Interface

SNA Modem Status Interface

SNA Performance Monitor Interface

https://msdn.microsoft.com/en-us/library/aa705459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705632(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754772(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772079(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705185(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770914(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705794(v=bts.10).aspx

SNALink Concepts in Host Integration Server
This section describes key concepts used in the SNALink feature of Host Integration Server 2009. Because the purpose of this
section is to enable original equipment manufacturers (OEMs) and adapter vendors to develop link support software to
integrate their hardware adapters into a Host Integration Server 2009 system, only the relevant parts of the Host Integration
Server 2009 architecture are described.

In This Section

Overview of SNALink

SNALink Configuration and Management

Structure of SNALink Components

Messages

LPI Connections

https://msdn.microsoft.com/en-us/library/aa745701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771370(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771974(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744663(v=bts.10).aspx

Overview of SNALink
A Host Integration Server 2009 SNALink must implement an SNA-compatible data transport mechanism capable of
connecting the local type 2.1 node to remote host (PU4/5) or peer (PU2.1) systems.

The local node provides the SNA layers of path control, transmission control, data flow control, and logical unit (LU) services.
The following figure shows an example of a Host Integration Server 2009 system.

Sending and receiving messages

The local node uses the data link control (DLC) interface to communicate with a SNALink. This interface is defined in
The Data Link Control Interface. The SNALink and the DLC driver are responsible for transferring data between the path control
layer of the node and the DLC adapter.

The routing of messages that flow between Host Integration Server components is handled by the SnaBase and Dynamic
Access Module (DMOD) components. For details about how to send and receive messages, see The SNALink Interface.

https://msdn.microsoft.com/en-us/library/aa772079(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753948(v=bts.10).aspx

SNALink Configuration and Management
The configuration information for a Host Integration Server 2009 system is stored in two forms:

A centralized configuration file containing details of logical units (LUs), physical units (PUs), and connections.

Entries in the Microsoft Windows Server 2003 or Windows 2000 registry containing configuration information for the
SNALinks supported on that computer. This information contains parameters required by Host Integration Server 2009,
and any other parameters that independent hardware vendor (IHV) code may require.

A Host Integration Server SNALink is defined when a Host Integration Server system is installed. A SNALink can support only
one physical connection from the server. If a single adapter is capable of supporting multiple physical connections, Host
Integration Server requires multiple SNALinks to be configured.

To reconfigure a server's SNALink support (for example, after installing a new adapter), the administrator uses either the
Windows Network Control Panel applet or the Host Integration Server setup program. For further information about how this
operates, see Setup Information.

All other configuration of a Host Integration Server system is performed using SNA Manager. As part of the configuration
process, logical connections to remote PUs are associated with one or more SNALinks.

All configured SNALinks are automatically started when the Host Integration Server system is started. At this stage, the
SNALink performs any initialization required, and then waits for instructions from local nodes.

When a connection is activated, either from SNA Manager or automatically (for example, in response to a 3270 user's request
for a session with a remote host), the SNALink receives an Open(LINK) message from the local node. The SNALink should then
perform whatever action is required to initiate that connection. This can involve dialing a telephone number for a switched
Synchronous Data Link Control (SDLC) connection or bringing up level 2 on an X.25 link and sending a CALL packet.

If the IHV wants the same physical adapter to be available for use by multiple SNALinks (for example, a dumb SDLC card can
be used to communicate using SDLC or X.25 protocols), the SNALink should not attempt to access the hardware until it has
received an Open(LINK) message from the local node.

https://msdn.microsoft.com/en-us/library/aa770814(v=bts.10).aspx

Structure of SNALink Components
The components of SNALink are:

Local nodes

SNALinks

3270 emulators

This section introduces the structure of these components and explains terms used to refer to the structure.

In This Section

Role of the Base

Localities and DMODs

Component Localities

Partners

SNALink Structure

https://msdn.microsoft.com/en-us/library/aa746117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745388(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770556(v=bts.10).aspx

Role of the Base
TheBase is a part of each Host Integration Server 2009 component, such as the local 2.1 node or a link service that provides the
operating environment for that component. It passes messages between components and provides functions common to all
components, such as diagnostic tracing.

The Link Base is the type of Base used by Host Integration Server SNALink. The Base has entry points for initialization, sending
messages, receiving messages, and termination.

Localities and DMODs
A Base and its components (that is, a Host Integration Server 2009 executable program) is called a locality. The Host
Integration Server system therefore consists of one or more communicating localities (all the running Host Integration
Server 2009 executable programs within the LAN Manager domain). For each Host Integration Server system, there is a central
configuration file. In addition, each Host Integration Server computer maintains configuration information about the SNALinks
it supports.

In a system such as Host Integration Server, where the number of localities and their types are not configured in advance, the
relationships between the localities are set up dynamically as individual localities come and go. Localities that can enter and
leave a system in this way are called dynamic localities.

Dynamic localities communicate using the Dynamic Access Module (DMOD) component, which provides the communications
facilities needed to pass messages between the Bases. This is illustrated in the following figure.

Dynamic localities communicating using the DMOD component

This figure shows a system consisting of three dynamic localities. Dynamic localities can enter or leave this system at any time.

Component Localities
SNALinks can enter dynamically into a Host Integration Server 2009 system. The SNALink, in conjunction with the Base, acts as
a whole locality and communicates with the other localities in the system using a Dynamic Access Module (DMOD).

SNALink Interface describes the interface to the Base and the DMOD that allows a SNALink (or any other Host Integration
Server component) to participate in a Host Integration Server system.

https://msdn.microsoft.com/en-us/library/aa753948(v=bts.10).aspx

Partners
For Host Integration Server 2009 components and applications to communicate with each other, it must be possible to identify
a partner within a locality. A partner is an addressable component of a locality; that is, code to which messages can be sent. In a
Host Integration Server system, there is generally only one partner within a locality (such as an SNALink or the 3270 emulation
program). However, separate functions within the local 2.1 node (such as the 3270 and Advanced Program-to-Program
Communications (APPC) functions) can be considered to be separate partners.

SNALink Structure
A Host Integration Server 2009 SNALink consists of the following:

The link-specific protocol code provided by the independent hardware vendor (IHV)

A Base

A Dynamic Access Module (DMOD)

The DMOD, Base, and the IHV link-specific component of a Host Integration Server SNALink are implemented as dynamic-link
libraries (DLLs). The executable component SNALINK.EXE is used to start a SNALink. SNALINK.EXE determines (from the Host
Integration Server configuration) which link support DLL (for example, IHVLINK.DLL) is required and dynamically loads it
before entering the Base scheduler.

The following figure shows the executable structure of a SNALink.

Executable structure of an SNALink

Messages
Messages are used to pass data between partners in the Host Integration Server 2009 system. This section provides
information about message structure and formats.

In This Section

Overview of Message Formats

Buffer Header Format

Buffer Element Format

https://msdn.microsoft.com/en-us/library/aa745815(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744978(v=bts.10).aspx

Overview of Message Formats
A message always contains fixed-format header information such as a message type and addressing information. It can also
contain other header information specific to a particular message type (such as the message subtype) and an indefinite
amount of extra data.

Messages are saved in buffers that consist of one header and zero or more elements:

The header contains the fixed-format information and a pointer to an element. (This pointer will be NULL if there are no
elements associated with the message.)

An element contains any extra data for a message and a pointer to another element if the data continues into another
element.

Buffer headers and elements are regarded as contiguous (8-bit) byte sequences. Messages of any length can be built up by
chaining sufficient elements to a header.

The following figure shows a typical message with two elements.

Typical message with two elements

Buffer Header Format
This topic lists the common fields that always occur at the start of a buffer header. These are followed by further fields specific
to the particular message. For details about individual message formats, see SNADIS Message Formats.

Fiel
d

Ty
pe

Description

PTR
BFH
DR

nxt
qp
tr

When the buffer is in a queue, this field points to the header of the next buffer in the queue (NULL if it is the last buffer
in the queue). When the buffer is not in a queue, this field points to itself. The Host Integration Server 2009 buffer man
agement routines use this to check for buffer corruption.

PTR
BFE
LT

hd
re
ptr

Pointer to the first buffer element in the associated chain of buffer elements; NULL if the message consists only of a b
uffer header.

CH
AR

nu
me
lts

Number of buffer elements chained from the header. Zero if the message consists only of a buffer header.

CH
AR

ms
gty
pe

Message type. For more information, see individual message descriptions in SNADIS Message Formats.

CH
AR

src
l

Source locality. For more information, see LPI Addresses.

CH
AR

src
p

Source partner. For more information, see LPI Addresses.

INT
EGE
R

src
i

Source index. For more information, see LPI Addresses.

CH
AR

de
stl

Destination locality. For more information, see LPI Addresses.

CH
AR

de
stp

Destination partner. For more information, see LPI Addresses.

INT
EGE
R

de
sti

Destination index. For more information, see LPI Addresses.

Note
Fields that occupy two bytes, such as opresid in the Open(LINK) request, are normally represented with the arithmetically m
ost significant byte in the lowest byte address, irrespective of the normal orientation used by the processor on which the soft
ware executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte address. However, the following fields ar
e exceptions:

The srci and desti fields in buffer headers are stored in the local format of the application that assigns them (only the
assigning application needs to interpret these values).

The startd and endd fields in elements are always stored in low-byte, high-byte orientation (the normal orientation of an
Intel processor).

https://msdn.microsoft.com/en-us/library/aa704718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746228(v=bts.10).aspx

Buffer Element Format
This topic lists the common fields that always occur at the start of a buffer element. The dataru field contains information
specific to the particular message. For details about individual message formats, see SNADIS Message Formats.

Field Type Description
PTRBF
ELT

hdrep
tr–>el
teptr

Pointer to next buffer element in the chain. NULL if this element is the last or only element in the chain.

INTEG
ER

hdrep
tr–>st
artd

Start of valid data in this element. The index into dataru of the first byte of valid data.

INTEG
ER

hdrep
tr–>e
ndd

End of valid data in this element. The index into dataru of the last byte of valid data.

CHAR hdrep
tr–>tr
pad

Pad byte (reserved).

CHAR[
SNAN
BEDA]

hdrep
tr–>d
ataru

An array of characters that contains the data for this element. Note that the valid data might not occupy the who
le of the element. The startd and endd fields give the indexes into this array of the start and end of the valid dat
a. The constant SNANBEDA is defined in SNA_DLC.H as 268.

The following information will help you to interpret the message formats:

Fields that occupy two bytes are represented with the arithmetically most significant byte in the lowest byte address,
irrespective of the normal orientation used by the processor on which the software executes. That is, the 2-byte value
0x1234 has the byte 0x12 in the lowest byte address. The exceptions to this are the startd and endd fields in elements,
which are always stored in low-byte, high-byte orientation (the normal orientation of an Intel processor).

The offsets indicated by the startd and endd fields are expressed in terms of the first byte of dataru being offset 1; the
first byte of valid data is at dataru(startd–1). For example, if startd is 11 and endd is 18, dataru begins with 10 bytes
that are not valid data, followed by 8 bytes of valid data.

In the example message format illustrated in Overview of Message Formats, each element has a startd of 13, indicating 12
bytes of padding before the start of the valid data. This leaves room for 256 bytes of data, and hence the element data (300
bytes long in this example) requires two elements.

https://msdn.microsoft.com/en-us/library/aa704718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745815(v=bts.10).aspx

LPI Connections
Partners communicate by passing messages to each other. If two partners want to communicate with each other, a locality,
partner, index (LPI) connection is set up between the two partners. Messages then flow between the partners over this
connection. The term LPI connection is explained in LPI Addresses. Note that this is not related to the Microsoft Host Integration
Server 2009 concept of a connection between the local node and a remote system.

In This Section

Paths and DMODs

LPI Addresses

Making Connections

https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753902(v=bts.10).aspx

Paths and DMODs
Dynamic Access Modules (DMODs) are responsible for the communication between localities. When the DMODs in two
localities can successfully pass messages between them, a path is said to exist between the two localities. A path must exist
between two localities before a connection can exist between partners in those localities.

In Host Integration Server 2009, a path is implemented using reliable LAN connections (named pipes, SPX, TCP, VINES IP)—
one LAN connection for each path. When the two localities are on the same computer, a local pipe is used. This is implemented
using shared buffers to increase performance, but is used by the application in exactly the same way as communication with a
remote locality.

The DMOD provides communication between dynamic localities and provides guaranteed in-order delivery of messages
flowing over paths between localities. If the DMOD loses its path to another locality, it informs the Base.

The following figure illustrates the paths and connections between a Host Integration Server local node and two SNALinks.
X.25 service A has two connections to the local node (one for each of two virtual circuits); SDLC service B has one connection to
the local node.

Paths and connections between a Host Integration Server local node and two SNALinks

LPI Addresses
A locality, partner, index (LPI) address is used to identify each end of a connection. It has three components: locality (L), partner
(P), and index (I).

Locality is a 1-byte identifier that uniquely identifies a locality within a system. This locality corresponds to a Host
Integration Server 2009 component (local node, SNALink, 3270 emulator, and so on).

Partner is a 1-byte identifier for the type of service. Each type of service has a unique value. A Host Integration Server
local type 2.1 node has a defined value of 0x11. A Host Integration Server emulator has a defined product identifier of
0x12. A Host Integration Server link service (X.25. SDLC, Token Ring, Ethernet, or Channel, for example) has a defined
value of 0x16.

Index is a 2-byte identifier that uniquely identifies a logical entity within the product. The meaning and use of this field is
defined by the communicating services. It is used to distinguish multiple connections between the same services (for
example, to identify one of many virtual circuits available from an X.25 SNALink). The value of zero should not be used as
an index. Applications must assign unique index values for every active LPI connection within the node.

A message flowing over a connection carries a pair of LPIs, identifying the source and destination of the message. These are
the source LPI and destination LPI of the message. Together they identify the connection on which the message is flowing.

Note that more than one connection can exist between any pair of services. The Index values are then used to distinguish the
connections. For example, in communications between the local node and a SNALink, the L and P values identify the message
as being data link control (DLC) data for that local node, and the I value indicates which connection the data is intended for.

The LPIs are assigned by a combination of the products and the Dynamic Access Modules (DMODs) when the connection is
opened, as described in Making Connections.

Because they are assigned dynamically for each component, the L values are not the same across a whole system. For example,
a local 2.1 node locality could be known as locality 4 to one SNALink locality and locality 6 to a second SNALink locality.
However, from the viewpoint of any locality, there exists a unique L value for each remote locality within which a path exists.
This L value is used as an index into an internal table that identifies the path to that locality.

The following three figures show an example of the L values that could be used between the components shown in
Paths and DMODs, and examples of the LPI values that would be used by the local node on messages flowing between the
components.

Sample L values

The following figure shows L values specified on messages between the local node and SNALink A.

L values specified on messages between the local node and SNALink A

The following figure shows LPI values specified on messages flowing on two different connections between the local node and
SNALink A.

LPI values specified on messages flowing on two different connections

https://msdn.microsoft.com/en-us/library/aa753902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744350(v=bts.10).aspx

The Base is called by any piece of code that wants to send a message. It uses the destination L value on the message to
determine where to send it. When the message gets to the remote locality, the Base in that locality routes it to the appropriate
service if the locality contains more than one service.

Making Connections
Before messages can flow across connections, the connections must be established, or opened. This is necessary because a
service does not initially know the locality, partner, index (LPI) address of the service with which it wants to communicate.
There may not even be a suitable service for it to communicate with.

When a local node wants to communicate with an SNALink, it attempts to open a connection by sending an Open(LINK)
request to the SNALink. This message will have LPI values already set up by the Base, which the SNALink should save for
referencing the connection in the future.

The data link control (DLC) interface does not permit the SNALink to issue an Open request.

SNALink Interface
The SNALink interface specifies how an Independent Hardware Vendor (IHV) link DLL fits into the SNA link service architecture
provided by the Base/DMOD interface. This section describes the SNALink interface, the entry points that an IHV link DLL can
call, and those functions that a link service must provide to the Base/DMOD interface. These entry points allow messages to be
sent to and received from the local 2.1 node.

In This Section

Process Structure and Scheduling

SNALink Initialization

SNALink Termination

Sending Messages

The Dispatcher

Receiving Messages

The Work Manager

Base/DMOD and SNALink Entry Point Summary

Sample Code for SNALinkDispatchProc

https://msdn.microsoft.com/en-us/library/aa745810(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771502(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705431(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753897(v=bts.10).aspx

Process Structure and Scheduling
The primary thread of execution within a Host Integration Server 2009 SNALink is under the complete control of the Base. The
Base schedules the SNALink by calling predefined entry points, which the IHV link support code must provide.

The IHV link support code can spawn extra threads of execution; however, the Base is not reentrant. The IHV code must ensure
that only a single thread is executing within the Base at any moment in time.

The recommended SNALink structure uses the dispatcher to handle messages received from the local node and the work
manager to process data received from the link. These routines and the way in which they are scheduled are described in
The Dispatcher and The Work Manager respectively.

https://msdn.microsoft.com/en-us/library/aa744705(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705431(v=bts.10).aspx

SNALink Initialization
When the SNALink is loaded into memory, the Base/DMOD performs all initialization required by the Host Integration
Server 2009 system, including announcing availability of the new SNALink to other Host Integration Server components.

When this has been completed, the Base/DMOD calls the SNALinkInitialize function, which must be provided by the IHV link
support code.

SNALinkInitialize is called with a parameter that is a handle to the global Base event. This handle should be saved by the
SNALink and used to signal the Base when an event occurs (for example, when data is received from the link).

The SNALinkInitialize function should also:

Read in the Host Integration Server configuration information for the SNALink. For details, see
SNALink Configuration Information.

Set up any required data structures.

Register with the driver that provides the support for the hardware adapter, initializing this if necessary.

If initialization fails for any reason (for example, if an associated driver is not installed), the function should report the failure to
the administrator by calling SNAReportStatus.

https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754772(v=bts.10).aspx

SNALink Termination
When a critical error occurs, forcing abnormal termination of the SNALink, the IHV code must ensure that all active
connections are cleanly terminated, using whatever protocols are appropriate for the link type in use. For example, an X.25
SNALink would send a CLEAR packet on all active VCs and possibly take down level 2.

This should be performed using the process detach facility of the Win32® API function DLLEntryPoint .

Sending Messages
The SNALink should build a message in a buffer, and then call the Base to send it. The message contains source and destination
LPIs, which are set up when the connection is opened. For more information, see LPI Connections.

The SNALink can either obtain a new buffer to contain the message to be sent (using SNAGetBuffer) or reuse one in which it
has previously received a message. The application is responsible for any buffer that it has obtained or in which it has received
a message. It must either use (or reuse) the buffer to send a message or release it (using SNAReleaseBuffer). If a buffer to be
reused does not contain the correct number of elements for the message to be sent, the application can obtain additional
elements (using SNAGetElement) or release existing ones (using SNAReleaseElement). It is the applications responsibility to
maintain the numelts field in the message header.

The function used to send a message to the node is SNASendMessage.

https://msdn.microsoft.com/en-us/library/aa744663(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754786(v=bts.10).aspx

Dispatcher
Whenever a Base event occurs, the Base calls the link support code dispatcher function SNALinkDispatchProc to handle the
event. The term Base event in this context means:

A message arriving from a local 2.1 node.

A Base timer tick occurring—this relatively slow event happens approximately every five seconds.

Losing contact with a local 2.1 node (for example, the machine being powered down).

The SNALinkDispatchProc function should examine parameters passed to it by the Base to determine why it has been called
(for details, see Sample Code for SNALinkDispatchProc) and call an appropriate function to handle the event. When the event
has been processed, control returns to the Base scheduler.

https://msdn.microsoft.com/en-us/library/aa705234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753897(v=bts.10).aspx

Receiving Messages
The Base calls the SNALink dispatcher function SNALinkDispatchProc when a message is available for it.

Note that after the application receives a message, it is responsible for the buffer in which the message was received. It must
either reuse the buffer to send a message (using SNASendMessage) or release it (using SNAReleaseBuffer). If the buffer to be
reused does not contain the correct number of elements for the message to be sent, the application can obtain additional
elements (using SNAGetElement) or release existing ones (using SNAReleaseElement).

https://msdn.microsoft.com/en-us/library/aa705234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754786(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771871(v=bts.10).aspx

Work Manager
When no work is currently outstanding, the Base thread of execution sleeps, waiting for an event or for a maximum period of
five seconds. SNALinks should signal the Base when an event occurs (such as data arriving on the link) by setting the Base
global event. A handle to this event is passed on the SNALinkInitialize call.

When the Base is rescheduled, it calls the SNALink work manager function SNALinkWorkProc. This function should handle any
link events that have occurred.

A common use of this function is in an SNALink where there is a single thread that handles the protocol of the link and also
multiple threads suspended on synchronous calls to a driver read function. When data is received from the link, it is placed on
an internal queue, and the driver sets the global Base event. This causes the Base to be scheduled, and SNALinkWorkProc is
called. SNALinkWorkProc then removes messages from the queues and passes them to the Base to be sent to the local node.

https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754402(v=bts.10).aspx

Base/DMOD and SNALink Entry Point Summary
The following tables show entry points divided into the categories SNALink, buffer management, and Base/DMOD, and listed
in alphabetic order within each category.

SNALink entry points
Entry point Description

SNALinkDispatchProc Dispatcher.

SNALinkInitialize Initialize SNALink.

SNALinkTerminate Terminate SNALink.

SNALinkWorkProc Work manager.

Buffer management entry points
Entry point Description

SNAGetBuffer Get buffer.

SNAGetElement Get buffer element.

SNAReleaseBuffer Release buffer.

SNAReleaseElement Release buffer element.

Base/DMOD entry points
Entry point Description

SNAGetLinkName Get the name of the SNALink.

SNASendAlert Send a preformatted NMVT alert to NetView.

SNASendMessage Send a message to the node.

The following functions are defined in SNALink Configuration Information:

Entry point Description

SNAGetConfigValue Get a named item of configuration information.

SNAGetSystemInfo Get Host Integration Server 2009 system information.

Note
Standard calling conventions [WINAPI] are used for all entry points including those provided by the IHV SNALink.

The format of buffer headers and elements is described in Messages. The formats of individual messages contained in buffers
are defined in SNADIS Message Formats.

https://msdn.microsoft.com/en-us/library/aa705234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771909(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705609(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754786(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754772(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704821(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704718(v=bts.10).aspx

Sample Code for SNALinkDispatchProc
This section contains outline source code for the link dispatcher function SNALinkDispatchProc.

/**/
/* First, include the SNA service header files */
/**/
#include <sna_dlc.h>
#include <sna_cnst.h>
#include <trace.h>

/**/
/* The link dispatcher routine - SNALinkDispatchProc */
/**/
VOID SNALinkDispatchProc (msgptr, function, locality)
PTRBFHDR msgptr;
INTEGER function;
INTEGER locality;
{
 INTEGER discard_buff;
 COM_ENTRY("Ldisp");
 if (msgptr != NULL)
 {
 TRACE4()"received message from local node"));
 discard_buff = FALSE;
 switch (msgptr->msgtype)
 {
 case OPENMSG:
 /* process the OPEN message */
 break;
 case CLOSEMSG:
 /* process the CLOSE message */
 break;
 case DLCDATA:
 /* Data to be sent on link */
 break;
 case DLCSTAT:
 /* Switch on the subtype of the message */
 switch (msgptr->dshdr.dstype)
 {
 case STRESRCE :
 /* call flow control processor */
 break;
 case DLCSDXID:
 /* call XID processor */
 break;
 default:
 discard_buff = TRUE;
 break;
 }
 break;
 default:
 discard_buff = TRUE;
 break;
 }
 if (discard_buff)
 {
 /* message has not been processed, so simply discard */
 SNAReleaseBuffer(msgptr);
 msgptr = NULL;
 }
 }
 else if (function == SBLOST)
 {
 /* Lost contact with local node 'locality' */
 /* Terminate all connections on this node (matching destl-value) */

https://msdn.microsoft.com/en-us/library/aa705234(v=bts.10).aspx

 }
 else if (function == SBTICK)
 {
 /* 5 second timer tick */
 }
 COM_EXIT;
}

SNALink Configuration Information
The configuration information for all SNALinks on a computer is stored hierarchically, referenced by the SNALink name.

The entry for each SNALink must include certain fields that are required by the Host Integration Server 2009 system. These are
listed in the following table.

Required fi
eld

Description

TYPE The type of the SNALink. Acceptable values for TYPE are: SDLC, X25, TOKENRING, TCPIP, FRAMERELAY, CHANNE
L, ISDN, ETHERNET.

LINKMODUL
E

The name of the IHV DLL that provides the protocol code.

The remainder of the configuration information consists of entries of the form PARAMETER = VALUE. Parameters can be set to
either an integer or a string.

Examples of possible parameters that may be required by an SNALink are as follows:

PortNumber = 3

LineType = SWITCHED

L3PacketSize = 128

T1Timeout = 30

Note that to support more than one port on a multiport adapter, you must define multiple SNALinks. It is not possible to
configure a single SNALink to support more than one physical link.

The following figure shows a sample configuration for a computer with two SNALinks—SDLC1 and X25HOST.

Sample configuration for a computer with two SNALinks

The configuration information is accessed using API calls that Host Integration Server provides.

The IHV Setup utility must write the configuration information for each SNALink supported. See Setup Information for
information about how this should be performed.

In This Section

Accessing Configuration Information

https://msdn.microsoft.com/en-us/library/aa770814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754310(v=bts.10).aspx

Accessing Configuration Information
The following table lists the calls the SNALink uses to obtain its configuration information.

Call Description
SNAGetConfigValue Returns the value of a named configuration parameter.

SNAGetSystemInfo Returns general information on the version of SNA server currently running, such as the release level, an
d the network operating system.

If the return code from SNAGetConfigValue indicates that the specified configuration parameter is not available, or if the
information returned is invalid, it is the SNALink's responsibility to decide what action to take. If appropriate, an error message
could be logged.

It is strongly recommended that the SNALink read all required configuration parameters at initialization time (when
SNALinkInitialize is called by the Base). This safeguards against the configuration information changing while the link service is
running.

Note
Standard calling conventions (WINAPI) are used for all entry points, including those provided by the IHV SNALink.

https://msdn.microsoft.com/en-us/library/aa704821(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx

Data Link Control Interface
The data link control (DLC) interface defines the interface between the local 2.1 node and an SNALink. The DLC interface is
defined in terms of the messages that are sent across the interface. Note that this is logically distinct from the definition of the
Base/Dynamic Access Module (DMOD) interface, which defines the API used to send messages between two components in
Host Integration Server 2009 (for example, between the local node and an SNALink).

DLC messages are exchanged between the local node and an SNALink across LPI connections. For details, see
Structure of SNALink Components.

The local node uses the DLC interface to:

Activate DLC connections.

Exchange format 0 or format 3 XIDs for station activation.

Exchange DLC information frames.

Handle DLC error notification.

In This Section

Supported Configurations

Opening a Connection

DLC Information Transfer

Closing a Connection

Incoming Call Support

SDLC Multipoint Connections

https://msdn.microsoft.com/en-us/library/aa771974(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771748(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704694(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770557(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745178(v=bts.10).aspx

Supported Configurations
The 2.1 node supports the full range of station roles:

Primary data link control (DLC) stations

Secondary DLC stations

DLC station role negotiation

For Synchronous Data Link Control (SDLC) connections, the node allows:

Leased lines configured as:

Secondary point-to-point

Primary point-to-point or multipoint

Negotiable point-to-point

Switched lines (point-to-point only) with:

Remote physical unit (PU) identification through XID exchange

Auto dial (with suitable hardware support)

Incoming call support

For X.25 and 802.2, the node also supports:

Multiple connections over one physical link

Incoming calls with validation of caller's address

In addition, for X.25, the node supports permanent virtual circuits (PVCs) and switched virtual circuits (SVCs).

Opening a Connection
The 2.1 node is capable of supporting multiple connections through one or more SNALinks. For each connection, the node
opens two Locality Partner Index (LPI) connections to the SNALink:

LINK LPI connection to handle activation and deactivation of the connection.

STATION LPI connection to transfer data to and from the remote station.

The one exception to this rule is the case of primary multipoint connections where there is a single LINK LPI connection and
multiple STATION LPI connections. This special case is described in SDLC Multipoint Connections.

The following messages flow over the data link control (DLC) interface and are used to activate a connection to a remote
station.

Message Description

Open(LINK) Request Flows from node to DLC over LINK connection.

Opens the LINK LPI connection between the node and the SNALink.

Provides configuration data for the SNALink.

Provides link connection data such as Token Ring address for the remote station.

Open(LINK) Response Flows from DLC to node over LINK connection.

Reports whether the SNALink has accepted the Open(LINK) Request.

Returns certain link-specific configuration parameters to the local node.

Can be an OK Response or an Error Response.

Request-Open-Station Flows from DLC to node over LINK connection.

Passes an XID received from the SNALink up to the node.

Indicates that the SNALink has received a mode setting command, such as SNRM over S
DLC, or SABME over 802.2.

Send-XID Flows from node to DLC over LINK connection.

Passes an XID from the node to the SNALink to be sent out over the link to the remote s
tation.

Open(STATION) Request Flows from node to DLC over STATION connection.

Opens the STATION LPI connection between the node and the SNALink.

Specifies certain station-specific configuration information.

https://msdn.microsoft.com/en-us/library/aa745178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771920(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771690(v=bts.10).aspx

Open(STATION) OK Response

–or–

Open(STATION) Error Response

Flows from DLC to node over STATION connection.

Acknowledges Open(STATION) Request.

Station-Contacted Flows from DLC to node over STATION connection.

Informs the local node that the link is now ready for data transfer.

The use of these messages in activating various types of connections is described throughout the rest of this section. For
information about the format of the messages, see SNADIS Message Formats.

The name of the Request-Open-Station message is historical. In earlier versions of the DLC interface, the higher-level software
(such as the local node) always sent an Open(STATION) Request in response to this message—hence the name Request-
Open-Station. However, now that multiple XIDs can be exchanged before the link is activated, the Open(STATION) Request is
only sent at the end of the XID exchange.

The Request-Open-Station message now has two distinct semantic meanings:

A Receive-XID

A Receive-Set-Mode

In This Section

Opening the LINK LPI Connection

Activating a Host Connection

Activating a Peer Connection

Opening the STATION LPI Connection

Node Identification and Signaling Information

XID Retries

Multiple Connections

https://msdn.microsoft.com/en-us/library/aa744289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754345(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744330(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705266(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745221(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771099(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771269(v=bts.10).aspx

Opening the LINLPI Connection
The local node attempts to activate a connection:

During system initialization if the connection is configured as initially active.

If the system administrator manually activates the connection.

If a 3270 or logical unit (LU) 6.2 session is requested when there is no active connection to support the LU, and the
connection is configured to be activated on demand.

For each connection to be activated, the local node opens a LINK Locality Partner Index (LPI) connection by sending an
Open(LINK) Request to the SNALink. This message contains configuration data such as:

Synchronous Data Link Control (SDLC) line type: leased, switched.

Operational role: primary, secondary, or negotiable.

Time-out values.

Retry limit values.

Line speed.

Half-duplex/full-duplex.

802.2 remote service access point (SAP) address.

X.25 facility data.

For incoming calls, the local node primes the SNALink by opening the LINK LPI connection, but does not perform an activation
sequence at this stage. For details, see Incoming Call Support.

The local node also inserts the first XID frame to be used (where applicable) and link connection data to be used on a switched
link. The link connection data can be:

A telephone number for a manual or autodial modem (in this case, the SNALink software could dial the required number
or send a message to the operator specifying the number to be dialed).

The media access control (MAC) address of the remote station.

The X.25 remote data terminal equipment (DTE) address.

Finally, the Open(LINK) contains various time-out values that should be used by the SNALink when setting up protocol timers.
For more information, see Open(LINK) Request and Open(LINK) Response.

The SNALink should return an Open(LINK) OK Response if:

Its internal control blocks are successfully initialized.

Its device driver has installed correctly.

Its link hardware is successfully initialized.

The SNALink should not wait for an end-to-end connection before giving an Open(LINK) Response.

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771920(v=bts.10).aspx

If the SNALink has successfully initialized, it should return an Open(LINK) OK Response immediately, supplying the required
link-specific configuration information to the node (such as the maximum BTU size it can support). The local node uses this
information during XID negotiation with the remote station.

If the SNALink cannot initialize successfully, it responds with an Open(LINK) Error Response containing an error code. The
error is logged and the local node notifies the system operator before retrying the link activation.

If an XID is supplied on the Open(LINK) Request, this should be sent when the end-to-end connection is established for a
primary or negotiable link. Note that the supplied XID can be a NULL XID, which has a zero length. Hence, it is important that
the XID field is examined rather than checking for a zero XID length. An XID will be supplied for all connections except primary
leased connections (which could be multipoint).

When an SNALink receives an XID frame from the remote station, it is passed to the local node in a Request-Open-Station
message on the LINK LPI connection.

If the SNALink fails to receive any frames from the remote station, it generates an Outage message as described in
Closing a Connection.

The following figure shows the Open(LINK) Request and Open(LINK) Response, followed by an exchange of XIDs.

Open(LINK) Request and Open(LINK) Response, followed by an exchange of XIDs

https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770557(v=bts.10).aspx

Activating a Host Connection
A host connection can be activated over a leased synchronous data link control (SDLC) line, X.25, 802.2, or a switched SDLC
line. This section describes the activation procedures for each type of connection.

In This Section

Leased SDLC Line (No XIDs Exchanged), Channel Adapter

X.25, 802.2, or Switched SDLC Line (XIDs Exchanged)

https://msdn.microsoft.com/en-us/library/aa744303(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745199(v=bts.10).aspx

Leased SDLC Line (No XIDs Exchanged), Channel Adapter
For a connection to a host computer using a leased synchronous data link control (SDLC) line, the SNALink receives a set
normal response mode (SNRM) when the end-to-end connection is established. The SNALink responds with an unnumbered
acknowledgement (UA) and informs the local node that the connection is ready for data transfer. This is done with the
Request-Open-Station message with the Rcv-Set-Mode flag set.

The node then opens the STATION Locality Partner Index (LPI) connection with the Open(STATION) message. If the SNALink
has an available control block, it responds with an Open(STATION) OK Response. This is followed by a Station-Contacted
message.

A channel connection is treated the same way as a leased secondary SDLC connection. Each channel connection is associated
with a channel subaddress in the range 0x00 to 0xFF. The SNA service node sends the channel link service an
Open(LINK) Request for each configured channel connection when the connection is activated. The link service should expect
to receive multiple Open(LINK) Requests, one for each supported subchannel address.

Note that the Request-Open-Station message flows on the LINK LPI connection, whereas the Station-Contacted message flows
on the STATION LPI connection.

The message flow for a leased line is shown in the following figure.

Message flow for a leased line

https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx

X.25, 802.2, or Switched SDLC Line (XIDs Exchanged)
The initial sequence for a host connection over X.25, 802.2, or a switched synchronous data link control (SDLC) line is similar to
the sequence over a leased line. The only difference is that exchange identifications (XIDs) are exchanged before the host (or
front-end processor) sends a mode-setting command such as set mode (QSM) on an X.25 qualified logical link controlQLLC)
link.

When the SNALink receives an XID, it is passed to the local node on a Request-Open-Station message (on the LINK Locality
Partner Index (LPI) connection). The local node then passes the data link control (DLC) a Send-XID message (also on the LINK
LPI connection) containing the XID to be sent to the host. The host typically checks the node identifier in this XID and, if it is
valid, sends the mode-setting command.

The sequence is shown in the following figure.

Sequence for passing an XID

For switched connections using SDLC modems, the Open(LINK) Request contains dial digits for manual or auto-dial modems.
It is the responsibility of the SNALink to handle the management of these devices. For X.25 and 802.2 connections, the
Open(LINK) Request contains the address of the remote station.

The SNALink should initiate the dialing procedure when it receives the Open(LINK) Request.

https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx

Activating a Peer Connection
For a peer connection, there is an activation sequence that involves the two stations exchanging format 3 exchange
identification (XID) frames. As part of this sequence, the two stations agree on their link roles. They also exchange information
relating to the link level connection, such as the maximum frame size supported.

The node passes XIDs to the SNALink over the LINK LPI connection using the Send-XID message. The SNALink returns received
XIDs to the local node over the LINK LPI connection using the Request-Open-Station message.

Fixed Link Roles and Negotiable Link Roles show examples of XID exchange for the two cases:

The link roles are explicitly configured for the two stations.

The link roles of both stations are negotiable.

Points to note are:

The Open(LINK) Request is supplied with a NULL XID that is sent when the end-to-end connection is established.

After the first NULL XID, all XIDs are format 3.

If both stations are set up to be negotiable, the station with the higher node identifier becomes the primary.

If both stations are negotiable and have the same node identifier, both stations produce randomized node identifiers that
are compared as before.

In This Section

Fixed Link Roles

Negotiable Link Roles

https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704946(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705401(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704946(v=bts.10).aspx

Fixed Link Roles
The following figure shows the sequence of messages for a peer connection where the local end is configured as the primary
station and the remote end is configured as the secondary.

Sequence of messages from a peer connection where the local end is configured as the primary station

Negotiable Link Roles
The following figure shows the sequence of messages for a peer connection where both the local and remote ends are
configured as negotiable. Because the remote node identifier is larger (numerically) than the local node identifier, the remote
station will become primary.

Sequence of messages for a peer connection where both ends are configured as negotiable

local node identifier = 0x05D11111

remote node identifier = 0x05D22222

The following summaries the rules that the SNALink must follow when supporting exchange identification (XID) exchange, and
in particular XID role negotiation:

If an XID is supplied in the Open(LINK) Request, it must be transmitted as soon as the end-to-end connection is
established for primary or negotiable links.

All XIDs received from the remote station must be passed to the local node in a Request-Open-Station message.

An XID received from the local node in a Send-XID message must be transmitted immediately.

XID transmissions must be retried until an XID is received from the remote station. For half-duplex links, the retry time-
out should be randomized to prevent repeated XID clashes.

When a mode-setting command, such as set normal response mode (SNRM), QSM, or set asynchronous balanced mode
extended (SABME), is received before the station has been opened, a Request-Open-Station must be sent to the local
node with the Rcv-Set-Mode flag on.

When the local node sends an Open(STATION) message, the link should examine it to determine its link role (that is,
primary or secondary).

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx

A secondary station should send a Station-Contacted message after receiving and responding to the Open(STATION)
message.

For a primary station, the mode-setting command should be sent when the Open(STATION) message is received. The
Station-Contacted message should be sent to the local node when this command has been acknowledged by the
secondary station (for instance, an unnumbered acknowledgement (UA) received on an Synchronous Data Link Control
(SDLC) link).

If the local node detects an error during role negotiation, such as both physical units (Pus) configured as primary, it sends out
an XID containing an error vector. The vector is appended to the end of the normal XID data. The vector number specified is
0x22, and the vector data specifies that the data link control (DLC) role field is in error.

After sending the error XID, the local node sends a Close(LINK) message to terminate the connection (see
Closing a Connection).

The following table is a matrix of the possible combinations of station link roles and shows the eventual role of the local
station.

 Local Station
Remote Station Primary Secondary Negotiable

 Primary Fail Secondary Secondary

 Secondary Primary Fail Primary

 Negotiable Primary Secondary Either*

*The station with the higher node identifier becomes the primary.

https://msdn.microsoft.com/en-us/library/aa754757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770557(v=bts.10).aspx

Opening the STATION LPI Connection
After receiving a Request-Open-Station (RQOS) message, the local node sends an Open(STATION) message to the SNALink
when:

The station is configured as secondary (or has negotiated to secondary), and the RQOS message has the Rcv-Set-Mode
flag on, indicating that the SNALink has received a mode-setting command such as set normal response mode (SNRM).

The station is configured as primary (or has negotiated to primary), the RQOS message contains a secondary exchange
identification (XID), and the local station has sent at least one negotiation-proceeding XID.

The Open(STATION) Request contains the link index that was on the Open(LINK) Request. This field is used to correlate the
LINK and STATION LPI connections for SNALinks that support multiple connections, such as X.25, 802.2, and channel.

This Open(STATION) Request contains configuration data for the link station, such as the Synchronous Data Link Control
(SDLC) address of the adjacent link station (0x00 for secondary stations, 0x01 to 0xFE for primary stations).

The SNALink should use this address field for determining the local station's role. If it is set to 0x00, the local station is a
secondary station. Otherwise, the local station is the primary station. This field has this meaning even when the address is not
used because of the link type (such as 802.2).

See Open(STATION) Request for the format of this message.

If the station cannot be initialized (perhaps due to a lack of resources), the SNALink responds with an
Open(STATION) Error Response containing the appropriate error code.

https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746184(v=bts.10).aspx

Node Identification and Signaling Information
For information about the role an SNALink plays in node identification, see Incoming Call Support.

When exchange identifications (XIDs) are exchanged, there are two mechanisms for identifying the remote station:

The node identifier on received XIDs.

The data link control (DLC) defined address; for example, the media access control (MAC) address. This is known as
signaling information.

The presence of signaling information depends on the type of the SNALink. For instance, there is no signaling information over
a Synchronous Data Link Control (SDLC) link, but there is signaling information over X.25 and 802.2. The SNALink passes
signaling information to the local node on the Request-Open-Station message by appending it after the XID.

If signaling information is present, the local node checks it against the configured value in the dial-digits record of the Host
Integration Server 2009 configuration file. For incoming call support, this allows the local node to determine the connection
that is to be activated. For a fuller description of incoming calls, see Incoming Call Support.

If there is no signaling information, the local node compares the control point (CP) name on the received XID with the remote
control point name in the configuration.

If the remote station is identified correctly, XID exchange proceeds as detailed in Activating a Peer Connection. However, if
there is a mismatch, the local node sends an XID (in the Send-XID message) containing an error vector followed by a
Close(LINK) Request, as shown in the following figure.

Local node sending an XID containing an error vector, followed by a Close(LINK) Request

https://msdn.microsoft.com/en-us/library/aa771358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705257(v=bts.10).aspx

XID Retries
When the local node specifies that the SNALink is to send an exchange identification (XID), either by supplying it on the
Open(LINK) Request or by sending it on a Send-XID message, it is the responsibility of the SNALink to perform any retries.

XIDs need to be retried because:

The remote station has not been started yet.

Frames may be lost on the line due to noise.

Synchronous Data Link Control (SDLC) SNALinks should implement a contact time-out and a retry limit—values for these are
provided on the Open(LINK) message. The time-out specifies how often the XID should be retried, and the retry limit specifies
how many XIDs should be sent before abandoning the connection activation and sending an Outage message to the local
node. The SNALink should stop retrying the XID when one of the following occurs:

It receives an XID from the remote station.

An Open(STATION) message is received from the node.

A mode-setting command is received on the link.

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746228(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx

Multiple Connections
For 802.2 and X.25 links, multiple connections can use the same physical link supported by a single instance of the SNALink
software.

For each connection to a remote station, there is a LINK LPI connection and a STATION LPI connection (this is different from
Synchronous Data Link Control (SDLC) multipoint as described in SDLC Multipoint Connections). Hence, there can be multiple
pairs of LPI connections between a local node and an SNALink. For each connection, the local node issues an
Open(LINK) Request and, after exchange identification (XID) exchange, an Open(STATION) Request.

The local node is configured with a maximum number of connections that can be active at any one time. In addition, each
potential connection is configured with the address of the remote station. This information is required when activating a
connection, and is included in the Open(LINK) Request for an outgoing connection.

https://msdn.microsoft.com/en-us/library/aa745178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771690(v=bts.10).aspx

DLC Information Transfer
When the local node has opened the LINK and STATION LPI connections and received a Station-Contacted message from the
SNALink for a remote station, it can exchange data using the data link control (DLC) interface with the physical unit (PU) and
associated logical units (LUs) at the remote station.

Data messages are contained within buffers. The transmission header (TH) of the SNA path information unit is contained
within the buffer header. The request/response header (RH), if present, and request/response unit (RU) are contained within
one or more buffer elements. The TH is contained in the buffer header for historical reasons. Typically, this will be copied by the
SNALink into the element before startd, to keep the entire frame in contiguous memory locations. For a description of the
DLC-Data message format, see DLC-Data.

Note that all data messages to a specified remote station flow on the associated DLC STATION LPI connection, and not on the
controlling DLC LINK LPI connection.

In This Section

DLC Flow Control

https://msdn.microsoft.com/en-us/library/aa754757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754718(v=bts.10).aspx

DLC Flow Control
The flow of data messages at the data link control (DLC) interface for each link station is flow controlled. For each direction of
flow, there is an initial credit of messages that can be transmitted.

Flow control is maintained by initial specification on the Open(STATION) Request and Open(STATION) OK Response messages,
and by the sending of DLC Status-Resource messages to give more credit periodically.

The sender maintains a count of credit, starting at the initial value set on the Open(STATION), which is decremented for each
DLC-Data message sent. When the credit count reaches zero, no more DLC-Data messages can be sent until more credit is
received.

For flow in a given direction, the amount of credit is specified by the recipient of the data, because the recipient has to do any
queuing. The initial credit values are passed on the Open(STATION) message (on the request for flow from the SNALink to the
local node and on the response for flow from the local node to the SNALink).

The initial credit for the flow from the SNALink to the local node is determined by the node. The initial credit for the flow from
the local node to the SNALink is set by the SNALink software—a suggested value is 16.

If the SNALink runs out of credit to send to the local node, it should either queue the data or discard it and send no
acknowledgment. It should also start sending receive not ready (RNR), for example, when polled by a primary station. An
example message flow with an Synchronous Data Link Control (SDLC) SNALink is shown in the following figure with an initial
credit of 3. When the SNALink runs out of credit, it does not acknowledge any further frames and starts sending RNR.

Message flow with an SDLC SNALink with an initial credit of 3

For flow control from the local node to the SNALink, when the node runs out of credit, it queues the data and applies back
pressure on sessions using that station. There is thus end-to-end flow control in this direction, independent of any SNA pacing
that may be in force.

The SNALink gives credit to the local node for the messages that have been transmitted, not for the messages for which
acknowledgments have been sent. The amount of data queuing in the SNALink is kept down most of the time because frames
will usually be acknowledged.

Flow control for the flow of data from the local node to the SNALink is shown in the following figure, where the initial credit is
assumed to be 2.

Flow control for the flow of data from the local node to the SNALink

https://msdn.microsoft.com/en-us/library/aa771690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx

Closing a Connection
The local node closes a connection to a remote station:

If the system administrator manually deactivates the connection.

If the connection is configured as on-demand and no 3270 or LU 6.2 sessions are active.

If an outage has been reported by the SNALink.

The local node closes a connection by sending a Close(LINK) message. The SNALink then takes some action, such as lowering
Data Terminal Ready (DTR) on an Synchronous Data Link Control (SDLC) link or issuing a DLC_CLOSE_STATION on a 802.2
connection. It then replies with a Close(LINK) OK Response as shown in the following figure.

The case of multipoint connections is slightly different and is considered in SDLC Multipoint Connections. The following topics
discuss point-to-point connections.

Local node receiving a Close(LINK) and replying with a Close(LINK) OK Response

In This Section

Outages

Connection Retries

https://msdn.microsoft.com/en-us/library/aa705276(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705173(v=bts.10).aspx

Outages
If the SNALink detects a link or station failure, it reports the failure by sending an Outage message to the node on either the
LINK or STATION LPI connection depending on whether it is a link or station outage. Generally, a station outage indicates a
problem at the remote station, and a link outage indicates a local or line problem.

When the local node receives an Outage message, it:

Logs an error containing the outage code.

Cleans up each session using the connection and informs applications of the failure (for instance, with a Comm Check
code on a 3270 emulator).

Sends a Close(LINK) Request to the SNALink.

On receipt of the Close(LINK) Request, the SNALink should clear up its internal resources for the connection and send back a
Close(LINK) Response.

Local node receiving an Outage message and sending a Close(LINK) Request and a Close(LINK) response

There is a special case when the node loses contact with the SNALink software. In this case, the node is notified of this event (a
lost locality) and performs outage processing apart from sending messages to the SNALink.

The outage codes are not distinguished by the node, but they are logged. For the sake of consistency across SNALink
implementations, the values listed in the following topics should be used.

In This Section

SDLC Outage Codes

802.2 Outage Codes

X.25 Outage Codes

https://msdn.microsoft.com/en-us/library/aa744921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745642(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771086(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770535(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770950(v=bts.10).aspx

SDLC Outage Codes
The following table describes Synchronous Data Link Control (SDLC) outage codes.

Outage
code

Description

0x0D Internally generated for SNALink lost locality.

0x11 Data set ready (DSR) failure.

0x12 Clear to send (CTS) failure.

0x14 Data carrier detect (DCD) failure.

0x24 Nonproductive receive retry limit exceeded.

0x25 Idle time-out retry limit exceeded.

0x29 Connection problem. subqual = 0x00I-frame retransmission subqual nonzeroXID retransmission

0x2D Abnormal modem response.

0x2E Write time-out retry exceeded.

0xA0 Exchange identification (XID) exchange failed on multidrop line. Subqual is address of secondary station.

0x15 Discontact (DISC) received.

0x23 Receive buffer overrun.

0x2C Invalid command received. subqual = 0x03invalid N(R) subqual = 0x04invalid or unsupported command/response s
ubqual = 0x05excess I-field

0x80 Disconnect mode (DM) received in information transfer state.

0x81 Discontact retry limit exceeded.

0x82 Contact retry limit exceeded.

0x83 Poll retry limit exceeded.

0x84 No response retry limit exceeded.

0x85 Remote busy retry limit exceeded.

0x86 Frame reject (FRMR) received. subqual = 0x00no reason given subqual = 0x03invalid N(R) subqual = 0x04invalid or
unsupported command/response subqual = 0x05excess I-field

0x87 Invalid frame received. subqual = 0x03invalid N(R) invalid or unsupported command/response subqual = 0x05exces
s I-field

0x88 Request Initialization Mode (RIM) received.

0x89 Request Disconnect (RD) received.

802.2 Outage Codes
The following table describes 802.2 outage codes.

Outage code Description
0x29 Remote node not active.

0xAB The set asynchronous balanced mode extended (SABME) received while connection active.

0xAC Frame reject (FRMR) sent.

0xAD FRMR received.

0xAE Discontact (DISC)/disconnect mode (DM) received.

0xAF Link lost.

X.25 Outage Codes
The following table describes X.25 outage codes.

Outage code Description
0x37 Loss of a virtual circuit.

0x60 Switched virtual circuit (SVC) cleared down by remote station or network.

0x61 Permanent virtual circuit (PVC) has been reset by remote station or network.

0x62 Attempt to connect to remote station through SVC failed.

Connection Retries
If an initially active or operator-started connection is closed because of an outage, the node periodically tries to reopen the
connection. This can be stopped by manually deactivating the connection. This retry mechanism is also used when the node
attempts to open a connection but the SNALink software has not yet been started. On-demand connections are not retried
automatically by the node, but will be retried if the user attempts to reactivate a session using the connection.

Note that this connection retry timer is totally separate from the timers specified on the Open(LINK) Request.

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx

Incoming Call Support
The local node allows an SNALink to be set up to support incoming calls. In this mode of operation, the node primes the
SNALink by sending an Open(LINK) Request, but the SNALink does not attempt to activate the link until it receives an exchange
identification (XID) from a remote station.

The SNALink recognizes an Open(LINK) Request for an incoming call by the absence of a connection name in the destination
name field (this field is filled with ASCII blanks).

For incoming calls, Open(LINK) Request requires an immediate response from the SNALink, just as in the case of an
Open(LINK) Request for an outgoing call.

For a Synchronous Data Link Control (SDLC) SNALink, there can be only one Open(LINK) outstanding. However, 802.2 and
X.25 allow the possibility of multiple connections being handled through a single SNALink. In these cases, for each configured
connection that is primed to await incoming calls, the local node will send an Open(LINK) with a blank connection name to the
SNALink.

When an incoming call is received by the SNALink, the received XID should be passed to the local node on any LPI connection
that is primed for incoming calls. The LPI connection selected must then be used for all future messages relating to that
incoming call.

It is not necessary for the SNALink to perform validation of incoming calls—this will be performed by the local node. However,
if required, the SNALink can choose to validate calls before passing them to the node. A common example of this is to ensure
that only X.25 calls with a specific local address are passed through to the local node.

The following figure shows incoming call support with an SNALink that supports two connections. A remote station calls in and
uses connection A. The node sets up connection B for incoming calls but then needs to open connection C. Because the
SNALink only supports two connections, connection B is closed.

Call support with an SNALink that supports two connections

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx

SDLC Multipoint Connections
The node can support primary multipoint (also known as multi-dropped) links, at both the primary and secondary end.
Multipoint is a special configuration for a synchronous data link control (SDLC) leased link where a single SDLC line at the
primary station can be used to communicate with up to 16 secondary stations. Special hardware is required to fan out the
primary line so that there is a physical connection to each secondary station. The following figure shows an example with three
secondary stations.

Primary station with three secondary stations

The SDLC address of the secondary station is used to route frames to and from the individual secondary stations. Hence, the
SNALink at the secondary station needs to check the SDLC address as the primary sends all frames to all secondary stations.
The SNALink at the secondary station should only accept frames with its SDLC address—the other frames should be ignored.

From the viewpoint of the node at a secondary station, the message flow at the data link control (DLC) interface is as for a
point-to-point connection (described in Opening a Connection). The node need have no knowledge that this is a multipoint
connection.

The primary end has to handle the special processing required for multipoint connections. The remainder of this section
concentrates on the primary station.

At the primary end, there are the following LPI connections:

One LINK LPI connection.

A STATION LPI connection for each active secondary station.

Because the exchange identification (XID) exchange is carried out using the single LINK LPI connection, the
Request-Open-Station and Send-XID messages always specify the station address of the secondary station that the XID has
arrived from or is going to. Note that no XID is supplied on the Open(LINK) Request.

Each STATION LPI connection has different values of I, the index. After the station has been activated, data messages flow on
the STATION LPI connection rather than the LINK LPI connection.

If the XID exchange fails because the secondary is failing to reply to the XID, the SNALink generates a special variant of link
Outage message. Ideally, the SNALink would give a station Outage message, but this is not possible because the STATION LPI
connection is not yet open. Instead, the SNALink generates a link Outage message with code 0xA0 and a subqualifier that is the
SDLC address of the station.

When the stations are activated on a multipoint link, the majority of messages flow across the STATION LPI connections. If a
connection to a particular secondary station is to be closed (because the operator deactivates it, for instance), the node issues a
Close(STATION) Request. The SNALink replies with a Close(STATION) Response to the node and sends a Discontact (DISC)
frame to the secondary station.

The SNALink can generate both station and link Outage messages. If the problem only affects a particular station, such as not
responding to polls, the link generates a station Outage message and the node closes the station with a Close(STATION)
Request. The SNALink responds with a Close(STATION) Response.

If the problem affects the link as a whole, such as the line being disconnected from the primary SDLC adapter, the SNALink
generates a link Outage message and the node sends a Close(LINK) Request. The SNALink responds with a
Close(LINK) Response.

Whenever the node receives a Close(STATION) Response, it checks to see if any stations are still active on the multipoint link.
If not, a Close(LINK) Request is sent. The SNALink responds with a Close(LINK) Response. The following figure shows the
message flows for outage processing. It shows a multipoint connection with two secondary stations (the full XID exchange is

https://msdn.microsoft.com/en-us/library/aa704681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746176(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745642(v=bts.10).aspx

not shown).

Message flow for outage processing

Processing for a multipoint configuration with two secondary stations

Note that the station messages are labeled in the figure with station addresses. In fact, the node and SNALink use the LPI
addresses to identify the two stations.

Setup Information
This section describes the integrated link service installation provided with Host Integration Server 2009.

In Host Integration Server, SNA Manager is used to install and configure link services. Host Integration Server uses the
Microsoft System Installer (MSI) and MSI packages for the installation of the Host Integration Server software. Link services
from independent hardware vendors (IHVs) are not included in the main Host Integration Server MSI packages. IHV link
services are installed using a separate IHV-provided MSI package.

A sample IHV link service using the generic Synchronous Data Link Control (SDLC) link service that illustrates IHV link service
installation is included in the Host Integration Server software development kit (SDK). The SDK samples are installed on your
computer when the SDK option is selected during installation of Host Integration Server software. These sample files are also
located on the Host Integration Server CD under the SDK\Samples\IHVLInks subdirectory. Host Integration Server does not
support the earlier .inf-based link service setup procedure.

In This Section

Setup Registry Architecture

Integrated Link Service Setup on Host Integration Server

https://msdn.microsoft.com/en-us/library/aa705622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754298(v=bts.10).aspx

Setup Registry Architecture
There are two main subtrees in the Microsoft Windows® 2000 registry where information is kept relevant to Host Integration
Server 2009: the SOFTWARE tree and the SYSTEM tree. Both of these are subtrees of HKEY_LOCAL_MACHINE. The
SOFTWARE tree contains generic information about independent hardware vendor (IHV) link services, and the SYSTEM tree
contains information about the individual components of those services. While reading the following topics, it may be helpful
to view examples of what is being discussed by inspecting the registry of an existing system with several of the built-in link
services installed.

In This Section

Product Entries

Service Entries

https://msdn.microsoft.com/en-us/library/aa704962(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745660(v=bts.10).aspx

Product Entries
All of the information relevant to the product as a whole resides in the registry under the key SOFTWARE\Microsoft. Each
product or link support has an entry whose name consists of the product name and version separated by an underscore. This
key contains most of the information about the product, such as the script name and option name that control it and the
service name for that particular instance.

Each instance key must also have a NetRules key. This key contains all of the information for the Network Control Panel Applet
bindings.

The Host Integration Server Setup writes the path of the root directory of the computer's Host Integration Server tree into the
key:

SOFTWARE\Microsoft\SNA Server\CurrentVersion\Setup\RootDir

Service Entries
Each instance of a component appears to the system as a unique service. These services must be created using the Service
Control Manager (SCM). The SCM creates a registry entry for each service under SYSTEM\CurrentControlSet\Services. This
key contains all of the service-specific information.

The top-level service key contains information that the SCM uses to control the service. This includes the type of service that
this key represents, how it should be started, what sort of error handling should be used, the path to the executable image, and
so on. All information in this key should be handled by the SCM. Each service key also contains two subkeys—the Linkage key
and the Parameters key.

The Linkage key is used by the Network Control Panel Applet to store binding information. The Parameters key contains
information that is relevant to Host Integration Server 2009 Setup, such as the name of the DLL responsible for handling a link
service. All information in this key should be handled by Host Integration Server 2009 Server Setup. The Parameters key
contains another key, ExtraParameters, which is used for any IHV-specific information, including component-specific
parameters and other information not required by the main SNA Server Setup program.

Integrated Link Service Setup on Host Integration Server
In Host Integration Server 2009, the SNA Manager supports installation and configuration of link services. Host Integration
Server uses the Microsoft System Installer (MSI) and MSI packages for the installation of the Host Integration Server software.
Link services from independent hardware vendors (IHVs) are not included in the main Host Integration Server MSI packages.
IHV link services are installed using a separate IHV-provided MSI package. For an example of this process, install the DLC,
802.2, or IBM Synchronous Data Link Control (SDLC) link service in Host Integration Server.

IHV MSI Packages contain two types of features:

Features that can be installed and used independently of Host Integration Server.

Features that require Host Integration Server to function.

Features that can be installed and used independently of Host Integration Server include drivers, utilities, and applications that
can run without Host Integration Server support. These features should be represented in the package as one or more features
in the MSI Select Features dialog box. (For more information, see the Generic Link Service sample feature "Generic Link
Service" from the Generic.msi Featuretable.) Generic.msi can be found in the Host Integration Server SDK on the CD and in the
install directory at the following address: SDK\Samples\IHVLinks\Packages\Generic.msi.

Features that require Host Integration Server include drivers, utilities, and applications that require Host Integration Server to
function. These features should be represented in the package as one or more features in the MSI Select Features dialog box.
These features should be hidden if Host Integration Server is not installed on the computer. (For more information, see the
Generic Link Service sample feature "Host Integration Server Support" from the Generic.msi feature table.)

Properties can be equated to a variable (either global or local) in a high-level programming language such as C or C++.
Properties can be used as a placeholder for informational text, or as values used during an installation. (For more information,
see the property SERVER_INSTALLED in the custom action source code GenSet.cpp, and the Condition table entry in the
Generic.msi package.)

Custom Actions provide a method of extending the capabilities of MSI. Functions not supported in MSI, can be custom written,
and invoked from within a sequence table or directly from a dialog control event. (For more information, see the Custom
Actions SetHISPath and GetHISData in the GenSet.cpp source file.)

Launch Conditions provide a method of preventing an install from launching. The sample MSI package included with the Host
Integration Server SDK does not use a launch condition, however, if your package requires Host Integration Server to be
installed for your features to function, you should include a launch condition that fails the installation if Host Integration Server
is not detected.

The Condition table provides a method of controlling the layout of the features listed in the select feature dialog box. The
sample MSI package uses the Condition table to hide the "Host Integration Server Support" if Host Integration Server is not
detected in the installation.

For Host Integration Server to control the installed state of IHV features that require Host Integration Server to be installed, the
following registry keys must be included in the package for each separate feature which requires Host Integration Server to be
installed.

Where:

<feature table entry x> specifies an entry in the feature table (not title).

<product code x> specifies the package product code.

Note that feature table entries must be unique. Product codes may or may not be unique depending on the number of
packages provided by an IHV. One package may have several Host Integration Server dependent features and therefore should
list each feature separately.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\IHVSupport\<ihv key>
<feature table entry 1> : REG_SZ : <product code 1>
<feature table entry 2> : REG_SZ : <product code 2>
.
.
.
<feature table entry n> : REG_SZ : <product code n>

These registry keys should be installed by the feature rather than globally by the package.

Target paths specify a directory where files will be installed. An MSI package will contain one or more target paths.

The sample package contains two features:

Generic Link Service

Host Integration Server Support

The Generic Link Service is not dependent on Host Integration Server. This feature installs the following:

gencfg.exe into the <Generic Link Service> directory.

generic.sys driver into the %windir%\system32\drivers directory.

generic.inf into the %windir%\inf directory

Host Integration Server Support is dependent on Host Integration Server. This feature installs the following:

gendtct.dll into the HIS\system directory.

generic.dll into the HIS\system\hwsetup\i386 directory.

This feature contains the following entry in the condition table to hide the feature if Host Integration Server is not detected

See dialog snapshots later in this topic for layout of features with and without Host Integration Server installed:

Adds:

The sample package uses one custom action DLL with two entry points:

The SetHISPath entry sets the target path to the Host Integration Server installation directory.

The GetHISData entry sets the MSI property SERVER_INSTALLED to "YES" if Host Integration Server is installed and sets the
MSI property SERVER_INSTALLED to "NO" if Host Integration Server is not installed.

The sample contains two target paths:

The INSTALLDIR target path specifies the installation directory for the features that are not dependent on Host Integration
Server. It can be set using the browse button in the Select Features dialog box when the Generic Link Service feature is
currently selected.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\LinkServicesInstalled
<Link Service Name> : REG_SZ : <Link Service Configuration Dll name>

HIS_RELATED_FEATURE 0 SERVER_INSTALLED="NO"

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\LinkServicesInstalled
Generic Link Service : REG_SZ : GENERIC.DLL

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SnaBase\IHVSupport\GenericLinkService
HIS_RELATED_FEATURE : REG_SZ : {FDF11E0E-3BFF-4B0F-89BD-E4E1FB979E4D}

SetHISPath
GetHISData

INSTALLDIR
INSTALLDIR1

The INSTALLDIR1 target path specifies the directory where Host Integration Server is installed. This target path is set by the
custom action SetHISPath.

The IHVUtil.exe tool can be used to verify the Host Integration Server dependent interfaces. If the tool is launched after the IHV
package is installed, all Host Integration Server dependent features should show up in the dialog box. Executing Remove from
the dialog box should remove the Host Integration Server dependent feature as well as remove it from the dialog box.

Note that the sample provided can also be tested using the SNA Manager. While the sample does not actually function, it will
appear as an installed link service.

In This Section

Integrated Link Service Configuration and Reconfiguration on Host Integration Server

Constructing an Integrated Link Service DLL on Host Integration Server

https://msdn.microsoft.com/en-us/library/aa754313(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745244(v=bts.10).aspx

Integrated Link Service Configuration and Reconfiguration on
Host Integration Server

In Host Integration Server 2009, the initial configuration functions are performed by your configuration DLL running in the
context of SNA Manager.

After your link service has been created, SNA Manager must be able to locate its configuration DLL when the operator wishes
to reconfigure the link service. To support this feature, when your configuration DLL initially creates the link service, it must put
a new value in the registry of the target server as follows:

SYSTEM\CurrentControlSet\Services\<yourLinkService>\Parameters

DLLName: REG_SZ: <configDllName>

where:

<configDllName> is the file name and extension of the configuration DLL, for example, IBMSDCFG.DLL. No path is specified in
the value.

This value replaces InfName, which was used in SNA Server 2.x to name the path to the .inf file.

Since SNA Manager can be running on a management workstation remote from the target server, the configuration DLL must
be able to create configuration information on the target server. Host Integration Server loads the appropriate configuration
DLL over the network from \<snaRoot>\SYSTEM\HWSETUP\<cpu> on the target server as needed.

Note
There is an alternate way of locating the link service configuration DLL (linkcfg) if the link services from the vendor were not i
ncluded with the released Host Integration Server CD.

Note
Depending on the setup tool used by the vendor, the vendor's setup software may not be able to read the registry and locate
the directory where link services should be installed. To resolve this problem, the SNA Manager scans the LinkServicesInsta
lled key prior to making the call to the link service configuration DLL. The SNA Manager checks for a % character in the confi
gDllName and if it exists, configDllName will be interpreted differently than just the name of the configuration DLL. The follo
wing example illustrates this case:

Note
Under the SYSTEM\CurrentControlSet\Services\<yourLinkService>\Parameters key

Note
DLLName: REG_SZ: "share\%s\<relative path and DLL Name>

Note
If a %s string is found, \\ServerName will be prepended and the CPU architecture string (i386) will be substituted for %s.

Constructing an Integrated Link Service DLL on Host
Integration Server

Microsoft Host Integration Server 2009 provides an enhanced method for installing integrated link services that allows for
remote setup and administration of new link services, as well as support for setup and configuration using a command-line
tool. This feature is based on the link service provider supplying a setup and configuration DLL exporting a specific list of
functions. A developer must follow certain standards for using this SNA link service configuration DLL (linkcfg) and set various
keys and values as registry settings to be used by Host Integration Server for link service configuration.

To support vendors using these setup and configuration features, Host Integration Server includes the source code for a
sample generic Synchronous Data Link Control (SDLC) link service configuration DLL. Also included for use by developers is
the source code to a library of utility functions (lnktools) that are commonly useful when implementing the linkcfg DLL. This
sample code and the documentation that follows can be used as a guideline for vendors developing similar link service
configuration DLLs for their hardware. This sample source code is located on the Host Integration Server CD in the
\SDK\SAMPLES\IHVLinks subdirectory. Sample include files, C++ files, resource files, makefiles, and project files are included
for use with Microsoft Visual C++ version 6.0 and later.

In This Section

Components of an Integrated Link Service Configuration DLL on Host Integration Server

Contents of IHVLinks Sample Kit on Host Integration Server

https://msdn.microsoft.com/en-us/library/aa745564(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746028(v=bts.10).aspx

Components of an Integrated Link Service Configuration DLL
on Host Integration Server

The link service configuration DLL (linkcfg) must export the following functions.

Exported function Purpose
CommandLineAdd Called from LinkCfg to parse command-line input.

ConfigureLinkService Called from SNA Manager to add or modify a link service.

ConfigureLinkServiceEx Called from SNA Manager to add or modify a link service, returning a configuration buffer to be adde
d to the configuration file.

DisplayHelpInfo Returns a buffer containing command-line syntax for this type of link service.

RemoveLinkService Called from SNA Manager to remove a link service.

RemoveAllLinkServices Called from Setup to remove all instances of this link service.

The sample linkcfg.cpp DLL is written in C++ using the Microsoft Foundation Classes (MFC) and uses a single property sheet
with two property pages as follows:

The card configuration property page implementation is in the cardcfg.cpp and cardcfg.h files. This property page is
concerned with configuring various hardware properties (interrupt, DMA channel, and I/O address, for example) of the
link service hardware.

The connection mode property sheet implementation is in the mode.cpp and mode.h files. This property page is
concerned with configuring mode information (link service name, link service title, Synchronous Data Link Control
(SDLC) line type, for example) for the link service.

The two property pages are linked to the link service property sheet in linkcfg.cpp within the ConfigureLS routine. This
function is called by the exported ConfigureLinkService and ConfigureLinkServiceEx routines in linkcfg.cpp. An actual link
service configuration DLL developed from these sources may require more property pages depending on the information
needed to configure the actual link service DLL.

The registry.h include file used by linkcfg.cpp contains a global definition of the registry entries required for the sample generic
SDLC link service. The values in this structure will be modified to contain the actual information specified by the user. This
structure is added to the registry when a new link service is configured, and this structure is removed when a link service is
deleted. The registry values that a developer must modify include the Link Registry Base entry (LINKSERVICE is used in the
sample include file), the name of the device driver root (GenSdlc is used in the sample include file and source code), and
various software and service registry settings appropriate for the target link service.

Several of the exported link service DLL functions use a configuration buffer, the CONFIG_BUFFER structure defined in
linkcfg.h. The format of any CONFIG_BUFFER used by developers must match the structure format of this sample file for the
first three parameters. Other parameters may differ for a developer's version of the CONFIG_BUFFER structure based on the
target link service.

The sample link service configuration DLL calls a set of general utility functions that are not specific to any target link service.
These utility functions are included in the lnktools library (lnktool.cpp) that is linked in as an OBJ file. This lnktools library
includes the following utility functions that are useful in developing link service configuration DLLs.

Utility function Purpose
AddPerfmonCounters Add Perfmon counters for this link service.

bCreateService Create a service on a computer.

bDeleteService Delete a service on a computer.

bStopService Stop a service running on a computer.

https://msdn.microsoft.com/en-us/library/aa705574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754483(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705171(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772084(v=bts.10).aspx

CheckForExistingLinkService Check to see if a link service of this type exists with this title.

ConvertHexStringToDWORD Convert a hexadecimal string to a DWORD value.

ExtractNextParameter Get the next parameter from a buffer.

fAddRegistryEntry Add a new registry value to the registry.

fCanWeAdministerRemoteBox Determine if the user has administrative privileges on the remote computer.

fConnectRegistry Connect to a remote computer's registry and return a handle to the remote registry.

fDisconnectRegistry Disconnect from a remote computer's registry.

fFindAndReplaceString Find and replace a substring within a string.

fFindString Determine if a string exists within a string buffer.

fFindStringInMultiSZ Find a string in a REG_MULTI_SZ string list and return entire string.

fQueryRegistryValue Query a value from the registry.

fRegistryKeyExists Test whether a registry key exists.

fRemoveRegistryEntry Remove a registry key.

fRemoveRegistryValue Remove a registry value.

fStringCompare Determine if two strings compare.

LoadStringResource Load a string from the string resource.

ParseNextField Return the next field from a string.

RemovePerfmonCounters Remove Perfmon counters for this link service.

ReturnString Return a pointer to a string resource string.

The sample source code for a generic SDLC link service configuration DLL (linkcfg) includes several functions that may be
useful as sample code when developing link service configuration DLLs for other hardware. The following functions are
included in the linkcfg.cpp source code that may be of use as examples.

Utility function Purpose
bDetectNetworkCa
rd

Detect the remote network card and return the card settings buffer for the sample generic SDLC link serv
ice.

bLastGenericDFTLi
nkService

Check for the last generic SDLC link service for the sample generic SDLC link service. This routine is used
to determine if the GENSDLC Device Driver (if one exists) can be removed.

ConfigureLS The common link service configuration function used by the sample generic SDLC link service.

fAddAllRegistryVal
ues

Add all registry values for the sample generic SDLC link service.

fAddClassAndBind
formRegistries

Add the class and bindform registry entries for the sample generic SDLC link service. The bindform and c
lass registry entries can only exist for the first link service of this type.

fEnumerateEventL
ogSources

Enumerate the Event Log sources registry value for the sample generic SDLC link service.

fRemoveAllRegistr
yValues

Remove all registry values for the sample generic SDLC link service.

fReplaceAllRegistr
yValues

Replace all user-provided information in the registry data for the sample generic SDLC link service.

https://msdn.microsoft.com/en-us/library/aa745417(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705605(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771282(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754393(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746055(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746252(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704674(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753893(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754738(v=bts.10).aspx

fReplaceRegistryD
ata

Replace global registry data for the sample generic SDLC link service.

fReplaceRegistryK
eyName

Replace global registry structure strings for the registry key name for the sample generic SDLC link servi
ce.

fSetupGlobalValue
s

Create or update all user-provided information in the registry data structure for the sample generic SDL
C link service.

InitializeGlobalStr
ucture

Initialize link service data contained in the global data structure for the sample generic SDLC link service.

Contents of IHVLinks Sample Kit on Host Integration Server
The sample source code for a generic Synchronous Data Link Control (SDLC) integrated link configuration MSI package that
illustrates an integrated independent hardware vendor (IHV) link service installation are included on the Host Integration
Server 2009 CD. These sample programs are located in the \SDK\Samples\IHVLinks subdirectory on the Host Integration
Server CD. These files are copied to your hard drive during Host Integration Server software or Host Integration Client software
installation when the Host Integration Server Software Development Kit (SDK) option is selected. These samples are installed in
the SDK\Samples\IHVLinks subdirectory below where the Host Integration Server SDK software is installed (C:\Program
Files\Microsoft Host Integration Server\SDK, by default).

These sample files include the following directories.

Direc
tory

Description

LinkS
erv

Directories used in creating the IHVLinks sample generic SDLC link service configuration and detection DLLs.

LinkS
erv\B
uild

A file containing the normal COFF base address for a link service configuration DLL (linkcfg).

LinkS
erv\D
etect

The source code to the sample generic SDLC link service detection DLL.

LinkS
erv\Li
nkcfg

The source code to the sample generic SDLC link service configuration DLL. The link service configuration DLL must exp
ort specific functions. A definitions (.DEF) file must be used so that exported function names are not decorated by the co
mpiler and linker.

LinkS
erv\L
nkTo
ols

The source code to a collection of library routines used by the generic SDLC link service configuration DLL.

LinkS
erv\N
T5INF

An INF file that can be used with the generic SDLC link service.

Setup Directories used in creating the IHVLinks sample generic SDLC link service setup and setup test tools.

Setup
\Bins

The compiled generic MSI package containing the generic SDLC link service driver, configuration and detection DLLs, a
nd configuration tool.

Setup
\CAS
ource

This directory contains the source code used for the custom actions in setup. The GetHISData custom action sets the MS
I property SERVER_INSTALLED to "YES" if Host Integration Server is installed, otherwise the property is set to "NO". This
custom action is used to disable Host Integration Server dependent features from the installation directory if not install
ed.

The SetHISPath custom action sets the target directory INSTALLDIR1 to the installation directory where Host Integration
Server was installed. This custom action is used to set the destination directory for the link service configuration DLLs.

Setup
\Pack
age

The sample GENERIC.MSI SDLC link service package ready for installation and testing.

Setup
\Tool
s

The source code for various utility functions and tools that can be used to test your integrated link service MSI package.

This sample source code is included for your reference. The communication between workstation management station and
Host Integration Server is performed by RPCSVC.EXE, the SNA remote procedure call (RPC) service.

Compiling and Linking a SNALink
This section provides information about compiling and linking a SNALink for use with Host Integration Server 2009. This
section also lists and explains the header files and libraries need to build a SNALink.

In This Section

Host Integration Server DLC Header Files

Included Files

Required Exports

Compiler Options

Linking

https://msdn.microsoft.com/en-us/library/aa754406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704956(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744301(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744651(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745630(v=bts.10).aspx

Host Integration Server DLC Header Files
The following files are required to build a Host Integration Server 2009 SNALink:

File Description

SNA_DLC.H Main header file containing the definitions of buffer and message formats.

SNA_CNST.H Function prototypes for the Base/DMOD interface calls and constant definitions.

TRACE.H Definitions of the logging and tracing macros.

IHVLINK.LIB Main library for the SNADIS interface.

Included Files
To compile a SNALink, the header files SNA_DLC.H, SNA_CNST.H and TRACE.H are required. In addition, one of the standard
operating system header files may be required. To include the required files, the following lines should be used in your
application:

Note
The TRACE.H include file is required to enable SNA tracing and use of the Host Integration Server 2009 Trace viewer utility.

#include <sna_dlc.h>
#include <sna_cnst.h>
#include <trace.h>

Required Exports
The IHV link support DLL must export the following entry points:

SNALinkInitialize

SNALinkWorkProc

SNALinkDispatchProc

These are called by the Base scheduler when the SNALink is invoked.

https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705234(v=bts.10).aspx

Compiler Options
When compiling the SNALink DLL, the following compiler options are required:

Option Explanation
/c Compile only, without linking. Linking is done as a separate phase to include the required Microsoft Host Integration

Server 2009 libraries.

/D NOT
RC

The NOTRC macro specifies that internal tracing should not be compiled into the application.

The /D NOTRC option should be used for building a final system (internal tracing should not be included because it
will degrade performance and occupancy). For a development system, you may want to compile with internal tracing;
if so, remove the /D NOTRC option.

/D WIN3
2_SUPP
ORT

The macro WIN32_SUPPORT is used in the header files SNA_DLC.H, SNA_CNST.H, and TRACE.H to support variants o
f the DLC interface for Microsoft Windows 2000.

/Gzs z: Use stdcall conventions .s: Remove stack check calls.

The following compiler flags are required, but any of the valid options for each flag may be used, as appropriate to your
application:

/O Optimization

/W Warning level

Linking
The IHVLINK.LIB library must be linked with the application. It contains the Base, DMOD imports, and diagnostics routines. The
DMOD and the Base are implemented as DLLs.

Note
The Host Integration Server 2009 library only contains the external references for the corresponding DLLs, which are part of t
he main Host Integration Server product.

Synchronous Dumb Card Interface
This section describes the interface to the synchronous dumb card device driver used by the Synchronous Data Link Control
(SDLC) and X.25 SNALinks that Microsoft Host Integration Server 2009 supplies. The interface provides a simple but flexible
mechanism for transferring frames of data through a dumb synchronous communications card (such as the IBM MPCA card).

This interface is intended primarily for independent hardware vendors (IHVs) who want to provide drivers for their own dumb
cards that are directly compatible with SDLC and X.25 SNALinks. It can also be used by Independent Hardware Vendors (IHVs)
who intend to write their own SNALinks and want to ensure that their drivers conform to the standard Host Integration
Server 2009 model.

In This Section

Driver Interface

I/O Request Packets

https://msdn.microsoft.com/en-us/library/aa771031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771872(v=bts.10).aspx

Driver Interface
Application software running on Microsoft Windows Server 2003 or Windows 2000 normally does not interact directly with
device drivers. Usually, the operating system itself controls the interface to underlying device drivers on behalf of the
application. For example, Disk I/O consists of sequences of driver requests generated by a file system, as a result of an
application making file system requests.

By contrast, in the Microsoft Host Integration Server 2009 device driver model, synchronous dumb cards are controlled directly
by the SNALink using input and output control (IOCTL) commands. This mechanism enables the SNALink to pass raw control
packets to the driver without any intervention from the operating system.

This is achieved by issuing an Open request with a file name that identifies the device driver. The operating system detects the
fact that this file is a driver and passes an OPEN I/O request packet to the driver. The user application is returned a handle that
can be used to reference the driver.

The IBMSYNC driver creates various device names. During setup, the configuration for adapters in the computer is saved in the
registry. When the driver starts, it reads this data and creates the device names for all the adapters that are found.

The following table lists the device names that the IBMSYNC driver can create.

Device n
ame

Description

\Device\I
BMSDLC

Standard IBM Synchronous Data Link Control (SDLC) adapter.

\Device\
MPCA_1

IBM MPCA 1 adapter. This adapter has a switch set on it to enforce MPCA 1 operation. This adapter is the primary M
PCA adapter in the computer and supports direct memory access (DMA) interrupt mode.

\Device\
MPCA_2

IBM MPCA 2 adapter. This adapter has a switch set on it to enforce MPCA 2 operation. This adapter is the secondary
MPCA adapter in the computer and supports only interrupt mode.

\Device\S
YNC_x

Generic adapter (for example, Microgate). The letter x is 1 (for the primary adapter) or 2 (for the secondary adapter).

\Device\
MPAA_Sx

IBM MPAA adapter, where x represents the number of the MCA slot where the adapter is installed in the computer. T
his number is a value from 1 through 8.

\Device\S
YNC_Sx

Generic MPAA adapter (for example, the Microgate MPAA adapter). The letter x represents the number of the MCA s
lot where the adapter is installed in the computer. This number is a value from 1 through 8.

Subsequent IOCTL calls using DeviceIOControl made by the SNALink using the driver handle cause the operating system to
pass an IOCTL I/O request packet to the driver. The driver therefore sees IOCTL requests from the SNALink as a series of I/O
request packets passed to it by the operating system.

The Host Integration Server 2009 dumb card interface uses the following operating system calls:

OpenFile

DeviceIOControl

CloseFile

DeviceIOControl allows free-format information to be passed to the driver. The dumb card interface uses its own format of
information to pass all requests to the driver (with the exception of Open and Close requests, which are handled differently by
the operating system).

In This Section

Architecture Overview

https://msdn.microsoft.com/en-us/library/aa705598(v=bts.10).aspx

Architecture Overview
This section describes how information is transferred between the driver and the SNALink.

In This Section

Interface Record

Event Signaling

Link Characteristics

https://msdn.microsoft.com/en-us/library/aa771354(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770938(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745687(v=bts.10).aspx

Interface Record
Status information is transferred between the driver and the SNALink using a buffer known as the interface record.

The driver allocates this buffer when it starts and maintains the information in it while it is running. The contents of this buffer
are copied to an SNALink buffer by using an IOCTL call of type READ_INTERFACE_RECORD.

Event Signaling
The device driver notifies the SNALink whenever an event occurs (such as a frame being received from the line) by setting an
event.

The SNALink provides the driver with a handle to this event (or semaphore) at the start of day by issuing an IOCTL call of type
SET_EVENT_HANDLE.

Link Characteristics
Before the driver can transfer any data, it needs information about the link. This includes the following:

The frame size.

The station address to listen on (if required).

Details of hardware selectable options, such as SDLC/HDLC, Internal/External clocking, and so on.

For more details of these options, refer to the topic Function 0x42: Set Link Characteristics.

https://msdn.microsoft.com/en-us/library/aa744967(v=bts.10).aspx

I/O Request Packets
All I/O requests are passed to the driver by Microsoft® Windows Server™ 2003 or Windows® 2000 using the standard IRP
structure. For more details about this, refer to the Windows Server 2003 or Windows 2000 Device Driver Kit.

I/O request packets are defined in terms of C structures. The relevant fields are accessed as follows:

Field name Description

IRP.CurrentStackLocation -> MajorFunction Defines the IRP as an IOCTL.

IRP.IoStatus Status codes upon completion of request.

IRP.CurrentStackLocation -> IoControlCode The IOCTL function code.

IoControlCode identifies the function to be performed and IoStatus is the mechanism for returning result codes to the
SNALink. The structure IoStatus is defined as follows:

IoStatus.Status

A standard Windows Server 2003 or Windows 2000 result code (for example, STATUS_INVALID_PARAMETER) as defined in
the Windows Server 2003 or Windows 2000 header file NTSTATUS.H.

IoStatus.Information

For successful read-frame IOCTLs, the length of the received buffer (can be zero if no data available). Additional error
information, as defined in the header file SECLINK.H.

In This Section

Initialization

OPEN Call

CLOSE Call

IOCTL Command Summary

Equates and Structure Layouts

https://msdn.microsoft.com/en-us/library/aa770992(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770799(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771431(v=bts.10).aspx

Initialization
Device drivers under Windows Server 2003 or Windows 2000 should perform all initialization required at the start of day
when they are loaded by Windows Server 2003 or Windows 2000. Configuration information for device drivers is stored in the
Configuration Registry under Windows Server 2003 or Windows 2000. For more details, refer to the documentation supplied
with the Windows Server 2003 or Windows 2000 Device Driver Kit.

The SNALinks for dumb cards are implemented by the following files:

SDLC SNALink
SNAroot\SYSTEM\IBMSDLC.DLL

X.25 SNALink
SNAroot\SYSTEM\IBMX25.DLL

To bind to one of these, an installation script should mention the appropriate DLL in the IHVDLL registry entry that the script
creates for the link service.

OPEN Call
The OPEN call has no parameters. It grants access to the driver from a particular process. The driver ensures that only one
OPEN is accepted by the link at any one time. When OPEN is processed, the driver attempts to reserve access to hardware
resources such as interrupt vectors. The OPEN is rejected if this fails.

After a successful OPEN request, the driver expects to receive the following IOCTL commands:

SET_EVENT_HANDLE

SET_INTERFACE_RECORD

SET_LINK_CHARACTERISTICS

Of these, the first two can be performed in any order, but both should be issued before calling SET_LINK_CHARACTERISTICS.

When these three calls have been successfully performed by the SNALink, the driver is ready for information transfer.

CLOSE Call
 

The CLOSE call has no parameters. It performs the logical converse of OPEN. Resources are released back to the operating
system when a CLOSE is performed.

IOCTL Command Summary
The parameters to the IOCTL request packet are stored in the following fields in the associated I/O request packet (IRP).

IRP.CurrentStackLocation -> IOControlCode Function code
IRP.SystemBuffer Address of parameter buffer (if used)

IRP.CurrentStackLocation -> InputBufferLength Length of parameter buffer

IRP.UserBuffer Address of data buffer

IRP.CurrentStackLocation -> OutputBufferLength Length of data buffer

Note that under Windows Server 2003 or Windows 2000, the operating system reserves the lower four bits of the IOCTL
function codes to determine the method used to map the various buffers passed on the DeviceIoControl function call into the
driver address space. The various options available to device driver writers are:

Low nibble IOCTL definition
0 METHOD_BUFFERED

1 METHOD_IN_DIRECT

2 METHOD_OUT_DIRECT

3 METHOD_NEITHER

For further details of the memory mapping performed by these various options, refer to the Windows Server 2003,
Windows 2000, or Windows DDK documentation.

For a driver function code of ZZ, using memory mapping code M, the IOCTL code passed on the DeviceIoControl function call
is 0xZZM.

The function codes are set out as shown in the table later in this topic. Note that all other function codes will be returned with
the error ERROR_INVALID_DEVICE_REQUEST in the field IoStatus.Status. The Windows Server 2003 or Windows 2000 I/O
System validates the address and length of the areas passed as parameter and data packets. If the address validation fails, an
exception will be raised.

All requests must return immediately. In general, they are simple, immediate operations, but in the case of Transmit Frame and
Receive Frame, the driver must not suspend the calling SNALink thread while waiting for I/O to complete—a relevant return
code should be sent instead, allowing the SNALink to retry.

The complete list of functions is as follows.

Function Function code Windows Server 2003 or Windows 2000 IOCTL code
Function 0x41: Set Event/Semaphore Handle 0x41 0x410

Function 0x42: Set Link Characteristics 0x42 0x420

Function 0x43: Set V24 Output Status 0x43 0x430

Function 0x44: Transmit Frame 0x44 0x441

Function 0x45: Abort Transmitter 0x45 0x450

Function 0x46: Abort Receiver 0x46 0x460

Function 0x47: Off-Board Load 0x47 0x470

Function 0x61: Get/Set Interface Record 0x61 0x613

Function 0x62: Get V24 Status 0x62 0x622

Function 0x63: Receive Frame 0x63 0x632

https://msdn.microsoft.com/en-us/library/aa770474(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705771(v=bts.10).aspx

Function 0x64: Read Interface Record 0x64 0x642

In the function descriptions in the following topics, the bit-numbering convention is: The bits in a byte are numbered 0 through
7, where bit 0 is the least significant and bit 7 is the most significant.

Note
There is no function for the controlling autodialer across the synchronous dumb card interface. This autodial feature is imple
mented in the link service itself. The Microsoft link services that support the synchronous dumb card interface first perform t
he dial operation by sending the dial string containing the server-stored number to a COM port rather than the SDLC chip, a
nd then sending a command to the device driver to raise DTR through a Set V24 Output Status IOCTL.

https://msdn.microsoft.com/en-us/library/aa704708(v=bts.10).aspx

Equates and Structure Layouts
Many standard operating system device driver error codes are used (for example, "invalid function"), together with a new set of
device driver-specific errors. Return codes below 0x80 reflect serious failures.

/* Copyright Data Connection Ltd. 1989 */_
/***/
/* Link Device Driver interface constants and structures. */
/***/
/***/
/* WIN32 16/04/92 SW Added more helpful names from WIN32 hdr file */
/* IHV 03/06/92 MF2 Add semfisui.h */
/***/

/***/
/* This include file is used in 5 subsystems */
/* */
/* - the NT driver LINK_NTDRIVER */
/* - the X25 link service for NT LINK_NTX25 */
/* - the SDLC link service for NT LINK_NTSDLC */
/* - the X25 link service for OS/2 LINK_OS2X25 */
/* - the SDLC link service for OS/2 LINK_OS2SDLC */
/* */
/* (The OS/2 driver doesn't count because it is in assembler). */
/* */
/* These are distinguished by #defines as set in the following */
/* */
/***/

#ifdef IMADRIVER
 #define LINK_NTDRIVER
#else
 #ifdef SDLC
 #ifdef WIN32
 #define LINK_NTSDLC
 #else
 #define LINK_OS2SDLC
 #endif
 #else
 #ifdef WIN32
 #define LINK_NTX25
 #else
 #define LINK_OS2X25
 #endif
 #endif
#endif
/***/
/* Device function codes for DosDevIOCtl to link device driver */
/***/
#ifdef WIN32 /* WIN32 constants defined in semfisui.h */
#define IoctlCodeSetEvent 0x410
#define IoctlCodeSetLinkChar 0x420
#define IoctlCodeSetV24 0x430
#define IoctlCodeTxFrame 0x440
#define IoctlCodeAbortTransmit 0x450
#define IoctlCodeAbortReceiver 0x460
#define IoctlCodeSetInterfaceRecord 0x610 /*IRMdl?*/
#define IoctlCodeGetV24 0x623
#define IoctlCodeRxFrame 0x633
#define IoctlCodeReadInterfaceRecord 0x643 /*IRMdl?*/
#else
//obsolete names from previous version
//#define CELDDSSH 0x41 /* Set Semaphore Handle */
//#define CELDDSLC 0x42 /* Set Link Characteristics */
//#define CELDDSVS 0x43 /* Set V24 Output status */
//#define CELDDTXF 0x44 /* Transmit a frame of data */

//#define CELDDATX 0x45 /* Abort Transmitter */
//#define CELDDARX 0x46 /* Abort Receiver */
//#define CELDDGIR 0x61 /* Get Interface Record Address */
//#define CELDDGVS 0x62 /* Get V24 Input Status */
//#define CELDDRXF 0x63 /* Receive a frame of data */
//#define CELDDCAT 0x82 /* Device function category code */
//
// new names

#define IoctlCodeSetEvent 0x41
#define IoctlCodeSetLinkChar 0x42
#define IoctlCodeSetV24 0x43
#define IoctlCodeTxFrame 0x44
#define IoctlCodeAbortTransmit 0x45
#define IoctlCodeAbortReceiver 0x46
#define IoctlCodeSetInterfaceRecord 0x61
#define IoctlCodeGetV24 0x62
#define IoctlCodeRxFrame 0x63

#endif

/***/
/* Constants for the driver-specific IOCtl return codes. */
/***/
#define CEDNODMA 0xff80 /* Warning (NO DMA!) from set link chrctrstcs */
/***/
/* Equates for the link options byte 1. */
/***/
#define CEL4WIRE 0x80
#define CELNRZI 0x40
#define CELPDPLX 0x20
#define CELSDPLX 0x10
#define CELCLOCK 0x08
#define CELDSRS 0x04
#define CELSTNBY 0x02
#define CELDMA 0x01

/***/
/* Equates for the driver set link characteristics byte 1. */
/***/
#define CED4WIRE 0x80
#define CEDNRZI 0x40
#define CEDHDLC 0x20
#define CEDFDPLX 0x10
#define CEDCLOCK 0x08
#define CEDDMA 0x04
#define CEDRSTAT 0x02
#define CEDCSTAT 0x01

/* Nicer names for NT-style code */

#define LinkOption_4Wire CED4WIRE
#define LinkOption_NRZI CEDNRZI
#define LinkOption_HDLC CEDHDLC
#define LinkOption_FullDuplex CEDFDPLX
#define LinkOption_InternalClock CEDCLOCK
#define LinkOption_DMA CEDDMA
#define LinkOption_ResetStatistics CEDRSTAT

/***/
/* Equates for the output V24 interface flags. */
/***/
#define CED24RTS 0x01
#define CED24DTR 0x02
#define CED24DRS 0x04
#define CED24SLS 0x08
#define CED24TST 0x10

/* Nicer names for NT-style code */

#define IR_OV24RTS CED24RTS
#define IR_OV24DTR CED24DTR
#define IR_OV24DSRS CED24DRS
#define IR_OV24SlSt CED24SLS
#define IR_OV24Test CED24TST

/***/
/* Equates for the input V24 interface flags. */
/***/
#define CED24CTS 0x01
#define CED24DSR 0x02
#define CED24DCD 0x04
#define CED24RI 0x08

/* Nicer names for NT-style code */

#define IR_IV24CTS CED24CTS
#define IR_IV24DSR CED24DSR
#define IR_IV24DCD CED24DCD
#define IR_IV24RI CED24RI
#define IR_IV24Test 0x10

/***/
/* Structure for the device driver interface record. */
/***/

#define CEDSTCRC 0 /* Frames received with incorrect CRC */
#define CEDSTOFL 1 /* Frames received longer than the maximum */
#define CEDSTUFL 2 /* Frames received less than 4 octets long */
#define CEDSTSPR 3 /* Frames received ending on a non-octet bndry */
#define CEDSTABT 4 /* Aborted frames received */
#define CEDSTTXU 5 /* Transmitter interrupt underruns */
#define CEDSTRXO 6 /* Receiver interrupt overruns */
#define CEDSTDCD 7 /* DCD (RLSD) lost during frame reception */
#define CEDSTCTS 8 /* CTS lost while transmitting */
#define CEDSTDSR 9 /* DSR drops */
#define CEDSTHDW 10 /* Hardware failures - adapter errors */

#define CEDSTMAX 11

#define SA_CRC_Error CEDSTCRC
#define SA_RxFrameTooBig CEDSTOFL
#define SA_RxFrameTooShort CEDSTUFL
#define SA_Spare CEDSTSPR
#define SA_RxAbort CEDSTABT
#define SA_TxUnderrun CEDSTTXU
#define SA_RxOverrun CEDSTRXO
#define SA_DCDDrop CEDSTDCD
#define SA_CTSDrop CEDSTCTS
#define SA_DSRDrop CEDSTDSR
#define SA_HardwareError CEDSTHDW /* e.g. CmdBufferFull not set */

#define SA_Max_Stat CEDSTMAX

#ifdef WIN32

typedef struct _INTERFACE_RECORD
{
 int RxFrameCount; /* incremented after each frame rx'd */
 int TxMaxFrSizeNow; /* max available frame size av. now */
 /* (changes after each Tx DevIoctl */
 /* to DD or after Tx completed) */
 int StatusCount; /* How many status events have been */
 /* triggered. */

 UCHAR V24In; /* Last 'getv24i/f' value got */
 UCHAR V24Out; /* Last 'setv24 outputs' value set */

/* The values for the indexes into the link statistics array of the */
/* various types of statistic. */

 int StatusArray[SA_Max_Stat];

} IR,
 * PIR;

#else
typedef struct teifrec {

 USHORT RxFrameCount;
 USHORT TxMaxFrSizeNow;
 USHORT StatusCount;
 UCHAR V24In;
 UCHAR V24Out;
 USHORT StatusArray[CEDSTMAX];

 }TEIFREC;

typedef TEIFREC far * TEIFRPTR;
#endif

/***/
/* Structure for the set link characteristics parameter block. */
/***/

#ifdef WIN32
typedef struct _SLPARMS
{
 int SLFrameSize; /* max frame size on link - must be */
 /* in range 270 to ?2K-ish */
 LONG SLDataRate; /* not used by us - external clocks */
 UCHAR SLOurAddress1; /*) e.g C1/FF or 00/00 or 01/03 */
 UCHAR SLOurAddress2; /*) */
 UCHAR SLLinkOptionsByte; /* see documentation & LinkOption_* */
 UCHAR SLSpare1;
}
 SLPARMS;
#else

typedef struct teslcrec {

 USHORT SLFrameSize;
 ULONG SLDataRate;
 UCHAR SLOurAddress1;
 UCHAR SLOurAddress2;
 UCHAR SLLinkOptionsByte;
 UCHAR SLSpare1;

 }TESLCREC;

#endif

/***/
/* DEVICEIOCTL macros */
/***/
#ifdef WIN32
/* NT_SUCCESS ripped of from DDK's ntdef.h, which we do not want to include */
/* for now temporarily (12/5/92) */
#define NT_SUCCESS(Status) ((NTSTATUS)(Status) >= 0)

#define SETEVENTHANDLE(H) NtDeviceIoControlFile(\
 seldrvrh, \

 H, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetEvent, \
 (PVOID) NULL, \
 0L, \
 (PVOID) NULL, \
 0L \
)

#define SETINTERFACERECORD(R) NtDeviceIoControlFile(\
 seldrvrh, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetInterfaceRecord, \
 \
 &R, \
 sizeof(R), \
 (PVOID) NULL, \
 0L \
)

#define SETV24STATUS NtDeviceIoControlFile(\
 seldrvrh, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetV24, \
 NULL, \
 0L, \
 &pInterfaceRecord->V24Out, \
 1L \
)

/***/
/* The above change is temporary!!!*/
/***/

#define GETV24STATUS NtDeviceIoControlFile(\
 seldrvrh, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeGetV24, \
 (PVOID) NULL, \
 0L, \
 (PVOID) NULL, \
 0L \
)

#define SETLINKCHARACTERISTICS(A) NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeSetLinkChar, \
 &A, \
 sizeof(A), \
 (PVOID) NULL, \
 0L \
)

#define TRANSMITFRAME(A,B) NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeTxFrame, \
 (PVOID) NULL, \
 0L, \
 A, \
 B \
)

#define RECEIVEFRAME(A,B) NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeRxFrame, \
 (PVOID) NULL, \
 0L, \
 A, \
 B \
)

#define READINTERFACERECORD NtDeviceIoControlFile(\
 seldrvrh, \
 NULL, \
 (PVOID) NULL, \
 (PVOID) NULL, \
 &IoStatus, \
 IoctlCodeReadInterfaceRecord, \
 (PVOID) NULL, \
 0L, \
 &InterfaceRecord, \
 sizeof(InterfaceRecord) \
)

#else
#define NT_SUCCESS(R) ((R) == 0)

#define SETEVENTHANDLE(H) DosDevIOCtl(NULL, \
 &H, \
 IoctlCodeSetEvent, \
 CELDDCAT, \
 seldrvrh)

#define GETINTERFACERECORD(P) DosDevIOCtl(NULL, \
 &P, \
 IoctlCodeGetInterfaceRecord, \
 CELDDCAT, \
 seldrvrh)

#define SETV24STATUS DosDevIOCtl(NULL, \
 NULL, \
 IoctlCodeSetV24, \
 CELDDCAT, \
 seldrvrh)

#define GETV24STATUS DosDevIOCtl(NULL, \
 NULL, \
 IoctlCodeGetV24, \
 CELDDCAT, \
 seldrvrh)

#define SETLINKCHARACTERISTICS(A) DosDevIOCtl((long) NULL, \

 (char far *) &A, \
 IoctlCodeSetLinkChar, \
 CELDDCAT, \
 seldrvrh)

#define TRANSMITFRAME(F,L) DosDevIOCtl(F, \
 &L, \
 IoctlCodeTxFrame, \
 CELDDCAT, \
 seldrvrh)

#define RECEIVEFRAME(F,L) DosDevIOCtl(F, \
 &L, \
 IoctlCodeRxFrame, \
 CELDDCAT, \
 seldrvrh)
#endif

//##

/***/
/* INFO_ : additional information error codes put in IoStatus.Information */
/***/

#define INFO_CANT_ALLOCATE_SPINLOCK 1
#define INFO_CANT_CONNECT_INTERRUPT 2
#define INFO_HARDWARE_INIT_FAILURE 3
#define INFO_SET_EVENT_NO_EVENT 4
#define INFO_HARDWARE_CMD_TIMEOUT 5
#define INFO_LINKCHAR_BUF_WRONG_SIZE 6
#define INFO_FRAME_BUF_TOO_BIG 7
#define INFO_FRAME_BUF_TOO_SMALL 8
#define INFO_NO_CLOCKS 9
#define INFO_NO_DMA_FDX 10
#define INFO_CANT_ALLOCATE_MDL 11
#define INFO_CANT_ALLOCATE_MEMORY 12
#define INFO_DMA_BUFFER_UNUSABLE 14
#define INFO_TX_BUFFER_FULL 15
#define INFO_TX_FRAME_TOO_BIG 16
#define INFO_TX_FRAME_TOO_SMALL 17
#define INFO_READ_IR_BUFFER_WRONG_SIZE 18
#define INFO_NEEDS_MCA_BUS 19
#define INFO_NEEDS_ISA_BUS 20

SNA Modem Status Interface
This section describes the interface to the modem status used by Synchronous Data Link Control (SDLC) and X.25 SNALinks
that Host Integration Server 2009 supplies. This interface provides a set of simulated modem lights to show modem status. The
modem status interface is intended primarily for the Microgate cards with internal modems, but can be used with any SDLC or
X.25 link service to show the modem status.

This interface is intended primarily for independent hardware vendors (IHV) who want to provide drivers for their own dumb
cards that are directly compatible with SDLC and X.25 SNALinks that Host Integration Server provides. It can also be used by
IHVs who intend to write their own SNALinks but who want to ensure that their drivers conform to the standard Host
Integration Server model.

In This Section

SNA Device Driver Interface to Modem Status

Supporting Modem Status in an SNA Link Service

Modem API Summary

DevIoctl Definitions to Support SNA Modem Status

https://msdn.microsoft.com/en-us/library/aa744929(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771227(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770514(v=bts.10).aspx

SNA Device Driver Interface to Modem Status
There are three interfaces from which modem status can be gathered:

The SNADIS Dumb Card Interface GetV24Status IOCTL call that reports the status of the Ring Indicator (DRI), Carrier
Detect (DCD), Clear To Send (CTS), and Data Set Ready (DSR) signal lines.

The SNADIS Dumb Card Interface SetV24Status IOCTL call that sets the status of the Data Terminal Ready (DTR) and
Request To Send (RTS) signal lines.

The SNADIS Dumb Card Interface receive and transmit IOCTL calls, used to set the operating mode of the device driver.

Whenever one of the first two interfaces indicates a modem line is high, the corresponding light in the display is lit. However,
the transmit and receive IOCTL calls cannot provide a definitive statement as to whether the card is receiving data, only that it
is ready to receive data. To work around this limitation and to have the modem lights give a reasonable indication of ordinary
data throughput, the following mechanism is recommended:

Simulate the receive and transmit lights with counters and track the number of frames received and transmitted for each link
service. The display application uses this information to control the flashing of the receive and transmit lights.

The other topics in this section describe the changes that must be made to the link service for supporting the modem status
interface and the interface provided to the display application. Microsoft Host Integration Server 2009 comes with an
application that displays the modem status.

Supporting Modem Status in an SNA Link Service
The implementation of a link service that supports the modem status requires the following:

A call to the SNA Modem interface to initialize the SNA Modem data structures.

Modification of the SNA Modem structures as the status changes, as reported by the DevIoctl calls.

Independent hardware vendors (IHVs) who use the MicrosoftHost Integration Server 2009 SDLC link service and who fully
implement the SNADIS interface do not need to make any changes to use the modem status feature. However, IHVs should
check that the status returned by DevIoctl calls from their device driver conforms to the requirements described later.

IHVs who provide both the device driver and link service need to implement the code in their link service that initializes the
SNA Modem API and updates the modem status information.

Modem API Summary
To simplify the task for independent hardware vendors (IHVs) who want to use this feature, four new entry points have been
added to SNALINK.DLL. An IHV who uses these must be linking with IHVLINK.LIB, a stub library that contains the exports library
for SNALINK.DLL. This API enables the IHV to simply maintain the contents of a MODEM_STATUS structure. The underlying
SNALINK library code handles the communication of this information to the modem lights application.

The modem status functions are as follows.

Function Description
SNAModemInitialize Initializes the communication path to the SNA Modem application.

SNAModemAddLink Adds an SNA link.

SNAModemDeleteLink Deletes the resources associated with a link.

SNAModemTerminate Terminates an SNA link.

https://msdn.microsoft.com/en-us/library/aa744326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745852(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745177(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744288(v=bts.10).aspx

DevIoctl Definitions to Support SNA Modem Status
The SNA DevIoctl interface is modified to update the MODEM_STATUS structure for a link each time a modem status change
is detected or caused by a GetV24 or SetV24 IOCTL call. Code is manually added to the link service to track the number of
frames received and transmitted.

The DevIoctl changes are highlighted as follows.

pSharedMem is a pointer to the MODEM_STATUS structure for this link service.

V24In and V24Out are of type char and are used to notify the display application when status changes, not each time it is read
or set.

#define SETV24STATUS \
 NtDeviceIoControlFile(seldrvrh,NULL,NULL,NULL,&IoStatus, \
 IoctlCodeSetV24,NULL,0L, \
 &pInterfaceRecord->V24Out,1L); \
 if (SavedIROut != (InterfaceRecord.V24Out & \
 (MASK_DTR | MASK_RTS))) \
 { \
 SavedIROut = (pInterfaceRecord->V24Out & \
 (MASK_DTR | MASK_RTS)); \
 pSharedMem->V24Out = pInterfaceRecord->V24Out; \
 }

#define GETV24STATUS(rc) \
 rc |= NtDeviceIoControlFile(seldrvrh,NULL,NULL,NULL, \
 &IoStatus,IoctlCodeGetV24,NULL,0L,NULL,0L); \
 rc |= READINTERFACERECORD; \
 if (SavedIRIn != (InterfaceRecord.V24In & \
 (MASK_CTS | MASK_DSR | MASK_DCD| MASK_DRI))) \
 { \
 SavedIRIn = (InterfaceRecord.V24In & \
 (MASK_CTS | MASK_DSR | MASK_DCD| MASK_DRI)); \
 pSharedMem->V24In = InterfaceRecord.V24In; \
 }

https://msdn.microsoft.com/en-us/library/aa744326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744326(v=bts.10).aspx

SNA Performance Monitor Interface
This section describes the interface for performance monitoring (Perfmon) used by SNADIS links that Microsoft Host
Integration Server 2009 supplies. This interface is provided to simplify the integration of SNADIS-compliant link services with
the Microsoft Windows 2000 System Monitor applications. It provides a common look-and-feel to all link service performance
counters exported by SNADIS links, independent of the vendor and link transport (channel, Twinax, SDLC, X.25, TR, E/Net, and
so on).

The performance monitoring statistics maintained for an SNA link service are stored in a series of ADAPTERCOUNTER
structures that are members of an ADAPTERPERFDATA structure. These structures are defined in the SEMFPERF.H header file.

Three API entry points are exported from IHVLINK.DLL (and the IHVLINK.LIB import library) that are used by the Perfmon API.
These functions should be called in the order noted below at link service initialization time.

To support performance monitoring, an SNA Link driver first calls SNAInitLinkPerfmonto initialize data structures used by the
Perfmon application. This call should be followed with a call to the function SNAGetLinkPerfArea, which returns a shared mutex
handle and a pointer to the shared data area for the ADAPTERPERFDATA structure used by the Perfmon application to store
the link statistics. This handle and shared memory data area parameter are the returned values from SNAInitLinkPerfmon.
Finally, the SNAGetPerfValues function is called to fill in the ServiceNameIndex and FirstCounterIndex fields so that the
Perfmon application knows where to get the descriptions of the performance counters from the registry.

After these three calls have been made, the SNA link driver simply maintains the count members in the ADAPTERCOUNTER
structures that make up the ADAPTERPERFDATA structure, incrementing the count member whenever data is received,
connections fail, and other events occur. The Perfmon application accesses these counters to display Host Integration Server
performance monitoring data statistics.

https://msdn.microsoft.com/en-us/library/aa704604(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753899(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746262(v=bts.10).aspx

Network Integration Security Guides
The network integration features of Microsoft Host Integration Server 2009 fall into several areas. Each area has a Security
guide.

This section contains:

APPC Programmer's Security Guide

CPI-C Programmer's Security Guide

LUA Programmer's Security Guide

SNA Print Server Data Filter Programmer's Security Guide

https://msdn.microsoft.com/en-us/library/aa744751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771460(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705570(v=bts.10).aspx

APPC Programmer's Security Guide
The following topics discuss security as it applies to the APPC section of the Microsoft Host Integration Server 2009 SDK.

About APPC security for developers

This section discusses security practices and issues that apply to C-language applications that you write to use Advanced
Program-to-Program Communications (APPC) to exchange data in a Systems Network Architecture (SNA) environment.

Conversation Security

Owners of APPC transaction programs may want to allow only a limited set of users to start the program. APPC provides
a mechanism, called APPC conversation security, where the client transaction program supplies credentials to the server
to gain access to the program. You can find more information on conversation security in the section: APPC Security.

Several APPC verbs create a connection with a remote LU. When creating a connection with a remote LU, credentials may be
required to establish access. The security parameter controls conversation security, and the pwd and user_id parameters
specify the information used to validate the user on the host.

Conversational security is documented in the topic Conversation Security, and in the reference pages for the following APPC
verbs:

ALLOCATE

MC_ALLOCATE

SEND_CONVERSATION

MC_SEND_CONVERSATION

Session Security configuration using SNACFG

You can use the utility SNACFG to set session security for a remote LU. Possible values are none, use a plaintext key, and use a
scrambled key.

Automatic Login

The configuration of Host Integration Server to support automatic login is discussed in the topic
Support for CPI-C Automatic Logon.

Setting the service key with CNOS

You can specify a master or service key using the key parameter when changing the number of sessions with the CNOS verb.
This is a plaintext parameter, and is valid if the keylock feature has been secured.

https://msdn.microsoft.com/en-us/library/aa754309(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770811(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx

CPI-C Programmer's Security Guide
The following topics discuss security as it applies to the CPI-C section of the Host Integration Server 2009 SDK.

About CPI-C Security for Developers

The Common Programming Interface for Communications (CPI-C) is a platform-independent API designed to simplify the use
APPC verbs, and has many of the same issues and features as APPC.

This section discusses security practices and issues that apply to C-language applications that you write to use CPI-C to
exchange data between a Host Integration Server system and a computer or computers in a Systems Network Architecture
(SNA) environment.

Session Security Configuration Using SNACFG

You can use the utility SNACFG to set session security for a remote LU. Possible values are none, use a plaintext key, and use a
scrambled key.

Conversation Security in CPI-C

Conversation security in CPI-C controls who can connect to a remote LU. You can find more information in the topic
Conversation Security.

A programmer controls conversation security using the Set_Conversation_Security_Type call and sets user credentials using
the Set_Conversation_Security_User_ID and Set_Conversation_Security_Password call from the CPI-C SDK.

https://msdn.microsoft.com/en-us/library/aa704855(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx

LUA Programmer's Security Guide
The following topics discuss security as it applies to the LUA section of the Host Integration Server 2009 SDK.

About LUA security for developers

LUA presents a simple API that enables programmatic control over the SNA messages. LUA has a simple structure, but exposes
a complex data stream, that associated with SNA messages.

Since LUA is a low-level interface, the programmer must be especially vigilant on security issues.

Threats and mitigations for LUA

Programmers who use this feature should be aware of the following security practices and issues.

The data stream between Host Integration Server and the Mainframe is not encrypted.

LUA provides no encryption for the data stream between Host Integration Server and the Mainframe.

SNA Print Server Data Filter Programmer's Security Guide
The following topics discuss security as it applies to the APPC section of the Host Integration Server 2009 SDK.

Threats and mitigations for SNA Print Server Data Filter

Programmers who use the SNA Print Server Data Filter should be aware of the following security issue.

Store DLLs in a secure location

The DLLs which support the SNA Print Server Data Filter API can be configured by an administrator or developer. Because of
this, the DLLs should be stored in a secure location, such as the default installation directory. If this location is customized by an
administrator or developer the new location should also be secured.

Session Integrator Programmer's Guide
This section describes how to create applications that interact with a remote server using LU0 and LU2 protocols.

In This Section

Session Integrator

Using Session Integrator

Reference

Microsoft.HostIntegration.SNA.Session

https://msdn.microsoft.com/en-us/library/aa704847(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx

Session Integrator
An enterprise organization might run the bulk of their daily operations on an IBM host system, such as the zSeries IBM
mainframe. Many host-based applications use session-based termination emulation and other client-server programs that use
either Logical Unit type 0 (LU0) or Logical Unity type 2 (LU2). LU0 programs, common in retail banking, are based on the
Logical Unit for Applications (LUA) programming model. In contrast, the LU2 programs, common in many vertical markets, are
based on terminals and terminal emulation using a 3270 data stream.

Session Integrator provides COM and .NET Framework access to LU0 and LU2 sessions, using Host Integration Server as the
gateway and platform for IBM interoperability.

In This Section

Session Integrator Programming Interfaces

What You Should Know Before Using Session Integrator

Supported Platforms for Session Integrator

COM Security Requirements for Session Integrator

Reference

Session Integrator COM Reference

Microsoft.HostIntegration.SNA.Session

Related Sections

Using Session Integrator

See Also
Other Resources
3270 Emulation Programmer's Reference
3270 Emulation Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754065(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754293(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754776(v=bts.10).aspx

Session Integrator Programming Interfaces
Session Integrator provides a COM and a .NET Framework interface to grant programmatic access to an SNA network using
LU0 and LU2 protocols. The following tables describe the relationships between the COM and the .NET Framework interfaces.

LU0 Interfaces
COM .NET Description

IcomLU0 SessionLU0 The primary interface for connecting, sending, and receiving information over an LU0 s
ession.

SessionConnectionLU0 Represents the LU0 connection.

SessionLU0 uses SessionConnectionLU0 to contain the relevant connection and initi
alization information.

SessionLU0Data Encapsulates the information you want to send and receive over LU0.

SessionLU0 uses SessionLU0Data in the Send and Receive methods to send and rec
eive data.

SessionLU0InitType Contains initialization information.

SessionLU0 uses this class during the initialization process to pass initialization inform
ation to the host.

SessionLU0ReceiveIndication Represents the current state of a session associated with a receive call.

SessionLU0SendIndication Contains values used by the Send method of SessionLU0.

LU2 Interfaces
COM .NET Description

SessionDisplay Provides the connection interface for the SessionDisplay class.

ScreenPosition Provides access to a position on the LU2 screen.

ScreenCursor Provides access to the cursor on the screen.

ScreenPartialField Provides access to a part of a screen field.

ScreenField Provides access to a particular area of the LU2 screen including the data and attrib
utes.

ScreenFieldCollection Contains a collection of ScreenField classes.

ScreenPartialFieldCollection Contains a collection of ScreenPartialFields classes.

ScreenFieldAttributeData Provides all of the attributes about the ScreenField data.

Icom3270 SessionDisplay Primary interface for accessing the network over a 3270 connection.

ScreenData Provides access to a particular area of the raw 3270 data representations.

SessionDisplayScript Enables users to take a script created in the Host Integration Server 3270 client an
d play it programmatically.

https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771816(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771828(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771813(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771811(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771804(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771812(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771806(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771803(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771819(v=bts.10).aspx

SessionDisplayVariableCollection Used with the SessionDisplayScript class to provide variables that can be replac
ed in the script.

See Also
Other Resources
Session Integrator
Using Session Integrator

https://msdn.microsoft.com/en-us/library/aa771821(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704847(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx

What You Should Know Before Using Session Integrator
Session Integrator is designed to communicate between a Windows-based enterprise and an IBM network. Therefore, you
should be familiar with the following concepts and technologies before attempting to use Session Integrator:

Programming with the .NET Framework or COM

Windows Networking

SNA Networking

See Also
Other Resources
Session Integrator
Using Session Integrator

https://msdn.microsoft.com/en-us/library/aa704847(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx

Supported Platforms for Session Integrator
Session Integrator is designed to be used with Host Integration Server 2009, and is therefore supported on all platforms that
support Host Integration Server 2009.

See Also
Other Resources
Session Integrator
Using Session Integrator

https://msdn.microsoft.com/en-us/library/aa704847(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx

COM Security Requirements for Session Integrator
When using Session Integrator in an environment where the Client application and the Service component are running under
two different user accounts, special configuration of COM security should be performed.

To configure COM security in Component Services

1. Click Start, then click Run, then type DCOMCNFG, and then click OK.

2. In Component Services, expand Component Services, expand Computers, right-click My Computer, and then click
Properties.

3. In My Computer Properties, in the COM Security tab, under Access Permissions, click Edit Default.

4. In Access Permission dialog box, click Add to add the Server user context. If the Server is not on the same computer as
the client, you must allow Remote Access to the user.

5. Click OK twice.

Using Session Integrator
The topics in this section describe how to create Session Integrator applications.

In This Section

Using Session Integrator for LU0

Using Session Integrator for LU2

Using Session Integrator for TN3270

https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704978(v=bts.10).aspx

Using Session Integrator for LU0
This section describes how to create an application by using Session Integrator over an LU0 connection.

In This Section

How to Initialize a Session Integrator Session for LU0

How to Send a Message Using Transaction Integrator for LU0

How to Receive a Message Using Transaction Integrator for LU0

How to Terminate a Connection with Session Integrator for LU0

Using Pre-Recorded Scripts with Session Integrator

Session Integrator for LU0 Code Example

Reference

Microsoft.HostIntegration.SNA.Session

IcomLU0 Interface

Related Sections

Using Session Integrator

See Also
Other Resources
LUA Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa746023(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx

How to Initialize a Session Integrator Session for LU0
The first action you must perform when you connect to an LU0 session for Session Integrator is to create and initialize the
SessionLU0 object. As the name implies, SessionLU0 represents the LU0 session to your application, and is the primary
interface that you will use to access the SNA network.

After you initialize the connection, you can begin to send and receive information over the LU0 session.

To initialize a Session Integrator session for LU0

1. Determine what type of session you will connect to.

2. If necessary, create a new session connection by using SessionConnectionLU0.

You can create the SessionConnectionLU0 directly if you have all the relevant information. However, you do not need
to perform this step. More likely, you will just pass in the LU connection string in step 3.

3. Create a new session by using SessionLU0.

4. Pass the connection information to Connect.

Connect contains several overloads: you can choose to connect with an already-created SessionConnection object, a
SessionConnection object and additional initialization information, or with a connection string and initialization
information.

If you choose to call Connect with a connection string, Session Integrator creates a new SessionConnectionLU0 for
you. You can directly access the SessionConnectionLU0 object through Connection.

5. If necessary, confirm that you connected by using IsConnected.

Example

The following code example demonstrates how to create a session, using a connection string received from the user.

Note that the primary purpose of this code example is to create a new session and connect to the LU using a connection string.
However, the example also receives data back over the LU0 session. The example also sends password information using the
EnableInsertUserId function.

See Also
Tasks

private void CreateSession_Click(object sender, EventArgs e)
 {
 try
 {
 LUName.Text = LUName.Text.Trim();
 if (LUName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the LU or Pool Name");
 return;
 }
 _session = new SessionLU0();
 _session.Connect("LogicalUnitName=" + LUName.Text, SessionLU0InitType.SSCP);
 // Receive the logon screen.
 SessionLU0Data receivedData = _session.Receive(20000, true);
 // Trace out the received data.
 TraceData(false, receivedData.Data, receivedData.Indication);
 // Disable every button and text box.
 DisableEverything();
 // Insert User/Password.
 EnableInsertUserId();
 }
catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

https://msdn.microsoft.com/en-us/library/aa771824(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771816(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771814(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746156(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746157(v=bts.10).aspx

How to Send a Message Using Transaction Integrator for LU0
Session Integrator for LU0 Code Example
Reference
Microsoft.HostIntegration.SNA.Session
Concepts
IcomLU0 Interface
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa744719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

How to Send a Message Using Transaction Integrator for LU0
After you initialize and connect to the logical unit (LU), you can send information over the LU0 connection. The primary tool
that Session Integrator exposes for sending LU0 information is the SessionLU0Data object and the SessionLU0.Send
method.

In addition to sending information, you probably will want to receive information too.

To send a message using Transaction Integrator for LU0

1. Collect your data into the format your LU uses.

2. Place your data into a SessionLU0Data object.

3. Send the data with SessionLU0.Send.

Example

The following code example demonstrates how to send data over an LU0 session using Session Integrator.

Most of this code example is about formatting the data so that the LU can correctly interpret the information; the call to
SessionLU0.Send is relatively simple. For more information about the code sample, see
Session Integrator for LU0 Code Example.

private void InsertUserId_Click(object sender, EventArgs e)
 {
 try
 {
 // Disable every button and text box.
 DisableEverything();
 // Enter UserName (SNA200 is what is in the script).
 // AID = 7D - Enter.
 byte AID = 0x7D;
 // Cursor address.
 byte ca1 = 0x5B;
 byte ca2 = 0x6B;
 // SBA
 byte SBA = 0x11;
 byte fa1 = 0x5B;
 byte fa2 = 0xE5;
 byte[] sna200 = HostStringConverter.ConvertUnicodeToEbcdic("SNA200");
 byte sixD = 0x6D;
 byte [] message = new byte [8 + sna200.Length];
 message[0] = AID;
 message[1] = ca1;
 message[2] = ca2;
 message[3] = SBA;
 message[4] = fa1;
 message[5] = fa2;
 Array.Copy(sna200, 0, message, 6, sna200.Length);
 message[6 + sna200.Length] = sixD;
 message[7 + sna200.Length] = sixD;
 // Send the data.
 SessionLU0Data data = new SessionLU0Data();
 data.Data = message;
 // Trace out the data to send.
 TraceData(true, message, 0);
 _session.Send(data);
 // Allow entering director.
 EnableEnterDirector();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

https://msdn.microsoft.com/en-us/library/aa770322(v=bts.10).aspx

See Also
Tasks
How to Receive a Message Using Transaction Integrator for LU0
Session Integrator for LU0 Code Example
Reference
Microsoft.HostIntegration.SNA.Session
Concepts
IcomLU0 Interface
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa771240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

How to Receive a Message Using Transaction Integrator for
LU0

After you create and initialize your connection, you can receive information from the specified logical unit (LU). The primary
way of receiving information with Session Integrator is with the SessionLU0.Receive method.

After sending and receiving messages, you must disconnect from your Session Integrator session.

To receive information using Session Integrator for LU0

1. Use SessionLU0.Receive and SessionLU0data to wait for data from the LU.

Receive allows you to pass the maximum length of time to wait for information, as well as whether you want to send an
automatic acknowledgement. Receive returns a SessionLU0Data object.

Example

The following code example demonstrates how to receive information with Session Integrator for LU0.

For more information about the code sample, see Session Integrator for LU0 Code Example.

See Also
Tasks
How to Terminate a Connection with Session Integrator for LU0
Session Integrator for LU0 Code Example
Reference
Microsoft.HostIntegration.SNA.Session
Concepts
IcomLU0 Interface
Other Resources
Using Session Integrator for LU0

private void CreateSession_Click(object sender, EventArgs e)
 {
 try
 {
 LUName.Text = LUName.Text.Trim();
 if (LUName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the LU or Pool Name");
 return;
 }
 _session = new SessionLU0();
 _session.Connect("LogicalUnitName=" + LUName.Text, SessionLU0InitType.SSCP);
 // Receive the logon screen.
 SessionLU0Data receivedData = _session.Receive(20000, true);
 // Trace out the received data.
 TraceData(false, receivedData.Data, receivedData.Indication);
 // Disable every button and text box.
 DisableEverything();
 // Insert User/Password.
 EnableInsertUserId();
 }
catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

https://msdn.microsoft.com/en-us/library/aa770322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

How to Terminate a Connection with Session Integrator for LU0
After you finish sending and receiving information over the LU0 session, you must terminate your connection. Ending a
session with Session Integrator consists primarily of calling SessionLU0.Disconnect.

To terminate a connection with Session Integrator for LU0

1. End the connection by using SessionLU0.Disconnect.

After you call Disconnect, you must call Connect in order to re-establish a connection. This is true even if the call fails to
complete successfully.

2. If necessary, ensure that you have released all relevant data objects.

Example

The following code example shows how to terminate a Session Integrator session for LU0.

See Also
Other Resources
Using Session Integrator for LU0

private void Disconnect_Click(object sender, EventArgs e)
 {
 // Disable every button and text box.
 DisableEverything();
 _session.Disconnect();
// Go back to the original state of buttons.
 SetOpeningState();
 }

https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

Using Pre-Recorded Scripts with Session Integrator
The SessionDisplayScript class allows users to use a script created in the Host Integration Server 3270 client and play it
programmatically.

The script can implement variables using a double percent sign on each end of the name, for example, %%MYVARIABLE%%.
These variables are resolved using the SessionDisplayVariableCollection class provided in this class. In addition, the script file
can contain environment variables using the standard notation which this class will translate.

SessionDisplayScript Class

The input script must be a normal text file with one command per line. The Script file supports the following commands:

Command Description

SETTIMEOUT {timeou
t},{label}

Sets the default timeout for all commands and the label where processing should continue. If no default
is set, 30 seconds is assumed.

WAITSESSION {wait} Waits for the session to be in the input wait state before returning. The accepted values are: SSCP; LULU;
UNOWNED

WAIT {seconds} Waits the input number of seconds and then moves to the next command. The WAIT command can be r
eplaced by the WAITSTRING command to wait for a specific string on the screen.

SETCURSOR {ROW},{
COLUMN}

Moves the cursor to the desired position on the screen. If the position is not found on the screen, the scr
ipt is aborted and a ScriptError Exception is returned with an InnerException of the actual Exception whe
n running the script.

SEND {string}, {%envi
ronmentvariable%}, {
%%sessiondisplayvar
iable%%}

Causes the string to be sent to the screen using the SendKeys method. Variables can be input that are m
atched against the SessionDisplayVariablesCollection passed into the class. If a variable is not located in
the script, the script is aborted and a ScriptError Exception is returned with a InnerException of Variable {
name} not located in collection.

GOTO {label} Allows for scripts to jump to labels below the current line. If the label is not found, the script will abort w
ith a ScriptError exception and an InnerException of “Label {name} not found”. {label} = A way to define
a freeform label in the script that can be used in branching scenarios.

Session Integrator for LU0 Code Example
The following code example shows how to use the primary techniques for creating an LU0 connection, logging on to the LU0
session, sending and receiving information, and terminating the connection.

For the complete code sample, see the \\Microsoft Host Integration Server\SDK\Samples\AppInt\COMLU0 directory.

Example

The following example is from the CSClient.Form1 file in the COMLU0 sample.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Microsoft.HostIntegration.SNA.Session;

namespace CSClient
{
 public partial class Form1 : Form
 {
 private SessionLU0 _session = null;

 // As the LU0 managed wrapper does no tracing
 // we will trace the data contents to the provided text box.
 private TextBox m_TextBox = null;
 private Font m_FixedFont;

 public Form1()
 {
 InitializeComponent();
 }

 private void SetOpeningState()
 {
 DisableEverything();

 // Only the LU Name and Create Session are enabled.
 this.CreateSession.Enabled = true;
 this.LUName.Enabled = true;

 m_TextBox = this.ScreenText;

 // If we should trace, we need a fixed width font.
 FontFamily fontFamily = new FontFamily("Courier New");
 m_FixedFont = new Font(fontFamily, 10, FontStyle.Regular, GraphicsUnit.Pixel);

 // Set up some things.
 m_TextBox.WordWrap = false;
 m_TextBox.Multiline = true;

 // Find a fixed font.
 m_TextBox.Font = m_FixedFont;
 }

 private void DisableEverything()
 {
 // All buttons are disabled.
 this.CreateSession.Enabled = false;
 this.InsertUserId.Enabled = false;
 this.EnterDirector.Enabled = false;
 this.Disconnect.Enabled = false;

 // All text boxes are disabled.

 this.LUName.Enabled = false;
 }

 private void EnableDisconnect()
 {
 // Just allow the Disconnect.
 this.Disconnect.Enabled = true;
 }

 private void EnableInsertUserId()
 {
 // Enable the cics name / connect.
 this.InsertUserId.Enabled = true;

 // Enable the disconnect.
 EnableDisconnect();
 }

 private void EnableEnterDirector()
 {
 // Enable clear screen.
 this.EnterDirector.Enabled = true;

 // Enable the disconnect.
 EnableDisconnect();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // Enable only the LU Name and Create.
 SetOpeningState();
 }

 private void CreateSession_Click(object sender, EventArgs e)
 {
 try
 {
 LUName.Text = LUName.Text.Trim();
 if (LUName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the LU or Pool Name");
 return;
 }

 _session = new SessionLU0();
 _session.Connect("LogicalUnitName=" + LUName.Text, SessionLU0InitType.SSCP)
;

 // Receive the logon screen.
 SessionLU0Data receivedData = _session.Receive(20000, true);

 // Trace out the received data.
 TraceData(false, receivedData.Data, receivedData.Indication);

 // Disable every button and text box.
 DisableEverything();

 // Insert User/Password.
 EnableInsertUserId();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void InsertUserId_Click(object sender, EventArgs e)
 {

 try
 {
 // Disable every button and text box.
 DisableEverything();

 // Enter UserName (SNA200 is what is in the script).
 // AID = 7D - Enter
 byte AID = 0x7D;
 // Cursor address.
 byte ca1 = 0x5B;
 byte ca2 = 0x6B;
 // SBA
 byte SBA = 0x11;
 byte fa1 = 0x5B;
 byte fa2 = 0xE5;

 byte[] sna200 = HostStringConverter.ConvertUnicodeToEbcdic("SNA200");

 byte sixD = 0x6D;

 byte [] message = new byte [8 + sna200.Length];
 message[0] = AID;
 message[1] = ca1;
 message[2] = ca2;
 message[3] = SBA;
 message[4] = fa1;
 message[5] = fa2;

 Array.Copy(sna200, 0, message, 6, sna200.Length);

 message[6 + sna200.Length] = sixD;
 message[7 + sna200.Length] = sixD;

 // Send the data.
 SessionLU0Data data = new SessionLU0Data();
 data.Data = message;

 // Trace out the data to send.
 TraceData(true, message, 0);

 _session.Send(data);

 // Allow entering director.
 EnableEnterDirector();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void EnterDirector_Click(object sender, EventArgs e)
 {
 try
 {
 // Disable every button and text box.
 DisableEverything();

 // Receive the Director screen.
 SessionLU0Data receivedData = _session.Receive(20000, true);

 // Trace out the received data.
 TraceData(false, receivedData.Data, receivedData.Indication);

 EnableDisconnect();
 }
 catch (Exception ex)
 {

See Also
Reference
Microsoft.HostIntegration.SNA.Session
Other Resources
Using Session Integrator for LU0

 MessageBox.Show(ex.Message);
 }
 }

 private void Disconnect_Click(object sender, EventArgs e)
 {
 // Disable every button and text box.
 DisableEverything();

 _session.Disconnect();

 // Go back to the original state of buttons.
 SetOpeningState();
 }

 // Print out the Data to a provided text box.
 private void TraceData(bool sent, byte[] data, int indication)
 {
 if (m_TextBox == null)
 return;

 // Was the last thing sent or received?
 if (sent)
 m_TextBox.Text += "====>> Sent to Host" + Environment.NewLine;
 else
 m_TextBox.Text += "<<==== Received from Host" + Environment.NewLine;

 // How much is there to trace.
 int traceLength = data.Length;

 m_TextBox.Text += "Size = " + traceLength.ToString();

 if (!sent)
 m_TextBox.Text += String.Format(", Indication = {0:X}", indication);

 m_TextBox.Text += Environment.NewLine;

 int numberTraced = 0;
 while (numberTraced < traceLength)
 {
 string hexLine = "";
 for (int i = 0; i < 16; i++)
 {
 if (numberTraced + i >= traceLength)
 hexLine += " ";
 else
 hexLine += String.Format("{0:x2} ", data[numberTraced + i]);
 }

 m_TextBox.Text += hexLine + Environment.NewLine;

 numberTraced += 16;
 }
 }
 }
}

https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

Using Session Integrator for LU2
This section describes how to program an application for Session Integrator using an LU2 connection.

In This Section

How to Initialize a Session Integrator Session for LU2

How to Send a Message Using Session Integrator for LU2

How to Receive a Message Using Session Integrator for LU2

How to Terminate a Connection with Session Integrator for LU2

Session Integrator for LU2 Code Example

Reference

Microsoft.HostIntegration.SNA.Session

See Also
Other Resources
Using Session Integrator

https://msdn.microsoft.com/en-us/library/aa705456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744286(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746178(v=bts.10).aspx

How to Initialize a Session Integrator Session for LU2
The first action that you must perform when you are connecting to an LU2 session for Transaction Integrator is to create and
initialize the SessionDisplay object. As the name implies, SessionDisplay represents the 3270 display to your application, and
is the primary interface that you will use to access the SNA network.

After you initialize your connection, you can begin to send and receive information over your LU2 session.

Procedure Title

1. If necessary, create a new session connection with SessionConnectionDisplay.

You can create the SessionConnectionDisplay directly if you have all the relevant information. However, you do not
need to perform this step. More likely, you will simply pass in the LU connection string in step 2.

2. Create a new session with SessionDisplay.

3. Pass the connection information to Connect.

Connect contains several overloads: you can choose to connect with an already-created SessionDisplay object, a
SessionDisplay object and additional initialization information, or with a connection string and initialization information.

If you choose to call Connect with a connection string, Transaction Integrator will create a new
SessionConnectionDisplay for you. You can directly access the SessionConnectionDisplay object through
Connection.

4. If necessary, confirm that you connected using IsConnected.

Example

The following code is from the COM3270 application in the SDK sample directory.

private void CreateSession_Click(object sender, EventArgs e)
 {
 try
 {
 LUName.Text = LUName.Text.Trim();
 if (LUName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the LU or Pool Name");
 return;
 }
 m_Handler = new SessionDisplay();

 m_Handler.Connect("TRANSPORT=SNA;LOGICALUNITNAME=" + LUName.Text);
 m_Handler.Connection.HostCodePage = 37;

 FontFamily fontFamily = new FontFamily("Courier New");
 m_FixedFont = new Font(fontFamily, 10, FontStyle.Regular, GraphicsUnit.Pixe
l);
 ScreenText.Font = m_FixedFont;
 TraceScreen();

 // Disable every button and text box.
 DisableEverything();

 m_Handler.WaitForContent("TERM NAME", 20000);
 TraceScreen();

 // Enable Connect to CICS and Disconnect Session.
 EnableCICSElements();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771815(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746145(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746148(v=bts.10).aspx

See Also
Tasks
Session Integrator for LU2 Code Example
Reference
SessionDisplay
Other Resources
Using Session Integrator for LU2

https://msdn.microsoft.com/en-us/library/aa746223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704978(v=bts.10).aspx

How to Send a Message Using Session Integrator for LU2
After you create a connection, you can send information over the LU2 connection to the remote display.

To send a message using Transaction Integrator for LU2

1. If necessary, move the cursor to the position that you want to write to on the screen by calling one of the
SessionDisplay.Move methods.

SessionDisplay contains a variety of MoveCursor, MoveNextField, MovePreviousField, and MoveToField overloads. These
overloads enable you to move the cursor to different parts of the screen, depending on what information you provide.

The SessionDisplay.Move methods are mirrored by a similar set of SessionDisplay.Get methods, which enable you to
retrieve the location of the cursor, as well as the information contained in different fields on the screen.

2. Send information to the current cursor position using a call to SessionHandler.sendKey.

sendKey sends a specified string to the location on the screen marked by the cursor. If no cursor location is available,
sendKey sends the information to the default location.

Example

The following code is from the 3270 application in the SDK sample directory. In this sample, the developer assumes that the
cursor is in the default location on the screen, and therefore does not confirm the cursor location.

See Also
Reference
SessionDisplay
Other Resources
Using Session Integrator for LU2
Using Session Integrator for LU0

private void ConnectCICS_Click(object sender, EventArgs e)
 {
 try
 {
 CICSName.Text = CICSName.Text.Trim();
 if (CICSName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the CICS Name");
 return;
 }
 // Disable every button and text box.
 DisableEverything();
 m_Handler.SendKey(CICSName.Text + "@E");
 TraceScreen();
 m_Handler.WaitForSession (SessionDisplayWaitType.PLUSLU, 5000);
 TraceScreen();
 m_Handler.WaitForContent(@"DEMONSTRATION", 20000);
 TraceScreen();
 // Enable clear screen.
 EnableClearScreen();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704761(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704763(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704767(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704773(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704978(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

How to Receive a Message Using Session Integrator for LU2
After you create an LU2 session, you can retrieve information and messages from the 3270 console through the ScreenData
and SessionDisplay objects.

To receive information over an LU2 connection

1. If necessary, retrieve the entire screen as a screen dump using ScreenData.

For most circumstances, retrieving all the information on the screen is not necessary. Instead, you can use the
SessionDisplay object for most applications.

2. Get the location of the cursor with a call to ScreenCursor.

3. Optionally, you can get the location and information contained within different fields on the screen with a call to one of
the GetField or GetFields methods, or the CurrentField property.

GetField and GetFields both contain multiple overloads, allowing you to retrieve field information from the screen,
depending on what information you provide. In contrast, CurrentField represents only the field the cursor is currently in.

4. Finally, you can receive field update information with a call to the various SessionDisplay.Wait methods.

Example

The following code is from the 3270 application in the Host Integration Server SDK. The sample uses
SessionDisplay.CurrentField.Data to access the screen data.

private void PerformTX_Click(object sender, EventArgs e)
 {
 try
 {
 // Disable every button and text box.
 DisableEverything();

 m_Handler.SendKey("@E");
 TraceScreen();

 // Wait for screen to calm down.
 m_Handler.WaitForSession(SessionDisplayWaitType.NotBusy, 5000);
 TraceScreen();

 // See if the Balance Field is filled out.
 m_Handler.Cursor.Row = m_row;
 m_Handler.Cursor.Column = m_column;
 TraceScreen();
 // Tab to the Account Number field.
 m_Handler.SendKey("@T");
 TraceScreen();
 // Move to the Next Field (Empty Stuff after 123456).
 m_Handler.MoveNextField();
 TraceScreen();
 // Move to the Next Field (Title, Account Balance).
 m_Handler.MoveNextField();
 TraceScreen();
 // Move to the Next Field (Account Balance).
 m_Handler.MoveNextField();
 TraceScreen();

 // Extract Data from this field.
 string accountBalance = m_Handler.CurrentField.Data;

 // Trim the string.
 accountBalance = accountBalance.Trim();

 // Only things to do now are clear screen or disconnect.
 EnableClearScreen();

https://msdn.microsoft.com/en-us/library/aa771803(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746146(v=bts.10).aspx

See Also
Reference
ScreenData
SessionDisplay
Other Resources
Using Session Integrator for LU2
Using Session Integrator for LU0

 // If we failed (not Abended) then this field will be blank.
 if (accountBalance.Length == 0)
 throw new Exception("Failed to get Account Balance");
 else
 MessageBox.Show(accountBalance, "Account Balance");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

https://msdn.microsoft.com/en-us/library/aa771803(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704978(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

How to Terminate a Connection with Session Integrator for LU2
After you have finished sending and receiving information on your LU2 connection, you must shut your connection down with
a call to Disconnect.

To shut an LU2 connection down

1. When you are finished with your connection, call SessionDisplay.Disconnect to disconnect.

Example

The following code example is from the 3270 application in the Host Integration Server SDK.

See Also
Reference
SessionDisplay
Other Resources
Using Session Integrator for LU2

private void Disconnect_Click(object sender, EventArgs e)
 {
 // Disable every button and text box.
 DisableEverything();

 m_Handler.Disconnect();

 // Go back to the original state of buttons.
 SetOpeningState();
 }

https://msdn.microsoft.com/en-us/library/aa704649(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771817(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704978(v=bts.10).aspx

Session Integrator for LU2 Code Example
The following code is from the 3270 application in the samples directory of the Host Integration Server SDK.

Example

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Microsoft.HostIntegration.SNA.Session;

namespace CSClient
{
 public partial class Form1 : Form
 {
 private System.Drawing.Font m_FixedFont;
 private SessionDisplay m_Handler = null;
 private short m_row;
 private short m_column;

 public Form1()
 {
 InitializeComponent();
 }

 private void SetOpeningState()
 {
 DisableEverything();

 // Only the LU Name and Create Session are enabled.
 this.CreateSession.Enabled = true;
 this.LUName.Enabled = true;
 }

 private void DisableEverything()
 {
 // All Buttons are disabled.
 this.CreateSession.Enabled = false;
 this.ConnectCICS.Enabled = false;
 this.SendCCLI.Enabled = false;
 this.ClearScreen.Enabled = false;
 this.FillIPAddress.Enabled = false;
 this.FillPort.Enabled = false;
 this.PerformTX.Enabled = false;
 this.Disconnect.Enabled = false;

 // All Text Boxes are disabled.
 this.LUName.Enabled = false;
 this.CICSName.Enabled = false;
 this.IPAddress.Enabled = false;
 this.PortNumber.Enabled = false;
 }

 private void EnableDisconnect()
 {
 this.Disconnect.Enabled = true;
 }

 private void EnableCICSElements()
 {
 // Enable the cics name / connect.
 this.ConnectCICS.Enabled = true;
 this.CICSName.Enabled = true;

 // Enable the disconnect.
 EnableDisconnect();
 }

 private void EnableClearScreen()
 {
 // Enable clear screen.
 this.ClearScreen.Enabled = true;

 // Enable the disconnect.
 EnableDisconnect();
 }

 private void EnableCCLI()
 {
 // Enable Send CCLI.
 this.SendCCLI.Enabled = true;

 // Enable clear screen (and disconnect).
 EnableClearScreen();
 }

 private void EnableIPInfo()
 {
 // Enable IP Address, Port Number and Fill Buttons.
 this.IPAddress.Enabled = true;
 this.PortNumber.Enabled = true;
 this.FillIPAddress.Enabled = true;
 this.FillPort.Enabled = true;

 this.PerformTX.Enabled = true;

 // Enable clear screen (and disconnect).
 EnableClearScreen();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // Enable only the LU Name and Create.
 SetOpeningState();
 }

 private void CreateSession_Click(object sender, EventArgs e)
 {
 try
 {
 LUName.Text = LUName.Text.Trim();
 if (LUName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the LU or Pool Name");
 return;
 }
 m_Handler = new SessionDisplay();

 m_Handler.Connect("TRANSPORT=SNA;LOGICALUNITNAME=" + LUName.Text);
 m_Handler.Connection.HostCodePage = 37;

 FontFamily fontFamily = new FontFamily("Courier New");
 m_FixedFont = new Font(fontFamily, 10, FontStyle.Regular, GraphicsUnit.Pixe
l);
 ScreenText.Font = m_FixedFont;
 TraceScreen();

 // Disable every button and text box.
 DisableEverything();

 m_Handler.WaitForContent("TERM NAME", 20000);

 TraceScreen();

 // Enable Connect to CICS and Disconnect Session.
 EnableCICSElements();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void ConnectCICS_Click(object sender, EventArgs e)
 {
 try
 {
 CICSName.Text = CICSName.Text.Trim();
 if (CICSName.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the CICS Name");
 return;
 }

 // Disable every button and text box.
 DisableEverything();

 m_Handler.SendKey(CICSName.Text + "@E");
 TraceScreen();

 m_Handler.WaitForSession (SessionDisplayWaitType.PLUSLU, 5000);
 TraceScreen();

 m_Handler.WaitForContent(@"DEMONSTRATION", 20000);
 TraceScreen();

 // Enable clear screen.
 EnableClearScreen();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void ClearScreen_Click(object sender, EventArgs e)
 {
 try
 {
 // Disable every button and text box.
 DisableEverything();

 m_Handler.SendKey("@C");
 TraceScreen();

 m_Handler.WaitForSession(SessionDisplayWaitType.NotBusy, 5000);
 TraceScreen();

 // Enable enter ccli.
 EnableCCLI();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void SendCCLI_Click(object sender, EventArgs e)
 {
 try

 {
 // Disable every button and text box.
 DisableEverything();

 m_Handler.SendKey("CCLI@E");
 TraceScreen();

 m_Handler.WaitForContent("Call duration in milliseconds", 20000);
 TraceScreen();

 // Get the Jane Doe cursor Position.
 m_row = m_Handler.Cursor.Row;
 m_column = m_Handler.Cursor.Column;

 // Enable IP Address, Port and Perform Transaction.
 EnableIPInfo();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void FillIPAddress_Click(object sender, EventArgs e)
 {
 try
 {
 IPAddress.Text = IPAddress.Text.Trim();
 if (IPAddress.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the IP Address");
 return;
 }

 // Tab to the correct place from First Field.
 m_Handler.Cursor.Row = m_row;
 m_Handler.Cursor.Column = m_column;
 m_Handler.SendKey("@T@T");
 TraceScreen();

 m_Handler.SendKey(IPAddress.Text);
 TraceScreen();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void FillPort_Click(object sender, EventArgs e)
 {
 try
 {
 PortNumber.Text = PortNumber.Text.Trim();
 if (PortNumber.Text.Length == 0)
 {
 MessageBox.Show("You must fill out the Port Number");
 return;
 }

 // Tab to the correct place from First Field.
 m_Handler.Cursor.Row = m_row;
 m_Handler.Cursor.Column = m_column;
 m_Handler.SendKey("@T@T@T");
 TraceScreen();

 m_Handler.SendKey(PortNumber.Text);
 TraceScreen();

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void PerformTX_Click(object sender, EventArgs e)
 {
 try
 {
 // Disable every button and text box.
 DisableEverything();

 m_Handler.SendKey("@E");
 TraceScreen();

 // Wait for screen to calm down.
 m_Handler.WaitForSession(SessionDisplayWaitType.NotBusy, 5000);
 TraceScreen();

 // See if the Balance Field is filled out.
 m_Handler.Cursor.Row = m_row;
 m_Handler.Cursor.Column = m_column;
 TraceScreen();
 // Tab to the Account Number field.
 m_Handler.SendKey("@T");
 TraceScreen();
 // Move to the Next Field (Empty Stuff after 123456).
 m_Handler.MoveNextField();
 TraceScreen();
 // Move to the Next Field (Title, Account Balance).
 m_Handler.MoveNextField();
 TraceScreen();
 // Move to the Next Field (Account Balance).
 m_Handler.MoveNextField();
 TraceScreen();

 // Extract Data from this field.
 string accountBalance = m_Handler.CurrentField.Data;

 // Trim the string.
 accountBalance = accountBalance.Trim();

 // Only things to do now are clear screen or disconnect.
 EnableClearScreen();

 // If we failed (not Abended) then this field will be blank.
 if (accountBalance.Length == 0)
 throw new Exception("Failed to get Account Balance");
 else
 MessageBox.Show(accountBalance, "Account Balance");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void Disconnect_Click(object sender, EventArgs e)
 {
 // Disable every button and text box.
 DisableEverything();

 m_Handler.Disconnect();

 // Go back to the original state of buttons.
 SetOpeningState();

 }

 // Get the Unicode version of the Screen.
 public String CurrentScreen()
 {
 if (m_Handler == null)
 throw new Exception("C3270_E_NOT_CONNECTED");

 String screen = null;

 ScreenData screenData = m_Handler.GetScreenData(1, 1, -1);

 // Convert the EBCDIC to Unicode.
 screen = HostStringConverter.ConvertEbcdicToUnicode(screenData.Data);

 return screen;
 }

 // Print out the 3270 screen to a provided text box.
 private void TraceScreen()
 {
 // If we are not connected, no info.
 if (m_Handler == null)
 {
 ScreenText.ResetText();
 return;
 }

 string screen = CurrentScreen();
 short rows = m_Handler.Rows;
 short columns = m_Handler.Columns;

 ScreenText.ResetText();
 for (int i = 0; i < rows; i++)
 {
 ScreenText.Text += (i != 0 ? Environment.NewLine : "") + screen.Substring(c
olumns * i, columns);
 }

 // Add a divider.
 ScreenText.Text += Environment.NewLine + new string('-', (int)columns);

 ScreenText.Refresh();
 }
 }
}

Using Session Integrator for TN3270
Session Integrator can be used to interact with TN3270 sessions. The behavior for Session Integrator using the TN3270
protocol is the same as Session Integrator for LU2 except for a different connection string.

Connection string for TN3270 sessions.

TRANSPORT=TN3270;TN3270SERVER="{IP address or
hostname}";TN3270PORT="{default=23}";DEVICETYPE="{default=IBM-3278-2}"

Client-Based BizTalk Adapter for WebSphere MQ
Programmer's Guide

This section discusses how to use the client-based BizTalk Adapter for WebSphere MQ.

In This Section

Correlating Messages using Request-Reply

See Also
Other Resources
Network Integration Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704977(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744362(v=bts.10).aspx

Correlating Messages using Request-Reply
There are two ways to correlate messages in BizTalk Server orchestrations for MQSeries request-reply scenarios. The first is to
supply the correlation identifier by setting both the MessageID (MQMD_MsgID) and the CorrelationID (MQMD_CorrelationID)
to the same value. The second is to use the BizTalk_CorrelationId context property.

When sending the message to an MQSeries Queue Manager, you can set the message identifier (MQMD_MsgID) and the
correlation identifier (MQMD_CorrelationID) to the same value in the outgoing message. The MQSeries Queue Manager copies
the MessageID to the CorrelationID for the reply message. You can initialize the correlation sets for the outgoing message and
follow the correlation sets for the incoming message using the value of MQMD_CorrelationID.

Alternately, instead of setting the MessageID and CorrelationID to the same value in the outgoing message, you can use the
BizTalk_CorrelationID context property with a solicit-response send port of BizTalk Adapter for MQSeries.

To use identifiers provided by MQSeries Server for correlations in your BizTalk orchestration, BizTalk Server must first obtain
the identifier. Your application does this through a solicit-response request. BizTalk Server sends a solicit-response request
using MQSC Adapter to the MQSeries Server. In return, it receives a response with the message identifier (MQMD_MsgId) and
the correlation identifier (MQMD_CorrelationId).

For the outgoing message in a solicit-response send port, the adapter copies the MQMD_MsgID generated by MQSeries to the
MQSeries.BizTalk_CorrelationId context property.

When receiving messages, the adapter copies the MQMD_CorrelationId to the MQSeries.BizTalk_CorrelationId. In this case,
using correlation sets, you can initialize the correlation sets for the outgoing message and follow the correlation sets for the
incoming message using the MQSeries.BizTalk_CorrelationId.

Note
In the pre-release, the second mechanism is not supported.

See Also
Other Resources
Client-Based BizTalk Adapter for WebSphere MQ Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa770924(v=bts.10).aspx

Administration and Management Programmer's Guide
This section describes how to use Windows Management Instrumentation (WMI) to programmatically manage different tasks
for Host Integration Server.

In This Section

WMI and Host Integration Server

Using WMI with Host Integration Server

https://msdn.microsoft.com/en-us/library/aa746165(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746179(v=bts.10).aspx

WMI and Host Integration Server
Windows Management Instrumentation (WMI) is a component of the Microsoft Windows operating system that provides
management information and control in an enterprise environment. In the context of Microsoft Host Integration Server, WMI
provides a programming and scripting interface for four major administrative tasks: configuration, run-time control, health
monitoring, and trace capturing.

In This Section

WMI and the Host Integration Server Architecture

What You Can Do to Administer Host Integration Server Using WMI

What You Should Know Before Programming for WMI and Host Integration Server

Supported Platforms for Administering with WMI

https://msdn.microsoft.com/en-us/library/aa770553(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754273(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753874(v=bts.10).aspx

WMI and the Host Integration Server Architecture
The architecture of the Windows Management Instrumentation (WMI) technology includes management applications,
managed objects, providers, and the management infrastructure.

Management Applications

A management application is a Microsoft Windows-based application or service that processes or displays data from a
managed object. A management application can perform a variety of tasks in a Host Integration Server 2009 environment,
such as configuring servers running Host Integration Server, measuring performance, reporting outages, and correlating data.
The management application is what you will probably be creating using this programmer's guide.

Managed Objects

A managed object represents a logical or physical enterprise component. A managed object is modeled in WMI using the
Common Information Model (CIM), and is accessed by a management application through the WMI programming interface. A
managed object in the Host Integration Server 2009 environment can be any component of the system, from a link service
device driver communicating with hardware to software configuration information about users and connected logical units
(LU).

WMI Providers

A WMI provider is a COM object that exposes an interface to a managed object. The WMI providers supplied with Host
Integration Server 2009 use the WMI COM API to supply the WMI repository with data from Host Integration Server managed
objects, to handle requests on behalf of Host Integration Server management applications, and to generate notifications of
events.

Management Infrastructure

The management infrastructure is made up of WMI and the CIM repository. WMI lets users handle communications between
management applications and providers. Users store their static data in the CIM repository. Applications and providers
communicate through WMI using a common application programming interface (COM API). The COM API, which supplies
event notification and query processing services, is available in the C and C++ programming languages.

The CIM repository holds static management data. Static data is data that does not regularly change. WMI also supports
dynamic data, which is data that must be generated on demand because it changes frequently. Data can be placed in the CIM
repository by WMI or network administrators. Information can be placed in the CIM repository using either the managed
object format (MOF) language and the MOF Compiler or the WMI COM APIs. The WMI providers supplied with Host
Integration Server 2009 use both mechanisms.

Management applications can access the COM API directly to interact with WMI and the CIM repository to make management
requests of Host Integration Server. applications can also use other access methods such as Open Database Connectivity
(ODBC) and HTML to make these requests. An ODBC driver for WMI is included with Windows 2000. The protocol used for
communication between local and remote components is Distributed Component Object Model (DCOM).

See Also
Other Resources
WMI and Host Integration Server

https://msdn.microsoft.com/en-us/library/aa746165(v=bts.10).aspx

What You Can Do to Administer Host Integration Server Using
WMI

The Windows Management Instrumentation (WMI) providers for Host Integration Server are designed as programming and
scripting administration interfaces. As such, these providers are optimized to perform get and set information, and to start and
stop services. The following section describes what components of Host Integration Server you can administer with WMI, and
what tasks you can perform on those components.

In This Section

Administrative Tasks That You Can Perform on Host Integration Server Using WMI

Sections of Host Integration Server That You Can Administer with WMI

https://msdn.microsoft.com/en-us/library/aa705236(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770996(v=bts.10).aspx

Administrative Tasks That You Can Perform on Host
Integration Server Using WMI

Using the Windows Management Instrumentation (WMI) providers for Host Integration Server, you can administer a variety of
components on Host Integration Server. However, any administration you perform on Host Integration Server through WMI is
performed through the following tasks:

Logging on to WMI

Like most providers, you must first log on to the WMI provider to use it. Therefore, the WMI providers expose the logon
and security interfaces. For more information, see Logging on to Host Integration Server Through a WMI Provider.

Getting and setting information

Most of the tasks you will do through WMI will be checking information about different Host Integration Server services.
You can also set information. For more information, see Accessing a Host Integration Server Property through WMI.

Calling methods

The methods exposed on the WMI providers for Host Integration Server are designed mainly to administer various Host
Integration Server services. You can administer these services by calling the relevant Start, Stop, Pause, or Cancel
method through the relevant provider. For more information, see
Calling a Host Integration Server Method through WMI.

https://msdn.microsoft.com/en-us/library/aa771670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745546(v=bts.10).aspx

Sections of Host Integration Server That You Can Administer
with WMI

Host Integration Server 2009 is included with Windows Management Instrumentation (WMI) providers that grant
administrative access to the following areas:

Rolling out, configuring, and restoring services

The SNA Provider WMI Programmer's Reference and SNA Trace Provider WMI Programmer's Reference providers
expose information regarding the Setup and rollout procedures for Host Integration Server 2009. You can use instances
of classes such as MsSna_LinkService to set up and administer link services, and the classes derived from
MsSna_Config to configure your system. For more information, see Configuring Host Integration Server with WMI.

Starting and stopping services and connections

The WmiSna provider exposes the MsSna_Server, MsSna_Service, and MsSna_Connection classes. These classes and
their derived classes let you add an SNA service, start and stop services, pause services, and start and stop connections.
For more information, see Controlling Services and Connections with WMI.

Health monitoring

The WmiSnaStatus provider exposes information regarding the SNA service status. WmiSnaStatus uses a variety of
classes derived from MsSnaStatus_Event to describe changes in different parts of your system. For more information,
see How to Monitor the Health of Host Integration Server with WMI.

Trace capturing

The WmiSnaTrace provider supports classes and instances derived from the MsHisTrace_Config class, which displays
information regarding different configuration files. WmiSnaTrace also supports the MsHisTrace_Event, which
describes an event that occurs whenever a trace is triggered. For more information, see
How to Capture a Trace with WMI.

Additionally, Microsoft Windows 2000 includes several standard WMI providers, such as a registry provider, for accessing
information from the system registry. Windows 2000 also supplies a Windows 2000 Event Log provider that enables
applications to receive notifications of Windows 2000 and Host Integration Server 2009 events and to access the information
stored in the Windows 2000 event log. Third-party vendors can create custom providers to interact with managed objects
specific to their environment.

https://msdn.microsoft.com/en-us/library/aa771968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770528(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770961(v=bts.10).aspx

What You Should Know Before Programming for WMI and
Host Integration Server

To use this guide effectively, you should be familiar with the following:

Microsoft Host Integration Server 2009

SNA concepts

Windows Management Instrumentation (WMI)

Microsoft Windows Server 2003 operating systems, Windows XP Professional, Windows 2000 Server

Depending on the API and development tools used, you should also be familiar with the following languages:

WMI COM/DCOM APIs

WMI Query Language

WMI schema and MOF file syntax

Windows Script Host

Microsoft Visual Basic .NET

Visual Basic for Applications

Visual Basic Scripting Edition

JScript

Microsoft ODBC

Microsoft ADO

Active Server Pages

See Also
Other Resources
WMI and Host Integration Server

https://msdn.microsoft.com/en-us/library/aa746165(v=bts.10).aspx

Supported Platforms for Administering with WMI
Microsoft Windows Management Instrumentation (WMI) is included as part of Microsoft Windows Server 2003, Windows XP,
and Windows 2000. For use with Host Integration Server, the WMI Software Development Kit version 1.1 or later can be
installed on one of the following operating systems:

Windows Server 2003

Windows XP Professional

Windows 2000 Server

Windows 2000 Advanced Server

Windows 2000 Datacenter Server

Windows Script Host (WSH) is installed by default with Windows 2000.

Complete information about WSH is available as part of the Windows 2000 MSDN Platform SDK.

Using WMI with Host Integration Server
There are two main types of programming tasks described in this section: basic tasks and advanced tasks. A basic task is one of
the tasks common to most every Windows Management Instrumentation (WMI) application: logging on to WMI, getting and
setting properties, and calling methods. The advanced tasks are those built on the basic tasks, and describe the tasks for which
the developers incorporated WMI into Host Integration Server. Additionally, this section discusses common problems that you
may experience when installing and programming WMI for Host Integration Server, and solutions to those problems.

In This Section

Installing WMI on Host Integration Server

Basic WMI Tasks for Host Integration Server

Advanced WMI Tasks for Host Integration Server

Programming Considerations When Using WMI with Host Integration Server

https://msdn.microsoft.com/en-us/library/aa745201(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754756(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705521(v=bts.10).aspx

Installing WMI on Host Integration Server
Host Integration Server 2009 should automatically install the relevant files for you to use the relevant Windows Management
Instrumentation (WMI) interfaces. However, you may have to modify the location of certain managed object format (MOF) files
if you want to use WMI on remote servers, and you may have to modify certain security settings if you want to have WMI work
correctly as well.

In This Section

Installing WMI Providers on a Host Integration Server

How to Upgrade to Windows Server 2003 with Host Integration Server and WMI

How to Set ASP Security for Host Integration Server and WMI

https://msdn.microsoft.com/en-us/library/aa745025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754059(v=bts.10).aspx

Installing WMI Providers on a Host Integration Server
Microsoft Host Integration Server 2009 provides several Windows Management Instrumentation (WMI) providers. The
managed object format (MOF) files used by Host Integration Server are installed in the System directory below where Host
Integration Server 2009 is installed. The default location for these files is in the following subdirectory:

C:\Program Files\Microsoft Host Integration Server\System

To use or view these MOF files on other computers (a computer with the Administration client or end-user client, for example)
to develop applications, these MOF files must be copied from the Host Integration Server 2009 computer. These MOF files
document the WMI providers supplied with Host Integration Server 2009 and the class identifiers (CLSIDs), classes, properties,
and methods supported by these providers.

How to Upgrade to Windows Server 2003 with Host
Integration Server and WMI

Windows Server 2003 interacts with Windows Management Instrumentation (WMI) providers differently than previous
versions of the operating system. One change is how the operating system handles the credentials under which the provider is
hosted. If you upgraded your Host Integration Server computer to Windows Server 2003, you may have to recompile the Host
Integration Server WMI namespace using updated Windows Server 2003 MOF files. Recompiling with the new MOF files
should let you use WMI on Windows Server 2003.

To recompile the Host Integration Server WMI namespace for Windows Server 2003

Use the following syntax on the command prompt:

Mofcomp -class:forceupdate mof filename

The following examples show how to recompile each MOF file:

Mofcomp -class:forceupdate wmiHIS_xp.mof
Mofcomp -class:forceupdate wmiHIS_xp.mof
Mofcomp -class:forceupdate wmisnastatus_xp.MOF
Mofcomp -class:forceupdate wmisnatrace_xp.mof
Mofcomp -class:forceupdate wmisna_xp.mof

How to Set ASP Security for Host Integration Server and WMI
WMI scripting using Active Server Pages (ASP) is enabled automatically on Microsoft Windows 2000. For the correct security
setting for ASP on Windows 2000, it is recommended that you set Anonymous Authentication to Off and enable
Integrated Windows Authentication in the Internet Information Services (IIS) configuration for directories with ASP files
used with Host Integration Server. To access Host Integration Server configuration and status information, an application or
user must have the appropriate administrative rights, which are not available with anonymous authentication. Use the
following procedure on Windows 2000 to correctly configure security using ASP.

To configure security using ASP

1. To open IIS, click Start, point to Administrative Tools, point to Services, and then click IIS Admin Service, or click
Start, point to Settings, click Control Panel, click Administrative Tools, click Services, and then click IIS Admin
Service).

2. Move to the directory where the ASP files reside.

3. Right-click the directory, and then click Properties.

4. When the next dialog box appears, on the Directory Security tab, in the Anonymous Authentication section, click
Edit.

5. When the next dialog box appears, clear the Anonymous Authentication check box, select Integrated Windows
Authentication, and then click OK to save these settings.

This sets that particular directory to use Integrated Windows Authentication instead of Anonymous Authentication
without affecting any of your other directories. If there are other ASP files that require or allow Anonymous Authentication
you may want to create a new directory in which you can turn off Anonymous Authentication and store the WMI ASPs
there. Any script that calls ExecMethod from an ASP page should be set up to use Integrated Windows Authentication to
verify the user trying to run the script.

Additionally, when using a "REFRESH" variable on a Web page and the page is being used to start and stop SNA service
through ASP scripting, the Web browser client (Internet Explorer, for example) should set the Every visit to the page option,
as shown in the following procedure.

To use a Web browser client to start and stop SNA services through ASP scripting

1. Click Start, point to Programs, and then click Internet Explorer.

2. In Internet Explorer, on the Tools menu, click Internet Options.

3. In the Internet Options dialog box, on the General tab, in the Temporary Internet file section, click Settings.

4. In the Settings dialog box, in the Check for newer versions of stored pages section, make sure that the option Every
visit to the page is selected.

5. Click OK.

If this change is not made on the Web browser client, some ASP scripts do not run correctly because Internet Explorer is
caching older results.

Basic WMI Tasks for Host Integration Server
Regardless of what you may want to do with Windows Management Instrumentation (WMI), most actions you will perform
with it are one of the following: logging on to WMI, getting or setting WMI properties, or calling WMI methods.

In This Section

Logging on to Host Integration Server Through a WMI Provider

Accessing a Host Integration Server Property through WMI

Calling a Host Integration Server Method through WMI

https://msdn.microsoft.com/en-us/library/aa771670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745546(v=bts.10).aspx

Logging on to Host Integration Server Through a WMI Provider
The first step that you must perform when you create a WMI application or script is to log on to WMI and set the security for
your application. You can perform this action either by using the SWbemLocator locator object, or with a moniker.

To connect to WMI using SWbemLocator

1. Retrieve a locator object with a call to CreateObject.

2. Log on to the namespace with a call to ConnectServer.

3. Set the impersonation level with a call to Security._ImpersonationLevel.

4. Implement your task.

The following code sample shows how to connect to WMI using SWbemLocator:

Another way you can connect to WMI is by using a moniker. A moniker is essentially a compact version of the above lines of
code, and contains the WMI namespace and other connection information.

To connect to WMI using a moniker

1. Call GetObject with a moniker in the input parameter.

2. Implement your task.

The following example shows how to connect to WMI using a moniker:

 Set WmiLocator = CreateObject("WbemScripting.SWbemLocator")
 Set WmiNameSpace = WmiLocator.ConnectServer("","root\MicrosoftHIS","", "","", "",0,Noth
ing)

 if Err = 0 then
 'Retrieve the SNA_LU_Lua class
 Set ServerClass = WmiNamespace.Get("MsSNA_LuLua")
 Set Path = ServerClass.Path_
 ServerClass.Security_.impersonationLevel = 3
 Set LU3270 = ServerClass.Instances_

 set objService = GetObject("winmgmts:root/microsofthis")

Accessing a Host Integration Server Property through WMI
Getting and setting an instance is one of the most common retrieval procedures you are most likely to perform on Host
Integration Server using Windows Management Instrumentation. You can retrieve an instance using the GetObject method,
and modify it using the various Put_ methods.

In This Section

How to Retrieve an Instance

How to Retrieve Multiple Instances

How to Modify or Update an Instance

https://msdn.microsoft.com/en-us/library/aa771261(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745430(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744767(v=bts.10).aspx

How to Retrieve an Instance
You can retrieve a local copy of the instance with a call to GetObject with the object path of the instance. The following
example shows how to retrieve an IPDLC connection using WMI:

Besides retrieving a single instance, you can also retrieve collections of WMI instances by querying the WMI database with a
SELECT statement.

Set ObjClass = Namespace.Get("MsSna_ConnectionIpDlc")

How to Retrieve Multiple Instances
You can retrieve a local copy of the collection with a call to ExecQuery. After you have retrieved an instance, you can modify
and update the instance. The following example shows how to retrieve a collection:

Set colItems = objWMIService.ExecQuery("Select * from MSSnaStatus_Connection")

How to Modify or Update an Instance
After you have retrieved an instance, you can modify your local copy and update your changes to the server.

To modify or update an instance

1. Retrieve a local copy of the object with a call to GetObject.

2. If necessary, view the properties of the object with a call to the Properties_ method.

Although not required, you may want to know the value of the property before you change it.

3. Make any changes to the object properties with a call to the SWbemProperty.Value method.

The Value method changes only the local copy. To save your changes to WMI, you must put the complete copy back in
the WMI repository.

4. Put the object back in the WMI repository with a call to the SWbemObject.Put_ or SWbemObject.PutAsync_ methods.

As the names imply, Put_ updates synchronously while PutAsync_ updates asynchronously. Either method copies over
the original instance with your modified instance. However, to take advantage of asynchronous processing, you must
create a SWbemSink object.

The following example shows how to update an instance:

 Set ObjClass = Namespace.Get("MsSna_LinkService_IpDlc")
' Create new link service instance
 Set NewInst = ObjClass.SpawnInstance_
 ' Set instance properties
 NewInst.NetworkName = Left(strComputerName, 8)
 NewInst.CPName = "IPDLCLS"
 NewInst.NodeID = "05D.FFFFF"
 NewInst.AddressType = 2
 NewInst.LocalAddress = Trim(strLocalAddress)
 NewInst.LENNode = strLenNode
 NewInst.PrimaryNNS = strPrimaryNNS
 if (strBackupNNS <> Empty) then
 NewInst.BackupNNS = strBackupNNS
 end if
 ' Commit the instance
 NewInst.Put_

Calling a Host Integration Server Method through WMI
You have two options when calling methods through WMI: you may call a WMI method, or a provider method. A WMI method
is supported by the WMI infrastructure, and provides general services such as query support or log on access. For example,
Logging on to Host Integration Server Through a WMI Provider and
Accessing a Host Integration Server Property through WMI describe calling the GetObject and ExecQuery WMI methods. In
contrast, a provider method is supported by the provider, and is unique to each service. Most HIS provider methods deal with
controlling services. For example, the WmiSna provider supports the MsSna_ServiceSNA class, which in turn supports the
Start, Stop, Pause, and Resume methods. The actual process of calling a WMI method or a provider method is the same as
calling any other COM or scripting interface.

https://msdn.microsoft.com/en-us/library/aa771670(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705667(v=bts.10).aspx

Advanced WMI Tasks for Host Integration Server
An advanced Windows Management Instrumentation (WMI) task is a task that uses the basic WMI programming tasks to
perform an activity specific to Host Integration Server. Generally, an advanced task deals with setting up Host Integration
Server on a server, controlling a service or connection, or monitoring an aspect of your enterprise.

In This Section

Configuring Host Integration Server with WMI

Controlling Services and Connections with WMI

How to Monitor the Health of Host Integration Server with WMI

How to Capture a Trace with WMI

https://msdn.microsoft.com/en-us/library/aa746045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770961(v=bts.10).aspx

Configuring Host Integration Server with WMI
One of the reasons Windows Management Instrumentation (WMI) is implemented in Host Integration Server is to help in
configuring and updating different technologies in your enterprise. As an extended sample, this section describes how to
configure an IPDLC link service. This sample is a command prompt script that takes as input the host you want to go against
and configures an IPDLC link service and independent session connection to the host.

In This Section

How to Configure an IPDLC Link Service

How to Retrieve an Adapter Name

How to Create a Link Service

How to Create an Independent Session

How to Handle Errors While Creating a Link Service

https://msdn.microsoft.com/en-us/library/aa705473(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746077(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704989(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705170(v=bts.10).aspx

How to Configure an IPDLC Link Service
To configure an IPDLC link service

1. Retrieve the command prompt instructions.

2. If necessary, retrieve the adapter name.

3. Create the link service.

4. Create the independent session.

The following code sample describes how to configure an IPDLC link service. The following table describes the relevant
command prompt switches:

Command line switch Description

-p PrimaryNNS: the Primary Network Node Server

-b (Optional) BackupNNS: Backup Network Node Server

-d (Optional) device: Overrides the adapter name discovered

-l (Optional) LenNode: Used to configure the LEN node (default is 1st)

 On Error Resume Next
'Declarations and Constants
 Dim strPrimaryNNS
 Dim strBackupNNS
 Dim strLocalAddress
 Dim strLenNode
 Dim strComputerName
 Dim wshEnvProc
'Defaults
 strPrimaryNNS = ""
 strBackupNNS = ""
 strLocalAddress = ""
 strLenNode = "SNA Service"
'Get the command line
 Set objArgs = WScript.Arguments
 For I = 0 to objArgs.Count - 1
 select case objArgs(I)
 Case "-p"
 I = I + 1
 strPrimaryNNS = objArgs(I)
 case "-b"
 I = I + 1
 strBackupNNS = objArgs(I)
 case "-d"
 I = I + 1
 strLocalAddress = objArgs(I)
 case "-l"
 I = I + 1
 strLenNode = objArgs(I)
 case else
 Wscript.Echo "Script Usage: "
 Wscript.Echo " -p Primary NNS (Required)"
 Wscript.Echo " -b Backup NNS (Optional)"
 wscript.echo " -d Device Name (Optional)"
 wscript.echo " -l Len Node (Optional)"
 return
 end select
 Next
'NNS parameter is required
 if strPrimaryNNS = "" then

 Wscript.Echo "Please supply the -p (PrimaryNNS) parameter"
 return
 end if
'See if we need to get a device
 if strLocalAddress = "" then
 GetAdapterName()
 end if
' Two methods for creating the link service and independent session connection
 CreateIPDLCLinkService
 CreateIndependentSession

How to Retrieve an Adapter Name
One of the tasks you must perform when setting up an IPDLC connection is to retrieve the name of the adapter you are
connecting with.

To retrieve an adapter name

1. Connect to the namespace on the local computer using GetObject.

2. Retrieve the name of the adapter using ExecMethod with GetAllNetworkAdapters as the method to execute.

The following example shows how to retrieve the name of the first adapter on a system:

Private Sub GetAdapterName()
 Dim objService, outParam, objSD, MyArray, nArray
 set objService = GetObject("winmgmts:root/microsofthis")
 set outParam = objService.Execmethod("MsSna_LinkService_IPDLC",
"GetAllNetworkAdapters")
 objSD = Join(outParam.Adapters, ",")
 MyArray = Split(objSD, ",")
 nArray = Ubound(MyArray)
 if nArray < 0 then
 strLocalAddress = ""
 else
 strLocalAddress = MyArray(0) 'default to first one
 end if
End Sub

How to Create a Link Service
Another task you may want to perform when setting up an IPDLC connection is to create the link service.

To create a link service

1. Connect to the namespace on the local computer using GetObject.

2. Create the new link service instance using SpawnInstance.

3. Set the properties of the new link service.

4. Commit the new instance to memory using the Put_ method.

The following example shows how to create a new link service:

private Sub CreateIPDLCLinkService
 on error resume next
' Connect to the namepsace on the local machine
 Set Namespace = GetObject("Winmgmts:root\MicrosoftHIS")
 Set ObjClass = Namespace.Get("MsSna_LinkService_IpDlc")
' Create new link service instance
 Set NewInst = ObjClass.SpawnInstance_
 ' Set instance properties
 NewInst.NetworkName = Left(strComputerName, 8)
 NewInst.CPName = "IPDLCLS"
 NewInst.NodeID = "05D.FFFFF"
 NewInst.AddressType = 2
 NewInst.LocalAddress = Trim(strLocalAddress)
 NewInst.LENNode = strLenNode
 NewInst.PrimaryNNS = strPrimaryNNS
 if (strBackupNNS <> Empty) then
 NewInst.BackupNNS = strBackupNNS
 end if
 ' Commit the instance
 NewInst.Put_
 if Err.Number <> 0 then
 PrintWMIErrorThenExit Err.Description, Err.Number
 Wscript.Echo "Link Service Creation Failed " & Err.Description
 Else
 Wscript.Echo "Link Serice Created Successfully"
 end if
End Sub

How to Create an Independent Session
After you have created the link service, you need to create an independent session to use.

To create an independent session

1. Create the "Independent Sessions Connection" record.

2. Validate that the session was created.

3. Define the properties of the new connection.

The following code sample shows how to create an independent session:

Private Sub CreateIndependentSession
 On error resume next
'Create the Independent Sessions Connection record.
 Set Namespace = GetObject("Winmgmts:root\MicrosoftHIS")
'Validate that the instance was created
 strQuery = "select * from MsSna_LinkService_IpDlc"
 ' this is our instance
 Set instset = Namespace.ExecQuery(strQuery)
 if (instset.Count<>1) Then
 wscript.echo "No instances found for the link service query " & strQuery
 End If
 For each inst_ in instSet
 Set Inst = inst_ ' This is our new instance
 Next ' end of query workaround
 ' define independent sessions connection
 Set ObjClass = Namespace.Get("MsSna_ConnectionIpDlc")
 Set IndepConn = ObjClass.SpawnInstance_
 IndepConn.Activation = 0
 IndepConn.Adapter = "SNAIP1"
 IndepConn.AllowIncoming = TRUE
 IndepConn.BackupDLUSCPName = ""
 IndepConn.BackupDLUSNetName = ""
 IndepConn.BlockId = "05D"
 IndepConn.Comment = ""
 IndepConn.CompressionLevel = 0
 IndepConn.DLURRetryDelay = 0
 IndepConn.DLURRetryLimit = 0
 IndepConn.DLURRetryType = 0
 IndepConn.DynamicLuDef = TRUE
 IndepConn.IndepSess = TRUE
 IndepConn.LocalControlPoint = ""
 IndepConn.LocalNetName = ""
 IndepConn.Name = Inst.Name
 IndepConn.NodeId = "FFFFF"
 IndepConn.PartnerConnectionName = ""
 IndepConn.PeerRole = 1
 IndepConn.PrimDLUSCPName = ""
 IndepConn.PrimDLUSNetName = ""
 IndepConn.RemoteAddress = ""
 IndepConn.RemoteBlockId = ""
 IndepConn.RemoteControlPoint = ""
 IndepConn.RemoteEnd = 1
 IndepConn.RemoteNetName = ""
 IndepConn.RemoteNodeId = ""
 IndepConn.RetryDelay = 0
 IndepConn.RetryLimit = 0
 IndepConn.Service = strComputerName
 IndepConn.XIDFormat = 1
 IndepConn.Put_
 if Err.Number <> 0 then
 PrintWMIErrorThenExit Err.Description, Err.Number
 End If
End Sub

See Also
Reference
Creating a Link Service

How to Handle Errors While Creating a Link Service
As with most scripts, you need to write functions to handle any errors. This error handler scans the Windows Management
Instrumentation (WMI) error queue for any relevant error information and posts and displays the error to the user.

The following sample shows how to handle errors while you are creating a link service:

Syntax

Sub PrintWMIErrorThenExit(strErrDesc, ErrNum)
 On Error Resume Next
 Dim objWMIError : Set objWMIError = CreateObject("WbemScripting.SwbemLastError")
 wscript.echo TypeName(objWMIError)

 If (TypeName(objWMIError) = "Empty") Then
 wscript.echo strErrDesc & " (HRESULT: " & Hex(ErrNum) & ")."
 Else
 wscript.echo "Extended error information:"
 wscript.echo objWMIError.Description
 Set objWMIError = nothing
 End If
 Exit sub
End Sub

Controlling Services and Connections with WMI
Another task that Windows Management Instrumentation (WMI) can perform is accessing services and connections
throughout Host Integration Server. Two common procedures in this realm are displaying the status of all current connections,
and retrieving information about a specified connection.

In This Section

How to Display Connection Status

How to Retrieve Connection Information

https://msdn.microsoft.com/en-us/library/aa753873(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705455(v=bts.10).aspx

How to Display Connection Status
Retrieving the status of a connection is a common task that you might want to perform with WMI.

To display the status of a connection

1. Connect to the namespace using GetObject with a moniker in the parameter.

2. Enumerate MsSnaStatus_Connections using ExecQuery.

3. Display error codes if necessary.

The following example shows how to display the status of all the connections defined in Host Integration Server (HIS):

Private Function DisplayConnectionStatus ()
'Variables
 Dim objWMIService, colItems, iCounter, objItem, _
 strReport
'Connect to the namespace
 Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\microsofthis")
'Enumerate the Class
 Set colItems = objWMIService.ExecQuery("Select * from MSSnaStatus_Connection")
 iCounter = colItems.Count
 if Err.Number = 0 then
 For Each objItem in colItems
 strReport = "Connection " & objItem.Name & " status is " & objItem.StatusText
 Wscript.Echo strReport
 strReport = ""
 Next
 else
 Wscript.Echo "An error occurred enumerating instances for status " & Err.Number & " "
& Err.Description
 End If
 DisplayConnectionStatus = true
End Function

How to Retrieve Connection Information
Another common task you may want to perform with Windows Management Instrumentation (WMI) for Host Integration
Server is retrieving information regarding a connection.

To retrieve connection information

1. Connect to the namespace using GetObject with a moniker in the parameter.

2. Retrieve all connection information objects using ExecQuery.

3. Display the information as appropriate.

The following code sample shows how to retrieve information about an SDLC connection:

On Error Resume Next
strComputer = "."
Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\MicrosoftHIS")
Set colItems = objWMIService.ExecQuery("Select * from MsSna_ConnectionSdlc",,48)
For Each objItem in colItems
 Wscript.Echo "Activation: " & objItem.Activation
 Wscript.Echo "Adapter: " & objItem.Adapter
 Wscript.Echo "AllowIncoming: " & objItem.AllowIncoming
 Wscript.Echo "BlockId: " & objItem.BlockId
 Wscript.Echo "Comment: " & objItem.Comment
 Wscript.Echo "CompressionLevel: " & objItem.CompressionLevel
 Wscript.Echo "DialData: " & objItem.DialData
 Wscript.Echo "DynamicLuDef: " & objItem.DynamicLuDef
 Wscript.Echo "LocalControlPoint: " & objItem.LocalControlPoint
 Wscript.Echo "LocalNetName: " & objItem.LocalNetName
 Wscript.Echo "MaxBtu: " & objItem.MaxBtu
 Wscript.Echo "Name: " & objItem.Name
 Wscript.Echo "NodeId: " & objItem.NodeId
 Wscript.Echo "PartnerConnectionName: " & objItem.PartnerConnectionName
 Wscript.Echo "PeerRole: " & objItem.PeerRole
 Wscript.Echo "RemoteBlockId: " & objItem.RemoteBlockId
 Wscript.Echo "RemoteControlPoint: " & objItem.RemoteControlPoint
 Wscript.Echo "RemoteEnd: " & objItem.RemoteEnd
 Wscript.Echo "RemoteNetName: " & objItem.RemoteNetName
 Wscript.Echo "RemoteNodeId: " & objItem.RemoteNodeId
 Wscript.Echo "RetryDelay: " & objItem.RetryDelay
 Wscript.Echo "RetryLimit: " & objItem.RetryLimit
 Wscript.Echo "SdlcContactLimit: " & objItem.SdlcContactLimit
 Wscript.Echo "SdlcContactTO: " & objItem.SdlcContactTO
 Wscript.Echo "SdlcDataRate: " & objItem.SdlcDataRate
 Wscript.Echo "SdlcDuplex: " & objItem.SdlcDuplex
 Wscript.Echo "SdlcEncoding: " & objItem.SdlcEncoding
 Wscript.Echo "SdlcIdleLimit: " & objItem.SdlcIdleLimit
 Wscript.Echo "SdlcIdleTO: " & objItem.SdlcIdleTO
 Wscript.Echo "SdlcLeasedLine: " & objItem.SdlcLeasedLine
 Wscript.Echo "SdlcMultiPrimary: " & objItem.SdlcMultiPrimary
 Wscript.Echo "SdlcPollAddress: " & objItem.SdlcPollAddress
 Wscript.Echo "SdlcPollLimit: " & objItem.SdlcPollLimit
 Wscript.Echo "SdlcPollRate: " & objItem.SdlcPollRate
 Wscript.Echo "SdlcPollTO: " & objItem.SdlcPollTO
 Wscript.Echo "SdlcStandby: " & objItem.SdlcStandby
 Wscript.Echo "SdlcSwitchTO: " & objItem.SdlcSwitchTO
 Wscript.Echo "Service: " & objItem.Service
 Wscript.Echo "StatusText: " & objItem.StatusText
 Wscript.Echo "XIDFormat: " & objItem.XIDFormat
Next

How to Monitor the Health of Host Integration Server with
WMI

Health monitoring refers to viewing the current status of different aspects of Host Integration Server through the
WmiSnaStatus provider. You can access WmiSnaStatus provider in the same manner as you would any other instance and
method provider. You use ExecQuery to query for the relevant information, and then display the information to screen or
write the information to a log file. Some WmiSnaStatus classes also have methods that let you start and stop related services.

To monitor the health of Host Integration Server with WMI

1. Connect to the namespace using GetObject with a moniker in the parameter.

2. Retrieve the object representing the SNA Status provider using ExecQuery.

3. Use the information gathered from the ExecQuery as appropriate.

You can see an example of health monitoring in How to Display Connection Status.

https://msdn.microsoft.com/en-us/library/aa753873(v=bts.10).aspx

How to Capture a Trace with WMI
Trace capturing refers to the process of viewing trace logs. For Host Integration Server, this typically refers to collating data
stored in trace log objects into a single file and saving it to a specified location. You can capture SNA trace information in the
same manner as you would retrieve any other information from Windows Management Instrumentation (WMI). You use
ExecQuery to make a call to the relevant object, and then write the information to the location you want.

To capture a trace

1. Connect to the namespace using GetObject with a moniker in the parameter.

2. Retrieve the objects representing the SNA Application using ExecQuery.

The core functionality of capturing a trace can be described in the following code:

Everything else in this sample is to support logging to a file.

The following code example shows how to capture a trace:

Set colItems = objWMIService.ExecQuery("Select * from MsHisTrace_SNAApplication",,48)
Set colItems = objWMIService.ExecQuery("Select * from MsHisTrace_SNABase",,48)

On Error Resume Next
strComputer = "."
Dim iCounter
'Initialize
 CreateLogFile
 Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\MicrosoftHIS")

'Validate TraceSnaApplication
 iCounter = 0
 Set colItems = objWMIService.ExecQuery("Select * from MsHisTrace_SNAApplication",,48)
For Each objItem in colItems
 Wscript.Echo "APPCTrace: " & objItem.APPCTrace
 Wscript.Echo "CPICTrace: " & objItem.CPICTrace
 Wscript.Echo "CSVTrace: " & objItem.CSVTrace
 Wscript.Echo "EnabledTraces: " & objItem.EnabledTraces
 Wscript.Echo "InternalMessageTrace: " & objItem.InternalMessageTrace
 Wscript.Echo "LU62Trace: " & objItem.LU62Trace
 Wscript.Echo "LUATrace: " & objItem.LUATrace
 Wscript.Echo "T3270Trace: " & objItem.T3270Trace
 iCounter = iCounter + 1
Next

if iCounter > 0 then
 Wscript.Echo "Number of Instances found " & iCounter
else
 Wscript.Echo "No Instances Found"
End If

 iCounter = 0
 Set colItems = objWMIService.ExecQuery("Select * from MsHisTrace_SNABase",,48)
For Each objItem in colItems
 Wscript.Echo "EnabledTraces: " & objItem.EnabledTraces
 Wscript.Echo "InternalMessageTrace: " & objItem.InternalMessageTrace
 Wscript.Echo "LU62Trace: " & objItem.LU62Trace
 Wscript.Echo "T3270Trace: " & objItem.T3270Trace
 iCounter = iCounter + 1
Next

if iCounter > 0 then
 Wscript.Echo "Number of Instances found " & iCounter
else
 Wscript.Echo "No Instances Found"
End If

Programming Considerations When Using WMI with Host
Integration Server

The following section discusses various issues that you need to know about when programming Windows Management
Instrumentation (WMI) with Host Integration Server.

In This Section

Using Host Integration Server and WMI on a Backup Server

Using Duplicate LU Pools with Host Integration Server and WMI

https://msdn.microsoft.com/en-us/library/aa744962(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705648(v=bts.10).aspx

Using Host Integration Server and WMI on a Backup Server
There are some restrictions on using Windows Management Instrumentation (WMI) and Host Integration Server 2009
regarding connections to backup servers. The Snabase works to synchronize the information in the COM.CFG configuration file
on the primary server across all backup servers. Each backup server has a local copy of the COM.CFG file from this
synchronization process. WMI has a limitation that it will not attempt to read the local backup server's copy of COM.CFG if the
primary server is alive. This request will always be forwarded to the primary server.

A client that connects to a WMI provider running on a backup server cannot retrieve any information or make configuration
changes. This is a limitation of DCOM which does not permit impersonation outside the local computer. When a client on one
computer connects to a WMISNA provider on another computer that is a backup server, the client is using DCOM to connect to
the backup Host Integration Server computer. When the WMI provider on the backup server tries to access the COM.CFG file
from the primary server, this is not allowed by DCOM because the application is trying to impersonate the user across the
computer boundary.

You can work around this limitation on Windows 2000 using delegation.

The limitation against accessing a remote COM.CFG file does not apply when the primary server is down. In this case the server
will fail-over to a backup and use replicated copies.

Using Duplicate LU Pools with Host Integration Server and
WMI

A VBScript ImportExport sample program written in Microsoft Visual Basic Scripting Edition (VBScript) is provided as part of
the Host Integration Server SDK. This tool enables configuration information from Host Integration Server to be exported and
saved to a text file using Windows Management Instrumentation (WMI) in MOF format. This text file can also be changed and
imported using this sample program to change configuration information.

A potential problem using WMI can occur with duplicate LU pools that can be illustrated using this sample program. Typically,
exporting and re-importing the MOF file would not create duplicates. However, the Host Integration Server WMI provider
allows pool-to-workstation association instances to be duplicated because, by design, duplicates of this type of object are
allowed. You can associate the same pool to the same workstation or user multiple times. This is used by emulators to create
more sessions for clients. Therefore, you cannot identify one such association from another. The WMISNA provider,
WMISNA.DLL, always creates new associations of these types, even if an association with the same pair (Pool, Wks) already
exists. This object type is allowed only in this specific case. However, this can create a problem for applications developed using
WMI (the Import/Export sample, for example) if the application does not know not to create the duplicates.

The follow sequence illustrates this issue using the ImportExport sample:

1. Use SNA Manager to create a pool workstation association.

2. Export the SNA configuration to a MOF file using the ImportExport utility.

3. Import that same MOF file again using the ImportExport utility.

4. Duplicate pool-workstation associations are created.

The result is that if a client uses the import/export sample or a similar application developed using WMI on a Host Integration
Server configuration that has pool-to-workstation associations, then the number of associations will effectively double after
running the sample. The workaround using the ImportExport sample would be as follows:

1. Export the configuration to a MOF file.

2. Remove the pool to workstation associations from the MOF file that was just created.

3. Re-import the MOF file.

When importing the configuration from one domain to another using the ImportExport sample or a similar application
developed using WMI, then step 2 should be ignored. Typically, WMI applications should copy an existing configuration to a
blank configuration file so this condition does not occur.

Messaging Programmer's Guide
This section of the Host Integration Server 2009 SDK describes the extensions and components that make up Microsoft
MSMQ-MQSeries Bridge.

For general information about developing for MSMQ-MQSeries Bridge, see Messaging Programmer's Reference.

For sample programs illustratating MSMQ-MQSeries Bridge, see Messaging Samples.

In This Section

MSMQ-MQSeries Bridge Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754390(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

MSMQ-MQSeries Bridge Programmer's Guide
The MSMQ-MQSeries Bridge provides the ability to send and receive messages between Message Queuing (also known as
MSMQ) and IBM MQSeries easily and efficiently. The MSMQ-MQSeries Bridge Extensions enable a programmer to develop
and control how these message transfers will occur and how properties of a message are translated.

The main programming issues when using the MSMQ-MQSeries Bridge Extensions fall into three areas:

Queue addressing

Message conversion

Limitations to specific API functions

Queue addressing deals with how to specify the name of an MQSeries destination queue in a Message Queuing API call, or the
name of an MSMQ destination queue in an MQSeries API call. Message conversion deals with how the MSMQ-MQSeries
Bridge converts MSMQ message properties to MQSeries message data structures, and how the MSMQ-MQSeries Bridge
converts MQSeries message data structures to MSMQ properties. These topics are covered in detail in separate sections.
Limitations to the MSMQ-MQSeries Bridge Extensions are discussed in detail in the section on programming considerations.

In This Section

Platforms Supported by MSMQ-MQSeries Bridge Extensions

Queue Addressing Using MSMQ-MQSeries Bridge

Converting Messages Using MSMQ-MQSeries Bridge

MSMQ-MQSeries Bridge Extensions Mechanism

Programming Considerations When Using MSMQ-MQSeries Bridge Extensions

Registry Settings Used By MSMQ-MQSeries Bridge Extensions

https://msdn.microsoft.com/en-us/library/aa772073(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705491(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770969(v=bts.10).aspx

Platforms Supported by MSMQ-MQSeries Bridge Extensions
The MSMQ-MQSeries Bridge Extensions can access message queues on IBM MQSeries systems through SNA LU 6.2 or TCP/IP
using Host Integration Server 2009 and MSMQ-MQSeries Bridge:

On Windows 2000, The MSMQ-MQSeries Bridge requires that Message Queuing (also known as MSMQ) be set up as a
Message Queuing server, not a workgroup, with routing enabled. MSMQ-MQSeries Bridge Manager, which is used to
configure and manage MSMQ-MQSeries Bridge, can be installed on any of the platforms supported by Host Integration
Server 2009.

Queue Addressing Using MSMQ-MQSeries Bridge
This section explains how to specify the name of an MQSeries destination queue in a Message Queuing (also known as MSMQ)
call, or the name of a Message Queuing destination queue in an MQSeries call. This information is needed to specify the
destination queue where you are sending a message.

In This Section

Addressing an MQSeries Queue in Message Queuing

Sending a Message Queuing Message to an MQSeries Queue

Addressing a Message Queuing Queue in MQSeries

Sending a Message to a Message Queuing Queue in MQSeries

https://msdn.microsoft.com/en-us/library/aa771471(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771973(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745589(v=bts.10).aspx

Addressing an MQSeries Queue in Message Queuing
In Message Queuing, address MQSeries queues as if they are on the Message Queuing network. For the Message Queuing
computer name, specify the MQSeries Queue Manager name. For the Message Queuing queue name, specify the MQSeries
queue name.

For example, if the MQSeries Queue Manager is MQS1, and the queue name is MQS_QUEUE4, the Message Queuing path
name is MQS1\MQS_QUEUE4.

Sending a Message Queuing Message to an MQSeries Queue
To send a message to an MQSeries queue, you follow the normal Message Queuing (also known as MSMQ) procedure, which
is to determine the Message Queuing format name corresponding to the path name. More precisely, you must determine the
format name of the Message Queuing foreign queue representing the MQSeries queue. If the foreign queue does not already
exist, you can create it and determine its format name by calling MQCreateQueue. If the foreign queue already exists, you can
call MQPathNameToFormatName, or you can determine the format name in Message Queuing Explorer.

Call MQOpenQueue with the format name argument to open the queue for send access.

Call MQSendMessage and specify the destination queue handle returned by MQOpenQueue.

In the MSMQ-to-MQSeries direction, MSMQ-MQSeries Bridge sends transacted messages using the MSMQ to MQS message
pipe and untransacted messages using the MSMQ to MQS transactional message pipe.

Addressing a Message Queuing Queue in MQSeries
There are two ways to address a Message Queuing (also known as MSMQ) queue from MQSeries:

By the Message Queuing format name

By the Message Queuing path name

By either method, you specify the name in the object descriptor (MQOD structure) of the MQSeries message.

Note
MSMQ-MQSeries Bridge supports the following types of format names:

Note
For detailed addressing syntax and examples, see the section on Object Descriptors under
Converting Messages Sent from MQSeries to Message Queuing.

 PUBLIC=<GUID>
 PRIVATE=<machine GUID>\<file number>
 DIRECT=OS:<Path name>

https://msdn.microsoft.com/en-us/library/aa753920(v=bts.10).aspx

Sending a Message to a Message Queuing Queue in MQSeries
To send a message from MQSeries to Message Queuing (also known as MSMQ), you specify the Message Queuing format or
path name of the destination queue in the object descriptor. Call MQOPEN to open the queue. Call MQPUT or MQPUT1 to
send the message.

The addressing syntax enables you to send a message by either MQS->Message Queuing message pipe or MQS->Message
Queuing transactional message pipe.

Converting Messages Using MSMQ-MQSeries Bridge
This section describes how the MSMQ-MQSeries Bridge converts Message Queuing (also known as MSMQ) message
properties to MQSeries message data structures and how MQSeries data structures are converted to Message Queuing
message properties.

When the MSMQ-MQSeries Bridge transmits a message, it converts the message properties between the Message Queuing
and MQSeries formats. When equivalent properties exist in the two systems, the MSMQ-MQSeries Bridge assigns the property
values directly. For example, the Message Queuing messagebody property is converted to the MQSeries messagebuffer. The
Message Queuing messagebodylength is converted to the MQSeries messagebufferlength.

When partially equivalent properties exist in the two systems, the MSMQ-MQSeries Bridge assigns the properties according to
conversion rules. For example, the MQSeries property MQMD.Report is converted to the Message Queuing properties
PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL.

When a property has no equivalent, the MSMQ-MQSeries Bridge either ignores the property or assigns a default value. For
example, the Message Queuing property PROPID_M_AUTH_LEVEL refers to a specific Message Queuing authentication
method that is not supported by MQSeries. In a message sent from Message Queuing to MQSeries, this property is ignored. In
a message received by Message Queuing from MQSeries, the MSMQ-MQSeries Bridge assigns the Message Queuing default
value to the property.

You can supplement or override the conversions described here using the Message Queuing message extension property
(PROPID_M_EXTENSION). For information about overriding the default conversions, see Using Message Extensions.

When you send a message from Message Queuing to IBM MQSeries, MSMQ-MQSeries Bridge converts the Message Queuing
message properties to an MQSeries data structure. To do this, MSMQ-MQSeries Bridge maps the various message properties
of the Message Queuing message as nearly as possible to equivalent MQSeries fields. The following sections describe the
conversion rules by which this is done.

In This Section

Converting Messages Sent from Message Queuing to MQSeries

Converting Messages Sent from MQSeries to Message Queuing

https://msdn.microsoft.com/en-us/library/aa754454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753920(v=bts.10).aspx

Converting Messages Sent from Message Queuing to MQSeries
The information in this section applies to messages that you send from Message Queuing (also known as MSMQ) to MQSeries.
For messages sent from MQSeries to Message Queuing, see Converting Messages Sent from MQSeries to Message Queuing.

This section contains two main subsections, which provide essentially the same information but from complementary points of
view.

The first section describes the conversion rules from the sender's point of view, and explains how MSMQ-MQSeries Bridge
converts each Message Queuing property that you include in a message.

The second section explains the rules from the receiver's point of view. This section describes how MSMQ-MQSeries Bridge
builds a complete MQSeries message containing all the needed fields, whether or not they have exact Message Queuing
equivalents.

You can supplement or override the conversions described in this section by using the Message Queuing message extension
property (PROPID_M_EXTENSION).

In This Section

Converting Message Queuing Properties

Building an MQSeries Message

https://msdn.microsoft.com/en-us/library/aa753920(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745835(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772118(v=bts.10).aspx

Converting Message Queuing Properties
This topic explains how MSMQ-MQSeries Bridge converts the Message Queuing (also known as MSMQ) properties that you
include in a message to MQSeries. For information about MQSeries fields that have no Message Queuing equivalents, see
Building an MQSeries Message.

In This Section

Message Body (PROPID_M_BODY)

Queue Format Names (PROPID_M_..._QUEUE)

Message Class (PROPID_M_CLASS)

Message Expiration (PROPID_M_TIME...)

Message Acknowledgment (PROPID_M_ACKNOWLEDGE)

Other Message Queuing Properties with Equivalent Properties

Unconverted Properties

Transaction Properties

https://msdn.microsoft.com/en-us/library/aa772118(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754315(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746186(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705753(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705221(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754093(v=bts.10).aspx

Message Body (PROPID_M_BODY)
The Message Queuing (also known as MSMQ) message body is equivalent to the MQPUT or MQGET message buffer of
MQSeries. The length of the MQPUT buffer is the Message Queuing message body size.

The following table lists the Message Queuing properties and the MQSeries fields to which they are converted.

Message Queuing property Converted to MQSeries field
PROPID_M_BODY Message buffer

PROPID_M_BODY_SIZE Message buffer length

Queue Format Names (PROPID_M_..._QUEUE)
Each Message Queuing (also known as MSMQ) message contains the format name of a destination queue, and optionally the
format names of response or administration queues. The MSMQ-MQSeries Bridge converts the names to the equivalent
MQSeries object and Queue Manager names.

If a message contains both a response queue and an administration queue, MSMQ-MQSeries Bridge ignores the
administration queue.

The following table lists the Message Queuing properties and the MQSeries fields to which they are converted.

Message Queuing properties Converted to MQSeries fields
PROPID_M_DEST_QUEUE and PROPID_M_DEST_QUEUE_LEN MQOD.ObjectName and MQOD.ObjectQMgrName

PROPID_M_RESP_QUEUE and PROPID_M_RESP_QUEUE_LEN MQMD.ReplyToQ and MQMD.ReplyToQMgr

PROPID_M_ADMIN_QUEUE and PROPID_M_ADMIN_QUEUE_LEN MQMD.ReplyToQ and MQMD.ReplyToQMgr

Message Class (PROPID_M_CLASS)
MSMQ-MQSeries Bridge converts the Message Queuing (also known as MSMQ) message class (PROPID_M_CLASS) to the
MQSeries message type and feedback. It translates the message class values according to the following table.

Value of Message Queuing property Converted to MQSeries value
PROPID_M_CLASS MQMD.MsgType MQMD.Feedback

MQMSG_CLASS_NORMAL MQMT_REQUEST or MQMT_DATAGRAM MQFB_NONE

MQMSG_CLASS_ACK_REACH_QUEUE MQMT_REPORT MQFB_COA

MQMSG_CLASS_ACK_RECEIVE MQFB_COD

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT MQFB_EXPIRATION

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT MQFB_EXPIRATION

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA MQRC_Q_FULL

MQMSG_CLASS_NACK_ACCESS_DENIED MQRC_NOT_AUTHORIZED

MQMSG_CLASS_NACK_ERROR MQFB_APPL_TYPE_ERROR

Any other value MQFB_NONE

MQMSG_CLASS_NORMAL is converted to MQMD_REQUEST if the message includes a response queue
(PROPID_M_RESP_QUEUE) or if PROPID_M_RESP_QUEUE is missing, NULL, or an empty string.

Message Expiration (PROPID_M_TIME...)
Message Queuing (also known as MSMQ) provides two message expiration properties,
PROPID_M_TIME_TO_REACH_QUEUE and PROPID_M_TIME_TO_BE_RECEIVED, both in units of seconds. MQSeries
provides a single expiration field, MQMD.Expiry, whose units are tenths of a second.

MSMQ-MQSeries Bridge converts the values as listed in the following table.

Value of Message Queuing properties PROPID_M_TIME_TO_REACH_QUEUE an
d PROPID_M_TIME_TO_BE_RECEIVED

Converted to MQSeries value of MQ
MD.Expiry

Both values are INFINITE MQEI_UNLIMITED

One or both values are not INFINITE Ten times the smaller of the two Messa
ge Queuing values

Note
Message Queuing typically interprets INFINITE as 90 days. In practice, the MSMQ-MQSeries Bridge does not apply the INFI
NITE conversion because Message Queuing decrements the values slightly during transmission. If you need an MQMD.Expi
ry value of exactly MQEI_UNLIMITED, you should send this value in the message extension.

Message Acknowledgment (PROPID_M_ACKNOWLEDGE)
MSMQ-MQSeries Bridge supports the Message Queuing (also known as MSMQ) and MQSeries acknowledgment mechanisms.
You can send a Message Queuing message to MQSeries and receive an automatic acknowledgment from the MQSeries Queue
Manager.

To do this, set the Message Queuing acknowledgment property (PROPID_M_ACKNOWLEDGE) to a value that requests an
acknowledgment. Also specify the administration or response queue name (PROPID_M_ADMIN_QUEUE or
PROPID_M_RESP_QUEUE), to which the acknowledgment is sent. For more information about queue format names, see
Queue Format Names (PROPID_M_..._QUEUE).

MSMQ-MQSeries Bridge converts the acknowledgment property to the MQSeries MQMD.Report field, as listed in the
following table. When MQSeries receives the message, it returns the appropriate acknowledgment through MSMQ-MQSeries
Bridge.

Value of Message Queuing property PROPID_M_ACKNOWLEDG
E

Converted to MQSeries value of MQMD.Report

MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE MQRO_EXCEPTION | MQRO_COA

MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE MQRO_EXCEPTION | MQRO_EXPIRATION | MQRO_CO
D

MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE MQRO_EXCEPTION

MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE MQRO_EXCEPTION | MQRO_EXPIRATION

MQMSG_ACKNOWLEDGMENT_NONE MQRO_NONE

If both PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL are included in a Message Queuing message, the value of the
MQSeries MQMD.Report field is computed by a bitwise or of the values converted from the two Message Queuing properties.
For more information about other Message Queuing properties, see
Other Message Queuing Properties with Equivalent Properties.

If the MSMQ_PROPID_M_ACKNOWLEDGE property has a value of MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE,
the value of MQSeries MQMD.Report field is computed by a bitwise or of MQRO_EXCEPTION and MQRO_COA.

If the MSMQ_PROPID_M_ACKNOWLEDGE property has a value of MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE, the
value of MQSeries MQMD.Report field is computed by a bitwise or of MQRO_EXCEPTION, MQRO_EXPIRATION, and
MQRO_COD.

If the Message Queuing PROPID_M_ACKNOWLEDGE property has a value of
MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE, the value of MQSeries MQMD.Report field is computed by a bitwise or of
MQRO_EXCEPTION and MQRO_EXPIRATION.

https://msdn.microsoft.com/en-us/library/aa754315(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705221(v=bts.10).aspx

Other Message Queuing Properties with Equivalent Properties
The following Message Queuing (also known as MSMQ) properties have MQSeries equivalents. The MSMQ-MQSeries Bridge
converts the values of each property as listed in the table.

Note
To save space in the table, the prefixes PROPID_M_ and MQMD are omitted from the Message Queuing property names and
the MQSeries field names, respectively. For example, the first row of data means that PROPID_M_BODY_TYPE is converted t
o MQMD.Format.

Message Queuing
property

 Converted to M
QSeries

PROPID_M_ Value MQMD Value

BODY_TYPE VT_BSTR Any other value Format MQFMT_STRING MQFMT_NONE

CORRELATIONID Value (20 bytes) CorrelId "FQ2Q" + value

DELIVERY MQMSG_DELIVERY_ RECOVERABLE EXPRESS Persistence MQPER_ PERSISTENT NOT_PERSIST
ENT

JOURNAL MQMSG_ DEADLETTER MQMSG_JOURNAL MQM
SG_JOURNAL_NONE

Reporta MQRO_ DEAD_LETTER_Q (Ignored)
DISCARD_MSG

LABEL LABEL_LEN Value ApplIdentityData Value (MQCHAR32)

MSGID Value (20 bytes) MsgId "FQ2Q" + value

PRIORITY 0 1 2 3 4 5 6 7 Priority 1 3 4 5 6 7 8 9

SENTTIME Seconds since Jan. 1, 1970 PutDate PutTime YYYMMDD format HHMMSSTH for
mat

If both PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL are included in a Message Queuing message, the MQSeries
MQMD.Report field is computed by a bitwise or of the values converted from the two Message Queuing queuing properties.

Unconverted Properties
The following Message Queuing (also known as MSMQ) properties have no equivalents in MQSeries. The MSMQ-MQSeries
Bridge ignores these properties and does not transmit them to MQSeries:

PROPID_M_APPSPECIFIC

PROPID_M_ARRIVEDTIME

PROPID_M_AUTH_LEVEL

PROPID_M_AUTHENTICATED

PROPID_M_CONNECTOR_TYPE

PROPID_M_DEST_SYMM_KEY

PROPID_M_DEST_SYMM_KEY_LEN

PROPID_M_ENCRYPTION_ALG

PROPID_M_HASH_ALG

PROPID_M_PRIV_LEVEL

PROPID_M_PROV_NAME

PROPID_M_PROV_NAME_LEN

PROPID_M_PROV_TYPE

PROPID_M_SECURITY_CONTEXT

PROPID_M_SENDER_CERT

PROPID_M_SENDER_CERT_LEN

PROPID_M_SENDERID

PROPID_M_SENDERID_LEN

PROPID_M_SENDERID_TYPE

PROPID_M_SIGNATURE

PROPID_M_SIGNATURE_LEN

PROPID_M_SRC_MACHINE_ID

PROPID_M_TRACE

PROPID_M_VERSION

Transaction Properties
The following Message Queuing (also known as MSMQ) properties are not converted to MQSeries fields or values:

PROPID_M_XACT_STATUS_QUEUE

PROPID_M_XACT_STATUS_QUEUE_LEN

For more information about transactions, see Transaction Support Using MSMQ-MQSeries Bridge.

https://msdn.microsoft.com/en-us/library/aa771873(v=bts.10).aspx

Building an MQSeries Message
This section explains how the MSMQ-MQSeries Bridge builds a complete MQSeries message, including all needed fields
whether or not they have Message Queuing (also known as MSMQ) equivalents. The conversion to MQSeries fields from
Message Queuing properties is listed from the MQSeries perspective.

For information about these same conversion rules from the Message Queuing perspective, see
Converting Message Queuing Properties.

In This Section

Message Buffer

Object Descriptor (MQOD)

Message Descriptor (MQMD)

https://msdn.microsoft.com/en-us/library/aa745835(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705652(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771682(v=bts.10).aspx

Message Buffer
The MQPUT or MQGET message buffer of MQSeries is equivalent to the message body property of Message Queuing (also
known as MSMQ). The length of the MQPUT buffer is the Message Queuing message body size.

The following table lists the MQSeries fields and the Message Queuing properties from which they are converted.

MQSeries fields Converted from Message Queuing property
Message buffer PROPID_M_BODY

Message buffer length PROPID_M_BODY_SIZE

Object Descriptor (MQOD)
The MSMQ-MQSeries Bridge retrieves the MQSeries object descriptor fields from the Message Queuing (also known as
MSMQ) format name of the destination queue.

The following table lists the MQSeries fields and the Message Queuing properties from which they are converted.

MQSeries fields Converted from Message Queuing property
MQOD.ObjectName and MQOD.ObjectQMgrName PROPID_M_DEST_QUEUE and PROPID_M_DEST_QUEUE_LEN

Message Descriptor (MQMD)
Some fields of the MQSeries message descriptor have no equivalent in Message Queuing (also known as MSMQ). The MSMQ-
MQSeries Bridge assigns default values to these fields. Alternatively, you can pass explicit values of the MQMD fields using the
Message Queuing message extension property (PROPID_M_EXTENSION).

The following table lists the MQSeries fields and the default value assigned by MSMQ-MQSeries Bridge.

MQSeries MQMD fields Default value assigned by MSMQ-MQSeries Bridge
MQMD.AccountingToken MQACT_NONE

MQMD.CodeCharSetId MQCCSI_Q_MGR

MQMD.Encoding MQENC_NATIVE

MQMD.PutApplName NULL

MQMD.PutApplType NULL

MQMD.StrucId MQMD_STRUC_ID

MQMD.Version MQMD_VERSION_1

Some fields of the MQSeries message descriptor have no equivalent in Message Queuing and the MSMQ-MQSeries Bridge
does not assign default values to these fields. You can assign explicit values for these MQMD fields using the Message Queuing
message extension property (PROPID_M_EXTENSION).

The following table lists the MQSeries fields for which no default value is assigned by MSMQ-MQSeries Bridge.

MQSeries MQMD fields Default value assigned by MSMQ-MQSeries Bridge
MQMD.UserIdentifier No default value is assigned

Many of the MQMD fields are equivalent to one or more Message Queuing properties. The conversion rules are listed in the
following table.

You can override the conversion rules by passing explicit MQMD values in the Message Queuing message extension property.

To save space in the table, the prefix MQMD. is omitted from the MQSeries field names. For example, the first row of data
means that MQMD.ApplIdentityData is built from the Message Queuing properties PROPID_M_LABEL and
PROPID_M_LABEL_LEN.

MQSeries M
QMD field

MQSeries MQMD field value Converted from Message Queuing property

ApplIdentity Value (MQCHAR32) The value of PROPID_M_LABEL and PROPID_M_LABEL_LEN

CorrelId "FQ2Q" + value The value of PROPID_M_CORRELATIONID (20 bytes)

Expiry MQEI_UNLIMITED Both PROPID_M_TIME_TO_BE_RECEIVED and PROPID_M_TIME_TO_REACH_QUE
UE have value of INFINITE

Expiry 10 times the smaller of the two
Message Queuing values

PROPID_M_TIME_TO_BE_RECEIVED or PROPID_M_TIME_TO_REACH_QUEUE hav
e a value that is not INFINITE

Feedback MQFB_EXPIRATION PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

Feedback MQFB_APPL_TYPE_ERROR PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_REACH_QUEUE_TIME
OUT

Feedback MQRC_Q_FULL PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_Q_EXCEED_QUOTA

Feedback MQRC_NOT_AUTHORIZED PROPID_M_CLASS has a value of MQMSG_CLASS_NACK_ACCESS_DENIED

Feedback MQFB_COA PROPID_M_CLASS has a value of MQMSG_CLASS_ACK_REACH_QUEUE

Feedback MQFB_COD PROPID_M_CLASS has a value of MQMSG_CLASS_ACK_RECEIVE

Feedback MQFB_NONE PROPID_M_CLASS has any other value

Format MQFMT_STRING PROPID_M_BODY_TYPE has a value of VT_BSTR

Format MQFMT_NONE PROPID_M_BODY_TYPE has any other value

MsgId "FQ2Q" + value The value of PROPID_M_MSGID (20 bytes)

MsgType MQMT_DATAGRAM PROPID_M_CLASS has a value of MQMSG_CLASS_NORMAL

MsgType MQMT_REQUESTREPORT PROPID_M_CLASS has any other value

Persistence MQPER_PERSISTENT PROPID_M_DELIVERY has a value of MQMSG_DELIVERY_RECOVERABLE

Persistence MQPER_NOT_PERSISTENT PROPID_M_DELIVERY has a value of MQMSG_DELIVERY_EXPRESS

Priority 1 PROPID_M_PRIORITY has a value of 0

Priority 3 PROPID_M_PRIORITY has a value of 1

Priority 4 PROPID_M_PRIORITY has a value of 2

Priority 5 PROPID_M_PRIORITY has a value of 3

Priority 6 PROPID_M_PRIORITY has a value of 4

Priority 7 PROPID_M_PRIORITY has a value of 5

Priority 8 PROPID_M_PRIORITY has a value of 6

Priority 9 PROPID_M_PRIORITY has a value of 7

PutDate YYYMMDD format The date from the Message Queuing PROPID_M_SENTTIME property which has
a value of seconds since January 1, 1970

PutTime HHMMSSTH format The time from the Message Queuing PROPID_M_SENTTIME property which has
a value of seconds since January 1, 1970

ReplyToQ Retrieved from Message Queui
ng format name

The Message Queuing format name from PROPID_M_RESP_QUEUE if this prope
rty is included and is not NULL or an empty string

ReplyToQ Retrieved from Message Queui
ng format name

The Message Queuing format name from PROPID_M_ADMIN_QUEUE if PROPID
_M_RESP_QUEUE is not included or is NULL or an empty string

ReplyToQMg
r

Retrieved from Message Queui
ng format name

The Message Queuing format name from PROPID_M_RESP_QUEUE if this prope
rty is included and is not NULL or an empty string

ReplyToQMg
r

Retrieved from Message Queui
ng format name

The Message Queuing format name from PROPID_M_ADMIN_QUEUE if PROPID
_M_RESP_QUEUE is not included or is NULL or an empty string

Report MQRO_EXCEPTION|COA PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_FUL
L_REACH_QUEUE

Report MQRO_EXCEPTION|EXPIRATIO
N|COD

PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_FUL
L_RECEIVE

Report MQRO_EXCEPTION PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_NAC
K_REACH_QUEUE

Report MQRO_EXCEPTION|EXPIRATIO
N

PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_NAC
K_RECEIVE

Report MQRO_NONE PROPID_M_ACKNOWLEDGE has a value of MQMSG_ACKNOWLEDGMENT_NO
NE

Report MQRO_DEAD_LETTER_Q PROPID_M_JOURNAL has a value of MQMSG_DEADLETTER

Report The Message Queuing value is i
gnored

PROPID_M_JOURNAL has a value of MQMSG_JOURNAL

Report MQRO_DISCARD_MSG PROPID_M_JOURNAL has a value of MQMSG_JOURNAL_NONE

In practice, the MSMQ-MQSeries Bridge does not assign MQEI_UNLIMITED as value for MQMD.Expiry because Message
Queuing interprets INFINITE values typically as 90 days and decrements them slightly during transmission. To assign an
MQMD.Expiry value of exactly MQEI_UNLIMITED, send this value in the message extension.

The MSMQ-MQSeries Bridge assigns MQMT_DATAGRAM as value for MQMD.MsgType if the Message Queuing
PROPID_M_RESP_QUEUE is missing, NULL, or an empty string. Otherwise a value of MQMT_REQUEST is assigned to
MQMD.MsgType.

If both PROPID_M_ACKNOWLEDGE and PROPID_M_JOURNAL are included in a Message Queing message, MQMD.Report
is computed by a bitwise or of the values converted from the two Message Queuing properties.

Converting Messages Sent from MQSeries to Message Queuing
When you send a message from IBM MQSeries to Microsoft® Message Queuing (also known as MSMQ), the MSMQ-
MQSeries Bridge converts the message from an MQSeries data structure to a Message Queuing message property. o do this,
MSMQ-MQSeries Bridge maps the various data fields of the MQSeries message as nearly as possible to equivalent Message
Queuing message properties.

This section describes the conversion rules by which this is done. The information in this section applies to messages that you
send from MQSeries to Message Queuing. For messages sent from Message Queuing to MQSeries, see
Converting Messages Sent from Message Queuing to MQSeries.

The section contains two main subsections, which provide essentially the same information, but from complementary points of
view. The first section describes the conversion rules from the sender's point of view, and explains how the MSMQ-MQSeries
Bridge converts each MQSeries field that you include in a message. The second section explains the rules from the receiver's
point of view. Use this section to learn how MSMQ-MQSeries Bridge builds a complete Message Queuing message containing
all the needed properties, whether or not they have exact MQSeries equivalents.

Besides the conversions described in this section, the MSMQ-MQSeries Bridge transmits the original MQSeries message
descriptor fields in the Message Queuing message extension property (PROPID_M_EXTENSION).

In This Section

Converting MQSeries Fields

Building a Message Queuing Message

https://msdn.microsoft.com/en-us/library/aa744922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754773(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744690(v=bts.10).aspx

Converting MQSeries Fields
This section explains how the MSMQ-MQSeries Bridge converts the fields of an MQSeries message to Message Queuing (also
known as MSMQ). For information about Message Queuing properties that have no MQSeries equivalents, see
Building a Message Queuing Message.

In This Section

Message Buffer

Object Descriptor (MQOD)

Character Substitutions in Object Descriptor Conversion

Format Name Method of Object Descriptor Conversion

Path Name Method of Object Descriptor Conversion

Queue Alias Method of Object Descriptor Conversion

Examples of Object Descriptor Conversion

Message Descriptor (MQMD)

MQMD.Report Field

MQMD.MsgType and MQMD.Feedback Fields

MQMD.ReplyToQ and MQMD.ReplyToQMgr Fields

Unconverted MQSeries MQMD Fields

https://msdn.microsoft.com/en-us/library/aa744690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746192(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771837(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705018(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770974(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745375(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771970(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705262(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745398(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744965(v=bts.10).aspx

Message Buffer
The MQGET or MQPUT buffer of MQSeries is equivalent to the message body property of Message Queuing (also known as
MSMQ).

The following table lists the MQSeries fields and the Message Queuing properties to which they are converted.

MQSeries fields Converted to Message Queuing property
Message buffer PROPID_M_BODY

Message buffer length PROPID_M_BODY_SIZE

Object Descriptor (MQOD)
The MSMQ-MQSeries Bridge converts the MQSeries remote Queue Manager and queue names to the Message Queuing (also
known as MSMQ) destination queue name. The MQSeries fields are interpreted as a Message Queuing format name or path
name.

The following table lists the MQSeries fields and the Message Queuing properties that they are converted to.

MQSeries fields Converted to Message Queuing property
MQOD.ObjectName and MQOD.ObjectQMgrName PROPID_M_DEST_QUEUE and PROPID_M_DEST_QUEUE_LEN

Character Substitutions in Object Descriptor Conversion
Certain characters are supported in Message Queuing (also known as MSMQ) format names, but not in MQSeries names.
When you assign the MQSeries MQOD.ObjectName, the MSMQ-MQSeries Bridge performs character substitutions to the
Message Queuing format names. The following table lists special characters in MQSeries names and what MSMQ-MQSeries
Bridge converts these characters to in Message Queuing format names.

Characters in MQSeries MQOD field names Characters substituted in Message Queuing format names
/ (forward slash)) : (colon) or \ (backslash)

_ (underscore) - (hyphen) or = (equal)

P_ (at start of MQOD.ObjectName) PRIVATE=

The MSMQ-MQSeries Bridge converts the characters back when it transmits the MQSeries message to Message Queuing. The
characters are interpreted according to context to generate a legal Message Queuing name. For example, MSMQ-MQSeries
Bridge converts the format name:

to the following:

Note that this character substitution is only for format names, not for computer or path names. If you want to address Message
Queuing path names, do not include hyphens or other characters not supported by MQSeries. For example, the path name:

is legal in Message Queuing, but you cannot specify the hyphen character in MQSeries.

DIRECT_OS/MACHINE2/QUEUE4

DIRECT=OS:MACHINE2\QUEUE4.

MACHINE2\MY-QUEUE

Format Name Method of Object Descriptor Conversion
Subject to the following conditions, the MSMQ-MQSeries Bridge interprets the MQSeries MQOD.ObjectName field as the
format name of the Message Queuing (also known as MSMQ) destination queue:

The MQOD.ObjectQMgrName is an MQSeries alias for a Message Queuing computer.

The MQOD.ObjectName begins with PUBLIC_, P_, or DIRECT_OS/.

If these conditions apply, the MSMQ-MQSeries Bridge converts the MQSeries MQOD.ObjectName to the Message Queuing
format name of the destination queue using one of the following methods based on the value of MQOD.ObjectName:

If you know the globally unique identifier (GUID) of the destination queue, the PUBLIC=<GUID> syntax gives better
performance than the DIRECT=OS:<path name> syntax. Also note that nontransacted private queues are supported only on
the computer running the MSMQ-MQSeries Bridge.

PUBLIC=<GUID>
PRIVATE=<machine GUID>\<file number>
DIRECT=OS:<path name>.

Path Name Method of Object Descriptor Conversion
If the conditions for the format name method do not hold, the MSMQ-MQSeries Bridge interprets
MQOD.ObjectQMgrName\MQOD.ObjectName as a Message Queuing (also known as MSMQ) path name. The remote Queue
Manager name must be an alias for a computer running Message Queuing that you have previously defined in MQSeries.

For example, if MQOD.ObjectQMgrName is MACHINE2 and MQOD.ObjectName is QUEUE4, the MSMQ-MQSeries Bridge
sends the message to a Message Queuing queue having the path name MACHINE2\QUEUE4.

The MSMQ-MQSeries Bridge determines the Message Queuing format name corresponding to this path name to forward the
message.

Note
The MQSeries name fields are limited to 48 characters each. If the path name is longer than this, use the format name metho
d instead.

Queue Alias Method of Object Descriptor Conversion
 

Optionally, you can address a Message Queuing (also known as MSMQ) queue using an MQSeries queue alias. If you use this
method, set MQOD.ObjectName to the queue alias. Leave MQOD.ObjectQMgrName blank, or set it to the MQSeries Queue
Manager where the transmission queue is located.

Examples of Object Descriptor Conversion
In the following examples, you want to send a message to a Message Queuing (also known as MSMQ) destination having the
following identifiers:

MSMQ-MQSeries Bridge is installed on a computer called BRIDGEMQ1. You have defined the aliases BRIDGEMQ1 and
BRIDGEMQ1% for this computer in MQSeries. In the MSMQ-MQSeries Bridge Manager, you have configured BRIDGEMQ1 for
MQS->Message Queuing message pipe and BRIDGEMQ1% for MQS->Message Queuing transactional message pipe.

You may address a message to this queue in any of the following ways:

Format name method

Using the format name method and MQS->Message Queuing message pipe, the MQSeries name would become:

- or -

Using the format name method and MQS->Message Queuing transactional message pipe, the MQSeries name would become:

- or -

Optionally, you can define the MQSeries aliases MACHINE2 and MACHINE2% for the Message Queuing destination computer.
You now have two additional ways to address the queue.

Using the path name method and MQS->Message Queuing message pipe, the MQSeries name would become:

Using the path name method and MQS->Message Queuing transactional message pipe, the MQSeries name would become:

In yet another option, you can define the MQSeries aliases QUEUE4 and QUEUE4% for the Message Queuing destination
queues. If you do this, you can address the queue using the following syntax.

Using the queue alias method and normal service, the MQSeries name would become:

Machine name = MACHINE2
Queue name = QUEUE4
GUID = A56F41B4-9869-11D0-AF8F-0000E8D1C3A7

MQOD.ObjectQMgrName = "BRIDGEMQ1"
MQOD.ObjectName = "PUBLIC_A56F41B4_9869_11D0_AF8F_0000E8D1C3A7"

MQOD.ObjectQMgrName = "BRIDGEMQ1"
MQOD.ObjectName = "DIRECT_OS/MACHINE2/QUEUE4"

MQOD.ObjectQMgrName = "BRIDGEMQ1%"
MQOD.ObjectName = "PUBLIC_A56F41B4_9869_11D0_AF8F_0000E8D1C3A7"

MQOD.ObjectQMgrName = "BRIDGEMQ1%"
MQOD.ObjectName = "DIRECT_OS/MACHINE2/QUEUE4"

MQOD.ObjectQMgrName = "MACHINE2"
MQOD.ObjectName = "QUEUE4"

MQOD.ObjectQMgrName = "MACHINE2%";
MQOD.ObjectName = "QUEUE4"

MQOD.ObjectQMgrName = ""
MQOD.ObjectName = "QUEUE4"

Using the queue alias method and high service, the MQSeries name would become:

MQOD.ObjectQMgrName = ""
MQOD.ObjectName = "QUEUE4%"

Message Descriptor (MQMD)
 

The MSMQ-MQSeries Bridge converts most of the MQSeries field values to Message Queuing (also known as MSMQ)
property values.

MQMD.Report Field
The MSMQ-MQSeries Bridge supports the MQSeries and Message Queuing (also known as MSMQ) acknowledgment
mechanisms. You can send a Message Queuing message to MQSeries and receive an automatic acknowledgment from the
Message Queuing Queue Manager.

To do this, set the MQMD.Report field of the MQSeries message to a value that requests an acknowledgment. Also set the
MQMD.ReplyToQ and MQMD.ReplyToQMgr fields, which specify where the acknowledgment is sent.

The MSMQ-MQSeries Bridge converts MQMD.Report to the Message Queuing acknowledgment property. When Message
Queuing receives the message, it returns the appropriate acknowledgment thorough the MSMQ-MQSeries Bridge.

The MSMQ-MQSeries Bridge also supports the MQSeries and Message Queuing dead letter mechanism. For this purpose,
MSMQ-MQSeries Bridge converts the MQMD.Report values to the Message Queuing journaling property.

The conversions are listed in the following table.

Value of MQSeries field MQMD.Rep
ort

Converted to Message Queuing property and value

MQRO_NONE The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NO
NE

MQRO_EXCEPTION The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NA
CK_REACH_QUEUE

MQRO_EXCEPTION_WITH_DATA (Note
1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NA
CK_REACH_QUEUE

MQRO_EXCEPTION_WITH_FULL_DATA
(Note 1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NA
CK_REACH_QUEUE

MQRO_EXPIRATION The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NA
CK_RECEIVE

MQRO_EXPIRATION_WITH_DATA (Note
1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NA
CK_RECEIVE

MQRO_EXPIRATION_WITH_FULL_DATA
(Note 1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_NA
CK_RECEIVE

MQRO_COA The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_FU
LL_REACH_QUEUE

MQRO_COA_WITH_DATA (Note 1) The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_FU
LL_REACH_QUEUE

MQRO_COA_WITH_FULL_DATA (Note
1)

The value of PROPID_M_ACKNOWLEDGE is set to MQMSG_ACKNOWLEDGMENT_FU
LL_REACH_QUEUE

MQRO_DEAD_LETTER_Q The value of PROPID_M_JOURNAL is set to MQMSG_DEADLETTER

MQRO_DISCARD_MSG The value of PROPID_M_JOURNAL is set to MQMSG_JOURNAL_NONE

MQRO_NEW_MSG_ID (Not converted)

MQRO_PASS_MSG_ID (Not converted)

MQRO_COPY_MSG_ID_TO_CORREL_ID (Not converted)

MQRO_PASS_CORREL_ID (Not converted)

Note

For these report values, the MSMQ-MQSeries Bridge duplicates part or all of the message buffer in the Message Queuing me
ssage extension (PROPID_M_EXTENSION). The increased message size may degrade performance.

MQMD.MsgType and MQMD.Feedback Fields
The values of the MQSeries MQMD.MsgType and MQMD.Feedback fields are converted to the Message Queuing (also known
as MSMQ) message class property.

The conversions are listed in the following table based on the value of MQMD.MsgType when MQMD.Feedback is
MQFB_NONE.

Value of MQSeries MQMD.MsgType Converted to value of Message Queuing PROP_M_CLASS
MQMT_SYSTEM_FIRST MQMSG_CLASS_NORMAL

MQMT_SYSTEM_LAST MQMSG_CLASS_NORMAL

MQMT_DATAGRAM MQMSG_CLASS_NORMAL

MQMT_REQUEST MQMSG_CLASS_NORMAL

MQMT_REPLY MQMSG_CLASS_NORMAL

MQMT_APPL_FIRST MQMSG_CLASS_NORMAL

MQMT_APPL_LAST MQMSG_CLASS_NORMAL

The conversions are listed in the following table based on the value of MQMD.Feedback when MQMD.MsgType is
MQMT_REPORT.

Value of MQSeries MQMD.Feedback Converted to value of Message Queuing PROP_M_CLASS
MQFB_EXPIRATION MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

MQFB_COA MQMSG_CLASS_ACK_REACH_QUEUE

MQFB_COD MQMSG_CLASS_ACK_RECEIVE

MQFB_APPL_TYPE_ERROR MQMSG_CLASS_NACK_ERROR

MQFB_DATA_LENGTH_ZERO MQMSG_CLASS_NACK_ERROR

MQFB_DATA_LENGTH_NEGATIVE MQMSG_CLASS_NACK_ERROR

MQFB_DATA_LENGTH_TOO_BIG MQMSG_CLASS_NACK_ERROR

MQFB_BUFFER_OVERFLOW MQMSG_CLASS_NACK_ERROR

MQFB_LENGTH_OFF_BY_ONE MQMSG_CLASS_NACK_ERROR

MQFB_NONE (Not converted)

MQFB_SYSTEM_FIRST (Not converted)

MQFB_SYSTEM_LAST (Not converted)

MQFB_APPL_FIRST (Not converted)

MQFB_APPL_LAST (Not converted)

MQFB_TM_ERROR (Not converted)

MQFB_IIH_ERROR (Not converted)

MQFB_NOT_AUTHORIZED_FOR_IMS (Not converted)

MQFB_IMS_ERROR (Not converted)

MQFB_IMS_FIRST (Not converted)

MQFB_IMS_LAST (Not converted)

MQFB_QUIT (Not supported)

MQRC_NOT_AUTHORIZED MQMSG_CLASS_NACK_ACCESS_DENIED

MQRC_Q_FULL MQMSG_CLASS_NACK_Q_EXCEED_QUOTA

MQRC_PERSISTENT_NOT_ALLOWED MQMSG_CLASS_NACK_ERROR

MQRC_MSG_TOO_BIG_FOR_Q_MGR MQMSG_CLASS_NACK_ERROR

MQRC_MSG_TOO_BIG_FOR_Q MQMSG_CLASS_NACK_ERROR

MQRC_PUT_INHBITED (Not converted)

MQMD.ReplyToQ and MQMD.ReplyToQMgr Fields
The MSMQ-MQSeries Bridge converts the MQSeries ReplyToQMgr and ReplyToQ fields to a Message Queuing (also known as
MSMQ) format name. The name is assigned both to the response queue property and to the administration queue property of
the new Message Queuing message.

The MSMQ-MQSeries Bridge interprets the ReplyToQMgr and the ReplytoQ fields in the same way as the destination queue
name.

If MQMD.ReplyToQMgr is the MSMQ-MQSeries Bridge computer name and MQMD.ReplyToQ begins with PUBLIC_, P_, or
DIRECT_OS/, MSMQ-MQSeries Bridge interprets MQMD.ReplyToQ as a Message Queuing format name.

Otherwise, the MSMQ-MQSeries Bridge interprets MQMD.ReplyToQMgr\MQMD.ReplyToQ as a Message Queuing path name
and determines the Message Queuing format name.

The following table lists the MQSeries fields and the Message Queuing properties to which they are converted.

MQSeries fields Converted to Message Queuing property

MQOD.ReplyToQMgr and MQOD.ReplyToQ PROPID_M_RESP_QUEUE

MQOD.ReplyToQMgr and MQOD.ReplyToQ PROPID_M_ADMIN_QUEUE (same value as PROPID_M_RESP_QUEUE)

Other MQMD Fields

The following table lists the conversions of additional MQMD fields, in addition to the ones described previously, to Message
Queuing properties.

Note
To save space in the table, the prefixes MQMD and PROPID_M_ are omitted from the MQSeries field names and the Message
Queuing property names, respectively. For example, the first row of data means that MQMD.ApplIdentityData is converted to
PROPID_M_LABEL and PROPID_M_LABEL_LEN.

MQSeries
field

 Converted to Messa
ge Queuing

MQMD. Value PROPID_M_ Value

ApplIdenti
tyData

Value (MQCHAR32) LABEL Value

CorrelId Value (MQBYTE24) CORRELATIONID Last 20 bytes of value

Expiry MQEI_UNLIMITED Value > 0 (t
enths of seconds)

TIME_TO_BE_RECEIVE
D

INFINITE Value/10 (seconds)

Format MQFMT_STRING Any other va
lue

BODY_TYPE VT_BSTR Not converted

Persistenc
e

MQPER_ PERSISTENT NOT_PE
RSISTENT

DELIVERY MQMSG_DELIVERY_ RECOVERABLE EXPRESS

Priority 0, 1 2, 3 4 5 6 7 8 9 PRIORITY 0 1 2 3 4 5 6 7

UserIdenti
fier

Value SENDERID SID value (if the user is registered in Windows 2000 Not conv
erted (if the user is not registered)

Unconverted MQSeries MQMD Fields
The following MQSeries fields have no equivalents in Message Queuing (also known as MSMQ). The MSMQ-MQSeries Bridge
ignores these fields and does not transmit them to Message Queuing.

Like all MQMD fields, MSMQ-MQSeries Bridge stores the fields in the Message Queuing message extension property:

MQMD.AccountingToken

MQMD.ApplOriginData

MQMD.BackoutCount

MQMD.Encoding

MQMD.MsgId

MQMD.PutApplName

MQMD.PutApplType

MQMD.PutDate

MQMD.PutTime

MQMD.StrucId

When the value of MQMD.CodeCharSetID is MQCCSI_Q_QMG, the MSMQ-MQSeries Bridge ignores this field and does not
transmit it to Message Queuing. When the value of MQMD.CodeCharSetID is MQCCSI_Q_QMG, The MSMQ-MQSeries Bridge
does not support this value.

When the value of MQMD.Version is MQPMO_VERSION_1, the MSMQ-MQSeries Bridge ignores this field and does not
transmit it to Message Queuing.

Building a Message Queuing Message
This section explains how the MSMQ-MQSeries Bridge builds a complete Message Queuing (also known as MSMQ) message,
including all needed properties, whether or not they have MQSeries equivalents.

Message Body (PROPID_M_BODY)

The Message Queuing (also known as MSMQ) message body is equivalent to the MQPUT or MQGET message buffer of
MQSeries. The length of the MQPUT buffer is the Message Queuing message body size.

The following table lists the Message Queuing properties and the MQSeries fields from which they are converted.

Message Queuing property Converted from MQSeries field

PROPID_M_BODY Message buffer

PROPID_M_BODY_SIZE Message buffer length

Queue Format Names (PROPID_M_..._QUEUE)

MSMQ-MQSeries Bridge retrieves the Message Queuing (also known as MSMQ) format names of the destination, response,
and administration queues from the MQSeries queue and Queue Manager names.

The following table lists the Message Queuing properties and the MQSeries fields from which they are converted.

Message Queuing properties Converted from MQSeries fields

PROPID_M_DEST_QUEUE and PROPID_M_DEST_QUEUE_LEN MQOD.ObjectName and MQOD.ObjectQMgrName

PROPID_M_RESP_QUEUE and PROPID_M_RESP_QUEUE_LEN MQMD.ReplyToQ and MQMD.ReplyToQMgr

PROPID_M_ADMIN_QUEUE and PROPID_M_ADMIN_QUEUE_LEN MQMD.ReplyToQ and MQMD.ReplyToQMgr

Message Class (PROPID_M_CLASS)

The MSMQ-MQSeries Bridge assigns the Message Queuing (also known as MSMQ) message class based on the MQSeries
MQMD.MsgType and MQMD.Feedback values. For detailed information, see MQMD.MsgType and MQMD.Feedback Fields.

The following table lists the Message Queuing properties and the MQSeries fields from which they are converted.

Message Queuing properties Converted from MQSeries fields

PROPID_M_CLASS MQMD.MsgType and MQMD.Feedback

Message Expiration (PROPID_M_TIME...)

The MSMQ-MQSeries Bridge converts the MQSeries MQMD.Expiry value (in tenths of seconds) to the Message Queuing (also
known as MSMQ) PROPID_M_TIME_TO_BE_RECEIVED (in seconds). If MQMD.Expiry is set to MQEI_UNLIMITED, the value
of Message Queuing PROPID_M_TIME_TO_BE_RECEIVED is set to INFINITE. For other values of MQMD.Expiry greater than
zero, the value of Message Queuing PROPID_M_TIME_TO_BE_RECEIVED is converted by dividing MQMD.Expiry by 10. The
MSMQ-MQSeries Bridge does not set PROPID_M_TIME_TO_REACH_QUEUE.

Value of Message Queuing properties Converted from MQSeries fields

PROPID_M_TIME_TO_BE_RECEIVED MQMD.Expiry

Message Acknowledgment and Journaling (PROPID_M_ACKNOWLEDGE, PROPID_M_JOURNAL)

The Message Queuing (also known as MSMQ) message acknowledgment and journaling are converted from values of
MQMD.Report.

Message Queuing property Converted from MQSeries

PROPID_M_ACKNOWLEDGE PROPID_M_JOURNAL MQMD.Report

Other Message Queuing Properties (PROPID_M_...)

Some Message Queuing (also known as MSMQ) properties have no equivalent in MQSeries. The MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa705262(v=bts.10).aspx

assigns values to these properties as listed in the following table.

Message Queuing property Value assigned by MSMQ-MQSeries Bridge

PROPID_M_APPSPECIFIC None

PROPID_M_AUTH_LEVEL Default

PROPID_M_CONNECTOR_TYPE None

PROPID_M_DEST_QUEUE Default

PROPID_M_DEST_QUEUE_LEN Default

PROPID_M_DEST_SYMM_KEY None

PROPID_M_ENCRYPTION_ALG None

PROPID_M_HASH_ALG None

PROPID_M_MSGID Assigned by Message Queuing

PROPID_M_PRIV_LEVEL Default

PROPID_M_PROV_NAME None

PROPID_M_PROV_TYPE None

PROPID_M_SECURITY_CONTEXT Default

PROPID_M_SENDER_CERT Default

PROPID_M_SENTTIME Time when MSMQ-MQSeries Bridge transmits the message to Message Queuing

PROPID_M_SIGNATURE None

PROPID_M_SRC_MACHINE_ID GUID of the MSMQ-MQSeries Bridge machine

PROPID_M_TRACE Default

PROPID_M_VERSION 0x0010

Equivalent Message Queuing Properties

The following Message Queuing (also known as MSMQ) properties have MQSeries equivalents. The MSMQ-MQSeries Bridge
converts the values of each property as listed in the table.

Note
To save space in the table, the prefixes PROPID_M_ and MQMD. are omitted from the Message Queuing property names and
the MQSeries field names, respectively. For example, the first row of data means that PROPID_M_BODY_TYPE is converted fr
om MQMD.Format.

Message Que
uing property

 Converted fr
om MQSerie
s

PROPID_M_ Value MQMD. Value

BODY_TYPE VT_BSTR Not converted (default) Format MQFMT_STRING Any other value

CORRELATION
ID

Last 20 bytes of value MsgId Value (MQBYTE24)

DELIVERY MQMSG_DELIVERY_ RECOVERABLE EXPRESS Persistence MQPER_ PERSISTENT NOT_PERSISTENT

LABEL LABEL_L
EN

Value ApplIdentityD
ata

Value (MQCHAR32)

PRIORITY 0 1 2 3 4 5 6 7 Priority 0, 1 2, 3 4 5 6 7 8 9

SENDERID SE
NDERID_TYPE

SID value MQMSG_SENDERID_TYPE_ SID Not
converted MQMSG_SENDERID_TYPE_ NONE

UserIdentifier Value, if the user is registered in Windows 2000
If the user is not registered in Windows 2000

MSMQ-MQSeries Bridge Extensions Mechanism
Besides the automatic conversion of Microsoft® Message Queuing (also known as MSMQ) and IBM MQSeries messages, the
MSMQ-MQSeries Bridge provides a mechanism for sending and receiving explicit MQSeries field values. The MSMQ-
MQSeries Bridge Extension Property API supports the message extension property (PROPID_M_EXTENSION) of the Message
Queuing server. The message extension property provides a way for applications to attach any type of data—in essence,
custom properties—to a Message Queuing message.

Similar to the Message Queuing message body property (PROPID_M_BODY), the message extension can have any length.
However, the message extension has a defined structure that lets an application label its data with a globally unique identifier
(GUID) code. Applications can attach multiple extension fields, each labeled with its own GUID and all included in a single
message extension property. This is done using the Message Queuing message extension property (PROPID_M_EXTENSION).

In This Section

Data Structure of a Message Extension

How MSMQ-MQSeries Bridge Creates a Message Extension

How MSMQ-MQSeries Bridge Converts a Message Extension

Using Message Extensions

Programming a Message Extension

MSMQ-MQSeries Bridge Extension Property API

https://msdn.microsoft.com/en-us/library/aa746190(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754099(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770538(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770972(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770545(v=bts.10).aspx

Data Structure of a Message Extension
A message extension is a Message Queuing (also known as MSMQ) message property of arbitrary length. The property symbol
of a message extension is PROPID_M_EXTENSION and its type indicator is VT_UI1|VT_VECTOR. A message extension is a
sequential buffer containing any number of Message Queuing extension fields.

Each extension field comprises three subfields, as listed in the following table.

Subfield Length of subfield (bytes) Description
GUID 16 A GUID identifier, typically of the application that created the extension field.

Length 4 The length of the data subfield in bytes.

Data Value of the length subfield Any data that is part of the message extension.

For use with the MSMQ-MQSeries Bridge, the GUID identifier is set to the MSMQ-MQSeries Bridge GUID value.

The Message Queuing message extension length property, PROPID_M_EXTENSION_LEN, is of type indicator VT_UI4 and
represents the overall size in bytes of all message extensions attached to a message. Message Queuing sets the message
extension length automatically when you send a message. When you receive or peek at a message, you can look into the
message extension length to detect whether the message contains any message extension fields and to determine the
necessary receive buffer size.

The MSMQ-MQSeries Bridge Extension API functions work with an alternative data representation for a message extension,
called an EP object. An EP object contains the same fields and subfields as a message extension, but in a format adapted for
programming.

How MSMQ-MQSeries Bridge Creates a Message Extension
When the MSMQ-MQSeries Bridge processes a message from MQSeries, it creates a PROPID_M_EXTENSION property, which
it includes in the message that it transmits to Message Queuing (also known as MSMQ).

In This Section

MQMD Extension Field

Error Extension Field

Other Extension Fields

https://msdn.microsoft.com/en-us/library/aa746094(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771228(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705003(v=bts.10).aspx

MQMD Extension Field
Ordinarily, the message extension contains a single extension field with the following structure:

The MSMQ-MQSeries Bridge globally unique identifier (GUID) code is stored in the GUID subfield of the extension.

The size of MQMD is stored in the length subfield of the extension.

The MQMD is copied byte-for-byte into the data buffer of the extension.

The MSMQ-MQSeries Bridge GUID is the value of the sg_MSMQExtMQMD constant which is defined in the Mqsrext.h include
file found in the SDK\Include subdirectory.

The MQMD extension has the following GUID for MQMD version 2.

static const GUID sg_MSMQExtMQMDE =
{ 0x18ae68f5, 0x989b, 0x11d3,
 { 0x8d, 0xf9, 0x0, 0x0, 0xf8, 0x1a, 0xea, 0x1f }
};

Error Extension Field
If the MSMQ-MQSeries Bridge encounters an MQSeries error when it transmits a message from Message Queuing (also
known as MSMQ), it records the error in the extension property and places the message on the dead letter queue.

To do this, the MSMQ-MQSeries Bridge adds an extension property to the Message Queuing message, if it does not already
exist. Within the extension property, MSMQ-MQSeries Bridge creates an extension field containing the following data:

The globally unique identifier (GUID) subfield contains a MSMQ-MQSeries Bridge error GUID (different from the GUID
used for MQMD).

The length subfield contains the value 4.

The data subfield contains a reason code, identical to the codes returned by the MQSeries function MQPUT.

The MSMQ-MQSeries Bridge error GUID is the value of the sg_MSMQExtReasonCode constant, which is defined in the
Mqsrext.h include file found in the SDK\Include subdirectory.

If wanted, a Message Queuing application can read messages from the dead letter queue and interpret the reason codes.

Other Extension Fields
If you send an MQSeries message having certain values of MQMD.Report, the MSMQ-MQSeries Bridge adds a second
extension field to the new Message Queuing (also known as MSMQ) message. This field is for internal use only, not for use in
your applications. The MSMQ-MQSeries Bridge distinguishes the Report extension field from the MQMD and error extension
fields by labeling them with different globally unique identifiers (GUIDs).

For more information about other extension fields, see Converting Messages Sent from MQSeries to Message Queuing.

https://msdn.microsoft.com/en-us/library/aa753920(v=bts.10).aspx

How MSMQ-MQSeries Bridge Converts a Message Extension
If you send a Message Queuing (also known as MSMQ) message including a message extension to MQSeries, the MSMQ-
MQSeries Bridge converts the extension in the following way:

The MSMQ-MQSeries Bridge looks for an extension field identified by the MSMQ-MQSeries Bridge GUID. If it finds one,
it reads the MQMD structure from the extension field.

MSMQ-MQSeries Bridge ignores any other extension fields that may be present in the message extension.

MSMQ-MQSeries Bridge includes the MQMD structure that it reads from the extension field in the new MQSeries
message.

The MQMD structure in the message extension overrides the default MQMD conversions, which are described in
Converting Messages Sent from Message Queuing to MQSeries.

A few exceptions to these rules are described in the following sections.

In This Section

Sender and User Identifiers

Version Identifiers

https://msdn.microsoft.com/en-us/library/aa744922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744758(v=bts.10).aspx

Sender and User Identifiers
 

MSMQ-MQSeries Bridge reads the value of MQMD.UserIdentifier stored in the message extension and assigns the value to
the MQMD.UserIdentifier field in the new MQSeries message.

Version Identifiers
MQSeries uses the following fields for version identification:

MQMD.StrucId

MQMD.Version

When the MSMQ-MQSeries Bridge converts a message extension, it confirms that the values of these fields are for a version of
MQSeries that the Bridge supports. If they are not, MSMQ-MQSeries Bridge places the message on the dead letter queue and
does not transmit it to MQSeries.

For more information about the supported versions of MQSeries, see
Platforms Supported by MSMQ-MQSeries Bridge Extensions. For more information about the permitted values of the version
identification fields, see Converting Messages Sent from Message Queuing to MQSeries.

https://msdn.microsoft.com/en-us/library/aa772073(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744922(v=bts.10).aspx

Using Message Extensions
This section suggests a few ways that you can use the message extension property in your messaging applications.

In This Section

Sending an MQSeries Message to Message Queuing

Sending a Message Queuing Message to MQSeries

https://msdn.microsoft.com/en-us/library/aa705681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754747(v=bts.10).aspx

Sending an MQSeries Message to Message Queuing
MSMQ-MQSeries Bridge stores the complete MQMD structure of an MQSeries message in a Message Queuing (also known as
MSMQ) message extension. A Message Queuing application can read the extension and retrieve the original MQMD structure.

In this way, a Message Queuing application can retrieve the original values of every MQMD field, regardless of the MSMQ-
MQSeries Bridge conversions.

Sending a Message Queuing Message to MQSeries
When you send a Message Queuing (also known as MSMQ) message to MQSeries, you can include a message extension. This
can be an extension that you originally received from MQSeries, or one that you created yourself. MSMQ-MQSeries Bridge
reads the message extension and uses it to set the MQMD fields of the converted message that it sends to MQSeries.

You can use this feature for two purposes:

To override the default conversions described in the section
Converting Messages Sent from Message Queuing to MQSeries

To supplement the default conversions by assigning MQMD fields that have no Message Queuing equivalent.

The following are some examples of fields that have no equivalents or only partial equivalents (different permitted values or
length) among the Message Queuing message properties:

MQMD.AccountingToken

MQMD.ApplOriginData

MQMD.CorrelId

MQMD.MsgId

MQMD.MsgType

MQMD.PutApplName

MQMD.PutApplType

MQMD.ReplyToQ

MQMD.ReplyToQMgr

MQMD.Report

Suppose you want to send a message to an MQSeries application including an MQMD.MsgType value of MQMD_REPLY. The
default message conversions provide no way to set this particular value. You can send the value by storing an MQMD data
structure in a message extension.

https://msdn.microsoft.com/en-us/library/aa744922(v=bts.10).aspx

Programming a Message Extension
In a Message Queuing (also known as MSMQ) application, you can program a message extension containing an arbitrary
number of extension fields. For use with MSMQ-MQSeries Bridge, build the extension according to the following specifications.

It is recommended that you use MSMQ-MQSeries Bridge Extension Property API to construct the extension with the required
syntax. Create a PROPID_M_EXTENSION property containing at least one extension field.

Store the MSMQ-MQSeries Bridge globally unique identifier (GUID) code in the GUID subfield of exactly one extension field.
The GUID is the value of the sg_MSMQExtMQMD constant, which is defined in the Mqsrext.h include file of the Extension
Property API. Store the size of MQMD in the length subfield. Copy a complete MQMD structure byte-for-byte into the data
buffer subfield.

When you send the message to MQSeries, the MSMQ-MQSeries Bridge converts the extension field identified by the MSMQ-
MQSeries Bridge GUID. Any other extension fields are ignored.

MSMQ-MQSeries Bridge Extension Property API
The MSMQ-MQSeries Bridge Extension Property API is recommended for programming and working with message
extensions. The API provides a library of functions that help you create and interpret message extensions. The MSMQ-
MQSeries Bridge Extension Property API is supplied as part of the Host Integration Server SDK.

Your Message Queuing (also known as MSMQ) applications can use the API to do the following:

Read message extensions that you receive from MQSeries

Create or modify message extensions that you send to MQSeries

Read or create message extensions for any other Message Queuing messaging purpose

The MSMQ-MQSeries Bridge Extension Property API enables you to create and work with the Message Queuing message
extension property. This section provides a few guidelines for using the API functions.

The MSMQ-MQSeries Bridge Extension Property API operates directly on the EP representation of a message extension. In
particular, the API functions support the following programming approach:

Creating or deleting an EP object.

Creating, finding, reading, writing, or deleting extension fields in an EP object.

Converting an EP object to a message extension. (PROPID_M_EXTENSION) that you can send in a Message Queuing
message.

Converting a message extension that you received in a Message Queuing message to an EP object.

You cannot send an EP object directly in a Message Queuing message. You must first convert it to a message extension
(PROPID_M_EXTENSION).

To use the message extension API, include the MSMQext.h header file in your applications. This header files contains constants
and function prototypes for the Extension Property API functions. This header file is located in the SDK\Include directory on the
Host Integration Server CD and is installed when the SDK package is selected.

If you are using the API in conjunction with MSMQ-MQSeries Bridge, also include the Mqsrext.h header file located in the
SDK\Include directory. This file defines the GUID that labels the extension fields.

The Extension Property API functions are handle-based. The following is a summary of the MSMQ-MQSeries Bridge Extension
Property API functions. For complete details, see the individual function descriptions in
MSMQ-MQSeries Bridge Extensions Reference.

Function Description
EPAdd Adds a new extension field to an EP object.

EPClose Frees the extension handle and associated memory of an EP object.

EPDelete Deletes an extension field from an EP object.

EPDeleteAll Deletes all extension fields or all extensions fields matching a specific GUID from an EP object.

EPGet Positions to and optionally retrieves a requested extension field from an EP object, storing the GUID, length, and d
ata subfields in separate variables. EPGet can also be used to locate extension fields containing a specified GUID.

EPGetBuffer Converts an EP object to a message extension and packs the message extension into the supplied buffer.

EPOpen Creates an EP object and optionally unpacks the supplied message extension buffer into it.

EPUpdate Writes new data to an existing extension field of an EP object.

https://msdn.microsoft.com/en-us/library/aa754299(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745217(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705269(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705758(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705660(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770342(v=bts.10).aspx

Programming Considerations When Using MSMQ-MQSeries
Bridge Extensions

The limitations of specific API functions result from the fact that MSMQ-MQSeries Bridge transmits messages, not API calls,
between queuing systems. The MSMQ-MQSeries Bridge transmits messages across the MSMQ-MQSeries interface. The
MSMQ-MQSeries Bridge does not transmit API calls across the interface. Thus, Microsoft® Message Queuing (also known as
MSMQ) API calls operate only within the Message Queuing environment, and MQSeries API calls operate only within the
MQSeries environment. This principle limits the ways in which you can create and access queues.

All Message Queuing API functions operate only within the Message Queuing environment, up to and including foreign
computers and queues. For example, you can use the following functions:

MQLocateBegin, MQLocateNext, and MQLocateEnd to search for foreign queues

MQGetMachineProperties, MQGetPrivateComputerInformation, MQGetQueueProperties, and
MQGetQueueSecurity functions to retrieve the properties of foreign queues

MQOpenQueue to open a foreign queue

MQSetQueueProperties and MQSetQueueSecurity to set the properties of foreign queues

MQCloseQueue to close a foreign queue

When creating a queue, you can call the Message Queuing function MQCreateQueue to create a foreign queue representing
an MQSeries queue, but you cannot create the actual MQSeries queue itself. Similarly, you cannot create a Message Queuing
queue by calling the MQSeries function MQOPEN.

To communicate across the MSMQ-MQSeries interface, your Message Queuing and MQSeries applications should each create
their own queues. Alternatively, you can use administration tools such as the Message Queuing Manager or the MQSeries
command interface to create the queues.

For proper message delivery, you must ensure that the destination queue for each message actually exists.

You can use the Message Queuing MQPathNameToFormatName function to determine a Message Queuing format name
for an MQSeries queue. The format name actually refers to the Message Queuing foreign queue. The MSMQ-MQSeries Bridge
processes the format name that it finds in a message and directs the message to the MQSeries queue.

When opening a queue, a call to the Message Queuing function MQOpenQueue opens the foreign queue, not the MQSeries
queue itself. The MSMQ-MQSeries Bridge opens the MQSeries queue as necessary when it transmits a message. If you are
sending messages to more that one MQSeries queue, you must open each one separately using its own Message Queuing
format name.

In the opposite direction, the MQSeries function MQOPEN opens the transmission queue for the Message Queuing computer.
The MSMQ-MQSeries Bridge opens the Message Queuing queue when it transmits a message.

When sending a Message Queuing message to a foreign queue with MQSendMessage, Message Queuing delivers the
message to the connector queue in the MSMQ-MQSeries Bridge computer. The MSMQ-MQSeries Bridge converts and
transmits the message to MQSeries queue. MQSeries delivers a message sent by MQPUT to a transmission queue. The
MSMQ-MQSeries Bridge reads the message from the MQSeries transmission queue. After converting the message from
MQSeries to Message Queuing message properties, MSMQ-MQSeries Bridge transmits the message to the destination
Message Queuing queue.

When receiving a message, the MSMQ-MQSeries Bridge does not transmit receive requests across the MSMQ-MQSeries
interface. A Message Queuing application can receive a message only from a native Message Queuing queue (the
MQReceiveMessage function). An MQSeries application can receive only from a native MQSeries queue (the MQGET
function).

When sending a message from MQSeries to Message Queuing, if you want the MQSeries message to have a value for
MQMD.ApplIdentityData, you need the set both of the following:

Set the Open option with MQOO_SET_IDENTITY_CONTEXT

Set the Put option with MQPMO_SET_IDENTITY_CONTEXT

When a message is retrieved from Message Queuing, the MSMQ-MQSeries Bridge will have converted the Message Queuing
PROPID_M_LABEL and PROPID_M_LABEL_LEN properties from the MQSeries MQMD.ApplIdentityData field value.

The MQMDE extension has the following GUID for MQMD version 2.

In This Section

Transaction Support Using MSMQ-MQSeries Bridge

Security Using MSMQ-MQSeries Bridge

Troubleshooting MSMQ-MQSeries Bridge Extensions

static const GUID sg_MSMQExtMQMDE =
{ 0x18ae68f5, 0x989b, 0x11d3,
 { 0x8d, 0xf9, 0x0, 0x0, 0xf8, 0x1a, 0xea, 0x1f }
};

https://msdn.microsoft.com/en-us/library/aa771873(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771832(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771725(v=bts.10).aspx

Transaction Support Using MSMQ-MQSeries Bridge
The MSMQ-MQSeries Bridge supports both Message Queuing (also known as MSMQ) and MQSeries transactions. The
procedure for sending a group of transacted messages is similar in either direction, from Message Queuing to MQSeries or
from MQSeries to Message Queuing. Your application should follow these three basic procedures:

Open a transaction

Send the messages

Commit the transaction

At this point, the group of messages reaches the Message Queuing connector queue or the MQSeries transmission queue.
Only then does the MSMQ-MQSeries Bridge transmit the messages to the other messaging system. If your application stops
the transaction instead of committing, MSMQ-MQSeries Bridge does not handle the messages at all.

Even after you commit a transaction, it is still possible that MSMQ-MQSeries Bridge cannot transmit all the messages. This may
occur, for example, if some of the messages are addressed to queues that do not exist in the recipient messaging system.
MSMQ-MQSeries Bridge places any undeliverable messages on its dead letter queue.

In the Message Queuing-to-MQSeries direction, the MSMQ-MQSeries Bridge sends transacted messages by a transactional
message pipe and untransacted messages by regular message pipe. In the MQSeries-to-Message Queuing direction, MQS-
>Message Queuing message pipe, and MQS->Message Queuing transactional message pipe do not depend on transaction
status.

Security Using MSMQ-MQSeries Bridge
 

Message authentication and message body encryption are supported from the Message Queuing (also known as MSMQ)
sending application up to MSMQ-MQSeries Bridge. Authentication and message body encryption from MSMQ-MQSeries
Bridge to MQSeries, or from MQSeries to Message Queuing, are not currently supported.

Troubleshooting MSMQ-MQSeries Bridge Extensions
The MSMQ-MQSeries Bridge generally ignores warnings that it receives from Message Queuing (also known as MSMQ) or
MQSeries, but errors are not ignored. Where possible, the MSMQ-MQSeries Bridge transmits messages despite any warnings.

If the MSMQ-MQSeries Bridge is unable to transmit a message to Message Queuing or MQSeries, it places the message on
one of its dead letter queues. This can happen, for example, if a message contains an unsupported Message Queuing or
MQSeries version identifier or if MSMQ-MQSeries Bridge encounters an error in the recipient messaging system.

The dead letter queues are Message Queuing queues located on the MSMQ-MQSeries Bridge computer. There are two dead
letter queues used for this purpose with the following names.

Dead letter queue names Comments
MQBridge dead letter Used for untransacted messages when errors occur.

MQBridge xact dead letter Used for transacted messages when errors occur.

Note that these are different from the Message Queuing and MQSeries dead letter queues, where the messaging systems
place expired or incorrectly addressed messages.

You can determine whether there are messages on the dead letter queues using the MSMQ-MQSeries Bridge Manager.

If the MSMQ-MQSeries Bridge cannot deliver a message to MQSeries, it records the error in the extension property
PROPID_M_EXTENSION of the original Message Queuing message and places the message on the dead letter queue. This
extension property can be examined to determine the nature of the error encountered.

Registry Settings Used By MSMQ-MQSeries Bridge Extensions
The MSMQ-MQSeries Bridge Extensions uses a number of registry settings for configuration and proper operation. The
configuration registry settings are located under the HKEY_LOCAL_MACHINE\Software\Microsoft\SNA
Server\CurrentVersion\Setup key. These registry settings include the subkeys listed in the following table.

Su
bk
ey

Comment

Ro
ot
Dir

Stores the path to the root directory where the Host Integration Server was installed. The system directory below this root
directory is the location where the MSMQ-MQSeries Bridge Extensions dynamic link library (DLL) and other support DLLs
are installed.

Creating a Single Sign-On Application
This section provides information about Enterprise Single Sign-On (SSO) technology.

In This Section

Programming Single Sign-On Overview

Programming with Enterprise Single Sign-On

Programming Single Sign-On Overview
A business process that relies on several different applications is likely to face the challenge of dealing with several different
security domains. Accessing an application on a Microsoft Windows operating system might require one set of security
credentials, whereas accessing an application on an IBM mainframe might require different credentials. Dealing with this
profusion of credentials is hard for users, and it can pose an even greater challenge for automating processes. To address this
problem, BizTalk Server includes Enterprise Single Sign-On (SSO). SSO lets you map a Windows user ID to non-Windows user
credentials. This service can simplify business processes that use applications on diverse systems.

To use SSO, an administrator defines affiliated applications, each of which represents a non-Windows system or application.
An affiliated application might be a Customer Information Control System (CICS) application that is running on an IBM
mainframe, an SAP ERP system that is running on UNIX, or any other kind of software. Each of these applications has its own
mechanism for authentication, and so each requires its own unique credentials.

SSO stores an encrypted mapping between the Windows user ID of a user and the associated credentials for one or more
affiliated applications. These linked pairs are stored in an SSO database. SSO uses the SSO database in two ways. The first way,
called Windows-initiated Single Sign-On, uses the user ID to determine to which affiliated applications the user has access. For
example, a Windows user account might be linked with credentials that grant access to a DB2 database running on a remote
AS/400 server. The second way, called host-initiated Single Sign-On, acts in reverse: determining what remote applications
have access to a specified user ID, and the privileges that go with that account. For example, a remote application might be
linked with credentials that grant access to a user account that has administration privileges on a Windows network.

Note that SSO also includes administration tools to perform various operations. All operations performed on the SSO database
are audited; for example, tools are provided that enable an administrator to monitor these operations and set various audit
levels. Other tools enable an administrator to disable a particular affiliated application, turn on and off an individual mapping
for a user, and perform other functions. There is also a client program that enables end users to configure their own credentials
and mappings.

One of the administrative requirements for Single Sign-On is that your local system must know about the credentials that are
required to log on to a remote system. Similarly, the remote system must know about the credentials on your local system.
Therefore, when you update your credentials, such as when you update your password on your local computer, you must also
inform the remote systems that you have done so. The component you design that synchronizes passwords across an
enterprise is called a password sync adapter.

In This Section

Single Sign-On Interface

Single Sign-On Applications

What You Should Know Before Programming Single Sign-On

Supported Platforms for Single Sign-On

Single Sign-On Interface
The following table describes the COM and .NET Framework interfaces that make up the Single Sign-On interface.

.NET COM Description

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOAdmin

ISSOAdmin Interface (COM) Creates, updates, and deletes an SSO application. Also perfor
ms other administration functions.

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOConfigStore

ISSOConfigStore Interface (COM) Gets and sets information in the SSO configuration store.

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOLookup1

ISSOLookup1 Interface (COM) Enables you to look up the external credentials on a specified
application for the current user.

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOLookup2

ISSOLookup2 Interface (COM) As above, but also enables you to look up the Windows crede
ntials for a specified external user.

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOMapper

ISSOMapper Interface (COM) Enables you to set the external credentials for the current use
r for a specified application.

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOMapping

ISSOMapping Interface (COM) Creates and maintains the mapping between users and affilia
ted applications.

Microsoft.EnterpriseSingleSig
nOn.Interop.ISSOTicket

ISSOTicket Interface (COM) Creates the ticket that contains the appropriate security infor
mation. This ticket is then sent on with the appropriate messa
ge from your application.

In addition, Host Integration Server supports the Password Sync Helper (PS Helper) component. You can use PS Helper when
you design password synchronization components. The following table describes the COM and .NET Framework interfaces
exposed by PS Helper.

.NET COM Description

Microsoft.EnterpriseSingleSignOn.Intero
p.ISSOPSWrapper

ISSONotification Interface (COM) Handles password changes to and fro
m non-Windows operating systems.

SExternalAccount Structure (COM) Describes an external account.

SPasswordChange Structure (COM) Describes a password change.

SPasswordChangeComplete Structure (COM) Describes the completion of a passwor
d change.

SStatus Structure (COM) Describes an error or event.

SAdapterInGroup Structure (COM) Describes the adapters in a given grou
p.

SAdapter Structure (COM) Describes a specific adapter.

Single Sign-On Applications
From a programming perspective, you can write two different kinds of applications using Single Sign-On: a traditional Single
Sign-On application that uses the Single Sign-On interface to interact with remote applications, and a password sync adapter
that uses the Password Sync (PS) Helper interface to synchronize passwords across your enterprise.

In This Section

Traditional Single Sign-On Applications

About Password Sync Adapters

Traditional Single Sign-On Applications
The Single Sign-On (SSO) programming architecture contains a mapping component to map between applications and users,
a lookup component to look up credentials for a specified use, and an administration component to perform administrative
tasks. In addition, SSO also contains a ticketing interface so that your application can issue and redeem tickets.

Mapping

Mapping is the process of linking a specified user with a specified application. You can map between affiliate applications and
users who are using ISSOMapping, ISSOMapper, and ISSOMapper2. With ISSOMapping, you can create, delete, enable,
and disable mappings. With ISSOMapper, and ISSOMapper2, you can get and set mapping data for the current user.

Lookup

The core of the Single Sign-On programming interface is the ability to look up credentials for specified users. You can look up
credentials using ISSOLookup1, and ISSOLookup2. ISSOLookup1, enables the user to retrieve their own external credentials.
In contrast, ISSOLookup2 also enables you to look up the credentials of a remote user for a local affiliate application. The
former is necessary for a traditional Single Sign-On application, whereas the latter is useful when you are writing a host-
initiated Single Sign-On application.

Administration

You can perform many of the administrative capabilities programmatically through ISSOAdmin, ISSOAdmin2, and
ISSOConfigStore. Such tasks include configuring Single Sign-On and creating and describing an application to Single Sign-
On. You also can create and modify SSO databases using ISSOConfigDB, ISSOConfigOM, and ISSOConfigSS. Finally, you can
administer the password sync features using ISSOPSAdmin.

Communication and Ticketing

Your application will most likely issue messages so that your user can communicate with a remote application. To
communicate with a remote application more securely, you must issue and redeem a Single Sign-On ticket. You can also issue
and redeem tickets programmatically.

See Also
Other Resources
Single Sign-On Applications

Password Sync Adapters
A password sync adapter is a component that propagates password changes to and from a non-Windows system. Although
password sync adapters are similar to traditional Single Sign-On applications, they have several differences:

They are administered using a specialized interface.

They are described using a specialized XML format in the configuration store.

Host Integration Server uses a specialized feature to organize adapters in the configuration store.

In This Section

Password Sync Programming Architecture

Adapter Programming Administration

Adapter Programming Configuration

Adapter Groups and Group Adapters

Password Sync Programming Architecture
A password sync adapter uses a pull model for interacting with the rest of the Enterprise Single Sign-On system: that is, the
adapter actively receives password changes from the Enterprise Single Sign-On (ENTSSO) service and also from the non-
Windows system. Similarly, the adapter pushes password changes received from one system to the other. With this model,
your adapter interacts with three architectural components: the ENTSSO architecture, the Password Sync (PS) Helper
component, and a specified non-Windows system.

Enterprise Single Sign-On Architecture

ENTSSO is the service that implements the Enterprise Single Sign-On technology, and runs as a local service on the same
system as your adapter. Therefore, communication between the adapter and ENTSSO is always local. However, a password
sync adapter runs in a separate process from the ENTSSO service.

ENTSSO uses the configuration store to store configuration information for an adapter. The Application Users account of a
configuration store application corresponds to the access account. When an adapter calls into ENTSSO, ENTSSO checks that
the adapter is within the configured access account for that adapter. The access account must be a (local or domain) group
account.

Because ENTSSO stores information about an adapter, the adapter can identify itself to ENTSSO by its adapter name. The
adapter name corresponds to the configuration store application name and the configuration store identifier used to store the
adapter properties. Therefore, adapters must know only their adapter name to access configuration information and to
correctly identify themselves to the ENTSSO system at run time.

Password Sync Helper

Password Sync (PS) Helper is a COM component provided by ENTSSO. PS Helper runs in-process with the password sync
adapter, and exposes ISSOPSWrapper. Your adapter can call either interface to communicate with the ENTSSO service. The PS
Helper passes communications to and from ENTSSO using encrypted (packet privacy) lightweight remote procedure call
(LRPC). Although the communications are mainly for password updates, you can also use the interfaces to pass other types of
notifications between the adapter and ENTSSO. Because PS Helper runs as a singleton value per process, it is possible for
multiple adapters to call the same PS Helper object from within the same adapter process. For more information about using
PS Helper programmatically, see Synchronizing Passwords.

Non-Windows System

The non-Windows system is the remote computer your adapter interacts with. How you interact with the non-Windows system
is up to you.

See Also
Other Resources
Password Sync Adapters

Adapter Programming Administration
An adapter is a special type of configuration store application: that is, an adapter is a component that shares a namespace with
other Single Sign-On and configuration store applications. Therefore, you can access information about an adapter using
ISSOConfigStore. But unlike a configuration store application, you do not perform administrative functions on an adapter with
the ISSOAdmin interface. Instead, you administer an adapter through ISSOPSAdmin. The reason for a specialized adapter
administration interface is so that the system can coordinate other activities with the configuration store.

See Also
Concepts
Adapter Programming Configuration
Adapter Groups and Group Adapters
Other Resources
Password Sync Adapters

Adapter Programming Configuration
Every type of password sync adapter has different configuration requirements, depending on what non-Windows system you
design the adapter for. Like affiliate applications, you can use the Enterprise Single Sign-On configuration store to store
configuration properties centrally and more securely.

As with other configuration store applications, an administrator can use the Enterprise Single Sign-On management user
interface to locate and read an XML file that describes the configuration properties for your adapter. The management tools
use the XML file to render a property page to gather the required property values, for the specified adapter. You can also use
ISSOConfigStore to load and read XML name/value combinations to and from the configuration store, or you can use the
SSOPS tool.

You can also use the Enterprise Single Sign-On administration tools to enable and disable an adapter. On initial creation, an
adapter is disabled.

See Also
Other Resources
Password Sync Adapters

Adapter Groups and Group Adapters
An adapter group is an administration mechanism that you can use to collect and organize a set of adapters. In contrast, a
group adapter is a component that services all adapters in an adapter group. For example, you might write a set of adapters
that all use the same COM component to transmit password synchronizations over TCP/IP. Your set of adapters is called the
adapter group, whereas the component that services them all is called a group adapter. Adapter groups are described in the
configuration store. You can retrieve information and updates on an adapter group by using
ISSOPSAdapter.ReceiveNotification.

A group adapter has the same name as the adapter group. Other than the naming restriction, a group adapter is otherwise
identical to a normal adapter. For example, a group adapter can have independent access groups and configuration properties,
as described by its configuration file. A group adapter is most likely on the same computer as any adapters in the adapter
group. However, this is not currently enforced. Likewise, all adapters in the same adapter group can be expected to be on the
same computer.

By using ISSOPSAdapter.InitializeAdapter, you can access and initialize a group adapter during startup. When you initialize
a group adapter, the system informs the group adapter of all adapters in the adapter group on the current system. In addition,
the system sends notifications to the group adapter any time an adapter is added, deleted, enabled, or disabled in the adapter
group. However, the group adapter does not receive any password change notifications.

Adapter groups and group adapters are optional using the Administration tool.

See Also
Other Resources
Password Sync Adapters

What You Should Know Before Programming Single Sign-On
To use this documentation effectively, you should be familiar with the following:

Microsoft Windows XP, Windows 2000 Server, Windows Server 2003, or Windows Server 2008 operating systems. You
should be especially familiar with Windows Security features.

Administrative features of Enterprise Single Sign-On, especially how to perform administrative actions using the user
interface.

Depending on the API and development that you are using, you should also be familiar with the following interfaces:

COM

The .NET Framework and the common language runtime

Windows Networking, and specifically how to send and receive tickets

See Also
Other Resources
Programming Single Sign-On Overview

Supported Platforms for Single Sign-On
Enterprise Single Sign-On is included with BizTalk Server. Therefore, it is supported by all operating systems that support
BizTalk Server.

See Also
Other Resources
Programming Single Sign-On Overview

Programming with Enterprise Single Sign-On
Enterprise Single Sign-On (SSO) is a technology implemented in the Enterprise Single Sign-On service (ENTSSO) that enables
users to access multiple remote services without having to work their way through additional sign-on screens.

In This Section

How to Determine Current Single Sign-On Access

How to Configure Single Sign-On

How to Create and Describe an Application to Single Sign-On

How to Map Single Sign-On Credentials

Logging on to a Remote or Local Application

How to Change the Behavior of a Single Sign-On Interface

Issuing and Redeeming a Single Sign-On Ticket

Synchronizing Passwords

How to Determine Current Single Sign-On Access
One of the first tasks you might need to perform for a user is to determine what affiliated applications have already been set
up for the current user. You can perform this query with a call to ISSOMapper.GetApplications.

To query the Single Sign-On database for the applications available to the current user

1. Create a new instance of ISSOMapper.

In general, ISSOMapper is an interface designed to retrieve information from Single Sign-On (SSO). You will most likely
use ISSOMapper in many similar queries.

2. Retrieve all applications that are affiliated with the current user by calling GetApplications.

GetApplications automatically returns only the affiliated applications of the current user.

The following code example demonstrates how to query the Single Sign-On database.

See Also
Other Resources
Programming with Enterprise Single Sign-On

private static string[] Applications=null;
. . .
public static string[] GetCurrentUserApplications()
{
 if(Applications==null)
 {
 string[] descs;
 string[] contacts;
 ISSOMapper mapper=new ISSOMapper();
 mapper.GetApplications(out Applications, out descs, out contacts);
 }
 return Applications;
}

How to Configure Single Sign-On
Before accessing Enterprise Single Sign-On, you should make sure that Enterprise Single Sign-On is set correctly for the
current user. For most configurations, you use one of two interfaces. ISSOAdmin is the general administration interface that
enables you to create new affiliation applications. However, by using ISSOAdmin.GetGlobalInfo and
ISSOAdmin.UpdateGlobalInfo, you can set a variety of flags and administration values. One possible task, as described in the
following procedure, is to ensure that SSO ticketing has been enabled.

To enable ticketing

1. Create a new instance of ISSOAdmin.

2. Retrieve the current settings through ISSOAdmin.GetGlobalInfo.

If necessary, you may want to confirm that the flags are set to the correct values at this point.

3. Change any relevant flags using ISSOAdmin.UpdateGlobalInfo.

In this particular case, all the flags are being set to validate and enable tickets.

The following example shows how to enable ticketing using Single Sign-On.

See Also
Other Resources
Programming with Enterprise Single Sign-On

public static bool EnableTickets()
{
 try
 {
 ISSOAdmin admin=new ISSOAdmin();
 int flags=0;
 int appDeleteMax=1000;
 int mappingDeleteMax=1000;
 int ntpLookupMax=-1000;
 int xplLookupMax=-1000;
 int ticketTimeout=2;
 int cacheTimeout=60;
 string secretServer=null;
 string ssoAdminGroup=null;
 string affiliateAppMgrGroup=null;
 // Get current default settings.
 admin.GetGlobalInfo(out flags, out appDeleteMax, out mappingDeleteMax, out ntpLookupM
ax, out xplLookupMax, out ticketTimeout, out cacheTimeout, out secretServer, out ssoAdminGr
oup, out affiliateAppMgrGroup);
 // Update global settings.
 admin.UpdateGlobalInfo(SSOFlag.SSO_FLAG_ALLOW_TICKETS | SSOFlag.SSO_FLAG_VALIDATE_TIC
KETS, SSOFlag.SSO_FLAG_ALLOW_TICKETS | SSOFlag.SSO_FLAG_VALIDATE_TICKETS, ref appDeleteMax,
ref mappingDeleteMax, ref ntpLookupMax, ref xplLookupMax, ref ticketTimeout, ref cacheTimeo
ut, null, null, null);
 }
 catch
 {
 return false;
 }
return true;
}

How to Create and Describe an Application to Single Sign-On
A common administrative task that you might need to perform is adding an affiliate application into the Enterprise Single Sign-
On (SSO) database. Adding an affiliate application to the Enterprise SSO database enables you to associate users and
credentials with the affiliated application.

Note
Creating an affiliated application requires membership in the "SSO Affiliate Administrator" account or above.

To create and describe an application in the SSO database

1. Create a new ISSOAdmin object.

2. Create a new application with a call to ISSOAdmin.CreateApplication.

3. Add the relevant fields describing the application with a call to ISSOAdmin.CreateFieldInfo.

During this step, you tell the database that an application has users and associated passwords.

4. Push the newly created description out to the server with a call to ISSOAdmin.UpdateApplication or
ISSOAdmin2.UpdateApplication2.

The difference between the two methods is that UpdateApplication2 uses an IPropertyBag as the way to describe the
application updates, while UpdateApplication has multiple parameters.

5. Purge the local cache for the changes you made by calling ISSOAdmin.PurgeCacheForApplication.

Purging the local cache is a security measure that prevents having the names and passwords that you describe in step 3
to exist in an unsecured location.

The following example shows how to create an application and add field information.

See Also
Other Resources
Programming with Enterprise Single Sign-On

 public static bool AddApplication(string name, string admins, string users)
 {
 try
 {
 ISSOAdmin admin=new ISSOAdmin();
 // Create application.
 admin.CreateApplication(name, "SSO Sample Application", "administrator@ssoaffil
iateapplication.com", users, admins, SSOFlag.SSO_WINDOWS_TO_EXTERNAL | SSOFlag.SSO_FLAG_ALL
OW_TICKETS | SSOFlag.SSO_FLAG_VALIDATE_TICKETS, 2);
 // Add fields.
 admin.CreateFieldInfo(name, "User Id", SSOFlag.SSO_FLAG_NONE);
 admin.CreateFieldInfo(name, "Password", SSOFlag.SSO_FLAG_FIELD_INFO_MASK);
 // Enable application.
 admin.UpdateApplication(name, null, null, null, null, SSOFlag.SSO_FLAG_ENABLED,
SSOFlag.SSO_FLAG_ENABLED);
 // Purge changes.
 admin.PurgeCacheForApplication(name);
 }
 catch
 {
 return false;
 }
 return true;
 }

How to Map Single Sign-On Credentials
When you know that you have affiliated applications in your Enterprise Single Sign-On database, you can map the credentials
for a user to that application. Mapping the credentials of the current user to an affiliated application requires that you use a
combination of the ISSOMapper and ISSOMapping interfaces.

To map between an affiliated application and user credentials

1. Create new instances of ISSOMapper and ISSOMapping.

2. Set the ISSOMapping properties to the relevant values.

The relevant properties for ISSOMapping are the Microsoft Windows domain name of the user, the Windows user
name, the name of the affiliated application, and the external user name.

3. Create the mapping with a call to ISSOMapping.Create.

Calling ISSOMapping.Create propagates the local copy of the mapping out to the Enterprise Single Sign-On server.

4. Set the credentials on the mapping with a call to ISSOMapper.SetExternalCredentials.

5. Enable the mapping with a call to ISSOMapping.Enable.

The following example shows how to add mapping between a specified Enterprise Single Sign-On application and a user.

See Also
Other Resources
Programming with Enterprise Single Sign-On

public static bool AddMapping(string application, string user, string XU, string XP)
{
 try
 {
 // Set mapping.
 ISSOMapper mapper=new ISSOMapper();
 ISSOMapping mapping=new ISSOMapping();
 string username=user.Substring(user.IndexOf('\\')+1);
 string userdomain=user.Substring(0, user.IndexOf('\\'));
 mapping.WindowsDomainName=userdomain;
 mapping.WindowsUserName=username;
 mapping.ApplicationName=application;
 mapping.ExternalUserName=XU;
 mapping.Create(0);
 // Set credentials.
 string[] credentials=new string[]{XP};
 mapper.SetExternalCredentials(application, XU, ref credentials);
 mapping.Enable(0);
 }
 catch
 {
 return false;
 }
 return true;
 }

Logging on to a Remote or Local Application
After you finish setting affiliate credentials for your user, you can use Enterprise Single Sign-On service (ENTSSO) to provide
access to applications. If the user is local, you can use ENTSSO to retrieve credentials for a non-Windows application. In
contrast, if the user is remote, you can use ENTSSO to retrieve credentials for a local application.

In This Section

How to Log a Local User on to a Non-Windows Application

How to Log a Remote User on to a Local Application

How to Log a Local User on to a Non-Windows Application
After you set up your user with an affiliate application, you can use Single Sign-On (SSO) to access the external user name and
credentials of the current user. Using these credentials, you can then log your user on to the affiliate application that is running
on a host server.

Note
In addition to setting the appropriate security protocols for SSO, you might also need to set additional security to allow your
application to call SSO in the correct security context. If your application cannot call SSO in the correct security context, SSO
will deny access to your application.

To set the security context for an SSO application

1. Identify what credentials your application needs to run successfully.

For example, an application that uses Web services or.NET Framework remoting hosted in IIS needs to impersonate the
client in order to pass the appropriate credentials on to SSO.

2. Confirm that the relevant security settings, such as those on virtual directories, application pools, and web.config files, are
set to provide your application with those credentials.

For more information about how to set security credentials, see
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure Communication.

For more information about passing credentials for an ASP.NET Web service, see
HOW TO: Pass Current Credentials to an ASP.NET Web Service.

To log a local user on to a host application

1. Receive the request to log the current user on to an application running on the host server.

It is your responsibility to determine how the current user requests to be logged on to a host application.

2. Retrieve the credentials for the current user who is using ISSOLookup1.GetCredentials or
ISSOLookup2.GetCredentials.

You must supply the name of the host application together with any relevant flags. GetCredentials returns the
associated user name and credentials for the host application.

Note that you can use either ISSOLookup1 or ISSOLookup2. The only difference is that ISSOLookup2 also has a
method for logging a remote user on to a local windows application.

3. Use the external user name and credentials to log on to the host application.

It is your responsibility to determine how to use the credentials to log on to the host application.

See Also
Tasks
How to Log a Remote User on to a Local Application

http://go.microsoft.com/fwlink/?LinkId=119600
http://support.microsoft.com/default.aspx?scid=kb;en-us;813834

How to Log a Remote User on to a Local Application
The other main feature of Enterprise Single Sign-On service (ENTSSO) is supporting a host-initiated process (HIP). ENTSSO
interacts with HIP when a remote user tries to access a local Windows resource. Using ENTSSO, you can receive the request
from the host user and request access to the local Windows application.

To log a remote user on to a local Windows application

1. Receive the request from the remote user.

It is your responsibility to determine how to retrieve a request from the remote user.

2. Request that the remote user be given access to the specified affiliate application, using
ISSOLookup2.LogonExternalUser.

LogonExternalUser passes in the name of the application the external user wishes to access, the name of the external
user, the associated credentials for the external user, and any relevant flags. If successful, LogonExternalUser returns a
handle to a Windows access token.

The remote user must already be identified in the Single Sign-On database, have their credentials in the database, and be
associated with an affiliate application. Otherwise, LogonExternalUser returns an error. You can keep the user names
and credentials up to date using Password Sync.

In addition, you must have protocol transition enabled.

3. Use the Windows handle returned from LogonExternalUser to impersonate the user that the token represents.

See Also
Tasks
How to Log a Local User on to a Non-Windows Application
Reference
ISSOLookup2.LogonExternalUser Method
LogonExternalUser

https://msdn.microsoft.com/en-us/library/aa754378(v=bts.10).aspx

How to Change the Behavior of a Single Sign-On Interface
Many of the objects in the Enterprise Single Sign-On (SSO) object model expose the IPropertyBag interface, which allows you
to modify the behavior of the specified object. If you call QueryInterface on an SSO object, you can retrieve the IPropertyBag
interface and use it to change the behavior of your current object.

To change the behavior for a specified SSO interface

1. Use QueryInterface on the specified interface to retrieve an IPropertyBag instance.

2. Use IPropertyBag.Write to set the property, type, and value for the interface.

The following table describes the valid values for the IPropertyBag propName and ptrVar parameters.

propName Type ptrValue Usable On

CurrentSSOServe
r

VT_BSTR Name of the server to send the information to All

Transaction VT_UNKNOW
N

VT_EMPTY

A DTC ITransaction pointer, or NULL to clear the scope. ISSOConfigStore::SetConfigInfo
ISSOConfigStore::GetConfigInfo
ISSOConfigStore::DeleteConfigI
nfo

ISSOAdmin::CreateApplication
ISSOAdmin::DeleteApplication
ISSOAdmin::UpdateApplication
ISSOAdmin::CreateFieldInfo

ISSOMapper::GetFieldInfo

AppFilterFlags VT_I4

VT_UI4

Flags to control what application to filter. ISSOMapper::GetApplications

ISSOMapper2::GetApplications2

AppFilterFlagsMa
sk

VT_I4

VT_UI4

Flag mask to control what application to filter. ISSOMapper::GetApplications

ISSOMapper2::GetApplications2

AsyncCall VT_BOOL True to call using an async RPC; false to use a synchronous
RPC.

ISSOConfigOM::GetServerStatus

ISSOAdmin::GetGlobalInfo

CurrentSSOServer: the standard behavior for determining which server to send SSO information to is as follows:

1. Look in the registry for the current user. The server name can be set for the current user using the command line
tools or GUI.

2. Look in the registry for all users. The server name can be set for all users using the command line tools or GUI.

3. If no SSO server name is found in the registry then use the current computer.

Setting CurrentSSOServer to a specified server overrides the previous process for the specified interface. Once you set
CurrentSSOServer, all subsequent method calls on the interface will be sent to the specified server.

Transaction: specifies a DTC transaction that to scope the operations performed by the SSO object model. You must
pass a DTC ITransaction pointer in ptrValue, or "null" to clear the current transaction scope.

AppFilterFlags/AppFilterMask: controls what types of applications will be returned from ISSOMapper.GetApplications
and ISSOMapper2.GetApplications. If the application flags match the flags specified by the filter flags and the filter flag

mask they will be returned. One way to perform application filtering is to set AppFilterFlagsMask to
SSO_FLAG_APP_FILTER_BY_TYPE and to then set AppFilterFlags to one or more of the following:

SSO_APP_TYPE_INDIVIDUAL

SSO_APP_TYPE_GROUP

SSO_APP_TYPE_CONFIG_STORE

SSO_APP_TYPE_HOST_GROUP

SSO_APP_TYPE_PS_ADAPTER

SSO_APP_TYPE_PS_GROUP_ADAPTER

AsyncCall: if true, then SSO will perform the method using an asynchronous remote procedure call (RPC). The method
will return E_PENDING while in progress. Any other return value indicates that the method is completed. AsyncCall also
allows you to poll the method for completion.

Issuing and Redeeming a Single Sign-On Ticket
After you link a user and an affiliate application, you can issue tickets to help ensure security while maintaining
communications. Single Sign-On ticketing works just like other ticketing technologies: before sending the message off, you
append the Single Sign-On ticket to the message as a string. The server receives your message, decodes the ticket, and uses
the information as appropriate.

To issue a Single Sign-On ticket

1. Create a new ticket object with a call to ISSOTicket.

2. Issue the ticket with a call to ISSOTicket.IssueTicket.

To redeem a Single Sign-On ticket

1. Create a new ticket object with a call to ISSOTicket.

2. Redeem the ticket with a call to ISSOTicket.RedeemTicket.

See Also
Other Resources
Programming with Enterprise Single Sign-On

Synchronizing Passwords
You synchronize a password by using a password sync adapter. This adapter should be able to communicate with a specific,
remote, non-Windows system, and should also be able to instruct that system to update password information.

In This Section

How to Create a Password Sync Adapter

How to Configure a Password Sync Adapter

How to Assign an Application to an Adapter

How to Create and Modify an Adapter Group

How to Create a Password Sync Adapter
A password sync (PS) adapter is an application that uses the Password Sync Helper component to pass notifications to and
from Enterprise Single Sign-On (SSO). Note that although the PS Helper component exposes a COM and a .NET Framework
interface, your adapter does not necessarily have to be a COM component. You can design your adapter as a stand-alone
process, a COM+ application, or a Windows service.

To create a password sync adapter

1. Inform Enterprise Single Sign-On service (ENTSSO) that your provider is active using
ISSOPSWrapper.InitializeAdapter.

InitializeAdapter informs ENTSSO that a provider, usually the same provider that is making the call, is currently turned
on, and therefore will be communicating password updates to and from the system. You can also use InitializeAdapter
to activate other resources such as group adapters.

2. Send password updates to ENTSSO by using ISSOPSWrapper.SendNotification.

You must determine how you receive password updates from your non-Windows system. After you receive the update,
you can pass the information on to ENTSSO using SendNotification. Note that SendNotification is not limited to
sending password updates: the architecture of SendNotification also enables you to send other types of notifications.

3. Request password updates from ENTSSO by using ISSOPSWrapper.ReceiveNotification.

Because the password sync adapter is a pull technology, ENTSSO never calls your adapter. Instead, your adapter
periodically calls ReceiveNotification to see whether any password updates are available. You can choose to set the
WAIT flag on ReceiveNotification. Setting WAIT blocks the thread until a notification is available.

Note that ENTSSO delivers a password change to your adapter in plain text. It is the responsibility of the adapter to
protect that password information against incorrect disclosure. It is also the responsibility of the adapter to protect itself
against spoofing or attacks from other invalid sources, including spoofing of the Password Sync Helper component.

After you receive a password update from ENTSSO through the pReceiveNotification parameter, you must pass this
information on to your non-Windows system. As with SendNotification, you must determine the best way to
communicate with the remote server.

4. Turn off your adapter using ISSOPSWrapper.ShutdownAdapter.

ShutdownApplication should be the last method called by an adapter, and indicates that the adapter will no longer
send or receive password updates to ENTSSO.

Note that ENTSSO buffers any password changes a user makes while the adapter is shut down, up to a buffer size limit.

See Also
Other Resources
Programming with Enterprise Single Sign-On
Synchronizing Passwords

How to Configure a Password Sync Adapter
After you have finished creating your password sync adapter, you must load your adapter on to a system. Additionally, you
must inform Enterprise Single Sign-On (ENTSSO) and the configuration store that your application is a password sync adapter.
You must register with the configuration store for security purposes: your adapter will request updates to passwords and other
credentials. Therefore, ENTSSO must know that a given adapter is allowed to ask for such permissions.

To configure a password sync adapter

1. Create your adapter with the configuration store using the ssops tool.

Using ssops, you load an XML configuration file into the configuration database that describes your application to
Enterprise Single Sign-On.

2. After you create the adapter with the config database, you can modify the adapter information with
ISSOPSAdmin.SetAdapterProperties.

While the two methods are similar, SetAdapterProperties sends a message to the adapter when the configuration
information changes.

3. To delete an adapter, use ISSOAdmin.DeleteApplication.

See Also
Other Resources
Synchronizing Passwords

How to Assign an Application to an Adapter
To process information between a local application and a remote server, an adapter must have one or more applications
assigned to it.

To assign an application to an adapter

1. Add the application to the adapter by using ISSOPSAdmin.AssignApplicationToAdapter.

2. You can retrieve the current list of applications assigned to an adapter by using
ISSOAdmin.GetApplicationsForAdapter.

3. Once you are finished, you can remove an application from an adapter by using
ISSOPSAdmin.RemoveApplicationFromAdapter.

How to Create and Modify an Adapter Group
One of the new features of Single Sign-On (SSO) is the ability to create and modify adapter groups. As the name implies, an
adapter group is a collection of adapters. You can use adapter groups to organize security settings and other properties for
your adapters.

To create and modify an adapter group

1. Create the adapter group by using a call to the ssops tool.

In the associated XML file, you must set the group flag as an adapter group.

2. Add one or more adapters to the adapter group by using ISSOPSAdmin.AddAdapterToAdapterGroup.

At this point, your adapter group is ready to work as intended. If necessary, you can view the full list of associated
adapters by using ISSOPSAdmin.GetAdaptersForAdapterGroup.

3. You can modify the settings of your adapter group using ISSOPSAdmin.SetAdapterProperties.

4. When you are finished, you can remove the adapter from the adapter group using
ISSOPSAdmin.RemoveAdapterFromAdapterGroup.

5. Finally, you can delete the adapter group by using ISSOAdmin.DeleteApplication.

You may choose instead to delete the adapter group by using the -delete command of the ssops tool.

See Also
Other Resources
Synchronizing Passwords

Programmer's Reference
This section of the Microsoft Host Integration Server 2009 software development kit (SDK) provides reference information for
the programmer writing applications for Host Integration Server 2009.

In This Section

Application Integration Programmer's Reference

Data Integration Programmer's Reference

Network Integration Programmer's Reference

Administration and Management Programmer's Reference

Messaging Programmer's Reference

Security Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa771301(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771918(v=bts.10).aspx

Application Integration Programmer's Reference
This section of the Microsoft Host Integration Server 2009 Programmer 's Reference describes the objects, methods,
properties, controls, and other interfaces that enable you to integrate Host Integration Server technologies into your
application.

In This Section

Introduction to COM and COM+

Data Types

Host and Automation Data

COMTIContext Interface

COMTIContext Keywords

TI Component Properties

Standard Transaction Request and Reply Messages

CICS Enhanced Listener Request and Reply Messages

Microsoft Concurrent Server

Reference

Application Integration Samples

Related Sections

Application Integration Programmer’s Guide

https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705418(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770526(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754766(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770338(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx

Introduction to COM and COM+
The Component Object Model (COM) is a binary standard that enables software components to interoperate in a networked
environment regardless of the language in which they were developed.

Transaction Integrator (TI) is based on COM, which defines a standard way of handling and reporting errors. (COM is the
foundation for COM+.) To understand TI behavior and errors, you must understand how it uses COM.

Objects and clients are the basic building blocks of COM applications. An object is a piece of software that can do a specific
task. A client is software that uses and controls objects.

COM can be compared to business relationships. There are many different businesses that provide their customers (clients)
with products and services (objects) that the clients can use and control. COM applications are clients that use objects that can
do specific tasks. For example, in computer technology, Powerpnt.exe depends on several Microsoft Office and Microsoft
Windows utility objects to do most of the work involved with editing and presenting a presentation. The Powerpnt.exe is just a
client to those utility objects and directs them to their tasks. When you want to open a .ppt file, a dialog box appears, from
which you choose the file to open. This dialog box is displayed by a Windows utility object that can display a File Open dialog
box, instead of by Powerpnt.exe.

Dividing software into clients and objects enables you to use those clients and objects as building blocks that can be combined
and reused in many different ways by many different clients, just as standard building materials can be used to construct many
different structures.

COM and COM+ are the key technologies that provide the infrastructure that enables clients and objects to work together.
Other key COM concepts include methods, interfaces, classes, references, and components, which build on the foundation of
clients and objects.

In This Section

COM Defined

COM+ Defined

Component Services Features

Distributed Applications

Automation

COM Objects

COM Methods

COM Interfaces

COM Classes

COM Components and TI Components

Viewing COM Classes, Interfaces, and Methods

Windows Script Host COM Client

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705560(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753907(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746126(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704848(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771382(v=bts.10).aspx

COM Defined
The Component Object Model (COM) is a binary standard that enables software components to interoperate in a networked
environment regardless of the language in which they were developed.

See Also
Concepts
COM+ Defined
Component Services Features
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa771890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

COM+ Defined
Component Services (COM+) consists of the latest version of COM, distributed COM (DCOM), and Microsoft Distributed
Transaction Coordinator (DTC), plus additional functionality. With COM+, administrators can deploy and administer COM+
applications through a graphical user interface, or automate administrative tasks using a scripting or programming language.
Software developers can use COM+ to visually configure routine component and application behavior, such as security and
participation in transactions, and to integrate components into COM+ applications.

To open COM+, click Start, point to Programs, point to Administrative Tools, and then click Component Services. It is also
available in Transaction Integrator (TI) Manager: start TI Manager and double-click the Component Services folder.

Component Services provides standard application functionality for administration, deployment, security, reliability, and
scalability. Component Services simplifies the administrator's work by providing a tool for administering all applications
visually through a single user interface.

See Also
Concepts
COM Defined
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

Component Services Features
Component Services (COM+) builds on COM concepts and adds three major new elements: COM+ applications, increased
administrator involvement, and interception. You can gain access to Component Services from within TI Manager.

A COM+ application is a COM component that includes one or more components developed and configured to work together
by Component Services to simplify administration of application servers. Each COM+ application unites TI components (type
libraries) and COM components with configuration information about how they should be deployed, thus making a single unit
for deployment and administration. A wizard helps to deploy COM+ applications. You can easily administer COM+
applications by using Component Services in TI Manager. This feature gives administrators complete control over application
server deployment and configuration. COM+ applications also aid in the configuration of an application's presentation tier.
Administrators can use Component Services to quickly create application proxies that can be used to configure thousands of
client computers.

Component Services expands the role of administrators by empowering administrators to do many tasks that were previously
done exclusively by developers. In the application development phase, developers write their own custom type libraries or use
TI Designer to create TI component libraries from COBOL transaction programs (TPs). Then developers deploy the TI
components in a COM+ application and configure the application settings as needed. The COM+ application is a deployable
unit that the developer can pass to the administrator to deploy.

The administrator receives a COM+ application file from a developer, and then uses Component Services to deploy that
application on the server computer. Next, the administrator configures permissions to use the application, as well as other
settings. Then, the administrator creates an application proxy, which is a file used to configure each client computer in the
presentation tier. After using Microsoft Active Directory directory service and IntelliMirror to complete the client configuration,
the administrator continues to use Component Services to monitor the application's behavior.

Component Services intercepts all calls from clients to objects, and you can use it to manage objects and their interaction with
clients. Because of this interception capability, Component Services governs the interaction between objects and their clients,
and does a lot of the work that would be done by objects themselves. You can design objects to do business logic only;
Component Services handles everything else by tracking object behaviors and needs and by managing everything the objects
do.

The following are the major features of Component Services that are supported by Transaction Integrator (TI):

Administration. You can use the powerful Component Services user interface to administer the application server tier.
You can use Component Services to ease deployment, configuration, monitoring, and upgrades. Component Services
also gives administrators the ability to use scripts to control all administration.

Scalability. Component Services achieves high scalability by pooling server resources so that when one person is not
using them, another person can. When a resource is needed, it is taken from a shared pool. When the resource is no
longer needed, it is returned to the pool. Component Services pools many resources, including threads, ODBC
connections, OLE DB connections, and COM objects.

Note
TI supports the Microsoft Windows Server 2003 and Windows 2000 COM+ feature known as object pooling. To enable
object pooling for a TI component, right-click the component, and click Properties. Then select the Enable Object Poo
ling check box on the Activation tab. There are overall system manageability benefits from enabling this feature for TI
components because you can then specify the number of instances to be pre-initialized when the application starts by
using the Minimum Pool Size field. You can also set an upper limit on the number of active instances by using the M
aximum Pool Size field to prevent the server running Windows Server 2003 or Windows 2000 from flooding the hos
t system.

Transaction Support for Reliability and Data Integrity. Enterprise applications must have high levels of reliability
and data integrity. Component Services provides reliability by offering transaction support. That is, either all the actions
in a transaction occur, or none of them occurs. If all of the actions cannot take place, Component Services rolls back all of
your object's work so that the databases are left in their original state.

Security. Because Component Services acts as an intermediary between clients and objects, it is able to regulate access
to application server functionality. By using the Component Services console, the administrator can give different users
different access rights to the application.

Queued Components. Component Services is integrated with another feature of Windows called Message Queuing
(also known as MSMQ). Message Queuing gives enterprise applications the ability to continue running even when a
server is unavailable. Clients can call COM objects when the COM object is currently unavailable, and the call is stored as
a message in Message Queuing. After the server is available again, it retrieves the message from the message queue and
processes the call to the COM object.

See Also
Concepts
COM Defined
COM+ Defined
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

Distributed Applications
Applications that run partly on the Windows operating system and partly on the mainframe are known as distributed
applications. Transaction Integrator (TI) components support all local and distributed applications that adhere to the
Automation specifications and the distributed COM (DCOM) specifications. DCOM supports communication between objects
on different computers on a network by handling the low-level details of network protocols. This enables use of distributed
programs that consist of multiple processes working together to accomplish a single task. The Distributed Transaction
Coordinator (DTC) is the part of Component Services that coordinates external or two-phase transactions.

See Also
Concepts
COM Defined
COM+ Defined
Component Services Features
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771667(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

Automation
Automation is COM-based technology that enables dynamic binding to COM objects at run time. An Automation server is an
application that allows its objects, methods, and properties to be controlled by other applications through Automation. An
Automation client (also called an Automation controller) is an application that manipulates the objects, methods, and
properties of another application (the Automation server) through Automation. An Automation object is an object that is
exposed to other applications or programming tools through Automation interfaces.

A Transaction Integrator (TI) component is a type library that exposes an Automation interface. When you deploy a TI
component in a COM+ application, you create an Automation server that can be used by any other COM-based application
(Automation client). The Automation client application can call the methods on the Automation interface of a TI Automation
server (for example, a TI component deployed in a COM+ application) to invoke a CICS or IMS transaction program (TP) on a
mainframe host computer.

An Automation client application connects to a TI Automation server application in one of two ways, declarative binding or late
binding:

Declarative binding is similar to programming the speed dialer on your phone. You look up the number once, and
program it into the phone. After you verify that it is valid, a single button dials the number.

Late binding is similar to looking up the phone number in a phone book before each call, and then dialing the phone.

Both declarative binding and late binding produce the intended result. However, the speed dialer (declarative binding) is more
efficient when you make a call, but looking up the number each time (late binding) ensures that the number you are calling is
still correct.

In declarative binding, you declare a variable as an application-defined object type. A type library, object library, or dynamic-
link library is then referenced in the Automation client Tools Reference. Declarative binding is another name for virtual function
table binding or vtable binding. A vtable is a data structure that holds the addresses for the methods and properties of each
object in an Automation server. The vtable is contained within the referenced library.

Late binding allows you to create an Automation object as an Object or Variant data type. Late binding uses the IDispatch
interface. IDispatch has no preexisting information about the server that it is calling. It assumes during its compile phase that
the code is correct. It then attempts at run time to execute the code and trap for run-time errors.

See Also
Concepts
COM Defined
Viewing COM Classes, Interfaces, and Methods
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

COM Objects
COM objects are entities in memory that can do specific tasks. Each COM object is an instance of a COM class. COM objects are
not files, but can manage or represent files. (A COM object does not usually represent any particular file.) Their lifetimes are
short. COM objects are deleted when program execution is terminated.

See Also
Concepts
COM Defined
Viewing COM Classes, Interfaces, and Methods
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

COM Methods
A COM method is a specific task that a COM object can perform. When a client requests that an object complete a specific task,
that client calls a method of the object. For example, Winword.exe (a client) can call the Spellchecker method of a
Word.Document (object) to run a spell-checking session. A Transaction Integrator (TI) Automation client application can call a
method of an Automation server to run a mainframe transaction program (TP) and return the results.

See Also
Concepts
COM Defined
Viewing COM Classes, Interfaces, and Methods
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

COM Interfaces
A COM interface is a specific, immutable set of COM methods. COM clients cannot detect the internal workings of the objects
they are using. Therefore, it is important for clients and objects to communicate about and agree on the functionality that an
object supplies to a client. This agreement, frequently called a contract, is implemented in software by a COM interface.

To facilitate communication, the COM interface supplies a way for clients to query objects whether they implement specific sets
of methods. For example, by way of the interface, COM allows a client to query an object whether it implements a set of file
management methods, FileSave and FileOpen. An interface is named by an Interface ID (IID), which is a globally unique
identifier (GUID), a 16-byte number. It is a COM rule that an object must either implement an interface or not implement it.
There is no in-between state.

COM rules require that all COM objects must implement the IUnknown interface. IUnknown is used for the following:

Lifetime management. To determine when objects are no longer in use and thus can be destroyed.

Versioning. To determine which specific interfaces an object supports.

Objects that implement the IDispatch interface are scriptable, or Automation compatible; scripting clients such as Windows
Script Host (WSH) can use them. Objects that do not implement IDispatch cannot be scripted; that is, scripts cannot call them.
Objects that do not implement IDispatch cannot be Automation servers; client applications cannot use their services. In both
cases, this inability is due to the clients need to know certain details about objects before they can call them.

Automation is COM-based technology that enables dynamic binding to COM objects at run time. When a client COM
application is compiled, it does not have all the information about the services offered by the Automation servers that it will be
using. Later, during run time, the client application uses an Automation server's IDispatch interface to find detailed
information about the services that the Automation server offers.

After a TI component is associated with a specific remote environment (RE), and then dropped into a COM+ application, that
application (or package) becomes an Automation server with an IDispatch interface. Then a client COM application can call
upon the TI Automation server to operate (automate) a mainframe-based transaction program (TP) and return the results to
the calling client COM application.

See Also
Concepts
COM Defined
Viewing COM Classes, Interfaces, and Methods
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

COM Classes
A COM class is a definition in source code that can be used as a template for creating objects that implement the IUnknown
interface and expose only their interfaces to clients.

Different objects implement different methods. COM classes ensure that a given client connects to exactly the right kind of
object. Because each COM object is an instance of a specific COM class, COM classes actually classify objects. For example, one
class of object is the Word.Document class. Any object in this class can manage Microsoft Word .doc files.

Each COM class has two identifiers, the programmatic identifier (ProgID) and the class ID (CLSID). When a client tells COM that
it needs use an object, the client always specifies a ProgID or CLSID so that COM knows which class of object to create.

A ProgID is a human-readable registry entry that can be associated with a CLSID. You can use the ProgID within programs to
create an instance of a COM class. For example, to create an instance of a COM class that has a ProgID of
Component.MyComponent, use the following Visual Basic statement:

A ProgID must not contain more than 39 characters, start with a digit, nor contain any punctuation (including underscores)
other than periods. The pieces are separated by periods; no spaces occur within the ProgID. For example, Word.Document.6 is a
valid ProgID. The typical format of a ProgID is:

Although the ProgID is human-readable, it should be used only in programs, and not displayed in the user interface. If you
need a short displayable string for an object, call IOleObject::GetUserType.

A ProgID identifies a class, but with less precision than does a CLSID. The registry entry appears as follows:

You can use a ProgID in programming situations where it is not possible to use a CLSID. The ProgID is not guaranteed to be
unique, so use them only where name collisions are manageable.

The CLSID is a globally unique identifier (GUID), such as the following that uniquely identifies the COM class:

You can generate a GUID with a program such as Uuidgen.exe.

See Also
Concepts
COM Defined
Viewing COM Classes, Interfaces, and Methods
Other Resources
Introduction to COM and COM+

Set Component = CreateObject("Component.MyComponent")

<Library>.<ComponentName>.<VersionNumber>

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<ProgID> = <CLSID>

{71AFDE33-F81B-11d2-B12B-00C04F8C2F72}

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

COM Components and TI Components
A COM component is a binary file (.dll or .exe) containing code for creating a COM object and servicing method calls to it. The
COM component can contain code for one or more Transaction Integrator (TI) components, class factories, COM classes,
registry-entry mechanisms, type libraries, and so on.

COM-based programs and applications are distributed and deployed as COM components. Each COM component uses
interfaces to interoperate with each other in much the same way that a person uses an application user interface to
interoperate with an application. Each COM interface contains one or more methods.

A TI component is a type library that acts as a proxy for a mainframe transaction program (TP). You can easily change a TI
component into a true COM component by deploying it in a COM+ application. TI components all share the same
implementation DLLs but are distinguished by their type libraries. Therefore, when you deploy a TI component in a COM+
application, it is the specific type library (.tlb file) that is registered.

The basic unit of distribution for COM is a component. You can deploy COM components on a computer other than your own.
This is what distinguishes COM components from COM objects, which reside in memory and thus cannot be copied from
computer to computer.

Deploying a COM component is a two-step process. First, copy the component onto the target computer. This is a file copy
operation. Then register the component, that is, configure COM to recognize the component. This configuration information is
stored in the registry (and in certain cases in a database called regdb.) In TI, registration is automatic. As soon as you drop a TI
component into a COM+ application, the resulting TI Automation server is automatically registered on that computer.

Because TI Manager includes Component Services to deploy or remove TI components, TI component deployment is a matter
of dragging your TI component into a COM+ application.

See Also
Concepts
COM Defined
Other Resources
Introduction to COM and COM+

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

Viewing COM Classes, Interfaces, and Methods
Several tools are available for viewing the COM classes, interfaces, and methods that are deployed on your computer:

Component Services (COM+) in Windows 2000

Component Services (COM+) is a core part of Windows 2000. A class that has not been configured to use Component
Services does not show up in Component Services.

OLE/COM Object Viewer (OLE View)

This tool shows all the deployed classes and gives comprehensive information about each class, with the exception of
Component Services configuration information. It is available free at http://go.microsoft.com/fwlink/?LinkId=12793.

DCOMCNFG

This tool is present on any computer that has distributed COM (DCOM) installed, including all installations of Windows
Server 2003, Windows XP Professional, and Windows 2000 Server. DCOMCNFG displays only a subset of the deployed
classes, and shows much less information about each class than does OLEVIEW. Its main advantages are that it is
automatically installed with DCOM and its graphical user interface (GUI) is less cluttered than the OLEVIEW GUI.

See Also
Concepts
COM Defined
COM Objects
COM Methods
COM Interfaces
COM Classes
Other Resources
Introduction to COM and COM+

http://go.microsoft.com/fwlink/?LinkId=12793
https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753907(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746126(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704848(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

Windows Script Host COM Client
Microsoft Windows contains utility COM objects that you can use to manage system configuration, users, printers, Active
Directory directory service, and so on. Windows Script Host is a client that controls those Windows objects through scripts.
Scripts give administrators much more administrative power than batch (.bat) files afford. The administrator writes a script, a
file ending with .vbs or .jvs, with content much like a .bat file. The administrator then double-clicks the script to load Windows
Script Host and run the script.

The following is an example of a short Microsoft Visual Basic Scripting Edition (VBScript) client script. This script has only three
lines. The first line establishes a connection to the COM object. The second line calls a method, and the third line displays the
result.

In this script:

Saysvr.Sayclass specifies the COM class.

CreateObject is the script's way of requesting that COM give it a reference to the object.

SaySvrObject represents the reference to the object. After this line is completed, the script will have a live reference to
the COM object.

On the right side of the second line, the script uses its SaySvrObject reference to call the SaySomething method, which
returns a string to the script.

Speech represents the string returned by the script.

The third line displays the Speech string in a Message Box.

See Also
Concepts
COM Defined
COM Components and TI Components
Viewing COM Classes, Interfaces, and Methods
Other Resources
Introduction to COM and COM+

Set SaySvrObject = CreateObject("Saysvr.Sayclass")
Speech = SaySvrObject.SaySomething
MsgBox Speech

https://msdn.microsoft.com/en-us/library/aa705414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705230(v=bts.10).aspx

Data Types
The Transaction Integrator (TI) run-time environment manages the process of converting host data types used by a host-based
transaction program (TP) to and from the Automation data and data types used by a Microsoft Visual Basic or other Windows-
based programming language.

The topics in this section give you tips for handling different types of data, and they explain how data types are converted and
used in both IBM host and Automation programming languages.

TI supports Automation, COM aggregate, and mainframe data types. For a complete listing of the supported data types, see
Supported TI Data Types

In This Section

Supported TI Data Types

Data Type Conversion

Integer Data Type

Decimal Data Type in Visual Basic

Variant Data Type

Recordsets and Datatables

Arrays

User-Defined Types

Transaction Request Messages

https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771846(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771957(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704351(v=bts.10).aspx

Supported TI Data Types
Transaction Integrator (TI) supports the data types used by COM, .NET, COBOL, and Report Program Generator (RPG).

In This Section

Supported Automation Data Types

Supported COM Aggregate Data Types

Supported .NET Aggregate Data Types

Supported COBOL Data Types

Supported RPG Data Types

Supported RPG Keywords

https://msdn.microsoft.com/en-us/library/aa744679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770561(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771903(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771063(v=bts.10).aspx

Supported Automation Data Types
Automation data types are simple types that you can put into a Variant data type.

1-byte unsigned Integer (BYTE)
An Integer data type that has a positive value ranging from 0 through 255.

2-byte signed Integer
An Integer data type that can be either positive or negative. The most significant bit is the sign bit: 1 for negative values and 0
for positive values. The storage size of the integer is 2 bytes. A 2-byte signed Integer can have a range from –32,768 through
32,767.

4-byte signed Integer
An Integer data type that can be either positive or negative. The most significant bit is the sign bit: 1 for negative values and 0
for positive values. The storage size of a 4-byte signed Integer is 4 bytes. A 4-byte signed Integer can have a range from –
2,147,483,648 through 2,147,483,647.

4-byte Real (Single)
A single-precision 32-bit (4-byte) floating-point Real data type (often called a Single). It ranges in value from –3.402823E38
through –1.401298E-45 for negative values, from 1.401298E-45 through 3.402823E38 for positive values, including 0.

8-byte Real (Double)
A double-precision 64-bit (8-byte) floating-point Real data type (often called a Double). It ranges in value from –
1.79769313486232E308 through –4.94065645841247E-324 for negative values, from 4.94065645841247E-324 through
1.797693134862325E308 for positive values, including 0.

Boolean
An expression that can be evaluated either true (nonzero) or false (0). (You can use the keywords True and False to supply
the values of –1 and 0, respectively.) The field data type Yes/No is Boolean and has the value of –1 for Yes and 0 for No.
Several property page settings are Boolean, including Yes/No, True/False, and On/Off.

Variable-length String (BSTR)
A fundamental data type that holds character information. A String value can contain approximately 65,535 bytes (64 KB). It
can be fixed-length or variable-length, and it contains one character per byte. Fixed-length Strings are declared to be a
specific length. Variable-length Strings can be any length up to 64 KB, less a small amount of storage overhead. A variable
length string can range from 0 to approximately 2 billion bytes (characters).

Currency
An 8-byte fixed-point data type that is useful for calculations involving money or for fixed-point calculations in which
accuracy is extremely important. This data type is used to store numbers with up to 15 digits to the left of the decimal point
and 4 digits to the right. Currency values can range from –922,337,203,685,477.5808 to 922,337,203,685,477.5807.

Date
A data type that is used to store a date, a time, or a date and time as a 64-bit Real number. The value to the left of the decimal
point represents a date, and the value to the right of the decimal point represents a time. The Date data type values can range
from January 1, 1000 to December 31, 9999.

Decimal
A data type that stores a signed, exact numeric value described as the number of digits appearing before and after a decimal
point, with a maximum total of 18 digits.

See Also
Reference
Supported COM Aggregate Data Types
Supported .NET Aggregate Data Types
Supported COBOL Data Types
Supported RPG Data Types
Supported RPG Keywords
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa705802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770561(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771903(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Supported COM Aggregate Data Types
Array

A set of sequentially indexed elements having the same intrinsic data type. Transaction Integrator (TI) supports an array of
any of the Automation data types. Each element of an array has a unique identifying index number. Changes made to one
element of an array do not affect the other elements. TI supports multidimensional arrays. However, only the outermost
array of a multidimensional array can vary in size; all the other arrays must be fixed in size. For more information, see Arrays.

User-Defined Type (UDT)

A data type that is defined in a program. A UDT can contain any of the Automation data types as well as arrays of those data
types, recordsets, and nested UDTs. A UDT generally contains many different data types that are defined by the
programming language used. In COBOL, UDTs are called RECORDS as are any declarations that contain lower-level
numbers. For more information, see User-Defined Types.

Recordset

An Automation object, also known as an ActiveX Data Object (ADO) recordset, is the equivalent of a fixed or unbounded table
that contains simple types in COBOL or report program generator (RPG) data declarations. After you have a recordset object,
you can call methods on that object to gain access to its rows. Recordsets supported by TI have disconnected client-side
cursors. For more information, see Recordsets and Datatables.

See Also
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa745849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Supported .NET Aggregate Data Types
Datatable

A .NET Framework object that is the equivalent of a fixed or unbounded table that contains simple types in COBOL or Report
Program Generator (RPG) data declarations. After you have a DataTable object, you can call methods on that object to gain
access to its rows. Datatables supported by TI have disconnected, client-side cursors. For more information, see
Recordsets and Datatables.

Structures

A user-defined value type. Like a class, structures can contain constructors, constants, fields, methods, properties, indexers,
operators, and nested types. Unlike classes, however, structures do not support inheritance.

The distributed program call (DPC) programming model for the AS/400 supports:

Only single-level .NET structures.

Arrays of .NET structures.

The DPC programming model for the AS/400 does not support:

Nesting of structures.

Arrays within structures.

Variable sized structures in which the last parameter is a string.

Array

A set of sequentially indexed elements that have the same intrinsic data type. Transaction Integrator (TI) supports an array of
any of the .NET data types in this topic. Each element of an array has a unique identifying index number. Changes made to
one element of an array do not affect the other elements. TI supports multidimensional arrays. However, only the outermost
array of a multidimensional array can vary in size; all the other arrays must be fixed in size. For more information, see Arrays.

See Also
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa744741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745849(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Supported COBOL Data Types
COMP-1

A 4-byte, single precision, floating-point Real data type that specifies internal floating-point items. The sign is contained in
the first bit of the leftmost byte, and the exponent is contained in the remaining seven bits of that byte. The remaining three
bytes hold the mantissa.

COMP-2

An 8-byte, double precision, floating-point Real data type that specifies internal floating-point items. The sign is contained in
the first bit of the leftmost byte, and the exponent is contained in the remaining seven bits of the first byte. The remaining
seven bytes hold the mantissa.

COMP-3 Packed Decimal

A packed decimal data type that specifies internal decimal items stored in packed decimal format. In the packed decimal
format, each byte in a field represents two numeric digits except for the rightmost byte. The rightmost byte holds one digit
and the sign. In other words, there are two digits in each character position except for the trailing character position that is
occupied by the low-order digit and sign. The item can contain any of the digits from 0 through 9, plus a sign, to represent a
value not exceeding 18 decimal digits. For example, the decimal value +123 is represented in two bytes as 0001 0010 0011
1100 in packed decimal format. For more information see, Zoned Decimal or Packed Decimal Data Types.

DISPLAY Zoned Decimal

An unpacked decimal data type that specifies internal decimal items stored in zoned decimal format. Zoned decimal format is
synonymous with unpacked decimal format, which is a format for representing numbers where each digit is contained in bits
4 through 7 and the sign is contained in bits 0 through 3 of the least significant byte. Bits 0 through 3 of all bytes other than
the least significant byte contain 1s (hex F). For example, the decimal value +123 is represented in three bytes as 1111 0001
1111 0010 1100 0011 in zoned decimal format. For more information see, Zoned Decimal or Packed Decimal Data Types.

DATE and TIME

Specifies a date and time by using group item of two PIC 9(7) COMP-3 Packed Decimal value.

TIME only

Specifies a time by using a PIC 9(7) COMP-3 Packed Decimal value.

DATE only

Specifies a date by using a PIC 9(7) COMP-3 Packed Decimal value.

PIC X

Specifies a single character in an Extended Binary Coded Decimal Interchange Code (EBCDIC) character string. EBCDIC is the
native representation for character data on mainframes and AS/400s. Unicode is the native representation for character data
on Windows-based platforms.

PIC X No Translation

Specifies a single COBOL character in an EBCDIC character string that is handled as if it were binary data. In other words,
there is no translation from EBCDIC to Unicode or from Unicode to EBCDIC.

PIC G

Specifies a double-byte EBCDIC string.

PIC S9(4) COMP (Integer 16-bit)

Specifies an integer that is 16 bits, or 2 bytes, in length.

PIC S9(9) COMP (Integer 32-bit)

Specifies an integer that is 32 bits, or 4 bytes, in length.

See Also
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa771701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Supported RPG Data Types
Transaction Integrator (TI) supports the data types in Report Program Generator (RPG) IV. The letter in parentheses is the
internal representation of the data type.

Character (A)

Graphic (G)

Numeric - Integer format (I)

Numeric – Packed decimal format (P)

Numeric - Zoned format (S)

Numeric - Unsigned format (U)

Float (F)

Date (D)

Time (T)

Timestamp (Z)

See Also
Reference
Supported Automation Data Types
Supported COM Aggregate Data Types
Supported .NET Aggregate Data Types
Supported COBOL Data Types
Supported RPG Keywords
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa744679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770561(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771063(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Supported RPG Keywords
Transaction Integrator (TI) supports the following Report Program Generator (RPG) keywords:

CONST

DATFMT

DIM

LIKE

LIKEDS

OCCURS

PACKEVEN

TIMFMT

TI does not support the following RPG keywords:

ALIGN

ALT

ALTSEQ(*NONE)

ASCEND

BASED

CTDATA

DESCEND

DTAARA

EXPORT

EXFLD

EXTFMT

EXTNAME

EXTPGM

EXTPROC

FROMFILE

IMPORT

INZ

NOOPT

OPDESC

OVERLAY

PERRCD

PREFIX

PROCPTR

STATIC

TOFILE

VALUE

See Also
Reference
Supported Automation Data Types
Supported COM Aggregate Data Types
Supported .NET Aggregate Data Types
Supported COBOL Data Types
Supported RPG Data Types
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa744679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705802(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770561(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770332(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771903(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Data Type Conversion
The Transaction Integrator (TI) run-time environment automatically converts data types between host-based COBOL or Report
Program Generator (RPG) data types and the COM-based Automation data types that a Windows-based programming
language like Visual Basic uses. The automatic conversion is based on information that you define in TI Project when you
design and create a TI component (type library). This information is stored with the TI component and used by the TI runtime to
convert the parameters of a method from the representation understandable by a COM-based or .NET-based programming
language into the representation understandable by a host transaction program (TP).

Use TI Project to associate each Automation data type with each COBOL or RPG data type used in the host TP. TI provides
default mappings between standard Automation data types and COBOL or RPG data types. You can either accept the default
mappings or override the default with other mappings supported by TI. TI Project stores the conversion map in the TI
component type library (.tlb) file. This conversion map is used to:

Handle data moving between the TP and the TI component.

Convert a TI component into a TP (export the host definition).

Convert a TP into a TI component (import the host definition).

If a parameter used in a method call is not strictly typed, the TI run-time environment attempts to coerce the data type it
receives into the data type it expects. If that coercion is successful, the call proceeds. If it is unsuccessful, an error is returned.

At run time, when a client application uses the TI Automation interface to call a method of the TI Automation server, the TI run-
time environment uses the conversion map to handle the actual data conversion of the in and in/out parameters being sent to
the mainframe TP. After TI converts the Microsoft® Windows® data, TI reformats the method call as a host system
APPC/LU 6.2 or TCP/IP message. Then TI uses Microsoft Host Integration Server 2009 SNA or TCP/IP connectivity to forward
the message to the mainframe. When the mainframe TP returns the in/out and out parameters, TI reformats the message for
the return to Windows, converts the host data into Windows data, and returns the return value and parameters to the client
application.

The choice of language or code page you made in TI Manager when you defined the remote environment (RE) determines
which code page is used to convert from UNICODE (on the Automation side) to Extended Binary Coded Decimal Interchange
Code (EBCDIC) (on the mainframe side). When you create an RE in TI Manager, you can either select a language to accept the
default code page for that language, or select a specific code page.

If you need to convert to different target code pages (if you have, for example, target mainframes in different countries or
regions), you need to set up an RE for each target because TI does not support conversions requiring the use of locale.

You can use TI Project to import COBOL or RPG, or to manually enter method descriptions to create Automation methods.
When you import COBOL or RPG, each supported COBOL data type has a default Automation type. When you manually create
a method, each Automation data type has a default host data type associated with it.

If you do not want to use a default Automation data type, you can use TI Project to change the Automation data type manually.
If the new Automation type is compatible with the existing host data type, the existing COBOL or RPG data type is left
unchanged. If it is not compatible, the host data type is changed, thus affecting your mainframe program.

In This Section

Converting Data Types from Automation to OS/390 COBOL

Converting Data Types from OS/390 COBOL to Automation

Converting Data Types from Automation to RPG

Converting Data Types from RPG to Automation

Converting Data Types from COM to .NET

Converting Data Types from .NET to COM

https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771908(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771443(v=bts.10).aspx

Zoned Decimal or Packed Decimal Data Types

Converting Data Types from RPG to OS/400 COBOL

https://msdn.microsoft.com/en-us/library/aa771701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770798(v=bts.10).aspx

Converting Data Types from Automation to OS/390 COBOL
Use the tables in this topic as a guide to specify how you want TI to handle conversions from Automation data types to COBOL
data types. For more information about the specific data types, see Supported TI Data Types.

Use the following code key to interpret the codes in the Possible Conversion Errors and Required Property Settings
columns in each table.

C
o
d
e

Description

r Range errors possible.

b Possible loss of precision due to base 2 to base 16 conversion.

p Possible loss of precision due to picture format scale specification.

m Mapping errors possible.

f yyyyddd and hhmmss.

A You must specify Truncate, Round, or Error under Error handling on the COBOL Definition tab of the property page.

C You must specify the precision and scale by filling in the Digits left and Digits right boxes on the COBOL Definition tab o
f the property page.

D You must specify the string width by filling in the Size box on the COBOL Definition tab of the property page.

E Unicode or EBCDIC mapping information is required, such as a code page.

F For arrays whose length is less than the maximum specified, you must specify Size of Filler under Trailing filler on the CO
BOL Definition tab of the property page.

G You must specify how to deal with strings. Click Space Padded or Null terminated under String Delimiting on the COB
OL Definition tab of the property page. Then click Truncate or Error under Error handling on the COBOL Definition tab
of the property page to specify what TI should do if the string is too long.

H Maximum size is required.

I Localization is required.

J Optional SO and SI insertion and deletion is supported.

The following table shows the defaults that TI uses for converting Automation data types to COBOL data types.

Default
From Automation data type To OS/390 COBOL data type Possible conversion errors Required property settings
1-byte unsigned Integer PIC X No Translation None None

2-byte signed Integer PIC S9(4) COMP (Integer 16-bit) None None

4-byte signed Integer PIC S9(9) COMP (Integer 32-bit) None None

4-byte Real (Single) COMP-1 br None

8-byte Real (Double) COMP-2 br None

Boolean PIC S9(4) COMP (Integer 16-bit) None None

Variable-length String PIC X m DEG

Currency COMP-3 Packed Decimal pr C

https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Date (date and time) COMP-3 Packed Decimal pf CI

Date (date only) COMP-3 Packed Decimal pf CI

Date (time only) COMP-3 Packed Decimal pf CI

Decimal COMP-3 Packed Decimal pr C

Array (any data type) OCCURS fixed TIMES None FH

Note
When you convert whole or fractional numbers from Visual Basic Single or Visual Basic Double data types to Packed Decimal
or distributed program call (DPC) Zoned Decimal data types, TI is limited to a precision from 1 through 18 digits left of the de
cimal point (for example, 1.2345678901234567E+17). When you convert fractional numbers Packed Decimal or DPC Zoned
Decimal data types, you should convert to Visual Basic Decimal data type.

The following table shows the other supported data type mappings that you can set in TI Project to override the defaults
presented in the previous table.

Supported in Transaction Integrator
From Automation data type To OS/390 COBOL data type Possible conversion errors Required property settings
1-byte unsigned Integer PIC S9(4) COMP (Integer 16-bit) None None

1-byte unsigned Integer COMP-3 Packed Decimal None C

2-byte signed Integer COMP-3 Packed Decimal None C

2-byte signed Integer DISPLAY Zoned Decimal None C

4-byte signed Integer COMP-3 Packed Decimal None C

4-byte signed Integer DISPLAY Zoned Decimal None C

4-byte Real (Single) PIC S9(4) COMP (Integer 16-bit) p,r None

4-byte Real (Single) PIC S9(9) COMP (Integer 32-bit) p,r None

4-byte Real (Single) COMP-3 Packed Decimal p,r C

4-byte Real (Single) DISPLAY Zoned Decimal p,r C

8-byte Real (Double) PIC S9(4) COMP (Integer 16-bit) p,r None

8-byte Real (Double) PIC S9(9) COMP (Integer 32-bit) p,r

8-byte Real (Double) COMP-3 Packed Decimal p,r C

8-byte Real (Double) DISPLAY Zoned Decimal p,r C

Boolean PIC S9(9) COMP (Integer 32-bit) None None

Boolean COMP-3 Packed Decimal None C

Variable-length String PIC G m DEGJ

Currency PIC S9(?)V9(?) COMP (16-bit) pr None

Currency PIC S9(?)V9(?) COMP (32-bit) pr None

Currency DISPLAY Zoned Decimal pr C

Decimal PIC S9(?)V9(?) COMP (16-bit) pr None

Decimal PIC S9(?)V9(?) COMP (32-bit) pr None

Decimal DISPLAY Zoned Decimal pr C

Array (any data type) OCCURS DEPENDING ON None FH

Note
When you convert whole or fractional numbers from Visual Basic Single or Visual Basic Double data types to Packed Decimal
or DPC Zoned Decimal data types, TI is limited to a precision of 1 to 18 digits left of the decimal point (for example, 1.234567
8901234567E+17).

The following table shows additional supported data type mappings that the TI run-time environment supports.

Supported only by the TI run-time environment
From Automation data type To OS/390 COBOL data type Possible conversion errors Required property settings
1-byte unsigned Integer PIC S9(9) COMP (Integer 32-bit) None None

1-byte unsigned Integer DISPLAY Zoned Decimal None C

Boolean DISPLAY Zoned Decimal None C

No other data type conversions from Automation to COBOL are supported by TI at this time.

Note
When the COBOL usage is DISPLAY without a sign and you change the Automation type to String, the COBOL picture is chan
ged to PIC X, which has the same internal data representation. The length remains the same and therefore does not affect yo
ur mainframe program.

See Also
Reference
Converting Data Types from OS/390 COBOL to Automation
Other Resources
Supported TI Data Types
Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Converting Data Types from OS/390 COBOL to Automation
Use the tables in this topic as a guide when you set up the way you want Transaction Integrator (TI) to handle conversions from
COBOL data types to Automation data types. For more information about the specific data types, see Supported TI Data Types.

Use the following code key to interpret the codes in the Possible Conversion Errors and Required Property Settings
columns in each table.

C
o
d
e

Description

r Range errors possible.

b Possible loss of precision due to base 2 to base 16 conversion.

p Possible loss of precision due to picture format scale specification.

m Mapping errors possible.

f yyyyddd and hhmmss.

A You must specify Truncate, Round, or Error under Error handling on the COBOL Definition tab of the property page.

C You must specify the precision and scale by filling in the Digits left and Digits right boxes on the COBOL Definition tab o
f the property page.

D You must specify the string width by filling in the Size box on the COBOL Definition tab of the property page.

E Unicode or EBCDIC mapping information is required, such as a code page.

F For arrays whose length is less than the maximum specified, you must specify Size of Filler under Trailing filler on the CO
BOL Definition tab of the property page.

G You must specify how strings should be dealt with. Click Space Padded or Null terminated under String Delimiting on t
he COBOL Definition tab of the property page. Then click Truncate or Error under Error handling on the COBOL Definit
ion tab of the property page to specify what TI should do if the string is too long.

H Maximum size is required.

I Localization is required.

J Optional SO and SI insertion and deletion is supported.

The following table shows the defaults that TI uses when you import COBOL source code.

Default
From OS/390 COBOL data type To Automation data type Possible conversion errors Required property settings
COMP-1 4-byte Real (Single) b,r None

COMP-2 8-byte Real (Double) b,r None

COMP-3 Packed Decimal Currency p AC

COMP-3 Packed Decimal Decimal p AC

DATE and TIME Date None I

TIME only Date None I

DATE only Date None I

PIC X Variable-length String m DEG

https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

PIC X No Translation 1-byte unsigned Integer None None

PIC S9(4) COMP (Integer 16-bit) 2-byte signed Integer None None

PIC S9(4) COMP (Integer 16-bit) Boolean None None

PIC S9(9) COMP (Integer 32-bit) 4-byte signed Integer None None

OCCURS fixed TIMES Array None None

Note
When you convert fractional numbers from Packed Decimal or distributed program call (DPC) Zoned Decimal data types, yo
u should convert to Visual Basic Decimal data type.

For COMP, COMP-3, and DISPLAY numeric COBOL data types, the default is based on the precision and scale shown in the
following table. When COBOL uses DISPLAY without a sign and you change the Automation type to String, the COBOL picture
is changed to PIC X, which has the same internal data representation. The length remains the same and therefore does not
affect your mainframe program.

Precision and scale for OS/390 COBOL To Automation data type
Precision 1-4, scale 0 2-byte signed Integer

Precision 5-9, scale 0 4-byte signed Integer

Precision 5-7, scale 3-7 4-byte Real

Precision 8-18, scale 3-18 8-byte Real

Precision 1-18, scale 1-2 Currency

Precision 10-18, scale 0 Decimal

The following table shows the other supported data type mappings that you can set in TI Project to override the defaults
presented previously in this topic.

Supported in Transaction Integrator
From OS/390 COBOL data type To Automation data type Possible conversion errors Required property settings
COMP-1 Array None None

COMP-2 Array None None

COMP-3 Packed Decimal 2-byte signed Integer p,r AC

COMP-3 Packed Decimal 4-byte signed Integer p,r AC

COMP-3 Packed Decimal 4-byte Real (Single) p,r AC

COMP-3 Packed Decimal 8-byte Real (Double) p C

COMP-3 Packed Decimal Boolean None None

COMP-3 Packed Decimal 1-byte unsigned Integer r None

COMP-3 Packed Decimal Array None None

DISPLAY Zoned Decimal 2-byte signed Integer p,r AC

DISPLAY Zoned Decimal 4-byte Real (Single) p,r AC

DISPLAY Zoned Decimal 8-byte Real (Double) p,r AC

DISPLAY Zoned Decimal Currency p,r AC

DISPLAY Zoned Decimal Decimal p,r AC

DATE and TIME Array None None

TIME only Array None None

DATE only Array None None

PIC X Array None None

PIC X No Translation Array None None

PIC G Variable-length String m DEGJ

PIC G Array None None

PIC S9(4) COMP (Integer 16-bit) 1-byte unsigned Integer r None

PIC S9(4) COMP (Integer 16-bit) Array None None

PIC S9(9) COMP (Integer 32-bit) Boolean None None

PIC S9(9) COMP (Integer 32-bit) 1-byte unsigned Integer r None

PIC S9(9) COMP (Integer 32-bit) Array None None

PIC S9(?)V9(?) COMP (16-bit) 4-byte Real (Single) p,r None

PIC S9(?)V9(?) COMP (16-bit) 8-byte Real (Double) p,r None

PIC S9(?)V9(?) COMP (16-bit) Currency p,r None

PIC S9(?)V9(?) COMP (16-bit) Decimal p,r None

PIC S9(?)V9(?) COMP (32-bit) 4-byte Real (Single) p,r None

PIC S9(?)V9(?) COMP (32-bit) 8-byte Real (Double) p,r None

PIC S9(?)V9(?) COMP (32-bit) Currency p,r None

PIC S9(?)V9(?) COMP (32-bit) Decimal p,r None

OCCURS DEPENDING ON Array None None

Note
When you convert fractional numbers from Packed Decimal or DPC Zoned Decimal data types, you should convert to Visual
Basic Decimal data type.

The following table shows additional supported data type mappings that the TI run-time environment supports.

Supported only by the TI run-time environment
From OS/390 COBOL data type To Automation data type Possible conversion errors Required property settings
DISPLAY Zoned Decimal 1-byte unsigned Integer None AC

DISPLAY Zoned Decimal 4-byte signed Integer None AC

DISPLAY Zoned Decimal Boolean None AC

No other data type conversions from COBOL to Automation are supported by TI at this time.

See Also
Reference
Converting Data Types from Automation to OS/390 COBOL
Other Resources
Supported TI Data Types

https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Converting Data Types from Automation to RPG
Use the following table as a guide when you specify the way you want Transaction Integrator (TI) to handle conversions from
Automation data types to Report Program Generator (RPG) data types.

TI Project default RPG data type Spec-ification Field length Field length meaning Decimal places
Boolean (default) Integer I 5 digits Blank

Boolean Integer I 10 digits Blank

Boolean Packed P 3 digits Blank,0

Byte (default) Character A 1 bytes Blank

Byte Unsigned U 3-9 digits Blank

Byte Packed P 3 digits Blank,0

Byte Integer I 3-9 digits Blank

Currency (default) Packed P 1-30 digits Blank,0-4

Currency Zoned S 1-30 bytes Blank,0-4

Currency Binary B 1-4 digits Blank,0-4

Currency Binary B 5-9 digits Blank,0-4

Date (Date) *MDY None 8 bytes Blank

Date (Date) *DMY None 8 bytes Blank

Date (Date) *YMD None 8 bytes Blank

Date (Date) *JUL None 6 bytes Blank

Date (Date) *ISO None 10 bytes Blank

Date (Date) *USA None 10 bytes Blank

Date (Date) *EUR None 10 bytes Blank

Date (Date) *JIS None 10 bytes Blank

Date (Time) *HMS None 8 bytes Blank

Date (Time) *ISO None 8 bytes Blank

Date (Time) *USA None 8 bytes Blank

Date (Time) *EUR None 8 bytes Blank

Date (Time) *JIS None 8 bytes Blank

Date Timestamp Z Number? bytes Blank

Decimal Float F 4 Bytes Blank

Decimal Float F 8 Bytes Blank

Decimal (default) Packed P 1-30 digits Blank,0-30

Decimal Zoned S 1-30 bytes Blank,0-30

Decimal Binary B 1-4 digits Blank,0-4

Decimal Binary B 5-9 digits Blank,0-9

Double (default) Float F 8 bytes Blank

Double [1] Packed P 1-30 digits Blank,0-30

Double [1] Zoned S 1-30 bytes Blank,0-30

Double Binary B 1-4 digits Blank,0-4

Double Binary B 5-9 digits Blank,0-9

Integer (default) Integer I 1-5 digits Blank

Integer Packed P 1-30 digits Blank,0

Integer Zoned S 1-30 bytes Blank,0

Integer Binary B 1-5 digits Blank,0

Long (default) Integer I 1-9 digits Blank

Long Packed P 1-30 digits Blank,0

Long Zoned S 1-30 bytes Blank,0

Long Binary B 1-9 digits Blank,0

Single (default) Float F 4 bytes Blank

Single [1] Packed P 1-30 digits Blank,0-30

Single [1] Zoned S 1-30 bytes Blank,0-30

Single Binary B 1-9 digits Blank,0-9

String (default) Character A 1-32755 Bytes==Char Blank

String Graphic G 1-16371 Char Blank

Note
Note [1] in the preceding table indicates that when you convert whole or fractional numbers from Visual Basic Single or Visu
al Basic Double data types to Packed Decimal or distributed program call (DPC) Zoned Decimal data types, TI is limited to a p
recision from 1 through 18 digits to the left of the decimal point (for example, 1.2345678901234567E+17).

Note
While TI left-justifies all strings, the RPG MOVE command right-justifies all strings. If you are programming an RPG applicati
on, use the MOVEL or EVAL commands to perform the equivalent operation in RPG while manipulating a string. See Also

Supported TI Data Types

Converting Data Types from RPG to Automation

Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Converting Data Types from RPG to Automation
Use the following tables as a guide when you set up the way you want Transaction Integrator (TI) to handle conversions from
report program generator (RPG) data types to Automation data types. For more information about the specific data types, see
Supported TI Data Types.

The following table describes the TI Project property abbreviations used in the data type tables that follow.

Abbreviation Description
t Truncate

e Error

r Round

sp Space pad

nt Null terminate

SO Add leading shift in

SI Add trailing shift out

PE Pack even

TIP TI Project

Pack even (PE) indicates that the definition specification uses the pack even option for RPG. PE indicates that the precision is an
even number of digits when the From and To specification positions are used, which implies a byte count instead of a digit
count and which might mean that the high-order digit position is ignored. For example, the following table shows how the
number 256 in an RPG packed field is represented in internal memory.

Note
For purposes of this example, the number 256 fits in 2 bytes of memory in both the PE and No PE option.

Packed data type op
tion

Byte 1 Byte 2

 High-order byte high-order
nibble

High-order byte low-order
nibble

Low-order byte high-order
nibble

Low-order byte S
ign

No PE 2 5 6 0xf

PE ignored 5 6 0xf

RPG data
type

Spec-ifica
tion

RPG field le
ngth

TIP data t
ype

TIP default error h
andling

TIP default field
length

TIP default de
cimals

TIP default string h
andling

Character A 1 Byte None None None None

Character A 1-32755 String t,e 80 None sp,nt

Graphic G 1-16371 String t,e 80 None sp

Binary B 1-4 Currency t,r,e 4 2 None

Binary B 5-9 Currency t,r,e 9 2 None

Binary B 1-4 Decimal t,r,e 4 2 None

Binary B 5-9 Decimal t,r,e 9 2 None

Binary B 1-4 Double t,r,e 4 2 None

https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx

Binary B 5-9 Double t,r,e 9 2 None

Binary B 1-5 Integer t,r,e 4 None None

Binary B 1-9 Long t,r,e 9 None None

Binary B 1-9 Single t,r,e 4 2 None

Integer I 5 Boolean None None None None

Integer I 10 Boolean None None None None

Integer I 3-9 Byte t,r,e 3 None None

Integer I 1-5 Integer t,r,e 4 None None

Integer I 1-5 Long t,r,e 9 None None

Packed P 3 Boolean None None None None

Packed P 3 Byte t,r,e,npe 3 None None

Packed P 1-30 Currency t,r,e 8 2 None

Packed P 1-30 Decimal t,r,e 8 2 None

Packed P 1-30 Double t,r,e 8 2 None

Packed P 1-30 Integer t,r,e 3 None None

Packed P 1-30 Long t,r,e 5 None None

Packed P 1-30 Single t,r,e 8 2 None

Zoned S 1-30 Currency t,r,e 15 2 None

Zoned S 1-30 Decimal t,r,e 15 2 None

Zoned S 1-30 Double t,r,e 15 2 None

Zoned S 1-30 Integer t,r,e 5 None None

Zoned S 1-30 Long t,r,e 9 None None

Zoned S 1-30 Single t,r,e 15 2 None

Unsigned U 3-9 Byte t,r,e 3 None None

Float F 4 Decimal t,r,e None None None

Float F 8 Decimal t,r,e None None None

Float F 8 Double t,r,e 8 None None

Float F 4 Single t,r,e 4 None None

Date D None Date None None None None

Time None None None None None None None

Time-stam
p

None None None None None None None

RPG Date format name Format Range Bytes
*MDY mm/dd/yy 01/01/40 to 12/31/39 8

*DMY dd/mm/yy 01/01/40 to 31/12/39 8

*YMD yy/mm/dd 40/01/01 to 39/12/31 8

*JUL yy/ddd 40/001 to 39/365 6

*ISO yyyy-mm-dd 0001-01-01 to 9999-12-31 10

*USA mm/dd/yyyy 01/01/0001 to 12/31/0000 10

*EUR dd.mm.yyyy 01.01.0001 to 31.12.9999 10

*JIS yyyy-mm-dd 0001-01-01 to 9999-12-31 10

RPG Time format name Format Range Bytes
*HMS hh:mm:ss 00:00:00 to 24:00:00 8

*ISO hh.mm.ss 00:00:00 to 24:00:00 8

*USA hh:mm AM or hh:mm PM 00:00 AM to 12:00 AM 8

*EUR hh.mm.ss 00.00.00 to 24.00.00 8

*JIS hh:mm:ss 00:00:00 to 24:00:00 8

RPG Timestamp Format Bytes
yyyy-mm-dd-hh.mm.ss.mmmmmm 26

See Also
Reference
Converting Data Types from Automation to RPG
Other Resources
Supported TI Data Types
Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa771908(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Converting Data Types from COM to .NET
Transaction Integrator (TI) supports the following COM data types.

COM data type .NET data type
Boolean Boolean

Byte Byte

Char Char

Currency <No corresponding type>

Date DateTime

Decimal Decimal

Double Double

Integer Int16

Long Int32

Recordset Datatable

Single Single

String String

User-defined type Structure

Variant Object

See Also
Reference
Converting Data Types from .NET to COM
Other Resources
Supported TI Data Types
Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa771443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Converting Data Types from .NET to COM
Transaction Integrator (TI) supports the following .NET common language runtime (CLR) data types.

.NET data type COM data type
Boolean Boolean

Byte Byte

Char Char

Datatable Recordset

DateTime Date

Decimal Decimal

Double Double

Int16 Integer

Int32 Long

Object Variant

Single Single

String String

Structure User-defined type

See Also
Reference
Converting Data Types from COM to .NET
Other Resources
Supported TI Data Types
Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa754715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Zoned Decimal or Packed Decimal Data Types
When it imports a host data declaration, Transaction Integrator (TI) converts Zoned Decimal (COBOL numeric PIC with DISPLAY
or no USAGE, or RPG S data type) or Packed Decimal data types to Decimal or Currency Automation data types, respectively.
Depending on the development application you are using, there might not be an equivalent for Decimal or Currency data
types. If this is the case, use one of the following techniques to ensure that the data type works correctly with TI:

Use language-supplied functions to manipulate the Automation types for Decimal or Currency.

Within TI Project, if the data type has a fractional component, modify the method's parameter from the Decimal or
Currency data type to the Floating Point Binary data type (double or single precision as appropriate). You can substitute a
16-bit or 32-bit binary Integer data type if the data declaration has no fractional component and the number of data
declaration digits fits within the expected range.

Note
When you use the Floating Point Binary data type, the likelihood of a data conversion precision problem increases if fractions
are involved. TI offers three options to handle data precision errors: Round (default), Truncate, or Error. The double-precision
Floating Point Binary data type can handle host data declarations of up to fifteen digits.

See Also
Tasks
How to Use REDEFINES in COBOL
Concepts
COBOL FILLER

https://msdn.microsoft.com/en-us/library/aa704791(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705573(v=bts.10).aspx

Converting Data Types from RPG to OS/400 COBOL
The Transaction Integrator (TI) run-time environment supports the use of OS/400 COBOL running on an AS/400 computer.
The following table lists the Report Program Generator (to data type conversions supported by the TI run-time environment.

RPG data type OS/400 COBOL data type
Type A PIC X

Type G PIC G

Type S PIC S99v99 Display

Type L

Note
Type L is not supported by the TI run-time environment.

PIC S99v99 Display Sign Leading Separate

Type R

Note
Type R is not supported by the TI run-time environment.

PIC S99v99 Display Sign Trailing Separate

Type P PIC S99v99 Comp

Type B

Note
Type B is not supported by the TI run-time environment.

PIC S99V99 Comp

Type I 5 digits PIC S9(1) to S9(4) Comp-3

Type U 5 digits

Note
Type U 5 is not supported by the TI run-time environment. Use Type I 5 instead.

PIC 9(1) to 9(4) Comp-3

Type I 10 PIC S9(5) to S9(9) Comp-3

Type U 10

Note
Type U 10 is not supported by the TI run-time environment. Use Type I 10 instea
d.

PIC 9(5) to 9(9) Comp-3

Type F 4 COMP-1

Type F 8 COMP-2

Type D None

Type T None

Type Z None

See Also
Other Resources
Supported TI Data Types
Data Type Conversion

https://msdn.microsoft.com/en-us/library/aa754292(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770515(v=bts.10).aspx

Integer Data Type
Binary Integer data types apply to COBOL COMP and Report Program Generator (RPG) Integer data types. Automation data
types support only a 16-bit or 32-bit Integer. Therefore, you should ensure that your client application is passing binary integer
equivalents to the Transaction Integrator (TI) Automation server.

See Also
Other Resources
Data Types

https://msdn.microsoft.com/en-us/library/aa705418(v=bts.10).aspx

Decimal Data Type in Visual Basic
If the client application uses Visual Basic 6.0 and includes the DECIMAL data type, the decimal value in Visual Basic must be
defined as a Variant, and then assigned a decimal value by the Visual Basic function CDec. This must be done for the
component to execute properly within the TI component.

The following is an example:

If the client application uses Visual Basic .NET, the DECIMAL data type is defined directly.

See Also
Other Resources
Data Types

Dim xxx as Variant
xxx = CDec(27)

https://msdn.microsoft.com/en-us/library/aa705418(v=bts.10).aspx

Variant Data Type
The type of each element in a message is fixed and defined by the information in the component library. Because mainframe
programs do not support the Variant data type, you must fix the type of each parameter at design time in Transaction
Integrator (TI) Project. Microsoft Visual Basic Scripting Edition (VBScript), which is often used to create Active Server Pages
(ASP) in Web-based applications, supports only the Variant data type. It does not accept declared variables. As a result, if your
COM+ client application calls a TI Automation server and passes parameters with Variant data types, the TI run-time
environment forces each Variant data type into the type for each parameter as defined in the TI component library.

The Variant data type is not supported in Visual Basic .NET. Visual Basic .NET supports defining data types as objects, and then
casting the objects as data types. TI does not support variables defined as objects cast to data types. All method parameters
must be defined initially as data types, not objects.

See Also
Other Resources
Data Types

https://msdn.microsoft.com/en-us/library/aa705418(v=bts.10).aspx

Recordsets and Datatables
A recordset is an Automation object that is a fixed-size, bounded, or unbounded table that contains simple rows of host data
declarations (data types). A datatable is a .NET object that is identical to a recordset in every regard, except that you cannot use
the NewRecordset function with datatables. After you have a recordset or datatable object, you can call methods on that
object to gain access to its rows.

A recordset or datatable is implemented on top of row sets by Remote Data Service (RDS), which is a part of Microsoft Data
Access Components (MDAC) version 2.5. You can use the RDSServer.DataFactory object to create a recordset or datatable
and use ActiveX® Data Objects (ADO) to update or read the recordset.

A recordset or datatable provides a means of presenting and manipulating tabular data. Currently, recordsets cannot be
nested, cannot contain arrays, and cannot contain user-defined types (UDTs).

Support for recordsets and databales enables TI to support what is effectively an array of a structure (or a record, in COBOL
terminology) as well as a structure. A structure is represented as a fixed-size recordset or datatable where each column in the
row contains a single data element. To deal with mainframe programming issues, TI classifies recordsets and datatables as
fixed-size, bounded, or unbounded, in reference to the number of rows contained in the recordset or datatable.

Important
The OS/400 distributed program calls (DPC) programming model supports only fixed size recordsets and datatables. The pro
gramming model does not support unbounded recordsets and datatables, nor does it support the use of the OCCURS DEPE
NDING ON clause, or variably-sized recordsets and datatables.

For fixed-size, bounded, and unbounded TI recordsets and datatables, the layout of all rows in a particular recordset is the
same and is defined at design time by using TI Project. If a recordset or datatable is an output or return value from the
mainframe, TI run-time environment uses the RDSServer.DataFactory object to create a recordset or datatable and ADO to
fill the recordset or datatable with the rows of data returned from the mainframe program.

Such a recordset is a disconnected recordset with a cursor type of adOpenForwardOnly. To scan the recordset requires calling
MoveFirst and MoveNext to move through the rows. The recordset can be updated in place, but because it is disconnected
from the true data source (the data source manipulated by the mainframe program that returned the data), the updates are not
propagated to the original data source.

NewRecordset is a function that is supplied automatically for all TI components. This function is called to create a
disconnected recordset object that can be passed into a TI method call. NewRecordset is provided as a convenience for TI
client applications; it is not required to pass a recordset to a TI component's methods. The function can be called only for input
or input/output recordset objects. The TI run-time environment creates a recordset object when the parameter is an output
recordset object.

In This Section

Example Using the New Recordset Call

Fixed-Size Recordsets

Bounded Recordsets

Unbounded Recordsets

RDS Recordset Requirements for Web Clients

Recordset Creation When Importing COBOL

https://msdn.microsoft.com/en-us/library/aa704352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx

Example Using the New Recordset Call
The following example code uses the NewRecordset property to create a new disconnected recordset object, and it passes the
object as an input parameter to a Transaction Integrator (TI) method by way of the IDispatch interface. The bstrName
parameter in the IDispatch call is the name of the recordset object (for example, Recordset1) as specified in TI Project. The call
returns the dispatch pointer to an ActiveX® Data Objects (ADO) database recordset object if the call is successful. If the call is
not successful, a NULL pointer is returned.

The TI run-time environment performs some compatibility checks between the structure definition for the recordset in the
component library and the recordset object seen at run time. Any incompatibility will result in an Automation exception.

Note
Because a recordset cannot be nested, cannot contain arrays, and cannot contain user-defined types (UDTs), a COBOL data st
ructure that is imported into TI Project might be flattened, resulting in an increase in the number of parameters that must be
handled on the Automation side.

See Also
Tasks
Recordset Creation When Importing COBOL
Concepts
Fixed-Size Recordsets
Bounded Recordsets
Unbounded Recordsets
RDS Recordset Requirements for Web Clients

IDispatch * NewRecordset(
 BSTR bstrName);

Dim pMyRecord as Object
Dim pMyComponent as Object
Dim varFields(2) as Variant
Dim varValues(2) as Variant
On Error Goto SomeErrorHandler

' Create an instance of the TI object
set pMyComponent = CreateObject("MyComponent.Interface1")

' Create an instance of a recordset object
set pMyRecord = pMyComponent.NewRecordset("Recordset1")

' Fill in some recordset fields
varFields(0) = CStr("member1")
varFields(1) = CStr("member2")
varValues(0) = CInt(99)
varValues(1) = CLng(999)

' Add the recordset fields and values to the recordset object
pMyRecord.AddNew varFields, varValues

' Call the method with the recordset object as a parameter
pMyComponent.Method1(pMyRecord)

https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771423(v=bts.10).aspx

Fixed-Size Recordsets
A fixed-size recordset holds a fixed number of rows that is exactly equal to the maximum number of rows that you specified at
design time in Transaction Integrator (TI) Project. A parameter or return value can be defined as a fixed-size recordset for any
of the TI programming models.

Among the three possible types of recordsets or datatables (fixed-size, bounded, or unbounded), the TI default is fixed-size.

If the COBOL data declaration contains an OCCURS DEPENDING ON clause, each OCCURS DEPENDING ON clause requires
two parameters:

The size of the OCCURS DEPENDING ON clause.

The data representation (a single element or a COBOL record) within the OCCURS DEPENDING ON clause.

If the COBOL contains an OCCURS DEPENDING ON clause, when the recordset or datatable is returned to TI and processed at
run time, the TI run-time environment looks for the value of the size parameter corresponding to the named parameter (from
the OCCURS DEPENDING ON clause). When it sends a fixed-size recordset as an input parameter to the mainframe, the TI run-
time environment sets the COBOL size parameter with the actual number of rows in the recordset.

The DPC programming model on the AS/400 platform supports a modified version of OCCURS DEPENDING. By using the
OCCURS DEPENDING property to select a parameter to specify size for the array, DPC-invoked programs can receive and send
arrays that are partially populated. For example, you might have a structure that is defined to occur 10 times and that you want
to return to the client. However, there might be fewer than 10 occurrences that actually contain valid data (for example, if the
array was filled from a database table that contained fewer than 10 rows). If you define the array using the OCCURS
DEPENDING property, you do not have to fill the remaining occurrences with dummy data. The TI run-time environment will
pass only the filled occurrences back to the client.

See Also
Tasks
Example Using the New Recordset Call
Using the OCCURS DEPENDING Clause to Define Variable-length Table
Using Variably Sized Rows
Using Bounded Final Fields
Recordset Creation When Importing COBOL
Concepts
Bounded Recordsets
Unbounded Recordsets
RDS Recordset Requirements for Web Clients
Other Resources
Data Transfer Options

https://msdn.microsoft.com/en-us/library/aa704352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771296(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745389(v=bts.10).aspx

Bounded Recordsets
A recordset that is the last input parameter or the last output parameter in a method can be bounded. This means its actual size
(number of rows) can vary from zero up to the maximum number of rows specified at design time. A parameter or return
value can be defined as a bounded recordset for all of the Transaction Integrator (TI) programming models except OS/400
distributed program calls (DPCs). The DPC programming model does not support bounded recordsets, datatables, or arrays.

A bounded recordset, datatable, or array must be the last parameter in a particular direction. The last input parameter can be
bounded if it is a recordset or an array and there are no following input/output parameters. The last output parameter can be
bounded if it is a recordset or an array and there are no following input/output parameters. An input/output parameter can be
bounded if it is a recordset or an array and is the final parameter. The mainframe transaction program (TP) is responsible for
sending a table of the correct size, depending on the number of elements or rows in use.

Whereas a fixed-size recordset must send the exact number of rows defined as the maximum within the recordset, the number
of rows in a bounded recordset can vary from zero to the maximum.

Among the three possible types of recordsets (fixed-size, bounded, or unbounded), the TI default is fixed-size. To change a
fixed-size recordset into a bounded recordset within Designer, set the property "variable sized final field" on the method that
contains the parameter defined as a recordset to be bounded, to true.

See Also
Tasks
Example Using the New Recordset Call
Recordset Creation When Importing COBOL
Concepts
Fixed-Size Recordsets
Unbounded Recordsets
RDS Recordset Requirements for Web Clients

https://msdn.microsoft.com/en-us/library/aa704352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771423(v=bts.10).aspx

Unbounded Recordsets
The number of rows in an unbounded recordset or datatable is not specified (defined) before run time. A parameter or return
value can be defined as an unbounded recordset or datatable for any of the following Transaction Integrator (TI) programming
models:

CICS User Data LU 6.2

TCP Transaction Request Message User Data

IMS User Data LU 6.2

IMS Implicit

IMS Explicit

IMS Connect

Note
In the IMS Connect programming model, TI supports only output parameters as unbounded recordsets or datatable. In other
words, you cannot send unbounded recordsets or datatables to the host from TI if you are using the IMS Connect model.

An unbounded recordset or datatable is always transmitted to or from the mainframe after all other data. TI supports at most
one unbounded input parameter and one unbounded output parameter, and each must be the last parameter in a direction.

To make a fixed size recordset or database unbounded, use the designer to set the Unbounded property of the recordset to
true. The property Variable Sized Final Field on the method associated with the unbounded recordset must be false.

After defining a recordset or datatable as unbounded, the designer recordset property class will contain a property called
variably sized rows. Use this property to determine how the length of the row will be represented.

Unbounded recordsets or datatable that contain variably sized rows must receive the size of the recordset or datatable first,
and then receive the data. Therefore, the size of the recordset or datatable must be sent first followed by a second send that
contains the data. If TI expects to receive an unbounded recordset or datatable with variably sized rows, CICS must first send
the length of the row, and then send the data for that row. These two steps are repeated for each row of the recordset or
datatable. TI detects that there is no more data because CICS stops sending and an unbounded recordset or datatable must
always be the last parameter sent to TI.

See Also
Tasks
Example Using the New Recordset Call
Recordset Creation When Importing COBOL
Concepts
Fixed-Size Recordsets
Bounded Recordsets
RDS Recordset Requirements for Web Clients

https://msdn.microsoft.com/en-us/library/aa704352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771423(v=bts.10).aspx

RDS Recordset Requirements for Web Clients
If you have a Web-based Automation client application that uses a Remote Data Service (RDS) recordset control (most likely
bound to a grid control) to display a table returned from a mainframe transaction program (TP), RDS requires that:

The returned table be described as a recordset when you import your host data declaration into Transaction Integrator
(TI) Project.

The recordset be the return value from the method. The RDS control uses the HTTP protocol to marshal the recordset
from the TI component on the server to the Web browser.

When you import a host data declaration, you must describe the table as a recordset. For more information, see
Recordset Creation When Importing COBOL.

When you create the Automation method for your TI component in TI Project, be sure to have the method return the recordset
as a return type instead of defining the recordset as a parameter. If you are importing the host code, when TI Project requests
that you select the return value item, select the group item level for your table in the host declaration. To manually create a
method, first manually describe or import the recordset in TI Project. Then use the Insert menu item to add the method that
the Web client will call. Select the recordset you just described from the data type submenu list.

There are other properties that you can set on the recordset that is being returned. For details, see the shortcut Help for the
Recordsets property page.

See Also
Tasks
Example Using the New Recordset Call
Recordset Creation When Importing COBOL
Concepts
Fixed-Size Recordsets
Bounded Recordsets
Unbounded Recordsets

https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745369(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx

Recordset Creation When Importing COBOL
When you import COBOL in Transaction Integrator (TI) Project, you can choose between two ways to create recordsets and
datatables: automatically and explicitly.

When you import COBOL to create or update an Automation method, TI Project automatically creates recordsets and
datatables when it encounters a fixed or variable-length table (OCCURS clause). The value for the OCCURS clause's length
specifier can be any value greater than or equal to 1. The table must conform to recordset rules, which means that it cannot
contain arrays, and it cannot contain nested tables that cannot be flattened.

When you import COBOL to explicitly create or update a recordset or datatable, you can select any group item that conforms
to recordset rules. For importing recordsets and datatables, the group item does not need to have an OCCURS clause. If an
OCCURS clause is present, it is ignored.

The following COBOL source code was imported using the Import COBOLWizard. The INVOICES table was selected as the
return value for the method.

The resulting method was imported as:

The following Visual Basic code demonstrates how to call this method:

01 CUSTOMER-DATA.
 05 CUSTOMER-NUMBER PIC 9(9).
 05 INVOICES OCCURS 50 TIMES.
 10 INVOICE-NUMBER PIC 9(9).
 10 INVOICE-DATE PIC 9(7) COMP-3.
 10 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
 10 INVOICE-DESCIPTION PIC X(40).
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).

GetInvoices(lCustomerNumber As Long, strLastName As String, strFirstName As String) As Obje
ct

Dim objCustomer As Object 'Uses late binding
Dim objInvoices As ADODB.Recordset
Dim lCustomerNumber As Long
Dim iRow As Integer
Dim iCol As Integer
Dim strLastName As String
Dim strFirstName As String

'create an instance of the invoicing object
On Error GoTo ErrorHandler1
Set objCustomer = CreateObject("Customer.Invoicing.1")

lCustomerNumber = CLng(txtCustomerNumber)

'invoke the GetInvoices method
On Error GoTo ErrorHandler2
Set objInvoices = objCustomer.GetInvoices(lCustomerNumber _
 , strLastName, strFirstName)
'
' Transfer the Recordset data to a variant array in a single operation.
' This is efficient, but may not be suitable for larger Recordsets.
'
Dim Data As Variant

Data = objInvoices.GetRows
grdInvoices.Rows = UBound(Data, 2) + 1
grdInvoices.Cols = UBound(Data, 1) + 1
For iRow = 0 To UBound(Data, 2)

See Also
Tasks
Example Using the New Recordset Call
Concepts
Fixed-Size Recordsets
Bounded Recordsets
Unbounded Recordsets
RDS Recordset Requirements for Web Clients

 grdInvoices.Row = iRow
 For iCol = 0 To UBound(Data, 1)
 grdInvoices.Col = iCol
 grdInvoices.Text = Data(iCol, iRow)
 Next iCol
Next iRow

https://msdn.microsoft.com/en-us/library/aa704352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771230(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771294(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771423(v=bts.10).aspx

Arrays
Transaction Integrator (TI) supports multidimensional arrays for all programming models except the OS/400 distributed
program calls (DPCs). Only the outermost array of a multidimensional array can vary in size. All other arrays must be fixed-
sized. For the OS/400 DPC programming model, TI supports only single-dimension arrays.

Arrays in Automation are actually SAFEARRAYs that contain information about their bounds as well as the data for the array
elements. SAFEARRAYs are mapped to fixed-size arrays on the mainframe. SAFEARRAYs have a variable size and require
custom information to be marshaled to and from fixed-size arrays on the mainframe.

Arrays are created on the mainframe during the import process when a simple data type has one or more OCCURS clauses or
DIM keywords. The OCCURS clause can represent a fixed or variable-length table. Although it is possible in COBOL to have
nested OCCURS DEPENDING clauses, only the OCCURS DEPENDING length specifier for the outermost table dimension is
supported by TI. TI Project ignores nested length specifiers.

The mainframe developer might want to reflect the fixed nature of the array through to the COM object. The error-handling
features of the TI run-time environment allow the developer to specify that an exception be raised if an array is not of the
expected size. However, the mainframe developer might also want to take advantage of the flexible nature of SAFEARRAYs. TI
supports an additional parameter that specifies the actual run-time size of the array. This parameter is supported with the
same behavior as the OCCURS DEPENDING ON clause in COBOL. The maximum size of the array remains fixed, but the
developer can determine the actual number of elements in the array received from the client.

The following custom information can be associated with either single or multidimensional arrays:

Maximum size (on each dimension) (Integer: default 10). This value is automatically set to "x" if the COBOL imported into
TI Project contains an OCCURS DEPENDING x TIMES clause.

If the COBOL imported into TI Project contains an OCCURS DEPENDING ON clause, the actual size of the array is
associated with the parameter specified by "name".

See Also
Tasks
Visual Basic and Arrays

https://msdn.microsoft.com/en-us/library/aa754459(v=bts.10).aspx

Visual Basic and Arrays
When you develop client applications with Microsoft Visual Basic Scripting Edition (VBScript), you cannot define methods that
return arrays. If it is necessary to pass back array information, define an output parameter.

Transaction Integrator (TI) deals with multidimensional arrays in row major order. The outermost dimension of an array in
COBOL equates to the leftmost dimension in an array on the Automation side. In Visual Basic, the convention is to use column
major order for multidimensional arrays. Therefore, when you access multidimensional arrays in Visual Basic, remember that
the array will be row major for TI purposes. This can be a problem if you use Visual Basic functions that deal with
multidimensional arrays and expect those arrays to be in column major order. When you access individual array elements,
however, this should not be a problem.

Note
Manually re-dimensioning a multidimension array that was generated by TI yields might cause the component to function in
correctly.

Note
The Visual Basic command Option Base has no effect on COM SAFEARRAYs, such as those returned as Out or In/Out arrays f
rom TI methods. These SAFEARRAYs always have a base value of 0, regardless of the option base setting.

The following COBOL sample shows a variable-length table:

TI Project creates the following method when you import the COBOL sample:

The following Visual Basic code shows how to send and receive the table:

01 UPDATEARRAY-INPUT-AREA.
 05 CUSTOMER-NUMBER PIC 9(9) DISPLAY.
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).
 05 TABLE-LENGTH PIC 9(7) COMP-3.
 05 TABLE OCCURS 10 TIMES
 DEPENDING ON TABLE-LENGTH
 OF UPDATEARRAY-INPUT-AREA
 PIC S9(4) COMP.

UpdateArray(lCustomerNo As Long, strLastName As String, strFirstName As String _
 , lcElements As Long, rgTable() As Integer)

 Dim objCustomer As Object
 Dim i
 Dim rgTable() As Integer
 Dim lCustomerNo As Long
 Dim strLastName As String
 Dim strFirstName As String
 Dim lcElements As Long

 'create an instance of the invoicing object
 On Error GoTo ErrorHandler1
 Set objCustomer = CreateObject("Customer.Invoicing.1")

 lCustomerNo = 100231001
 strLastName = "Doe"
 strFirstName = "John"

 'Send over 5 elements
 lcElements = 5
 ReDim rgTable(lcElements)

See Also
Other Resources
Arrays

 For i = 0 To lcElements - 1
 rgTable(0) = i
 Next i

 'invoke the UpdateArray method
 On Error GoTo ErrorHandler2
 objCustomer.UpdateArray lCustomerNo, strLastName, strFirstName _
 , lcElements, rgTable

 'lcElements now contains the number of elements returned in rgTable

https://msdn.microsoft.com/en-us/library/aa745849(v=bts.10).aspx

User-Defined Types
In general, a user-defined type (UDT) is equivalent to a structure in C, C++, or Report Program Generator (RPG) records or
group item levels in COBOL, and UDTs in Visual Basic. UDTs can contain primitive elements, arrays of elements, recordsets, and
nested UDTs.

You can use UDTs to define parameters. A parameter can be defined as a single UDT or as an array of UDTs. Likewise, UDTs can
describe a method's return value. A method's return value can be defined as a single UDT or as an array of UDTs. However, you
cannot use a UDT to describe a column within a recordset.

TI requires that if you use Visual Basic to build your UDTs, you must use Visual Basic version 6.0 or later.

Before you compile a Visual Basic application that calls a TI component that defines a UDT and that references that UDT within
the Visual Basic application, you need to deploy the TI component to register it. If you compile the application before you
deploy the TI component or if you fail to deploy the component at all, the Visual Basic client application will not start.

The distributed program call (DPC) programming model for the AS/400 supports:

Only single-level UDTs and .NET structures.

Arrays of UDTs and structures.

The DPC programming model for the AS/400 does not support:

Nesting of UDTs and structures.

Arrays within UDTs and structures.

Variable sized UDTs in which the last parameter is a string.

In This Section

Requirements for UDT Support in Windows 2000

Using TI Project to Create UDTs

Creating UDTs by Importing Host Definitions

Arrays Defined in UDTs with Visual Basic

https://msdn.microsoft.com/en-us/library/aa745622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770731(v=bts.10).aspx

Requirements for UDT Support in Windows 2000
When Windows 2000 is installed, Transaction Integrator (TI) offers full functionality. Otherwise, TI restricts the use of user-
defined types (UDTs). The functionality offered in this restricted mode is as follows:

The TI Component Registrar recognizes that it is executing on a computer that does not have Service Pack 4 (SP4)
installed. If the registrar is instructed to deploy a component when UDT support is not available, the registrar will search
the type library to ensure that there are no UDTs. If UDTs are detected, the component deployment will fail and an error
describing this failure will be written to the event log.

TI Project recognizes that it is executing on a computer that does not have Windows 2000 installed. Although TI Project
does not prevent UDTs within component descriptions, it warns users when UDTs are being used on a computer that
does not have Windows 2000. Specifically, in TI Project, when the user attempts to save the type library, a UDT warning
appears if UDTs are used in the component's description. This warning appears only after the first attempt to save a
component description.

See Also
Tasks
Arrays Defined in UDTs with Visual Basic
Concepts
Using TI Project to Create UDTs
Creating UDTs by Importing Host Definitions

https://msdn.microsoft.com/en-us/library/aa770731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744725(v=bts.10).aspx

Using TI Project to Create UDTs
In Microsoft® Visual Studio® Transaction Integrator (TI) Project, you can create a user-defined type (UDT) manually by right-
clicking the User-Defined Type folder, and then click Add User-defined Type. This automatically adds one member field of
the type Integer. If only one member field exists in a UDT, you cannot delete that member field; you can only delete the entire
UDT. You cannot delete a UDT if it is being used as a type by some other variable in the interface. The name of a UDT cannot be
the same as a method name, recordset name, or any reserved names.

To add a member field to a UDT, right-click a previously defined UDT, and then click Add User-defined Type Member. A
default member is created and can be modified by updating its properties in the Properties pane.

In addition to the Automation and COBOL Definition property pages for UDT member fields, an Arrays property page
supports defining arrays of member fields, and a Recordsets property page supports definition of a maximum row count and
options for recordset columns. The rules for arrays of recordsets are the same as for parameters. An OCCURS DEPENDING
index must be one of the member fields above the array itself.

In TI Project, you can copy and paste UDT members from and to recordset members.

See Also
Tasks
Arrays Defined in UDTs with Visual Basic
Concepts
Requirements for UDT Support in Windows 2000
Creating UDTs by Importing Host Definitions

https://msdn.microsoft.com/en-us/library/aa770731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744725(v=bts.10).aspx

Creating UDTs by Importing Host Definitions
 

The parser phase of the host import function identifies any group-level clause as a possible user-defined type (UDT). UDTs are
created when you specify creating or updating a UDT or as the result of creating a method that contains a UDT. When you
create or update a method, there is an additional wizard page following the Select Return Value page for specifying that
groups of data items are UDTs or recordsets. This page also enables you to cancel the selection of groups of data items as
UDTs or recordsets. For backward compatibility, the default data type of a group-level clause is a recordset if the group level
has an OCCURS keyword. Also for backward compatibility (that is, updating a method), if there is no OCCURS keyword, the
group level is flattened by default.

See Also
Tasks
Arrays Defined in UDTs with Visual Basic
Concepts
Requirements for UDT Support in Windows 2000
Using TI Project to Create UDTs

https://msdn.microsoft.com/en-us/library/aa770731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770981(v=bts.10).aspx

Arrays Defined in UDTs with Visual Basic
In Visual Basic, if an array is defined within a user-defined type (UDT), you must re-dimension the array within the UDT before
you populate the array. A UDT is a group of data types assigned to a single parameter, which is defined with an alias. In the
following example, the UDT is defined within a Transaction Integrator (TI) type library, and not within the Visual Basic client.

The following example presents Visual Basic code that defines an array within a UDT:

Note
In an array within a UDT, do not define the array within the Visual Basic client before you perform a re-dimension against the
UDT. For all other data types within the UDT, you can immediately populate the values without having to define them within t
he Visual Basic client data declarations.

Note
If you have an output or an in/out array inside a UDT, use a lower bound of zero for all array dimensions. Use zero because t
ype libraries contain information only about array dimensions, not upper and lower bounds. Therefore, Convert has to choos
e them arbitrarily when it creates the arrays.

Note
Report Program Generator (RPG) has additional limitations on the use of UDTs. RPG does not support:

Nesting more than one level of arrays of UDTs.

UDTs that contain recordsets within UDTs.

See Also
Concepts
Requirements for UDT Support in Windows 2000
Using TI Project to Create UDTs
Creating UDTs by Importing Host Definitions

*** Assign the udt defined within the comti typelib to a variable within the Visual Basic a
pplication.
Dim ClientUDT as UDT1
*** assign values to string data type within UDT1
ClientUDT.string = "ABCDEFG"
*** assign size before populating
ReDim ClientUDT.array1(10).
** start assigning values to array within UDT.
ClientUDT.array1(1) = 100

https://msdn.microsoft.com/en-us/library/aa745622(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744725(v=bts.10).aspx

Transaction Request Messages
When you use TCP/IP to communicate with CICS, the client sends the host a transaction request message (TRM) request
containing the Transaction Program ID, User ID, Password, and other administrative data to be used by the host. CICS sends
the client a TRM reply containing additional administrative data. The data in the TRM is independent from the actual program
data to be exchanged with the Transaction Program (TP) on the host.

You can find templates for various TRMs at \installation directory\Microsoft Host Integration
Server\system\TIM\MicrosoftTRMDefs.tim. Use Microsoft Visual Studio to open the file, and then expand the User-Defined
Types node. The following TRMs are defined as UDTs:

TRMIN_MSLink

TRMOUT_MSLink

TRMIN_MSCCS

TRMIN_IBMCCS

TRMOUT_CCS

You can also find templates for various enhanced listener messages (ELMs) at \installation directory\Microsoft Host Integration
Server\system\TIM\MicrosoftELMDefs.tim. Use Visual Studio to open the file, and then expand the User-Defined Types node.
The following ELMs are defined as UDTs:

ELMIN_MSLink

ELMOUT_MSLink

ELMIN_MSCCS

ELMIN_IBMCCS

ELMOUT_CCS

You can create a TRM or ELM template in COBOL to assist with your programming by exporting the TRM or ELM definition.

To create a TRM template in COBOL

1. Open Visual Studio.

2. On the File menu, point to Open, and then click File.

3. In the Open File dialog box, navigate to <drive>:\Program Files\Microsoft Host Integration Server\System\TIM\, and
then click either MicrosoftTRMDefs.tim or MicrosoftELMDefs.tim.

4. On the File menu, click Export Host Definition.

5. In the Export Host Definition dialog box, type or select the file name, and then click Save.

You can substitute a custom TRM (or ELM) for the default TRM (or ELM) created by the TI runtime. Use the COMTIContext
parameter to pass custom context data.

See Also
Tasks
How to Pass a Custom TRM
Concepts
Using Custom TRMs and ELMs with COMTIContext

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx

Using Custom TRMs and ELMs with COMTIContext
Transaction Integrator (TI) developers can pass custom formatted transaction request messages (TRMs) or enhanced listener
messages (ELMs) from a client program to the CICS system and receive custom formatted TRMs or ELMs.

Custom TRMs or ELMs are passed through context data. The context data is contained in the optional COMTIContext parameter
defined in the client application code and must be the final parameter in the method call. A TRM destined for the host must be
defined as a user-defined type (UDT) for the COM model, or a structure for the .NET Framework model. The name of the UDT
must begin with the characters TRMIN. A TRM reply from the host must also be defined as a UDT. The name of the UDT must
begin with the characters TRMOUT. Examples of valid TRM names are: TRMINMyVeryOwn, TRMINStandard,
TRMOUTMyVeryOwn, and TRMOUTStandard.

The type library or structure can contain multiple TRM definitions, but you should include only one TRM for each direction (that
is, one TRMIN and one TRMOUT) in the COMTIContext parameter in a single method call. For example, in Visual Basic each
COMTIContext array is declared as a single dimension dynamic array of variants (that is, the number of occurrences is not
specified).

If you define multiple TRMs for the same direction, the TI run time uses only the first TRM it encounters in the context array. (In
some circumstances, the first TRM encountered might not always be the first one that you added to the context array). The TI
run time ignores the remaining TRMs in the array until the TRM in use is destroyed. To ensure that the TI run time uses the
correct TRM, do not add multiple TRMs intended for the same direction to a context array.

Note
The client application that manipulates the Context array must be able to access the appropriate file at run time. If you are usi
ng Visual Basic6.0, the application must be able to access COMTIContext.dll. If you are using Visual Basic .NET, the application
must able to access Microsoft.HostIntegration.TI.ClientContext.dll.

Note
When you use Visual Basic .NET, the data structure used as a custom TRM must be associated to a parameter within the asse
mbly. Therefore, you must create a dummy method within the assembly, a parameter assigned to the method, and the data s
tructure to be used as the TRM. Failure to do so prevents you from referencing the structure within the Visual Basic .NET appl
ication. Associating a UDT to a method was not required in Visual Basic 6.0 because Visual Basic 6.0 allowed referencing of U
DTs not associated with methods.

See Also
Tasks
Transaction Request Messages
How to Pass a Custom TRM

https://msdn.microsoft.com/en-us/library/aa704351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx

How to Pass a Custom TRM
The following code example demonstrates passing a custom transaction request message (TRM).

See Also
Reference
ClearAllContext
CountContext
DeleteContext
QueryContextInfo
ReadContext
WriteContext
Concepts
Using Custom TRMs and ELMs with COMTIContext

Private Sub Command1_Click()
Dim Context() As Variant
Dim COMTIContext As Object
Dim CedarBank As New COMTI.TestContext
Dim Balance As Currency
Dim TRMIN As COMTI.TRMINTestTRM
Dim TRMOUT As COMTI.TRMOUTTestTRM
Dim COMMA As Byte

TRMIN.TranID = "TCCB"
TRMIN.CommaDelim = ","
TRMIN.CommAreaLen = 41
TRMIN.ProgName = " "
TRMIN.User = " "
TRMIN.PSWD = " "

Set COMTIContext = CreateObject("COMTI.ContextObject")

COMTIContext.WriteContext "TRMINTestTRM", TRMIN, Context

COMTIContext.WriteContext "TRMOUTTestTRM", TRMOUT, Context

 Call using optional context data
CedarBank.cedrbank "Name", "ID1234", Balance, Context

 Call without optional context data
CedarBank.cedrbank "Name", "ID1234", Balance

End Sub

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx

Host and Automation Data
The topics in this section cover issues around working with Windows-based Automation data and COBOL-based mainframe
data.

In This Section

Variably Sized Data

Date and Time Parameters

Parameter Requirements

Optional Metadata

Return Value Positioning

Data Transfer Options

Mainframe Character Strings and Code Pages

Maximum Buffer Sizes for Remote Environments

Alignment Problems with Generated COBOL

Filler

Variable-length Tables and CICS LINK

Sending Binary Data to the Host

https://msdn.microsoft.com/en-us/library/aa746203(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745654(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746129(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770739(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745389(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705539(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705205(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771305(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745841(v=bts.10).aspx

Variably Sized Data
A string or array parameter that is the last parameter in its direction (last of the inputs and in/outs or last of the outputs and
in/outs) can be smaller than the maximum size specified, even without an associated actual size. The variable string or array
must be a parameter or return value and cannot be contained in a recordset.

If the final field is an array, it can be an array of any type, including a recordset. If there is an unbounded output recordset, it is
the only variably-sized data allowed because Transaction Integrator (TI) cannot handle two pieces of the data stream that are
variable in size. If COBOL FILLER exists after the last parameter, that parameter cannot be variable in size.

Identify the possibility of variably sized data at design time in TI Project. In the Designer select the method whose parameter
list contains the final field of string to be of variable size, and set the method property "Variable Sized Final Field" to true.

See Also
Concepts
Sending Binary Data to the Host
Other Resources
Host and Automation Data

https://msdn.microsoft.com/en-us/library/aa745841(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753912(v=bts.10).aspx

Date and Time Parameters
Transaction Integrator (TI) converts and formats the Date and Time parameters exchanged with the host differently,
depending on the programming language and the host platform.

You can use TI Project to set or change the properties of the Date parameter. The following table shows the formatting and
valid separators for each Host Data Type in situations where the Data Type property of the parameter is set to Date.

Data Type Formats and Separators
Host Data Type Format (default separator) Valid separators Length Note

s
DATE and TIME yyyydddhhmmsss (two packed decimal

fields)
None 8 None

DATE only (COBOL only) yyyyddd (packed decimal) None 4 (1) (2
)

DATE only (RPG only *MDY) mm/dd/yy /-.,& 8 (5)

DATE only (RPG only *DMY) dd/mm/yy /-.,& 8 (5)

DATE only (RPG only *YMD) yy/mm/dd /-.,& 8 (5)

DATE only (RPG only *JUL) yy/ddd /-.,& 6 (5)

DATE only (RPG only *LON
GJUL)

yyyy/ddd None 8 None

TIME only (COBOL only) hhmmsss (packed decimal) None 4 (3) (4
)

TIME only (RPG only *HMS) hh:mm:ss :.,& 8 None

ISO DATE and TIME yyyy-mm-dd hh.mm.ss space 19 None

ISO DATE only yyyy-mm-dd - 10 None

ISO TIME only hh.mm.ss . 8 None

USA DATE and TIME mm/dd/yyyy hh:mm AM (or PM) space 19 None

USA DATE only mm/dd/yyyy / 10 None

USA TIME only hh:mm AM or

hh:mm PM

: 8 None

JIS DATE and TIME yyyy-mm-dd hh:mm:ss space 19 None

JIS DATE only yyyy-mm-dd - 10 None

JIS TIME only hh:mm:ss : 8 None

EUR DATE and TIME dd.mm.yyyy hh.mm.ss space 19 None

EUR DATE only dd.mm.yyyy . 10 None

EUR TIME only hh.mm.ss . 8 None

TIMESTAMP yyyy-mm-dd-hh.mm.ss.mmmm (lengt
h 26).

0001-01-01-00.00.00.00
0000

0001-01-01-00.00.00.00
0000

None

Where:

ISO = International Standards Organization

USA = IBM USA Standard

EUR = IBM European Standard

JIS = Japanese Industrial Standard Christian Era

Note
When a date is sent to the host, the host populates a seven-digit COMP-3 data type only with the Julian Date YYYYDDD and
no other format.

Note
When a date is received from the host, the Date parameter must be packed as a valid Julian Date within a seven-digit COMP
-3 data type.

Note
When a time is sent to the host, the host populates a seven-digit COMP-3 data type as HHMMSSS up to 100th of a second. F
or example, sending 01:12:03 AM populates the COMP-3 data type on the host with 0112030; sending 01:12:003 AM popula
tes the COMP-3 data type on the host with 0112003.

Note
When a time is received from the host, the Time parameter must be packed within a seven-digit COMP-3 data type packed a
s HHMMSSS; data passed under any other format might not return the expected results.

Note
A two-digit year (yy) returned from the host is mapped to a four-digit year (yyyy) as follows:

00 to 39 is mapped as 20xx.

40 to 99 is mapped as 19xx.

Rounding occurs when TI receives the parameter from the host:

The hour value of time rounds up the day of date.

The minutes of time rounds up the hour of time.

The first two digits of seconds influences the value of minutes.

The third digit of second, or the one 1\100 value of seconds, does not influence the value of minutes. It would just be
passed forward to the workstation and displayed.

For example:

Assigning 1997001 to the host date field and 3701000 to the time field causes the workstation to display 01/02/1997
11:01:00 PM.

Assigning 1197001 to the host date field and 0101610 to the time field causes the workstation to display 01/01/1997
01:02:01.

Assigning 1197001 to the host date field and 0101619 to the time field, causes the workstation to display 01/01/1997
01:02:019.

Parameter Requirements
Requirements for the In, In/Out, and Out parameters might affect how you define a Transaction Integrator (TI) component or
mainframe transaction program (TP). The In and In/Out parameters are sent to the mainframe-based TP from the TI
Automation server. The Out and In/Out parameters are sent from the mainframe-based TP to the TI Automation server.

Best Parameter Order

The way parameters are ordered with regard to inputs and outputs determines the amount of data that must be transmitted, as
well as the structure of the mainframe program. If you are creating a Transaction Integrator (TI) component in TI Project
without importing COBOL code from a mainframe transaction program, place the parameters in the following order to
minimize the amount of data transmitted:

Input parameters

Input/output parameters

Output parameters

However, if you are using a CICS LINK LU 6.2, TCP TRM Link, or TCP ELM Link remote environment (RE) and importing COBOL
data declarations into TI Project from an existing mainframe program, place the parameters in the order they appear in the
COBOL data structure. In such a case, although the parameters are contained within the COMMAREA data structure, only the
part of the COMMAREA containing the last input or input/output parameter is sent to the mainframe. The mainframe program
is not affected by this ordering, but less data will be transmitted, especially in the case of small amounts of input data.

Maximum Amount of Parameter Data

The remote environment (RE) you use can affect the maximum possible message size. Programs associated with the CICS LINK
LU 6.2, TCP TRM Link, or TCP ELM Link REs are limited by the maximum size of the COMMAREA (32,767 bytes). Therefore, the
total byte size of all parameters cannot exceed 32 KB. Programs associated with distributed program call (DPC) are limited to a
maximum of 65,500 bytes of user data. This maximum decreases as additional parameters are defined. DPC is limited to a
maximum of 35 parameters.

The IMS Using LU 6.2 and CICS Using LU 6.2 REs have message size restrictions that, if exceeded, affect the programming logic
in the mainframe program. Therefore, be careful not to exceed the limit if you use either of these REs.

Optional Metadata
As a developer, you can choose to have the Transaction Integrator (TI) run-time environment send and receive metadata to and
from the mainframe transaction program (TP), and you can choose the content of that metadata.

Note
Metadata is not supported for distributed program call (DPC).

You can send or receive:

No metadata.

Only the method name as metadata.

All metadata including the method name.

The TI run-time environment sends or receives metadata to or from the TP as instructed. Metadata assists the TP in:

Identifying the format of the metadata (version information).

Identifying the name of the method used to invoke the TP.

Reporting detailed error information back to the client.

The metadata is not visible to the Automation client. The metadata is delivered to (or received from) the host TP as part of the
request message sent to (or response message received from) the TP.

The metadata set includes the following data:

TI run-time version.

A string of characters, such as "Microsoft TI version 1.0.0," that uniquely identifies the TI run-time environment version
that generated the request.

Method name (32-character string) invoked by the client application code.

Metadata block ID.

A GUID, in character format, that uniquely identifies this block of exception data. The GUID supports the ability to have
additional exception formats in the future and helps to ensure that any data received is valid.

Variables with no assigned uses to date (reserved):

Boolean flag indicating whether the TP is ready to commit.

Boolean flag indicating whether the TP is ready to perform additional work.

Two Short Integers to hold pieces of the TI run-time environment version number, one Short Integer to hold the
major version number and the other to hold the minor version number.

Exception Block (used only in replies).

A GUID, in binary format, that uniquely identifies this block of exception data. The GUID allows support of additional
exception formats in the future and helps ensure the data received is valid:

Boolean flag that indicates whether the TP is ready to commit.

Boolean flag that indicates whether the TP is ready to perform additional work.

Boolean flag that indicates whether an exception should be returned to the client application. If set, this flag also
causes the transaction to quit.

16-bit integer that identifies the error (see the note later in this topic). You can assign this value, along with the
256-character message that describes the error, from the server so that the assigned value is returned when a TI
run-time error occurs.

32-bit integer that identifies the context ID in the TP Help file (if any).

256-character message that describes the error. You can assign this value, along with the 16-bit integer that
identifies the error from the server, so that the assigned value is returned when a TI run-time error occurs.

Metadata is always located at the beginning of the message.

Note
TI error messages have numbers in the range from 0 through 9999. Metadata error message numbers returned from the ma
inframe can fall within the same range. To distinguish TI error messages from metadata messages returned from the mainfra
me, TI adds 10000 to the number of any metadata error message returned from the mainframe.

Return Value Positioning
When an Automation method returns control to the calling application, it can return data as the method's value (as distinct
from returning data as an output parameter). However, there is no analogous concept when you are dealing with a COBOL or
Report Program Generator (RPG) data declaration.

Transaction Integrator (TI) allows you to select one of the data description entries in a data declaration that will be returned to
the calling application. When you select an entry as the return value and that entry is not the first entry in the data declaration,
the return value is said to be positioned after the parameters.

You can use this feature, for example, when your data declaration describes a table and you need to return a recordset on the
Automation side. For example, if you are using Remote Data Service (RDS) to bind to a grid control for a Web application, your
Automation method must return the recordset rather than define a parameter that represents an output recordset.

When you import host definitions, the Import COBOLor Import RPG Wizard provides a step that allows you to select data
description entries as return values. If you are manually creating a method and you want the method's return value to be
placed in a location other than at the front of the data declaration, you can specify the location on the Advanced tab of the
method properties. Use the Position return value after the parameter drop-down list.

Data Transfer Options
You can use various options to transfer data to and from the mainframe transaction program (TP). These options apply to
arrays, recordsets, and strings (or variable-length tables and display data in COBOL terms). The topics in this section describe
each of the possible data transfer options. Choose the option that optimizes the amount of data to be transferred.

In This Section

Using the OCCURS DEPENDING Clause to Define Variable-length Table

Using Variably Sized Strings

Using Variably Sized Rows

Using Bounded Final Fields

https://msdn.microsoft.com/en-us/library/aa771072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772078(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771296(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705752(v=bts.10).aspx

Using the OCCURS DEPENDING Clause to Define Variable-
length Table

In COBOL, you can use the OCCURS DEPENDING ON syntax to define a variable-length table in a data declaration. The storage
for a variable-length table is dynamic, depending on the value in the length specifier variable. The amount of data passed is
also dependent on the value in the length specifier variable: Only the number of elements specified are sent or received. The
length specifier variable for a variable-length table must be a numeric type, and its direction must match the direction of the
variable-length table it controls.

When you import COBOL into Transaction Integrator (TI) Project, and you specify variable-length tables as recordsets, the
variable-length tables automatically become arrays or recordset objects whose size is limited by another parameter. The length
specifier is exposed on the Automation side as a parameter and must be correctly set when the parameter is being sent to the
host application.

To manually indicate that a parameter in a method is the length specifier for an array, first define the length specifier
parameter, and then define the array or recordset parameter:

In the parameter property class to be defined as an ODO array, use the Designer to select the Is Array property. After IsArray
is selected, the Array Dimensions and Occurs depending on property becomes available. Define the array's dimensions
using the Array Dimensions property. Assign the ODO index to the parameter defined as the ODO array. Select the index by
expanding the property Occurs depending on.

You can also manually indicate that a parameter in a method is the length specifier for a recordset parameter.

Follow the same steps as defined earlier; however, change the data type of the parameter from a simple data type to a
recordset.

The following COBOL code shows a variable-length table:

The following is the method that is created when the previous COBOL is imported:

The following is an example of Microsoft® Visual Basic® code that calls an imported method:

01 CUSTOMER-DATA.
 05 CUSTOMER-NUMBER PIC 9(9).
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).
 05 INVOICE-COUNT PIC 9(7) COMP-3.
 05 INVOICES OCCURS 50 TIMES DEPENDING ON INVOICE-COUNT.
 10 INVOICE-NUMBER PIC 9(10).
 10 INVOICE-DATE PIC 9(7) COMP-3.
 10 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
 10 INVOICE-DESCRIPTION PIC X(40).

SendInvoices(lCustomerNo As Long, strLastName As String, strFirstName As String _
 , lcInvoices As Long) As Object

Dim objCustomer As Object 'Uses late binding
Dim objInvoices As ADODB.Recordset
Dim lCustomerNumber As Long
Dim iRow As Integer
Dim iCol As Integer
Dim strLastName As String
Dim strFirstName As String

'create an instance of the invoicing object
On Error GoTo ErrorHandler1
Set objCustomer = CreateObject("Customer.Invoicing.1")

lCustomerNumber = CLng(txtCustomerNumber)

'invoke the GetInvoices method
On Error GoTo ErrorHandler2
Set objInvoices = objCustomer.GetInvoices(lCustomerNumber _
 , strLastName, strFirstName)
'
' Transfer the Recordset data to a variant array in a single operation.
' This is efficient, but may not be suitable for larger Recordsets.
'
Dim Data As Variant

Data = objInvoices.GetRows
grdInvoices.Rows = UBound(Data, 2) + 1
grdInvoices.Cols = UBound(Data, 1) + 1

Using Variably Sized Strings
When the last input parameter or the last output parameter in a method is a string, that string can be variably sized. Its size can
vary from 0 to the maximum number of bytes specified for its length. When the return value is a string and it is positioned
after all other output parameters, it can be the variably sized final output field.

The string must be sent or received last if it is to be variably sized. Otherwise, there is no reliable way to determine the end of a
variably sized string and the next data item in the buffer. The logic of the host application sends only the data for the part of the
string that is needed.

COBOL never sets the variably sized option for strings. To set this property manually, set the Variable Sized Final Field
property to be variable. The property Variable Sized Final Field is subdivided into two parts by direction. Set the direction
you want to true.

The following COBOL example has as its last data item a large string that could be optimized by sending only the size of the
string:

When imported, this COBOL code creates the following method:

The following Visual Basic code calls the method:

01 CUSTOMER-DATA.
 05 CUST-HEADER.
 10 CUSTOMER-NUMBER PIC 9(9).
 10 LAST-NAME PIC X(20).
 10 FIRST-NAME PIC X(20).
 05 COMMENTS PIC X(4096).

CustomerInformation(lCustomerNo As Long,_
 strLastName As String,_
 strFirstName As String,-
 strComments As String)

Dim objCustomer As Object
 Dim lCustomerNo As Long
 Dim strLastName As String
 Dim strFirstName As String
 Dim strComments As String

 lCustomerNo = 100231

 'create an instance of the invoicing object
 On Error GoTo ErrorHandler1
 Set objCustomer = CreateObject("Customer.Invoicing.1")

 'invoke the SetInvoices method
 On Error GoTo ErrorHandler2
 objCustomer.CustomerInformation lCustomerNo, strLastName _
 , strFirstName, strComments

Using Variably Sized Rows
When the last column in a record is a string, the row can be variably sized. Its size can vary between zero and the maximum
size specified in the picture clause. When you have variably sized rows, your application must explicitly specify the size of each
row before the row is sent.

The actual size field is not visible on the Automation side. The Transaction Integrator (TI) run-time environment uses
Automation services to determine the size of input data. When the TI run-time environment sends data to the host, it
automatically sets the actual size field.

The Import COBOL Wizard never creates a recordset that has variably sized rows. Bring up properties for the recordset that
contains the variably sized rows. The Variable sized rows property allows user to manually configure this option for a specific
recordset. The Variable sized rows property offers advanced options. You can specify that the actual row size variable is a
half-word or full-word binary. The actual size variable will include itself or will only include the size of the row.

The following COBOL example shows how the host application sends variably sized rows. The length field is included in the
row size:

The following COBOL example shows how the host application sends variably-sized rows. The length field is not included in
the row size:

01 CUSTOMER-DATA.
 05 CUSTOMER-NUMBER PIC 9(9).
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).
 05 INVOICE-COUNT PIC 9(7) COMP-3.
 05 INVOICES OCCURS 50 TIMES DEPENDING ON INVOICE-COUNT.
 10 INVOICE-DATA.
 15 INVOICE-ROW-SIZE PIC S9(4) COMP.
 15 INVOICE-NUMBER PIC 9(10).
 15 INVOICE-DATE PIC 9(7) COMP-3.
 15 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
 10 INVOICE-DESCRIPTION PIC X(4096).
.
.
.
 MOVE LENGTH OF CUSTOMER-DATA TO SEND-LENGTH.
 SUBTRACT LENGTH OF INVOICES FROM SEND-LENGTH.
 EXEC-CICS SEND FROM(CUSTOMER-DATA)
 LENGTH(SEND-LENGTH)
 END-EXEC.

 PERFORM VARYING ROW FROM 1 BY 1 UNTIL ROW > INVOICE-COUNT
 INSPECT INVOICE-DESCRIPTION TALLYING INVOICE-ROW-SIZE
 FOR CHARACTERS BEFORE INITIAL ' '
 ADD LENGTH OF INVOICE-DATA TO INVOICE-ROW-SIZE
 EXEC-CICS SEND FROM(INVOICE-ROW-SIZE)
 LENGTH(2)
 END-EXEC
 EXEC-CICS SEND FROM(INVOICES(ROW))
 LENGTH(INVOICE-ROW-SIZE)
 END-EXEC
 END-PERFORM.

 01 CUSTOMER-DATA.
 05 CUSTOMER-NUMBER PIC 9(9).
 05 LAST-NAME PIC X(20).
 05 FIRST-NAME PIC X(20).
 05 INVOICE-COUNT PIC 9(7) COMP-3.
 05 INVOICE-ROW-SIZE PIC S9(4) COMP.
 05 INVOICES OCCURS 50 TIMES DEPENDING ON INVOICE-COUNT.
 10 INVOICE-DATA.
 15 INVOICE-NUMBER PIC 9(10).
 15 INVOICE-DATE PIC 9(7) COMP-3.

See Also
Tasks
Using the OCCURS DEPENDING Clause to Define Variable-length Table
Using Variably Sized Strings
Using Bounded Final Fields

 15 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
 10 INVOICE-DESCRIPTION PIC X(4096).
.
.
.
 MOVE SIZE OF CUSTOMER-DATA TO SEND-LENGTH.
 SUBTRACT LENGTH OF INVOICES FROM SEND-LENGTH.
 SUBTRACT LENGTH OF INVOICE-ROW-SIZE FROM SEND-LENGTH.
 EXEC-CICS SEND FROM(CUSTOMER-DATA)
 LENGTH(SEND-LENGTH)
 END-EXEC.

 PERFORM VARYING ROW FROM 1 BY 1 UNTIL ROW > INVOICE-COUNT
 INSPECT COMMENTS TALLYING INVOICE-ROW-SIZE
 FOR CHARACTERS BEFORE INITIAL ' '
 ADD LENGTH OF INVOICE-DATA TO INVOICE-ROW-SIZE
 EXEC-CICS SEND FROM(INVOICE-ROW-SIZE)
 LENGTH(LENGTH OF INVOIVE-ROW-SIZE)
 END-EXEC

 EXEC-CICS SEND FROM(INVOICES(ROW))
 LENGTH(INVOICE-ROW-SIZE)
 END-EXEC
 END-PERFORM.

https://msdn.microsoft.com/en-us/library/aa771072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772078(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705752(v=bts.10).aspx

Using Bounded Final Fields
When the last input or the last output parameter in a method is an array or recordset, that parameter can be bounded. Its size
can vary from 0 to the maximum number of elements or rows specified. The array or recordset must be last to be bounded.
Otherwise, there is no reliable way to determine the end of a bounded array or recordset and the beginning of the next field in
the buffer. The host application must take care of sending the truncated table.

The Automation client handles this option automatically. The Transaction Integrator (TI) run-time environment sends a
truncated amount of data based on the Automation bounds and detects the truncated data and creates the appropriate
Automation type when data is received.

The Import COBOL Wizard never sets the bounded option for arrays or recordsets. To set this manually for the final parameter
in a method, use the Designer to assign a value to the property Maximum Occurrence. This field defines the maximum
number of rows the recordset may contain. On the method containing the recordset, set the property Variable Sized Final
Field to true by direction to make the recordset bounded.

If the method contains a recordset that is unbounded, you cannot also specify a bounded or variably-sized final field for that
direction. For example, if Parameter1 is an output parameter, and it is an unbounded recordset, the final output parameter
cannot be a bounded array or recordset or variably-sized string. When the return value is positioned after all other output
parameters, the return value can be the bounded final output field.

The following COBOL example sends only some of the rows in a recordset:

01 INVOICE-COUNT PIC S9(4) COMP.
01 CUSTOMER-DATA.
 05 CUSTOMER-NUMBER PIC 9(9).
 05 LAST-NAME PIC X(20).
 05 INVOICES OCCURS 50 TIMES.
 10 INVOICE-NUMBER PIC 9(10).
 10 INVOICE-DATE PIC 9(7) COMP-3.
 10 INVOICE-AMOUNT PIC S9(13)V9(2) COMP-3.
.
.
.
 MOVE SIZE OF CUSTOMER-DATA TO SEND-LENGTH.
 SUBTRACT LENGTH OF INVOICES FROM SEND-LENGTH.
 EXEC-CICS SEND FROM(CUSTOMER-DATA)
 LENGTH(SEND-LENGTH)
 END-EXEC.
 PERFORM VARYING I FROM 1 BY 1 UNTIL I = INVOICE-COUNT
 COMPUTE SEND-LENGTH = LENGTH OF INVOICE-NUMBER +
 LENGTH OF INVOICE-DATE +
 LENGTH OF INVOICE-AMOUNT
 EXEC-CICS SEND FROM(INVOICES(I))
 LENGTH(SEND-LENGTH)
 END-EXEC.
 END-PERFORM.

Mainframe Character Strings and Code Pages
When Transaction Integrator (TI) sends data to a mainframe-based transaction program (TP), the TI run-time environment
transforms Unicode strings received as parameters, fields, or columns into mainframe character strings. Likewise, when it
receives data from a mainframe TP, the TI run-time environment converts the mainframe character strings into Unicode strings
to be returned as output values to the calling client application.

TI categorizes these strings of characters sent to and received from the mainframe as follows:

Extended Binary Coded Decimal Interchange Code (EBCDIC) strings.

IBM double-byte character set (DBCS) strings.

Intermixed strings containing both EBCDIC and IBM DBCS strings with the necessary shift-out (SO) and shift-in (SI)
characters.

The TI run-time environment determines the type of mainframe character string based on the following information:

How the parameter, field, or column is defined in the TI component that was built by using TI Project.

The code page defined for the specific remote environment (RE) that was associated with the active TI Automation server
when it was deployed. When you create an RE in TI Manager, you specify a code page for that RE.

In This Section

How to Assign a Different Code Page to a Remote Environment

IBM DBCS Code Pages

Mainframe Character Formats

How to Pad Mainframe Character Strings with Spaces

Truncating Undefined Portions of Strings

Adding Leading SO and Trailing SI Characters

https://msdn.microsoft.com/en-us/library/aa705634(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771252(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770639(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754775(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771361(v=bts.10).aspx

How to Assign a Different Code Page to a Remote Environment
Use a remote environment (RE) to describe each CICS or IMS mainframe environment. Use Transaction Integrator (TI) Manager
to create, modify, and delete REs.

Every RE description includes a property value for the code page that is to be used by the TI run-time environment to convert
characters to and from mainframe data representations.

When you create a new RE, TI Manager automatically selects a code page based on the current system locale. However, you
can replace this default value with a code page that you select.

As needed, you can use TI Manager to assign a different code page to any RE.

To select a different code page for an RE

1. On the Start menu, point to Programs, then Microsoft Host Integration Server 2009, and then click TI Manager.

2. Expand the Remote Environments node.

3. Right-click the remote environment to be modified, and then click Properties.

4. On the Locale tab, clear the check box Use default code page for the selected locale.

5. On the Locale tab, select the new code page from the Code page dropdown list.

Only the code page value is significant to the TI run-time environment when it converts character data. Although you can use
the locale displayed on the Locale property page to select the code page, the TI run-time environment ignores it and uses only
the code page value that is associated with that locale.

See Also
Other Resources
Mainframe Character Strings and Code Pages

https://msdn.microsoft.com/en-us/library/aa705539(v=bts.10).aspx

IBM DBCS Code Pages
Transaction Integrator (TI) recognizes the following code pages as IBM double-byte character set (DBCS) code pages:

Code page Description

930 IBM Extend Katakana and IBM Japanese (for Japan)

931 IBM English lower case and IBM Japanese (for Japan)

933 IBM Hungle Extend single-byte and IBM Hungle (for Korea)

935 IBM English single-byte and IBM simplified Chinese (for PRC)

937 IBM English single-byte and IBM traditional Chinese

939 IBM English Extend lower case and IBM Japanese (for Japan)

All other code pages delivered with Host Integration Server 2009 are handled as Extended Binary Coded Decimal Interchange
Code (EBCDIC) code pages, which use a single byte to represent a character.

When the TI run-time environment converts UNICODE characters to DBCS characters, it uses standard Microsoft Windows NLS
code pages.

The following table lists the DBCS code pages and their corresponding NLS code pages.

DBCS code page NLS code page required by TI

930 932 ANSI Japan

931 932 ANSI Japan

933 949 ANSI Korean

935 936 ANSI Chinese (China, Singapore)

937 950 ANSI Chinese

939 932 ANSI Japan

The list of code pages on the Locale property page for a remote environment includes a DBCS code page only if the
corresponding NLS code page is loaded on the computer. The following code pages have been added for European support.

Code page IBM or open systems name Display name

923 ISO 8859-15 Latin 9 (Euro) Latin-9 (Euro)

924 IBM Latin - 1/Open System Latin-1 Open System (Euro)

858 OEM - Multilingual Latin 1 (Euro) OEM - Multilingual Latin 1 (Euro)

1140 IBM EBCDIC - U.S./Canada (Euro) U.S./Canada (Euro)

1141 IBM EBCDIC - Germany (Euro) Germany (Euro)

1142 IBM EBCDIC - Denmark/Norway (Euro) Denmark/Norway (Euro)

See Also
Other Resources

Mainframe Character Strings and Code Pages

https://msdn.microsoft.com/en-us/library/aa705539(v=bts.10).aspx

Mainframe Character Formats
In Transaction Integrator (TI) Project, you can specify the mainframe character format that the TI run-time environment will
create when sending data to the mainframe. There are two mainframe character formats supported by TI:

PIC X(n) COBOL, or RPG A

PIC G(n) COBOL, or RPG G

When you create string parameters, fields, or columns in TI Project, the PIC X(n) or RPG A data type format is selected
automatically.

If necessary, you can use the Properties command to change the mainframe character format.

If you select the PIC X or RPG A format for a string, the TI run-time environment converts this string to either an Extended
Binary Coded Decimal Interchange Code (EBCDIC) character string or an intermixed character string. Specifically, if the TI
component you define in TI Project is assigned to a remote environment (RE) with an EBCDIC code page, the TI run-time
environment converts a string that has a PIC X or RPG A format into an EBCDIC string. If the TI component's RE identifies a
double-byte character set (DBCS) code page, the TI run-time environment converts a string that has a PIC X format as an
intermixed string (not supported for RPG).

If you select the PIC G or RPG G format for a string, the TI run-time environment always converts the string into a DBCS string.
Therefore, any TI component that uses a string with a PIC G or RPG G format must be assigned to an RE that has a DBCS code
page.

If a TI component using a string with a PIC G or RPG G format is assigned to an RE that has an EBCDIC code page, the TI run-
time environment reports a conversion error when it attempts to convert the string to or from the PIC G or RPG G format. The
TI run-time environment places an error message describing this conversion problem in the Windows Event Log, and it returns
an error to the invoking client application.

The following table summarizes how the selection of string format and code page controls the type of character conversion
performed by the TI run-time environment.

 String format EBCDIC code page DBCS code page

PIC X or RPG A EBCDIC string Intermixed string

PIC G or RPG G TI run-time environment reports conversion errors. DBCS string

String Dimension Values

The meaning of a string's dimension (the n part of the PIC X(n) or RPG A(n) and the n part of the PIC G(n) or RPG G(n) formats)
is based on the character format in use. You specify a string's dimension on the COBOL Definition property page in
Transaction Integrator (TI) Project.

The dimension value for a string with a PIC G or RPG G format gives the number of double-byte characters that are used
in the mainframe representation of the string. No SO and SI character pair is added when a string with a PIC G or RPG G
format is converted.

The dimension value for a string with a PIC X or RPG A format gives the number of bytes that are used in its mainframe
representation. The number of characters that can be placed into or taken from a PIC X or RPG A formatted string varies
depending on the number of :

Double-byte character set (DBCS) characters, each of which requires two bytes of storage.

SO and SI character pairs needed. Each two-byte pair must encapsulate each contiguous stream of DBCS
characters.

Developers using TI must take into account this variability in the size of an intermixed string when they specify dimension
values in TI Project.

The number of bytes for a string converted using an EBCDIC code page with a PIC X or RPG A format is identical to the number

of characters because there are no DBCS characters in the string.

However, for a string converted using a DBCS code page with a PIC X or RPG A format, the actual number of characters that
can be placed in a given number of bytes varies. For example, if the conversion to or from UNICODE does not require the use
of DBCS characters (that is, no SO and SI character is used in the mainframe string), each character occupies a single byte.
However, if DBCS characters do appear within the mainframe string, the SO and SI character pairs are needed.

How the Import Wizard Defines Strings

When you use Transaction Integrator (TI) Project's Import wizard to import a host definition to create new methods and
recordsets, the wizard selects the mainframe character format based on the imported host definition. The following table
shows how the wizard maps different COBOL declarations to a string.

COBOL type Type of string created

PIC X(n) or RPG A String of size n bytes

PIC G(n) or RPG G String of size n characters

See Also
Other Resources
Mainframe Character Strings and Code Pages

https://msdn.microsoft.com/en-us/library/aa705539(v=bts.10).aspx

How to Pad Mainframe Character Strings with Spaces
You can define the properties for a string such that the Transaction Integrator (TI) run-time environment adds space characters
to pad the mainframe representation of the string instead of depending on a null termination character.

To use either a space character or null termination character

1. In Microsoft Visual Studio, right-click the object, and then click Properties.

2. Under Host Data Type Information in the Properties pane, click String Delimiting.

3. Select either Space Padded or Null Terminated.

The following table describes what happens with each delimiting option (Space Padded or Null terminated) when
converting to the type of string indicated.

Type of str
ing operat
ion

What happens for each type of string delimiting operation

Conversion
to EBCDIC s
tring

Space Padded. The TI run-time environment adds single-byte space characters to the end of the string until all b
ytes in the PIC X formatted string are filled.

 Null terminated. The TI run-time environment adds a single null character to the end of the string if there is roo
m in the PIC X count for the byte.

Conversion
from EBCDI
C string

Space Padded. The TI run-time environment strips single-byte space characters from the end of the string.

 Null terminated. The TI run-time environment scans from the beginning of the string and stops the conversion a
t the first null character it encounters in the string.

Conversion
to DBCS stri
ng

Space Padded. The TI run-time environment adds double-byte space characters to the end of the string until all c
haracters in the PIC G formatted string are filled.

 Null terminated. The TI run-time environment adds a double-byte character set (DBCS) null character to the end
of the string if there is room in the PIC G count for the bytes.

Conversion
from DBCS
string

Space Padded. The TI run-time environment strips double-byte space characters from the end of the string.

 Null terminated. The TI run-time environment scans from the beginning of the string and stops the conversion a
t the first DBCS null character it encounters in the string.

Conversion
to Intermixe
d string

Space Padded. The TI run-time environment adds single-byte space characters to the end of the string until all b
ytes in the PIC X formatted string are filled. If the terminating character in the UNICODE string maps to a DBCS ch
aracter, the TI run-time environment adds an SI character before it adds the space characters.

 Null terminated. The TI run-time environment adds a single byte null character to the end of the string if there is
room in the PIC X count. If the terminating character in the UNICODE string maps to a DBCS character, the TI run-t
ime environment adds an SI character before it adds the null character.

Conversion
from Inter
mixed strin
g

Space Padded. The TI run-time environment strips the terminating single-byte and double-byte space characters
from the end of the string. When it strips the space characters, the TI run-time environment treats any terminating
SI character as if it were a space.

 Null terminated. The TI run-time environment scans from the beginning of the string and stops the conversion a
t the first null character (of either width) it encounters.

Special handling occurs for a string that is last in the host buffer and that is flagged as last is variable. For example:

Space Padded. Upon conversion to an Extended Binary Coded Decimal Interchange Code (EBCDIC) string, the string is
terminated by the length count of the containing buffer, so it contains no additional space characters. Upon conversion
from an EBCDIC string, the buffer is considered terminated by the length count of the containing buffer; then the string is
examined for blank padding. The host can send this string blank padded beyond the significant data or not blank padded
but with the last significant character of the string in the last position in the containing buffer. The space character is
determined by the type of string (single, double, or intermixed).

Null terminated. Upon conversion to an EBCDIC string, the string is sent as is. The TI run-time environment checks the
length of the string, and then checks that the exact number of characters is sent. In other words, the number of characters
sent is equal to the length of the string. No null terminator or spaces are appended to the end of the string.

The following tables show how string delimiting works when the String delimiting property is set to Space Padded versus
Null terminated in combination with the variable size setting. All examples assume the mainframe data declaration as PIC
X(5). "b" represents a space,"?" represents unassigned data, and "\0" represents a null.

String delimiting set to Space Padded and variable size not active
Workstation Direction Mainframe

ABC\0 To Host 'ABCbb'

ABCb To Host 'ABCbb'

CBA From Host 'CBAbb'

CBA\0? From Host 'CBA\0?'

CBA\0 From Host 'CBA\0b'

String delimiting set to Space Padded and variable size active
Workstation Direction Mainframe

ABC\0 To Host 'ABC'

Abb To Host 'Abb'

CBA From Host 'CBAbb'

CBA\0? From Host 'CBA\0?'

CBA\0 From Host 'CBA\0b'

String delimiting set to Null terminated and variable size not active
Workstation Direction Mainframe

ABC\0 To Host 'ABC\0?'

ABC From Host 'ABC\0?'

ABCbb From Host 'ABCbb'

ABC From Host ABC\0\0'

String delimiting set to Null terminated and variable size active
Workstation Direction Mainframe

ABC\0 To Host 'ABC\0'

ABC From Host 'ABC\0?'

ABCbb From Host 'ABCbb'

ABC From Host ABC\0\0'

See Also
Other Resources
Mainframe Character Strings and Code Pages

https://msdn.microsoft.com/en-us/library/aa705539(v=bts.10).aspx

Truncating Undefined Portions of Strings
You can define the properties for a string such that the Transaction Integrator (TI) run-time environment truncates undefined
characters when it converts UNICODE strings to mainframe data representations instead of generating an error message. To
do so, click Truncate under Error handling on the string's Host Definition tab (property page) in TI Project.

When truncation is turned on, the TI run-time environment limits the number of characters to the string's previously specified
dimension value when it converts a character string to an Extended Binary Coded Decimal Interchange Code (EBCDIC) or
double-byte character set (DBCS) character string.

When it converts to intermixed strings, the TI run-time environment ensures that all shift-out (SO) characters have matching
shift-in (SI) characters. It adds a terminating SI character when truncation occurs in the middle of a contiguous stream of DBCS
characters. Also, the TI run-time environment ensures that it does not leave a partial DBCS character when it adds the SI
character.

If blank padding and truncation are specified for a string, the TI run-time environment might need to add an EBCDIC space
character after a terminating SI character is added.

See Also
Reference
Converting Data Types from Automation to OS/390 COBOL
Converting Data Types from OS/390 COBOL to Automation

https://msdn.microsoft.com/en-us/library/aa704825(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753868(v=bts.10).aspx

Adding Leading SO and Trailing SI Characters
For PIC G formatted strings, you can instruct the Transaction Integrator (TI) run-time environment to add a leading shift-out
(SO) character and a trailing shift-in (SI) character by selecting the Add Leading SO and Trailing SI check box on the string's
COBOL Definition tab (property page) in TI Project.

If the Add Leading SO and Trailing SI check box is selected, the TI run-time environment handles two additional bytes in the
mainframe data structure used for describing the double-byte character set (DBCS) string. When it formats a message sent to
the mainframe, the TI run-time environment adds the leading SO and trailing SI bytes. When it interprets a message received
from the mainframe, the TI run-time environment discards the leading SO and the trailing SI bytes.

The dimension value of the PIC G string always specifies the number of double-byte DBCS characters in the strings, regardless
of the presence or absence of the surrounding SO and SI characters.

The use of this automatic SO and SI handling is hidden from the client application. However, the mainframe application must
ensure that the appropriate PIC X declarations surround the declaration of the PIC G string.

TI Project generates the appropriate declarations for the surrounding SO and SI bytes, as shown in the following sample code:

The Import COBOL Wizard in TI Project does not set the option to add leading SO and trailing SI bytes. In other words, the
Import COBOL Wizard places no significance on the presence of PIC X declarations surrounding a PIC G string. If an existing
mainframe transaction program (TP) uses COBOL declarations that contain explicit declarations for SO and SI characters that
wrap PIC G strings, you must manually modify the interface created by the Import COBOL Wizard.

01 A-SOSI-WRAPPED-DBCS.
 05 LEADING-SO-1 PIC X.
 05 MY-DBCS-STRING PIC G(80).
 05 LEADING-SI-1 PIC X.

Maximum Buffer Sizes for Remote Environments
Both Transaction Integrator (TI) and mainframe applications must be designed not to exceed the following buffer size or
transfer limitations:

TCP Transaction Request Message (TRM) Link

The maximum buffer size for input/output is 32767 bytes. This limit is defined by the maximum allowable size of the
COMMAREA.

TCP Enhanced Listener Message (ELM) Link

The maximum buffer size for input/output is 32767 bytes. This limit is defined by the maximum allowable size of the
COMMAREA.

TCP Transaction Request Message (TRM) User Data

The buffer size for input/output is unlimited.

TCP Enhanced Listener Message (ELM) User Data

The buffer size for input/output is unlimited.

IMS Connect (TCP/IP)

The maximum segment size that TI can send to IMS is 32754 bytes. This limit is defined by the total number of bytes (32767) in
an IMS message segment minus the following number of bytes:

2 bytes for the LL (Length field).

2 bytes for the ZZ (Control Information field).

9 bytes for the maximum TRANCODE.

The total amount of data that can be sent to, or received from, an IMS server program using the TCP/IP IMS Connect
programming model is unlimited.

IMS Implicit (TCP/IP)

The buffer size for input is from 1 through 32755 bytes. In other words, the IMS Assist Module rejects a request with zero bytes
of user data, and the IMS Listener rejects a request with more than 32755 bytes of user data.

The buffer size for output is from 0 through 32755 bytes. The IBM IMS default Listener enforces the limit of 32755 bytes of
input/output data. The IBM IMS Assist Module enforces the required minimum of 1 byte of input.

IMS Explicit (TCP/IP)

The buffer size for input/output is unlimited.

OS/400 Distributed Program Calls (DPC)

The total buffer size is 65535 bytes and is reduced by the required headers. The send requires 23 bytes of header.

Each parameter, of either direction, requires 12 bytes of overhead on the send. Each in\out or out parameter requires 12 bytes
of overhead within memory on the return trip.

CICS LINK LU 6.2

The maximum buffer size for input/output is 32767 bytes. This limit is defined by the maximum allowable size of the
COMMAREA.

CICS User Data LU 6.2

The buffer size for input/output is unlimited. However, if the size of the input buffer is greater than 32 KB, TI sends the data in
multiple chunks of 32 KB. In such a case, the mainframe application must do multiple receives to gather all the input data.

IMS Using LU 6.2

The maximum segment size that TI will send to IMS is 32754 bytes. This limit is defined by the total number of bytes (32767) in

an IMS message segment minus the following number of bytes:

2 bytes for the LL (Length field).

2 bytes for the ZZ (Control Information field).

9 bytes for the maximum TRANCODE.

The total amount of data that can be sent to, or received from, an IMS server program that uses LU 6.2 is unlimited.

See Also
Other Resources
Host and Automation Data

https://msdn.microsoft.com/en-us/library/aa753912(v=bts.10).aspx

Alignment Problems with Generated COBOL
COBOL aligns data elements at the 01 level on double-word boundaries. This practice causes a potential problem in CICS non-
DPL applications that use TI-generated data declarations along with error metadata. If you code your COBOL application to
receive the error metadata and the input parameters in one RECEIVE, the parameters are placed immediately adjacent to the
metadata in memory. However, because the error metadata does not end on a double-word boundary, this action puts the
parameters 4 bytes ahead of where the COBOL code expects them.

You can prevent this problem. When you click either the Include method name or the Include all information option
under Meta data on the Advanced tab of a method's property page, verify that the mainframe program issues two RECEIVE
commands to handle incoming data for the method. The first RECEIVE pulls in the metadata block, and the second RECEIVE
pulls in the data for the method. When COBOL is generated for the method, an additional 01 block is generated for the
metadata. When the Include all information option is selected, you are also expected to create an additional SEND for the
metadata before sending the method data back to the Automation client application.

See Also
Other Resources
Host and Automation Data

https://msdn.microsoft.com/en-us/library/aa753912(v=bts.10).aspx

Filler
This section provides recommendations for handling COBOL-based filler data.

In This Section

COBOL FILLER

TI Application Cannot Reference FILLER

How to Use REDEFINES in COBOL

FILLER Optimization

FILLER for Discontiguous Output Area and Return Value

https://msdn.microsoft.com/en-us/library/aa705573(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745851(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704791(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705442(v=bts.10).aspx

COBOL FILLER
If COBOL data declarations that are imported into Transaction Integrator (TI) Project contain a COBOL FILLER clause or clauses,
space is allocated in the message so that the filler is represented correctly for the mainframe program's data alignment. The
filler is hidden from the Automation interface.

See Also
Concepts
FILLER Optimization
Other Resources
Filler

https://msdn.microsoft.com/en-us/library/aa746247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770710(v=bts.10).aspx

TI Application Cannot Reference FILLER
There are at least three possible causes for why the application cannot reference FILLER data:

Mainframe or COBOL specifics.

Automation specifics.

Procedure using TI Project.

The following provides details of these three causes.

Mainframe or COBOL Specifics

When a FILLER keyword is encountered in the import process, the Transaction Integrator (TI) run-time environment adjusts the
offset for the position of the data that follows the filler in a send or receive buffer by the length of the filler. This leaves
untranslated gaps in the buffers that are sent to (or received from) the host and allows your data to overlay correctly onto the
data declaration that describes it.

Automation Specifics

The Automation method does not reference the filler data description entries.

Procedure Using TI Project

The filler that is at the start of a data declaration is associated with a method, recordset, datatable, user-defined type (UDT), or
.NET structure. You can view or change filler that is associated with a method from the Advanced tab of the method's
properties page. To view or change a filler that is associated with a method, recordset, or UDT, right-click the method,
recordset, or UDT, and then click Properties.

Filler that follows a data description entry is associated with the data description entry (or parameter for methods, column for
recordsets, or member for UDTs). You can view or change filler that is associated with a parameter, column, or member from
the COBOL Definitions tab of the parameter, column, or member properties. When filler follows the data description entry
that you have specified as the return value, you can view or change that filler from the COBOL Definitions tab of the method's
properties.

The following example shows a COBOL data declaration that uses FILLER:

The resulting method is:

The following is an example of the Visual Basic code that calls the method:

01 CUSTOMER-DATA.
 05 CUSTOMER-INFO.
 10 LAST-NAME PIC X(20).
 10 FIRST-NAME PIC X(20).
 10 FILLER PIC X(12).
 05 DEMOGRAPHICS.
 10 DEMO-AGE PIC 999.
 10 DEMO-INCOME PIC S9(9)V99 COMP-3.
 10 DEMO-SEX PIC X.
 10 DEMO-MSTATUS PIC X.
 10 FILLER PIC X(40).

CustomerDemographics(strLastName As String, strFirstName As String, iAge As Integer _
 , curIncome As Currency, strSex As String, strMStatus As String)

Dim objCustomer As Object
 Dim strLastName As String
 Dim strFirstName As String
 Dim iAge As Integer

See Also
Other Resources
Filler

 Dim curIncome As Currency
 Dim strSex As String
 Dim strMStatus As String

 strLastName = "Doe"
 strFirstName = "John"

 'create an instance of the invoicing object
 On Error GoTo ErrorHandler1
 Set objCustomer = CreateObject("Customer.Invoicing.1")

 'invoke the SetInvoices method
 On Error GoTo ErrorHandler2
 objCustomer.CustomerDemographics strLastName, strFirstName _
 , iAge, curIncome, strSex, strMStatus

https://msdn.microsoft.com/en-us/library/aa770710(v=bts.10).aspx

How to Use REDEFINES in COBOL
The COBOL import process in Transaction Integrator (TI) Project recognizes the REDEFINES clause in a data description entry
and correctly associates the redefining entries with the redefined entry. You must select one of the redefined or redefining
clauses as the entry that represents the data that will be transmitted.

The redefining entries can use less space than the redefined entry. If you select a redefining entry that is smaller than the
redefined entry, TI Project automatically adds filler so that the data will correctly overlay the data description when it is sent to
the host. If the redefining entry represents a table with multiple fields, the last field contains the filler.

The following COBOL example shows a REDEFINES clause. The redefining clause was selected during import:

The resulting method that is imported is:

The COBOL generated for this method is:

The FILLER is added to the CUSTOMER-ID redefined area. When this FILLER occurs at the end of send or receive buffers, for
performance reasons it is not sent.

The following is an example of Visual Basic code that calls this method:

See Also
Other Resources
Filler

01 CUSTOMER-DATA.
 05 CUSTOMER-ID PIC X(10).
 05 CUSTOMER-ID-PARTS REDEFINES CUSTOMER-ID.
 10 LOCATION PIC X(3).
 10 NAME-ABREV PIC X(5).

CreateCustomerID(strLocation As String, strNameAbrev As String)

01 CREATECUSTOMERID-INPUT-AREA.
 05 LOCATION PIC X(3). INPUT
 05 NAME-ABREV PIC X(5). INPUT
 05 FILLER PIC X(2). INPUT

 Dim objCustomer As Object
 Dim strLocation As String
 Dim strNameAbrev As String

 strLocation = "101"
 strNameAbrev = "SPORT"

 'create an instance of the invoicing object
 On Error GoTo ErrorHandler1
 Set objCustomer = CreateObject("Customer.Invoicing.1")

 'invoke the CreateCustomerID method
 On Error GoTo ErrorHandler2
 objCustomer.CreateCustomerID strLocation, strNameAbrev

https://msdn.microsoft.com/en-us/library/aa770710(v=bts.10).aspx

FILLER Optimization
The Transaction Integrator (TI) run-time environment optimizes buffers sent to the host by not sending the bytes
corresponding to FILLER that appear at the end of the input data declaration.

In a CICS LU 6.2 environment, use both the MAXLENGTH and NOTRUNCATE options on the RECEIVE statement when the TI
run-time environment receives an input area that contains FILLER as the last data item description. However, this requirement
does not apply to CICS LINK and IMS transaction programs.

See Also
Other Resources
Filler

https://msdn.microsoft.com/en-us/library/aa770710(v=bts.10).aspx

FILLER for Discontiguous Output Area and Return Value
If the return value is discontiguous from the output area, you must calculate and manually specify the filler between the return
value and the output area.

The following example shows the calculation for the filler from the original COBOL that goes into the Import Wizard (the byte
counts on the right are added as an illustration):

In this case, because the return value follows the output area, filler must be added to the last output parameter. To do this,
perform the following steps.

1. Unlock the method.

2. In the details pane, click FIELD2.

3. On the File menu, click Properties, and then click the COBOL Definition tab.

4. In the From Host box, type 14 as the trailing filler.

5. Click OK.

To verify your modified code, in TI Project, use the Export command on the File menu. You can then see your code in
Notepad.

The following is the output with the added filler:

See Also
Other Resources
Filler

01 OUTPUT-AREA.
 05 SELECTED-OUTPUT-AREA.
 10 FIELD1 PIC S9(4) COMP. [2 Bytes]
 10 FIELD2 PIC S9(9) COMP. [4 Bytes]
 05 DISCONTIG-UNSELECTED-AREA.
 10 NOTSELECTED PIC X(10). [10 Bytes]
 10 ALSO-NOTSELECTED PIC S9(9) COMP. [4 Bytes]
 05 RETVAL PIC S9(9) COMP. [4 Bytes]

 01 DISCONTIGCBL-OUTPUT-AREA.
 05 LL PIC S9(4) COMP. OUTPUT [2 Bytes
]
 05 ZZ PIC S9(4) COMP. OUTPUT [2 Bytes
]
 05 FIELD1 PIC S9(4) COMP. OUTPUT [2 Bytes
]
 05 FIELD2 PIC S9(9) COMP. OUTPUT [4 Bytes
]

 05 RETVAL PIC S9(9) COMP. OUTPUT [4 Bytes
]

https://msdn.microsoft.com/en-us/library/aa770710(v=bts.10).aspx

Variable-length Tables and CICS LINK
When an OCCURS clause describes a variable-length table in the CICS LINK environment, the storage that the table uses on the
host varies depending on the value of the length specifier. COBOL handles this storage automatically on the host, but for
Transaction Integrator (TI) to determine where in the buffer to place data sent to the host and where to unpack data from the
host, you must give it the value of the length specifier variable on which the table size depends.

Any data that follows a variable-length table must be correctly offset in the buffer immediately following the table, regardless
of the maximum length of the table. TI must have the length specifier value for a variable-length table both when it packs the
buffer to be sent and when it unpacks the buffer that is received.

If an OCCURS clause describes a variable-length table, you must specify the table and the length specifier that controls the
table length as input/output in TI Project. The TI run-time environment must be able to detect the length both when the buffer
is sent to the host and when it is received from the host. When you import COBOL or manually create a method that describes
a variable-length table in TI Project, this restriction is enforced.

Note
Information in this topic also applies to arrays.

See Also
Tasks
Using the OCCURS DEPENDING Clause to Define Variable-length Table
Other Resources
Arrays

https://msdn.microsoft.com/en-us/library/aa771072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745849(v=bts.10).aspx

Sending Binary Data to the Host
The Transaction Integrator (TI) run-time environment does not translate binary data (Byte in Visual Basic, VT_UI1 in
Automation, or unsigned char in C++) when it sends it to the mainframe. Instead, TI copies the binary data unchanged into a
PIC X data representation on the mainframe. To define a string of binary data, define it as an array.

See Also
Other Resources
Host and Automation Data

https://msdn.microsoft.com/en-us/library/aa753912(v=bts.10).aspx

COMTIContext Interface
Use the ICOMTIContext interface to add, remove, and query information in the Transaction Integrator (TI Context). The
following methods implement the ICOMTIContext interface.

In This Section

ClearAllContext

ClosePersistentConnection

CountContext

DeleteContext

GetConnectionInfo

QueryContextInfo

ReadContext

UpdateContextInfo

WriteContext

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx

ClearAllContext
Use the ClearAllContext method to remove all the entries in a TI Context array.

Syntax

Parameters
prgContextArray

This SAFEARRAY parameter contains the TI Context that is to be cleared.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClosePersistentConnection
CountContext
DeleteContext
GetConnectionInfo
QueryContextInfo
ReadContext
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT ClearAllContext (

https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

ClosePersistentConnection
Use the ClosePersistentConnection method to close the persistent connection by contacting the COM+ or .NET Framework
application object without the need for a call to the server object.

Syntax

Parameters
COMTIContextArray

This SAFEARRAY contains the state of the connection.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
CountContext
DeleteContext
GetConnectionInfo
QueryContextInfo
ReadContext
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT ClosePersistentConnection (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

CountContext
Use the CountContext method to acquire a count of the entries in a TI Context array.

Syntax

Parameters
prgContextArray

This SAFEARRAY parameter contains TI Context entries that are passed to and returned from COM+ objects.

pulContextEntriesCount

Upon successful completion of the call, this integer parameter contains a count of the number of entries in the specified TI
Context array.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
DeleteContext
GetConnectionInfo
QueryContextInfo
ReadContext
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT CountContext (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

DeleteContext
Use the DeleteContext method to remove an entry in a TI Context array.

Syntax

Parameters
bstrContextEntryName

This string parameter contains the name of the TI Context entry to be removed.

prgContextArray

This SAFEARRAY parameter contains the TI Context entries that are passed to and returned from COM+ objects.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
CountContext
GetConnectionInfo
QueryContextInfo
ReadContext
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT DeleteContext (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

GetConnectionInfo
Use the GetConnectionInfo method to query the state of the persistent connection.

Syntax

Parameters
COMTIContextArray

This SAFEARRAY contains the state of the connection.

pfConnectionIsPersistent

This BOOL parameter is set to TRUE if the connection is persistent and active.

pfConnectionIsViable

This BOOL parameter is set to TRUE if the connection is active.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
CountContext
DeleteContext
QueryContextInfo
ReadContext
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT GetConnectionInfo (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

QueryContextInfo
Use the QueryContextInfo method to acquire a count of the entries in a TI Context array, the names of the context entries,
and the data types of the context entries.

Syntax

Parameters
prgContextArray

This SAFEARRAY parameter contains the TI Context entries that are passed to and returned from COM+ objects.

pulContextEntriesCount

Upon successful completion of the call, this integer parameter contains a count of the entries in the specified TI Context array.

prgContextNameArray

This SAFEARRAY of strings parameter contains the TI Context entry names.

prgContextTypeArray

This SAFEARRAY of integers parameter contains the TI Context entry data types.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
CountContext
DeleteContext
GetConnectionInfo
ReadContext
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT QueryContextInfo (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

ReadContext
Use the ReadContext method to acquire the value of an entry in a TI Context array.

Syntax

Parameters
bstrContextEntryName

This string parameter contains the name of the TI Context entry to be retrieved.

pvarContextEntryValue

This VARIANT parameter contains the value of the context entry identified by bstrContextEntryName.

prgContextArray

This SAFEARRAY parameter contains the TI Context entries that are passed to and returned from COM+ objects.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
CountContext
DeleteContext
GetConnectionInfo
QueryContextInfo
UpdateContextInfo
WriteContext
Other Resources
Using a Persistent Connection

HRESULT ReadContext (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

UpdateContextInfo
Use the UpdateContextInfo method to update the client COMTIContext array with the current state of the connection.

Syntax

Parameters
COMTIContextArray

This SAFEARRAY contains the state of the connection.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
CountContext
DeleteContext
GetConnectionInfo
QueryContextInfo
ReadContext
WriteContext
Other Resources
Using a Persistent Connection

HRESULT UpdateContextInfo (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704659(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

WriteContext
Use the WriteContext function to add or replace an entry in a TI Context array.

Syntax

Parameters
bstrContextEntryName

This string parameter contains the name under which the TI Context entry will be stored and accessed. Some context entry
names are predefined by Microsoft. You are free to define your own (although there is no way to deal with such in the
COM+ application).

varContextEntryValue

This VARIANT parameter contains the value to be stored for the context entry identified by bstrContextEntryName.

prgContextArray

This SAFEARRAY parameter contains the TI Context entries that are passed to and returned from COM+ objects.

Return Codes
S_OK

The method call completed successfully.

E_INVALIDARG

One or more of the parameters passed are invalid.

E_FAIL

An internal processing error occurred.

See Also
Reference
ClearAllContext
ClosePersistentConnection
CountContext
DeleteContext
GetConnectionInfo
QueryContextInfo
ReadContext
UpdateContextInfo
Other Resources
Using a Persistent Connection

HRESULT WriteContext (

https://msdn.microsoft.com/en-us/library/aa744310(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705420(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772037(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744912(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753869(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745870(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754250(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704691(v=bts.10).aspx

COMTIContext Keywords
Use the COMTIContext keywords as commands to override the contents of a transaction request message (TRM).

In This Section

CONNTIMEOUT

CONNTYPE

IMS_LTERM

IMS_MODNAME

LibNameOverride

OverrideSourceTP

PASSWORD

PortOverride

ProgNameOverride

RecvTimeOut

REOverride

SendTimeOut

TPNameOverride

USERID

https://msdn.microsoft.com/en-us/library/aa754311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770750(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704658(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771485(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772104(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx

CONNTIMEOUT
Use the CONNTIMEOUT keyword to reclaim orphaned persistent connections. CONNTIMEOUT takes an integer value
specifying, in seconds, how long to wait before a persistent connection is considered abandoned and then automatically closed.
The timing starts as the client call processing is completed by the COM+ or .NET generic object.

See Also
Tasks
How to Pass a Custom TRM
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMIN
Using Custom TRMs and ELMs with COMTIContext
CONNTYPE
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754267(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

CONNTYPE
Use the CONNTYPE keyword to establish a persistent connection by setting CONNTYPE to OPEN. If a call with CONNTYPE
set to OPEN completes successfully, the returned COMTIContext array CONNTYPE keyword has a value of USE. To make a
call and terminate the persistent connection, set the CONNTYPE keyword to CLOSE. If a call with CONNTYPE set to CLOSE
completes successfully, the returned COMTIContext array CONNTYPE keyword has a value of NONPERSISTENT.

See Also
Tasks
How to Pass a Custom TRM
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMIN
Using Custom TRMs and ELMs with COMTIContext
CONNTIMEOUT
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

IMS_LTERM
Use the IMS_LTERM to override the default LTERM that an Information Management Systems (IMS) connect call uses while
processing the host transaction within IMS. The COMTIContext context name is IMS_LTERM, and its value must be from one
through eight alphanumeric characters.

Note
If the IMS_LTERM is assigned more than eight characters, the IMS_LTERM value is not passed to the host transaction and th
e host transaction continues to use the system provided default LTERM.

See Also
Tasks
How to Pass a Custom TRM
Reference
REOverride
Concepts
TPNameOverride
USERID
TRMIN
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

IMS_MODNAME
When using the IMS Connect programming model, IMS_MODNAME contains the name of the returned MOD Name assigned
by the executed IMS transaction.

See Also
Other Resources
COMTIContext Keywords

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

LibNameOverride
When using the OS/400 DPC programming model, LibNameOverride identifies the library where the OS/400 operating
system should look to locate the executable program.

See Also
Other Resources
COMTIContext Keywords

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

OverrideSourceTP
When using the CICS LU6.2 Link programming model, OverrideSourceTP contains an identifier that reflects the originating
transaction (TI application). In CICS, this identifier is typically used for securing CICS resource access for DB2 and VSAM.

See Also
Other Resources
COMTIContext Keywords

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

PASSWORD
Use the PASSWORD keyword, combined with USERID, to provide explicit security without the need for a callback. The
COMTIContext context name is PASSWORD; the value must be a string that contains a valid mainframe security password.

See Also
Tasks
How to Pass a Custom TRM
Reference
REOverride
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMIN
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx

PortOverride
When using a TCP/IP transport, PortOverride contains the TCP/IP port number that the Transaction Integrator runtime will use
instead of the predefined port in the Remote Environment definition

See Also
Other Resources
COMTIContext Keywords

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

ProgNameOverride
Use the ProgNameOverride keyword to override the program name assigned within the type library and to specify a
different program name to be sent to the host. The COMTIContext context name is ProgNameOverride; the value must be a
string that contains a valid mainframe program name.

See Also
Tasks
How to Pass a Custom TRM
Reference
REOverride
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMIN
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

RecvTimeOut
RecvTimeOut indicates the number of seconds that the Transaction Integrator runtime will wait for a response from the host.
RecTimeOut is used in place of the predefined RecvTimeOut value in the Remote Environment Definition.

See Also
Other Resources
COMTIContext Keywords

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

REOverride
Use the REOverride keyword to override the type library assignment of the method call to a remote environment (RE) and to
assign the call to a newly specified RE. The COMTIContext context name is REOverride; the value must be a valid remote
environment name.

See Also
Tasks
How to Pass a Custom TRM
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMIN
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

SendTimeOut
SendTimeOut indicates the number of seconds that the Transaction Integrator runtime will wait for completion of a send
operation to the host. This value is used in place of the predefined port in the Remote Environment definition.

See Also
Other Resources
COMTIContext Keywords

https://msdn.microsoft.com/en-us/library/aa746006(v=bts.10).aspx

TPNameOverride
Use the TPNameOverride keyword to override the transaction ID assigned within the type library and to specify the new
transaction ID to be sent to the host. The COMTIContext context name is TPNameOverride; the value must be a string that
contains a valid mainframe transaction ID.

See Also
Tasks
How to Pass a Custom TRM
Reference
REOverride
Concepts
USERID
IMS_LTERM
TRMIN
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

TRMIN
Use the TRMIN keyword to override the default transaction request message (TRM) containing the transaction program ID,
user ID, password, and other administrative data sent to the host. The COMTIContext context name is TRMIN. The TRM must
be defined as a user-defined type (UDT), and the name of that UDT must begin with the characters TRMIN.

See Also
Tasks
How to Pass a Custom TRM
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

TRMOUT
Use the TRMOUT keyword to override the default transaction request message (TRM) containing the transaction program ID,
user ID, password, and other administrative data sent from the host. The COMTIContext context name is TRMOUT. The TRM
must be defined as a user-defined type (UDT), and the name of that UDT must begin with the characters TRMOUT.

See Also
Tasks
How to Pass a Custom TRM
Concepts
TPNameOverride
USERID
IMS_LTERM
TRMIN
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

USERID
Use the USERID keyword, combined with PASSWORD, to provide explicit security without the need for a callback. The
COMTIContext context name is USERID; the value must be a string that contains a valid mainframe security user ID.

See Also
Tasks
How to Pass a Custom TRM
Reference
REOverride
Concepts
TPNameOverride
IMS_LTERM
TRMIN
TRMOUT
Using Custom TRMs and ELMs with COMTIContext
Other Resources
ProgNameOverride
PASSWORD

https://msdn.microsoft.com/en-us/library/aa753865(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745631(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744380(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745588(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705698(v=bts.10).aspx

TI Component Properties
In the Microsoft® Visual Studio® .NET 2003 environment, Transaction Integrator (TI) component properties appear and are
edited in the Properties pane. When you select an entity in the Visual Studio tree view or list view, its properties appear in
categories in the Properties pane. When you select multiple items, the intersection of their properties appear to allow for bulk
edit.

Note
The properties of the TI components are not intended to be set or changed programmatically. Setting or changing the proper
ties programmatically may cause the component to function incorrectly.

See Also
Other Resources
Properties (TI Project)

https://msdn.microsoft.com/en-us/library/aa770959(v=bts.10).aspx

Standard Transaction Request and Reply Messages
To support the TCP transaction request message (TRM) Link programming model and the TCP TRM User Data programming
model, Transaction Integrator (TI) supports two variations of the CICS Standard Listener TRM.

In This Section

TRM Format for the TCP TRM Link Programming Model

TRM Format for the TCP TRM User Data Programming Model

https://msdn.microsoft.com/en-us/library/aa745847(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744711(v=bts.10).aspx

TRM Format for the TCP TRM Link Programming Model
This topic describes the format and content of the transaction request message (TRM) used by the TCP TRM Link programming
model.

TRM Request Message

The following table shows the contents of the request message.

TranID Comma Client in data

4 1 35

TranID

Transaction ID of the Concurrent Server to be started by the Listener.

Comma

A comma (,) separates the transaction ID from the Client in data.

Client in data

35 bytes of data used by the CICS TCP/IP security exit and passed to the Concurrent Server in the transaction initiation
message (TIM).

Client in data for Microsoft Security Exit format

The following code block describes the format of the client in data for the Microsoft security exit.

Syntax

Client in data for IBM Security Exit format

The following code block describes the format of the client in data for the IBM security exit.

Syntax

TRM Reply Message

The following table shows the contents of the reply message.

TRM reply msg length Formatted field length Formatted field code Data

4 4 1 0-n

Note
The formatted field length, formatted field code, and data can be repeated multiple times in a single message.

TRM reply msg length

struct CLIENT_IN_DATA {
 BYTE bUserID[8];
 BYTE bPassword[8];
 BYTE bLinkToName[8];
 USHORT usCommareaLen;
 BYTE bReserved[9];
} UNALIGNED;

struct CLIENT_IN_DATA2 {
 BYTE bSecFlag;
 BYTE bPassword[8];
 BYTE bUserID[8];
 BYTE bLinkToName[8];
 USHORT usCommareaLen;
 BYTE bReserved[8];
} UNALIGNED;

The total length of the TRM reply message. This length is the sum of all the lengths of the formatted fields that follow in the
message and does not include the length of the TRM reply msg length field itself.

Formatted field length

The length of the formatted field.

The formatted field length is the sum of the combination of the Formatted field code length and the Data length.

Formatted field code

A 1-byte code that describes the information passed from the Concurrent Server back to the client.

You cannot change the Formatted field code.

The field codes are specific to the communication handling between the WIP and HIP TCP Transports and the MSCMTICS,
MSHIPLNK and TCP Concurrent Server programs.

Data

0 or more bytes of information that is associated with a specific formatted field.

You may change the information stored in Data. If you change Data, be sure that you also change the TRM Reply and the
Formatted Field Length to the new values.

The length of Data is equal to the formatted field length minus the size of the formatted field code.

Normal codes

The following table shows the meaning of the normal codes.

Code Type Meaning

0x01 Info Version ID for Microsoft® Transaction Integrator Concurrent Server

0x02 Info User Data

0x07 Info Execution OK

Error codes

The following table shows the meaning of the error codes.

Code Type Meaning

0x03 Error Invalid ProgID

0x04 Error Invalid TranID

0x05 Error Inquiry Failed

0x06 Error Inquiry Status

0x08 Error Program ABEND

0x09 Error Execution Failed

0x0A Error Invalid TRM

For more information about the format of the TRM, see the TRM definition file at <drive>:\Program Files\Microsoft Host
Integration Server\System\TIM\MicrosoftTRMDefs.tim. Use Microsoft Visual Studio® .NET 2003 to view the file.

See Also
Reference
TRM Format for the TCP TRM User Data Programming Model

https://msdn.microsoft.com/en-us/library/aa744711(v=bts.10).aspx

TRM Format for the TCP TRM User Data Programming Model
This section describes the format and content of the transaction request message (TRM) used by the TCP TRM User Data
programming model.

TRM Request Message

The following table shows the contents of the request message.

TranID Comma Client in data

4 1 35

TranID

Transaction ID of the Concurrent Server to be started by the Listener.

Comma

A comma (,) separates the transaction ID from the Client in data.

Client in data

35 bytes of data used by the CICS TCP/IP security exit and passed to the Concurrent Server in the transaction initiation
message (TIM).

Client in data for Microsoft Security Exit format

The following code block describes the format of the client in data for the Microsoft security exit.

Client in data for IBM Security Exit format

The following code block describes the format of the client in data for the IBM security exit.

Client in data for COBOL

The following code block describes the format of the client in COBOL

Client in data Constants for COBOL

The following code block describes the constants for the client in data in COBOL.

struct CLIENT_IN_DATA {
 BYTE bUserID[8];
 BYTE bPassword[8];
 BYTE bReserved[19];
} UNALIGNED;

struct CLIENT_IN_DATA2 {
 BYTE bSecFlag;
 BYTE bPassword[8];
 BYTE bUserID[8];
 BYTE bReserved[18];
} UNALIGNED;

01 CLIENT-IN-DATA PIC X(35).
 01 FILLER REDEFINES CLIENT-IN-DATA.
 05 CID-USERID PIC X(8).
 05 CID-PASSWORD PIC X(8).
 05 CID-LINK-TO-PROG PIC X(8).
 05 CID-COMMAREA-LEN PIC S9(4) COMP.
 05 CID-DATA-LEN PIC S9(8) COMP.
 05 CID-VERSION PIC X.
 05 CID-FLAG-1 PIC X.
 05 CID-FLAG-2 PIC X.
 05 CID-RESERVED PIC X.
 05 CID-FORMAT PIC X.

01 CLIENT-IN-DATA-CONSTANTS.
05 CID-C-VERSION.
10 CID-VERSION-1 PIC X VALUE X'00'.
10 CID-VERSION-2 PIC X VALUE X'01'.
05 CID-C-FLAG-1.
10 CID-USE-TICS-WORK-AREA PIC X VALUE X'01'.
05 CID-C-FLAG-2.
10 CID-PC-NONE PIC X VALUE X'01'.
10 CID-PC-OPEN PIC X VALUE X'02'.
10 CID-PC-USE PIC X VALUE X'04'.
10 CID-PC-CLOSE PIC X VALUE X'08'.
10 CID-NO-OBJ-PERSIST PIC X VALUE X'10'.
05 CID-C-FORMAT.
10 CID-FORMAT-NOTSET PIC X VALUE X'00'.
10 CID-FORMAT-MS PIC X VALUE X'01'.
10 CID-FORMAT-IBM PIC X VALUE X'02'.

TRM Reply Message

The following table shows the contents of the reply message.

TRM reply msg length Formatted field length Formatted field code Data

2 4 1 0-n

Note
The formatted field length, formatted field code, and data can be repeated multiple times in a single message.

TRM reply msg length

The total length of the TRM reply message. This length is the sum of all the lengths of the formatted fields that follow in the
message and does not include the length of the TRM reply msg length field itself.

Formatted field length

The length of the formatted field.

The formatted field length is the sum of the combination of the Formatted field code length and the Data length.

Formatted field code

A 1-byte code that describes the information passed from the Concurrent Server back to the client.

You cannot change the Formatted field code.

The field codes are specific to the communication handling between the WIP and HIP TCP Transports and the MSCMTICS,
MSHIPLNK and TCP Concurrent Server programs.

Data

0 or more bytes of information that is associated with a specific formatted field.

You may change the information stored in Data. If you change Data, be sure that you also change the TRM Reply and the
Formatted Field Length to the new values.

The length of Data is equal to the formatted field length minus the size of the formatted field code.

Normal codes

The following table shows the meaning of the normal codes.

Code Type Meaning

0x01 Info Version ID for Microsoft® Transaction Integrator Concurrent Server

0x02 Info User Data

0x07 Info Execution OK

Error codes

The following table shows the meaning of the error codes.

Code Type Meaning

0x03 Error Invalid ProgID

0x04 Error Invalid TranID

0x05 Error Inquiry Failed

0x06 Error Inquiry Status

0x08 Error Program ABEND

0x09 Error Execution Failed

0x0A Error Invalid TRM

0x0B Error Server generated an exception

0x0C Error Exception error information is in the Meta Data Error Block

For more information about the format of the TRM, see the TRM definition file at <drive>:\Program Files\ Microsoft Host
IntegrationServer\System\TIM\MicrosoftTRMDefs.tim. Use Microsoft Visual Studio® .NET 2003 to view the file.

See Also
Reference
TRM Format for the TCP TRM Link Programming Model

https://msdn.microsoft.com/en-us/library/aa745847(v=bts.10).aspx

CICS Enhanced Listener Request and Reply Messages
To support the CICS TCP enhanced listener message (ELM) Link programming model and the TCP ELM User Data
programming model, Transaction Integrator (TI) supports two variations of the CICS Enhanced Listener TRM.

In This Section

ELM Format for the TCP ELM Link Programming Model

ELM Format for the TCP ELM User Data Programming Model

Enhanced Listener CICS Administration

https://msdn.microsoft.com/en-us/library/aa705690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754452(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770529(v=bts.10).aspx

ELM Format for the TCP ELM Link Programming Model
This section describes the format and content of the enhanced listener message (ELM) used by the TCP ELM Link programming
model.

ELM Request Message

The following table shows the contents of the request message.

Client in data

35

Client in data

35 bytes of data used by the CICS TCP/IP security exit and passed to the Concurrent Server in the Transaction Integrator
metadata (TIM) file.

Client in data for Microsoft Security Exit format

The following code block describes the format of the client in data for the Microsoft security exit.

Client in data for IBM Security Exit format

The following code block describes the format of the client in data for the IBM security exit.

Client in data for COBOL

The following code block describes the format of the client in COBOL

Client in data Constants for COBOL

The following code block describes the constants for the client in data in COBOL.
01 CLIENT-IN-DATA-CONSTANTS.
05 CID-C-VERSION.

struct CLIENT_IN_DATA {
 BYTE bUserID[8];
 BYTE bPassword[8];
 BYTE bLinkToName[8];
 USHORT usCommareaLen;
 BYTE bReserved[9];
} UNALIGNED;

struct CLIENT_IN_DATA2 {
 BYTE bSecFlag;
 BYTE bPassword[8];
 BYTE bUserID[8];
 BYTE bLinkToName[8];
 USHORT usCommareaLen;
 BYTE bReserved[8];
} UNALIGNED;

01 CLIENT-IN-DATA PIC X(35).
 01 FILLER REDEFINES CLIENT-IN-DATA.
 05 CID-USERID PIC X(8).
 05 CID-PASSWORD PIC X(8).
 05 CID-LINK-TO-PROG PIC X(8).
 05 CID-COMMAREA-LEN PIC S9(4) COMP.
 05 CID-DATA-LEN PIC S9(8) COMP.
 05 CID-VERSION PIC X.
 05 CID-FLAG-1 PIC X.
 05 CID-FLAG-2 PIC X.
 05 CID-RESERVED PIC X.
 05 CID-FORMAT PIC X.

10 CID-VERSION-1 PIC X VALUE X'00'.
10 CID-VERSION-2 PIC X VALUE X'01'.
05 CID-C-FLAG-1.
10 CID-USE-TICS-WORK-AREA PIC X VALUE X'01'.
05 CID-C-FLAG-2.
10 CID-PC-NONE PIC X VALUE X'01'.
10 CID-PC-OPEN PIC X VALUE X'02'.
10 CID-PC-USE PIC X VALUE X'04'.
10 CID-PC-CLOSE PIC X VALUE X'08'.
10 CID-NO-OBJ-PERSIST PIC X VALUE X'10'.
05 CID-C-FORMAT.
10 CID-FORMAT-NOTSET PIC X VALUE X'00'.
10 CID-FORMAT-MS PIC X VALUE X'01'.
10 CID-FORMAT-IBM PIC X VALUE X'02'.

ELM Reply Message

The following table shows the contents of the reply message.

ELM reply msg length Formatted field length Formatted field code Data

4 4 1 0-n

Note
The formatted field length, formatted field code, and data can be repeated multiple times in a single message.

ELM reply msg length

The total length of the ELM reply message. This length is the sum of all the lengths of the formatted fields that follow in the
message and does not include the length of the ELM reply msg length field itself.

Formatted field length

The length of the formatted field.

The formatted field length is the sum of the combination of the Formatted field code length and the Data length.

Formatted field code

A 1-byte code that describes the information passed from the Concurrent Server back to the client.

You cannot change the Formatted field code.

The field codes are specific to the communication handling between the WIP and HIP TCP Transports and the MSCMTICS,
MSHIPLNK and TCP Concurrent Server programs.

Data

0 or more bytes of information that is associated with a specific formatted field.

You may change the information stored in Data. If you change Data, be sure that you also change the TRM Reply and the
Formatted Field Length to the new values.

The length of Data is equal to the formatted field length minus the size of the formatted field code.

Normal codes

The following table shows the meaning of the normal codes.

Code Type Meaning

0x01 Info Version ID for Microsoft® Transaction Integrator Concurrent Server

0x02 Info User Data

0x07 Info Execution OK

Error codes

The following table shows the meaning of the error codes.

Code Type Meaning

0x03 Error Invalid ProgID

0x04 Error Invalid TranID

0x05 Error Inquiry Failed

0x06 Error Inquiry Status

0x08 Error Program ABEND

0x09 Error Execution Failed

0x0A Error Invalid ELM

For more information about the format of the TRM, see the TRM definition file at <drive>:\Program Files\ Microsoft Host
Integration Server\System\TIM\MicrosoftTRMDefs.tim. Use Microsoft Visual Studio® .NET 2003 to view the file.

See Also
Reference
ELM Format for the TCP ELM User Data Programming Model
Other Resources
Enhanced Listener CICS Administration

https://msdn.microsoft.com/en-us/library/aa754452(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770529(v=bts.10).aspx

ELM Format for the TCP ELM User Data Programming Model
This section describes the format and content of the enhanced listener message (ELM) used by the TCP ELM User Data
programming model.

ELM Request Message

The following table shows the contents of the request message.

Client in data

35

Client in data

35 bytes of data used by the CICS TCP/IP security exit and passed to the Concurrent Server in the transaction initiation
message (TIM).

Client in data for Microsoft Security Exit format

The following code block describes the format of the client in data for the Microsoft security exit.

Syntax

Client in data for IBM Security Exit format

The following code block describes the format of the client in data for the IBM security exit.

Syntax

ELM Reply Message

The following table shows the contents of the reply message.

ELM reply msg length Formatted field length Formatted field code Data

4 4 1 0-n

Note
The formatted field length, formatted field code, and data can be repeated multiple times in a single message.

ELM reply msg length

The total length of the ELM reply message. This length is the sum of all the lengths of the formatted fields that follow in the
message and does not include the length of the ELM reply msg length field itself.

Formatted field length

The length of the formatted field.

The formatted field length is the sum of the combination of the Formatted field code length and the Data length.

Formatted field code

A 1-byte code that describes the information passed from the Concurrent Server back to the client.

struct CLIENT_IN_DATA {
 BYTE bUserID[8];
 BYTE bPassword[8];
 BYTE bReserved[19];
} UNALIGNED;

struct CLIENT_IN_DATA2 {
 BYTE bSecFlag;
 BYTE bPassword[8];
 BYTE bUserID[8];
 BYTE bReserved[18];
} UNALIGNED;

You cannot change the Formatted field code.

The field codes are specific to the communication handling between the WIP and HIP TCP Transports and the MSCMTICS,
MSHIPLNK and TCP Concurrent Server programs.

Data

0 or more bytes of information that is associated with a specific formatted field.

You may change the information stored in Data. If you change Data, be sure that you also change the TRM Reply and the
Formatted Field Length to the new values.

The length of Data is equal to the formatted field length minus the size of the formatted field code.

Normal codes

The following table shows the meaning of the normal codes.

Code Type Meaning

0x01 Info Version ID for Microsoft Transaction Integrator Concurrent Server

0x02 Info User Data

0x07 Info Execution OK

Error codes

The following table shows the meaning of the error codes.

Code Type Meaning

0x03 Error Invalid ProgID

0x04 Error Invalid TranID

0x05 Error Inquiry Failed

0x06 Error Inquiry Status

0x08 Error Program ABEND

0x09 Error Execution Failed

0x0A Error Invalid ELM

For more information about the format of the TRM, see the TRM definition file at <drive>:\Program Files\ Microsoft Host
Integration Server\System\TIM\MicrosoftTRMDefs.tim. Use Microsoft Visual Studio® .NET 2003 to view the file.

See Also
Reference
ELM Format for the TCP ELM Link Programming Model
Other Resources
Enhanced Listener CICS Administration

https://msdn.microsoft.com/en-us/library/aa705690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770529(v=bts.10).aspx

Enhanced Listener CICS Administration
The following code defines a CICS Enhanced Listener. There are several new keywords available for use with the Enhanced
Listener. The parameter definitions describe how these new Listener configuration values are used for support the TI Enhanced
Listener feature.

CSTRANID

This parameter is specific to the enhanced version of the Listener and specifies the default child server transaction that the
Listener starts.

For enhanced listener message (ELM) Link support, this value should be set to MSCS to conform to the samples that
Microsoft delivers with the product. The MSCS transaction code should be associated with the mscmtics.cbl program that
supports the Standard and Enhanced Listener protocols. Otherwise, this parameter is the transaction ID that will be executed
for each request made to the designated port.

CSSTTYPE

This parameter is specific to the enhanced version of the Listener and specifies the default start method for the child server
task. This parameter can be overridden by the security/transaction exit. Possible values are IC, KC, and TD.

IC

Indicates that the child server task is started using EXEC CICS START with the value specified by CSDLYINT (or an overriding
value from the security/transaction exit) as the delay interval.

KC

Indicates that the child server task is started using EXEC CICS START with no delay interval.

TD

Indicates that the child server task is started using the EXEC CICS WRITEQ TD command, which uses transient data to trigger
the child server task.

CSDLYINT

This parameter is specific to the enhanced version of the Listener and is applicable only if CSSTTYPE is IC. It specifies the
delay interval to be used on the EXEC CICS START command, in the form hhmmss (hours/minutes/seconds).

MSGFORM

This parameter is specific to the enhanced version of the Listener and indicates whether an error message returned to the
client should be in ASCII or Extended Binary Coded Decimal Interchange Code (EBCDIC) format. ASCII is the default.
MSGFORM is displayed as MSGFORMat on the IBM-supplied CICS Transaction screens.

For TI Enhanced Listener support, this value must be set to EBCDIC.

MSGLEN

 EZACICD TYPE=LISTENER, Listener record definition X
 FORMAT=ENHANCED, Enhanced Listener X
 APPLID=XYZ12345, Application ID of CICS region X
 TRANID=CSKM, Transaction name for Listener X
 PORT=1234, Port number for Listener X
 IMMED=YES, Listener starts up at initialization? X
 NUMSOCK=50, Number of sockets supported by Listener X
 ACCTIME=30, Timeout value for Accept X
 GIVTIME=30, Timeout value for Givesocket X
 REATIME=30, Timeout value for Read X
 CSTRAN=MSCS, Name of child server transaction X
 CSSTTYPE=KC, Child server startup type X
 CSDELAY=000000, Child server delay interval X
 MSGLEN=35, Length of input message X
 PEEKDATA=NO, Peek option X
 MSGFORM=EBCDIC, Output message format X

This parameter is specific to the enhanced version of the Listener and specifies the length of the data to be received from the
client by the Listener. The valid range is from 0 through 999. If the value is 0, the Listener does not read in any data from the
client.

For TI Enhanced Listener support, this value must be the size of the ELM that is delivered. The size of the ELM is 35.

PEEKDATA

This parameter is specific to the enhanced version of the Listener and applies only if MSGLEN is not 0.

A value of NO indicates that the Listener performs a normal read of the client data. The child server application accesses this
data in the data area-2 portion of the transaction initiation message (TIM).

A value of YES indicates that the Listener reads the data using the Peek option. The data remains queued in TCP/IP and the
child server applications read it in rather than accessing it through the TIM.

For TI Enhanced Listener support, this value must be set to NO. Setting this value to NO instructs the Enhanced Listener to
read the ELM (35 bytes) and place it in the TIM in the data area-2 field.

The mscmtics.cbl Concurrent Server uses the information in this area to determine what server program to link to.

For more information about the format of the ELM, see the ELM definition file at <drive>:\Program Files\Microsoft Host
Integration Server\System\TIM\MicrosoftELMDefs.tim. Use Microsoft Visual Studio® .NET 2003 to view the file.

See Also
Reference
ELM Format for the TCP ELM Link Programming Model
ELM Format for the TCP ELM User Data Programming Model

https://msdn.microsoft.com/en-us/library/aa705690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754452(v=bts.10).aspx

Microsoft Concurrent Server
The MSCS transaction (program mscmtics.cbl) samples support both the Standard and the Enhanced Listener. The transaction
program can be started by either the Enhanced or Standard Listener.

Each listener passes a unique transaction initiation message (TIM) to the transaction program when the Concurrent Server is
started. The Standard Listener formats and passes the TIM shown in the following code sample. The length of this TIM is 72
bytes.

The Enhanced Listener formats and passes the TIM shown in the following code sample. The length of this TIM is 189 bytes.

The mscmtics.cbl sample Concurrent Server can determine whether the Standard or the Enhanced Listener was used by
evaluating the length of the TIM received.

In a scenario where the Enhanced Listener started the Microsoft Concurrent Server, the mscmtics.cbl program looks at the
Client-in-data that is contained in the ELM found in the TIM data area-2 field. The Client-in-data contains the name of the CICS
Server program to be executed and the length of the request data to be received from the client. The following code sample
shows the contents of this data area.

01 TRANSACTION-INITIATION-MESSAGE.
 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
 05 LSTN-NAME PIC X(8).
 05 LSTN-SUBNAME PIC X(8).
 05 CLIENT-IN-DATA PIC X(35).
 05 FILLER PIC X(1).
 05 SOCKADDR-IN-PARM.
 15 SIN-FAMILY PIC 9(4) COMP.
 15 SIN-PORT PIC 9(4) COMP.
 15 SIN-ADDRESS PIC 9(8) COMP.
 15 SIN-ZERO PIC X(8).

01 TRANSACTION-INITIATION-MESSAGE.
 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
 05 LSTN-NAME PIC X(8).
 05 LSTN-SUBNAME PIC X(8).
 05 CLIENT-IN-DATA PIC X(35).
 05 FILLER PIC X(1).
 05 SOCKADDR-IN-PARM.
 15 SIN-FAMILY PIC 9(4) COMP.
 15 SIN-PORT PIC 9(4) COMP.
 15 SIN-ADDRESS PIC 9(8) COMP.
 15 SIN-ZERO PIC X(8).
 05 FILLER PIC X(80).
 05 DATA-AREA-2-LEN PIC 9(4) COMP.
 05 DATA-AREA-2 PIC X(35).

 01 CLIENT-IN-DATA PIC X(35).
 01 FILLER REDEFINES CLIENT-IN-DATA.
 05 CID-USERID PIC X(8).
 05 CID-PASSWORD PIC X(8).
 05 CID-LINK-TO-PROG PIC X(8).
 05 CID-COMMAREA-LEN PIC S9(4) COMP.
 05 CID-DATA-LEN PIC S9(8) COMP.
 05 CID-VERSION PIC X.
 88 CID-VERSION-1 VALUE X'00'.
 88 CID-VERSION-2 VALUE X'01'.
 05 CID-FLAGS PIC X(2).
 88 CID-FLAGS-PERSISTENT-NONE VALUE X'0001'.
 88 CID-FLAGS-PERSISTENT-OPEN VALUE X'0002'.
 88 CID-FLAGS-PERSISTENT-USE VALUE X'0004'.
 88 CID-FLAGS-PERSISTENT-CLOSE VALUE X'0008'.
 05 CID-RESERVED PIC X.
 05 CID-FORMAT PIC X.

See Also
Other Resources
Standard Transaction Request and Reply Messages
CICS Enhanced Listener Request and Reply Messages

 88 CID-FORMAT-NOTSET VALUE X'00'.
 88 CID-FORMAT-MS VALUE X'01'.
 88 CID-FORMAT-IBM VALUE X'02'.

https://msdn.microsoft.com/en-us/library/aa770338(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770498(v=bts.10).aspx

Data Integration Programmer's Reference
This section of the Host Integration Server 2009 Programmer's Guide describes the objects, methods, properties, controls, and
other interfaces that enable you to integrate data into your Host Integration Server application.

For general information about programming for data integration, see Data Integration Programmer's Guide.

For sample code using data integration, see Data Integration Samples section of the SDK.

In This Section

OLE DB Providers Programmer's Reference

ODBC Driver for DB2 Programmer's Reference

Managed Provider for DB2 Programmer's Reference

Data Access Library Programmer's Reference

Managed Data Provider for Host Files Programmer's Reference

ActiveX Controls Programmer's Reference

ADO Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa746049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772106(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753872(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705610(v=bts.10).aspx

OLE DB Providers Programmer's Reference
The OLE DB specification version 2.0 defines a number of objects and interfaces.

Microsoft OLE DB Provider for AS/400 and VSAM supports the OLE DB objects and interfaces appropriate for an OLE DB data
provider accessing a non-SQL host file system.

Microsoft OLE DB Provider for DB2 supports the OLE DB objects and interfaces appropriate for an OLE DB data provider
accessing an SQL database.

This section also provides a comparison of the objects and interfaces supported by OLE DB Provider for AS/400 and VSAM and
OLE DB Provider for DB2.

Note
Do not use double or real columns when specifying UPDATE or DELETE statements on the MsDb2DataAdapter. These rows
will not be found and will throw the concurrency violation exception.

In This Section

OLE DB Object Support Comparison

OLE DB Interface Support Comparison

OLE DB Object Support in the OLE DB Provider for AS/400 and VSAM

OLE DB Object Support in the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa705649(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771288(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770677(v=bts.10).aspx

OLE DB Object Support Comparison
The following table compares the OLE DB version 2.0 objects that are supported by the current version of Microsoft® OLE DB
Provider for AS/400 and VSAM and Microsoft OLE DB Provider for DB2.

OLE DB object OLE DB Provider for AS/400 and VSAM OLE DB Provider for DB2

Command Yes, most interfaces Yes, most interfaces

CustomErrorObject No Yes, all interfaces

DataSource Yes, most interfaces Yes, some interfaces

Enumerator No No

ErrorObject Yes, all interfaces Yes, all interfaces

ErrorRecord Yes, all interfaces Yes, all interfaces

Index Yes, all interfaces No

MultipleResults No No

Rowset Yes, most interfaces Yes, some interfaces

Session Yes, some interfaces Yes, some interfaces

Transaction No Yes, some interfaces

TransactionOptions No Yes, all interfaces

View Yes, all interfaces No

OLE DB Interface Support Comparison
The following table compares the OLE DB version 2.0 interfaces that are supported by the current version of Microsoft® OLE
DB Provider for AS/400 and VSAM and Microsoft OLE DB Provider for DB2.

Object Interface OLE DB Provider for AS/400 and VSAM OLE DB Provider for DB2

Command IAccessor Yes Yes

 IColumnsInfo Yes Yes

 IColumnsRowset No No

 ICommand Yes Yes

 ICommandPersist No No

 ICommandPrepare No Yes

 ICommandProperties Yes Yes

 ICommandText Yes Yes

 ICommandWithParameters No Yes

 IConvertType Yes Yes

 ISupportErrorInfo Yes Yes

CustomErrorObject IErrorLookup No Yes

 ISQLErrorInfo No Yes

DataSource IDBAsynchStatus No No

 IConnectionPointContainer No No

 IDBCreateSession Yes Yes

 IDBDataSourceAdmin No No

 IDBInfo No Yes

 IDBInitialize Yes Yes

 IDBProperties Yes Yes

 IPersist Yes No

 IPersistFile Yes No

 ISupportErrorInfo Yes Yes

Enumerator IDBInitialize No No

 IDBProperties No No

 IParseDisplayName No No

 ISourcesRowset No No

 ISupportErrorInfo No No

ErrorObject IErrorRecords Yes Yes

ErrorRecord IErrorInfo Yes Yes

Index IAccessor Yes No

 IColumnsInfo Yes No

 IConvertType Yes No

 IRowset Yes No

 IRowsetChange Yes No

 IRowsetFind Yes No

 IRowsetIdentity Yes No

 IRowsetIndex Yes No

 IRowsetInfo Yes No

 IRowsetLocate Yes No

 IRowsetRefresh Yes No

 IRowsetScroll Yes No

 IRowsetUpdate Yes No

 IRowsetView Yes No

 ISupportErrorInfo Yes No

MultipleResults IMultipleResults No No

 ISupportErrorInfo No No

Rowset IAccessor Yes Yes

 IChapteredRowset Yes No

 IColumnsInfo Yes Yes

 IColumnsRowset Yes No

 IConnectionPointContainer No No

 IConvertType Yes Yes

 IDBAsynchStatus No No

 IRowset Yes Yes

 IRowsetChange Yes Yes

 IRowsetChapterMember No No

 IRowsetFind Yes No

 IRowsetIdentity Yes No

 IRowsetIndex Yes No

 IRowsetInfo Yes Yes

 IRowsetLocate Yes No

 IRowsetRefresh Yes No

 IRowsetScroll No No

 IRowsetUpdate Yes Yes

 IRowsetView Yes No

 ISupportErrorInfo Yes Yes

Session IAlterIndex No No

 IAlterTable No No

 IDBCreateCommand Yes Yes

 IDBSchemaRowset Yes Yes

 IGetDataSource Yes Yes

 IIndexDefinition No No

 IOpenRowset Yes Yes

 ISessionProperties Yes Yes

 ISupportErrorInfo Yes Yes

 ITableDefinition No No

 ITransaction No Yes

 ITransactionJoin No No

 ITransactionLocal No Yes

 ITransactionObject No Yes

Transaction IConnectionPointContainer No No

 ISupportErrorInfo No No

 ITransaction No No

TransactionOptions ISupportErrorInfo No Yes

 ITransactionOptions No Yes

View IAccessor Yes No

 IColumnsInfo Yes No

 ISupportErrorInfo Yes No

 IViewChapter Yes No

 IViewFilter Yes No

 IViewRowset Yes No

 IViewSort Yes No

OLE DB Object Support in the OLE DB Provider for AS/400 and
VSAM

The following table summarizes the OLE DB version 2.0 objects that are supported by the current version of Microsoft® OLE
DB Provider for AS/400 and VSAM.

OLE DB object Support

Command Object Yes, most interfaces

CustomErrorObject No

DataSource Object Yes, most interfaces

Enumerator No

ErrorObject Object Yes, all interfaces

ErrorRecord Object Yes, all interfaces

Index Object Yes, all interfaces

MultipleResults No

Rowset Object Yes, most interfaces

Session Object Yes, some interfaces

Transaction No

TransactionOptions No

View Object Yes, all interfaces

In This Section

OLE DB Interface Support in the OLE DB Provider for AS/400 and VSAM

Command Object (OLE DB Provider for AS/400 and VSAM)

DataSource Object (OLE DB Provider for AS/400 and VSAM)

ErrorObject Object (OLE DB Provider for AS/400 and VSAM)

ErrorRecord Object (OLE DB Provider for AS/400 and VSAM)

Index Object (OLE DB Provider for AS/400 and VSAM)

Rowset Object (OLE DB Provider for AS/400 and VSAM)

Session Object (OLE DB Provider for AS/400 and VSAM)

View Object (OLE DB Provider for AS/400 and VSAM)

OLE DB Property Support in the OLE DB Provider for AS/400 and VSAM

https://msdn.microsoft.com/en-us/library/aa746162(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770337(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770502(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746162(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744722(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770337(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770502(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771935(v=bts.10).aspx

OLE DB Interface Support in the OLE DB Provider for AS/400
and VSAM

The following table summarizes the OLE DB version 2.0 interfaces that are supported by the current version of Microsoft OLE
DB Provider for AS/400 and VSAM.

Object Interface Support

Command Object IAccessor Yes

 IColumnsInfo Yes

 IColumnsRowset No

 ICommand Yes

 ICommandPersist No

 ICommandPrepare No

 ICommandProperties Yes

 ICommandText Yes

 ICommandWithParameters No

 IConvertType Yes

 ISupportErrorInfo Yes

CustomErrorObject IErrorLookup No

 ISQLErrorInfo No

DataSource Object IDBAsynchStatus No

 IDBConnectionPointContainer No

 IDBCreateSession Yes

 IDBDataSourceAdmin No

 IDBInfo No

 IDBInitialize Yes

 IDBProperties Yes

 IPersist Yes

 IPersistFile Yes

 ISupportErrorInfo Yes

https://msdn.microsoft.com/en-us/library/aa746162(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744722(v=bts.10).aspx

Enumerator IDBInitialize No

 IDBProperties No

 IParseDisplayName No

 ISourcesRowset No

 ISupportErrorInfo No

ErrorObject Object IErrorRecords Yes

ErrorRecord Object IErrorInfo Yes

Index Object IAccessor Yes

 IColumnsInfo Yes

 IConvertType Yes

 IRowset Yes

 IRowsetChange Yes

 IRowsetFind Yes

 IRowsetIdentity Yes

 IRowsetIndex Yes

 IRowsetInfo Yes

 IRowsetLocate Yes

 IRowsetRefresh Yes

 IRowsetScroll Yes

 IRowsetUpdate Yes

 IRowsetView Yes

 ISupportErrorInfo Yes

MultipleResults IMultipleResults No

 ISupportErrorInfo No

Rowset Object IAccessor Yes

 IChapteredRowset Yes

 IColumnsInfo Yes

https://msdn.microsoft.com/en-us/library/aa771717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770337(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704678(v=bts.10).aspx

 IColumnsRowset No

 IConnectionPointContainer No

 IConvertType Yes

 IDBAsynchStatus No

 IRowset Yes

 IRowsetChange Yes

 IRowsetChapterMember No

 IRowsetFind Yes

 IRowsetIdentity Yes

 IRowsetIndex Yes

 IRowsetInfo Yes

 IRowsetLocate Yes

 IRowsetRefresh Yes

 IRowsetScroll No

 IRowsetUpdate Yes

 IRowsetView Yes

 ISupportErrorInfo Yes

Session Object IAlterIndex No

 IAlterTable No

 IDBCreateCommand Yes

 IDBSchemaRowset Yes

 IGetDataSource Yes

 IIndexDefinition No

 IOpenRowset Yes

 ISessionProperties Yes

 ISupportErrorInfo Yes

https://msdn.microsoft.com/en-us/library/aa770502(v=bts.10).aspx

 ITableDefinition No

 ITransaction No

 ITransactionJoin No

 ITransactionLocal No

 ITransactionObject No

Transaction IConnectionPointContainer No

 ISupportErrorInfo No

 ITransaction No

TransactionOptions ISupportErrorInfo No

 ITransactionOptions No

View Object IAccessor Yes

 IColumnsInfo Yes

 ISupportErrorInfo Yes

 IViewChapter Yes

 IViewFilter Yes

 IViewRowset Yes

 IViewSort Yes

https://msdn.microsoft.com/en-us/library/aa704723(v=bts.10).aspx

Command Object (OLE DB Provider for AS/400 and VSAM)
The Command object is created by an OLE DB consumer, or by a service provider on behalf of a consumer. A Command
object is used to execute a distributed data management (DDM)-specific command on a remote DDM server. The Command
object currently supports executing Command Language commands on AS/400 DDM servers.

It is important not to confuse a command, which is an OLE COM object, and its command text, which is a string. Commands are
generally used for data definition, such as creating a table or granting privileges, and data manipulation, such as updating or
deleting rows. A special case of data manipulation using the Command object is opening a rowset (a table).

Before a consumer can use a command, it must determine if commands are supported. To do this, the consumer calls
QueryInterface for IDBCreateCommand on a session. If this interface is exposed, the provider supports commands. To
create a command, the consumer then calls IDBCreateCommand::CreateCommand on the session. A single session can be
used to create multiple commands.

When the command is first created, it does not contain a command text. The consumer sets the command text with
ICommandText::SetCommandText. Because the text command syntax is provider-specific, the consumer passes the globally
unique identifier (GUID) of the syntax to use. For use with Microsoft OLE DB Provider for AS/400 and VSAM, the GUID is
DBGUID_DBSQL. Note that under OLE DB Provider for AS/400 and VSAM, this GUID does not signify that the text command is
a superset of ANSI SQL. The level at which the provider supports ANSI SQL is specified by the DBPROP_SQLSUPPORT
property. This property is a bitmask specifying the level of support for SQL. OLE DB Provider for AS/400 and VSAM sets this
property to DBPROPVAL_SQL_NONE, indicating that SQL is not supported.

The syntax supported by OLE DB Provider for AS/400 and VSAM for command text is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands enable you to request functions from the OS/400 operating system. Some examples are the
Delete File (DLTF) or Display File Description DSPFFD) commands. These are the same commands that could be issued at the
command prompt if you were connected to an AS/400 through a 5250 terminal session. For a detailed list of possible
commands, see the OS/400 CL reference for your platform.

The syntax supported by OLE DB Provider for AS/400 and VSAM to open a rowset (table) using command text is as follows:

where FileName represents one of the following host file naming conventions listed in the following table.

Host file type File naming convention

VSAM Data Sets DATASETNAME.FILENAME

Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)

OS/400 Files LIBRARY/FILE

OS/400 Files LIBRARY/FILENAME

OS/400 File Members LIBRARY/FILE(MEMBER)

OS/400 File Members LIBRARY.FILENAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double
quotes. For example, if the member name is NAMES.DAT, the proper syntax used to open a rowset using command text is as
follows:

To execute the command, the consumer calls ICommand::Execute. If the command text specifies the command to open a

EXEC COMMAND DDMCmd

EXEC OPEN FileName

EXEC OPEN LIBRARY/FILE("NAMES.DAT")

rowset, (an EXEC OPEN command), Execute instantiates the rowset and returns an interface pointer to it.

The following interfaces of the Command object are supported by the current version of OLE DB Provider for AS/400 and
VSAM:

IAccessor

IColumnsInfo

ICommand

ICommandProperties

ICommandText

IConvertType

ISupportErrorInfo

DataSource Object (OLE DB Provider for AS/400 and VSAM)
The DataSource object is created by an OLE DB consumer. The DataSource object contains the knowledge and ability to
connect to an IBM mainframe or AS/400 computer over Advanced Program-to-Program Communications (APPC) and LU 6.2
(through Microsoft Host Integration Server 2009) or over TCP/IP. The DataSource object is used to create one or more
Session objects.

The following interfaces of the DataSource object are supported by the current version of Microsoft OLE DB Provider for
AS/400 and VSAM:

IDBCreateSession

IDBInitialize

IDBProperties

IPersist

IPersistFile

ISupportErrorInfo

ErrorObject Object (OLE DB Provider for AS/400 and VSAM)
The ErrorObject object is created by any interface on any SNA OLE DB object. The ErrorObject object is used to retrieve
additional information when an error occurs.

The following interface of the ErrorObject object is supported by the current version of Microsoft OLE DB Provider for AS/400
and VSAM:

IErrorRecords

The IErrorRecords interface returns ErrorRecord objects with detailed information about the error that occurred.

ErrorRecord Object (OLE DB Provider for AS/400 and VSAM)
The ErrorRecord object is created by calling the IErrorRecord interface on the ErrorObject object. An ErrorObject is created
on any interface on any SNA OLE DB object when an error occurs. The ErrorRecord object is used to retrieve additional
information when an error occurs.

The following interface of the ErrorRecord object is supported by the current version of Microsoft OLE DB Provider for AS/400
and VSAM:

IErrorInfo

OLE DB interface methods return error information in two ways. The error code returned by an interface method, known as the
return code, indicates the overall success or failure of a method. Error records provide detailed information about the error,
such as a text description of the error, the globally unique identifier (GUID) of the interface that defined the error, and provider-
specific error information. Error objects in OLE DB are an extension of the error objects in Automation. They use many of the
same mechanisms, and can be used as Automation error objects.

OLE DB error return codes are of type HRESULT. There are two general classes of return codes: success and warning codes, and
error codes.

Success and warning codes begin with S_ or DB_S_ and indicate that the method successfully completed. The standard OLE DB
error codes are defined in the OLEDBERR.H include file.

If the return code is other than S_OK or S_FALSE, it is likely that an error occurred from which the method was able to recover.
For example, IRowset::GetNextRows returns DB_S_ENDOFROWSET when it is unable to return the requested number of
rows due to reaching the end of the rowset. If a single warning condition occurs, the method returns the code for that
condition. If multiple warning conditions occur, the method describes the hierarchy of warning return codes indicating which
warning code should be returned when given a choice between multiple warning return codes.

Error codes begin with E_ or DB_E_ and indicate that the method failed completely and was unable to do any useful work. For
example, GetNextRows returns E_INVALIDARG when the pointer in which it is to return a pointer to an array of row handles
(prghRows) is null. An exception to this is that some of the methods that return DB_E_ERRORSOCCURRED allocate memory in
which to return additional information about these errors. Consumers must free this memory. For information about which
methods allocate memory in this case, see the methods that return DB_E_ERRORSOCCURRED. Although error codes can
indicate run-time errors, such as running out of memory, they generally indicate programming errors. If multiple errors occur,
the code that is returned is provider-specific. If both errors and warnings occur, the method fails and returns an error code.

All methods can return S_OK, E_FAIL, and E_OUTOFMEMORY. The E_OUTOFMEMORY code applies only to those methods
which allocate memory that is returned to the consumer. In some cases, the E_OUTOFMEMORY code might be eliminated by
calling the method requesting fewer returned values, such as fewer rows from GetNextRows.

Index Object (OLE DB Provider for AS/400 and VSAM)
An OLE DB index, also known as an index rowset, is a rowset built over an index in a data source. It is generally used in
conjunction with a rowset built over a base table in the same data source. Each row of the index rowset contains a bookmark
that points to a row in the base-table rowset. Thus, an OLE DB consumer can traverse the index rowset and use it to access
rows in the base-table rowset.

Indexes are created using the index interfaces of the Rowset object. Index rowsets allow an application to read records
efficiently by means of a key.

The following index interfaces of the Rowset object are supported by the current version of Microsoft OLE DB Provider for
AS/400 and VSAM when applied to AS/400 keyed physical files, AS/400 logical files, VSAM KSDS files with unique keys, and
VSAM RRDS files with unique keys:

IAccessor

IColumnsInfo

IConvertType

IRowset

IRowsetChange

IRowsetFind

IRowsetIdentity

IRowsetIndex

IRowsetInfo

IRowsetLocate

IRowsetRefresh

IRowsetScroll

IRowsetUpdate

IRowsetView

ISupportErrorInfo

OLE DB Provider for AS/400 and VSAM supports integrated indexes using the IRowsetIndex interface based on the
underlying rowset.

Rowset Object (OLE DB Provider for AS/400 and VSAM)
Rowset objects are created by Session objects. The Rowset object exposes data in tabular format.

The following interfaces of the Rowset object are supported by the current version of Microsoft OLE DB Provider for AS/400
and VSAM:

IAccessor

IChapteredRowset

IColumnsInfo

IConvertType

IRowset

IRowsetChange

IRowsetFind

IRowsetIdentity

IRowsetIndex

IRowsetInfo

IRowsetLocate

IRowsetRefresh

IRowsetUpdate

IRowsetView

ISupportErrorInfo

Note
The IRowsetFind interface is only supported by the current version of Microsoft OLE DB Provider for AS/400 and VSAM wh
en applied to AS/400 keyed physical files, AS/400 logical files, VSAM KSDS files with unique keys, and VSAM RRDS files with
unique keys.

Session Object (OLE DB Provider for AS/400 and VSAM)
The Session object is created by a DataSource object. The Session object is used to create one or more Rowset objects.

The following interfaces of the Session object are supported by the current version of Microsoft OLE DB Provider for AS/400
and VSAM:

IDBCreateCommand

IDBSchemaRowset

IGetDataSource

IOpenRowset

ISessionProperties

ISupportErrorInfo

Consumers can get information about a data store without knowing its structure by using the IDBSchemaRowset methods.
The methods on this interface can be used to retrieve advanced schema information. OLE DB Provider for AS/400 and VSAM
organizes this information into a set of schemas that contain tables for each schema. These schema rowsets are identified by
globally unique identifiers (GUIDs).

The following schema rowset GUIDs are supported by OLE DB Provider for AS/400 and VSAM:

DBSCHEMA_COLUMNS

DBSCHEMA_INDEXES

DBSCHEMA_PROVIDER_TYPES

DBSCHEMA_TABLES

The following table lists these GUIDs and the columns for which restrictions can be specified on the schema rowset when using
OLE DB Provider for AS/400 and VSAM. The number of restriction columns for each schema rowset are defined as constants
prefixed with CRESTRICTIONS_ in the OLE DB header files. Restriction values are treated as literals rather than as search
patterns. For example, the restriction value "A_C" matches "A_C" but not "ABC".

GUID Number of restrictions Restriction columns

DBSCHEMA_COLUMNS 4 TABLE_CATALOG TABLE_SCHEMA TABLE_NAME COLUMN_NAME

DBSCHEMA_INDEXES 5 TABLE_CATALOG TABLE_SCHEMA INDEX_NAME TYPE TABLE_NAME

DBSCHEMA_PROVIDER_TYPES 2 DATA_TYPE BEST_MATCH

DBSCHEMA_TABLES 4 TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

The IDBSchemaRowset interface allows an application to pass at run time the target library of a partitioned data set (PDS), a
dataset, or a member name when using the IDBSchemaRowset:GetSchemas function to retrieve the schema.

This following example illustrates using a target library to retrieve a table schema:

hr = pIDBSchemaRowset->GetRowset(
 NULL, // punkOuter
 DBSCHEMA_TABLES, // schema IID
 2L, // # of restrictions

The variable rgRestrictions is an array containing two restriction values. The first array entry is VT_EMPTY and the second array
entry is the target library name.

 rgRestrictions, // array of restrictions
 IID_IRowset, // rowset interface
 0L, // # of properties
 NULL, // properties
 (IUnknown**)&pIRowset); // rowset pointer

View Object (OLE DB Provider for AS/400 and VSAM)
The View object is created on a Rowset object. The View object is used to expose simple operations, such as sorting and
filtering a rowset by applying a view. Views can be applied when opening a Rowset object or applied to an existing Rowset
object.

The following interfaces of the View object are supported by the current version of Microsoft OLE DB Provider for AS/400 and
VSAM when applied to AS/400 keyed physical files, AS/400 logical files, VSAM KSDS files with unique keys, and VSAM RRDS
files with unique keys:

IAccessor

IColumnsInfo

ISupportErrorInfo

IViewChapter

IViewFilter

IViewRowset

IViewSort

OLE DB Property Support in the OLE DB Provider for AS/400
and VSAM

The following table summarizes the provider-specific OLE DB version 2.0 properties in the SNAOLEDB_DBPROPSET_DBINIT
property set that are supported by the current version of Microsoft OLE DB Provider for AS/400 and VSAM.

OLE D
B Pro
perty
ID

Description

DBPR
OP_S
NAOL
EDB_A
PPCM
ODE

When logical unit (LU) 6.2 (SNA) is selected for the Network Transport Library (DBPROP_SNAOLEDB_NETTYPE), this pr
operty is the Advanced Program-to-Program Communications (APPC) mode and must be set to a value that matches t
he host configuration and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security
), #IBMRDB (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 co
mpression are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal
routing security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing secu
rity).

This VT_BSTR type property normally defaults to QPCSUPP.

DBPR
OP_S
NAOL
EDB_B
INASC
HAR

This property indicates whether to process binary fields (Character Code Set Identifier or CCSID of 65535) as character
data type fields on a per data source basis. The host CCSID and PC Code Page values are required input parameters wh
en this parameter is true.

This VT_BOOL type property defaults to VARIANT_FALSE, do not process binary fields as character fields.

DBPR
OP_S
NAOL
EDB_H
CDPA
TH

The fully qualified file name of the distributed data management (DDM) host column description (HCD) file. This param
eter can be an UNC string up to 256 characters in length. A path does not need to be included in the name if the HCD fi
le is located in the SNA system directory.

This VT_BSTR type property is required when connecting to mainframe systems and is optional when connecting to OS
/400.

DBPR
OP_S
NAOL
EDB_H
OSTC
CSID

The CCSID matching the data as represented on the host. This property is required when processing binary data as cha
racter data. Unless the DBPROP_SNAOLEDB_BINASCHAR property is set to true, character data is converted based on t
he host column CCSID and default ANSI code page.

This VT_I4 property defaults to U.S./Canada (37).

DBPR
OP_S
NAOL
EDB_LI
BRAR
Y

The default AS/400 library to be accessed.

This VT_BSTR property is not required for mainframe access and is optional when connecting to AS/400 files.

DBPR
OP_S
NAOL
EDB_L
OCAL
LU

When LU 6.2 (SNA) is selected for the Network Transport Library, this property is the name of the local LU alias configu
red in the SNA server.

DBPR
OP_S
NAOL
EDB_N
ETAD
DRESS

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target host comp
uter. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. Th
e network address is required when connecting through TCP/IP.

DBPR
OP_S
NAOL
EDB_N
ETPOR
T

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target DDM servic
e access port when connecting by using TCP/IP. This parameter represents the TCP/IP port used for communication wit
h the DDM service on the host.

The default value for the VT_BSTR type property is 446.

DBPR
OP_S
NAOL
EDB_N
ETTYP
E

This property which represents the dynamic link library used for transport designates whether the provider connects b
y using SNA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCP/IP or SNA.

If TCP/IP is selected, values for Network Address (DBPROP_SNAOLEDB_NETADDRESS) and Network Port (DBPROP_SN
AOLEDB_NETPORT) are required. TCP/IP connectivity to the mainframe is not supported by OLE DB Provider for AS/40
0 and VSAM.

If SNA is selected, values for APPC Local LU Alias (DBPROP_SNAOLEDB_LOCALLU), APPC Mode Name (DBPROP_SNA
OLEDB_APPCMODE), and APPC Remote LU Alias (DBPROP_SNAOLEDB_REMOTELU) are required.

This value for this VT_BSTR property defaults to SNA.

DBPR
OP_S
NAOL
EDB_P
CCOD
EPAGE

The PC Code Page property ID indicates the code page to be used on the computer for character code conversion. This
property is required when processing binary data as character data. Unless DBPROP_SNAOLEDB_BINASCHAR is set to
true, character data is converted based on the default ANSI code page configured in Windows.

If this parameter is set to Binary or 65535, no character code conversions will take place.

The default value for this VT_I4 type property is 1252 (Latin-1).

DBPR
OP_S
NAOL
EDB_R
EMOT
ELU

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_SNAOLEDB_NETTYPE), this property ID is t
he name of the remote LU alias configured in the SNA server.

DBPR
OP_S
NAOL
EDB_R
EPAIR
KEY

This property ID provides for repair of invalid key offsets received from OS/400 when keys have been defined using th
e Digital Data System (DDS) "RENAME" clause. This parameter indicates whether the OLE DB provider should repair an
y host key values set in the registry.

This VT_BOOL type property defaults to VARIANT_FALSE.

DBPR
OP_S
NAOL
EDB_S
TRICT
VAL

This property indicates whether strict validation should be used.

This VT_BOOL type property defaults to VARIANT_FALSE.

OLE DB Object Support in the OLE DB Provider for DB2
The following table summarizes the OLE DB version 2.0 objects that are supported by the current version of Microsoft® OLE
DB Provider for DB2.

OLE DB object Support

Command Object Yes, most interfaces

CustomErrorObject Yes, all interfaces

DataSource Object Yes, some interfaces

Enumerator No

ErrorObject Object Yes, all interfaces

ErrorRecord Object Yes, all interfaces

Index No

MultipleResults No

Rowset Object Yes, some interfaces

Session Object Yes, some interfaces

Transaction Object Yes, some interfaces

TransactionOptions Yes, all interfaces

View No

In This Section

OLE DB Interface Support in the OLE DB Provider for DB2

Command Object (OLE DB Provider for DB2)

CustomErrorObject Object (OLE DB Provider for DB2)

DataSource Object (OLE DB Provider for DB2)

ErrorObject Object (OLE DB Provider for DB2)

ErrorRecord Object (OLE DB Provider for DB2)

Rowset Object (OLE DB Provider for DB2)

Session Object (OLE DB Provider for DB2)

Transaction Object (OLE DB Provider for DB2)

OLE DB Property Support in the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa745360(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771905(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771511(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745360(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771905(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771679(v=bts.10).aspx

OLE DB Interface Support in the OLE DB Provider for DB2
The following table summarizes the OLE DB version 2.0 interfaces that are supported by the current version of Microsoft OLE
DB Provider for DB2.

Object Interface Support

Command Object IAccessor Yes

 IColumnsInfo Yes

 IColumnsRowset No

 ICommand Yes

 ICommandPersist No

 ICommandPrepare Yes

 ICommandProperties Yes

 ICommandText Yes

 ICommandWithParameters Yes

 IConvertType Yes

 ISupportErrorInfo Yes

CustomErrorObject Object IErrorLookup Yes

 ISQLErrorInfo Yes

DataSource Object IDBAsynchStatus No

 IConnectionPointContainer No

 IDBCreateSession Yes

 IDBDataSourceAdmin No

 IDBInfo Yes

 IDBInitialize Yes

 IDBProperties Yes

 IPersist Yes

 IPersistFile Yes

 ISupportErrorInfo Yes

Enumerator IDBInitialize No

https://msdn.microsoft.com/en-us/library/aa745360(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705440(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705209(v=bts.10).aspx

 IDBProperties No

 IParseDisplayName No

 ISourcesRowset No

 ISupportErrorInfo No

ErrorObject Object IErrorRecords Yes

ErrorRecord Object IErrorInfo Yes

Index IAccessor No

 IColumnsInfo No

 IConvertType No

 IRowset No

 IRowsetChange No

 IRowsetFind No

 IRowsetIdentity No

 IRowsetIndex No

 IRowsetInfo No

 IRowsetLocate No

 IRowsetRefresh No

 IRowsetScroll No

 IRowsetUpdate No

 IRowsetView No

 ISupportErrorInfo No

MultipleResults IMultipleResults No

 ISupportErrorInfo No

Rowset Object IAccessor Yes

 IChapteredRowset No

 IColumnsInfo Yes

 IColumnsRowset No

https://msdn.microsoft.com/en-us/library/aa771905(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745995(v=bts.10).aspx

 IConnectionPointContainer No

 IConvertType Yes

 IDBAsynchStatus No

 IRowset Yes

 IRowsetChange Yes

 IRowsetChapterMember No

 IRowsetFind No

 IRowsetIdentity No

 IRowsetIndex No

 IRowsetInfo Yes

 IRowsetLocate No

 IRowsetRefresh No

 IRowsetScroll No

 IRowsetUpdate Yes

 IRowsetView No

 ISupportErrorInfo Yes

Session Object IAlterIndex No

 IAlterTable No

 IDBCreateCommand Yes

 IDBSchemaRowset Yes

 IGetDataSource Yes

 IIndexDefinition No

 IOpenRowset Yes

 ISessionProperties Yes

 ISupportErrorInfo Yes

 ITableDefinition No

https://msdn.microsoft.com/en-us/library/aa746004(v=bts.10).aspx

 ITransaction Yes

 ITransactionJoin No

 ITransactionLocal Yes

 ITransactionObject Yes

Transaction Object IConnectionPointContainer No

 ISupportErrorInfo Yes

 ITransaction Yes

TransactionOptions ISupportErrorInfo Yes

 ITransactionOptions Yes

View IAccessor No

 IColumnsInfo No

 ISupportErrorInfo No

 IViewChapter No

 IViewFilter No

 IViewRowset No

 IViewSort No

https://msdn.microsoft.com/en-us/library/aa770741(v=bts.10).aspx

Command Object (OLE DB Provider for DB2)
The Command object is created by an OLE DB consumer, or by a service provider on behalf of a consumer. A Command
object is used to execute a distributed data management (DDM)-specific command on a remote DDM server. The Command
object currently supports executing Command Language commands on AS/400 DDM servers.

It is important not to confuse a command, which is an OLE COM object, and its command text, which is a string. Commands are
generally used for data definition, such as creating a table or granting privileges, and data manipulation, such as updating or
deleting rows. A special case of data manipulation using the Command object is the creation of rowsets based on DB2 tables.
When using the command text with DB2/400 on the AS/400 computer, table names specified in a command are by default
passed as uppercase. If a table name uses mixed case, the table name must be passed in a quoted string.

Before a consumer can use a command, it must determine if commands are supported. To do this, the consumer calls
QueryInterface for IDBCreateCommand on a session. If this interface is exposed, the provider supports commands. To
create a command, the consumer then calls IDBCreateCommand::CreateCommand on the session. A single session can be
used to create multiple commands.

When the command is first created, it does not contain a command text. The consumer sets the command text with
ICommandText::SetCommandText. Because the text command syntax is provider-specific, the consumer passes the globally
unique identifier (GUID) of the syntax to use. For use with Microsoft OLE DB Provider for DB2, the GUID is DBGUID_DBSQL.
Note that under OLE DB Provider for DB2, this GUID signifies that the text command is a superset of ANSI SQL. The level at
which the provider supports ANSI SQL is specified by the DBPROP_SQLSUPPORT property. This property is a bitmask
specifying the level of support for SQL.

The syntax supported by OLE DB Provider for DB2 for command text is as Entry-Level ANSI SQL 92 (with some exceptions
based on the DB2 server host platform).

Legal SQL commands are documented in the following publications published by IBM:

AS/400 Advanced Series: DB2 for AS/400 SQL Reference Version 4 (Document Number SC41-5612-00)

DB2 for OS/390 Version 5: SQL Reference (Document Number SC26-8966)

To execute the command, the consumer calls ICommand::Execute. If the command text specifies the command to open a
rowset, Execute instantiates the rowset and returns an interface pointer to it.

The following interfaces of the Command object are supported by the current version of OLE DB Provider for DB2:

IAccessor

IColumnsInfo

ICommand

ICommandPrepare

ICommandProperties

ICommandText

ICommandWithParameters

IConvertType

ISupportErrorInfo

When using the ICommand object, Microsoft OLE DB Provider for DB2 cannot derive parameter type information from the
data store. The OLE DB client application must supply the native parameter type information through
ICommandWithParameters::SetParameterInfo function. The OLE DB provider uses the type information specified by
SetParameterInfo to determine how to convert parameter data from the type supplied by the consumer (as indicated by the

wType value in the binding structure) to the native type used by the data store. When the consumer specifies a data type with
known precision, scale, and size values, any information supplied by the consumer for precision, scale, or size is ignored by
OLE DB Provider for DB2.

The information that the consumer supplies must be correct and must be supplied for all parameters. OLE DB Provider for DB2
cannot verify the supplied information against the parameter metadata, although the OLE DB provider can determine that the
specified values are legal values for the provider. The result of executing a command using incorrect parameter information or
passing parameter information for the wrong number of parameters is undefined. For example, if the parameter type is LONG
and the consumer specifies a type indicator of DBTYPE_STR in ICommandWithParameters::SetParameterInfo, OLE DB
Provider for DB2 converts the data to a string before sending it to the data store. Because the data store is not expecting a
LONG, this will likely result in an error.

CustomErrorObject Object (OLE DB Provider for DB2)
The CustomErrorObject object is created by a Command object when a command error occurs. The CustomErrorObject
object is used to retrieve additional information when an error occurs.

The following interfaces of the CustomErrorObject object are supported by the current version of Microsoft OLE DB Provider
for DB2:

IErrorLookup

ISQLErrorInfo

DataSource Object (OLE DB Provider for DB2)
The DataSource object is created by an OLE DB consumer. The DataSource object contains the knowledge and ability to
connect to DB2 over Advanced Program-to-Program Communications (APPC) and LU 6.2 (through Host Integration
Server 2009) or over TCP/IP. The DataSource object is used to create one or more Session objects.

The following interfaces of the DataSource object are supported by the current version of Microsoft OLE DB Provider for DB2:

IDBCreateSession

IDBInfo

IDBInitialize

IDBProperties

IPersist

IPersistFile

ISupportErrorInfo

ErrorObject Object (OLE DB Provider for DB2)
The ErrorObject object is created by any interface on any DB2 OLE DB object. The ErrorObject object is used to retrieve
additional information when an error occurs.

The following interface of the ErrorObject object is supported by the current version of Microsoft OLE DB Provider for DB2:

IErrorRecords

The IErrorRecords interface returns ErrorRecord objects with detailed information on the error that occurred.

ErrorRecord Object (OLE DB Provider for DB2)
The ErrorRecord object is created by calling the IErrorRecord interface on the ErrorObject object. An ErrorObject is created
on any interface on any SNA OLE DB object when an error occurs. The ErrorRecord object is used to retrieve additional
information when an error occurs.

The following interface of the ErrorRecord object is supported by the current version of Microsoft OLE DB Provider for DB2:

IErrorInfo

OLE DB interface methods return error information in two ways. The error code returned by an interface method, known as the
return code, indicates the overall success or failure of a method. Error records provide detailed information about the error,
such as a text description of the error, the globally unique identifier (GUID) of the interface that defined the error, and provider-
specific error information. Error objects in OLE DB are an extension of the error objects in Automation. They use many of the
same mechanisms, and can be used as Automation error objects.

OLE DB error return codes are of type HRESULT. There are two general classes of return codes: success and warning codes, and
error codes.

Success and warning codes begin with S_ or DB_S_ and indicate that the method successfully completed. The standard OLE DB
error codes are defined in the OLEDBERR.H include file.

If the return code is other than S_OK or S_FALSE, it is likely that an error occurred from which the method was able to recover.
For example, IRowset::GetNextRows returns DB_S_ENDOFROWSET when it is unable to return the requested number of
rows due to reaching the end of the rowset. If a single warning condition occurs, the method returns the code for that
condition. If multiple warning conditions occur, the method describes the hierarchy of warning return codes, indicating which
warning code should be returned when given a choice between multiple warning return codes.

Error codes begin with E_ or DB_E_ and indicate that the method failed completely and was unable to do any useful work. For
example, GetNextRows returns E_INVALIDARG when a null pointer in which the OLE DB provider returns a pointer to an array
of row handles (prghRows). An exception to this is that some of the methods that return DB_E_ERRORSOCCURRED allocate
memory to return additional information about these errors. Consumers must free this memory. For information about which
methods allocate memory in this case, see the methods that return DB_E_ERRORSOCCURRED.

Although error codes can indicate run-time errors, such as running out of memory, they generally indicate programming
errors. If multiple errors occur, the code that is returned is provider-specific. If both errors and warnings occur, the method fails
and returns an error code.

All methods can return S_OK, E_FAIL, and E_OUTOFMEMORY. The E_OUTOFMEMORY code applies only to those methods
which allocate memory that is returned to the consumer. In some cases, the E_OUTOFMEMORY code might be eliminated by
calling the method requesting fewer returned values, such as fewer rows from GetNextRows.

Rowset Object (OLE DB Provider for DB2)
Rowset objects are created by Session objects. The Rowset object exposes data in tabular format.

The following interfaces of the Rowset object are supported by the current version of Microsoft OLE DB Provider for DB2.

IAccessor

IColumnsInfo

IConvertType

IRowset

IRowsetChange

IRowsetInfo

IRowsetUpdate

ISupportErrorInfo

Session Object (OLE DB Provider for DB2)
The Session object is created by a DataSource object. The Session object is used to create one or more Rowset objects.

The following interfaces of the Session object are supported by the current version of Microsoft OLE DB Provider for DB2:

IDBCreateCommand

IDBSchemaRowset

IGetDataSource

IOpenRowset

ISessionProperties

ISupportErrorInfo

ITransaction

ITransactionLocal

ITransactionObject

Consumers can get information about a data store without knowing its structure by using the IDBSchemaRowset methods.
The methods on this interface can be used to retrieve advanced schema information. OLE DB Provider for DB2 organizes each
DB2 database server in a set of schemas that contain tables for each schema. These schema rowsets are identified by globally
unique identifiers (GUIDs).

The following schema rowset GUIDs are supported by OLE DB Provider for DB2:

DBSCHEMA_COLUMNS

DBSCHEMA_INDEXES

DBSCHEMA_PRIMARY_KEYS

DBSCHEMA_PROCEDURES

DBSCHEMA_PROCEDURE_PARAMETERS

DBSCHEMA_PROVIDER_TYPES

DBSCHEMA_TABLES

The following table lists these GUIDs and the columns for which restrictions can be specified on the schema rowset when using
OLE DB Provider for DB2. The number of restriction columns for each schema rowset are defined as constants prefixed with
CRESTRICTIONS_ in the OLE DB header files. Restriction values are treated as literals rather than as search patterns. For
example, the restriction value "A_C" matches "A_C" but not "ABC".

GUID Number of restric
tions

Restriction columns

DBSCHEMA_COLUMNS 4 TABLE_CATALOG TABLE_SCHEMA TABLE_NAME COLUMN_NAME

DBSCHEMA_INDEXES 4 TABLE_CATALOG TABLE_SCHEMA INDEX_NAME TABLE_NAME

DBSCHEMA_PRIMARY_KEYS 3 TABLE_CATALOG TABLE_SCHEMA TABLE_NAME

DBSCHEMA_PROCEDURES 4 PROCEDURE_CATALOG PROCEDURE_SCHEMA PROCEDURE_NAME PR
OCEDURE_TYPE

DBSCHEMA_PROCEDURE_PARA
METERS

4 PROCEDURE_CATALOG PROCEDURE_SCHEMA PROCEDURE_NAME PA
RAMETER_NAME

DBSCHEMA_PROVIDER_TYPES 2 DATA_TYPE BEST_MATCH

DBSCHEMA_TABLES 4 TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE

Note that the TYPE restriction on the DBSCHEMA_INDEXES GUID is not supported by OLE DB Provider for DB2.

The PROCEDURE_SCHEMA restriction on the DBSCHEMA_PROCEDURE GUID and the DBSCHEMA_PROCEDURE_PARAMETERS
GUID is not supported when connecting to DB/2 on OS/390 platforms.

Transaction Object (OLE DB Provider for DB2)
The Transaction object is created by a Session object. The Transaction object is used to manage transactions on one or more
Rowset objects.

The following interfaces of the Transaction object are supported by the current version of Microsoft OLE DB Provider for DB2:

ISupportErrorInfo

ITransaction

The current implementation of OLE DB Provider for DB2 services all OLE DB Session, Command, and Rowset objects present
in a given instance of the DataSource object through a single Advanced Program-to-Program Communications (APPC)
conversation or TCP/IP connection. One implication of this design is that if two Rowset objects, each created from a different
OLE DB Session object, use explicit commitment control through the ITransaction interface, they will interfere with each
other. When a Commit or Abort for one instance is invoked, all work for the DataSource object will be either committed or
aborted. This may yield undesirable results. The work around to this problem is to instantiate two instances of the DataSource
object.

OLE DB Property Support in the OLE DB Provider for DB2
OLE DB Provider for DB2 included with Host Integration Server 2009 supports a different set of provider-specific properties
than the earlier OLE DB Provider for DB2 supplied with SNA Server 4.0. The sections below provide information about
provider-specific and standard OLE DB properties supported by the current and the previous version of OLE DB provider.

In This Section

OLE DB Provider-Specific Property Support in the OLE DB Provider for DB2

OLE DB Data Source Property Support in the OLE DB Provider for DB2

https://msdn.microsoft.com/en-us/library/aa704856(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771245(v=bts.10).aspx

OLE DB Provider-Specific Property Support in the OLE DB
Provider for DB2

The following table summarizes the provider-specific OLE DB version 2.0 properties in the DB2OLEDB_DBPROPSET_DBINIT
property set that are supported by the version of Microsoft OLE DB Provider for DB2 included with Host Integration
Server 2009.

OLE D
B Pro
perty I
D

Description

DBPR
OP_DB
2OLED
B_APP
CMOD
E

When logical unit (LU) 6.2 (SNA) is selected for the Network Transport Library (DBPROP_DB2OLEDB_NETTYPE), this pr
operty is the Advanced Program-to-Program Communications (APPC) mode and must be set to a value that matches t
he host configuration and SNA server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security
), #IBMRDB (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 co
mpression are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal
routing security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing secu
rity).

This VT_BSTR type property normally defaults to QPCSUPP.

DBPR
OP_DB
2OLED
B_BIN
ASCH
AR

This property indicates whether to process binary fields (Character Code Set Identifier or CCSID of 65535) as character
data type fields on a per data source basis. The host CCSID and PC Code Page values are required input parameters wh
en this parameter is true.

This VT_BOOL type property defaults to VARIANT_FALSE, do not process binary fields as character fields.

DBPR
OP_DB
2OLED
B_CAT
ALOG
COL

The name of the collection where OLE DB Provider for DB2 looks for catalog information. This is the default schema, th
e "SCHEMA" name for the target collection of tables and views. This property is the Data Schema value when configuri
ng data sources. OLE DB Provider for DB2 uses this default schema to restrict results sets for popular operations, such
as enumerating a list of tables in a target collection.

For DB2, the default schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the default schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the default schema is the SCHEMA name.

If the user does not provide a VT_BSTR value for DBPROP_DB2OLEDB_CATALOGCOL, the OLE DB provider uses the US
ER_ID provided at logon. For DB2/400, the driver will use QSYS2 if there is no collection found matching the USER_ID
value. Because these values for the default schema are inappropriate in many cases, it is essential that the Default Sche
ma value in the data source be defined.

DBPR
OP_DB
2OLED
B_HOS
TCCSI
D

The CCSID matching the data as represented on the host. This property is required when processing binary data as cha
racter data. Unless the DBPROP_DB2OLEDB_BINASCHAR property ID is set to true, character data is converted based o
n the host column CCSID and default ANSI code page.

This VT_I4 type property defaults to 37 (U.S./Canada).

DBPR
OP_DB
2OLED
B_LOC
ALLU

When LU 6.2 (SNA) is selected for the Network Transport Library, this property is the name of the local LU alias config
ured in the SNA server.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_NET
ADDR
ESS

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target host comp
uter. This parameter indicates the IP address or TCP/IP host name alias associated with the DDM server on the host. Th
e network address is required when connecting by using TCP/IP.

This VT_BSTR type property defaults to SNA.

DBPR
OP_DB
2OLED
B_NET
PORT

When TCP/IP has been selected for the Network Transport Library, this property is used to locate the target DDM servi
ce access port when connecting by using TCP/IP. This parameter represents the TCP/IP port used for communication w
ith the DDM service on the host.

This VT_BSTR type property defaults to 446.

DBPR
OP_DB
2OLED
B_NET
TYPE

This property, which represents the dynamic-link library used for transport, designates whether the provider connects t
hrough SNA LU 6.2 or TCP/IP for network communication. The possible values for this parameter are TCPIP or SNA.

If TCPIP is selected, values for Network Address (DBPROP_DB2OLEDB_NETADDRESS) and Network Port (DBPROP_DB2
OLEDB_NETPORT) are required.

If SNA is selected, values for APPC Local LU Alias (DBPROP_DB2OLEDB_LOCALLU, APPC), Mode Name (DBPROP_DB2
OLEDB_APPCMODE), and APPC Remote LU Alias (DBPROP_DB2OLEDB_REMOTELU) are required.

This VT_BSTR type property defaults to SNA.

DBPR
OP_DB
2OLED
B_PAC
KAGEC
OL

The name of the Distributed Relational Database Architecture (DRDA) target collection (AS/400 library) where Microsof
t OLE DB Provider for DB2 should store and bind DB2 packages. This could be the same as the Default Schema (DBPRO
P_DB2OLEDB_DEFAULTSCH).

Microsoft OLE DB Provider for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to iss
ue dynamic and static SQL statements. OLE DB Provider for DB2 will create packages dynamically in the location to whi
ch the user points using this property ID.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_PCC
ODEP
AGE

The PC Code Page property ID indicates the code page to be used on the computer for character code conversion. This
property is required when processing binary data as character data. Unless DBPROP_DB2OLEDB_BINASCHAR is set to
true, character data is converted based on the default ANSI code page configured in Windows.

If this parameter is set to Binary or 65535, no character code conversions will take place.

This VT_I4 type property defaults to 1252 (Latin 1).

DBPR
OP_DB
2OLED
B_PLA
TFOR
M

The target DB2 platform property value is used to optimize performance of the OLE DB provider when executing opera
tions such as data conversion.

The following values for this property are supported by OLE DB Provider for DB2:

DB2/MVS

DB2/NT

DB2/6000

DB2/400

This VT_BSTR property has a default value of DB2/MVS.

DBPR
OP_DB
2OLED
B_QUA
LIFIER
COL

The name of the schema (collection/owner) used to fully qualify unqualified object names.

Note that this attribute allows the user to access database objects without fully qualifying the object using a collection (
schema) qualifier. The OLE DB provider sends this value to DB2 using a SET CURRENT SQLID statement, instructing th
e DBMS to use this value when locating unqualified objects (for example, tables and views) referenced in SQL statemen
ts.

If you do not set a value for default qualifier, no SET statement is issued by the ODBC driver.

This OLE DB property is only valid when connecting to DB2 for MVS (OS/390, z/OS).

This VT_BSTR type property has a default value of .

DBPR
OP_DB
2OLED
B_REM
OTELU

When LU 6.2 (SNA) is selected for the Network Transport Library (DBPROP_DB2OLEDB_NETTYPE), this property is the
name of the remote LU alias configured in the SNA server.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_TPN
AME

This property represents the default transaction program (TP) name for the DB2 DRDA application server (AS), which is
07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP name.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, t
his property is set to 0X07F9F9F9.

This VT_BSTR type property has no default value.

DBPR
OP_DB
2OLED
B_UNI
TSOF
WORK

This property indicates whether two-phase commit (distributed unit of work) used for transactions is supported for thi
s data source. Distributed transactions are handled using Microsoft Transaction Server, Microsoft Distributed Transacti
on Coordinator, and SNA LU 6.2 Resync Service.

The following values for this property are supported by OLE DB Provider for DB2:

Remote unit of work (RUW)

Distributed unit of work (DUW)

This VT_BSTR type property has a default value of RUW.

Distributed unit of work (two-phase commit) works only with DB2 for OS/390 v5R1 or later. This option also requires t
hat the SNA LU 6.2 service is selected as the network transport and Microsoft Transaction Server (MTS) is installed.

OLE DB Data Source Property Support in the OLE DB Provider
for DB2

The following table summarizes the standard OLE DB version 2.0 data source properties from the DBPROP_DATASOURCE
property set that are supported by the version of Microsoft OLE DB Provider for DB2 included with Host Integration
Server 2009.

OLE DB Proper
ty ID

Comments

DBPROP_CURR
ENTCATALOG

The name of the current catalog. This property is derived from the Initial Catalog parameter when configuring
data sources. An application can use the CATALOGS schema rowset to enumerate catalogs.

This VT_BSTR type property defaults to the value configured in the data source for Initial Catalog.

ODBC Driver for DB2 Programmer's Reference
The Microsoft ODBC Driver for DB2 enables users to access IBM DB2 from within an ODBC-aware application. ODBC defines a
standard set of interfaces that provide access to disparate databases. This section provides reference material needed to
program for the ODBC Driver for DB2.

For general information about programming for the ODBC Driver for DB2, see the ODBC Driver for DB2 Programmer's Guide
section of the SDK.

In This Section

Programming Considerations When Using the ODBC Driver for DB2

ODBC Conformance

ADO Object, Method, Property, and Collection Support for AS/400, VSAM and DB2

https://msdn.microsoft.com/en-us/library/aa771231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705142(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771101(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745238(v=bts.10).aspx

Programming Considerations When Using the ODBC Driver for
DB2

The Microsoft ODBC Driver for DB2 provides passthrough support for SQL statements. No SQL parsing is provided. The user
must know what SQL syntax is supported for the target DB2-implementation. For information on what SQL syntax is
supported, see the specific DB2 SQL Reference and DB2 Application Programming and SQL Guide for the specific platform.

The ODBC Driver for DB2 does not parse the SQL statements to qualify table names. Consequently, users of the ODBC Driver
for DB2 must use either two-part or three-part (fully qualified) object names when naming tables, views, and stored
procedures in DB2. A two-part table name would consist of the user ID and table, <UserID>.<Table>. One-part names (just the
table name) will not succeed unless the combination of the DB2 collection and schema name correspond directly to the ODBC
User ID

The Microsoft ODBC Driver for DB2 does not insert the correct value for the fraction when using a parameterized insert with
the TIMESTAMP data type.

Microsoft Data Access Components (MDAC) supports the option of using a client cursor engine. This service component is
implemented as part of OLE DB, ADO, and Remote Data Services (RDS). When using ADO, a client cursor is enabled by setting
the CursorLocation property on the recordset to adUseClient. When using the ADO Client Cursor Engine with DB2 for
OS/390, the developer must configure the ODBC Driver for DB2 Auto Commit Mode property in the DSN or connection string
to FALSE. This is not required when connecting to DB2 for OS/400.

The ODBC Driver for DB2 included with Host Integration Server 2009 supports updating capabilities when used with a client
cursor engine and the following requirements are met:

To support updates (UPDATE, INSERT, and DELETE), the values in at least one column in the target table must be unique.

The Auto Commit parameter must be set to FALSE when configuring the data source or when this parameter is passed
as part of a connection string.

Previous versions of the ODBC Driver for DB2 do not support any updating capabilities when used with a client cursor engine.
In other words, if a client cursor engine is enabled using RDS or ADO, the ODBC Driver for DB2 cannot be used to update data
on the host. The ADO recordset is treated as if it were read-only. When using the ADO Client Cursor Engine with DB2 for
OS/390, the developer must configure the ODBC Driver for DB2 Auto Commit parameter in the data source or connection
string to FALSE. This is not required when connecting to DB2 for OS/400.

When the intent is to update records with a server-side cursor, DB2 requires that the SQL SELECT statement also include the
FOR UPDATE option. For example, to select all records from the AUTHORS table in the DB2 collection called PUBS with intent
to update requires the following SQL syntax:

When using DB2 for MVS V4R1 and DB2 for OS/400 V3R2, there are further requirements to indicate the columns that you
intend to update. For example, to update the AU_LNAME and AU_FNAME columns in the PUBS.AUTHORS table, the following
SQL syntax must be used:

The Microsoft ODBC Driver for DB2 provides support for distributed transactions and DRDA Distributed Unit of Work, and can
participate in a distributed transaction coordinated by Microsoft Distributed Transaction Coordinator. This feature is only
available when connecting to one of the following across an LU 6.2 network connection:

DB2 for OS/390 V5R1 or later.

DB2 for DB2/400 V4R3 or later.

This option also requires that the SNA LU 6.2 service is selected as the network transport and Microsoft Transaction Server
(MTS) is installed. The Microsoft ODBC Driver for DB2 does not support automatic transaction enlistment under Microsoft
Transaction Server.

SELECT * FROM PUBS.AUTHORS FOR UPDATE

SELECT * FROM PUBS.AUTHORS FOR UPDATE OF AU_LNAME, AU_FNAME

Applications should not commit or roll back transactions by executing COMMIT or ROLLBACK statements using the
SQLExecute or SQLExecDirect ODBC functions. The effects of doing this are undefined, and the ODBC Driver for DB2 no
longer knows when a transaction is active. Applications should call the SQLEndTran ODBC function instead.

Microsoft Visual Studio offers a number of ADO data-bound controls, including a data grid and the ADO Data control. When
using these ADO data controls, the developer must set the CursorLocation property on the recordset to adUseClient.
Additionally, when using these ADO data controls with DB2 for OS/390, you must set the ODBC Driver for DB2 Auto Commit
parameter in the data source or connection string to FALSE.

You can use Microsoft Query (MSQUERY) supplied with Microsoft Office Excel and Microsoft Office to access ODBC data
sources using the ODBC Driver for DB2. When a data of a column defined with TIMESTAMP data type is updated using
Microsoft Query, the microseconds portion of the TIMESTAMP is not updated properly. The result is that updating any
TIMESTAMP value using Microsoft Query will cause the loss of fractional seconds.

The Microsoft ODBC Driver for DB2 is not supported for use with the Microsoft ODBC .NET Framework Data Provider. When
accessing DB2 from ADO.NET, use the Microsoft OLE DB Provider for DB2 in conjunction with the Microsoft OLE DB .NET
Framework Data Provider.

In This Section

Stored Procedure Support Using the ODBC Driver for DB2

Support for Isolation Levels Using the ODBC Driver for DB2

Code Page Support Using the ODBC Driver for DB2

Data Conversion Using the ODBC Driver for DB2

Floating Point Considerations Using the ODBC Driver for DB2

Usernames and Passwords Using the ODBC Driver for DB2

Errors Returned by the ODBC Driver for DB2

Two-Phase Commit over TCP/IP Support Using the ODBC Driver for DB2

Troubleshooting the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/aa771860(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705391(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705781(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745579(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771036(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754484(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771933(v=bts.10).aspx

Stored Procedure Support Using the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2 supports calling DB2 stored procedures, returning output parameters and single and
multiple result sets.

Support for Isolation Levels Using the ODBC Driver for DB2
The Microsoft ODBC Driver for DB2 provides flexibility in dealing with issues of isolation levels and transaction state. The
ODBC SQLSetConnectAttr function is used to set the isolation level that is to be used for a connection. This function would be
called with the attribute parameter set to SQL_ATTR_TXN_ISOLATION and the ValuePtr parameter pointing to an integer value
indicating the isolation level requested. This integer value is a 32-bit bitmask that sets the transaction isolation level for the
current connection.

The allowable values for isolation level (the ValuePtr parameter when calling SQLSetConnectAttr) can be determined by
calling SQLGetInfo with InfoType equal to SQL_TXN_ISOLATION_OPTION. The following table list the allowable values for
isolation level using the ODBC Driver for DB2 supplied with Host Integration Server.

ODBC Isolatio
n Level Attrib
ute

Description

SQL_TXN_REA
D_COMMITTE
D

When this attribute value is set, it isolates any data read from changes by others and changes made by others
by others cannot be seen. The re-execution of the read statement is affected by others. This does not support a
repeatable read.

This is the default value for isolation level

This isolation level is also called Cursor Stability (CS) in IBM DB2 documentation.

SQL_TXN_REA
D_UNCOMMIT
TED

When this attribute value is set, it does not isolate data read from changes by others and changes made by oth
ers by others can be seen. The re-execution of the read statement is affected by others. This does not support a
repeatable read.

This isolation level is called Uncommitted Read (UR) in IBM DB2 documentation.

SQL_TXN_REP
EATABLE_REA
D

When this attribute value is set, it isolates any data read from changes by others and changes made by others
cannot be seen. The re-execution of the read statement is affected by others. This supports a repeatable read.

This isolation level is called Read Stability (RS) in IBM DB2 documentation.

SQL_TXN_SERI
ALIZABLE

When this attribute value is set, it isolates any data read from changes by others and changes made by others
by others cannot be seen. The re-execution of the read statement is not affected by others. This supports a rep
eatable read.

This isolation level is called Repeatable Read (RR) in IBM DB2 documentation.

The SQL_ATTR_TXN_ISOLATION attribute can be set only if there are no open transactions on the connection. An application
must call SQLEndTran to commit or roll back all open transactions on a connection, before calling SQLSetConnectAttr with
this option.

Some connection attributes support substitution of a similar value if the data source does not support the value specified in
ValuePtr. In such cases, the driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). To
determine the substituted value, an application calls SQLGetConnectAttr.

Code Page Support Using the ODBC Driver for DB2
When creating data sources or file DSNs for use with the ODBC Driver for DB2, the Host character code set identifier (CCSID)
should be configured in the data source to match the DB2 data as represented on the remote host computer. The Host CCSID
parameter defaults to EBCDIC U.S./Canada (37).

On Windows 2000, the appropriate ANSI NLS file for your locale is installed automatically when you install a localized version
of Windows 2000.

The following sections discuss the character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host
Integration Server 2009.

In This Section

ANSI Code Page Support Using the ODBC Driver for DB2

EBCDIC Code Page Support Using the ODBC Driver for DB2

ISO Code Page Support Using the ODBC Driver for DB2

DBCS Code Page Support Using the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/aa704861(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772085(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744752(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745446(v=bts.10).aspx

ANSI Code Page Support Using the ODBC Driver for DB2
IBM DB2 Universal Database for Windows NT and IBM DB2 Universal Database for AIX are frequently configured to use ANSI
code pages, for example ANSI 1253 (Greek). Host Integration Server 2009 includes support for some ANSI code pages for
purposes of ANSI-to-UNICODE-to-ANSI conversions when using the OLE DB Provider for DB2 or the ODBC Driver for DB2.
These ANSI code pages can be used when accessing IBM DB2 Universal Database on Windows NT and IBM DB2 ON AIX (not all
of these ANSI code pages are supported on IBM DB2 Universal Database for AIX).

The following table shows the ANSI character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host
Integration Server 2009.

Microsoft Display Nam
e

Microsoft NLS Co
de Page

IBM CC
SID

Comments

ANSI - Arabic 1256 1256

ANSI - Baltic 1257 1257

ANSI - Cyrillic 1251 1251

ANSI - Central Europe 1250 1250

ANSI - Greek 1253 1253

ANSI - Hebrew 1255 1255

ANSI - Latin I 1252 1252 Support for this codepage is normally installed as part of the operatin
g system on Windows 2000.

ANSI - Turkish 1254 1254

ANSI/OEM - Japanese Shif
t JIS

932 932

ANSI/OEM - Korean 949 949

ANSI/OEM - Simplified Ch
inese GBK

936 936

ANSI/OEM - Thai 874 874

ANSI/OEM - Traditional C
hinese Big5

950 950

ANSI/OEM - Viet Nam 1258 1258

The Microsoft Display Name is the name found in the Windows 2000 definitions for these NLS files. The Microsoft NLS Code
Page column represents the code page number that is registered and associated with an ANSI-to-UNICODE NLS resource file.
The Microsoft NLS number should be set as the Host CCSID when configuring data sources when using the ODBC Driver for
DB2. When setting the Host CCSID or PC Code Page parameter using a connection string, the Microsoft NLS number should be
used for this parameter.

The IBM CCSID column represents the CCSID given to the ANSI code page in IBM publications, which for these supported ANSI
CCSIDs are the same as the Microsoft CCSID values. IBM lists their ANSI support in publications by referencing the display
name which for these ANSI code pages is the same as the Microsoft display name. The ODBC Driver for DB2 does not
recognize or display the IBM CCSID values when configuring data sources. The ODBC Driver for DB2 maps the Microsoft NLS
numbers to ANSI NLS files which correspond with the appropriate IBM CCSID numbers. The Microsoft ODBC Driver for DB2
passes the corresponding IBM CCSID to the DB2 system at run time even though you configure the driver to use the Microsoft

NLS number.

These are the only ANSI pages currently supported by the ODBC Driver for DB2 in Host Integration Server 2009 and in SNA
Server 4.0 with Service Pack 3 or later. IBM supports additional ANSI pages, however, the ANSI code pages listed in the table
above are the only cases where the Microsoft NLS pages and IBM ANSI code pages (CCSIDs) match.

EBCDIC Code Page Support Using the ODBC Driver for DB2
IBM DB2 for MVS, IBM DB2 for OS/390, and IBM DB2 for OS/400 are frequently configured to use EBCDIC code pages, for
example EBCDIC 875 (Greek Modern). Host Integration Server 2009 includes support for most EBCDIC code pages for
purposes of EBCDIC-to-UNICODE-to-ANSI, ANSI-to-UNICODE-to-EBCDIC, and EBCDIC-to-UNICODE-to-EBCDIC conversions
when using the OLE DB Provider for DB2 or the ODBC Driver for DB2. These EBCDIC code pages can be used when accessing
IBM DB2 on a variety of platforms (not all of these EBCDIC code pages are supported on all versions of IBM DB2).

The following table shows the EBCDIC character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host
Integration Server 2009.

Microsoft Display Name Microsoft NLS Code
Page

IBM CCS
ID

Comments

IBM EBCDIC - Arabic 20420 420

IBM EBCDIC - Cyrillic (Russian) 20880 880

IBM EBCDIC - Cyrillic (Serbian, Bulgar
ian)

21025 1025

IBM EBCDIC - Denmark/Norway 20277 277

IBM EBCDIC - Denmark/Norway (Eur
o)

1142 1142

IBM EBCDIC - Finland/Sweden 20278 278

IBM EBCDIC - Finland/Sweden (Euro) 1143 1143

IBM EBCDIC - France 20297 297

IBM EBCDIC - France (Euro) 1147 1147

IBM EBCDIC - Germany 20273 273

IBM EBCDIC - Germany (Euro) 1141 1141

IBM EBCDIC - Greek 20423 423

IBM EBCDIC - Greek (Modern) 875 875

IBM EBCDIC - Hebrew 20424 424

IBM EBCDIC - Icelandic 20871 871

IBM EBCDIC - Icelandic (Euro) 1149 1149

IBM EBCDIC - International 500 500

IBM EBCDIC - International (Euro) 1148 1148

IBM EBCDIC - Italy 20280 280

IBM EBCDIC - Italy (Euro) 1144 1144

IBM EBCDIC - Japan English/Kanji (Ex
tended)

939 939 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Japan English/Kanji (Ex
tended)

5035 5035 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Japan Katakana/Kanji (
Extended)

930 930 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Japan Katakana/Kanji (
Extended)

5026 5026 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Japanese 931 931 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Korea (Extended) 933 933 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Latin America/Spain 20284 284

IBM EBCDIC - Latin America/Spain (E
uro)

1145 1145

IBM EBCDIC - Multilingual/ROECE (La
tin-2)

870 870

IBM EBCDIC - Simplified Chinese (Ext
ended)

935 935 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Thai 20838 838

IBM EBCDIC - Traditional Chinese (Ext
ended)

937 937 Support for this double-byte character set is supplied u
sing TRNSDT.

IBM EBCDIC - Turkish (Latin-3) 20905 905

IBM EBCDIC - Turkish (Latin-5) 1026 1026

IBM EBCDIC - U.S./Canada 037 37

IBM EBCDIC - U.S./Canada (Euro) 1140 1140

IBM EBCDIC - United Kingdom 20285 285

IBM EBCDIC - United Kingdom (Euro) 1146 1146

The Microsoft Display Name is the name found in the Windows 2000 definitions for these NLS files. The Microsoft NLS Code
Page column represents the code page number that is registered and associated with an EBCDIC-to-UNICODE NLS resource
file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when using the ODBC Driver
for DB2. When setting the Host CCSID or PC Code Page parameter using a connection string, the Microsoft NLS number
should be used for this parameter.

The IBM CCSID column represents the CCSID given to the EBCDIC code page in IBM publications. IBM lists their EBCDIC
support in publications by referencing the display name which for these EBCDIC code pages is the same as the Microsoft
display name. The ODBC Driver for DB2 does not recognize or display the IBM CCSID values when configuring data sources
using data links. The ODBC Driver for DB2 maps the Microsoft NLS numbers to EBCDIC NLS files which correspond with the

appropriate IBM CCSID numbers. The Microsoft ODBC Driver for DB2 passes the corresponding IBM CCSID to the DB2 system
at run time even though you configure the driver to use the Microsoft NLS number.

These are the only EBCDIC pages currently supported by the ODBC Driver for DB2 in Host Integration Server 2009 and in SNA
Server 4.0 with Service Pack 3 or later. IBM supports additional EBCDIC pages; however, the EBCDIC code pages listed in the
table above are the only cases where the Microsoft NLS pages and IBM EBCDIC code pages (CCSIDs) match.

ISO Code Page Support Using the ODBC Driver for DB2
IBM DB2 Universal Database for Windows NT and IBM DB2 Universal Database for AIX are frequently configured for an ISO
code page, for example ISO 819 (Latin I). Host Integration Server 2009 includes support for some ISO code pages for purposes
of ISO-to-UNICODE-to-ANSI, ANSI-to-UNICODE-to-ISO, and ISO-to-UNICODE-to-ISO conversions when using the OLE DB
Provider for DB2 or the ODBC Driver for DB2. These ISO code pages can be used when accessing IBM DB2 Universal Database
for Windows NT and IBM DB2 Universal Database for AIX.

The following table shows the ISO character code set identifiers (CCSIDs) supported by ODBC Driver for DB2 in Host
Integration Server.

Microsoft Dis
play Name

Microsoft N
LS Code Pag
e

IBM
CCSI
D

Comments

ISO 8859-1 Lat
in 1

28591 819

ISO 8859-2 Ce
ntral Europe

28592 912

ISO 8859-5 Cy
rillic

28595 915

ISO 8859-6 Ar
abic

28596 1089

ISO 8859-7 Gr
eek

28597 813

ISO 8859-8 He
brew

28598 916

ISO 8859-9 Tur
kish

28599 920

ISO 6937 Non-
Spacing Accent

20269 819 Note that ISO 6937 (CCSID 20269) is not supported by the ODBC Driver for DB2, but is di
splayed in the list of configuration options when creating or modifying data sources.

ISO 8859-15 L
atin 9 (Euro)

20865 923 NLS Code Page 819 with support for the euro.

The ///Microsoft Display Name is the name found in the Windows 2000 definitions for these NLS files.

The Microsoft NLS Code Page column represents the code page number that is registered and associated with an ISO-to-
UNICODE NLS resource file. The Microsoft NLS number should be set as the Host CCSID when configuring data sources when
using the ODBC Driver for DB2. When setting the Host CCSID or PC Code Page attribute/property using a connection string,
the Microsoft NLS number should be used for this parameter.

The IBM CCSID column represents the CCSID given to the ISO code page in IBM publications. IBM lists their ISO support in
publications by referencing the locale name (Bulgaria for ISO 8859-5 and 915, for example) rather than simply using ISO
8859-5 Cyrillic as used by Microsoft. The ODBC Driver for DB2 does not recognize or display the IBM CCSID values when
configuring data sources. The ODBC Driver for DB2 maps the Microsoft NLS numbers to ISO NLS files which correspond with
the appropriate IBM CCSID numbers. The Microsoft ODBC Driver for DB2 passes the corresponding IBM CCSID to the DB2
system at run time even though you configure the driver to use the Microsoft NLS number.

Note that IBM CCSID 819 is associated with both ISO 8859-1 Latin 1 and ISO 6937 Non-Spacing Accent. It is up to the user to
choose the standard ISO 8859-1 Latin 1 code page by selecting NLS code page 28591 or the modified code page ISO 6937
Non-Spacing Accent by selecting NLS code page 20269. Note that ISO 6937 Non-Spacing Accent (CCSID 20269) is not
currently supported by the ODBC Driver for DB2, but is displayed in the configuration options when creating or modifying data

sources.

IBM CCSID 916 (ISO 8859-8) supports Hebrew "visual sort order". IBM CCSID 920 (ISO 8859-8 derivation) supports Hebrew
"logical sort order". Although Microsoft supports the logical sort order with NLS 38598, this NLS file is only distributed with
Internet Explorer 5 or Windows 2000. The ODBC Driver for DB2 has not been tested using the ISO 8859-8 derivation matching
IBM CCSID 920 and does not support this configuration.

These are the only ISO pages currently supported in Host Integration Server and in SNA Server 4.0 with Service Pack 3 or later.
Microsoft supports a number of additional ISO pages. IBM also supports additional ISO pages. However, the code pages listed
in the table above are the only cases where the Microsoft NLS pages and IBM CCSIDs match.

DBCS Code Page Support Using the ODBC Driver for DB2
The ODBC Provider for DB2 supports Double-Byte Character String (DBCS) data, including conversions between DBCS and
ANSI code pages. Conversions between DBCS and ISO code pages are also supported, as are positioned updates against DBCS
EBCDIC implementations of DB2.

The DB2 GRAPHIC data types (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC) are now explicitly supported. These DB2 data
types support DBCS (not mixed) data. Mixed data types are supported using CHAR FOR MIXED DATA, VARCHAR FOR MIXED
DATA, and LONGVARCHAR FOR MIXED DATA.

Parameterized SQL statements and calling stored procedures when the parameter values contain Mixed or DBCS characters
are supported.

When performing a SQL statement with inline data, character strings can be prefixed with a G or g to denote that the data is
DBCS and is to be used with a graphic column. Only double-byte characters can be used with a graphic column. For example:

The prefixes n (graphic) and gx (hexadecimal graphic) are also supported.

CREATE TABLE NAMES (COL1 GRAPHIC(64), COL2 CHAR(64))
INSERT INTO NAMES (COL1, COL2) VALUES (GDBCS data, MBCS or SBCS data)

Data Conversion Using the ODBC Driver for DB2
The design of ODBC APIs is similar to other ISAM APIs. The APIs are handle-based. After opening a file, the application can
determine the buffer size required to store a row, use the cursor APIs to move, and optionally retrieve one or more rows of
data using the row-level binding.

Data is converted to default SQL data types, as defined in ODBC. The following table lists these conversions.

DB2 dat
a type

Defaul
t SQL
Data T
ype

Exposed as N
ative Type in
SQLGetTypeI
nfo

Comments

BIGINT An 8-byte integer.

This data type is supported on DB2 UDB only.

BLOB A Binary Large Object (BLOB) is a varying-length string that can be up to 2 gigabytes in lengt
h. A BLOB is primarily intended to hold binary data.

This data type is not supported by the ODBC Driver for DB2.

CHAR (B
IT)

SQL_BI
NARY

No A fixed length (double-byte only) character string.

CHAR (S
BCS)

SQL_C
HAR

Yes A fixed-length SBCS character string.

CHAR (
MIXED)

SQL_C
HAR

No A fixed-length mixed (single and double-byte) character string.

CLOB A Character Large Object(CLOB) is a varying-length string that can be up to 2 gigabytes in len
gth. A CLOB is used to store large single-byte character set data. A CLOB is considered to be a
character string.

This data type is not supported by the ODBC Driver for DB2.

DATE SQL_TY
PE_DAT
E

Yes A 10-byte date string.

This data type is converted to an SQL_DATE for use by ODBC.

DBCLOB A Double-Byte Character Large Object (DBCLOB) is a varying-length string of double-byte ch
aracters that can be up to 2 gigabytes in length (1,073,741,823 double-byte characters). A DB
CLOB is used to store large double-byte character set data. A DBCLOB is considered to be a gr
aphic string.

It is not supported by the ODBC Driver for DB2.

DECIMA
L

SQL_D
ECIMA
L

Yes A packed decimal number.

DOUBL
E

SQL_D
OUBLE

Yes An 8-byte double-precision floating point number.

FLOAT SQL_FL
OAT

Yes An 8-byte double-precision floating point number. This data type is the same as a DOUBLE.

GRAPHI
C (DBCS
)

SQL_C
HAR

No A fixed-length graphic string consisting of a sequence of double byte (DBCS only) character st
ring data.

INTEGE
R

SQL_IN
TEGER

Yes A 4-byte integer with a precision of 10 digits ranging in value from -2,147,463,648 to +2,147,
483,647.

LONG V
ARCHA
R (BIT)

SQL_BI
NARY

No A varying-length (double-byte only) character string.

LONG V
ARCHA
R (SBCS)

SQL_C
HAR

No A varying-length SBCS character string.

LONG V
ARCHA
R (MIXE
D)

SQL_C
HAR

No A varying-length mixed-character (single and double-byte) string.

LONG V
ARGRA
PHIC (D
BCS)

SQL_L
ONGV
ARCHA
R

No A varying-length graphic string consisting of a sequence of double byte (DBCS only) characte
r string data.

SMALLI
NT

SQL_S
MALLI
NT

Yes A SMALLINT (small integer) is a two-byte integer with a precision of 5 digits ranging from -3
2,768 to +32,767.

REAL SQL_R
EAL

Yes A 4-byte single-precision floating point number.

TIME SQL_TY
PE_TIM
E

Yes An 8-byte time string.

When using ActiveX Data Objects to return data from a DB2 TIME data type, ADO returns a D
ATETIME value.

TIMEST
AMP

SQL_TY
PE_TIM
ESTAM
P

Yes A 26-byte string representing the date, time, and microseconds.

VARCH
AR (BIT)

SQL_BI
NARY

No A varying-length (double-byte only) character string.

VARCH
AR (SBC
S)

SQL_C
HAR

Yes A varying-length character string.

VARCH
AR (MIX
ED)

SQL_C
HAR

No A varying-length mixed (single and double-bye) character string.

VARGR
APHIC (
DBCS)

SQL_V
ARCHA
R

No A varying-length graphic string consisting of a sequence of double byte (DBCS only) characte
r string data.

Not all platforms and versions of DB2 support all of the above-referenced data types. Consult your IBM SQL Reference for the
specific target and platform and version of DB2.

The ODBC Driver for DB2 exposes only selected DB2 data types as native types in the ODBC catalog function GetTypeInfo. For
example, the driver does not expose LONG CHARACTER or VARYING LONG CHARACTER types. Rather these types are exposed
as CHARACTER and VARYING CHARACTER respectively. Also, the driver exposes CHARACTER FOR SBCS DATA, CHARACTER
FOR MIXED DATA, and CHARACTER FOR BIT DATA as CHARACTER. The driver exposes VARYING CHARACTER FOR SBCS
DATA, VARYING CHARACTER FOR MIXED DATA, and VARYING CHARACTER FOR BIT DATA as VARYING CHARACTER.
However, the ODBC Driver for DB2 returns these LONG and VARYING LONG data types if one reads a table with these data
types. For example, when reading a table with a variable character string of length greater than 254 bytes, the ODBC Driver for
DB2 returns a LONG VARCHAR.

The maximum length of the DB2 character and graphic string data types is dependent on the DB2 platform and version. For
example, a CHAR type on DB2 for OS/390 V5R1 has a maximum length of 254 bytes, whereas a CHAR type on DB2/400 V4R4
has a maximum length of 32,766 bytes.

Data conversions from a large numeric type to a small numeric type are supported (from DOUBLE to SINGLE and from INT to
SMALLINT, for example), however truncation and conversion errors can occur that will not be reported by the ODBC Driver for
DB2.

For more information on support for the DB2 character data types of subtype MIXED using the ODBC Driver for DB2, see
Code Page Support Using the ODBC Driver for DB2.

Using the ODBC Driver for DB2, certain conversions of strings from EBCDIC to ASCII and then back to EBCDIC are asymmetric,
and can result in strings that are different from the original. The EBCDIC specification contains ordinals for which there is no
defined character. The ODBC Driver for DB2 translates all such undefined characters to the question mark character ("?"). So
when ASCII strings containing these characters are converted back to EBCDIC, these undefined characters are replaced with
question marks. To protect EBCDIC strings containing undefined characters, these fields should be tagged as binary strings and
mapped by the application.

The affected ANSI-to-EBCDIC character conversions include the following:

Character value (decim
al)

Character value (hexadecim
al)

ANSI code page 12
52

EBCDIC character after conversion to CCSI
D 37

128 0x80 Not used ?

130 0x82 Single low quote ?

131 0x83 Latin F with hook ?

132 0x84 Double low quote ?

133 0x85 Ellipsis ?

134 0x86 Dagger ?

135 0x87 Double dagger ?

136 0x88 Per mile ?

137 0x89 S with caron ?

138 0x8A Left angle ?

139 0x8B Ligature OE ?

140 0x8C Not used ?

142 0x8E Not used ?

https://msdn.microsoft.com/en-us/library/aa705781(v=bts.10).aspx

145-156 0x91-0x9C ?

158-159 0x9E-0x9F ?

Floating Point Considerations Using the ODBC Driver for DB2
When real or double (synonymous with float) data is inserted into a DB2 table as a floating point data type, it is stored in
scientific notation. For example, FLOAT(1.1) would be stored as +1.10000E+000.

Care must be taken when executing SQL statements to make sure that the proper data type specified in the SQL statement
matches the values stored in DB2. For example, the following select statement would match values in DB2 stored as decimal
1.1:

If the data in DB2 was stored as real numbers, there would not be a match since decimal 1.1 is stored as 1.1, not the
representation of +1.10000E+000. When DB2 parses and executes the SQL SELECT statement, it interprets 1.1 as a decimal
type. When doing the SELECT query, DB2 does not implicitly do the conversion to floating point. In this case, the SQL
statement should explicitly typecast the 1.1 so that DB2 looks for the correct format (the scientific notation format). The
SELECT query would look like the following:

This will give the expected results. The SQL REAL function converts the decimal 1.1 to the proper format before DB2 executes
the actual select.

SELECT * FROM TEST WHERE C1 = 1.1

SELECT * FROM TEST WHERE C1 = REAL(1.1)

Usernames and Passwords Using the ODBC Driver for DB2
When connecting to remote DB2 systems, most users must be authenticated by the remote system by passing a valid user ID
and password.

The AS/400 computer is case-sensitive with regard to user ID and password; it accepts them only in uppercase. The ODBC
Driver for DB2 automatically converts the user ID and password into uppercase when connecting to a DB2 for OS/400 system.

The mainframe is not case-sensitive; the user ID and password is acceptable in lowercase or uppercase.

DB2 Universal Database (UDB) for Windows NT is case-sensitive; it supports mixed case passwords. Users must enter a
password in the correct mixed case. When entering a user ID, use only the Windows NT user name and not the Windows NT
domain name.

Errors Returned by the ODBC Driver for DB2
The ODBC Driver for DB2 generates errors in the following areas:

ODBC Driver Manager

Microsoft ODBC Driver for DB2

DRDA Application Requester network client

The ODBC Driver Manager is a shared library that establishes connections with ODBC drivers, submits requests to ODBC
drivers, and returns results to applications. An ODBC Driver Manager error has the following format:

For example:

If you encounter this type of error, check the last ODBC call the application made for possible problems. For further
information on ODBC Driver Manager errors, contact your ODBC application vendor or refer to the ODBC documentation
available from Microsoft Press.

An error reported by the Microsoft ODBC Driver for DB2 has the following format:

For example:

If you encounter this type of error is, check the last ODBC call the application made for possible problems. For further
information on ODBC Driver errors, contact your ODBC application vendor or refer to the ODBC documentation available from
Microsoft Press.

When using the Microsoft ODBC Driver for DB2, data source refers to the target database. An error that occurs in the data
source is returned with the data source name and in the following format:

For example, an ODBC application may receive the following message from a DB2 data source running on an IBM mainframe:

If you encounter this type of error, the application attempted to perform an operation not supported by the DB2 database
system. Check the DB2 database system documentation for more information or consult your database administrator.

[vendor] [ODBC DLL] message

[Microsoft] [ODBC DLL] Driver does not support this function.

[Microsoft] [ODBC Driver for DB2] message

[Microsoft] [ODBC Driver for DB2] Invalid precision specified.

[Microsoft] [ODBC Driver for DB2] [data_source] message

[Microsoft] [ODBC Driver for DB2] [DB2] DB2-0919: specified length too long for CHAR column

Two-Phase Commit over TCP/IP Support Using the ODBC
Driver for DB2

Two-phase commit (2PC) is a host server-installed protocol that ensures that updates to multiple instances of a database on a
network either succeed or fail in their entirety. Host Integration Server 2009 supports 2PC over TCP/IP, allowing you to gain
the security of a 2PC connection over the Internet.

Host Integration Server supports 2PC works using three components: the DTC, the Resync Service, and the transaction log. The
DTC governs the normal DTC transaction flow: enlist, prepare, commit, and abort. The Resync service coordinates transaction
recovery in case of any failure or disconnection, while the transaction log maintains a log of information that is needed in case
of recovery.

You can perform a 2PC transaction with the ODBC Driver for DB2 using SQLSetConnAttr. Using a 2PC transaction is
automatic. However, you may need to configure your 2PC connection using tools such as ODBC Connection Manager.

Troubleshooting the ODBC Driver for DB2
The Windows 2000 Event Viewer can be a useful tool for troubleshooting data access in some cases. The ODBC Driver for DB2
does not issue events. However, when SNA (APPC/LU 6.2) is used for the network transport for the ODBC Driver for DB2, the
low-level SNA APPC transport issues events on the SNA connection.

The ODBC Driver for DB2 supplied with Host Integration Server 2009 has the ability to trace DRDA data flows when used over
TCP/IP. This capability is accessible from the SNADB2 Service tracing inside the Trace utility shipped with Host Integration
Server 2009.

This facility shows the same data as an APPC trace but without the control indicators (for example, What_Received). Socket
errors are traced and the error codes can be looked up in Winsock2.h supplied with the Win32 SDK.

When the ODBC Driver for DB2 passes an error code, the best source in which to look-up the meaning of the return code is
often the SQL Reference or SQL Messages and Codes Reference for the target SQL database. In this case, the target database is
one of the DB2 platforms supported by the ODBC Driver for DB2.

The ODBC Driver for DB2 maintains an internal integer variable named SQLCODE and an internal 5-byte character string
variable named SQLSTATE used to check the execution of SQL statements on DB2. SQLCODE is set by DB2 after each SQL
statement is executed. DB2 returns the following values for SQLCODE:

If SQLCODE = 0, execution was successful.

If SQLCODE > 0, execution was successful with a warning.

If SQLCODE < 0, execution was not successful.

SQLCODE = 100, "no data" was found. For example, a FETCH statement returned no data because the cursor was
positioned after the last row of the result table.

SQLSTATE is also set by DB2 after the execution of each SQL statement. Application programs can check the execution of SQL
statements by testing SQLSTATE instead of SQLCODE. SQLSTATE provides application programs with common codes for
common error conditions (the values of SQLSTATE are product-specific only if the error or warning is product-specific).
Furthermore, SQLSTATE is designed so that application programs can test for specific errors or classes of errors.

SQLSTATE values consist of a two-character class code value, followed by a three-character subclass code value. The first
character of an SQLSTATE value indicates whether the SQL statement was executed successfully or unsuccessfully (equal to or
not equal to zero, respectively). Class code values represent classes of successful and unsuccessful execution conditions. The
following table describes SQLSTATE class codes used by DB2.

Class Co
de

Description of Error Class

00 Successful completion. Execution of the SQL statement was successful and did not result in any type of warning or e
xception condition.

01 Warning

02 No data

07 Dynamic SQL error

08 Connection exception

0A Feature not supported

0F Invalid token

21 Cardinality violation

22 Data exception

23 Constraint violation

24 Invalid cursor state

25 Invalid transaction state

26 Invalid SQL statement identifier

2D Invalid transaction termination

34 Invalid cursor name

39 External function call exception

40 Transaction rollback

42 Syntax error or access rule violation

44 WITH CHECK OPTION violation

51 Invalid application state

53 Invalid operand or inconsistent specification

54 SQL or product limit exceeded

55 Object not in prerequisite state

56 Miscellaneous SQL or product error

57 Resource not available or operator intervention

58 System error

The SQLSTATE value of HY000 is defined as a driver-specific error. An SQLSTATE of 08S01 (connection exception with a
subclass code of S01) also indicates a driver-specific error. This means the SQLCODE should be looked up in the driver-specific
documentation included with the ODBC Driver for DB2.

If the SQLSTATE does not indicate a driver-specific error when the ODBC Driver for DB2 passes back an SQLSTATE of 08S01, it
indicates a network error. For example, an SQLCODE of -603 is a driver-specific error that is mapped to
DB2OLEDB_COMM_HOST_CONNECT_FAILED in the db2oledb.h include file supplied with the ODBC Driver for DB2. Errors with
an SQLSTATE of 08S01 are documented in the db2oledb.h include file (the SQLCODE value) which is located on the Host
Integration Server 2009 CD in the SDK\Include subdirectory.

The following steps are useful in researching an error. Start by reading the provided error text returned by the ODBC Driver for
DB2. In some cases, the error text may provide limited information. For example, error text from an SQLCODE of -603 reads:

The next step is to lookup the SQLSTATE to determine the source of the error. Is the error a DB2 error, a network client error, or
an ODBC Driver error? An SQLSTATE of 08S01 is defined as follows:

Test connection failed because of an error in initializing driver.
Could not connect to specified host.

Communication link failure.

This definition is intended to inform the user, administrator, or developer that the error is one related to the ODBC driver's
underlying network client.

Unfortunately, many of the SQLSTATE codes returned by the ODBC Driver for DB2 are DB2 errors and are not documented in
the ODBC Driver for DB2 Help.

The SQLSTATE of HY000 is defined as a driver-specific error. An SQLSTATE of 08S01 also indicates a driver-specific error. In
this case, you should look up the SQLCODE in the driver-specific documentation included with the ODBC Driver for DB2.

If the SQLSTATE does not indicate a driver-specific error, you should look up the SQLCODE in the appropriate DB2 manual for
the target platform. For example, an SQLCODE of -603 is documented in Appendix B, "SQLCODEs and SQLSTATEs," in the
AS/400 Advanced Series DB2 for AS/400 SQL Programming, Version 4, document number SC41-5611-00 published by IBM.
An SQLCODE of -603 corresponds to SQLSTATE 23515 in the DB2 for OS/400 error code list. For example, the explanation for
this SQLCODE is:

When the SQLSTATE and the SQLCODE definitions documented in these appendixes create a mismatch with the actual errors
returned, it usually indicates a driver-specific error condition.

A final step in understanding an error is to check the db2oledb.h file. This file is not installed by Setup for the Host Integration
Client 2000, but is located on the CD-ROM for in the SDK\Include folder. An SQLCODE (for example, -603) can be found by
searching the rightmost column of the db2oledb.h file for a value near to 603. For instance, locate the comment "/* -600 */"
and then count down three additional lines to line number 603. The internal error code -603 is defined as follows:

This particular error usually indicates a problem with the configuration parameters or the connection string passed.

Unique index cannot be created because of duplicate keys.

DB2OLEDB_COMM_HOST_CONNECT_FAILED.

ODBC Conformance
The Microsoft ODBC Driver for DB2 supports ODBC 2.x and ODBC 3.x functions. SQL grammar conformance varies, depending
on the version of the DB2 database that is accessed. The following sections list the ODBC functions and attributes supported by
the Microsoft ODBC Driver for DB2.

In This Section

Support for ODBC 2 Core Functions

Support for ODBC 2 Level 1 Functions

Support for ODBC 2 Level 2 Functions

Support for ODBC 3 Functions

Support for ODBC Connection Attributes

Support for ODBC Statement Attributes

https://msdn.microsoft.com/en-us/library/aa745376(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771323(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771927(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745873(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746087(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744341(v=bts.10).aspx

Support for ODBC 2 Core Functions
The following table lists the ODBC 2.x Core functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 2.x Core Functions Functions Supported by the Microsoft ODBC Driver for DB2

SQLAllocConnect Yes

SQLAllocEnv Yes

SQLAllocStmt Yes

SQLBindCol Yes

SQLCancel Yes

SQLColAttributes Yes

SQLConnect Yes

SQLDescribeCol Yes

SQLDisconnect Yes

SQLError Yes

SQLExecDirect Yes

SQLExecute Yes

SQLFetch Yes

SQLFreeConnect Yes

SQLFreeEnv Yes

SQLFreeStmt Yes

SQLGetCursorName Yes

SQLNumResultCols Yes

SQLPrepare Yes

SQLRowCount Yes

SQLSetCursorName Yes

SQLSetParam In ODBC 2.0, the ODBC 1.0 SQLSetparam function was replaced by SQLBindParameter

SQLTransact Yes

Support for ODBC 2 Level 1 Functions
The following table lists the ODBC 2.x level 1 functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 2.x level 1 functions Functions supported by the Microsoft ODBC Driver for DB2

SQLBindParameter Yes

SQLColumns Yes

SQLDriverConnect Yes

SQLGetConnectOption Yes

SQLGetData Yes

SQLGetFunctions Yes

SQLGetInfo Yes

SQLGetStmtOption Yes

SQLGetTypeInfo Yes

SQLParamData Yes

SQLPutData Yes

SQLSetConnectOption Yes

SQLSetStmtOption Yes

SQLSpecialColumns Yes

SQLStatistics Yes

SQLTables Yes

Support for ODBC 2 Level 2 Functions
The following table lists the ODBC 2.x level 2 functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 2.x level 2 functions supp
orted

Functions supported by the Microsoft ODBC Driver for DB2

SQLBrowseConnect No

SQLColumnPrivileges No

SQLDataSources Yes. This function is actually supported by the ODBC Driver Manager

SQLDescribeParam No

SQLDrivers Yes. This function is actually supported by the ODBC Driver Manager

SQLExtendedFetch Yes, but supports forward scrolling only

SQLForeignKeys No

SQLMoreResults Yes

SQLNativeSQL Yes

SQLNumParams Yes

SQLParamOptions Yes

SQLPrimaryKeys Yes, but SQL grammar conformance varies depending on the version of the DB2 database
that is accessed

SQLProcedureColumns Yes

SQLProcedures Yes

SetPos Yes

SQLSetScrollOptions Yes

SQLTablePrivileges No

Support for ODBC 3 Functions
The following table lists the ODBC 3.0 functions that are supported by the Microsoft ODBC Driver for DB2.

ODBC 3.0 functions Functions supported by the Microsoft ODBC Driver for DB2

SQLAllocHandle Yes

SQLBulkOperations No

SQLCloseCursor Yes

SQLColAttribute Yes

SQLCopyDesc Yes

SQLEndTran Yes

SQLFetchScroll Yes, but supports forward scrolling only

SQLFreeHandle Yes

SQLGetConnectAttr Yes

SQLGetDescField Yes

SQLDescRec Yes

SQLGetDiagField Yes

SQLGetDiagRec Yes

SQLGetEnvAttr Yes

SQLGetStmtAttr Yes

SQLRowCount Yes

SQLSetConnectAttr Yes

SQLSetDescField Yes

SQLSetDescRec Yes

SQLSetEnvAttr Yes

SQLSetStmtAttr Yes

Support for ODBC Connection Attributes
The following table lists the ODBC connection attributes support using the Microsoft ODBC Driver for DB2. Note that the
connection attributes in this list use the ODBC Version 3.0 attribute names, rather than the older ODBC 1.0 names.

ODBC connection attribute ODBC version Attribute supported by the Microsoft ODBC Driver for DB2

SQL_ATTR_ACCESS_MODE 1.0 Yes

SQL_ATTR_ASYNC_ENABLE 3.0 No

SQL_ATTR_AUTO_IPD 3.0 No

SQL_ATTR_AUTOCOMMIT 1.0 Yes

SQL_ATTR_CONNECTION_DEAD 3.5 No

SQL_ATTR_CONNECTION_TIMEOUT 3.0 No

SQL_ATTR_CURRENT_CATALOG 2.0 Yes

SQL_ATTR_ENLIST_IN_DTC 3.0 Yes

SQL_ATTR_ENLIST_IN_XA 3.0 No

SQL_ATTR_LOGIN_TIMEOUT 1.0 No

SQL_ATTR_METADATA_ID 3.0 No

SQL_ATTR_ODBC_CURSORS 2.0 Yes, handled by ODBC Driver Manager

SQL_ATTR_PACKET_SIZE 2.0 No

SQL_ATTR_QUIET_MODE 2.0 Yes

SQL_ATTR_TRACE 1.0 Yes, handled by ODBC Driver Manager

SQL_ATTR_TRACEFILE 1.0 Yes, handled by ODBC Driver Manager

SQL_ATTR_TRANSLATE_LIB 1.0 No

SQL_ATTR_TRANSLATE_DLL 1.0 No

SQL_ATTR_TRANSLATE_OPTION 1.0 No

SQL_ATTR_TXN_ISOLATION 1.0 Yes

Support for ODBC Statement Attributes
The following table lists the ODBC statement attribute support using the Microsoft ODBC Driver for DB2. Note that the
statement attributes in this list use the ODBC Version 3.0 attribute names, rather than the older ODBC 1.0 names.

ODBC statement attribute ODBC versio
n

Attribute supported by the Microsoft ODBC Driver for DB2

SQL_ATTR_APP_PARAM_DESC 3.0 Yes

SQL_ATTR_APP_ROW_DESC 3.0 Yes

SQL_ATTR_ASYNC_ENABLE 1.0 No

SQL_ATTR_CONCURRENCY No

SQL_ATTR_CURSOR_SCROLLABLE 3.0 No

SQL_ATTR_CURSOR_SENSITIVITY 3.0 No

SQL_ATTR_CURSOR_TYPE 1.0 Yes, but the ODBC Driver for DB2 supports a forward scrolling only cursor
type

SQL_ATTR_ENABLE_AUTO_IPD 3.0 No

SQL_ATTR_FETCH_BOOKMARK_PTR 3.0 No

SQL_ATTR_IMP_PARAM_DESC Yes, handled by ODBC Driver Manager

SQL_ATTR_IMP_ROW_DESC Yes, handled by ODBC Driver Manager

SQL_ATTR_KEYSET_SIZE 1.0 No

SQL_ATTR_MAX_LENGTH 1.0 No

SQL_ATTR_MAX_ROWS 1.0 No

SQL_ATTR_METADATA_ID 3.0 Yes

SQL_ATTR_NOSCAN 1.0 Yes

SQL_ATTR_PARAM_BIND_OFFSET_P
TR

3.0 Yes

SQL_ATTR_PARAM_BIND_TYPE 3.0 Yes

SQL_ATTR_PARAM_OPERATION_PT
R

3.0 Yes

SQL_ATTR_PARAM_STATUS_PTR 3.0 Yes

SQL_ATTR_PARAMS_PROCESSED_P
TR

3.0 Yes

SQL_ATTR_PARAMSET_SIZE 3.0 Yes

SQL_ATTR_QUERY_TIMEOUT 1.0 No

SQL_ATTR_RETRIEVE_DATA 1.0 No

SQL_ATTR_ROW_ARRAY_SIZE 3.0 Yes

SQL_ATTR_ROW_BIND_OFFSET_PTR 3.0 Yes

SQL_ATTR_ROW_BIND_TYPE 1.0 Yes

SQL_ATTR_ROW_NUMBER 1.0 No

SQL_ATTR_ROW_OPERATION_PTR 3.0 No

SQL_ATTR_ROW_STATUS_PTR 3.0 Yes

SQL_ATTR_ROWS_FETCHED_PTR 3.0 Yes

SQL_ATTR_SIMULATE_CURSOR 1.0 No

SQL_ATTR_USE_BOOKMARKS 1.0 No

ADO Object Support in the ODBC Driver for DB2
The following table summarizes the Microsoft ActiveX Data Objects (ADO) version 2.0 objects that are supported by the current
version of the Microsoft Open Database Connectivity (ODBC) Driver for DB2.

ADO object Support

Collection Yes, most methods

Command Object Yes, some methods, some properties, and all collections

Connection Object Yes, some methods, some properties, and all collections

Error Object Yes, some properties

Field Object Yes, no methods, most properties, and all collections

Parameter Object Yes, most methods, most properties, and all collections

Recordset Object Yes, most methods, most properties, and all collections

The Parameter object will be supported by a later version of the ODBC Driver for DB2. For more information about ADO
object support, see ADO Object Support in the OLE DB Provider for AS/400 and VSAM and
ADO Object Support in the OLE DB Provider for DB2.

In This Section

ADO Method Support in the ODBC Driver for DB2

ADO Property Support in the ODBC Driver for DB2

ADO Collection Support in the ODBC Driver for DB2

Command Object in the ODBC Driver for DB2 (ADO)

Connection Object in the ODBC Driver for DB2 (ADO)

Error Object in the ODBC Driver for DB2 (ADO)

Field Object in the ODBC Driver for DB2 (ADO)

Recordset Object in the ODBC Driver for DB2 (ADO)

https://msdn.microsoft.com/en-us/library/aa704930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744324(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770462(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705544(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771732(v=bts.10).aspx

ADO Method Support in the ODBC Driver for DB2
The following table summarizes the ActiveX Data Objects (ADO) version 2.0 object methods that are supported by the current
version of the Microsoft ODBC Driver for DB2.

ADO object Method Support

Collection Object Append Method No

 Clear Method Yes

 Delete Method Yes

 Item Method Yes

 Refresh Method Yes

Command Object CreateParameter Method Yes

 Cancel Method No

 Execute Method Yes

Connection Object BeginTrans Method Yes

 Cancel Method No

 Close Method Yes

 CommitTrans Method Yes

 Execute Method Yes

 Open Method Yes

 OpenSchema Method Yes

 RollbackTrans Method Yes

Field Object AppendChunk Method No

 GetChunk Method No

 ReadFromFile Method No

 WriteToFile Method No

Parameter Object AppendChunk Method No

Recordset Object AddNew Method Yes

 Cancel Method No

 CancelBatch Method Yes

https://msdn.microsoft.com/en-us/library/aa746264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx

 CancelUpdate Yes

 Clone Method Yes

 Close Method Yes

 Delete Method Yes

 Find Method No

 GetRows Method Yes

 Move Method Yes

 MoveFirst Method Yes

 MoveLast Method Yes, when using a client-side cursor only

 MoveNext Method Yes

 MovePrevious Method Yes, when using a client-side cursor only

 NextRecordset Method No

 Open Method Yes

 Requery Method Yes

 Resync Method No

 Save Method Yes

 Seek Method No

 Supports Method Yes

 Update Method Yes

 UpdateBatch Method Yes

Note
The Collection object is actually a special case, representing a collection of other ADO objects. These collection objects supp
ort several methods:

Append to add an object to a collection.

Clear to empty all objects from a collection.

Delete to remove a single object from a collection.

Item to return a specific member object of a collection by name or ordinal number.

Refresh to update the objects in a collection to reflect objects available from and specific to the ODBC Driver.

https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx

ADO Property Support in the ODBC Driver for DB2
The following table summarizes the ActiveX Data Objects (ADO) version 2.0 object properties that are supported by the current
version of Microsoft ODBC Driver for DB2.

ADO object Property Support

Command Object ActiveConnection Property Yes

 CommandText Property Yes

 CommandTimeout Property No

 CommandType Property Yes

 Prepared Property Yes

 State Property Yes

Connection Object Attributes Property Yes

 CommandTimeout Property No

 ConnectionString Property Yes

 ConnectionTimeout Property No

 CursorLocation Property Yes

 DefaultDatabase Property No

 IsolationLevel Property Yes

 Mode Property Yes

 Provider Property Yes

 State Property Yes

 Version Property Yes

Error Object Description Property Yes

 HelpContext Property No

 HelpFile No

 NativeError Property Yes

 Number Property Yes

 Source Property Yes

 SQLState Property Yes

https://msdn.microsoft.com/en-us/library/aa704930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705406(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx

Field Object ActualSize Property Yes

 Attributes Property Yes

 DataFormat Property No

 DefinedSizeProperty Yes

 Name Property Yes

 NumericScale Property Yes

 OriginalValue Property Yes

 Precision Property Yes

 Type Property Yes

 UnderlyingValue Property Yes

 Value Property Yes

Parameter Object Attributes Property Yes

 Direction Property Yes

 Name Property Yes

 NumericScale Property Yes

 Precision Property Yes

 Size Property Yes

 Type Property Yes

 Value Property Yes

Recordset Object AbsolutePage Property No

 AbsolutePosition Property No

 ActiveCommand Property Yes

 ActiveConnection Property Yes

 BOF Property Yes

 Bookmark Property Yes

 CacheSize Property Yes

 CursorLocation Property Yes

https://msdn.microsoft.com/en-us/library/aa770738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx

 CursorType Property Yes

 DataMember Property No

 DataSource Property No

 EditMode Property Yes

 EOF Property Yes

 Filter Property No

 Index Property No

 LockType Property Yes

 MarshalOptions Property No

 MaxRecords Property Yes

 PageCount Property No

 PageSize Property No

 RecordCount Property No

 Sort Property No

 Source Property Yes

 State Property Yes

 Status Property Yes

 StayInSync Property No

https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx

ADO Collection Support in the ODBC Driver for DB2
The following table summarizes the Microsoft® ActiveX® Data Objects (ADO) version 2.0 object collections that are supported
by the current version of the Microsoft ODBC Driver for DB2.

ADO object Collection Support

Command Object Parameters Property Yes

 Properties Property Yes

Connection Object Errors Property Yes

 Properties Property Yes

Field Object Properties Property Yes

Parameter Properties Property Yes

Recordset Object Fields Property Yes

 Properties Property Yes

https://msdn.microsoft.com/en-us/library/aa704930(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746206(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770738(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771732(v=bts.10).aspx

Command Object in the ODBC Driver for DB2 (ADO)
The ActiveX Data Objects (ADO) Command object is a definition of a specific command that is to be executed against an Open
Database Connectivity (ODBC) Driver data source.

Command objects can be used to create a Recordset object and obtain records, execute a bulk operation, or manipulate the
structure of a database. When using the Microsoft ODBC Driver for DB2, some collections, methods, or properties of a
Command object can generate an error when called.

The primary purpose of the Command object in the context of the ODBC Driver for DB2 is to issue SQL commands for
execution by the remote DB2 target server. Legal SQL commands are documented for the target DB2 platforms in SQL
Reference Guides published by IBM.

The following table lists the Command object methods, properties, and collections that are supported by the current version
of the ODBC Driver for DB2.

Name Comment

Execute Method Evaluates command text (only supported Options parameter for this method is adCmdText, which indicat
es that this is an SQL text command).

ActiveConnection P
roperty

Sets or returns the information used to establish a connection to a data source (see notes following).

CommandText Pro
perty

Sets or returns the command text to be executed.

CommandType Pro
perty

Sets or returns the type of command in a CommandText property.

State Property Describes the current state of an object.

Properties collecti
on

Collections of properties on the command.

The Execute method executes a command and returns a Recordset object, if appropriate. The Command object can be used
to open tables or execute SQL commands on a remote DB2 server. If errors occur, you can examine them with the Errors
collection on the Connection object.

You can create a Command object independently of a previously defined Connection object by setting the
ActiveConnection property of the Command object to a valid connection string (for the proper syntax, see the
ConnectionString property of the Connection object). ADO still creates a Connection object, but it does not assign that
object to an object variable. However, if multiple Command objects are to be associated with the same connection, the
Connection object should be explicitly created and opened. This assigns the Connection object to an object variable. If the
ActiveConnection property of the Command object is not set to this object variable, ADO creates a new Connection object
for each Command object, even if the same connection string is used.

The ActiveConnection property associates an open connection with a Command object. The CommandText property
defines the text version of a command (SELECT ALL FROM TABLE, for example). The CommandType property specifies the
type of command described in the CommandText property prior to execution to optimize performance. The CommandType
property must be set to adCmdText for use with the ODBC Driver for DB2.

https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx

Connection Object in the ODBC Driver for DB2 (ADO)
The ActiveX Data Objects (ADO) Connection object represents an open connection to an Open Database Connectivity (ODBC)
data source. The Provider property sets the ODBC Driver to use. Setting the ConnectionString properties configures the
connection before opening the data source. The Version property determines the version of the ADO implementation in use.

The Open method establishes the physical connection to the data source and the Close method terminates the connection. If
errors occur, these can be examined with the Errors collection.

The following table lists the Connection object methods, properties, and collections that are supported by the current version
of the Microsoft ODBC Driver for DB2.

Name Comment

Close Method Closes a connection to a data source.

Execute Method Evaluates command text.

Open Method Opens a connection to a data source and can optionally pass ConnectionString parameters with thi
s method.

OpenSchema Method Obtains database schema information from the ODBC Driver.

Attributes Property One or more characteristics supported for a given Connection object.

ConnectionString Prope
rty

Contains the information used to establish a connection to a data source (see notes following this tab
le).

CursorLocation proper
ty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

IsolationLevel Property Sets or returns the level of isolation for a Connection object.

Mode Property Indicates the available permissions for modifying data in a connection.

Provider Property Sets or returns the name of the provider for a connection.

State Property Describes the current state of an object.

Version Property Returns the version number of the ADO implementation in use.

Errors collection Collections of Error objects on the connection.

Properties collection Collections of properties on the connection.

The information needed to establish a connection to a data source can be set in the ConnectionString property or passed as
part of the Open method. In either case, this information must be in a specific format for use with the ODBC Driver for DB2.
This information can be a data source name (DSN) or a detailed connection string containing a series of argument=value
statements separated by semicolons. The following table list the supported ADO-defined arguments for the
ConnectionString property.

Arg
um
ent

Description

https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx

Dat
a S
our
ce

A required parameter that is used to define the data source. The ODBC driver manager uses this attribute value to load th
e correct ODBC data source configuration from the registry or from a file. For File data sources, this field is used to name t
he DSN file that is stored in the Program Files\Common Files\ODBC\Data Sources directory.

File
Na
me

Name of the provider-specific file containing preset connection information. This argument cannot be used if a Provider a
rgument is passed.

Loc
atio
n

The remote database name used for connecting to OS/400 systems. This parameter is optional when connecting to mainf
rame systems.

Pas
swo
rd

Valid mainframe or AS/400 password for use when opening the connection. This password is used to validate that the use
r can log on to the target DB2 host system and has appropriate access rights to the database.

Pro
vid
er

Name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be set to "DB2
OLEDB".

Use
r ID

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate
that the user can log on to the target DB2 host system and has appropriate access rights to the database.

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the following tables. The arguments supported by ODBC Driver for DB2 supplied with Host Integration
Server 2009 differ from the arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The following table describes the arguments supported by the ODBC Driver for DB2 supplied with Host Integration
Server 2009.

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a Code Chara
cter Set Identifier (CCSID) of 65535) as character data type fields on a per-data source basis. The CCSID and PCCodePage
values are required input parameters.

C
C
SI
D

The CCSID matching the DB2 data as represented on the remote computer. The CCSID property is required when processin
g binary data as character data. Unless the BinAsChar value is set, character data is converted based on the DB2 column CC
SID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character Code Page to use on the computer. This parameter is required when processing binary data as character data.
Unless the Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configur
ed in Microsoft® Windows®.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left bl
ank.

D
S

The Default Schema parameter is the name of the collection where the ODBC Driver for DB2 looks for catalog information.
The Default Schema parameter is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses D
efault Schema to restrict results sets for popular operations, such as enumerating a list of tables in a target collection (for ex
ample, ODBC Catalog SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/
400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappro
priate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this att
ribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this fi
eld is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote logical unit (LU) alias configured in Host In
tegration Server.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a v
alue that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), B
ATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the NTL, the Network Address parameter indicates the IP address or the hostname alias of the host
DB2 server.

N
P

When TCP/IP is used for the NTL, the Network Port parameter indicates the TCP/IP port used for communication with the ta
rget DB2 Distributed Relational Database Architecture (DRDA) service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. Th
e possible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind D
B2 packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA Application Requester, uses packages to issue d
ynamic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user point
s using the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this
attribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this
field is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be s
et to "DB2OLEDB".

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate tha
t the user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parame
ter is the same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This paramet
er is referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessibl
e locations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look i
n the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 Install
ation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the W
RKRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created u
sing the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applic
ation server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP n
ame.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, the al
ternative TP Name is set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate t
hat the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is t
he same as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are distributed unit of work (DU
W) or remote unit of work (RUW). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 is as follows:

Note
The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

syntax is valid with ADO 1.5 and ADO 2.0 and prompts the user for ConnectionString properties, as shown in the following
code:

A sample Open method call with these parameters is as follows:

The last three parameters to the Open method correspond with the CursorType (the adOpenForwardOnly enum is 0, for
example), LockType (the adLockReadOnly enum is 1, for example), and Options (adCmdText is 1, which indicates that the
source name should be evaluated as SQL text). The Options parameter must be set to adCmdText (1) when used with a data
source name with ODBC Driver for DB2.

The following table describes the allowable values for CCSID when using SNA National Language Support (SNANLS) for
character code conversions (the default).

EBCDIC character set CCSID value

Arabic 20420

Binary (No Conversion) 65535

Chinese (Simplified) 935

Chinese (Traditional) 937

Cyrillic (Russian) 20880

Cyrillic (Serbian, Bulgarian) 21025

Denmark/Norway (euro) 1142

Denmark/Norway 20277

Finland/Sweden (euro) 1143

Finland/Sweden 20278

France (euro) 1147

France 20297

Germany (euro) 1141

Germany 20273

Greek (Modern) 875

Greek 20423

Hebrew 20424

Icelandic (euro) 1149

Conn.ConnectionString = "Provider=DB2OLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

RS.Open "Accounting",Conn,0,1,1

Icelandic 20871

International (euro) 1148

International 500

Italy (euro) 1144

Italy 20280

Japanese (English-lower) 931

Japanese (Extend English) 939

Japanese (Extend Katakana) 930

Japanese (Katakana) 290

Japanese (Katakana-Kanji) 5026

Japanese (Latin-Kanji) 5035

Korean 933

Latin America/Spain (euro) 1145

Latin America/Spain 20284

Latin-1 Open System (euro) 20924

Latin-1 Open System 1047

Multilingual/ROECE (Latin-2) 870

Thai 20838

Turkish (Latin-5) 1026

Turkish 20905

U.S./Canada (euro) 1140

U.S./Canada 37

United Kingdom (euro) 1146

United Kingdom 20285

Note that the SNANLS conversions use the locale configured for the data sources using data links. For more information, see
SNA National Language Support Programmer's Guide.

The following table describes the allowable values for CCSID when using ANSI/OEM for character code conversions.

ANSI/OEM character set CCSID value

https://msdn.microsoft.com/en-us/library/aa754707(v=bts.10).aspx

ANSI - Arabic 1256

ANSI - Baltic 1257

ANSI - Cyrillic 1251

ANSI - Eastern Europe 1250

ANSI - Greek 1253

ANSI - Hebrew 1255

ANSI - Latin I 1252

ANSI - Turkish 1254

ANSI/OEM - Korean (Extended Wansung) 949

ANSI/OEM - Japanese Shift-JIS 932

ANSI/OEM - Simplified Chinese GBK 936

ANSI/OEM - Traditional Chinese Big5 950

ANSI/OEM - Thai 874

ANSI/OEM - Vietnam 1258

Error Object in the ODBC Driver for DB2 (ADO)
The ActiveX Data Objects (ADO) Error object contains details about data access errors pertaining to a single operation
involving ADO. You can read the properties of an Error object to obtain specific details about each error.

The Error object does not support any methods or collections; however, the Errors collection supported by other objects
provides the standard Collection methods (Clear and Delete). Error objects are automatically appended to the Errors
collection by the Open Database Connectivity (ODBC) Driver when they occur. The following table lists the Error object
properties that are supported by the current version of the Microsoft® ODBC Driver for DB2.

Property Na
me

Comment

Description P
roperty

The text of the error alert that is returned based on the minor error code (specific to the ODBC Driver for DB2) c
ontained in the Error object resulting from an error.

NativeError P
roperty

A Long integer value of the error code returned by the ODBC Driver for DB2.

Number Prop
erty

The Long integer value of the ODBC error constant.

Source Prope
rty

A string that indicates the name of the object or application that originally generated an error.

https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx

Field Object in the ODBC Driver for DB2 (ADO)
The ActiveX Data Objects (ADO) Field object represents a column of data with a common data type. Each Field object
corresponds to a column in a Recordset object.

The following table lists the Field object methods, properties, and collections that are supported by the current version of
Microsoft ODBC Driver for DB2.

Name Comment

ActualSize Property Actual length of a field's value.

Attributes Property One or more characteristics supported for a given Field object.

DefinedSize Property Defined size of a Field object.

Name Property Name of the Field object.

NumericScale Property Scale of numeric values in a Field object for numeric data.

OriginalValue Property Value of a Field object that existed in the record before changes were made.

Precision Property Degree of precision for numeric values in a Field object for numeric data.

Type Property Operational type or data type for a Field object.

UnderlyingValue Property Current value of a Field object.

Value Property Value assigned to a Field object in a Recordset.

Properties collection Collections of properties on the field.

https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx

Recordset Object in the ODBC Driver for DB2 (ADO)
The ActiveX Data Objects (ADO) Recordset object represents the entire set of records from a base table. At any time, the
Recordset object refers to only one record within the set as the current record.

The following table lists the Recordset object methods, properties, and collections that are supported by the current version of
the Microsoft ODBC Driver for DB2.

Name Comment

AddNew Method Creates a new record for an updateable Recordset object.

CancelBatch Met
hod

Cancels a pending batch update.

CancelUpdate M
ethod

Cancels any changes made to a current record or to a new record prior to calling the UpdateBatch method.

Clone Method Creates a duplicate Recordset object from an existing Recordset object.

Close Method Closes an open object and any dependent objects.

Delete Method Deletes the current record in an open Recordset object or an object from a collection.

GetRows Method Retrieves multiple records of a Recordset into an array.

Move Method Moves the position of the current record in a Recordset object.

MoveFirst Metho
d

Moves to the first record in a specified Recordset.

MoveLast Metho
d

Moves to the last record in a specified Recordset. This method is only supported when using a client-side cu
rsor.

MoveNext Metho
d

Moves to the next record in a specified Recordset.

MovePrevious M
ethod

Moves to the previous record in a specified Recordset. This method is only supported when using a client-si
de cursor.

Open Method Opens a cursor on a Recordset.

Requery Method Updates the data in a Recordset object by re-executing the query on which the object is based (equivalent t
o calling the Close and Open methods in succession).

Save Method Saves a Recordset in a file or Stream object.

Supports Method Determines whether a specified Recordset object supports a particular type of function.

Update Method Saves any changes you make to the current record of a Recordset object.

UpdateBatch Met
hod

Writes all pending batch updates to disk.

ActiveCommand
Property

Returns the Command object that created the specified Recordset.

https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx

ActiveConnection
Property

Sets or returns the Connection object that the specified Recordset object currently belongs.

BOF Property Indicates whether the current record position is before the first record in a Recordset object.

Bookmark Prope
rty

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the current rec
ord in a Recordset object identified by a valid bookmark.

CacheSize Proper
ty

Sets or returns the number of records from a Recordset object that are cached locally in memory.

CursorLocation P
roperty

Sets or returns the location of the cursor (whether the cursor is on the client or the server side).

CursorType Prop
erty

Sets or returns the type of cursor used in a Recordset object. Only the adOpenForwardOnly CursorType i
s supported by the current version of the ODBC Driver for DB2.

EditMode Proper
ty

Indicates the editing status of the current record type.

EOF Property Indicates whether the current record position is after the last record in a Recordset object.

LockType Propert
y

Sets or returns the types of locks placed on records during editing. The ODBC Driver for DB2 supports locks
of type adLockReadOnly and adLockPessimistic.

MaxRecords Pro
perty

Sets or returns the maximum number of records to return to a Recordset from a query.

Source Property Sets or returns the source (table name or command object) for the data in a Recordset.

State Property Describes the current state of an object.

Status Property Indicates the status of the current record with respect to batch updates or other bulk operations.

Fields collection Collections of fields on the Recordset.

Properties collec
tion

Collections of properties on the Recordset.

https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx

Managed Provider for DB2 Programmer's Reference
The Managed Provider for DB2 enables users to access IBM DB2 from within a managed code application, and serves as a
bridge between a DB2 data source and an ADO DataSet. This section provides the reference material needed to program the
Managed Provider for DB2.

Related Sections

Managed Provider Programmer's Guide

Microsoft.HostIntegration.MsDb2Client

https://msdn.microsoft.com/en-us/library/aa754479(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771384(v=bts.10).aspx

Data Access Library Programmer's Reference
The Data Access Library interface enables users to automate lengthy tasks normally performed through the Data Access Tool
(DAT) user interface.

Related Sections

Data Access Library Programmer's Guide.

Microsoft.HostIntegration.DataAccessLibrary

https://msdn.microsoft.com/en-us/library/aa704684(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771383(v=bts.10).aspx

Managed Data Provider for Host Files Programmer's Reference
The Managed Data Provider for Host Files enables users to access IBM host file systems from within a managed code
application

Related Sections

Managed Data Provider for Host Files Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771659(v=bts.10).aspx

SQL Parsing in the Managed Data Provider for Host Files
The following topics describe the parsing rules for the Managed Data Provider for Host Files.

In This Section

SELECT Statement

INSERT Statement

UPDATE Statement

DELETE Statement

Column Collection Parsing

WHERE Clause Parsing

Value Parsing

Parameterized Queries

Limitations

See Also
Concepts
Managed Data Provider for Host Files Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa772106(v=bts.10).aspx

SELECT Statement
The following describes the SELECT statement parsing used in the Managed Provider for Host Files and provides sample
SELECT statements.

Syntax

SELECT <Column Collection> FROM Filename WHERE <Where Clause>

SELECT <Column Collection> FROM Filename AS <AssemblyName.SchemaName> WHERE <Where Clause>

Examples

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

SELECT * FROM FILE_NAME
SELECT COL_NAME1, COL_NAME2… FROM FILE_NAME

INSERT Statement
The following describes the syntax of the INSERT statement for the Managed Provider for Host Files, and provides sample
INSERT statements.

Syntax

INSERT INTO Filename VALUES (<Values>)

INSERT INTO Filename AS <AssemblyName.SchemaName> VALUES (<Values>)

INSERT INTO Filename (<Column Collection>) VALUES (<Values>)

INSERT INTO Filename AS <AssemblyName.SchemaName> (<Column Collection>) VALUES (<Values>)

Example

The following are sample INSERT statements for the Managed Provider for Host Files.

See Also
Concepts
Managed Data Provider for Host Files Programmer's Reference

INSERT INTO Filename (COL1, COL2…) VALUES(value1, Value2…)
INSERT INTO Filename AS Library_VSAM.NUMBERS (OUT1_CHAR1, UNION1, UNION2, UNION3, UNION4,
UNION5, UNION6, OUT1_DECIMAL, OUT1_DOUBLE, OUT1_SINGLE) VALUES ("RECORD", {1234}, {2765788
53}, {1234}, {271111111}, {-1234}, {-135363175}, 100, 100, 100)Comments

https://msdn.microsoft.com/en-us/library/aa772106(v=bts.10).aspx

UPDATE Statement
The following describes the UPDATE statement for the Managed Provider for Host Files and provides a sample UPDATE
statement.

Syntax

UPDATE Filename SET (<Values>)

UPDATE Filename SET (<Values>) WHERE <Where Clause>

UPDATE Filename AS <AssemblyName.SchemaName> SET (<Values>)

UPDATE Filename AS <AssemblyName.SchemaName> SET (<Values>) WHERE <Where Clause>

UPDATE Filename SET (<Column Collection>) (<Values>)

UPDATE Filename SET (<Column Collection>) (<Values>) WHERE <Where Clause>

Example

The following is a sample UPDATE statement for the Managed Provider for Host Files.

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

UPDATE Filename SET (OUT1_INTEGER) (7) WHERE <Applicable where clause >

DELETE Statement
The following describes the DELETE statement for the Managed Provider for Host files.

Syntax

DELETE FROM Filename

DELETE FROM Filename WHERE <Where Clause>

DELETE FROM Filename AS <AssemblyName.SchemaName>

DELETE FROM Filename AS <AssemblyName.SchemaName> WHERE <Where Clause>

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

Column Collection Parsing
The following describes the column collection parsing for the Managed Provider for Host Files and provides a sample parsed
column collection.

1. Check for * OR

2. Check for column identifiers separated by commas.

3. After every column name, check whether the AS keyword is provided.

If AS is provided, the next token should be the CLR data type, such as Int32 or String).

Example

The following is a sample parsed column collection for the Managed Provider for Host Files.

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

*
Col1, Col2, …
Col1 AS String, Col2 as Int32, …
Col1 AS String, Col2, Col3, …Comments
Optional comments.

WHERE Clause Parsing
The following describes the parsing rules for a WHERE clause for the Managed Provider for Host Files and provides sample
parsing statements.

1. Check whether the token is KEY or POSITION.

2. If the token is KEY:

a. The next token should be an open parenthesis ((), followed by the column collection, followed by a close
parenthesis ()).

b. The next token can be = or EQUALS or BETWEEN.

c. If the token is = or EQUALS, then it should be followed by values. Refer to Value Parsing for details about the
values.

d. If the token is BETWEEN, then it should be followed by a value, optionally followed by the INCLUSIVE or
EXCLUSIVE keyword. Then it should be followed by AND, followed by another value, optionally followed by
INCLUSIVE or EXCLUSIVE.

3. If the token is POSITION:

a. The next token can be = or EQUALS or BETWEEN.

b. If the token is = or EQUALS, then it should be followed by values. Refer to Value Parsing for details about the
values.

c. If the token is BETWEEN, then it should be followed by a value, optionally followed by the INCLUSIVE or
EXCLUSIVE keyword. Then it should be followed by AND, followed by another value, optionally followed by
INCLUSIVE or EXCLUSIVE.

Example

The following is a sample set of parsing statements for the WHERE clause for the Managed Provider for Host Files.

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

WHERE KEY (KEY_COL) = ‘1290’
WHERE KEY (KEY_COL) EQUALS ‘1290’
WHERE KEY (KEY_COL) BETWEEN 1290 AND 1390
WHERE KEY (KEY_COL) BETWEEN 1290 INCLUSIVE AND 1390 EXCLUSIVE
WHERE POSITION = 101
WHERE POSITION EQUALS 101
WHERE POSITION BETWEEN 101 AND 201
WHERE POSITION BETWEEN 101 EXCLUSIVE AND 201 INCLUSIVE

Value Parsing
The following describes the syntax for value parsing for the Managed Provider for Host Files and provides an example.

Syntax

The primitive values are separated by commas. If there are complex data types like Unions or Arrays, then they are enclosed in
curly brackets, like {value}.

Example

The following is an example of value parsing for the Managed Provider for Host Files.

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

("RECORD”,{1234},{276578853},{1234},{271111111},{-1234},
{-135363175},100,100,100)

Parameterized Queries
The host file provider supports parameterized queries. In this case, instead of using the values directly in the SQL statement, a
placeholder can be used.

Syntax

WHERE KEY (KEY_COLUMN) BETWEEN (@p1) AND (@p2)

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

Limitations
The following describes the limitations on SQL statements for the Managed Provider for Host Files.

SQL Limitations

If the table contains a complex type (for example, Unions), then the INSERT and UPDATE commands should set the
values for all the complex types.

Data definition language (DDL) commands like ALTER and CREATE are not supported.

Any form of data control language (DCL) is not supported.

The expression: {COLUMN NAME} AS {EXPRESSION} is not supported.

See Also
Other Resources
SQL Parsing in the Managed Data Provider for Host Files

ActiveX Controls Programmer's Reference
Host Integration Server 2009 provides ActiveX controls that enable many Host Integration Server features to be easily accessed
from a large number of client development environments. The APIs of these controls are listed in this section.

For general information about programming for ActiveX controls, see the ActiveX Controls Programmer's Guide section of the
SDK.

For sample code that uses ActiveX controls, see the Data Integration Samples section in the SDK.

In This Section

Data Queue ActiveX Control Programmer's Reference

Host File Transfer ActiveX Control Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa744325(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771007(v=bts.10).aspx

Data Queue ActiveX Control Programmer's Reference
This section provides reference information about specific ActiveX methods, properties, and event notifications supported by
the Microsoft Data Queue ActiveX control. The function syntax and code examples are based on Microsoft Visual Basic.

In This Section

AddQueueItem Method

Cancel Method

CancelQueue Method

CCSID Property

ClearAll Method

Connect Method

ConnectionState Property

ConnectionType Property

CreateQueue Method

CreateQueueContainer Method

DeleteQueue Method

Disconnect Method

GetQueueItem Method

LocalLU Property

ModeName Property

Password Property

PCCodePage Property

QueryAttribute Method

QueueName Property

RemoteLU Property

SetAttribute Method

StopQueue Method

UserID Property

https://msdn.microsoft.com/en-us/library/aa745720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771660(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705577(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753885(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772081(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754769(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772004(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745840(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754280(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746180(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704818(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704830(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705629(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772014(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771315(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705811(v=bts.10).aspx

AddQueueItem Method
The AddQueueItem method on an IEGDataQueue object adds a record to a specified data queue using the Microsoft® Data
Queue ActiveX® control.

Syntax

Parameters
QueueItem

This required parameter representing an IEIGDataQueueItem object instance specifying the queue item to add to the
queue.

fBlock

This optional parameter specifies whether the operation should block until the completion status is known. This parameter
can be set to one of the eigAnswerYesNoEnum constants shown in the table following the Parameters section.

Values for the eigAnswerYesNoEnum constants
Enumerati
on

Valu
e

Description

eigAnswer
Yes

0 This value indicates that the operation should block until the completion status is known.

eigAnswer
No

1 This value indicates that the operation should not block. This is the default value for this parameter if it is omi
tted from the method call.

Remarks

The queue the item is sent to is represented by QItemType property on the IEIGDataQueueItem. The QueueItemis an object
of type IEIGDataQueueItem that may have been initialized by the user or returned by a call to GetQueueItem.

object.AddQueueItem QueueItem, fBlock

Cancel Method
The Cancel method on an IEGDataQueue object terminates a transfer operation that is already in progress. This method
cancels an item transfer using the Microsoft® Data Queue ActiveX® control.

Syntax

Parameters

None.

Remarks

The Cancel method is used to cancel a transfer operation that is already in progress.

object.Cancel

CancelQueue Method
The CancelQueue method on an IEGDataQueue object indicates that an application using the Microsoft® Data Queue
ActiveX® control no longer wants to be notified of an incoming queue data item. This can be used to stop pending
notifications that were queued as a result of calling GetQueueItem.

Syntax

Parameters
CancelReqCount

This optional parameter is a count (a short value) of the number of outstanding queue receive requests to cancel. This
parameter defaults to a value of 1.

CancelReqType

This optional parameter specifies the type of queue request to cancel. This parameter can be set to one of the
eigQItemTypeEnum constants shown in the table following the Parameters section.

KeyValue

This optional parameter is a VARIANT representing the key value and has no default value. If the CancelReqType is
eigKQItem, then this value specifies the key value to stop waiting for.

Values for the eigQItemTypeEnum constants
Enumeration Value Description

eigKQItem 0 A keyed item.

eigQItem 1 A non-keyed item. This is the default value for this parameter if it is not specified.

This parameter defaults to eigQItem.

Remarks

An application can call the CancelQueue method passing a CancelReqCount value of 0, in order to retrieve the number of
queued receive requests.

It is possible that a notification event is in process during this method call. If this occurs, the application may receive a
notification following the successful completion of this function. Entering a CancelReqCount value that is larger than the
queued requests will result in all requests being cancelled. No error will be returned under this condition. Calling this method
while no queued requests are outstanding will result in a noncritical error return code indicating this condition.

object.CancelQueue CancelReqCount, CancelReqType, KeyValue

CCSID Property
The CCSID property on an IEGDataQueueCtrl object indicates the character code set identifier (CCSID) that must match the
data in the queue as represented on the remote host computer. This property affects how data conversion is handled using the
Microsoft® Data Queue ActiveX® control. This property sets or returns a short value representing a host CCSID for the data
file. The default value for this property is 37 representing a CCSID for U.S./Canada.

Syntax

Remarks

The CCSID property is used to set or return the character code set identifier (CCSID) matching the data in the data queue as
represented on the remote host computer. This value is used for data conversion of any character data in the host data queue
to the PCCodePage property specified representing ANSI or Unicode character data on the computer running Microsoft®
Windows®.

current CCSID = object.CCSID
object.CCSID = 37

ClearAll Method
The ClearAll method on the EIGDataQueue object removes all items from the queue.

Syntax

Parameters
OverWrite

This optional parameter specifies whether to overwrite data in the queue. This parameter can be set to one of the
eigAnswerYesNoEnum constants shown in the table following the Parameters section.

Values for the eigAnswerYesNoEnum constants
Enumeration Value Description

eigAnswerYes 0 This value indicates that the operation should overwrite data in the queue.

This is the default value for this parameter if it is omitted from the method call.

eigAnswerNo 1 This value indicates that the operation should not overwrite data in the queue.

object.ClearAll OverWrite

Connect Method
The Connect method on an IEGDataQueueCtrl object establishes a connection to the configured host using the Microsoft®
Data Queue ActiveX® control and reports to the user an indication of the success or failure of the action.

Syntax

Parameters

None.

Remarks

The Connect method is used to establish a connection to the host.

If the Data Queue ActiveX control support DLL cannot be loaded, the Win32® SetErrorMode function is called with an error
value of SEM_NOOPENFILEERRORBOX | SEM_FAILCRITICALERRORS. Other types of errors are returned using the
ISupportErrorInfo object.

object.Connect

ConnectionState Property
The ConnectionState property on an IEGDataQueueCtrl object indicates the current state of the connection to the host
using the Microsoft® Data Queue ActiveX® control. The state of a connection can be unspecified, idle, connecting, connected,
or disconnecting. This property returns a Long value representing a eigConnectionStateEnum. The default value for this
property is eigConnStateIdle.

Syntax

Remarks

The ConnectionState property is used to return the current state of the connection to the host. This property is read-only and
can be one of the following eigConnectionStateEnum constants:

Enumeration Valu
e

Description

eigConnStateUnspecified -1 This value indicates that the connection state is unspecified.

eigConnStateIdle 0 This value indicates that the connection state is idle and no connection to the host exists.

eigConnStateConnecting 1 This value indicates that the connection state is in the process of connecting to the host.

eigConnStateConnected 2 This value indicates that the connection state is connected indicating a connection to the hos
t.

eigConnStateDisconnectin
g

3 This value indicates that the connection state is in the process of disconnecting from the hos
t.

currentConnectionState = object.ConnectionState

ConnectionType Property
The ConnectionType property on an IEGDataQueueCtrl object indicates the network transport used for this connection. This
property sets or returns a Long value representing an eigConnectionTypeEnum. The default value for this property is
eigConnTypeAPPC indicating an APPC connection using SNA.

Syntax

Remarks

The ConnectionType property is used to set or return the connection type used to connect to the host. This property can be
one of the following eigConnectionTypeEnum constants:

Enumeration Value Description

eigConnTypeUnspecified -1 This value indicates that the connection type is unspecified.

eigConnTypeAPPC 0 This value indicates an APPC connection to the host using SNA LU 6.2.

If APPC (SNA LU 6.2) is selected for ConnectionType, then values for the LocalLU, ModeName, and RemoteLU properties
are required.

currentConnectionType = object.ConnectionType

CreateQueue Method
The CreateQueue method on an IEGDataQueue object creates a data queue using the Microsoft® Data Queue ActiveX®
control. Following the successful creation of the queue, the object has a virtual connection to the data queue, such that a single
instance of this object represents a single queue connection. In order to break this connection, the application can modify the
QueueName property thus altering the queue association to a new value.

Syntax

Parameters
MaxMsgLength

This required parameter indicates the maximum length of a record in the queue represented as a short integer with possible
values ranging from 1 to 31,744. This parameter defaults to a value of 256.

QAuthority

This required parameter specifies the authority to grant users of this queue. This parameter can be set to one of the
eigQAuthorityEnum constants shown in the table following the Parameters section.

QueueClass

This required parameter indicates how the data will be received from the data queue. This parameter can be set to one of the
eigQClassEnum constants shown in the table following the Parameters section.

AddSenderInfo

This required parameter indicates whether the queue sender's ID should be kept. This parameter can be set to one of the
eigAnswerYesNoEnum constants shown in the table following the Parameters section.

HostCCSID

This optional parameter indicates the character code set identifier (CCSID) represented as a short to be used on the host and
affects how data conversion is handled. This value must match the data in the queue as represented on the remote host
computer. This parameter has no default value, but if this parameter is not specified the HostCCSID defaults to the value of
the CCSID property set on the IEGDataQueueCtl object.

InitialSize

This optional parameter indicates the initial data queue size represented as a short integer.

queueLoc

This optional parameter indicates the queue location represented as VARIANT_BOOL.

recordLenCls

This optional parameter indicates the record length class. This parameter can be set to one of the eigRecordLenClsEnum
constants shown in the table following the Parameters section.

Title

This optional parameter indicates a text description of the queue represented as a BSTR with a maximum length of 50
characters. The default value for this parameter is an empty string.

AllowDupKeys

This optional parameter indicates whether duplicate keys are allowed. This parameter can be set to one of the
eigAnswerYesNoEnum constants shown in the table following the Parameters section.

Note that this parameter is only valid if the QueueClass is specified as eigQClassKeyed.

MakeKeyLen

This optional parameter indicates the maximum length of a key for this data queue represented as a short integer ranging

object.CreateQueueMaxMsgLength, QAuthority, QueueClass,
 AddSenderInfo, HostCCSID, InitialSize, queueLoc, recordLenCls,
 Title, AllowDupKeys, MakeKeyLen

from 1 to 256. Note that this parameter is only valid if the QueueClass is specified as eigQClassKeyed. This parameter has
no default value.

The eigQAuthorityEnum constants
Enumeration Valu

e
Description

eigQAuthUnspecifi
ed

-1 This value indicates that the authority is unspecified.

eigQAuthDefault 0 This value indicates directory default authorization. This is the default value for this parameter if it is
not specified.

eigQAuthAll 1 This value indicates all authorization.

eigQAuthExclude 2 This value indicates exclude authorization.

eigQAuthChange 3 This value indicates change authorization.

eigQAuthUse 4 This value indicates use authorization.

eigQAuthLibCreat
e

5 This value indicates library create authorization.

The eigQClassEnum constants
Enumeration Value Description

eigQClassUnspecified -1 No value

eigQClassFIFO 0 A first in, first out queue. This is the default value for this parameter if it is not specified.

eigQClassLIFO 1 A last in, first out queue.

eigQClassKeyed 2 A keyed ordered queue.

The eigAnswerYesNoEnum constants
Enumerat
ion

Val
ue

Description

eigAnswer
Yes

0 This value indicates that the sender ID should be kept.

eigAnswer
No

1 This value indicates that the sender ID should not be kept. This is the default value for this parameter if it is no
t specified in the method call.

The eigRecordLenClsEnum constants
Enumeration Valu

e
Description

eigRecordLenUnspecifi
ed

-1 This value indicates that the record length class is unspecified.

eigRecordLenFixed 0 This value indicates fixed length records. This is the default value for this parameter if it is not sp
ecified.

eigRecordLenInitVarLe
n

1 This value indicates initial variable record length.

eigRecordLenVarLen 2 This value indicates variable record length.

Remarks

The type of data queue created is dependent on the value of the QueueClass parameter. If a QueueClass of eigQClassKeyed is
specified, then a keyed data queue is created. A QueueClass of eigQClassFIFO and eigQClassLIFO will result in a non-keyed
data queue being created.

CreateQueueContainer Method
The CreateQueue method on an IEGDataQueueCtl object creates an instance of an IEIGDataQueue container object using
the Microsoft® Data Queue ActiveX® control and optionally initializes the QueueName property. The default value for this
property is VT_EMPTY.

Syntax

Parameters
QueueName

This optional parameter is a BSTR string representing the name of the data queue that this object instance is connected to.
This parameter corresponds with the value for the QueueName property.

Remarks

The created queue object is assumed to be associated with the connection object that created it for the life of the connection or
the life of the queue object.

object.CreateQueueContainer QueueName

https://msdn.microsoft.com/en-us/library/aa705629(v=bts.10).aspx

DeleteQueue Method
The DeleteQueue method on an IEGDataQueue object clears all messages from the queue and then deletes the queue using
the Data Queue ActiveX® control.

Syntax

Parameters
OverWriteData

This required parameter indicates whether data should be overwritten in the data queue. This parameter can be set to one of
the eigAnswerYesNoEnum constants listed in the table following the Parameters section.

The eigAnswerYesNoEnum constants
Enumeration Value Description

eigAnswerYes 0 This value indicates that the operation should overwrite data in the queue.

This is the default value for this parameter if it is omitted from the method call.

eigAnswerNo 1 This value indicates that the operation should not overwrite data in the queue.

This parameter had a default value of eigAnswerYes.

object.DeleteQueue OverWriteData

Disconnect Method
The Disconnect method on an IEGDataQueueCtrl object terminates an existing connection to a host computer using the
Microsoft® Data Queue ActiveX® control.

Syntax

Parameters

None.

Remarks

The Disconnect method is used to terminate a connection to the host. Errors are returned using the ISupportErrorInfo
object.

object.Disconnect

GetQueueItem Method
The GetQueueItem method on an IEGDataQueue object receives an item from a keyed queue using the Microsoft® Data
Queue ActiveX® control.

Syntax

Parameters
QueueType

This required parameter specifies the type of the queue request. This parameter can be set to one of the
eigQItemTypeEnum constants listed in the table following the Parameters section.

BlockComplete

This required parameter specifies whether the operation should block until the completion status is known. This parameter
can be set to one of the eigAnswerYesNoEnum constants listed in the table following the Parameters section.

PeekQItem

This required parameter indicates whether to keep the record in the data queue. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the table following the Parameters section.

ProvideExtInfo

This required parameter indicates whether to provide information in the External Job, name, and user properties. This
parameter can be set to one of the eigAnswerYesNoEnum constants listed in the table following the Parameters section.

TimeOut

This required parameter indicates the amount of time in seconds represented as a short value to block before indicating a
failure. This parameter has a default value of 0.

UserProfile

This required parameter indicates whether to provide user profile feedback. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the table following the Parameters section.

SenderInfo

This required parameter indicates whether the sender's ID should be returned. This parameter can be set to one of the
eigAnswerYesNoEnum constants listed in the table following the Parameters section.

SearchKey

This optional parameter indicates the key used in conjunction with the SearchOrder parameter used to identify the queue
data item being requested. This must be the same length as specified in the CreateDataQueue method call. This parameter
is represented as a VARIANT and has no default value.

Note that this parameter is only valid when the QueueClass for the data queue is eigQClassKeyed.

SearchOrder

This optional parameter indicates the relational order used in receiving keyed data queue items. This parameter can be set to
one of the eigSearchKeyEnum constants listed in the table following the Parameters section.

Note that this parameter is only valid when the QueueClass for the data queue is eigQClassKeyed.

QueueItem

This returned parameter is the requested IEGDataQueueItem.

The eigQItemTypeEnum constants
Enumeration Value Description

object.GetQueueItemQueueType, BlockComplete, PeekQItem,
 ProvideExtInfo, TimeOut, UserProfile, SenderInfo, SearchKey,
 SearchOrder, QueueItem

eigKQItem 0 A keyed item.

eigQItem 1 A non-keyed item. This is the default value for this parameter if it is not specified.
The eigAnswerYesNoEnum constants
Enumerat
ion

Val
ue

Description

eigAnswer
Yes

0 This value indicates that the sender ID should be returned.

eigAnswer
No

1 This value indicates that the sender ID should not be returned. This is the default value for this parameter if it i
s not specified in the method call.

The eigSearchKeyEnum constants
Enumeration Valu

e
Description

eigSearchKeyUnspecified -1 This value indicates that the SearchOrder parameter is unspecified.

eigSearchKeyEqual 0 This value indicates a search for items equal to the specified SearchKey parameter.

eigSearchKeyGreaterTha
n

1 This value indicates a search for items greater than the specified SearchKey parameter.

eigSearchKeyLessThan 2 This value indicates a search for items less than the specified SearchKey parameter.

eigSearchKeyGreaterEqu
al

3 This value indicates a search for items greater than or equal to the specified SearchKey param
eter.

eigSearchKeyLessEqual 4 This value indicates a search for items less than or equal to the specified SearchKey parameter
.

Remarks

If the BlockComplete parameter is eigAnswerNo and no queue item is available, the request will be queued. Following the
receipt of a queue data item, an event will be fired to the client indicating the availability of data. The client application will be
required to call this function again in order to receive the queue data.

If the BlockComplete parameter is eigAnswerYes and no data arrives on the queue within the specified amount of time, the
operation is cancelled and no data is returned. An error indication is returned to the client indicating that a timeout has
occurred.

Each call to this method may result in a queued process. Multiple calls may result in multiple notifications.

If the SenderInfo item is empty, then the information will not be returned. The client must allocate the storage as an indication
that it wishes to receive this information. The type of data queue is dependent on the value of the QueueClass parameter when
the data queue is created. For a QueueClass of eigQClassKeyed, a keyed data queue is created. A QueueClass of
eigQClassFIFO or eigQClassLIFO will result in a non-keyed data queue being created.

LocalLU Property
The LocalLU property on an IEGDataQueueCtrl object indicates the local LU alias for an APPC (SNA LU 6.2) connection type
to the remote host computer using the Microsoft® Data Queue ActiveX® control. This property sets or returns a BSTR string
value representing the local LU name. The default value for this property is the "LOCAL" string.

Syntax

Remarks

The LocalLU property is used to set or return the local LU alias. When LU 6.2 (SNA) is selected for the ConnectionType
property, this property must match the name of the local LU alias configured using SNA Manager.

currentLocalLu = object.LocalLU
object.LocalLu = "Local2"

https://msdn.microsoft.com/en-us/library/aa745326(v=bts.10).aspx

ModeName Property
The ModeName property on an IEGDataQueueCtrl object indicates the APPC mode used for an APPC (SNA LU 6.2)
connection type to the remote host computer using the Microsoft® Data Queue ActiveX® control. This property sets or returns
a BSTR string value representing the APPC mode. The default value for this property is the "QPCSUPP" string.

Syntax

Remarks

The ModeName property is used to set or return the APPC mode. When APPC (LU 6.2 SNA) is selected for the
ConnectionType property, this field must bet set to the APPC mode that matches the host configuration and Microsoft® Host
Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security),
#IBMRDB (DB2 remote database access), and custom modes. The following modes that support bi-directional LZ89
compression are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal
routing security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

currentAppcMode = object.ModeName
object.ModeName = "QPCSUPP"

https://msdn.microsoft.com/en-us/library/aa745326(v=bts.10).aspx

Password Property
The Password property on an IEGDataQueueCtrl object indicates the password used for authentication. This property affects
connection and authentication to a host computer using the Microsoft® Data Queue ActiveX® control. This property sets or
returns a BSTR and has no default value.

Syntax

Remarks

The Password property is used to set or return the password used for authenticating the user on a host computer. A valid user
name and password are normally required to access data on a host computer. The password is case-sensitive and is normally
displayed as asterisks in a dialog box for security purposes.

currentUserPassword = object.Password
object.Password = Dialog.UserPassword

PCCodePage Property
The PCCodePage property on an IEGDataQueueCtrl object indicates the code page to be used on the PC. This property
affects how data conversion is handled using the Microsoft® Data Queue ActiveX® control. This property sets or returns a
short value representing the PC code page for the data file. The default value for this property is 1252 representing a PC code
page of Latin 1.

Syntax

Remarks

The PCCodePage property is used to set or return the code page to be used on the PC. This value is used for data conversion
of any character data in the host file to ANSI or Unicode character data in the local file on the computer running Microsoft®
Windows®.

currentPCCodePage = object.PCCodePage
object.PCCodePage = 1252

QueryAttribute Method
The QueryAttribute method on the EIGDataQueue object returns the value of an attribute associated with a data queue.

Syntax

Parameters
Attribute

This required parameter indicates the attribute value to be retrieved. This parameter can be set to one of the
eigAttributeEnum constants listed in the table following the Parameters section.

Value

This required parameter points to a variant that will receive the value for this attribute.

The eigAttributeEnum constants
Enumeration Value Description

eigAttributeUnspecified -1 No value

eigAttributeCCSID 0 The code character set identifier used on the host.

eigAttributeDirName 1 Directory name

eigAttributeDataClass 2 Data class name

eigAttributeKeyDef 3 Key definition

eigAttributeDupKeys 4 Indicates whether the duplicate keys capability is enabled for this data queue.

eigAttributeMgmCls 5 Management class name

eigAttributeQueCls 6 The queue class corresponding with the QueueClass parameter on the CreateQueue method.

eigAttributeSize 7 The queue initial size

eigAttributeQLoc 8 Queue location

eigAttributeSenderInfo 9 Queue senders ID kept

eigAttributeMaxMsgLen 10 The maximum record length for a message.

eigAttributeRecLenClass 11 Record length class

eigAttributeStgClass 12 Storage class name

eigAttributeTitle 13 Description text

Remarks

Most of these attributes correspond with the parameters specified to the CreateQueue method when the data queue is created.

object.QueryAttribute Attribute, Value

https://msdn.microsoft.com/en-us/library/aa704355(v=bts.10).aspx

QueueName Property
The QueueName property on an IEGDataQueue object indicates the name of the data queue this object is associated with.

Syntax

Remarks

The value of the QueueName property is the name of the queue represented as a BSTR string.

Following the successful creation of a queue using the CreateQueue method, the object has a virtual connection to the data
queue, such that a single instance of this object represents a single queue connection. In order to break this connection, a client
application can modify the QueueName property thus altering the queue association to a new value.

currentQueueName = object.QueueName
object.QueueName = "OrderEntry"

https://msdn.microsoft.com/en-us/library/aa704355(v=bts.10).aspx

RemoteLU Property
The RemoteLU property on an IEGDataQueueCtrl object indicates the remote LU alias for an APPC (SNA) connection type to
the remote host computer using the Microsoft® Data Queue ActiveX® control. This property sets or returns a BSTR string
value representing the remote LU name. This property has no default value.

Syntax

Remarks

The RemoteLU property is used to set or return the remote LU alias. When LU 6.2 (SNA) is selected for the ConnectionType
property, this property must match the name of the remote LU alias configured using SNA Manager.

currentRemoteLu = object.RemoteLU
object.RemoteLu = "Remote10"

https://msdn.microsoft.com/en-us/library/aa745326(v=bts.10).aspx

SetAttribute Method
The SetAttribute method on the EIGDataQueue object changes an attribute associated with a data queue.

Syntax

Parameters
Attribute

This required parameter indicates the attribute to be set. This parameter can be set to one of the eigAttributeEnum
constants listed in the table following the Parameters section.

Value

This required parameter specifies a variant representing the value to set for this attribute.

The eigAttributeEnum constants
Enumeration Value Description

eigAttributeUnspecified -1 No value

eigAttributeCCSID 0 Coded character set identifier

eigAttributeDirName 1 Directory name

eigAttributeDataClass 2 Data class name

eigAttributeKeyDef 3 Key definition

eigAttributeDupKeys 4 Duplicate keys capability

eigAttributeMgmCls 5 Management class name

eigAttributeQueCls 6 The queue class corresponding with the QueueClass parameter on the CreateQueue method.

eigAttributeSize 7 Queue initial size

eigAttributeQLoc 8 Queue location

eigAttributeSenderInfo 9 Queue senders ID kept

eigAttributeMaxMsgLen 10 Record length

eigAttributeRecLenClass 11 Record length class

eigAttributeStgClass 12 Storage class name

eigAttributeTitle 13 Description text

Remarks

Most of these attributes correspond with the parameters specified to the CreateQueue method when the data queue is created.

object.SetAttribute Attribute, Value

https://msdn.microsoft.com/en-us/library/aa704355(v=bts.10).aspx

StopQueue Method
The StopQueue method on an IEGDataQueue object suspends send and receive operations for a queue using the
Microsoft® Data Queue ActiveX® control.

Syntax

Parameters

None.

object.StopQueue

UserID Property
The UserID property on an IEGDataQueueCtrl object indicates the user name used for authentication. This property affects
connection and authentication to a host computer using the Microsoft® Data Queue ActiveX® control. This property sets or
returns a BSTR and has no default value.

Syntax

Remarks

The UserID property is used to set or return the user name used for authenticating the user on a host computer. A valid user
name and password are normally required to access data on a host computer. The user name is case-sensitive.

currentUserName = object.UserID
object.UserID = Dialog.UserName

Host File Transfer ActiveX Control Programmer's Reference
This section provides reference information about specific ActiveX methods, properties, and event notifications supported by
the Microsoft Host File Transfer ActiveX control. The function syntax and code examples are based on Microsoft Visual Basic.

In This Section

AppendToEnd Property

Cancel Method

CCSID Property

Connect Method

ConnectionState Property

ConnectionType Property

CreateIfNonExisting Property

Disconnect Method

GetFile Method

LocalLU Property

ModeName Property

NetAddr Property

NetPort Property

OverwriteHostFile Property

Password Property

PCCodePage Property

PutFile Method

RDBName Property

RemoteLU Property

UserID Property

https://msdn.microsoft.com/en-us/library/aa745457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754287(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704955(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744665(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770454(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745365(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770343(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754094(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754256(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771517(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771940(v=bts.10).aspx

AppendToEnd Property
The AppendToEnd property on an IEIGFileTransferCtl object indicates whether a file transfer operation should append to
the end of a file if the file exists, or whether a file transfer operation should overwrite the existing contents replacing the data
with the new information. This property affects file transfer operations using the Microsoft® Host File Transfer ActiveX®
control. This property sets or returns a Long value representing an eigAnswerYesNoEnum. The default value for this property
is eigAnswerYes.

Syntax

Remarks

The AppendToEnd property is used to set or return a flag that indicates whether a file transfer operation will append to the
end of a file or overwrite the file. This property can be set to one of the following eigAnswerYesNoEnum constants:

Enumeration Value Description

eigAnswerYes 0 This value indicates that the file transfer operation will append to the end of a file if it exists.

eigAnswerNo 1 This value indicates that the file transfer operation will overwrite the existing contents of a file if it exists.

The AppendToEnd property and the OverwriteHostFile property are mutually exclusive, so it is not possible to enable (set to
yes) one of these properties before the opposing property is disabled (set to no). The AppendToEnd property takes
precedence over the OverwriteHostFile property, since AppendToEnd defaults to yes and OverwriteHostFile defaults to no.
Consequently, the order in which these properties are set will affect the outcome. For example, the following order will result in
the properties being set correctly:

In contrast, setting the properties in the improper order will cause the properties to be set incorrectly as follows:

In this second case, the OverwriteHostFile property cannot be set to yes (enabled) until the AppendToEnd property is set to
no (disabled).

currentAppendFlag = object.AppendToEnd
object.AppendToEnd = eigAnswerYes

FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no
FileTransfer.OverwriteHostFile = eigAnswerYes // correctly set to yes

FileTransfer.OverwriteHostFile = eigAnswerYes // remains at no
// AppendToEnd defaults to eigAnswerYes, so this change is illegal
FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no

Cancel Method
The Cancel method on an IEIGFileTransferCtl object terminates a file transfer operation that is already in progress. This
method cancels a file transfer using the Microsoft® Host File Transfer ActiveX® control.

Syntax

Parameters

None.

Remarks

The Cancel method is used to cancel a file transfer operation that is already in progress. If the Cancel method is executed
while uploading a file with the AppendToEnd property set to yes, this will result in no change to the host file. However, if the
Cancel method is executed while uploading a file with the OverwriteHostFile property set to yes, this will result in an empty
host file. The Cancel method implies the transfer has been stopped and all the files are at their original values, but this is not
really the case when the OverwriteHostFile property is set to yes.

object.Cancel

CCSID Property
The CCSID property on an IEIGFileTransferCtl object indicates the character code set identifier (CCSID) that must match the
data in the file as represented on the remote host computer. This property affects how data conversion is handled using the
Microsoft® Host File Transfer ActiveX® control. This property sets or returns a short value representing a host CCSID for the
data file. The default value for this property is 37 representing a CCSID for U.S./Canada.

Syntax

Remarks

The CCSID property is used to set or return the character code set identifier (CCSID) matching the data in the file as
represented on the remote host computer. This value is used for data conversion of any character data in the host file to the
PCCodePage property specified representing ANSI or Unicode character data on the Microsoft® Windows® computer.

current CCSID = object.CCSID
object.CCSID = 37

Connect Method
The Connect method on an IEIGFileTransferCtl object establishes a connection to the configured host using the Microsoft®
Host File Transfer ActiveX® control and reports to the user an indication of the success or failure of the action.

Syntax

Parameters

None.

Remarks

The Connect method is used to establish a connection to the host.

If the Host File Transfer ActiveX control support DLL cannot be loaded, the Win32® SetErrorMode function is called with an
error value of SEM_NOOPENFILEERRORBOX | SEM_FAILCRITICALERRORS. Other types of errors are returned using the
ISupportErrorInfo object.

object.Connect

ConnectionState Property
The ConnectionState property on an IEIGFileTransferCtl object indicates the current state of the connection to the host
using the Microsoft® Host File Transfer ActiveX® control. The state of a connection can be unspecified, idle, connecting,
connected, or disconnecting. This property returns a Long value representing an eigConnectionStateEnum. The default value
for this property is eigConnStateIdle.

Syntax

Remarks

The ConnectionState property is used to return the current state of the connection to the host. This property is read-only and
can be one of the following eigConnectionStateEnum constants:

Enumeration Valu
e

Description

eigConnStateUnspecified -1 This value indicates that the connection state is unspecified.

eigConnStateIdle 0 This value indicates that the connection state is idle and no connection to the host exists.

eigConnStateConnecting 1 This value indicates that the connection state is in the process of connecting to the host.

eigConnStateConnected 2 This value indicates that the connection state is connected indicating a connection to the h
ost.

eigConnStateDisconnectin
g

3 This value indicates that the connection state is in the process of disconnecting from the h
ost.

currentConnectionState = object.ConnectionState

ConnectionType Property
The ConnectionType property on an IEIGFileTransferCtl object indicates the network transport used for this connection. The
ConnectioneType property designates whether the Microsoft® Host File Transfer ActiveX® control connects via APPC (SNA
LU 6.2) or TCP/IP. This property sets or returns a Long value representing an eigConnectionTypeEnum. The default value for
this property is eigConnTypeAPPC indicating an APPC connection using SNA.

Syntax

Remarks

The ConnectionType property is used to set or return the connection type used to connect to the host. This property can be
one of the following eigConnectionTypeEnum constants:

Enumeration Value Description

eigConnTypeUnspecified -1 This value indicates that the connection type is unspecified.

eigConnTypeAPPC 0 This value indicates an APPC connection to the host using SNA LU 6.2.

eigConnTypeTCPIP 1 This value indicates a TCP/IP connection to the host.

If APPC (SNA) is selected for ConnectionType, then values for the LocalLU, ModeName, and RemoteLU properties are
required.

If TCP/IP is selected for ConnectionType, then values for the NetAddr and NetPort properties are required.

currentConnectionType = object.ConnectionType
object.ConnectionType = eigConnTypeTCPIP

CreateIfNonExisting Property
The CreateIfNonExisting property on a IEIGFileTransferCtl object indicates whether a file transfer operation should create a
new destination file if one does not already exist. This property affects file transfer operations using the Microsoft® Host File
Transfer ActiveX® control. This property sets or returns a Long value representing an eigAnswerYesNoEnum. The default
value for this property is eigAnswerNo.

Syntax

Remarks

The CreateIfNonExisting property is used to set or return a flag that indicates whether a file transfer operation should create
a new destination file if one does not already exist. This property can be set to one of the following eigAnswerYesNoEnum
constants:

Enume
ration

Va
lu
e

Description

eigAns
werYes

0 This value indicates that the file transfer operation will create a new destination file if the file does not already exist
.

eigAns
werNo

1 This value indicates that the file transfer operation will not create a new destination file if the file does not already
exist. If the destination file does not already exist, then the file copy operation will not take place.

currentCreateFlag = object.CreateIfNonExisting
object.CreateIfNonExisting = eigAnswerYes

Disconnect Method
The Disconnect method on an IEIGFileTransferCtl object terminates an existing connection to a host computer using the
Microsoft® Host File Transfer ActiveX® control.

Syntax

Parameters

None.

Remarks

The Disconnect method is used to terminate a connection to the host. Errors are returned using the ISupportErrorInfo
object.

object.Disconnect

GetFile Method
The GetFile method on an IEIGFileTransferCtl object copies a file from host storage to local storage using the Microsoft®
Host File Transfer ActiveX® control.

Syntax

Parameters
LocalFile

This required parameter specifies the path of a local file that will be written to as a result of this operation.

HostFile

This required parameter specifies the name of the host file that will be copied to the local file.

Remarks

The GetFile method can only be called after a connection has been established to the host (when the ConnectionState property
is connected). The behavior of the GetFile method is affected by the values of the AppendToEnd, CreateIfNonExisting, and
OverwriteHostFile properties.

Errors are returned for this method using the ISupportErrorInfo object.

object.GetFile LocalFile, HostFile

https://msdn.microsoft.com/en-us/library/aa753894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770343(v=bts.10).aspx

LocalLU Property
The LocalLU property on an IEIGFileTransferCtl object indicates the local LU alias for an APPC (SNA) connection type to the
remote host computer using the Microsoft® Host File Transfer ActiveX® control. This property sets or returns a BSTR string
value representing the local LU name. The default value for this property is the "LOCAL" string.

Syntax

Remarks

The LocalLU property is used to set or return the local LU alias. When LU 6.2 (SNA) is selected for the ConnectionType
property, this property must match the name of the local LU alias configured using SNA Manager.

This property is ignored when TCP/IP is selected for the ConnectionType property.

currentLocalLu = object.LocalLU
object.LocalLu = "Local2"

https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx

ModeName Property
The ModeName property on an IEIGFileTransferCtl object indicates the APPC mode used for an APPC (SNA) connection type
to the remote host computer using the Microsoft® Host File Transfer ActiveX® control. This property sets or returns a BSTR
string value representing the APPC mode. The default value for this property is the "QPCSUPP" string.

Syntax

Remarks

The ModeName property is used to set or return the APPC mode. When APPC (LU 6.2 SNA) is selected for the
ConnectionType property, this field must bet set to the APPC mode that matches the host configuration and Host Integration
Server configuration. This property is ignored when TCP/IP is selected for the ConnectionType property.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive),
#INTERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security),
#IBMRDB (DB2 remote database access), and custom modes. The following modes that support bi-directional LZ89
compression are also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal
routing security), BATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

currentAppcMode = object.ModeName
object.ModeName = "QPCSUPP"

https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx

NetAddr Property
The NetAddr property on an IEIGFileTransferCtl object indicates the IP address of the host computer for a TCP/IP connection
type to the remote host computer using the Microsoft® Host File Transfer ActiveX® control. This property sets or returns a
BSTR string value representing the IP address of the host computer. This property has no default value.

Syntax

Remarks

The NetAddr property is used to set or return the IP address of the host computer. When TCP/IP is selected for the
ConnectionType property, this property must match the IP address of the host computer used where files will be transferred.
This property can be an IP address or the name representing the host IP address using the Domain Name System
(sna.microsoft.com, for example). This property is ignored when SNA is selected for the ConnectionType property.

currentHostIP = object.NetAddr
object.NetAddr = "207.136.131.30"

https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx

NetPort Property
The NetPort property on an IEIGFileTransferCtl object indicates the TCP/IP port used for communication with the host for a
TCP/IP connection type to the remote host computer using the Microsoft® Host File Transfer ActiveX® control. This property
sets or returns a BSTR string value representing the TCP/IP port used for communication with the host. The default value for
this property is the string "446" representing TCP/IP port 446.

Syntax

Remarks

The NetPort property is used to set or return the TCP/IP port used for communication with the host. When TCP/IP has been
selected for the ConnectionType property, this parameter is the TCP/IP port used for communication with the host. This
property is ignored when SNA is selected for the ConnectionType property.

currentIPPort = object.NetPort
object.NetPort = "446"

https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx

OverwriteHostFile Property
The OverwriteHostFile property on a IEIGFileTransferCtl object indicates whether a file transfer operation request to copy a
file that will write over an existing file will be executed. This property affects file transfer operations using the Microsoft® Host
File Transfer ActiveX® control. This property sets or returns a Long value representing an eigAnswerYesNoEnum. The default
value for this property is eigAnswerNo.

Syntax

Remarks

The OverwriteHostFile property is used to set or return a flag that indicates whether a file transfer operation will overwrite an
existing file. This property can be set to one of the following eigAnswerYesNoEnum constants:

Enumeration Value Description

eigAnswerYes 0 This value indicates that the file transfer operation will overwrite an existing host file if it exists.

eigAnswerNo 1 This value indicates that the file transfer operation will not overwrite an existing host file file if it exists.

The OverwriteHostFile property and the AppendToEnd property are mutually exclusive, so it is not possible to enable (set to
yes) one of these properties before the opposing property is disabled (set to no). The AppendToEnd property takes
precedence over the OverwriteHostFile property, since AppendToEnd defaults to yes and OverwriteHostFile defaults to no.
Consequently, the order in which these properties are set will affect the outcome. For example, the following order will result in
the properties being set correctly:

In contrast, setting the properties in the improper order will cause the properties to be set incorrectly as follows:

In this second case, the OverwriteHostFile property cannot be set to yes (enabled) until the AppendToEnd property is set to
no (disabled).

currentOverwriteFlag = object.OverwriteHostFile
object.OverwriteHostFile = eigAnswerYes

FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no
FileTransfer.OverwriteHostFile = eigAnswerYes // correctly set to yes

FileTransfer.OverwriteHostFile = eigAnswerYes // remains at no
// AppendToEnd defaults to eigAnswerYes, so this change is illegal
FileTransfer.AppendToEnd = eigAnswerNo // correctly set to no

Password Property
The Password property on an IEIGFileTransferCtl object indicates the password used for authentication. This property affects
connection and authentication to a host computer using the Microsoft® Host File Transfer ActiveX® control. This property sets
or returns a BSTR and has no default value.

Syntax

Remarks

The Password property is used to set or return the password used for authenticating the user on a host computer. A valid user
name and password are normally required to access files on a host computer. The password is case-sensitive and is normally
displayed as asterisks in a dialog box for security purposes.

currentUserPassword = object.Password
object.Password = Dialog.UserPassword

PCCodePage Property
The PCCodePage property on an IEIGFileTransferCtl object indicates the code page to be used on the PC. This property
affects how data conversion is handled using the Microsoft® Host File Transfer ActiveX® control. This property sets or returns
a short value representing the PC code page for the data file. The default value for this property is 1252 representing a PC code
page of Latin 1.

Syntax

Remarks

The PCCodePage property is used to set or return the code page to be used on the PC. This value is used for data conversion
of any character data in the host file to ANSI or Unicode character data in the local file on the Microsoft® Windows®
computer.

currentPCCodePage = object.PCCodePage
object.PCCodePage = 1252

PutFile Method
The PutFile method on an IEIGFileTransferCtl object copies a file from host storage to local storage using the Microsoft®
Host File Transfer ActiveX® control.

Syntax

Parameters
HostFile

This required parameter specifies the name of the host file that will be written to as a result of this operation. This parameter
is a BSTR.

LocalFile

This required parameter specifies the path to a local file that will be copied to the host file. This parameter is a BSTR.

Remarks

The PutFile method can only be called after a connection has been established to the host (when the ConnectionState property
is connected). The behavior of the PutFile method is affected by the values of the AppendToEnd, CreateIfNonExisting, and
OverwriteHostFile properties.

Errors are returned for this method using the ISupportErrorInfo object.

object.PutFile HostFile, LocalFile

https://msdn.microsoft.com/en-us/library/aa753894(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704827(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770343(v=bts.10).aspx

RDBName Property
The RDBName property on an IEIGFileTransferCtl object indicates the remote database name and the host column
description (HCD) file that describes the data types and data conversions used to transfer this file using the Microsoft® Host
File Transfer ActiveX® control. This property sets or returns a BSTR string value and has no default value.

Syntax

Remarks

The RDBName property is used to set or return the name of the remote database name and the host column description
(HCD) file that describes the data types and data conversions used to transfer this file. The HCD file describing the data should
be located in the system subdirectory below the root directory where Host Integration Server was installed. Setup defaults to
the following location: C:\Program Files\Microsoft Host Integration Server

When TCP/IP is selected for the ConnectionType property, the RDBName must also match the name of the remote database
system.

currentRDbName = object.RDBName
object.RDBName = "Inventory"

RemoteLU Property
The RemoteLU property on an IEIGFileTransferCtl object indicates the remote LU alias for an APPC (SNA) connection type to
the remote host computer using the Microsoft® Host File Transfer ActiveX® control. This property sets or returns a BSTR
string value representing the remote LU name. This property has no default value.

Syntax

Remarks

The RemoteLU property is used to set or return the remote LU alias. When LU 6.2 (SNA) is selected for the ConnectionType
property, this property must match the name of the remote LU alias configured using SNA Manager.

This property is ignored when TCP/IP is selected for the ConnectionType property.

currentRemoteLu = object.RemoteLU
object.RemoteLu = "Remote10"

https://msdn.microsoft.com/en-us/library/aa753934(v=bts.10).aspx

UserID Property
The UserID property on an IEIGFileTransferCtl object indicates the user name used for authentication. This property affects
connection and authentication to a host computer using the Microsoft® Host File Transfer ActiveX® control. This property sets
or returns a BSTR and has no default value.

Syntax

Remarks

The UserID property is used to set or return the user name used for authenticating the user on a host computer. A valid user
name and password are normally required to access files on a host computer. The user name is case-sensitive.

currentUserName = object.UserID
object.UserID = Dialog.UserName

ADO Programmer's Reference
This section provides reference information about specific ActiveX Data Objects (ADO) methods, properties, and collections
supported in Host Integration Server 2009 using the following:

Microsoft OLE DB Provider for AS/400 and VSAM

Microsoft OLE DB Provider for DB2

Microsoft ODBC Driver for DB2

For general information about programming with the OLE DB Provider for AS/400 and VSAM, see the
OLE DB Provider for AS/400 and VSAM Programmer's Guide in the OLE DB Providers Programmer's Guide section of the SDK.

For general information about programming with the OLE DB Provider for DB2, see the
OLE DB Provider for DB2 Programmer's Guide.

For general information about programming with the ODBC Driver for DB2, see the ODBC Driver for DB2 Programmer's Guide
in the OLE DB Providers Programmer's Guide section of the SDK.

In This Section

ActiveCommand Property (ADO)

ActiveConnection Property (ADO)

ActualSize Property (ADO)

AddNew Method (ADO)

AppendChunk Method (ADO)

Attributes Property Method (ADO)

BOF Property (ADO)

Bookmark Property (ADO)

CacheSize Property (ADO)

CancelBatch Method (ADO)

CancelUpdate Method (ADO)

Clear Method (ADO)

Clone Method (ADO)

Close Method (ADO)

CommandText Property (ADO)

CommandType Property (ADO)

ConnectionString Property (ADO)

CursorLocation Property (ADO)

CursorType Property (ADO)

DefinedSize Property (ADO)

Delete Method (ADO)

Description Property (ADO)

EOF Property (ADO)

EditMode Property (ADO)

Execute Method on a Command Object (ADO)

https://msdn.microsoft.com/en-us/library/aa744762(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745193(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771231(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705805(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746029(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705245(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704937(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705788(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754270(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746264(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770797(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705194(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744383(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754721(v=bts.10).aspx

Execute Method on a Connection Object (ADO)

Filter Property Method (ADO)

Find Method (ADO)

GetChunk Method (ADO)

GetRows Method (ADO)

IsolationLevel Property (ADO)

Item Method (ADO)

LockType Property (ADO)

MaxRecords Property (ADO)

Mode Property (ADO)

Move Method (ADO)

MoveFirst Method (ADO)

MoveLast Method (ADO)

MoveNext Method (ADO)

MovePrevious Method (ADO)

Name Property (ADO)

NativeError Property (ADO)

Number Property (ADO)

NumericScale Property (ADO)

Open Method on a Connection Object (ADO)

Open Method on a Recordset Object (ADO)

OpenSchema Method (ADO)

OriginalValue Property (ADO)

Precision Property (ADO)

Provider Property (ADO)

Refresh Method (ADO)

Requery Method (ADO)

Save Method (ADO)

Sort Property (ADO)

Source Property on an Error Object (ADO)

Source Property on a Recordset Object (ADO)

State Property (ADO)

Status Property (ADO)

Supports Method (ADO)

Type Property (ADO)

UnderlyingValue Property (ADO)

Update Method (ADO)

UpdateBatch Method (ADO)

Value Property (ADO)

Version Property (ADO)

https://msdn.microsoft.com/en-us/library/aa744952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770809(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770466(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770997(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705475(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745223(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745438(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770982(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704826(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771352(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771954(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705191(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771433(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705272(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745531(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746191(v=bts.10).aspx

ActiveCommand Property (ADO)
The ActiveCommand property on a Recordset object indicates which Command object created the associated Recordset
object. This property returns a variant that contains a Command object. The default is a Null object reference.

Syntax

Remarks

The ActiveCommand property is property is read-only. If a Command object was not used to create the current Recordset,
then a Null object reference is returned.

Use this property to find the associated Command object when you are given only the resulting Recordset object.

currentCommand = recordset.ActiveCommand

ActiveConnection Property (ADO)
The ActiveConnection property on a Command or Recordset object indicates to which Connection object the specified
Command or Recordset object currently belongs. This property sets or returns a String that contains the definition for a
connection or a Connection object. The default is a Null object reference.

Syntax

Remarks

The ActiveConnection property is used to determine the Connection object over which the specified Command object will
execute or the specified Recordset will be opened.

For Command objects, the ActiveConnection property is read/write.

If you try to call the Execute method on a Command object before setting the ActiveConnection property to an open
Connection object or valid connection string, an error occurs.

Under Visual Basic, setting the ActiveConnection property to Nothing disassociates the Command object from the current
Connection and causes the OLE DB provider to release any associated resources on the data source. You can then associate
the Command object with the same or another Connection object. Some providers allow you to change the
ActiveConnection property setting from one Connection to another, without having to first set the property to Nothing.

Closing the Connection object with which a Command object is associated sets the ActiveConnection property to
Nothing. Setting this property to a closed Connection object generates an error.

For open Recordset objects or for Recordset objects whose Source property is set to a valid Command object, the
ActiveConnection property is read-only. Otherwise, it is read/write.

You can set the ActiveConnection property to a valid Connection object or to a valid connection string. In this case, the OLE
DB provider creates a new Connection object using this definition and opens the connection. Additionally, the provider may
set this property to the new Connection object to give you a way to access the Connection object for extended error
information or to execute other commands.

If the ActiveConnection parameter of the Open method is used to open a Recordset object, the ActiveConnection property
will inherit the value of the argument.

If the Source property of the Recordset object is set to a valid Command object variable, the ActiveConnection property of
the Recordset inherits the setting of the ActiveConnection property of the Command object.

The information needed to establish a connection to a data source can be set in the ActiveConnection property of a
Recordset object or passed as part of the Open method on a Recordset object in the ActiveConnection parameter. In either
case, this information must be in a specific format for use with the Microsoft OLE DB Provider for AS/400 and VSAM, the
Microsoft OLE DB Provider for DB2, or the Microsoft ODBC Driver for DB2. This information can be a data source name (DSN)
or a detailed connection string containing a series of argument=value statements separated by semicolons.

ActiveX Data Objects (ADO) supports several standard ADO-defined arguments for the ActiveConnection property as listed
in the following table.

Ar
gu
m
en
t

Description

Da
ta
So
urc
e

Specifies the name of the data source for the connection. This argument is optional when you use the OLE DB Provider for
AS/400 and VSAM or the OLE DB Provider for DB2.

command.ActiveConnection = connectionString
activeConnectionString = recordset.ActiveConnection

Fil
e
Na
me

Specifies the name of the provider-specific file containing preset connection information. This argument cannot be used if
a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and VSAM.

Lo
cat
ion

The remote database name that is used for connecting to OS/400 systems. This parameter is optional when connecting to
mainframe systems.

Pa
ss
wo
rd

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate th
at the user can log on to the target host system and has appropriate access rights to the file.

Pr
ovi
der

Specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and VSAM, the Provid
er string must be set to "SNAOLEDB". To use the OLE DB Provider for DB2, the Provider string must be set to "DB2OLEDB".
To use the ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not used as part of the ConnectionStrin
g because this value is the default for ADO.

Us
er I
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate t
hat the user can log on to the target host system and has appropriate access rights to the file.

In This Section

ActiveConnection Property Support Using the OLE DB Provider for AS/400 and VSAM

ActiveConnection Property Support Using the OLE DB Provider for DB2

ActiveConnection Property Support Using the ODBC Driver for DB2

https://msdn.microsoft.com/en-us/library/aa744715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770728(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754763(v=bts.10).aspx

ActiveConnection Property Support Using the OLE DB Provider
for AS/400 and VSAM

The Microsoft OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which
have default values as specified in the table below. These arguments are listed in the following table.

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0; do not process binary fields as
character fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitte
d, the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when con
necting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 2
56 characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system dire
ctory. This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in Host Integration Server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #
BATCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communic
ation with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for thi
s parameter are TCPIP or SNA. This value defaults to SNA.

PCC
odeP
age

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The remote database name for OS/400. You only need to specify this value if it is different from the remote LU alias conf
igured in Host Integration Server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults t
o false.

Rem
oteL
U

The name of the remote logical unit (LU) alias configured in Host Integration Server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

Note

Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString for use with the OLE DB Provider for AS/400 and VSAM follows:

Note
The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ActiveX® Data Objects (ADO) version 2.0, you must specify the Prompt connection
property. For example, the following is valid with ADO version 1.5 and ADO version 2.0 and will prompt the user for
ConnectionString properties:

Conn.Provider="SNAOLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PCCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=SNAOLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

ActiveConnection Property Support Using the OLE DB Provider
for DB2

The Microsoft OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default
values as specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration
Server 2009 differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server are listed in the following
table.

Ar
g
u
m
e
nt

Description

Bi
n
As
C
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as c
haracter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and outpu
t parameters.

This parameter defaults to false.

C
C
SI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

D
ef
Sc
h

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIB
M;SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a three-part fully qualified table name. In DB2 (MVS, OS/390), this property is refe
rred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred
to as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the O
S/400 system. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this
property is referred to as DATABASE.

This parameter has no default value.

Lo
ca
lL
U

The name of the local logical unit (LU) alias configured in Host Integration Server.

M
od
e
N
a
m
e

The Advanced Program-to-Program Communications (APPC) mode (must be set to a value that matches the host configura
tion and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

N
et
A
dd
r

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA.

This value defaults to SNA.

P
C
C
od
eP
ag
e

The character code page to use on the computer. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
g
C
ol

The name of the DRDA target collection (AS/400 library) where the OLE DB Provider for DB2 should store and bind DB2 pa
ckages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider wi
ll create packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applic
ation server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP
name.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN
ame is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distrib
uted unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the OLE DB Provider for DB2 follows:

Note
The &_ character combination is used for continuing long lines in Visual Basic.

Conn.Provider="DB2OLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PcCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

ActiveConnection Property Support Using the ODBC Driver for
DB2

The Microsoft ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values
as specified in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2009
differ from the arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server are listed in the following table.

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 65
535) as character data type fields on a per-data source basis. The character code set identifier (CCSID) and PCCodePage val
ues are required input parameters.

C
C
SI
D

The CCSID matching the DB2 data as represented on the remote computer. The CCSID property is required when processin
g binary data as character data. Unless the BinAsChar value is set, character data is converted based on the DB2 column CC
SID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the computer. This parameter is required when processing binary data as character data.
Unless the Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configur
ed in Windows.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left bl
ank.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information.
The Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Sche
ma to restrict results sets for popular operations, such as enumerating a list of tables in a target collection (for example, OD
BC Catalog SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/
400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappro
priate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this att
ribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this fi
eld is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a va
lue that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), B
ATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or t
he hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used fo
r communication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. Th
e possible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind D
B2 packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA application requester, uses packages to issue d
ynamic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user point
s using the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this
attribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this
field is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be s
et to "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate tha
t the user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parame
ter is the same as the Parameter parameter.

R
D
B

The Remote Database Name parameter is used as the first part of a three-part, fully qualified DB2 table name. This paramet
er is referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessibl
e locations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look i
n the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 install
ation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WR
KRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created usin
g the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applica
tion server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP na
me.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN i
s set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate t
hat the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is t
he same as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of wor
k) or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 supplied with Host Integration Server is as follows:

Note
The &_ character combination is used for continuing long lines in Visual Basic.

Conn.Provider="MSDASQL"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_
 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

ActualSize Property (ADO)
The ActualSize property on a Field object indicates the actual length of a field's value. This property returns a Long value.

Syntax

Remarks

The ActualSize property is used to return the actual length of a Field object's value. For all fields, the ActualSize property is
read-only. If ADO cannot determine the length of the Field object's value, the ActualSize property returns adUnknown.

The ActualSize and DefinedSize properties on a Field object can be different. For example, a Field object with a declared
type of adVarChar (variable character data type) and a maximum length of 50 characters returns a DefinedSize property
value of 50, but the ActualSize property value it returns is the length of the data stored in the field for the current record.

size = field.ActualSize

AddNew Method (ADO)
The AddNew method on a Recordset object creates a new record for an updatable Recordset object.

Syntax

Parameters
Fields

This optional parameter specifies a single name or an array of names or ordinal positions of the fields in the new record.

Values

This optional parameter specifies a single value or an array of values for the fields in the new record. If Fields is an array,
Values must also be an array with the same number of members; otherwise, an error occurs. The order of field names must
match the order of field values in each array.

Remarks

The AddNew method is used to create and initialize a new record. The Supports method can be used with adAddNew to
verify whether records can be added to the current Recordset object.

After the AddNew method is called, the new record becomes the current record and remains current after the Update
method is called. If the Recordset object does not support bookmarks, you may not be able to access the new record after you
move to another record. Depending on your cursor type, you may need to call the Requery method to make the new record
accessible.

If AddNew is called while editing the current record or while adding a new record, ADO calls the Update method to save any
changes and then creates the new record.

The behavior of the AddNew method depends on the updating mode of the Recordset object and whether or not the Fields
and Values arguments are passed.

In immediate update mode, the OLE DB Provider writes changes to the underlying data source after the Update method is
called. In immediate update mode, calling the AddNew method without arguments sets the EditMode property to
adEditAdd. The OLE DB Provider caches any field value changes locally. Calling the Update method posts the new record to
the database and resets the EditMode property to adEditNone. If the Fields and Values arguments are passed, ADO
immediately posts the new record to the database (no Update call is necessary) and the EditMode property value does not
change (adEditNone).

In batch update mode, the OLE DB Provider caches multiple changes and writes them to the underlying data source only when
the UpdateBatch method is called. In batch update mode, calling the AddNew method without arguments sets the
EditMode property to adEditAdd. The OLE DB Provider caches any field value changes locally. Calling the Update method
adds the new record to the current Recordset object and resets the EditMode property to adEditNone, but the OLE DB
Provider does not post the changes to the underlying database until the UpdateBatch method is called. If the Fields and
Values arguments are passed, ADO sends the new record to the provider for storage in a cache and the UpdateBatch method
must be called to post the new record to the underlying database.

recordset.AddNewFields, Values

AppendChunk Method (ADO)
The AppendChunk method on a Field object appends data to a large text or binary data Field object.

Syntax

Parameters
Data

This parameter specifies a Variant containing the data to be appended to the Field object.

Remarks

The AppendChunk method is used on a Field object to fill it with long binary or character data. In situations where system
memory is limited, the AppendChunk method can be used to manipulate long values in portions rather than in their entirety.

If the adFldLong bit in the Attributes property of a Field object is set to True, the AppendChunk method can be used for
that field.

The first AppendChunk call on a Field object writes data to the field, overwriting any existing data. Subsequent
AppendChunk calls add to existing data. If you are appending data to one field and then set or read the value of another field
in the current record, ActiveX® Data Objects (ADO) assumes that you are finished appending data to the first field. If the
AppendChunk method is called on the first field again, ADO interprets the call as a new AppendChunk operation and
overwrites the existing data. Accessing fields in other Recordset objects (that are not clones of the first Recordset object) will
not disrupt AppendChunk operations.

If there is no current record when the AppendChunk method is called on a Field object, an error occurs.

field.AppendChunkData

Attributes Property (ADO)
The Attributes property on a Field object or a Property object in a Properties collection indicates one or more characteristics
of an object. This property returns a Long value.

Syntax

Remarks

The Attributes property is used to return characteristics of Field objects or Property objects.

For a Field object, the Attributes property is read-only and its value can be the sum of any one or more of the
FieldAttributeEnum values. The allowable FieldAttributeEnum values can be one of the constants in the following table.

Enumeration Val
ue

Description

adFldMayDefer 0x2 This value indicates that the field is deferred, that is, the field values are not retrieved from the data sour
ce with the whole record, but only when you explicitly access them.

adFldUpdatabl
e

0x4 This value indicates that you can write to the field.

adFldUnknown
Updatable

0x8 This value indicates that the provider cannot determine if you can write to the field.

adFldFixed 0x1
0

This value indicates that the field contains fixed-length data.

adFldIsNullabl
e

0x2
0

This value indicates that the field accepts Null values.

adFldMayBeNu
ll

0x4
0

This value indicates that you can read Null values from the field.

adFldLong 0x8
0

This value indicates that the field is a long binary field. This value also indicates that the AppendChunk
and GetChunk methods on the Field object can be used.

adFldRowID 0x1
00

This value indicates that the field contains some kind of record identifier (record number, unique identifi
er, and so on).

adFldRowVersi
on

0x2
00

This value indicates that the field contains some kind of time or date stamp (often used to track updates)
.

adFldCacheDef
erred

0x1
000

This value indicates that the provider caches field values and that subsequent reads are done from the c
ache.

For a Property object, the Attributes property is read-only and its value can be the sum of any one or more of the
PropertyAttributesEnum values. The allowable PropertyAttributesEnum values can be one of the constants in the
following table.

Enumeration Valu
e

Description

adPropNotSuppo
rted

0 This value indicates that the property is not supported by the provider.

attribute = field.Attributes

adPropRequired 0x1 This value indicates that the user must specify a value for this property before the data source is initi
alized.

adPropOptional 0x2 This value indicates that the user does not need to specify a value for this property before the data s
ource is initialized.

adPropRead 0x20
0

This value indicates that the user can read the property.

adPropWrite 0x40
0

This value indicates that the user can set the property.

BOF Property (ADO)
The BOF property on a Recordset object indicates that the current record position is before the first record in a Recordset
object. This property returns a Boolean value.

Syntax

Remarks

The BOF property is used to determine whether a Recordset object contains records or whether you have gone beyond the
limits of a Recordset object when you move from record to record.

The BOF property returns True if the current record position is before the first record and False if the current record position is
on or after the first record.

If the BOF property is True, there is no current record.

If a Recordset object is opened containing no records, both the BOF and EOF properties are set to True and the Recordset
object's RecordCount property setting is zero. When a Recordset object is opened that contains at least one record, the first
record is the current record and the BOF and EOF properties are False.

If the last remaining record in the Recordset object is deleted, the BOF and EOF properties may remain False until you
attempt to reposition the current record.

This table below indicates which Move methods are allowed with different combinations of the BOF and EOF properties.

 MoveFirst MoveLast MovePrevious Move < 0 Move 0 MoveNext Move > 0

BOF=True EOF=False Allowed Error Error Allowed

BOF=False EOF=True Allowed Allowed Error Error

Both True Error Error Error Error

Both False Allowed Allowed Allowed Allowed

Note
Executing a Move 0 method when the BOF property is True does not currently generate an error using the OLE DB Provider
for AS/400 and VSAM.

Note
Allowing a Move method does not guarantee that the method will successfully locate a record; it only means that calling the
specified Move method will not generate an error.

The following table shows what happens to the BOF and EOF property settings when various Move methods are called but are
unable to successfully locate a record.

 BOF property EOF property

MoveFirst MoveLast Set to True Set to True

Move 0 No change No change

MovePrevious Move < 0 Set to True No change

MoveNext Move > 0 No change Set to True

IsBOF = recordset.BOF

Bookmark Property (ADO)
The Bookmark property on a Recordset object returns a bookmark that uniquely identifies the current record in a Recordset
object or sets the current record in a Recordset object to the record identified by a valid bookmark. This property sets or
returns a Variant expression that evaluates to a valid bookmark.

Syntax

Remarks

The Bookmark property is used to save the position of the current record and return to that record at any time. Bookmarks are
available only in Recordset objects (host tables) that support the bookmark feature.

When a Recordset object is opened, each of its records has a unique bookmark. To save the bookmark for the current record,
assign the value of the Bookmark property to a variable. To quickly return to that record at any time after moving to a
different record, set the Recordset object's Bookmark property to the value of that variable.

The user may not be able to view the value of the bookmark. Also, users should not expect bookmarks to be directly
comparable—two bookmarks that refer to the same record may have different values.

If the Clone method is used to create a copy of a Recordset object, the Bookmark property settings for the original and the
duplicate Recordset objects are identical and you can use them interchangeably. However, you cannot use bookmarks from
different Recordset objects interchangeably, even if they were created from the same source or command.

Using the OLE DB Provider for AS/400 and VSAM, only some data sources can be bookmarked. Calling the Supports method
with the adBookmark argument will indicate if the data source (table) can be bookmarked.

FirstBookmark = recordset.Bookmark
recordset.Bookmark = PreviousBookmark

CacheSize Property (ADO)
The CacheSize property on a Recordset object indicates the number of records from a Recordset object that are cached
locally in memory. This property sets or returns a Long value that must be greater than zero. The default value for the
CacheSize property is 1.

Syntax

Remarks

The CacheSize property is used to control how many records the provider keeps in its buffer and how many to retrieve at one
time into local memory. For example, if the CacheSize is 10, after first opening the Recordset object, the provider retrieves
the first 10 records into local memory. As you move through the Recordset object, the provider returns the data from the local
memory buffer. As soon as you move past the last record in the cache, the provider retrieves the next 10 records from the data
source into the cache.

The value of the CacheSize property can be adjusted during the life of the Recordset object, but changing this value only
affects the number of records in the cache after subsequent retrievals from the data source. Changing the property value alone
will not change the current contents of the cache.

If there are fewer records to retrieve than the CacheSize property specifies, the provider returns the remaining records; no
error occurs.

A CacheSize setting of zero is not allowed and returns an error. Non-bookmarkable files cannot have the CacheSize property
set to greater than one, or an error will occur.

It is strongly recommended that a CacheSize of 1 be used with the OLE DB Provider for AS/400 and VSAM. If the CacheSize
is set greater than 1, it is possible for the local data cached in memory to be out of date from changes made by other users on
the host.

previousSize = recordset.CacheSize
recordset.CacheSize = 1

CancelBatch Method (ADO)
The CancelBatch method on a Recordset object cancels a pending batch update.

Syntax

Parameters
AffectedRecords

This optional parameter specifies an AffectEnum value that determines how many records the CancelBatch method will
affect. The AffectEnum value can be one of the constants in the following table.

Enumera
tion

Val
ue

Description

adAffect
Current

1 This value cancels pending updates only for the current record.

adAffect
Group

2 This value cancels pending updates for records that satisfy the current Filter property setting. You must set th
e Filter property to one of the valid predefined constants to use this option.

adAffect
All

3 This value cancels pending updates for all the records in the Recordset object, including any hidden by the cu
rrent Filter property setting. This value is the default.

Remarks

The CancelBatch method is used to cancel any pending updates in a Recordset object in batch update mode. If the
Recordset object is in immediate update mode, calling CancelBatch without adAffectCurrent generates an error.

If you are editing the current record or are adding a new record when CancelBatch is called, ActiveX® Data Objects (ADO)
first calls the CancelUpdate Method to cancel any cached changes, and then all pending changes in the recordset are canceled.

It is possible that the current record will be indeterminable after a CancelBatch call, especially if you were in the process of
adding a new record. For this reason, it is prudent to set the current record position to a known location in the recordset after
the CancelBatch method is called. For example, call the MoveFirst method.

If the attempt to cancel the pending updates fails because of a conflict with the underlying data (for example, a record has been
deleted by another user), the provider returns warnings to the Errors collection but does not halt program execution. A run-
time error occurs only if there are conflicts on all the requested records. The Filter Property (adFilterAffectedRecords) and
the Status property can be used to locate records with conflicts.

recordset.CancelBatchAffectedRecords

https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx

CancelUpdate Method (ADO)
The CancelUpdate method on a Recordset object cancels any changes made to the current record or to a new record prior to
calling the Update method.

Syntax

Parameters

None.

Remarks

The CancelUpdate method is used to cancel any changes made to the current record or to discard a newly added record. You
cannot undo changes to the current record or to a new record after the Update method is called unless the changes are part of
a batch update that you can cancel with the CancelBatch Method.

If you are adding a new record when the CancelUpdate method is called, the record that was current prior to the
AddNew Method call becomes the current record again.

If you have not changed the current record or added a new record, calling the CancelUpdate method generates an error.

recordset.CancelUpdate

https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx

Clear Method (ADO)
The Clear method on a Collection object removes all of the objects in a collection.

Syntax

Parameters

None.

Remarks

The Clear method is used on the Errors collection to remove all existing Error objects from the collection. When an error
occurs, ActiveX® Data Objects (ADO) automatically clears the Errors collection and fills it with Error objects based on the new
error. However, some properties and methods return warnings that appear as Error objects in the Errors collection but do not
halt a program's execution. Before calling the Resync, UpdateBatch, or CancelBatch Methods on a Recordset object or before
setting the Filter Property on a Recordset object, call the Clear method on the Errors collection. Doing so enables you to read
the Count property of the Errors collection to test for returned warnings as a result of these specific calls.

collection.Clear

https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx

Clone Method (ADO)
The Clone method on a Recordset object creates a duplicate Recordset object from an existing Recordset object.

Syntax

Parameters
rstDuplicate

This object variable specifies the duplicate Recordset object to be created.

rstOriginal

This object variable specifies the Recordset object to be duplicated.

Remarks

The Clone method is used on a Recordset object to create multiple, duplicate Recordset objects, particularly if you want to be
able to maintain more than one current record in a given set of records. Using the Clone method is more efficient than
creating and opening a new Recordset object with the same definition as the original.

The current record of a newly created clone is set to the first record.

Changes made to one Recordset object are visible in all of its clones regardless of cursor type. However, after you execute
Requery on the original Recordset, the clones will no longer be synchronized to the original.

Closing the original Recordset does not close its copies; closing a copy does not close the original or any of the other copies.

You can only clone a Recordset object that supports bookmarks. Bookmark values are interchangeable; that is, a bookmark
reference from one Recordset object refers to the same record in any of its clones.

rstDuplicate = rstOriginal.Clone

Close Method (ADO)
The Close method on a Connection or Recordset object closes an open object and any dependent objects.

Syntax

Parameters

None

Remarks

The Close method is used to close either a Connection object or a Recordset object to free any associated system resources.
Closing an object does not remove it from memory; you may change its property settings and open it again later. To
completely eliminate an object from memory, set the object variable to Nothing.

Using the Close method to close a Connection object also closes any active Recordset objects associated with the
connection. A Command object associated with the Connection object you are closing will persist, but it will no longer be
associated with a Connection object, that is, its ActiveConnection property will be set to Nothing.

You can later call the Open method to reestablish the connection to the same or another data source. While the Connection
object is closed, calling any methods that require an open connection to the data source generates an error. Closing a
Connection object while there are open Recordset objects on the connection rolls back any pending changes in all of the
Recordset objects.

Using the Close method to close a Recordset object releases the associated data and any exclusive access you may have had
to the data through this particular Recordset object. You can later call the Open method to reopen the recordset with the
same or modified attributes. While the Recordset object is closed, calling any methods that require a live cursor generates an
error.

If an edit is in progress while in immediate update mode, calling the Close method generates an error. The Update or
CancelUpdate Methods should be called first. If you close the Recordset object during batch updating, everything changes
since the last UpdateBatch call is lost.

recordSet.Close

https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx

CommandText Property (ADO)
The CommandText property on a Command object contains the text of a command that you want to issue against a
provider. This property sets or returns a String value containing a provider command, such as an AS/400 Command Language
(CL) command for execution by the remote OS/400 DDM target server or an SQL command for execution on a DB2 database
server. The default value for the CommandText property is a zero-length string.

Syntax

Remarks

The CommandText property is used to set or return the text of a Command object. When used with the OLE DB Provider for
AS/400 and VSAM, the text can be an AS/400 CL command for execution by the remote OS/400 DDM target server or a
request to open a table on a host (a remote DDM Server). When used with the OLE DB Provider for DB2, the text can be an SQL
command for execution or a call to a stored procedure.

If the Prepared property of the Command object is set to True and the Command object is bound to an open connection
when you set the CommandText property, ActiveX® Data Objects (ADO) prepares the query when you call the Execute or
Open methods.

Depending on the CommandType property setting, ADO may alter the CommandText property. The CommandText
property can be read at any time to see the actual command text that ADO will use during execution.

The CommandText property defines the text version of a command. The syntax for the string in the CommandText property
when used with the OLE DB Provider for AS/400 and VSAM is as follows:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your
platform for a detailed list of possible commands.

With the OLE DB Provider for AS/400 and VSAM, the Command object can also be used to open a data file after a
Connection object has been opened and the ActiveConnection property has been set to this open connection. The
CommandText property defines the data file to open. When used with the OLE DB Provider for AS/400 and VSAM, the syntax
for the CommandText property string in this case is as follows:

where DataSetName represents a valid data file or library member on the host. If you open a host data file from a Command
object, then the data file is opened as read-only. This results from the limitation that no argument or option is passed by ADO
that supplies a parameter describing whether the data set should be opened as read-only or updatable.

The syntax for the string in the CommandText property when used with the OLE DB Provider for DB2 can be one of the
following:

where SQLStatement represents a valid SQL statement supported by DB2.

where StoredProcedure represents a valid DB2 stored procedure on the database server.

The CommandType property specifies the type of command described in the CommandText property prior to execution in
order to optimize performance. The CommandType property must be set to adCmdText for use with the OLE DB Provider

previousCommandtext = command.CommandText
command.CommandText= "EXEC COMMAND DDMCmd"

EXEC COMMAND DDMCmd

EXEC OPEN DataSetName

EXEC SQLStatement

CALL StoredProcedure

for AS/400 and VSAM or the OLE DB Provider for DB2.

CommandType Property (ADO)
The CommandType property on a Command object Indicates the type of a Command object. This property sets or returns a
CommandTypeEnum value.

Syntax

Remarks

The CommandType property is used to set or return the type of a Command object. This property specifies a
CommandTypeEnum value that can be one of the constants in the following table.

Enumer
ation

V
al
u
e

Description

adCmd
Unspec
ified

-1 This value indicates that the CommandType property has been unspecified.

adCmd
Text

1 This value evaluates the CommandText property as a textual definition of a command or stored procedure call.

adCmd
Table

2 This value evaluates the CommandText property as a table name. This value is not supported by the OLE DB Prov
ider for AS/400 and VSAM or the OLE DB Provider for DB2.

adCmd
Stored
Proc

4 This value evaluates the CommandText property as a stored procedure. This value is not supported by the OLE D
B Provider for AS/400 and VSAM or the OLE DB Provider for DB2. See remarks below regarding using stored proc
edures using the OLE DB Provider for DB2.

adCmd
Unkno
wn

8 This value indicates that the type of command in a CommandText property is not known. This is the default value.

The OLE DB Provider for AS/400 and VSAM and the OLE DB Provider for DB2 only support the adCmdText type for the
CommandType property. If any other value for the CommandType property is set, errors will occur.

The OLE DB Provider for DB2 supports calling DB2 stored procedures. An application must use the CALL keyword before the
SQL statement in order to execute a stored procedure. When using ADO, a CommandType property of adCmdStoredProc
cannot be used for executing a stored procedure since ActiveX® Data Objects (ADO) inserts an EXEC not CALL keyword before
the command text. In order to execute a stored procedure using ADO, the CommandType property should be set to
adCmdText and the CALL keyword should be used before the SQL statement containing the stored procedure to be executed.

oldType = command.CommandType
command.CommandType= newType

ConnectionString Property (ADO)
The ConnectionString property on a Connection object contains the information used to establish a connection to a data
source. This property sets or returns a string value.

Syntax

Remarks

The ConnectionString property is used to specify a data source by passing a detailed connection string containing a series of
argument = value statements separated by semicolons.

Microsoft ActiveX Data Objects (ADO) supports several standard arguments for the ConnectionString property. Any other
arguments are passed directly to the provider without any processing by ADO. This information must be in a specific format
for use with the Microsoft OLE DB Provider for AS/400 and VSAM, the Microsoft OLE DB Provider for DB2 or the Microsoft
ODBC Driver for DB2. This information can be a data source name (DSN) or a detailed connection string containing a series of
argument=value statements separated by semicolons. ADO supports several standard ADO-defined arguments for the
ConnectionString property as listed in the following table.

Arg
um
ent

Description

Dat
a So
urce

This argument specifies the name of the data source for the connection. This argument is optional when using the OLE D
B Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

File
Na
me

This argument specifies the name of the provider-specific file containing preset connection information. This argument ca
nnot be used if a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and V
SAM.

Loc
atio
n

The remote database name used for connecting to OS/400 systems. This parameter is optional when connecting to mainf
rame systems.

Pass
wor
d

This argument specifies a valid mainframe or AS/400 password to use when opening the connection. This password is us
ed to validate that the user can log on to the target host system and has appropriate access rights to the file.

Pro
vide
r

This argument specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and V
SAM, the Provider string must be set to "SNAOLEDB". To use the OLE DB Provider for DB2, the Provider string must be se
t to "DB2OLEDB". To use the ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not used as part of t
he ConnectionString since this value is the default for ADO.

Re
mot
e Pr
ovid
er

This argument specifies the name of a provider to use when opening a client-side connection (for a Remote Data Service
only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Re
mot
e Se
rver

This argument specifies the path name of a server to use when opening a client-side connection (for a Remote Data Servi
ce only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

oldString = connection.ConnectionString
connection.ConnectionString = newString

Use
r ID

This argument specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is
used to validate that the user can log on to the target host system and has appropriate access rights to the file.

Note
Not all of these parameters are required. The user can also be prompted for this information.

The OLE DB Provider for AS/400 and VSAM also support a number of provider-specific arguments, some of which default have
default values as specified in the following table.

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0; do not process binary fields as
character fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitte
d, the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when con
necting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 2
56 characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system dire
ctory. This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in Host Integration Server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #
BATCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communic
ation with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for thi
s parameter are TCPIP or SNA. This value defaults to SNA.

PCC
odeP
age

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The remote database name for OS/400. You only need to specify this value if it is different from the remote LU alias conf
igured in Host Integration Server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults t
o false.

Rem
oteL
U

The name of the remote LU alias configured in Host Integration Server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

Note
Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString for use with the OLE DB Provider for AS/400 and VSAM follows:

Note
The &_ character combination is used for continuing long lines in Visual Basic.

When opening a connection object in ADO 2.0, you must specify the Prompt connection property. For example, the following is
valid with ADO 1.5 and ADO 2.0 and will prompt the user for ConnectionString properties:

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration
Server 2009 differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2009 are listed in the
following table.

Ar
g
u
m
e
nt

Description

Bi
n
As
C
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as ch
aracter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output
parameters.

This parameter defaults to false.

C
C
SI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

Conn.Provider="SNAOLEDB"
Conn.ConnectionString = "User ID=USERNAME;Password=password",&_
 "LocalLU=LOCAL;RemoteLU=DATABASE",&_
 "ModeName=QPCSUPP;CCSID=37;PCCodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

Conn.ConnectionString = "Provider=SNAOLEDB
Conn.Properties("PROMPT")=adPromptAlways
Conn.Open

D
ef
Sc
h

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2, SYSIB
M, SYSTEM, CURLIB, or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referre
d to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to
as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/
400 system. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this pr
operty is referred to as DATABASE.

This parameter has no default value.

Lo
ca
lL
U

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

N
et
A
dd
r

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA.

This value defaults to SNA.

P
C
C
od
eP
ag
e

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
g
C
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bi
nd DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider wi
ll create packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applic
ation server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP
name.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN
ame is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distrib
uted unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

The ODBC Driver for DB2 supports a number of provider-specific arguments, some of which have default values as specified in
the following tables. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2009 differ from
the arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2009 are listed in the following
table.

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 65
535) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parame
ters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID proper
ty is required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted
based on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless
the Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Wi
ndows.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left bl
ank.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information.
The Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Sche
ma to restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catal
og SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/
400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappro
priate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this att
ribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this fi
eld is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a va
lue that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), B
ATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or t
he hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used fo
r communication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. Th
e possible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind D
B2 packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA application requester, uses packages to issue d
ynamic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user point
s using the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this
attribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this
field is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be s
et to "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate tha
t the user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parame
ter is the same as the Parameter parameter.

R
D
B

The remote database name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter
is referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessibl
e locations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look i
n the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 install
ation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WR
KRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created usin
g the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applica
tion server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP na
me.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN i
s set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate t
hat the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is t
he same as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of wor
k) or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

A sample ConnectionString using the ODBC Driver for DB2 supplied with Host Integration Server is as follows:

Conn.Provider="MSDASQL"
Conn.ConnectionString = "UID=USERNAME;PWD=password",&_
 "LLU=LOCAL;RLU=DATABASE",&_

Note
The &_ character combination is used for continuing long lines in Visual Basic.

After the ConnectionString property is set and the Connection object is opened, the provider may alter the contents of the
property, for example, by mapping the ADO-defined argument names to their provider equivalents. Using the OLE DB Provider
for AS/400 and VSAM or the OLE DB Provider for DB2, three items are stripped from the ConnectionString after a
Connection object is opened: Data Source, User ID, and Password.

The ConnectionString property automatically inherits the value used for the ConnectionString argument of the Open
method on a Connection object, so you can override the current ConnectionString property during the Open method call.
Therefore, the ConnectionString property of the Connection object can be set before opening the Connection object, or the
ConnectionString parameter can be used to set or override the current connection parameters during the Open method call.

The ConnectionString property is read/write when the connection is closed and read-only when it is open.

If user and password information is set in both the ConnectionString property and in the optional UserID and Password
parameters to the Open method, the results may be unpredictable. Such information should only be passed in either the
ConnectionString property (or the ConnectionString parameter to the Open method call) or in the UserID and Password
parameters.

There are a number of different ways to open a connection. The Open method can pass all of the appropriate connection
information as part of the ConnectionString parameter or by setting the ConnectionString property of the Connection
object, if this information is known in advance. The syntax in this case using the ConnectionStringproperty is as follows:

There is a lack of spaces after the semicolons in the string. If spaces are inserted after the semicolons, an error will occur.

The simplest form of a ConnectionString property that contains all necessary information is as follows:

Note
The User ID and Password must be included. Note the lack of spaces after the semicolons in the string. If spaces are inserted
after the semicolons, an error will occur.

In the case where you would like the user to input the connection information, the following syntax can be used. This syntax
does not specify any connection information except the provider, which is always required unless this is set in the
ConnectionString or Provider property of the Connection object:

This method of invoking the Open method automatically causes a dialog box to appear asking the user for the user name,
password, and other necessary information.

 "MN=QPCSUPP;CCSID=37;CP=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

connection = CreateObject("ADODB.Connection.2.0")
connection.Provider="SNAOLEDB"
connection.ConnectionString = "User ID=USERNAME;Password=password;Local LU=LOCAL;Remote LU=
DATABASE;ModeName=QPCSUPP;CCSID=37;CodePage=437"
Conn.Properties("PROMPT")=adPromptNever
Conn.Open

connection = CreateObject("ADODB.Connection.2.0")
connection.ConnectionString = "Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME;Passwor
d=password;ModeName=QPCSUPP"

connection = CreateObject("ADODB.Connection.2.0")
connection.ConnectionString = "Provider=SNAOLEDB"
Conn.Properties("PROMPT")=adPromptAlways
connection.Open

CursorLocation Property (ADO)
The CursorLocation property on a Connection object or Recordset object indicates the location of the cursor engine. This
property sets or returns a Long value representing a CursorLocationEnum.

Syntax

Remarks

The CursorLocation property is used to set or return the location of the cursor. This property can be set to one of the
CursorLocationEnum constants listed in the following table.

Enumeration Valu
e

Description

adUseNone 1 This value indicates no cursor location. This value is not supported by the Microsoft® OLE DB Provider f
or AS/400 and VSAM.

adUseServer 2 This value indicates that the data provider or driver-supplied cursor is used.

adUseClient 3 This value indicates that a client-side cursor supplied by a local cursor library is to be used.

adUseClientBa
tch

3 For backward compatibility, this value indicates that a client-side cursor supplied by a local cursor librar
y is to be used.

This property setting only affects connections established after the property has been set. Changing the CursorLocation
property has no effect on existing connections.

This property is read/write on a Connection object or a closed Recordset, object and read-only on an open Recordset.

If the CursorLocation property is set to adUseClient, the recordset will be accessible as read-only, and recordset updates to
the host are not possible. When the CursorLocation property is set to adUseClient (use the client cursor engine), the Find
method, Filter property, and Sort property will work if MDAC 2.0 or higher is installed, but will not work properly with earlier
versions of ADO.

cursor = connection.CursorLocation
connection.CursorLocation= adUseServer

CursorType Property (ADO)
The CursorType property on a Recordset object indicates the type of the cursor engine. This property sets or returns a Long
value representing a CursorTypeEnum.

Syntax

Remarks

The CursorType property is used to set or return the type of the cursor that the provider should use when opening the
Recordset. This property can be one of the enumerated values for CursorTypeEnum listed in the following table.

Enume
ration

V
al
u
e

Description

adOpe
nUnsp
ecified

-
1

This indicates an unspecified value for the CursorType.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM or the Microsoft OLE DB Pro
vider for DB2.

adOpe
nForw
ardOnl
y

0 Specifying this value opens a forward-only-type cursor. This CursorType is identical to a static cursor, except that yo
u can only scroll forward through records. This improves performance when only one pass through a Recordset is
needed.

This value is not supported by the Microsoft OLE DB Provider for AS/400 and VSAM.

adOpe
nKeyse
t

1 Specifying this value opens a keyset-type cursor. This CursorType is similar to a dynamic cursor with a few exceptio
ns. Records that other users delete are inaccessible from your Recordset. Data changes to existing records by other
users are still visible, but records added by other users are not visible (cannot be seen).

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adOpe
nDyna
mic

2 Specifying this value opens a dynamic-type cursor. Additions, changes, and deletions by other users are visible, and
all types of movement through the recordset are allowed, except for bookmarks if the provider does not support th
em.

A dynamic cursor is the only CursorType supported by the OLE DB Provider for AS/400 and VSAM.

adOpe
nStatic

3 Specifying this value opens a static-type cursor. A static cursor provides a static copy of a set of records that can be
used to find data or generate reports. Additions, changes, or deletions by other users are not visible with a static cur
sor.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

Note that the Open method on a Recordset object defaults this property to adOpenForwardOnly,a value that is mapped to
adOpenDynamic by the OLE DB provider for AS/400 and VSAM.

This property setting only affects connections established after the property has been set. Changing the CursorType property
has no effect on existing connections. The CursorType property is read/write when the Recordset is closed and read-only
when it is open.

If a provider does not support the requested cursor type, the provider may return another cursor type. The CursorType
property will change to match the actual cursor type in use when the Recordset object is open. To verify whether a specific
returned cursor is supported, use the Supports method. When using the OLE DB Provider for AS/400 and VSAM, the
Supports method returns adMovePrevious as true with CursorType set to adOpenDynamic. After you close the
Recordset, the CursorType property reverts to its original setting.

oldType = recordset.CursorType
recordset.CursorType= newType

DefinedSize Property (ADO)
The DefinedSize property on a Field object indicates the defined size of a field object. This property returns a Long value that
reflects the defined size of a field as a number of bytes.

Syntax

Remarks

The DefinedSize property is used to return the data capacity or length of a Field object. For all fields, the DefinedSize
property is read-only. If ActiveX® Data Objects (ADO) cannot determine the length of the Field object, the ActualSize
property returns adUnknown.

The ActualSize and DefinedSize properties on a field object can be different. For example, a Field object with a declared type
of adVarChar (variable character data type) and a maximum length of 50 characters returns a DefinedSize property value of
50, but the ActualSize property value it returns is the length of the data stored in the field for the current record.

size = field.DefinedSize

Delete Method (ADO)
The Delete method on a Recordset object deletes the current record or a group of records.

Syntax

Parameters
AffectedRecords

This optional parameter specifies an AffectEnum value that determines how many records the Delete method will affect.
The AffectEnum value can be one of the constants listed in the following table.

Enumerat
ion

Val
ue

Description

adAffectC
urrent

1 This value deletes only the current record.

adAffectG
roup

2 This value deletes the records that satisfy the current Filter Property setting. You must set the Filter property
to one of the valid predefined constants to use this option.

Remarks

The Delete method is used to mark the current record or a group of records in a Recordset object for deletion. If the
Recordset object does not allow record deletion, an error occurs. If you are in immediate update mode, deletions occur in the
database immediately. Otherwise, the records are marked for deletion from the cache and the actual deletion happens when
the UpdateBatch method is called. (Use the Filter property to view the deleted records.)

Retrieving field values from the deleted record generates an error. After deleting the current record, the deleted record remains
current until you move to a different record. After you move away from the deleted record, it is no longer accessible.

If you are in batch update mode, use the CancelBatch Method to cancel a pending deletion or group of pending deletions.

If the attempt to delete records fails because of a conflict with the underlying data (for example, a record has already been
deleted by another user), the data provider returns warnings to the Errors collection but does not halt program execution. A
run-time error occurs only if there are conflicts on all the requested records.

recordSet.Delete AffectedRecords

https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745582(v=bts.10).aspx

Description Property (ADO)
The Description property on an Error object describes the Error object. This property returns a String value that contains a
description of the error.

Syntax

Remarks

The Description property on an Error object is used to obtain a short description of the error. Applications can display this
property to alert the user to an error that the application does not want to handle. The string will come from either ActiveX®
Data Objects (ADO) or a data provider such as the Microsoft® OLE DB Provider for AS/400 and VSAM, the Microsoft OLE DB
Provider for DB2, or the Microsoft ODBC Driver for DB2. The provider is responsible for passing specific error text to ADO.

ADO adds an Error object to the Errors collection for each provider error or warning it receives. An application can enumerate
the Errors collection to trace the errors that the provider passes.

errorString = currentError.Description

EditMode Property (ADO)
The EditMode property on a Recordset object indicates the editing status of the current record. This property returns a Long
value representing an EditModeEnum.

Syntax

Remarks

The EditMode property is used to return the editing status of the current recordset. This property can be one of the
enumerated values for EditModeEnum listed in the following table.

Enumerati
on

Val
ue

Description

adEditNon
e

0 This value indicates that no editing operation is in progress.

adEditInPr
ogress

1 This value indicates that data in the current record has been modified but not saved.

adEditAdd 2 This value indicates that the AddNew method has been called, and the current record in the copy buffer is a
new record that has not been saved in the database.

adEditDele
te

4 This value indicates that the current record has been deleted.

ActiveX® Data Objects (ADO) maintains an editing buffer associated with the current record. The EditMode property indicates
whether changes have been made to this buffer, or whether a new record has been created. Use the EditMode property to
determine the editing status of the current record. You can test for pending changes if an editing process has been interrupted
and determine whether you need to use the Update Method or the CancelUpdate Method.

See the AddNew Method for a more detailed description of the EditMode property under different editing conditions.

currentMode = recordset.EditMode
connection.CursorType= newType

https://msdn.microsoft.com/en-us/library/aa705211(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705016(v=bts.10).aspx

EOF Property (ADO)
The EOF property on a Recordset object indicates that the current record position is after the last record in a Recordset
object. This property returns a Boolean value.

Syntax

Remarks

The EOF property is used to determine whether a Recordset object contains records or whether you have gone beyond the
limits of a Recordset object when you move from record to record.

The EOF property returns True if the current record position is after the last record and False if the current record position is
on or before the last record.

If the EOF property is True, there is no current record.

If a Recordset object is opened containing no records, both the BOF and EOF properties are set to True and the Recordset
object's RecordCount property setting is zero. When a Recordset object is opened that contains at least one record, the first
record is the current record and the BOF and EOF properties are False.

If the last remaining record in the Recordset object is deleted, the BOF and EOF properties may remain False until you
attempt to reposition the current record.

This table below indicates which Move methods are allowed with different combinations of the BOF and EOF properties.

 MoveFirst MoveLast MovePrevious Move < 0 Move 0 MoveNext Move > 0

BOF=True EOF=False Allowed Error Error Allowed

BOF=False EOF=True Allowed Allowed Error Error

Both True Error Error Error Error

Both False Allowed Allowed Allowed Allowed

Allowing a Move method does not guarantee that the method will successfully locate a record; it only means that calling the
specified Move method will not generate an error.

The following table shows what happens to the BOF and EOF property settings when various Move methods are called, but
are unable to successfully locate a record.

 BOF Property EOF Property

MoveFirst MoveLast Set to True Set to True

Move 0 No change No change

MovePrevious Move < 0 Set to True No change

MoveNext Move > 0 No change Set to True

IsEOF = recordset.EOF

Execute Method on a Command Object (ADO)
The Execute method on a Command object executes the statement specified in the CommandText property.

Syntax

Parameters
RecordsAffected

This optional parameter specifies a Long variable to which the provider returns the number of records that the operation
affected.

Parameters

This optional parameter specifies a Variant array of parameter values passed with an SQL statement and is not used by the
OLE DB Provider for AS/400 and VSAM.

Options

This optional parameter specifies a Long value representing a CommandTypeEnum value that indicates how the provider
should evaluate the CommandText property of the Command object.

The CommandTypeEnum value can be one of the constants listed in the following table.

Enumerat
ion

Va
lu
e

Description

adCmdU
nspecifie
d

-1 This value indicates that the CommandText property is unspecified. This value is not supported by the Micro
soft® OLE DB Provider for AS/400 and VSAM.

adCmdTe
xt

1 This value evaluates the CommandText property as a as a textual definition of a command or stored proced
ure call.

adCmdTa
ble

2 This value evaluates the CommandText property as a table name. This value is not supported by the OLE DB
Provider for AS/400 and VSAM or the Microsoft OLE DB Provider for DB2.

adCmdSt
oredProc

4 This value evaluates the CommandText property as a stored procedure name. This value is not supported by
the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adCmdU
nknown

8 This value indicates that the type of command in CommandText is not known. This value is the default. This
value is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

The default for Option is adCmdText under the OLE DB Provider for AS/400 and VSAM and the OLE DB Provider for DB2.

Remarks

When used with the OLE DB Provider for AS/400 and VSAM, the Execute method on a Command object can be used to open
tables or execute DDM commands on a remote DDM server. The Options parameter must be set to adCmdText for use with
the OLE DB Provider for AS/400 and VSAM.

The primary purpose of the Command object in the context of the OLE DB Provider for AS/400 and VSAM is to issue AS/400
Command Language (CL) commands for execution by the remote OS/400 DDM target server. To invoke DDM commands on a
remote DDM server, the CommandText property defines the text version of a command which must have been set to:

command.Execute(RecordsAffected,Parameters,Options)
set recordSet = command.Execute(RecordsAffected, Parameters,
Options)

EXEC COMMAND DDMCmd

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your
platform for a detailed list of possible commands.

Note that this method does not return the results or output of a remote DDM CL command. If the results or output of a remote
command are to be captured, the DDMCmd statement to be executed must include syntax to redirect the command output to
a file on the AS/400 host and then explicitly open this output file after the command has completed.

The Execute method on a Command object can also be used to open a data file after a Connection object has been opened
and the ActiveConnection property has been set to this open connection. The CommandText property defines the data file
to open and must be set to:

where DataSetName represents a valid data file or library member on the host. When used in this way, the Execute method
returns a Recordset object. If you open a host data file from a Command object, then the data file is opened as read-only. This
results from the limitation that no argument or option is passed by ActiveX® Data Objects (ADO) that supplies a parameter
describing whether the data set should be opened as read-only or updatable.

When used with the OLE DB Provider for DB2, the Execute method on a Command object can be used to execute SQL
statements or call a stored procedure. The CommandText property defines the SQL statements to execute and must be set to
one of the following:

where SQLStatement represents a valid SQL statement supported by DB2.

where StoredProcedure represents a valid DB2 stored procedure on the database server.

If errors occur, these can be examined with the Errors collection on the Command object.

EXEC OPEN DataSetName

EXEC SQLStatement

CALL StoredProcedure

Execute Method on a Connection Object (ADO)
The Execute method on a Connection object executes the statement specified in the CommandText property.

Syntax

Parameters
RecordsAffected

This optional parameter specifies a Long variable to which the provider returns the number of records that the operation
affected.

Options

This optional parameter specifies a Long value representing a CommandTypeEnum value that indicates how the provider
should evaluate the CommandText property of the Command object.

The CommandTypeEnum value can be one of the constants listed in the following table.

Enumeration Val
ue

Description

adCmdUnspec
ified

-1 This value indicates that the CommandText property is unspecified.

This value is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM or the Microsof
t OLE DB Provider for DB2.

adCmdText 1 This value evaluates the CommandText property as a textual definition of a command or stored proc
edure call.

adCmdTable 2 This value evaluates the CommandText property as a table name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for
DB2.

adCmdStoredP
roc

4 This value evaluates the CommandText property as a stored procedure name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdUnkno
wn

8 This value indicates that the type of command in CommandText is not known. This value is the defau
lt.

This value is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for
DB2.

Remarks

The Execute method on a Connection object can be used to open tables or execute DDM commands on a remote DDM
server. The Options parameter must be set to adCmdText for use with the OLE DB Provider for AS/400 and VSAM.

The Execute method on a Connection object is primarily used to open a data file after a Connection object has been created.
The CommandText property defines the data file to open and must be set to:

where DataSetName represents a valid data file or library member on the host. When used in this way, the Execute method
returns a Recordset object. If you open a host data file from a Connection object, then the data file is opened as read-only.
This results from the limitation that no argument or option is passed by ActiveX® Data Objects (ADO) that supplies a
parameter describing whether the data set should be opened as read-only or updatable. If a Recordset object is desired that is

connection.Execute CommandText, RecordsAffected,Options
set recordset = connection.Execute(CommandText, RecordsAffected,
Options)

EXEC OPEN DataSetName

not read-only, then first create a Recordset object with the desired property settings, and use the Recordset objects Open
method to return the open Recordset.

The Execute method on a Connection object can also be used to issue AS/400 Command Language (CL) commands for
execution by the remote OS/400 DDM target server. To invoke DDM commands on a remote DDM server, the CommandText
property defines the text version of a command which must have been set to:

where DDMCmd represents a valid OS/400 control language (CL) command. Note that only OS/400 CL commands are
supported. These commands allow you to request functions from the OS/400 operating system. Some examples are the DLTF
(Delete File) or DSPFFD (Display File Description) commands. These are the same commands that could be issued on the
command line if you were connected to an AS/400 via a 5250 terminal session. See the 'OS/400 CL Reference for your
platform for a detailed list of possible commands.

Note that this method does not return the results or output of a remote DDM CL command. If the results or output of a remote
command are to be captured, the DDMCmd statement to be executed must include syntax to redirect the command output to
a file on the AS/400 host and then explicitly open this output file after the command has completed.

If errors occur, these can be examined with the Errors collection on the Connection object.

EXEC COMMAND DDMCmd

Filter Property (ADO)
The Filter property on a Recordset object indicates a filter for data in a Recordset. This property sets or returns a Variant
value.

Syntax

Parameters
Criteria

This parameter specifies a Variant.

It can be either a criteria (a where clause) or one of the enumerated values for FilterGroupEnum listed in the following
table.

Enumeration Va
lu
e

Description

adFilterNone 0 No filter. This value removes the current filter and restores all records to view.

adFilterPendin
gRecords

1 Use the pending records. This value allows viewing only those records that have changed but have not
yet been sent to the server. This value is only applicable for batch update mode.

adFilterAffecte
dRecords

2 Use only records affected by the last Delete, Resync, UpdateBatch, or CancelBatch call.

adFilterFetche
dRecords

3 Use the last fetched records. This value allows viewing the records in the current cache returned as a res
ult of the last call to retrieve records (implying a resynchronization).

adFilterConflic
tingRecords

5 Use the conflicting records. This value allows viewing only those records that failed the last batch updat
e.

Remarks

The Filter property is not supported by the Microsoft® OLE DB Provider for DB2 or the Microsoft ODBC Driver for DB2.

The Filter property is supported by the Microsoft OLE DB Provider for AS/400 and VSAM on certain files. In order to use the
Recordset Filter property, an AS/400 logical file, an AS/400 keyed physical file, a mainframe KSDS file with a unique key, or a
mainframe RRDS file with a unique key must be used. If this property is used on an AS/400 non-keyed physical file or any
other mainframe file type, then the method fails.

When the Filter property is used with a criteria, the where clause is a combination of triplets. Each triplet consists of a column
name, an operator, and a literal value. These where clause triplets can be combined with ANDs and ORs for more complex
logical filters.

If Criteria is a single-condition where clause, then any operator can be used. The construction of a single-condition where
clause consists of a column name (the database field), an operator (greater than or equal, for example), and a literal value.

Examples of a single-condition where clause is as follows:

recordset.Filter = "LastName = 'Jones' "

recordset.Filter ="Salary > 30000.0"

The Criteria argument can be a two-condition with the following restrictions:

If the column name (the database field) is the same in both clauses, then the separate where clauses must define a
contiguous range.

recordset.Filter=Criteria

If the column names are different, then the operators must be the same. If the operators are "LIKE", then the filtered
region may be unexpected.

Examples of acceptable two-condition where clauses are as follows:

recordset.Filter = "LastName = 'Jones' AND FirstName = 'Tom' "

recordset.Filter = "Cost = 5000.00 OR Cost > 5000.00 "

The Criteria argument can be three or more conditions with the following restrictions:

The operators must be the same for all conditions. If the operators are "LIKE", then the filtered region may be unexpected.

In all cases, if the "=" operator is used, then the column names specified in the where clause must be keyed columns in the file.

One restriction on these combinations is that OR clauses can only be used at the highest (major) level of the logical operation.

Examples of acceptable Criteria meeting these conditions are:

recordset.Filter = "(Title='Manager' AND Salary>30000) OR (Title='Administrator' AND Salary>50000)"

recordset.Filter ="Salary > 30000.0"

An example of illegal Criteria is:

recordset.Filter = "(Title='Associate' OR Salary >30000) AND (Title='Administrator')"

The operator can also use wildcards (* or %) in character expressions as follows:

recordset.Filter = "Lastname LIKE '*SMITH*'"

To determine if any records were found meeting the Criteria, the application should check the Recordset EOF property. If EOF
is true, then no records were found meeting the where clause specified in the Criteria parameter.

If the CursorLocation Property is set to adUseClient (use the client cursor engine), the Filter property will work if MDAC 2.0 or
later is installed but will not work properly with earlier versions of ADO.

When operating on large VSAM files and only querying data on a subset of the records, using the Filter property is not
desirable because of the performance impact. The entire VSAM file is transferred to the client for filtering. A better solution is
to use the server cursor engine and the Find method.

https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx

Find Method (ADO)
The Find method on a Recordset object locates or seeks to the next record in a Recordset object that meets a particular
condition and makes this the current record. This method can be used to seek to a specific record in a Recordset object based
on a where clause (similar to an SQL where clause) defined by the user.

Syntax

Parameters

ActiveX® Data Objects (ADO) supports four arguments for the Find method, but the last three arguments are optional and
have default values as noted below:

Criteria

This BSTR parameter specifies the criteria used for locating or seeking to a record in a Recordset object.

SkipRecords

This optional parameter specifies a Long expression that indicates the number of records to skip (whether to skip the current
record) when locating a record in a Recordset object. The default value for this argument is 0 (do not skip the current
record). The first time a Find method is used, this argument is usually set to 0 (the default). On subsequent calls to this
method to seek other records that meet the specified condition, this argument would normally be set to 1, to skip one record
forward before finding the next record that matches the search Criteria. A negative value for this parameter is not supported
by the Microsoft® OLE DB Provider for AS/400 and VSAM.

SearchDirection

This optional parameter is an enumeration that specifies the direction for the search.

It can be one of the enumerated values for SearchDirectionEnum listed in the following table.

Enumeration Valu
e

Description

adSearchForwar
d

0 Search forward from the current record.

adSearchBackw
ard

1 Search backward from the current record. This option is not supported by the OLE DB Provider for A
S/400 and VSAM.

This optional argument defaults to adSearchForward.

Start

This optional parameter specifies the starting location for a search, which can be a bookmark or an enumeration indicating
the current, first, or last record in a Recordset object.

This argument is a Variant and can be either a bookmark or one of the enumerated values for BookmarkEnum listed in the
following table.

Enumeration Value Description

adBookmarkCurrent 0 The current record.

adBookmarkFirst 1 The first record.

adBookmarkLast 2 The last record.

This optional argument defaults to adBookmarkCurrent.

Remarks

recordset.FindCriteria, SkipRecords, SearchDirection, Start

The Find method is not supported by the Microsoft OLE DB Provider for DB2 or the Microsoft ODBC Driver for DB2.

The Find method is supported by the Microsoft OLE DB Provider for AS/400 and VSAM on certain files. In order to use the
Recordset Find method, an AS/400 logical file, an AS/400 keyed physical file, a mainframe KSDS file with a unique key, or a
mainframe RRDS file with a unique key must be used. If this method is used on an AS/400 non-keyed physical file or any other
mainframe file type, then the method fails.

The first parameter is the only required argument for the Find method. All of the other arguments are optional and have
default values. This first argument is a single-condition where clause. The construction of a single-condition where clause
consists of a column name (the database field), an operator (greater than or equal, for example), and a literal value.

Examples of acceptable single-condition where clauses are as follows:

recordset.Find, "Cost > 10000.00"

recordset.Find, "Cost < 100.00"

recordset.Find, "Cost = 5000.00"

recordset.Find, "LastName = 'Jones' "

Note that variables cannot be used as substitutes for literal values. If the file has multiple keys in the index, using the "="
operator will always fail since the values of all keys cannot be specified.

If the CursorLocation Property is set to adUseClient (use the client cursor engine), the Filter method will work if MDAC 2.0 or
later is installed, but will not work properly with earlier versions of ADO.

When operating on large VSAM files and only querying data on a subset of the records, using the Filter property is not
desirable because of the performance impact. The entire VSAM file is transferred to the client for filtering. A better solution is
to use the server cursor engine and the Find method.

https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx

GetChunk Method (ADO)
The GetChunk method on a Field object returns all or a portion of the contents of a large text or binary data Field object.

Syntax

Parameters
Size

This parameter specifies a Long expression equal to the number of bytes or characters to be retrieved.

Return Value

A Variant.

Remarks

The GetChunk method on a Field object is used to retrieve part or all of its long binary or character data. In situations where
system memory is limited, the GetChunk method can be used to manipulate long values in portions rather than in their
entirety.

The data that a GetChunk method returns is assigned to a variable. If the Size parameter is greater than the remaining data,
the GetChunk method returns only the remaining data without padding the variable with empty spaces. If the Field object is
empty, the GetChunk method returns Null.

Each subsequent GetChunk method call retrieves data starting from where the previous GetChunk call left off. However, if
you are retrieving data from one field and then set or read the value of another field in the current record, ActiveX® Data
Objects (ADO) assumes you are finished retrieving data from the first field. If the GetChunk method is called on the first field
again, ADO interprets the call as a new GetChunk operation and starts reading from the beginning of the data. Accessing
Field objects in other Recordset objects (that are not clones of the first Recordset object) will not disrupt GetChunk
operations.

If the adFldLong bit in the Attributes property of a Field object is set to True, the GetChunk method can be used for that
Field object.

If there is no current record when the GetChunk method is invoked on a Field object, error 3021 (no current record) occurs.

variable = field.GetChunk(Size)

GetRows Method (ADO)
The GetRows method on a Recordset object retrieves multiple records of a recordset into an array.

Syntax

Parameters
Rows

This optional parameter specifies a Long expression indicating the number of records to retrieve. The default value if this
parameter is not specified is a GetRowSetEnum which is adGetRowsRest (value = -1).

Start

This optional parameter specifies the starting location for the record from which the GetRows operation should begin, which
can be a bookmark or an enumeration indicating the current, first, or last record in a Recordset object.

This argument is a Variant and can be either a bookmark or one of the enumerated values for BookmarkEnum listed in the
following table.

Enumeration Value Description

adBookmarkCurrent 0 The current record

adBookmarkFirst 1 The first record

adBookmarkLast 2 The last record

This optional argument defaults to adBookmarkCurrent.

Fields

This optional parameter is a Variant and specifies a single field name or ordinal position or an array of field names or ordinal
position numbers. ADO returns only the data in these fields.

Return Value

A two-dimensional array.

Remarks

The GetRows method is used to copy records from a recordset into a two-dimensional array. The first subscript of the array
identifies the field and the second array subscript identifies the record number. The array variable is automatically
dimensioned to the correct size when the GetRows method returns the data.

If a value is not specified for the Rows parameter, the GetRows method automatically retrieves all the records in the
Recordset object. If more records are requested than are available, GetRows returns only the number of available records.

If the Recordset object supports bookmarks, you can specify at which record the GetRows method should begin retrieving
data by passing the value of that record's Bookmark property.

To restrict the fields that the GetRows method returns, you can pass either a single field name/number or an array of field
names/numbers in the Fields argument.

After the GetRows method is called, the next unread record becomes the current record, or the EOF property is set to True if
there are no more records.

array = recordset.GetRows(Rows,Start,Fields)

IsolationLevel Property (ADO)
The IsolationLevel property on a Connection object indicates the level of isolation for a Connection object. This property
sets or returns a Long value representing an IsolationLevelEnum. The default value for this property is adXactChaos.

Syntax

Remarks

The IsolationLevel property is used to set the type of isolation level placed on a connection that the provider should use when
opening the Connection object. This property can also be used to return the type of isolation level in use on an open
Connection object.

This property can be one of the enumerated values for IsolationLevelEnum listed in the following table.

Enumeration Valu
e

Description

adXactUnspecifi
ed

-1 This value indicates that the provider is using a different isolation level than specified, but that the lev
el cannot be determined.

adXactChaos 16 This value indicates that pending changes from more highly isolated transactions cannot be overwritt
en.

adXactBrowse 256 This value indicates that from one transaction you can view uncommitted changes in other transactio
ns.

adXactReadUnc
ommitted

256 Same as adXactBrowse.

adXactCursorSta
bility

4096 This value indicates that from one transaction you can view changes in other transactions only after t
hey have been committed.

adXactReadCom
mitted

4096 Same as adXactCursorStability.

adXactRepeatab
leRead

6553
6

This value indicates that from one transaction you cannot see changes made in other transactions, bu
t that re-querying can retrieve new Recordset objects.

adXactIsolated 1048
576

This value indicates that transactions are conducted in isolation of other transactions.

adXactSerializa
ble

1048
576

Same as adXactIsolated.

This property is not supported by the Microsoft® OLE DB Provider for AS/400 and VSAM.

When setting the IsolationLevel property, this change does not take effect until the next time that the BeginTrans method is
called.

If the level of isolation you request is unavailable, the provider may return the next greater level of isolation.

When used with the Microsoft OLE DB Provider for DB2 or the Microsoft OLE DB Driver for DB2, the ActiveX® Data Objects
(ADO) IsolationLevel property corresponds with the isolation level defined by the ANSI SQL standard and with IBM's DB2
implementation of isolation level. The table below indicates how the ADO IsolationLevel property corresponds with the terms
used by ANSI SQL for isolation level and with IBM documentation for isolation level in DB2.

currentIsoLevel = connection.IsolationLevel
connection.IsolationLevel= newIsoLevel

ADO Isolati
onLevel pro
perty

ANSI SQL isolation level IBM documentation

 AUTOCOMMITTED (Note that this applies only to
DB2/400 and does not correspond with an ANSI S
QL isolation level

COMMIT(*NONE) (NC).

This isolation level is used in DB2/400 auto-commit mode onl
y and has no corresponding isolation level on other DB2 platf
orms or in ANSI SQL.

adXactRead
Uncommitt
ed

READ UNCOMMITTED UNCOMMITTED READ (UR).

This isolation level corresponds with ANSI SQL READ UNCOM
MITTED.

adXactRead
Committed

or

adXactCurs
orStability

READ COMMITTED CURSOR STABILITY (CS).

This isolation level corresponds with ANSI SQL READ COMMI
TTED.

adXactRepe
atableRead

REPEATABLE READ READ STABILITY (RS).

This isolation level corresponds with ANSI SQL REPEATABLE R
EAD.

adXactSeria
lizable

or

adXactIsola
ted

SERIALIZABLE REPEATABLE READ (RR).

This isolation level corresponds with ANSI SQL SERIALIZABLE.

When used with the Remote Data Service on a client-side Connection object, the IsolationLevel property can be set only to
adXactUnspecified. Because users are working with disconnected Recordset objects on a client-side cache, there may be
multi-user issues. For instance, when two different users try to update the same record, Remote Data Service simply allows the
user who updates the record first to "win." The second user's update request will fail with an error.

Item Method (ADO)
The Item method on a Collection object returns a specific member object of a collection by name or ordinal number. This
method is supported for the Errors, Fields, and Properties collections using the OLE DB Provider for AS/400 and VSAM.

Syntax

Parameters
Index

This parameter specifies a Variant that evaluates either to the name or to the ordinal number of an object in a collection.

Return Value

An object reference from the collection.

Remarks

The Item method is used to return a specific object in a collection. If the method cannot find an object in the collection
corresponding to the Index parameter, an error occurs. Also, some collections do not support named objects; for these
collections, you must use ordinal number references.

The Item method is the default method for all collections; therefore, the following syntax forms are interchangeable:

collection.Item (Index)

collection (Index)

This method is only supported on the Errors, Fields, and Properties collections under the OLE DB Provider for AS/400 and
VSAM.

set Object = collection.Item (Index)

LockType Property (ADO)
The LockType property on a Recordset object indicates the type of locks placed on records during editing. This property sets
or returns a Long value representing a LockTypeEnum. The default value for this property is adLockReadOnly.

Syntax

Remarks

The LockType property is used to set the type of locks placed on records that the provider should use when opening the
Recordset. This property can also be used to return the type of locking in use on an open Recordset object. This property can
be one of the enumerated values for LockTypeEnum as listed in the following table.

Enumerati
on

V
al
u
e

Description

adLockUn
specified

-1 This value does not specify a type of lock. For a recordset created with the Clone method, the clone is created w
ith the same lock type as the original.

adLockRe
adOnly

1 This value indicates read-only records where the data cannot be altered.

adLockPe
ssimistic

2 This value indicates pessimistic locking, record by record. The provider does what is necessary to ensure succes
sful editing of the records, usually by locking records at the data source immediately after editing.

This lock type is supported by the Microsoft® OLE DB Provider for AS/400 and VSAM and the Microsoft OLE D
B Provider for DB2. However, the OLE DB Provider for AS/400 and VSAM internally maps this lock type to adLo
ckBatchOptimistic.

adLockOp
timistic

3 This value indicates optimistic locking, record by record. The provider uses optimistic locking, locking records o
nly when the Update method is called.

This lock type is not supported by the OLE DB Provider for DB2.

adLockBat
chOptimis
tic

4 This value indicates optimistic batch updates and is required for batch update mode.

This option is not supported by the OLE DB Provider for DB2.

If a provider cannot support the requested LockType setting, it will substitute another type of locking. To determine the actual
locking options available on a Recordset object, use the Supports method with adUpdate and adUpdateBatch.

The adLockPessimistic setting is not supported if the CursorLocation property is set to adUseClient. If an unsupported
value is set, then no error will result; the closest supported LockType will be used instead.

The LockType property is read/write when the Recordset is closed and read-only when it is open.

currentLock = recordset.LockType
recordset.LockType= newtype

MaxRecords Property (ADO)
The MaxRecords property on a Recordset indicates the maximum number of records to return to a Recordset from a query.
This property sets or returns a Long value that indicates the maximum number of records to return. The default value for this
property is zero (no limit).

Syntax

Remarks

The MaxRecords property is used to limit the number of records returned from a data source. The default setting of this
property is zero, which means that all requested records are returned.

The MaxRecords property is read/write when the Recordset is closed and read-only when it is open.

cntRecords = recordset.MaxRecords
recordset.MaxRecords = count

Mode Property (ADO)
The Mode property on a Connection object sets or returns the available permissions for modifying data on a Connection.

Syntax

Remarks

The Mode property is used to set or return the access permissions in use by the provider on the current connection. The Mode
property can only be set when the Connection object is closed.

Several of the ActiveX® Data Objects (ADO) enumerated values for the mode settings imply that the using certain mode
settings will prevent other applications from opening a connection to the file or table. Under the Microsoft® OLE DB provider
for AS/400 and VSAM, these mode settings result in a file lock, but do not prevent other applications from opening a
connection.

The value for the Mode can be one of the enumerated values for ConnectModeEnum as listed in the following table.

Enumer
ation

V
a
l
u
e

Description

adMode
Unknow
n

0 This value indicates that the permissions have not yet been set or cannot be determined.

adMode
Read

1 This value indicates read-only permissions.

adMode
Write

2 This value indicates write-only permissions. This value is not supported by the OLE DB provider for AS/400 and VS
AM.

adMode
ReadWr
ite

3 This value indicates read/write permissions.

adMode
ShareDe
nyRead

4 This value prevents others from opening a connection with read permissions.

adMode
ShareDe
nyWrite

8 This value prevents others from opening a connection with write permissions.

Under the OLE DB provider for AS/400 and VSAM, this mode setting is implemented as a file lock and does not re
sult in excluding other applications from opening a connection. Other applications opening a connection will not r
eceive an error, but the table or file will be locked preventing any changes from other applications.

adMode
ShareEx
clusive

0
x
c

This value prevents others from opening a connection.

Under the OLE DB provider for AS/400 and VSAM, this mode setting is implemented as a file lock and does not re
sult in excluding other applications from opening a connection. Other applications opening a connection will not r
eceive an error, but the table or file will be locked preventing any changes from other applications.

currentMode = connection.Mode
connection.Mode = newMode

adMode
ShareDe
nyNone

0
x
1
0

This value prevents others from opening a connection with any permissions.

Under the OLE DB provider for AS/400 and VSAM this mode setting is implemented as a file lock and does not res
ult in excluding other applications from opening a connection. Other applications opening a connection will not re
ceive an error, but the table or file will be locked preventing any changes from other applications.

The Mode property defaults to adModeUnknown.

Move Method (ADO)
The Move method on a Recordset object moves the position of the current record in a Recordset object.

Syntax

Parameters
NumRecords

This parameter specifies a signed Long expression specifying the number of records the current record position moves.

Start

This optional parameter specifies the starting location for the record from which the Move operation should begin, which
can be a bookmark or an enumeration indicating the current, first, or last record in a Recordset object.

This argument is a Variant and can be either a bookmark or one of the enumerated values for BookmarkEnum as listed in
the following table.

Enumeration Value Description

adBookmarkCurrent 0 The current record

adBookmarkFirst 1 The first record

adBookmarkLast 2 The last record

This optional argument defaults to adBookmarkCurrent.

Return Value

None.

Remarks

The Move method is supported on all Recordset objects.

If the NumRecords parameter is greater than zero, the current record position moves forward (toward the end of the
recordset). If NumRecords is less than zero, the current record position moves backward (toward the beginning of the
recordset).

If the Move method would move the current record position to a point before the first record, ActiveX® Data Objects (ADO)
sets the current record to the position before the first record in the recordset (the BOF property is set to True). An attempt to
move backward when the BOF property is already True generates an error.

If the Move call would move the current record position to a point after the last record, ADO sets the current record to the
position after the last record in the recordset (the EOF property is set to True). An attempt to move forward when the EOF
property is already True generates an error.

Invoking the Move method from an empty Recordset object generates an error.

If the Start parameter is specified, the move is relative to the record with this bookmark assuming the Recordset object
supports bookmarks. If not specified, the move is relative to the current record.

If the CacheSize property is set to greater than 1 to locally cache records from the provider, passing a NumRecords value that
moves the current record position outside of the current group of cached records forces ADO to retrieve a new group of
records starting from the destination record. The CacheSize property determines the size of the newly retrieved group, and
the destination record is the first record retrieved.

If the Recordset object is forward-only, a user can still pass a NumRecords value less than zero as long as the destination is
within the current set of cached records. If the Move method call would move the current record position to a record before
the first cached record, an error occurs. Thus, you can use a record cache that supports full scrolling over a provider that only
supports forward scrolling. Because cached records are loaded into memory, you should avoid caching more records than
necessary. Even if a forward-only Recordset object supports backward moves in this way, calling the MovePrevious method

recordset.Move NumRecords, Start

on any forward-only Recordset object still generates an error.

MoveFirst Method (ADO)
The MoveFirst method on a Recordset object moves to the first record in a specified Recordset object and makes that record
current.

Syntax

Parameters

None.

Remarks

The MoveFirst method is used to move the current record position to the first record in the recordset. The MoveFirst method
can be invoked on a forward-only Recordset object; but doing so may cause the provider to re-execute the command that
generated the Recordset object.

recordset.MoveFirst

MoveLast Method (ADO)
The MoveLast method on a Recordset object moves to the last record in a specified Recordset object and makes that record
current.

Syntax

Parameters

None.

Remarks

The MoveLast method is used to move the current record position to the last record in the recordset.

When using a server-side cursor, the Recordset object must support bookmarks or backward cursor movement; otherwise,
the MoveLast method call generates an error.

recordset.MoveLast

MoveNext Method (ADO)
The MoveNext method on a Recordset object moves to the next record in a specified Recordset object and makes that
record current.

Syntax

Parameters

None.

Remarks

The MoveNext method is used to move the current record position one record forward (toward the bottom of the recordset).
If the last record is the current record and the MoveNext method is invoked, ActiveX® Data Objects (ADO) sets the current
record to the position after the last record in the recordset (the EOF property is set to True). An attempt to move forward when
the EOF property is already True generates an error.

recordset.MoveLast

MovePrevious Method (ADO)
The MovePrevious method on a Recordset object moves to the previous record in a specified Recordset object and makes
that record current.

Syntax

Parameters

None.

Remarks

The MovePrevious method is used to move the current record position one record backward (toward the top of the
recordset).

When using a server-side cursor, if the Recordset object does not support either bookmarks or backward cursor movement,
the MovePrevious method generates an error.

If the first record is the current record and the MovePrevious method is invoked, ADO sets the current record to the position
before the first record in the recordset (the BOF property is set to True). An attempt to move backward when the BOF property
is already True generates an error.

Note that if a MovePrevious method is invoked after Delete method is invoked, this moves the current record back two
records instead of one.

recordset.MovePrevious

Name Property (ADO)
The Name property on a Command object sets or returns a string value indicating the name of the object. The Name
property on a Field or Property returns a string value indicating the name of the object.

Syntax

Remarks

The Name property is used to assign a name to or retrieve the name of a Command, Field, or Property object. This value is
read/write on a Command object and read-only on a Property or Field object. Note that the Name property on a Command
object cannot be assigned (set) using the OLE DB Provider for AS/400 and VSAM.

The Name property of an object can be retrieved by an ordinal reference, after which you can refer to the object directly by
name. For example, if recordset.Properties(20).Name yields updatability, you can subsequently refer to this property as
recordset.Properties("Updatability").

currentName = command.Name
command.Name = newName

NativeError Property (ADO)
The NativeError property on an Error object indicates the provider-specific error code for a given Error object. This property
returns a Long value that indicates the error code.

Syntax

Remarks

The NativeError property on an Error object is used to retrieve the database-specific error information for a particular Error
object. For example, when using the Microsoft® OLE DB Provider for DB2, native error codes that originate from the OLE DB
Provider for DB2 pass through ActiveX® Data Objects (ADO) to the ADO NativeError property.

errorCode = currentError.NativeError

Number Property (ADO)
The Number property on an Error object indicates the number that uniquely identifies an Error object. This property returns a
Long value that may correspond to one of the ErrorValueEnum constants.

Syntax

Remarks

The Number property on an Error object is used to determine which error occurred. The value of the property is a unique
number that corresponds to the error condition.

The Errors collection returns an HRESULT. These HRESULTs can be raised by underlying components, such as OLE DB or even
OLE itself.

The value for the Number property on the Error object representing an ADO error (not an OLE DB error) can be one of the
following enumerated values for ErrorValueEnum listed in the table below. Note that three forms of the error number value
are listed in the table:

Positive decimal—The lower two bytes of the full number in decimal format. This number is displayed in the default
Microsoft® Visual Basic® error message dialog box. For example, Run-time error '3707'.

Negative decimal—The decimal translation of the full error number.

Hexadecimal—The hexadecimal representation of the full error number. The Windows facility code is the lowest
hexadecimal fourth digit in the upper two bytes of the number. The facility code for ADO error numbers is A. For
example: 0x800A0E7B.

Note that OLE DB errors may be passed to an ADO application. Typically, these OLE DB errors can be identified by a
Windows® facility code of 4. For example, 0x8004xxxx. For more information about the possible error numbers returned by
OLE DB, see Chapter 16 of the OLE DB Programmer's Reference.

Enumeration Value Description

adErrBoundToCom
mand

3707 -214682458
1 0x800A0E7B

The application cannot change the ActiveConnection property of a Recordset obje
ct that has a Command object as its source.

adErrCannotCompl
ete

3732 -214682455
6 0x800A0E94

The server cannot complete the operation.

adErrCantChangeC
onnection

3748 -214682454
0 0x800A0EA4

The connection was denied. The new connection requested has different characteristi
cs than the one already in use.

adErrCantChangeP
rovider

3220 -214682506
8 0X800A0C94

The supplied provider is different from the one already in use.

adErrCantConvertv
alue

3724 -214682456
4 0x800A0E8C

The data value cannot be converted for reasons other than sign mismatch or data ov
erflow. For example, conversion would have truncated data.

adErrCantCreate 3725 -214682456
3 0x800A0E8D

The data value cannot be set or retrieved because the field data type was unknown, o
r the provider had insufficient resources to perform the operation.

adErrCatalogNotSe
t

3747 -214682454
1 0x800A0EA3

The operation requires a valid ParentCatalog.

errorNumber = currentError.Number

adErrColumnNotO
nThisRow

3726 -214682456
2 0x800A0E8E

The record does not contain this field.

adErrDataConversi
on

3421 -214682486
7 0x800A0D5D

The application uses a value of the wrong type for the current operation.

adErrDataOverflow 3721 -214682456
7 0x800A0E89

The data value is too large to be represented by the field data type.

adErrDelResOutOfS
cope

3738 -214682455
0 0x800A0E9A

The URL of the object to be deleted is outside the scope of the current record.

adErrDenyNotSup
ported

3750 -214682453
8 0x800A0EA6

The provider does not support sharing restrictions.

adErrDenyTypeNot
Supported

3751 -214682453
7 0x800A0EA7

The provider does not support the requested kind of sharing restriction.

adErrFeatureNotAv
ailable

3251 -214682503
7 0x800A0CB3

The object or provider is not capable of performing requested operation.

adErrFieldsUpdate
Failed

3749 -214682453
9 0x800A0EA5

The Fields update failed. For further information, examine the Status property of indi
vidual field objects.

adErrIllegalOperati
on

3219 -214682506
9 0x800A0C93

The operation is not allowed in this context.

adErrIntegrityViola
tion

3719 -214682456
9 0x800A0E87

The data value conflicts with the integrity constraints of the field.

adErrInTransaction 3246 -214682504
2 0x800A0CAE

The Connection object cannot be explicitly closed while in a transaction.

adErrInvalidArgum
ent

3001 -214682528
7 0x800A0BB9

The arguments are of the wrong type, are out of acceptable range, or are in conflict w
ith one another.

adErrInvalidConne
ction

3709 -214682457
9 0x800A0E7D

The operation is not allowed on an object referencing a closed or invalid connection.

adErrInvalidParamI
nfo

3708 -214682458
0 0x800A0E7C

The Parameter object is improperly defined. Inconsistent or incomplete information
was provided.

adErrInvalidTransa
ction

3714 -214682457
4 0x800A0E82

The coordinating transaction is invalid or has not started.

adErrInvalidURL 3729 -214682455
9 0x800A0E91

The URL contains invalid characters. Make sure the URL is typed correctly.

adErrItemNotFoun
d

3265 -214682502
3 0x800A0CC1

The item cannot be found in the collection corresponding to the requested name or o
rdinal.

adErrNoCurrentRec
ord

3021 -214682526
7 0x800A0BCD

Either the BOF or EOF property is True, or the current record has been deleted. The re
quested operation requires a current record.

adErrNotExecuting 3715 -214682457
3 0x800A0E83

The operation cannot be performed while not executing.

adErrNotReentrant 3710 -214682457
8 0x800A0E7E

The operation cannot be performed while processing event.

adErrObjectClosed 3704 -214682458
4 0x800A0E78

The operation is not allowed when the object is closed.

adErrObjectInColle
ction

3367 -214682492
1 0x800A0D27

The object is already in collection. Cannot append.

adErrObjectNotSet 3420 -214682486
8 0x800A0D5C

The object is no longer valid.

adErrObjectOpen 3705 -214682458
3 0x800A0E79

The operation is not allowed when the object is open.

adErrOpeningFile 3002 -214682528
6 0x800A0BBA

The file could not be opened.

adErrOperationCan
celled

3712 -214682457
6 0x800A0E80

The operation has been cancelled by the user.

adErrOutOfSpace 3734 -214682455
4 0x800A0E96

The operation cannot be performed. Provider cannot obtain enough storage space.

adErrPermissionDe
nied

3720 -214682456
8 0x800A0E88

Insufficient permission prevents writing to the field.

adErrPropConflicti
ng

3742 -214682454
6 0x800A0E9E

Property value conflicts with a related property.

adErrPropInvalidC
olumn

3739 -214682454
9 0x800A0E9B

Property cannot apply to the specified field.

adErrPropInvalidO
ption

3740 -214682454
8 0x800A0E9C

Property attribute is invalid.

adErrPropInvalidV
alue

3741 -214682454
7 0x800A0E9D

Property value is invalid. Make sure the value is typed correctly.

adErrPropNotAllSe
ttable

3743 -214682454
5 0x800A0E9F

Property is read-only or cannot be set.

adErrPropNotSet 3744 -214682454
4 0x800A0EA0

Optional property value was not set.

adErrPropNotSetta
ble

3745 -214682454
3 0x800A0EA1

Read-only property value was not set.

adErrPropNotSupp
orted

3746 -214682454
2 0x800A0EA2

Provider does not support the property.

adErrProviderFaile
d

3000 -214682528
8 0x800A0BB8

Provider failed to perform the requested operation.

adErrProviderNotF
ound

3706 -214682458
2 0x800A0E7A

Provider cannot be found. It may not be properly installed.

adErrReadFile 3003 -214682528
5 0x800A0BBB

File could not be read.

adErrResourceExist
s

3731 -214682455
7 0x800A0E93

Copy operation cannot be performed. Object named by destination URL already exist
s. Specify adCopyOverwrite to replace the object.

adErrResourceLock
ed

3730 -214682455
8 0x800A0E92

Object represented by the specified URL is locked by one or more other processes. W
ait until the process has finished and attempt the operation again.

adErrResourceOut
OfScope

3735 -214682455
3 0x800A0E97

Source or destination URL is outside the scope of the current record.

adErrSchemaViolat
ion

3722 -214682456
6 0x800A0E8A

Data value conflicts with the data type or constraints of the field.

adErrSignMismatc
h

3723 -214682456
5 0x800A0E8B

Conversion failed because the data value was signed and the field data type used by t
he provider was unsigned.

adErrStillConnecti
ng

3713 -214682457
5 0x800A0E81

Operation cannot be performed while connecting asynchronously.

adErrStillExecuting 3711 -214682457
7 0x800A0E7F

Operation cannot be performed while executing asynchronously.

adErrTreePermissio
nDenied

3728 -214682456
0 0x800A0E90

Permissions are insufficient to access tree or subtree.

adErrUnavailable 3736 -214682455
2 0x800A0E98

Operation failed to complete and the status is unavailable. The field may be unavailab
le or the operation was not attempted.

adErrUnsafeOperat
ion

3716 -214682457
2 0x800A0E84

Safety settings on this computer prohibit accessing a data source on another domain.

adErrURLDoesNotE
xist

3727 -214682456
1 0x800A0E8F

Either the source URL or the parent of the destination URL does not exist.

adErrURLNamedRo
wDoesNotExist

3737 -214682455
1 0x800A0E99

Record named by this URL does not exist.

adErrVolumeNotFo
und

3733 -214682455
5 0x800A0E95

Provider cannot locate the storage device indicated by the URL. Make sure the URL is
typed correctly.

adErrWriteFile 3004 -214682528
4 0x800A0BBC

Write to file failed.

NumericScale Property (ADO)
The NumericScale property on a Field object indicates the scale of Numeric values in a Field object. This property returns a
byte value indicating the number of decimal places to which numeric values will be resolved.

Syntax

Remarks

The NumericScale property is used to determine how many digits to the right of the decimal point will be used to represent
values for a numeric Field object.

The byte value that the NumericScale property will return is dependent on the data type of the Field object. The value for the
ActiveX® Data Objects (ADO) data type of the Field object can be one of the enumerated values for DataTypeEnum as listed
in the following table.

Enume
ration

V
al
u
e

Description

adEmp
ty

0 This data type indicates that no value was specified (DBTYPE_EMPTY).

adSmal
lInt

2 This data type indicates a 2-byte (16-bit) signed integer (DBTYPE_I2).

adInte
ger

3 This data type indicates a 4-byte (32-bit) signed integer (DBTYPE_I4).

adSingl
e

4 This data type indicates a 4-byte (32-bit) single precision IEEE floating point number (DBTYPE_R4).

adDou
ble

5 This data type indicates an 8-byte (64-bit) double precision IEEE floating point number (DBTYPE_R8).

adCurr
ency

6 A data type indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with 4 digits to the right of t
he decimal point. It is stored in an 8-byte signed integer scaled by 10,000. This data type is not supported by the O
LE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDate 7 This data type indicates a date value stored as a Double, the whole part of which is the number of days since Dece
mber 30, 1899, and the fractional part of which is the fraction of a day. This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBSTR 8 This data type indicates a null-terminated Unicode character string (DBTYPE_BSTR). This data type is not supported
by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIDisp
atch

9 This data type indicates a pointer to an IDispatch interface on an OLE object (DBTYPE_IDISPATCH). This data type is
not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adError 1
0

This data type indicates a 32-bit error code (DBTYPE_ERROR). This data type is not supported by the OLE DB Provid
er for AS/400 and VSAM or the OLE DB Provider for DB2.

adBool
ean

1
1

This data type indicates a Boolean value (DBTYPE_BOOL). This data type is not supported by the OLE DB Provider f
or AS/400 and VSAM or the OLE DB Provider for DB2.

scale = currentfield.NumericScale

adVari
ant

1
2

This data type indicates an automation variant (DBTYPE_VARIANT). This data type is not supported by the OLE DB P
rovider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIUnk
nown

1
3

This data type indicates a pointer to an IUnknown interface on an OLE object (DBTYPE_IUNKNOWN). This data type
is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDeci
mal

1
4

This data type indicates numeric data with a fixed precision and scale (DBTYPE_DECIMAL).

adTinyI
nt

1
6

This data type indicates a single-byte (8-bit) signed integer (DBTYPE_I1). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedTi
nyInt

1
7

This data type indicates a single-byte (8-bit) unsigned integer (DBTYPE_UI1). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedS
mallInt

1
8

This data type indicates a 2-byte (16-bit) unsigned integer (DBTYPE_UI2). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedIn
t

1
9

This data type indicates a 4-byte (32-bit) unsigned integer (DBTYPE_UI4). This data type is not supported by the OL
E DB Provider or the OLE DB Provider for DB2.

adBigI
nt

2
0

This data type indicates an 8-byte (64-bit) signed integer (DBTYPE_I8). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM.

adUnsi
gnedBi
gInt

2
1

This data type indicates an 8-byte (64-bit) unsigned integer (DBTYPE_UI8). This data type is not supported by the O
LE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adGUI
D

7
2

This data type indicates a globally unique identifier or GUID (DBTYPE_GUID). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBina
ry

1
2
8

This data type indicates fixed-length binary data (DBTYPE_BYTES).

adChar 1
2
9

This data type indicates a character string value (DBTYPE_STR).

adWCh
ar

1
3
0

This data type indicates a null-terminated Unicode character string (DBTYPE_WSTR). This data type is not supporte
d by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adNum
eric

1
3
1

This data type indicates numeric data where the precision and scale are exactly as specified (DBTYPE_NUMERIC).

adUser
Define
d

1
3
2

This data type indicates user-defined data (DBTYPE_UDT). This data type is not supported by the OLE DB Provider f
or AS/400 and VSAM or the OLE DB Provider for DB2.

adDBD
ate

1
3
3

This data type indicates an OLE DB date structure (DBTYPE_DATE).

adDBTi
me

1
3
4

This data type indicates an OLE DB time structure (DBTYPE_TIME).

adDBTi
meSta
mp

1
3
5

This data type indicates an OLE DB timestamp structure (DBTYPE_TIMESTAMP).

adVarC
har

2
0
0

This data type indicates variable-length character data (DBTYPE_STR).

adLong
VarCha
r

2
0
1

This data type indicates a long string value.

adVar
WChar

2
0
2

This data type indicates a Unicode string value. This data type is not supported by the OLE DB Provider for AS/400
and VSAM or the OLE DB Provider for DB2.

adLong
VarWC
har

2
0
3

This data type indicates a long Unicode string value. This data type is not supported by the OLE DB Provider for AS/
400 and VSAM or the OLE DB Provider for DB2.

adVarB
inary

2
0
4

This data type indicates variable-length binary data (DBTYPE_BYTES).

adLong
VarBin
ary

2
0
5

This data type indicates a long binary value.

Open Method on a Connection Object (ADO)
The Open method on a Connection object opens a connection to a data source.

Syntax

Parameters
ConnectionString

This optional parameter specifies a string containing connection information. See the ConnectionString property on a
Connection object for details on valid settings.

UserID

This optional parameter specifies a string containing a user name to use when establishing the connection.

Password

This optional parameter specifies a string containing a password to use when establishing the connection.

Values used for the ConnectionString parameter

The information needed to establish a connection to a data source can be set in the ConnectionString property or passed as
part of the Open method in the ConnectionString parameter. In either case, this information must be in a specific format for
use with the Microsoft OLE DB Provider for AS/400 and VSAM. This information can be a data source name (DSN) or a detailed
connection string containing a series of argument=value statements separated by semicolons. ActiveX Data Objects (ADO)
supports several standard ADO-defined arguments for the ConnectionString property as listed in the following table.

Arg
um
ent

Description

Dat
a S
our
ce

This argument specifies the name of the data source for the connection. This argument is the Data Source name stored in
the registry under the OLE DB Provider for AS/400 and VSAM.

File
Na
me

This argument specifies the name of the provider-specific file containing preset connection information. This argument ca
nnot be used if a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and VS
AM.

Loc
atio
n

This argument specifies the Remote Database Name used for connecting to OS/400 systems. This parameter is optional
when connecting to mainframe systems.

Pas
swo
rd

This argument specifies a valid mainframe or AS/400 password to use when opening the connection. This password is us
ed to validate that the user can log on to the target host system and has appropriate access rights to the file.

Pro
vide
r

This argument specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and V
SAM, the Provider string must be set to "SNAOLEDB". To use the Microsoft OLE DB Provider for DB2, the Provider string
must be set to "DB2OLEDB". To use the Microsoft ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or
not used as part of the ConnectionString since this value is the default for ADO.

Re
mot
e Pr
ovi
der

This argument specifies the name of a provider to use when opening a client-side connection (for a Remote Data Service
only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

connection.Open ConnectionString, UserID, Password

Re
mot
e Se
rver

This argument specifies the path name of a server to use when opening a client-side connection (for a Remote Data Servi
ce only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Use
r ID

This argument specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is u
sed to validate that the user can log on to the target host system and has appropriate access rights to the file.

The OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which have
default values as specified in the table below. These arguments are listed in the following table.

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0; do not process binary fields as
character fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitte
d, the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when con
necting to AS/400 files.

HCD
FileN
ame

The fully qualified filename of the DDM host column description (HCD) file. This parameter can be an UNC string up to 2
56 characters in length. A path does not need to be included in the name if the HCD file is located in the SNA System dir
ectory. This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in Host Integration Server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #
BATCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communic
ation with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for thi
s parameter are TCPIP or SNA. This value defaults to SNA.

PCC
odeP
age

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The remote database name for OS/400. You only need to specify this value if it is different from the remote LU alias conf
igured in Host Integration Server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults t
o false.

Rem
oteL
U

The name of the remote LU alias configured in the Host Integration server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration
Server 2009 differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server 2009 are listed in the
following table.

Ar
g
u
m
e
nt

Description

Bi
n
As
C
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as ch
aracter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output
parameters.

This parameter defaults to false.

C
C
SI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

D
ef
Sc
h

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIB
M;SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referre
d to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to
as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/
400 system. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this pr
operty is referred to as DATABASE.

This parameter has no default value.

Lo
ca
lL
U

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

N
et
A
dd
r

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA.

This value defaults to SNA.

P
C
C
od
eP
ag
e

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
g
C
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft® OLE DB Provider for DB2 should store and
bind DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider wi
ll create packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applic
ation server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP
name.

Host Integration Server 2009 uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case,
TPName is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distrib
uted unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server 2009
differ from the arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server 2009 are listed in the following
table.

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 65
535) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input parame
ters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID proper
ty is required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted
based on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the computer. This parameter is required when processing binary data as character data.
Unless the Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configur
ed in Windows®.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left bl
ank.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information.
The Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Sche
ma to restrict results sets for popular operations, such as enumerating a list of tables in a target collection (e.g., ODBC Catal
og SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at login. For DB2/
400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappro
priate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this att
ribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this fi
eld is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a va
lue that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), B
ATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or t
he hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used fo
r communication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. Th
e possible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind D
B2 packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA application requester, uses packages to issue d
ynamic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user point
s using the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this
attribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this
field is used to name the DSN file which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be s
et to "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate tha
t the user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parame
ter is the same as the Parameter parameter.

R
D
B

The remote database name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter
is referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessibl
e locations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look i
n the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 install
ation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WR
KRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created usin
g the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applica
tion server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP na
me.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN i
s set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate t
hat the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is t
he same as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of wor
k) or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

Remarks

The Open method on a Connection object is used to open tables on a remote DDM server. Using the Open method on a
Connection object establishes the physical connection to a data source. After this method successfully completes, the
connection is live and other methods can be invoked on the Connection object to process results.

The optional ConnectionString parameter is used to specify a connection string containing a series of argument=value
statements separated by semicolons. The ConnectionString property on a Connection object automatically inherits the
value used for the ConnectionString parameter. Therefore, the ConnectionString property of the Connection object can be
set before opening the Connection object, or the ConnectionString parameter can be used to set or override the current
connection parameters during the Open method call.

If user and password information is set in both the ConnectionString parameter and in the optional UserID and Password
parameters, the results may be unpredictable. Such information should only be passed in either the ConnectionString
parameter or the UserID and Password parameters.

There are a number of different ways to open a connection. The Open method can pass all of the appropriate connection
information as part of the ConnectionString parameter or by setting the ConnectionString property of the Connection
object, if this information is known in advance. The syntax in this case using the ConnectionString parameter for use with the
OLE DB Provider for AS/400 and VSAM is as follows:

Note that not all of these parameters are required. The registry settings for the Data Source usually have default values set for
remote LU, local LU, APPC mode, CCSID, and CodePage. If a data source is specified, this other information is not usually
needed. These registry settings are configured by using the Microsoft Management Console snap-in for the OLE DB Provider
for AS/400 and VSAM.

The simplest form of an Open command that contains all necessary information is as follows:

Note
The Data Source, User ID and Password must be included.

In the case where you would like the user to input the connection information, the following syntax can be used. This syntax
does not specify any connection information except the provider, which is always required unless this is set in the
ConnectionString or Provider property of the Connection object:

This method of invoking the Open method automatically causes a dialog box to appear asking the user for the data source,
user name, and password.

When operations have been concluded over an open Connection object, the Close method should be invoked on the
Connection object to free any associated system resources. Closing a Connection object does not remove it from memory;
you may change its property settings and use the Open method to open it again later. To completely eliminate an object from
memory, set the Connection object variable to Nothing.

If errors occur, these can be examined with the Errors collection on the Connection object.

connection = CreateObject("ADODB.Connection.2.0")
connection.Open "Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME;Password=password;Loc
al LU=LOCAL;Remote LU=DATABASE;ModeName=QPCSUPP;CCSID=37;CodePage=437"

connection = CreateObject("ADODB.Connection.2.0")
connection.Open "Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNAME;Password=password"

connection = CreateObject("ADODB.Connection.2.0")
connection.ConnectionString = "Provider=SNAOLEDB"
connection.Open

Open Method on a Recordset Object (ADO)
The Open method on a Recordset object opens a cursor that represents records from a base table or the results of a query.

Syntax

Parameters
Source

This optional parameter specifies a Variant that evaluates to a valid Command object variable name or a valid string
specifying the command text specific to the Microsoft OLE DB Provider for AS/400 and VSAM to open a data file on the host.

ActiveConnection

This optional parameter specifies either a Variant that evaluates to a valid Connection object variable name or a String
containing connection information equivalent to the ConnectionString property of a Connection object. Possible values
are listed at the end of the Parameters section.

CursorType

This optional parameter specifies a CursorTypeEnum value that determines the type of cursor that the provider should use
when opening the Recordset. See the CursorType Property of a Recordset object for more information. Possible values are
listed at the end of the Parameters section.

LockType

This optional parameter specifies a LockTypeEnum value that determines what type of locking (concurrency) the provider
should use when opening the recordset. See the LockType Property of a Recordset object for more information. Possible
values are listed at the end of the Parameters section.

Options

This optional parameter specifies a Long value representing a CommandTypeEnum value that indicates how the provider
should evaluate the Source parameter.

Values used for the ActiveConnection property

The information needed to establish a connection to a data source can be set in the ActiveConnection property of a
Recordset object or passed as part of the Open method on a Recordset object in the ActiveConnection parameter. In either
case, this information must be in a specific format for use with the OLE DB Provider for AS/400 and VSAM. This information
can be a data source name (DSN) or a detailed connection string containing a series of argument=value statements separated
by semicolons. ActiveX Data Objects (ADO) supports several standard ADO-defined arguments for the ActiveConnection
property as listed in the following table.

Arg
um
ent

Description

Dat
a So
urce

This argument specifies the name of the data source for the connection. This argument is the optional when used with OL
E DB Provider for AS/400 and VSAM or the Microsoft OLE Provider for DB2.

File
Na
me

This argument specifies the name of the provider-specific file containing preset connection information. This argument ca
nnot be used if a Provider argument is passed. This argument is not supported by the OLE DB Provider for AS/400 and V
SAM.

Loc
atio
n

This argument specifies the Remote Database Name used for connecting to OS/400 systems. This parameter is optional
when connecting to mainframe systems.

recordset.Open Source, ActiveConnection, CursorType, LockType,
Options

https://msdn.microsoft.com/en-us/library/aa771495(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704960(v=bts.10).aspx

Pass
wor
d

This argument specifies a valid mainframe or AS/400 password to use when opening the connection. This password is us
ed by Host Integration Server 2009 to validate that the user can log on to the target host system and has appropriate acc
ess rights to the file.

Pro
vide
r

This argument specifies the name of the provider to use for the connection. To use the OLE DB Provider for AS/400 and V
SAM, the Provider string must be set to "SNAOLEDB". To use the OLE DB Provider for DB2, the Provider string must be se
t to "DB2OLEDB". To use the ODBC Driver for DB2, the Provider string must be set to "MSDASQL" or not used as part of t
he ConnectionString since this value is the default for ADO.

Re
mot
e Pr
ovid
er

This argument specifies the name of a provider to use when opening a client-side connection (for a Remote Data Service
only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Re
mot
e Se
rver

This argument specifies the path name of a server to use when opening a client-side connection (for a Remote Data Servi
ce only). This argument is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

Use
r ID

This argument specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is
used by Host Integration Server to validate that the user can log on to the target host system and has appropriate access
rights to the file.

The OLE DB Provider for AS/400 and VSAM also supports a number of provider-specific arguments, some of which have
default values as specified in the table below. These arguments are as listed in the following table.

Argu
men
t

Description

BinA
sCha
r

This parameter indicates whether to process binary fields as character fields (default is 0; do not process binary fields as
character fields).

CCSI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host. If this argument is omitte
d, the default value is U.S./Canada (37).

Defa
ult Li
brary

The default AS/400 library to be accessed. This parameter is not required for mainframe access and is optional when con
necting to AS/400 files.

HCD
FileN
ame

The fully qualified file name of the DDM host column description (HCD) file. This parameter can be an UNC string up to 2
56 characters in length. A path does not need to be included in the name if the HCD file is located in the SNA system dire
ctory. This parameter is required when connecting to mainframe systems and is optional when connecting to OS/400.

Local
LU

The name of the local LU alias configured in the SNA server.

Mod
eNa
me

The APPC mode (must be set to a value that matches the host configuration and SNA server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #
BATCHSC (batch), and custom modes.

NetA
ddr

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

NetP
ort

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communic
ation with the source. The default value is TCP/IP port 446.

NetLi
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for thi
s parameter are TCPIP or SNA. This value defaults to SNA.

PCC
odeP
age

The character code page to use on the computer. If this argument is omitted, the default value is set to Latin 1 (1252).

RDB The remote database name for OS/400. You only need to specify this value if it is different from the remote LU alias conf
igured in the SNA server.

Repa
ir Ho
st Ke
ys

This parameter indicates whether the OLE DB provider should repair any host key values set in the registry and defaults t
o false.

Rem
oteL
U

The name of the remote LU alias configured in the SNA server.

Strict
Val

This parameter indicates whether strict validation should be used and defaults to false.

Note
Not all of these parameters are required. The user can also be prompted for this information.

The OLE DB Provider for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by OLE DB Provider for DB2 supplied with Host Integration Server
differ from the arguments supported by the earlier OLE DB Provider for DB2 included with SNA Server 4.0.

The arguments supported by the OLE DB Provider for DB2 supplied with Host Integration Server are listed in the following
table.

Ar
g
u
m
e
nt

Description

Bi
n
As
C
ha
r

When this parameter is set to true, the OLE DB Provider for DB2 treats binary data type fields (with a CCSID of 65535) as ch
aracter data type fields on a per-data source basis. The Host CCSID and PC Code Page values are required input and output
parameters.

This parameter defaults to false.

C
C
SI
D

The Code Character Set Identifier (CCSID) attribute indicates the character set used on the host.

If this argument is omitted, the default value is U.S./Canada (37).

D
ef
Sc
h

The name of the default schema (collection/owner) where the system catalogs resides. This parameter can be QSYS2;SYSIB
M;SYSTEM; CURLIB; or USERID depending on platform.

This parameter does not have a default value.

Ini
tC
at

This parameter is used as the first part of a 3-part fully qualified table name. In DB2 (MVS, OS/390), this property is referre
d to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessible locations. In DB2/400, this parameter is referred to
as RDBNAM. The RDBNAM value can be determined by invoking the WRKRDBDIRE command from the console to the OS/
400 system. If there is no RDBNAM value, then one can be created using the Add option. In DB2 Universal Database, this pr
operty is referred to as DATABASE.

This parameter has no default value.

Lo
ca
lL
U

The name of the local LU alias configured in Host Integration Server.

M
od
e
N
a
m
e

The APPC mode (must be set to a value that matches the host configuration and Host Integration Server configuration).

Legal values for the APPC mode include QPCSUPP (5250), #NTER (interactive), #NTERSC (interactive), #BATCH (batch), #BA
TCHSC (batch), and custom modes.

N
et
A
dd
r

When TCP/IP has been selected for the Network Transport Library, this parameter indicates the IP address of the host.

N
et
Po
rt

When TCP/IP has been selected for the Network Transport Library, this parameter is the TCP/IP port used for communicatio
n with the source.

The default value is TCP/IP port 446.

N
et
Li
b

This parameter determines whether TCP/IP or SNA APPC is used for network communication. The possible values for this p
arameter are TCPIP or SNA.

This value defaults to SNA.

P
C
C
od
eP
ag
e

The character code page to use on the PC. If this argument is omitted, the default value is set to Latin 1 (1252).

Pk
g
C
ol

The name of the DRDA target collection (AS/400 library) where the Microsoft OLE DB Provider for DB2 should store and bi
nd DB2 packages. This could be same as the Default Schema.

The Microsoft OLE DB Provider for DB2 uses packages to issue dynamic and static SQL statements. The OLE DB Provider wi
ll create packages dynamically in the location to which the user points using the Package Collection parameter.

Re
m
ot
eL
U

The name of the remote LU alias configured in Host Integration Server.

TP
N
a
m
e

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applic
ation server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP
name.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN
ame is set to 0X07F9F9F9.

U
O
W

This parameter determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distrib
uted unit of work) or RUW (remote unit of work).

This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information.

The ODBC Driver for DB2 also supports a number of provider-specific arguments, some of which have default values as
specified in the tables below. The arguments supported by ODBC Driver for DB2 supplied with Host Integration Server differ
from the arguments supported by the earlier ODBC Driver for DB2 included with SNA Server 4.0.

The arguments supported by the ODBC Driver for DB2 supplied with Host Integration Server are listed in the following table.

A
r
g
u
m
e
n
t

Description

B
A
C

When the BinAsChar parameter is set to true (1), the ODBC Driver for DB2 treats binary data type fields (with a CCSID of 65
535) as character data type fields on a per-data source basis. The CCSID and PCCodePage values are required input param
eters.

C
C
SI
D

The character code set identifier (CCSID) matching the DB2 data as represented on the remote computer. The CCSID proper
ty is required when processing binary data as character data. Unless the BinAsChar value is set, character data is converted
based on the DB2 column CCSID and default ANSI code page.

If this argument is omitted, this parameter defaults to U.S./Canada (37).

C
P

The character code page to use on the PC. This parameter is required when processing binary data as character data. Unless
the Binary as Character (BAC) value is set, character data is converted based on the default ANSI code page configured in Wi
ndows.

If this argument is omitted, the default value is set to Latin 1 (1252).

D
E
S
C

A field to provide a comment describing this ODBC data source. The description is an optional parameter and may be left bl
ank.

D
S

The Default Schema parameter is the name of the Collection where the ODBC Driver for DB2 looks for catalog information.
The Default Schema is the "SCHEMA" name for the target collection of tables and views. The ODBC driver uses Default Sche
ma to restrict results sets for popular operations, such as enumerating a list of tables in a target collection (for example, OD
BC Catalog SQLTables).

For DB2, the Default Schema is the target AUTHENTICATION (User ID or "owner").

For DB2/400, the Default Schema is the target COLLECTION name.

For DB2 Universal Database (UDB), the Default Schema is the SCHEMA name.

If the user does not provide a value for Default Schema, then the ODBC driver uses the USER_ID provided at logon. For DB2
/400, the driver will use QSYS2 if there is no collection found matching the USER_ID value. Obviously, this default is inappro
priate in many cases, therefore it is essential that the Default Schema value in the data source be defined.

D
S
N

The data source name is a required parameter that is used to define the data source. The ODBC driver manager uses this att
ribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this fi
eld is used to name the DSN file, which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

L
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

M
N

When SNA is used for the Network Transport Library (NTL), the Mode Name field is the APPC mode and must be set to a va
lue that matches the host configuration and Host Integration Server configuration.

Legal values for the APPC mode include QPCSUPP (common system default often used by 5250), #INTER (interactive), #INT
ERSC (interactive with minimal routing security), #BATCH (batch), #BATCHSC (batch with minimal routing security), #IBMRD
B (DB2 remote database access), and custom modes. The following modes that support bidirectional LZ89 compression are
also legal: #INTERC (interactive with compression), INTERCS (interactive with compression and minimal routing security), B
ATCHC (batch with compression), and BATCHCS (batch with compression and minimal routing security).

This parameter normally defaults to QPCSUPP.

N
A

When TCP/IP is used for the Network Transport Library (NTL), the Network Address parameter indicates the IP address or t
he hostname alias of the host DB2 server.

N
P

When TCP/IP is used for the Network Transport Library (NTL), the Network Port parameter indicates the TCP/IP port used fo
r communication with the target DB2 DRDA service. The default value is TCP/IP port 446.

N
T
L

The Network Transport Library parameter determines whether TCP/IP or SNA APPC is used for network communication. Th
e possible values for this parameter are TCPIP or SNA. This value defaults to SNA.

If the default SNA is selected, then values for LLU, MN, and RLU are required.

If TCP/IP is selected, then values for NetAddr and NetPort are required.

P
C

The name of the DRDA target collection (AS/400 library) where the Microsoft ODBC Driver for DB2 should store and bind D
B2 packages. This could be same as the Default Schema.

The Microsoft ODBC Driver for DB2, which is implemented as an IBM DRDA application requester, uses packages to issue d
ynamic and static SQL statements. The ODBC driver will create packages dynamically in the location to which the user point
s using the Package Collection parameter.

P
D
S

The Provider Data Source is a required parameter that is used to define the data source. The ODBC driver manager uses this
attribute value to load the correct ODBC data source configuration from the registry or from a file. For File data sources, this
field is used to name the DSN file, which is stored in the Program Files\Common Files\ODBC\Data Sources directory.

P
R
O
V

Specifies the name of the provider to use for the connection. To use the ODBC Driver for DB2, the Provider string must be s
et to "MSDASQL" or not used as part of the ConnectionString since this value is the default for ADO.

P
W
D

Specifies a valid mainframe or AS/400 password to use when opening the connection. This password is used to validate tha
t the user can log on to the target DB2 host system and has appropriate access rights to the database. Note that this parame
ter is the same as the Parameter parameter.

R
D
B

The remote database name parameter is used as the first part of a three-part, fully qualified DB2 table name. This parameter
is referred to by different names depending on the DB2 platform.

In DB2 on MVS and OS/390, this parameter is referred to as LOCATION. The SYSIBM.LOCATIONS table lists all the accessibl
e locations. To find the location of the DB2 to which you need to connect on these platforms, ask the administrator to look i
n the TSO Clist DSNTINST under the DDF definitions. These definitions are provided in the DSNTIPR panel in the DB2 Install
ation manual.

In DB2/400 on OS/400, this property is referred to as RDBNAM. The RDBNAM value can be determined by invoking the WR
KRDBDIRE command from the console to the OS/400 system. If there is no RDBNAM value, then a value can be created usin
g the Add option.

In DB2 Universal Database, this property is referred to as DATABASE.

R
L
U

When SNA is used for the network transport, this field is the name of the remote LU alias configured in Host Integration Ser
ver.

T
P
N

The Transaction Program (TP) Name parameter represents the default transaction program name for the DB2 DRDA applica
tion server (AS) which is 07F6DB (DB2DRDA). However, some DB2 installations may be configured to use an alternate TP na
me.

Host Integration Server uses the alternate TP name in the off-line demo configuration (DRDADEMO.UDL). In that case, TPN i
s set to 0X07F9F9F9.

UI
D

Specifies a valid mainframe or AS/400 user name to use when opening the connection. This user name is used to validate t
hat the user can log on to the target DB2 host system and has appropriate access rights to the database. This parameter is t
he same as the User ID parameter.

U
O
W

Determines whether two-phase commit is enabled. The possible values for this parameter are DUW (distributed unit of wor
k) or RUW (remote unit of work). This value defaults to RUW.

When this parameter is set to RUW, two-phase commit is disabled.

When this parameter is set to DUW, two-phase commit is enabled in the OLE DB Provider for DB2. Distributed transactions
are handled using Microsoft Transaction Server, Microsoft Distributed Transaction Coordinator, and the SNA LU 6.2 Resync
Service. This option works only with DB2 for OS/390 v5R1 or later. This option also requires that SNA (LU 6.2) service is sel
ected as the network transport and Microsoft Transaction Server (MTS) is installed.

Note
Not all of these parameters are required. The user can also be prompted for this information. Values used for the CursorTy
pe parameter

Thisparameter can be one of the enumerated values for CursorTypeEnum as listed in the following table.

Enume
ration

V
al
u
e

Description

adOpe
nUnsp
ecified

-
1

This indicates an unspecified value for the CursorType.

This value is not supported by the Microsoft OLE DB Provider for AS/400 and VSAM or the Microsoft OLE DB Provi
der for DB2.

adOpe
nForw
ardOnl
y

0 Specifying this value opens a forward-only-type cursor. This CursorType is identical to a static cursor, except that yo
u can only scroll forward through records. This improves performance when only one pass through a Recordset is
needed.

This value is not supported by the Microsoft OLE DB Provider for AS/400 and VSAM.

adOpe
nKeyse
t

1 Specifying this value opens a keyset-type cursor. This CursorType is similar to a dynamic cursor with a few exceptio
ns. Records that other users delete are inaccessible from your Recordset. Data changes to existing records by other
users are still visible, but records added by other users are not visible (cannot be seen).

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adOpe
nDyna
mic

2 Specifying this value opens a dynamic-type cursor. Additions, changes, and deletions by other users are visible, and
all types of movement through the recordset are allowed, except for bookmarks if the provider does not support th
em.

A dynamic cursor is the only CursorType supported by the OLE DB Provider for AS/400 and VSAM.

adOpe
nStatic

3 Specifying this value opens a static-type cursor. A static cursor provides a static copy of a set of records that can be
used to find data or generate reports. Additions, changes, or deletions by other users are not visible with a static cur
sor.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

This optional argument defaults to adOpenForwardOnly, a value that is mapped to adOpenDynamic by the OLE DB
provider for AS/400 and VSAM.

Values used for the LockType parameter

This parameter can be one of the enumerated values for LockTypeEnum as listed in the following table.

Enumerat
ion

V
al
u
e

Description

adLockUn
specified

-1 Indicates an unspecified value for the LockType. This value is not supported by the OLE DB Provider for AS/400
and VSAM.

adLockRe
adOnly

1 Specifying this value opens a Recordset object read-only and data cannot be altered.

adLockPe
ssimistic

2 Specifying this value opens a recordset with pessimistic locking. Record-by-record, the OLE DB Provider does w
hatever is necessary to ensure successful editing of the records, usually by locking records at the data source im
mediately upon editing.

This lock type is supported by the OLE DB Provider for AS/400 and VSAM and the OLE DB Provider. However, t
he OLE DB Provider for AS/400 and VSAM internally maps this lock type to adLockBatchOptimistic.

adLockOp
timistic

3 Specifying this value opens a recordset with optimistic locking. Record-by-record, the OLE DB Provider locks re
cords only when the Update method is invoked on a Recordset object.

This lock type is not supported by the OLE DB Provider for DB2.

adLockBa
tchOptimi
stic

4 Specifying this value opens a Recordset with batch optimistic locking. This value is required for batch update
mode as opposed to immediate update.

This lock type is not supported by the OLE DB Provider for DB2.

This optional argument defaults to adLockReadOnly.

Values used by the Optionsproperty

The CommandTypeEnum value can be one of the constants listed in the following table.

Enumeration Valu
e

Description

adCmdUnspecifi
ed

-1 This value indicates that the CommandText property is unspecified.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdText 1 This value evaluates the CommandText property as a textual definition of a command or stored pro
cedure call.

adCmdTable 2 This value evaluates the CommandText property as a table name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdStoredPr
oc

4 This value evaluates the CommandText property as a stored procedure name.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

adCmdUnknown 8 This value indicates that the type of command in CommandText property is not known. This is the d
efault value.

This value is not supported by the OLE DB Provider for AS/400 and VSAM.

Remarks

The Open method on a Recordset object is used to open tables on a remote DDM server. Using the Open method on a
Recordset object establishes the physical connection to a data source and opens a cursor that represents records from a base
table or the results of a query. After this method successfully completes, the Recordset object is live and other methods can be
invoked on the Recordset object to process results.

The optional Source parameter is used to specify the command text required to open a data file on the host using the OLE DB
Provider for AS/400 and VSAM. The syntax in this case is as follows:

Using the OLE DB Provider for AS/400 and VSAM, the Source parameter represents a table name and uses one of the following
host file naming conventions.

Host file type File naming convention

VSAM Data Sets DATASETNAME.FILENAME

Partitioned Data Sets DATASETNAME.FILENAME(MEMBER)

OS/400 Files LIBRARY/FILE

OS/400 Files LIBRARY/FILE.NAME

OS/400 File Members LIBRARY/FILE(MEMBER)

recordset = CreateObject("ADODB.Recordset.2.0")
recordset.Open "EXEC OPEN LIBRARY/FILE", connection, adOpenDynamic, adLockOptimistic, adCmd
Text

OS/400 File Members LIBRARY/FILE.NAME(MEMBER)

Note that if a member of a library contains a dot in the member name, the member name must be surrounded by double
quotes. For example, if the member name is NAMES.DAT, the proper syntax for command text used for the Recordset.Open
method is:

Note the doubled quotes are required surrounding the member name in this example since the member name contains a
period. The full path to the mainframe data set must be specified when using the OLE DB Provider for AS/400 and VSAM. In
the example above, there are two path elements (LIBRARY/FILE) and one name element (NAMES.DAT).

Whenever a VSAM data set is allocated, it is given a unique name composed of one or more segments. Each segment of the
data set name is joined by periods and represents a level of qualification. For example, the following data set has four
segments that comprise the fully-qualified data set name (three path elements and one name element):

The high-level qualifier is SAMPLES. The low-level qualifier is TITLES. Each segment can be from 1-8 characters in length (the
first character must be alphabetic, while the remainder can be alphanumeric or hyphens). The full data set name must be no
more than 44 characters in length and contain no more than 22 segments.

The optional ActiveConnection parameter corresponds to the ActiveConnection property on a Recordset object and
specifies on which connection to open the Recordset object. If a connection string definition is passed for this argument, ADO
opens a new connection using the specified parameters. The value of this ActiveConnection property can be changed after
opening the Recordset to send updates to another provider. The ActiveConnection property is set to Nothing (in
Microsoft® Visual Basic®) to disconnect the recordset from the OLE DB Provider. If the optional ActiveConnection parameter
is used to specify a connection string, this string must contain a series of argument=value statements separated by
semicolons.

The ActiveConnection property on a Recordset object automatically inherits the value used for the ActiveConnection
parameter. Therefore, the ActiveConnection property of the Recordset object can be set before opening the Recordset
object, or the ActiveConnection parameter can be used to set or override the current connection parameters during the Open
method call.

The CursorType parameter cannot be omitted using the OLE DB Provider for AS/400 and VSAM since this parameter defaults
to adOpenForwardOnly, a CursorType that is not supported on the OLE DB Provider. The CursorType parameter must be set
to adOpenDynamic, otherwise an error will occur and results will be unpredictable.

There are a number of different ways to open a recordset and connect to a data source. The Open method of the Recordset
object can pass all of the appropriate connection information as part of the ActiveConnection parameter or by setting the
ActiveConnection property of the Recordset object, if this information is known in advance. The syntax, in this case using the
ActiveConnection parameter and the OLE DB Provider for AS/400 and VSAM, is as follows:

Note
Not all of these parameters are required. The registry settings for the Data Source usually have default values set for remote
LU, local LU, APPC mode, CCSID, and CodePage. If a data source is specified, this other information is not usually needed. The
se registry settings are configured by using the Microsoft Management Console snap-in for the OLE DB Provider for AS/400
and VSAM.

For the other parameters that correspond directly to the properties of a Recordset object (Source, CursorType, and LockType),
the relationships of the parameters to the properties are:

recordset = CreateObject("ADODB.Recordset.2.0")
recordset.Open "EXEC OPEN LIBRARY/FILE(""NAMES.DAT"")", connection, adOpenDynamic, adLockOp
timistic, adCmdText

SAMPLES.DEMO.KSDS.TITLES

recordset = CreateObject("ADODB.Recordset.2.0")
recordset.Open "EXEC OPEN LIBRARY/FILE","Provider=SNAOLEDB;Data Source=REMLU;User ID=USERNA
ME;Password=password;Local LU=LOCAL;Remote LU=DATABASE;ModeName=QPCSUPP;CCSID=37;CodePage=4
37", adOpenDynamic, adLockOptimistic, adCmdText

The property is read/write before the Recordset object is opened.

The property settings are used unless the corresponding parameters are passed when executing the Open method. If a
parameter is passed, it overrides the corresponding property setting, and the property setting is updated with the
parameter value.

After the Recordset object is opened, these properties become read-only.

Note
For Recordset objects whose Source property is set to a valid Command object, the ActiveConnection property is read-o
nly, even if the Recordset object is not open.

If a Command object is passed in the Source parameter and an ActiveConnection parameter is also passed, an error occurs.
The ActiveConnection property of the Command object must already be set to a valid Connection object or connection
string.

If a Command object is not passed in the Source argument, the Options argument must be set to adCmdText. If the Options
argument is not defined, you may experience diminished performance because ADO must make calls to the OLE DB Provider
to determine if the argument is a command statement. If you know what Source type you are using, setting the Options
argument instructs ADO to jump directly to the relevant code.

If the data source returns no records, the provider sets both the BOF and EOF properties on the Recordset object to True, and
the current record position is undefined. You can still add new data to this empty Recordset object if the cursor type allows it.

When operations have been concluded over an open Recordset object, the Close method should be invoked on the
Recordset object to free any associated system resources. Closing a Recordset object does not remove it from memory; you
may change its property settings and use the Open method to open it again later. To completely eliminate an object from
memory, set the Recordset object variable to Nothing.

If errors occur, these can be examined with the Errors collection on the Recordset object.

OpenSchema Method (ADO)
The OpenSchema method on a Connection object obtains database schema information from the provider.

Syntax

Parameters
QueryType

This parameter specifies a SchemaEnum value that indicates the type of schema query to run.

The SchemaEnum values supported by the Microsoft® OLE DB Provider for AS/400 and VSAM can be one of the constants
listed in the table following the Parameters section.

Criteria

This optional parameter specifies an array of query constraints for each QueryType option, as listed below.

The values supported by the OLE DB Provider for AS/400 and VSAM can be one of the constants listed in the table following
the Parameters section. This value depends on the QueryType.

Note
The adSchemaindexes TYPE restriction is not supported by the OLE DB Provider for DB2.

Note
The adSchemaProcedures PROCEDURE_SCHEMA, and adSchemaProcedureParameters PROCEDURE_SCHEMA restrictio
ns are not supported when connecting to DB/2 on OS/390 platforms.

SchemaID

This optional parameter specifies the GUID for a provider-schema schema query not defined by the OLE DB specification.
This parameter is required if the QueryType parameter is set to adSchemaProviderSpecific; otherwise, it is not used. This
parameter is not supported by the OLE DB Provider for AS/400 and VSAM.

Values for QueryType
Enumeration Val

ue
Description

adSchemaColumns 4 This value indicates that the QueryType is requesting column information for tables on the serve
r (not supported when connecting to mainframes).

adSchemaIndexes 12 This value indicates that the QueryType is requesting index information about the tables on the s
erver (not supported when connecting to mainframes).

adSchemaTables 20 This value indicates that the QueryType is requesting information about the tables on the server.

adSchemaProviderTypes 22 This value indicates that the QueryType is requesting provider-type information.

The SchemaEnum values supported by the Microsoft OLE DB Provider for DB2 and the Microsoft ODBC Driver for DB2 can be
one of the constants listed in the following table.

Enumeration Va
lue

Description

adSchemaColumns 4 This value indicates that the QueryType is requesting column information for tables on th
e server (not supported when connecting to mainframes).

recordset = connection.OpenSchema (QueryType, Criteria, SchemaID)

https://msdn.microsoft.com/en-us/library/aa745878(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771095(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745878(v=bts.10).aspx

adSchemaIndexes 12 This value indicates that the QueryType is requesting index information about the tables o
n the server (not supported when connecting to mainframes).

adSchemaProcedures 16 This value indicates that the QueryType is requesting information about stored procedure
s on the server.

adSchemaTables 20 This value indicates that the QueryType is requesting information about the tables on the
server.

adSchemaProviderTypes 22 This value indicates that the QueryType is requesting provider-type information.

adSchemaProcedureParameters 26 This value indicates that the QueryType is requesting information about parameters used
by stored procedures on the server.

adSchemaPrimaryKeys 28 This value indicates that the QueryType is requesting information about the primary keys
for tables on the server.

Values for Criteria
QueryType / Enumeration

adSchemaColumns

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

adSchemaIndexes

TABLE_CATALOG

TABLE_SCHEMA

INDEX_NAME

TYPE

TABLE_NAME

adSchemaTables

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

TABLE_TYPE

adSchemaProviderTypes

DATA_TYPE

https://msdn.microsoft.com/en-us/library/aa705778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771095(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771836(v=bts.10).aspx

BEST_MATCH

The values supported by the OLE DB Provider for DB2 and the ODBC Driver for DB2 can be one of the constants listed in the
following table, depending on the QueryType.

QueryType / Enumeration

adSchemaColumns

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

adSchemaIndexes

TABLE_CATALOG

TABLE_SCHEMA

INDEX_NAME

TABLE_NAME

adSchemaPrimaryKeys

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

adSchemaProcedures

PROCEDURE_CATALOG

PROCEDURE_SCHEMA (see Notes)

PROCEDURE_NAME

PROCEDURE_TYPE

adSchemaProcedureParameters

PROCEDURE_CATALOG

PROCEDURE_SCHEMA (see Notes)

PROCEDURE_NAME

PROCEDURE_TYPE

adSchemaProviderTypes

DATA_TYPE

BEST_MATCH

adSchemaTables

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

TABLE_TYPE

Return Value

Returns a Recordset object that contains schema information requested.

Remarks

The OpenSchema method on a Connection object is used to return information about the data source, such as information
about the tables on the server and the columns in the tables.

The Criteria argument is an array of values that can be used to limit the results of a schema query. Each schema query
supports a different set of parameters. The actual schemas are defined by the OLE DB specification under the
IDBSchemaRowset interface. The schema queries supported in ActiveX® Data Objects (ADO) version 1.5 and later by the OLE
DB Provider for AS/400 and VSAM are listed above.

The OpenSchema method allows an application to pass at run time the target library of a Partitioned Data Set (PDS/PDSE), a
dataset, or a member name as one of the Criteria array arguments to retrieve the schema.

Providers are not required to support all of the OLE DB standard schema QueryType values. Specifically, only
adSchemaTables, adSchemaColumns, and adSchemaProviderTypes are required by the OLE DB specification. However,
the provider is not required to support the Criteria constraints listed above for those schema queries. Support for other
schema QueryType values is optional.

The schema information specified in OLE DB is based on the assumption that providers support the concepts of a catalog and a
schema. The ANSI SQL 92 specification defines them as follows:

A catalog contains one or more schemas, but always contains a schema named INFORMATION_SCHEMA which contains
the views and domains of the information schema. In Microsoft SQL Server™ and Microsoft Access terms, a catalog is a
database; in ODBC 2.x terms, a catalog is a qualifier.

A schema is a collection of database objects that are owned or have been created by a particular user. In Microsoft SQL
Server and ODBC 2.x terms, a schema is an owner; there is no equivalent to a schema in a Microsoft Access database.

Schema information in ADO and OLE DB is retrieved using predefined schema rowsets.

In This Section

adSchemaColumns

adSchemaIndexes

adSchemaPrimaryKeys

adSchemaProcedures

adSchemaProcedureParameters

https://msdn.microsoft.com/en-us/library/aa745878(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705778(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771836(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745409(v=bts.10).aspx

adSchemaProviderTypes

adSchemaTables

https://msdn.microsoft.com/en-us/library/aa771095(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770960(v=bts.10).aspx

adSchemaColumns
The adSchemaColumns QueryType identifies the columns of tables defined in the catalog that are accessible to a given user.
This QueryType is supported by the Microsoft OLE DB Provider for AS/400 and VSAM and the Microsoft OLE DB Provider for
DB2.

The rowset returned by an adSchemaColumns QueryType contains the columns listed in the following table.

Colum
n nam
e

Ty
pe
in
di
ca
tor

Description

TABLE_
CATAL
OG

DB
TY
PE
_W
ST
R

Catalog name. NULL if the provider does not support catalogs.

TABLE_
SCHE
MA

DB
TY
PE
_W
ST
R

Unqualified schema name. NULL if the provider does not support schemas.

TABLE_
NAME

DB
TY
PE
_W
ST
R

Table name.

COLU
MN_N
AME

DB
TY
PE
_W
ST
R

The name of the column; this might not be unique. If this cannot be determined, a NULL is returned. This column, t
ogether with the COLUMN_GUID and COLUMN_PROPID columns, forms the column ID. One or more of these colu
mns will be NULL depending on which elements of the DBID structure the provider uses. If possible, the resulting c
olumn ID should be persistent. However, some providers do not support persistent identifiers for columns. The col
umn ID of a base table should be invariant under views.

COLU
MN_G
UID

DB
TY
PE
_G
UI
D

Column GUID.

COLU
MN_P
ROPID

DB
TY
PE
_UI
4

Column property ID.

ORDIN
AL_PO
SITION

DB
TY
PE
_UI
4

The ordinal of the column. Columns are numbered starting from one. NULL if there is no stable ordinal value for th
e column.

COLU
MN_H
ASDEF
AULT

DB
TY
PE
_B
O
OL

VARIANT_TRUE: The column has a default value. VARIANT_FALSE: The column does not have a default value or it is
unknown whether the column has a default value.

COLU
MN_D
EFAUL
T

DB
TY
PE
_W
ST
R

Default value of the column. A provider may expose DBCOLUMN_DEFAULTVALUE but not DBCOLUMN_HASDEFA
ULT (for SQL 92 tables) in the rowset returned by IColumnsRowset::GetColumnsRowset. If the default value is t
he NULL value, COLUMN_HASDEFAULT is VARIANT_TRUE, and the COLUMN_DEFAULT column is a NULL value.

COLU
MN_FL
AGS

DB
TY
PE
_UI
4

A bitmask that describes column characteristics. The DBCOLUMNFLAGS enumerated type specifies the bits in the b
itmask. For information about DBCOLUMNFLAGS, see IColumnsInfo::GetColumnInfo. This column cannot contai
n a NULL value.

IS_NU
LLABL
E

DB
TY
PE
_B
O
OL

VARIANT_TRUE: The column might be nullable. VARIANT_FALSE: The column is known not to be nullable.

DATA_
TYPE

DB
TY
PE
_UI
2

The indicator of the columns data type. If the data type of the column varies from row to row, this must be DBTYPE
_VARIANT.

TYPE_
GUID

DB
TY
PE
_G
UI
D

The GUID of the columns data type.

CHAR
ACTER
_MAXI
MUM_
LENGT
H

DB
TY
PE
_UI
4

The maximum possible length of a value in the column. For character, binary, or bit columns, this is one of the follo
wing:

The maximum length of the column in characters, bytes, or bits, respectively, if one is defined. For example, a CHAR
(5) column in an SQL table has a maximum length of five (5).

The maximum length of the data type in characters, bytes, or bits, respectively, if the column does not have a define
d length.

Zero (0) if neither the column nor the data type has a defined maximum length.

NULL for all other types of columns.

CHAR
ACTER
_OCTE
T_LEN
GTH

DB
TY
PE
_UI
4

Maximum length in octets (bytes) of the column, if the type of the column is character or binary. A value of zero me
ans the column has no maximum length. NULL for all other types of columns.

NUME
RIC_PR
ECISIO
N

DB
TY
PE
_UI
2

If the columns data type is numeric, this is the maximum precision of the column. The precision of columns with a
data type of DBTYPE_DECIMAL or DBTYPE_NUMERIC depends on the definition of the column. If the columns data t
ype is not numeric, this is NULL.

NUME
RIC_SC
ALE

DB
TY
PE
_I2

If columns type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the number of digits to the right of the
decimal point. Otherwise, this is NULL.

DATETI
ME_PR
ECISIO
N

DB
TY
PE
_UI
4

Datetime precision (number of digits in the fractional seconds portion) of the column if the column is a datetime or
interval type.

CHAR
ACTER
_SET_C
ATALO
G

DB
TY
PE
_W
ST
R

Catalog name in which the character set is defined. NULL if the provider does not support catalogs or different char
acter sets.

CHAR
ACTER
_SET_S
CHEM
A

DB
TY
PE
_W
ST
R

Unqualified schema name in which the character set is defined. NULL if the provider does not support schemas or
different character sets.

CHAR
ACTER
SET
NAME

DB
TY
PE
_W
ST
R

Character set name. NULL if the provider does not support different character sets.

COLLA
TION_
CATAL
OG

DB
TY
PE
_W
ST
R

Catalog name in which the collation is defined. NULL if the provider does not support catalogs or different collation
s.

COLLA
TION_
SCHE
MA

DB
TY
PE
_W
ST
R

Unqualified schema name in which the collation is defined. NULL if the provider does not support schemas or diffe
rent collations.

COLLA
TION_
NAME

DB
TY
PE
_W
ST
R

Collation name. NULL if the provider does not support different collations.

DOMA
IN_CA
TALOG

DB
TY
PE
_W
ST
R

Catalog name in which the domain is defined. NULL if the provider does not support catalogs or domains.

DOMA
IN_SC
HEMA

DB
TY
PE
_W
ST
R

Unqualified schema name in which the domain is defined. NULL if the provider does not support schemas or doma
ins.

DOMA
IN_NA
ME

DB
TY
PE
_W
ST
R

Domain name. NULL if the provider does not support domains.

DESCR
IPTION

DB
TY
PE
_W
ST
R

Human-readable description of the column. For example, the description for a column named Name in the Employ
ee table might be "Employee name."

The default sort order for the adSchemaColumns rowset is TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME.

adSchemaIndexes
The adSchemaIndexes QueryType identifies the indexes defined in the catalog that are owned by a given user. This
QueryType is supported by the Microsoft OLE DB Provider for AS/400 and VSAM and the Microsoft OLE DB Provider for DB2.

The rowset returned by an adSchemaIndexes QueryType contains the columns listed in the following table.

C
ol
u
m
n
na
m
e

T
y
p
e
in
di
c
at
o
r

Description

TA
BL
E_
C
AT
AL
O
G

D
B
T
Y
P
E_
W
S
T
R

Catalog name. NULL if the provider does not support catalogs.

TA
BL
E_
SC
HE
M
A

D
B
T
Y
P
E_
W
S
T
R

Unqualified schema name. NULL if the provider does not support schemas.

TA
BL
E_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Table name.

IN
DE
X_
C
AT
AL
O
G

D
B
T
Y
P
E_
W
S
T
R

Catalog name. NULL if the provider does not support catalogs.

IN
DE
X_
SC
HE
M
A

D
B
T
Y
P
E_
W
S
T
R

Unqualified schema name. NULL if the provider does not support schemas.

IN
DE
X_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Index name.

PR
IM
A
RY
_K
EY

D
B
T
Y
P
E_
B
O
O
L

Whether the index represents the primary key on the table. NULL if this is not known.

U
NI
Q
UE

D
B
T
Y
P
E_
B
O
O
L

Whether index keys must be unique. One of the following: VARIANT_TRUE: The index keys must be unique. VARIANT_FA
LSE: Duplicate keys are allowed.

CL
U
ST
ER
ED

D
B
T
Y
P
E_
B
O
O
L

Whether an index is clustered. One of the following: VARIANT_TRUE: The leaf nodes of the index contain full rows, not bo
okmarks. This is a way to represent a table clustered by key value. VARIANT_FALSE: The leaf nodes of the index contain b
ookmarks of the base table rows whose key value matches the key value of the index entry.

TY
PE

D
B
T
Y
P
E_
UI
2

The type of the index. One of the following: DBPROPVAL_IT_BTREE: The index is a B+-tree. DBPROPVAL_IT_HASH: The in
dex is a hash file using, for example, linear or extensible hashing. DBPROPVAL_IT_CONTENT: The index is a content index.
DBPROPVAL_IT_OTHER: The index is some other type of index.

FI
LL
_F
A
CT
O
R

D
B
T
Y
P
E_
I4

For a B+-tree index, this property represents the storage utilization factor of page nodes during the creation of the index.
The value is an integer from 1 to 100 representing the percentage of use of an index node. For a linear hash index, this p
roperty represents the storage utilization of the entire hash structure (the ratio of used area to total allocated area) befor
e a file structure expansion occurs.

IN
ITI
AL
_S
IZ
E

D
B
T
Y
P
E_
I4

The total amount of bytes allocated to this structure at creation time.

N
UL
LS

D
B
T
Y
P
E_
I4

Whether null keys are allowed. One of the following: DBPROPVAL_IN_DISALLOWNULL: The index does not allow entries
where the key columns are NULL. If the consumer attempts to insert an index entry with a NULL key, then the provider r
eturns an error. DBPROPVAL_IN_IGNORENULL: The index does not insert entries containing NULL keys. If the consumer
attempts to insert an index entry with a NULL key, then the provider ignores that entry and no error code is returned. DB
PROPVAL_IN_IGNOREANYNULL: The index does not insert entries where some column key has a NULL value. For an ind
ex having a multicolumn search key, if the consumer inserts an index entry with NULL value in some column of the searc
h key, then the provider ignores that entry and no error code is returned.

S
O
RT
_B
O
O
K
M
A
RK
S

D
B
T
Y
P
E_
B
O
O
L

How the index treats repeated keys. One of the following: VARIANT_TRUE: The index sorts repeated keys by bookmark. V
ARIANT_FALSE: The index does not sort repeated keys by bookmark.

A
UT
O_
U
P
D
AT
E

D
B
T
Y
P
E_
B
O
O
L

Whether the index is maintained automatically when changes are made to the corresponding base table. One of the follo
wing: VARIANT_TRUE: The index is automatically maintained. VARIANT_FALSE: The index must be maintained by the con
sumer through explicit calls to IRowsetChange. Ensuring consistency of the index as a result of updates to the associate
d base table is the responsibility of the consumer.

N
UL
L_
C
O
LL
AT
IO
N

D
B
T
Y
P
E_
I4

How NULLs are collated in the index. One of the following: DBPROPVAL_NC_END: NULLs are collated at the end of the li
st, regardless of the collation order. DBPROPVAL_NC_START: NULLs are collated at the start of the list, regardless of the
collation order. DBPROPVAL_NC_HIGH: NULLs are collated at the high end of the list. DBPROPVAL_NC_LOW: NULLs are
collated at the low end of the list.

O
R
DI
N
AL
_P
O
SI
TI
O
N

D
B
T
Y
P
E_
UI
4

Ordinal position of the column in the index, starting with one.

C
O
LU
M
N_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Column name. This column, together with the COLUMN_GUID and COLUMN_PROPID columns, forms the column ID. O
ne or more of these columns will be NULL depending on which elements of the DBID structure the provider uses.

C
O
LU
M
N_
G
UI
D

D
B
T
Y
P
E_
G
UI
D

Column GUID.

C
O
LU
M
N_
PR
O
PI
D

D
B
T
Y
P
E_
UI
4

Column property ID.

C
O
LL
AT
IO
N

D
B
T
Y
P
E_
I2

One of the following: DB_COLLATION_ASC: The sort sequence for the column is ascending. DB_COLLATION_DESC: The s
ort sequence for the column is descending. NULL: A column sort sequence is not supported.

C
A
R
DI
N
AL
IT
Y

D
B
T
Y
P
E_
I4

Number of unique values in the index.

PA
GE
S

D
B
T
Y
P
E_
I4

Number of pages used to store the index.

FI
LT
ER
_C
O
N
DI
TI
O
N

D
B
T
Y
P
E_
W
S
T
R

The WHERE clause identifying the filtering restriction.

The default sort order for the adSchemaIndexes rowset is UNIQUE, TYPE, INDEX_CATALOG, INDEX_SCHEMA, INDEX_NAME,
and ORDINAL_POSITION.

adSchemaPrimaryKeys
The adSchemaPrimaryKeys QueryType identifies the primary key columns defined in the catalog by a given user. This
QueryType is supported by the Microsoft OLE DB Provider for DB2.

The rowset returned by an adSchemaPrimaryKeys QueryType contains the columns listed in the following table.

Colum
n nam
e

Type i
ndicat
or

Description

TABLE_
CATAL
OG

DBTYP
E_WST
R

Catalog name in which the table is defined. NULL if the provider does not support catalogs.

TABLE_
SCHEM
A

DBTYP
E_WST
R

Unqualified schema name in which the table is defined. NULL if the provider does not support schemas.

TABLE_
NAME

DBTYP
E_WST
R

Table name.

COLUM
N_NAM
E

DBTYP
E_WST
R

Primary key column name. This column, together with the COLUMN_GUID and COLUMN_PROPID columns, fo
rms the column ID. One or more of these columns will be NULL depending on which elements of the DBID str
ucture the provider uses.

COLUM
N_GUID

DBTYP
E_GUI
D

Primary key column GUID.

COLUM
N_PRO
PID

DBTYP
E_UI4

Primary key column property ID.

ORDIN
AL

DBTYP
E_UI4

The order of the column names (and GUIDs and property IDs) in the key.

PK_NA
ME

DBTYP
E_WST
R

Primary key name. NULL if the provider does not support primary key constraints.

The default sort order for the adSchemaPrimaryKeys rowset is UNIQUE, TABLE_CATALOG, TABLE_SCHEMA, and
TABLE_NAME.

adSchemaProcedures
The adSchemaProcedures QueryType identifies information about the columns of rowsets returned by procedures. This
QueryType is supported by the Microsoft OLE DB Provider for DB2.

The rowset returned by an adSchemaProcedures QueryType contains the columns listed in the following table.

Colum
n nam
e

Ty
pe
in
di
ca
tor

Description

PROCE
DURE_
CATAL
OG

DB
TY
PE
_W
ST
R

Catalog name. NULL if the provider does not support catalogs.

PROCE
DURE_
SCHE
MA

DB
TY
PE
_W
ST
R

Unqualified schema name. NULL if the provider does not support schemas.

PROCE
DURE_
NAME

DB
TY
PE
_W
ST
R

Table name.

COLU
MN_N
AME

DB
TY
PE
_W
ST
R

The name of the column; this might not be unique. If this cannot be determined, a NULL is returned. This column, t
ogether with the COLUMN_GUID and COLUMN_PROPID columns, forms the column ID. One or more of these colu
mns will be NULL depending on which elements of the DBID structure the provider uses. If possible, the resulting c
olumn ID should be persistent. However, some providers do not support persistent identifiers for columns. The col
umn ID of a base table should be invariant under views.

COLU
MN_G
UID

DB
TY
PE
_G
UI
D

Column GUID.

COLU
MN_P
ROPID

DB
TY
PE
_UI
4

Column property ID.

ROWS
ET_NU
MBER

DB
TY
PE
_UI
4

Number of the rowset containing the column. This is greater than one only if the procedure returns multiple rowse
ts.

ORDIN
AL_PO
SITION

DB
TY
PE
_UI
4

The ordinal of the column. Columns are numbered starting from one. NULL if there is no stable ordinal value for th
e column.

IS_NU
LLABL
E

DB
TY
PE
_B
O
OL

VARIANT_TRUE: The column might be nullable. VARIANT_FALSE: The column is known not to be nullable.

DATA_
TYPE

DB
TY
PE
_UI
2

The indicator of the columns data type. If the data type of the column varies from row to row, this must be DBTYPE
_VARIANT.

TYPE_
GUID

DB
TY
PE
_G
UI
D

The GUID of the columns data type.

CHAR
ACTER
_MAXI
MUM_
LENGT
H

DB
TY
PE
_UI
4

The maximum possible length of a value in the column. For character, binary, or bit columns, this is one of the follo
wing:

The maximum length of the column in characters, bytes, or bits, respectively, if one is defined. For example, a CHAR
(5) column in an SQL table has a maximum length of five (5).

The maximum length of the data type in characters, bytes, or bits, respectively, if the column does not have a define
d length.

Zero (0) if neither the column nor the data type has a defined maximum length.

NULL for all other types of columns.

CHAR
ACTER
_OCTE
T_LEN
GTH

DB
TY
PE
_UI
4

Maximum length in octets (bytes) of the column, if the type of the column is character or binary. A value of zero me
ans the column has no maximum length. NULL for all other types of columns.

NUME
RIC_PR
ECISIO
N

DB
TY
PE
_UI
2

If the columns data type is numeric, this is the maximum precision of the column. The precision of columns with a
data type of DBTYPE_DECIMAL or DBTYPE_NUMERIC depends on the definition of the column. If the columns data t
ype is not numeric, this is NULL.

NUME
RIC_SC
ALE

DB
TY
PE
_I2

If columns type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the number of digits to the right of the
decimal point. Otherwise, this is NULL.

DESCR
IPTION

DB
TY
PE
_W
ST
R

Human-readable description of the column. For example, the description for a column named Name in the Employ
ee table might be "Employee name."

The default sort order for the adSchemaProcedures rowset is PROCEDURE_CATALOG, PROCEDURE_SCHEMA, and
PROCEDURE_NAME.

adSchemaProcedureParameters
The adSchemaProcedureParameters QueryType identifies information about the parameters and return codes of
procedures. This QueryType is supported by the Microsoft OLE DB Provider for DB2.

The rowset returned by an adSchemaProcedureParameters QueryType contains the columns listed in the following table.

Column na
me

Type
indic
ator

Description

PROCEDURE
_CATALOG

DBTY
PE_W
STR

Catalog name. NULL if the provider does not support catalogs.

PROCEDURE
_SCHEMA

DBTY
PE_W
STR

Unqualified schema name. NULL if the provider does not support schemas.

PROCEDURE
_NAME

DBTY
PE_W
STR

Table name.

PARAMETER
_NAME

DBTY
PE_W
STR

Parameter name. NULL if the parameter is not named.

ORDINAL_P
OSITION

DBTY
PE_UI
2

If the parameter is an input, input/output, or output parameter, this is the one-based ordinal position of the
parameter in the procedure call.

If the parameter is the return value, this is zero.

PARAMETER
_TYPE

DBTY
PE_UI
2

One of the following:

DBPARAMTYPE_INPUT—The parameter is an input parameter.

DBPARAMTYPE_INPUTOUTPUT—The parameter is an input/output parameter.

DBPARAMTYPE_OUTPUT—The parameter is an output parameter.

DBPARAMTYPE_RETURNVALUE—The parameter is a procedure return value.

If the provider cannot determine the parameter type, this is NULL.

PARAMETER
_HASDEFAU
LT

DBTY
PE_B
OOL

VARIANT_TRUE: The parameter has a default value.

VARIANT_FALSE: The parameter does not have a default value or it is unknown whether the parameter has
a default value.

PARAMETER
_DEFAULT

DBTY
PE_W
STR

Default value of the parameter.

If the default value is the NULL value, PARAMETER_HASDEFAULT is VARIANT_TRUE, and the PARAMETER_
DEFAULT value is a NULL value.

IS_NULLABL
E

DBTY
PE_B
OOL

VARIANT_TRUE: The parameter might be nullable. VARIANT_FALSE: The parameter is not nullable.

DATA_TYPE DBTY
PE_UI
2

The indicator of the parameters data type.

CHARACTER
_MAXIMUM
_LENGTH

DBTY
PE_UI
4

The maximum possible length of a value in the parameter. For character, binary, or bit columns, this is one
of the following:

The maximum length of the parameter in characters, bytes, or bits, respectively, if one is defined. For exam
ple, a CHAR(5) column in an SQL table has a maximum length of five (5).

The maximum length of the data type in characters, bytes, or bits, respectively, if the parameter does not h
ave a defined length.

Zero (0) if neither the parameter nor the data type has a defined maximum length.

NULL for all other types of parameters.

CHARACTER
_OCTET_LEN
GTH

DBTY
PE_UI
4

Maximum length in octets (bytes) of the parameter, if the type of the parameter is character or binary. A va
lue of zero means the parameter has no maximum length. NULL for all other types of parameter.

NUMERIC_P
RECISION

DBTY
PE_UI
2

If the parameters data type is numeric, this is the maximum precision of the parameter. The precision of pa
rameters with a data type of DBTYPE_DECIMAL or DBTYPE_NUMERIC depends on the definition of the para
meters. If the parameters data type is not numeric, this is NULL.

NUMERIC_S
CALE

DBTY
PE_I2

If parameters type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the number of digits to the r
ight of the decimal point. Otherwise, this is NULL.

DESCRIPTIO
N

DBTY
PE_W
STR

Human-readable description of the parameter. For example, the description for a parameter named Name
in a procedure that adds a new employee might be "Employee name."

TYPE_NAME DBTY
PE_W
STR

Provider-specific data type name.

LOCAL_TYPE
_NAME

DBTY
PE_W
STR

Localized version of TYPE_NAME. NULL is returned if a localized name is not supported by the data provid
er.

The default sort order for the adSchemaProcedureParameters rowset is PROCEDURE_CATALOG, PROCEDURE_SCHEMA,
and PROCEDURE_NAME.

adSchemaProviderTypes
The adSchemaProviderTypes QueryType identifies the data types supported by the data provider. This QueryType is
supported by the Microsoft OLE DB Provider for AS/400 and VSAM and the Microsoft OLE DB Provider for DB2.

The rowset returned by an adSchemaProviderType QueryType contains the columns listed in the following table.

C
ol
u
m
n
n
a
m
e

T
y
p
e
in
di
c
at
o
r

Description

T
Y
P
E_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Provider-specific data type name.

D
A
T
A
_T
Y
P
E

D
B
T
Y
P
E_
UI
2

The indicator of the data type.

C
O
L
U
M
N
_
SI
Z
E

D
B
T
Y
P
E_
UI
4

The length of a non-numeric column or parameter refers to either the maximum or the defined length for this type by th
e provider. For character data, this is the maximum or defined length in characters. If the data type is numeric, this is the
upper bound on the maximum precision of the data type.

LI
T
E
R
A
L_
P
R
E
FI
X

D
B
T
Y
P
E_
W
S
T
R

Character or characters used to prefix a literal of this type in a text command.

LI
T
E
R
A
L_
S
U
F
FI
X

D
B
T
Y
P
E_
W
S
T
R

Character or characters used to suffix a literal of this type in a text command.

C
R
E
A
T
E_
P
A
R
A
M
S

D
B
T
Y
P
E_
W
S
T
R

The creation parameters are specified by the consumer when creating a column of this data type. For example, the SQL d
ata type DECIMAL needs a precision and a scale. In this case, the creation parameters might be the string "precision,scale"
. In a text command, to create a DECIMAL column with a precision of 10 and a scale of 2, the value of the TYPE_NAME col
umn might be DECIMAL() and the complete type specification would be DECIMAL(10,2). The creation parameters appear
as a comma-separated list of values, in the order they are to be supplied, with no surrounding parentheses. If a creation p
arameter is length, maximum length, precision, or scale, "length", "max length", "precision", and "scale" should be used, re
spectively. If the creation parameters are some other value, it is provider-specific what text is used to describe the creatio
n parameter. If the data type requires creation parameters, "()" generally appears in the type name. This indicates the posi
tion at which to insert the creation parameters. If the type name does not include "()", the creation parameters are enclose
d in parentheses and appended to the end of the data type name.

IS
_
N
U
L
L
A
B
L
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is nullable. VARIANT_FALSE: The data type is not nullable. NULL: It is not known whether t
he data type is nullable.

C
A
S
E_
S
E
N
SI
TI
V
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is a character type and is case-sensitive. VARIANT_FALSE: The data type is not a character t
ype or is not case-sensitive.

S
E
A
R
C
H
A
B
L
E

D
B
T
Y
P
E_
UI
4

If the provider supports ICommandText, then this column is an integer indicating the searchability of a data type, other
wise this column is NULL. One of the following: DB_UNSEARCHABLE: The data type cannot be used in a WHERE clause. D
B_LIKE_ONLY: The data type can be used in a WHERE clause only with the LIKE predicate. DB_ALL_EXCEPT_LIKE: The data t
ype can be used in a WHERE clause with all comparison operators except LIKE. DB_SEARCHABLE: The data type can be us
ed in a WHERE clause with any comparison operator.

U
N
SI
G
N
E
D
_
A
T
T
RI
B
U
T
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is unsigned. VARIANT_FALSE: The data type is signed. NULL: Not applicable to data type.

FI
X
E
D
_
P
R
E
C
_
S
C
A
L
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type has a fixed precision and scale. VARIANT_FALSE: The data type does not have a fixed precis
ion and scale.

A
U
T
O
_
U
N
I
Q
U
E_
V
A
L
U
E

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: Values of this type can be auto-incrementing. VARIANT_FALSE: Values of this type cannot be auto-incre
menting.

L
O
C
A
L_
T
Y
P
E_
N
A
M
E

D
B
T
Y
P
E_
W
S
T
R

Localized version of TYPE_NAME. NULL is returned if a localized name is not supported by the data provider.

M
I
N
I
M
U
M
_
S
C
A
L
E

D
B
T
Y
P
E_
I2

If the type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the minimum number of digits allowed to the right
of the decimal point. Otherwise, this is NULL.

M
A
XI
M
U
M
_
S
C
A
L
E

D
B
T
Y
P
E_
I2

If the type indicator is DBTYPE_DECIMAL or DBTYPE_NUMERIC, this is the maximum number of digits allowed to the righ
t of the decimal point. Otherwise, this is NULL.

G
UI
D

D
B
T
Y
P
E_
G
UI
D

The GUID of the type. All types supported by a provider are described in a type library, so each type has a corresponding
GUID.

T
Y
P
E
LI
B

D
B
T
Y
P
E_
W
S
T
R

The type library containing the description of this type. All types supported by a provider are described in one or more ty
pe libraries.

V
E
R
SI
O
N

D
B
T
Y
P
E_
W
S
T
R

The version of the type definition. Providers may want to version type definitions. Different providers may use different v
ersion schemes, such as a timestamp or number (integer or float). NULL if not supported.

IS
_L
O
N
G

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is a BLOB that contains very long data; the definition of very long data is provider-specific.
VARIANT_FALSE: The data type is a BLOB that does not contain very long data or is not a BLOB. This value determines the
setting of the DBCOLUMNFLAGS_ISLONG flag returned by GetColumnInfo in IColumnsInfo and GetParameterInfo i
n ICommandWithParameters. For more information, see GetColumnInfo and GetParameterInfo.

B
E
S
T_
M
A
T
C
H

D
B
T
Y
P
E_
B
O
O
L

VARIANT_TRUE: The data type is the best match between all data types in the data source and the OLE DB data type indic
ated by the value in the DATA_TYPE column. VARIANT_FALSE: The data type is not the best match. For each set of rows in
which the value of the DATA_TYPE column is the same, the BEST_MATCH column is set to VARIANT_TRUE in only one ro
w.

The default sort order for the adSchemaProviderTypes rowset is DATA_TYPE.

adSchemaTables
The adSchemaTables QueryType identifies the tables defined in the catalog that are accessible to a given user. This
QueryType is supported by the Microsoft OLE DB Provider for AS/400 and VSAM and the Microsoft OLE DB Provider for DB2.

The rowset returned by an adSchemaTables QueryType contains the columns listed in the following table.

Column n
ame

Type ind
icator

Description

TABLE_CA
TALOG

DBTYPE_
WSTR

Catalog name. NULL if the provider does not support catalogs.

TABLE_SC
HEMA

DBTYPE_
WSTR

Unqualified Schema Name. NULL if the provider does not support schemas.

TABLE_NA
ME

DBTYPE_
WSTR

Table name.

TABLE_TY
PE

DBTYPE_
WSTR

Table type. One of the following or a provider-specific value. "ALIAS" "TABLE" "SYNONYM" "SYSTEM TAB
LE" "VIEW" "GLOBAL TEMPORARY" "LOCAL TEMPORARY"

TABLE_GU
ID

DBTYPE_
GUID

GUID that uniquely identifies the table. Providers that do not use GUIDs to identify tables should return
NULL in this column.

DESCRIPTI
ON

DBTYPE_
WSTR

Human-readable description of the table.

The default sort order for the adSchemaTables rowset is TABLE_TYPE, TABLE_CATALOG, TABLE_SCHEMA, and TABLE_NAME.

OriginalValue Property (ADO)
The OriginalValue property on a Field object indicates the value of a Field that existed in the record before any changes were
made. This property returns a Variant.

Syntax

Remarks

The OriginalValue property is used to return the original field value for a field from the current record.

In immediate update mode (the provider writes changes to the underlying data source once the Update method is called), the
OriginalValue property returns the field value that existed prior to any changes (that is, since the last Update method call).
This is the same value that the CancelUpdate method uses to replace the Value property.

In batch update mode (the provider caches multiple changes and writes them to the underlying data source only when the
UpdateBatch method is called), the OriginalValue property returns the field value that existed prior to any changes (that is,
since the last UpdateBatch method call). This is the same value that the CancelBatch method uses to replace the Value
property. When this property is used with the UnderlyingValue property, you can resolve conflicts that arise from batch
updates.

oldValue = currentfield.OriginalValue

Precision Property (ADO)
The Precision property on a Field object indicates the degree of precision for Numeric values for numeric Field objects. This
property returns a byte value indicating the maximum number of digits used to represent numeric values in a Field object.

Syntax

Remarks

The Precision property is used to return the precision of a numeric field object.

The byte value that the Precision property will return is dependent on the data type of the Field object. The value for the
ActiveX® Data Objects (ADO) data type of the Field object can be one of the enumerated values for DataTypeEnum as listed
in the following table.

Enume
ration

V
al
u
e

Description

adEmp
ty

0 This data type indicates that no value was specified (DBTYPE_EMPTY).

adSma
llInt

2 This data type indicates a 2-byte (16-bit) signed integer (DBTYPE_I2).

adInte
ger

3 This data type indicates a 4-byte (32-bit) signed integer (DBTYPE_I4).

adSing
le

4 This data type indicates a 4-byte (32-bit) single precision IEEE floating point number (DBTYPE_R4).

adDou
ble

5 This data type indicates an 8-byte (64-bit) double precision IEEE floating point number (DBTYPE_R8).

adCurr
ency

6 A data type indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with 4 digits to the right of th
e decimal point. It is stored in an 8-byte signed integer scaled by 10,000. This data type is not supported by the Micr
osoft® OLE DB Provider for AS/400 and VSAM or the Microsoft OLE DB Provider for DB2.

adDat
e

7 This data type indicates a date value stored as a Double, the whole part of which is the number of days since Decem
ber 30, 1899, and the fractional part of which is the fraction of a day. This data type is not supported by the OLE DB
Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBST
R

8 This data type indicates a null-terminated Unicode character string (DBTYPE_BSTR). This data type is not supported
by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIDis
patch

9 This data type indicates a pointer to an IDispatch interface on an OLE object (DBTYPE_IDISPATCH). This data type is
not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adErro
r

1
0

This data type indicates a 32-bit error code (DBTYPE_ERROR). This data type is not supported by the OLE DB Provid
er for AS/400 and VSAM or the OLE DB Provider for DB2.

adBool
ean

1
1

This data type indicates a Boolean value (DBTYPE_BOOL). This data type is not supported by the OLE DB Provider fo
r AS/400 and VSAM.

numericPrecision = currentfield.Precision

adVari
ant

1
2

This data type indicates an automation variant (DBTYPE_VARIANT). This data type is not supported by the OLE DB P
rovider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIUn
known

1
3

This data type indicates a pointer to an IUnknown interface on an OLE object (DBTYPE_IUNKNOWN). This data type
is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDeci
mal

1
4

This data type indicates numeric data with a fixed precision and scale (DBTYPE_DECIMAL).

adTiny
Int

1
6

This data type indicates a single-byte (8-bit) signed integer (DBTYPE_I1). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedTi
nyInt

1
7

This data type indicates a single-byte (8-bit) unsigned integer (DBTYPE_UI1). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedS
mallIn
t

1
8

This data type indicates a 2-byte (16-bit) unsigned integer (DBTYPE_UI2). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedIn
t

1
9

This data type indicates a 4-byte (32-bit) unsigned integer (DBTYPE_UI4). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBigI
nt

2
0

This data type indicates an 8-byte (64-bit) signed integer (DBTYPE_I8). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM.

adUnsi
gnedBi
gInt

2
1

This data type indicates an 8-byte (64-bit) unsigned integer (DBTYPE_UI8). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adGUI
D

7
2

This data type indicates a globally unique identifier or GUID (DBTYPE_GUID). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBina
ry

1
2
8

This data type indicates fixed-length binary data (DBTYPE_BYTES).

adChar 1
2
9

This data type indicates a character string value (DBTYPE_STR).

adWC
har

1
3
0

This data type indicates a null-terminated Unicode character string (DBTYPE_WSTR). This data type is not supported
by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adNu
meric

1
3
1

This data type indicates numeric data where the precision and scale are exactly as specified (DBTYPE_NUMERIC).

adUser
Define
d

1
3
2

This data type indicates user-defined data (DBTYPE_UDT). This data type is not supported by the OLE DB Provider fo
r AS/400 and VSAM or the OLE DB Provider for DB2.

adDBD
ate

1
3
3

This data type indicates an OLE DB date structure (DBTYPE_DATE).

adDBT
ime

1
3
4

This data type indicates an OLE DB time structure (DBTYPE_TIME).

adDBT
imeSta
mp

1
3
5

This data type indicates an OLE DB timestamp structure (DBTYPE_TIMESTAMP).

adVar
Char

2
0
0

This data type indicates variable-length character data (DBTYPE_STR).

adLon
gVarC
har

2
0
1

This data type indicates a long string value.

adVar
WChar

2
0
2

This data type indicates a Unicode string value. This data type is not supported by the OLE DB Provider for AS/400 a
nd VSAM or the OLE DB Provider for DB2.

adLon
gVarW
Char

2
0
3

This data type indicates a long Unicode string value. This data type is not supported by the OLE DB Provider for AS/
400 and VSAM or the OLE DB Provider for DB2.

adVar
Binary

2
0
4

This data type indicates variable-length binary data (DBTYPE_BYTES).

adLon
gVarBi
nary

2
0
5

This data type indicates a long binary value.

Note that the Precision property returns values that differ from the precision of the host data type for the ActiveX® Data
Objects (ADO) data types as listed in the following table.

ADO data type Comments

adSmallInt The precision on the host is 4, but the OLE DB Provider returns a precision of 5.

adInteger The precision on the host is 8, but the OLE DB Provider returns a precision of 10.

adSingle The precision on the host is 9, but the OLE DB Provider returns a precision of 7.

adDouble The precision on the host is 17, but the OLE DB Provider returns a precision of 15.

Provider Property (ADO)
The Provider property on a Connection object indicates the name of the provider. This property sets or returns a String value.

Syntax

Remarks

The Provider property is used to set or return the name of the provider for the connection. This property can also be set by the
contents of ConnectionString property or the ConnectionString argument of the Open method. However, specifying a
provider in more than one place while calling the Open method can have unpredictable results. If no provider is specified, the
property will default to MSDASQL (Microsoft® OLE DB Provider for ODBC).

The Microsoft OLE DB Provider for AS/400 and VSAM requires "SNAOLEDB" as the Provider property string.

The Microsoft OLE DB Provider for DB2 requires "DB2OLEDB" as the Provider property string.

The Provider property is read/write when the connection is closed and read-only when it is open. The setting does not take
effect until either the Connection object is opened or the Properties collection of the Connection object is accessed. If the
setting is invalid, an error occurs.

oldProvider = currentConnection.Provider
currentConnection.Provider = "SNAOLEDB"

Refresh Method (ADO)
The Refresh method on a Collection object updates the objects in a collection to reflect objects available from and specific to
the OLE DB provider.

Syntax

Parameters

None.

Remarks

This method is only supported on the Fields and Properties collections under the Microsoft® OLE DB Provider for AS/400
and VSAM.

The Refresh method accomplishes different tasks depending on the collection object on which it is called.

Using the Refresh method on the Fields collection has no visible effect. To retrieve changes from the underlying database
structure, either the Requery method must be used or, if the Recordset object does not support bookmarks, the MoveFirst
method must be used.

Using the Refresh method on a Properties collection of some objects populates the collection with the dynamic properties the
provider exposes. These properties provide information about features specific to the provider beyond the built-in properties
ActiveX® Data Objects (ADO) supports. The OLE DB Data Provider for AS/400 and VSAM does not support any provider-
specific properties.

collection.Refresh

Requery Method (ADO)
The Requery method on a Recordset object updates the data in a Recordset object by re-executing the query on which the
object is based.

Syntax

Parameters

None.

Remarks

The Requery method is used to refresh the entire contents of a Recordset object from the data source by reissuing the
original command and retrieving the data a second time. Calling this method is equivalent to calling the Close and Open
methods in succession. If you are editing the current record or adding a new record, an error occurs.

While the Recordset object is open, the properties that define the nature of the cursor (CursorType, LockType, MaxRecords,
and other properties) are read-only. Thus, the Requery method can only refresh the current cursor. To change any of the
cursor properties and view the results, the Close method must be used so that the properties become read/write again. You
can then change the property settings and call the Open method to reopen the cursor.

recordset.Requery

Save Method (ADO)
The Save method on a Recordset object saves the Recordset in a file or Stream object.

Syntax

Parameters
Destination

This optional parameter specifies a Variant representing the complete path name of the file where the Recordset is to be
saved, or a reference to a Stream object.

Persistent Format

This optional parameter specifies a Long integer value representing a PersistFormatEnum value that specifies the format in
which the Recordset is to be saved (XML or ADTG). The default value is adPersistADTG.

The PersistFormatEnum value can be one of the constants listed in the following table.

Enumeration Value Description

adPersistADTG 0 This value indicates Microsoft Advanced Data TableGram (ADTG) format.

adPersistXML 1 This value indicates Extensible Markup Language (XML) format.

Remarks

The Save method can only be invoked on an open Recordset. Use the Open method to later restore the Recordset from
Destination.

When using the Microsoft® OLE DB Provider for AS/400 and VSAM and the Filter property is in effect for the Recordset, then
only the rows accessible under the filter are saved.

The first time you save the Recordset, it is optional to specify Destination. If the Destination parameter is omitted, a new file
will be created with a name set to the value of the Source Property of the Recordset. See the topic
Source Property on a Recordset Object (ADO) for more information.

The Destination parameter should be omitted when you subsequently call Save after the first save, or a run-time error will
occur. If you subsequently call Save with a new Destination, the Recordset is saved to the new destination. However, the new
destination and the original destination will both be open.

Save does not close the Recordset or Destination, so you can continue to work with the Recordset and save your most recent
changes. Destination remains open until the Recordset is closed, during which time other applications can read but not write
to Destination.

For reasons of security, the Save method permits only the use of low and custom security settings from a script executed by
Microsoft Internet Explorer. For a more detailed explanation of security issues, see "ADO and RDS Security Issues in Microsoft
Internet Explorer" found in the ActiveX® Data Objects (ADO) Technical Articles of the Microsoft Data Access Technical Articles.

If the Save method is called while an asynchronous Recordset fetch, execute, or update operation is in progress, then Save
waits until the asynchronous operation is complete.

Records are saved beginning with the first row of the Recordset. When the Save method is finished, the current row position
is moved to the first row of the Recordset.

For best results, set the CursorLocation Property property to adUseClient with Save. If your provider does not support all of
the features necessary to save Recordset objects, the Cursor Service will provide these features.

When a Recordset is persisted with the CursorLocation property set to adUseServer, the update capability for the
Recordset is limited. Typically, only single-table updates, insertions, and deletions are allowed (dependent on features
supported by the provider). The Resync method is also unavailable in this configuration.

Note that saving a Recordset with Fields of type adVariant, adIDispatch, or adIUnknown is not supported by ADO and can
cause unpredictable results.

recordset.Save Destination, Persistent Format

https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745584(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx

Because the Destination parameter can accept any object that supports the OLE DB IStream interface, a Recordset can be
saved directly to the ASP Response object. For more information, see the XML Recordset Persistence Scenario in the ADO
Programmer's Reference.

Sort Property (ADO)
The Sort property on a Recordset object indicates that a recordset should be sorted.

Syntax

Parameters
Criteria

This parameter specifies the criteria used for sorting the Recordset object. This Sort property contains a comma-delimited
list of column names and a direction specifier (ascending or descending) to be used for sorting records in a Recordset
object. The direction specifier is a string (ASC or DESC). When a direction is not specified, the direction defaults to ascending.

An example of a Sort property criteria is as follows:

"LastName ASC, FirstName DESC, Initial"

Remarks

The Sort property is not supported by the OLE DB Provider for DB2 or the ODBC Driver for DB2.

The Sort property is used with an open Recordset object based on an AS/400 physical file. The Sort property allows the user
to indicate which logical view to apply to an AS/400 physical file. The logical view must be a valid index specified in the
description of the AS/400 physical file. The logical view is provided by the AS/400 logical file. The Microsoft® OLE DB Provider
for AS/400 and VSAM responds to a Sort request by first closing the open physical file, and then opening the logical file that
points back to the data in the physical file.

The Recordset Sort property is only supported on AS/400 hosts. If the user opens a Recordset object based on an AS/400
logical file, then there is likely no need to use Recordset.Sort. For performance reasons, applications should be written to open
the AS/400 logical file first, because the overhead is so much greater when opening a physical file first.

If the CursorLocation Property property is set to adUseClient (use the client cursor engine), the Sort property will work if
MDAC 2.0 or later is installed but will not work properly with earlier versions of ADO.

Recordset.Sort BSTR Criteria

https://msdn.microsoft.com/en-us/library/aa745711(v=bts.10).aspx

Source Property on an Error Object (ADO)
The Source property on an Error object indicates the name of the object or application that originally generated an error. This
property returns a String value that indicates the name of an object or application.

Syntax

Remarks

The Source property on an Error object is used to determine the name of the object or application that originally generated an
error. This could be the object's class name or programmatic ID.

For errors in ADO, the property value will be ADODB.ObjectName, where ObjectName is the name of the object that triggered
the error. For ADOX and ADO MD, the value will be ADOX.ObjectName and ADOMD.ObjectName, respectively.

Based on the error documentation from the Source, Number Property (ADO), and Description Property (ADO) for Error
objects, you can write code that will handle the error appropriately.

The Source property is read-only for Error objects.

errorSource = currentError.Source

https://msdn.microsoft.com/en-us/library/aa746034(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770713(v=bts.10).aspx

Source Property on a Recordset Object (ADO)
The Source property on a Recordset object indicates the data source for the Recordset object. This property sets a String
value or Command object reference or returns only a String value that indicates the source of the Recordset.

Syntax

Remarks

The Source property on a Recordset is used to specify a data source for a Recordset object.

Using the Microsoft® OLE DB Provider for AS/400 and VSAM, the Source property can be either a Command object variable
or a table name.

Using the Microsoft OLE DB Provider for DB2, the Source property can be one of the following: a Command object variable, an
SQL statement, or a stored procedure. If the Source property is an SQL statement or a stored procedure, you can optimize
performance by passing the appropriate Options argument with the Open method call.

If you set the Source property to a Command object, the ActiveConnection property of the Recordset object will inherit the
value of the ActiveConnection property for the specified Command object. However, reading the Source property does not
return a Command object; instead, it returns the CommandText property of the Command object to which you set the
Source property.

The Source property is read/write for closed Recordset objects and read-only for open Recordset objects.

currentSource = currentRecordset.Source
recordset.Source = newSource

State Property (ADO)
The State property on a Connection, Command, or Recordset object describes the current state of an object. This property
sets or returns a Long value.

Syntax

Remarks

The State property is used to set or return the current state of an object. The value of the State property can be one of the
enumerated values listed in the following table.

Enumeration Value Description

adStateClosed 0 This value indicates that the object is closed. This is the default value.

adStateOpen 1 This value indicates that the object is open.

The State property can be used to determine the current state of a given object at any time.

oldState = currentConnection.State
currentConnection.State = adStateClosed

Status Property (ADO)
The Status property on a Recordset object indicates the status of the current record with respect to batch updates or other
bulk operations. This property returns a Long value.

Syntax

Remarks

The Status property is used to return the current status of a recordset object at any time. The value of the Status property
returns a sum of the RecordStatusEnum enumerated values listed in the following table.

Enumeration Value Description

adRecOK 0 This value indicates that the recordset object was successfully updated.

adRecNew 0x1 This value indicates that the recordset object is new.

adRecModified 0x2 This value indicates that the recordset object was modified.

adRecDeleted 0x4 This value indicates that the recordset object was deleted.

adRecUnmodified 0x8 This value indicates that the recordset object was not modified.

adRecInvalid 0x10 This value indicates that the recordset object was not saved because its bookmark is invalid.

adRecMultipleChange
s

0x40 This value indicates that the recordset object was not saved because it would have affected m
ultiple records.

adRecPendingChange
s

0x80 This value indicates that the recordset object was not saved because it refers to a pending inse
rt.

adRecCanceled 0x100 This value indicates that the recordset object was not saved because the operation was cancel
ed.

adRecCantRelease 0x400 This value indicates that the new recordset object was not saved because of existing record loc
ks.

adRecConcurencyViol
ation

0x800 This value indicates that the recordset object was not saved because optimistic concurrency w
as in use.

adRecIntegrityViolati
on

0x100
0

This value indicates that the recordset object was not saved because the user violated integrity
constraints.

adRecMaxChangesExc
eeded

0x200
0

This value indicates that the recordset object was not saved because there were too many pen
ding changes.

adRecObjectOpen 0x400
0

This value indicates that the recordset object was not saved because of a conflict with an open
storage object.

adRecOutOfMemory 0x800
0

This value indicates that the recordset object was not saved because the computer has run out
of memory.

oldStatus = currentRecordset.Status

adRecPermissionDeni
ed

0x100
00

This value indicates that the recordset object was not saved because the user has insufficient p
ermissions.

adRecSchemaViolatio
n

0x200
00

This value indicates that the recordset object was not saved because it violates the structure of
the underlying database.

adRecDBDeleted 0x400
00

This value indicates that the recordset object has already been deleted from the data source.

Use the Status property to see what changes are pending for records modified during batch updating. You can also use the
Status property to view the status of records that fail during bulk operations such as when you call the Resync, UpdateBatch,
or CancelBatch methods on a recordset object, or set the Filter property on a recordset object to an array of bookmarks. With
this property, you can determine how a given record failed and resolve it accordingly.

Supports Method (ADO)
The Supports method on a Recordset object determines whether a specified Recordset object supports a particular type of
feature.

Syntax

Parameters
CursorOptions

This parameter specifies a Long expression that consists of one or more of the CursorOptionEnum values indicating which
feature is being queried.

The CursorOptionEnum value can be one of the constants listed in the table following the Parameters section.

Values for CursorOptions
Enumerat
ion

Valu
e

Description

adAddNe
w

0x10
0040
0

This value indicates whether the AddNew method can be used to add new records.

adAppro
xPosition

0x40
00

This value indicates whether the AbsolutePosition and AbsolutePage properties can read and set.

adBookM
ark

0x20
00

This value indicates whether the Bookmark property can be used to access specific records.

adDelete 0x10
0080
0

This value indicates whether the Delete method can be used to delete records.

adFind 0x80
000

This value indicates whether the Find method can be used to locate a row in a Recordset.

adHoldR
ecords

0x10
0

This value indicates whether you can retrieve more records or change the next retrieve position without com
mitting all pending changes.

adIndex 0x10
0000

This value indicates whether the Index property can be name an index.

adMoveP
revious

0x20
0

This value indicates whether the MoveFirst and MovePrevious methods, and Move or GetRows methods
can be used to move the current record position backward without requiring bookmarks.

adNotify 0x40
000

This value indicates that the underlying data provider supports notifications (which determines whether Rec
ordset events are supported).

adResync 0x20
000

This value indicates whether the recordset cursor can be updated with the data visible in the underlying data
base using the Resync method.

adSeek 0x20
0000

This value indicates whether the Seek method can be used to locate a row in a Recordset.

boolean = recordset.Supports (CursorOptions)

adUpdat
e

0x10
0800
0

This value indicates whether the Update method can be used to modify existing data.

adUpdat
eBatch

0x10
000

This value indicates whether batch updating can be used on the recordset (the UpdateBatch and CancelBat
ch methods) to transmit changes to the provider in groups.

Return Value

Returns a Boolean value that indicates whether all of the features identified by the CursorOptions argument are supported by
the provider.

Remarks

The Supports method is used to determine what types of features (methods and properties) a Recordset object supports. If
the Recordset object supports the features whose corresponding constants are in CursorOptions, the Supports method
returns True. Otherwise, it returns False.

Although the Supports method may return True for a given feature, it does not guarantee that the OLE DB Provider can make
the feature available under all circumstances. The Supports method simply returns whether the provider can support the
specified function assuming certain conditions are met. For example, the Supports method may indicate that a Recordset
object supports updates even though the cursor is based on a multi-table join, some columns of which are not updatable.

Type Property (ADO)
The Type property on a Field object indicates the operational type or data type for Field or Property objects. This property
sets or returns a DataTypeEnum value.

Syntax

Remarks

The Type property is used to return the data type of a numeric field object.

The value returned by the Type property on a Field object can be one of the enumerated values for DataTypeEnum listed in
the following table.

Enume
ration

V
a
l
u
e

Description

adEmp
ty

0 This data type indicates that no value was specified (DBTYPE_EMPTY).

adSma
llInt

2 This data type indicates a 2-byte (16-bit) signed integer (DBTYPE_I2).

adInte
ger

3 This data type indicates a 4-byte (32bit) signed integer (DBTYPE_I4).

adSing
le

4 This data type indicates a 4-byte (32-bit) single-precision IEEE floating-point number (DBTYPE_R4).

adDou
ble

5 This data type indicates an 8-byte (64-bit) double-precision IEEE floating-point number (DBTYPE_R8).

adCurr
ency

6 A data type indicates a currency value (DBTYPE_CY). Currency is a fixed-point number with four digits to the right of
the decimal point. It is stored in an 8-byte signed integer scaled by 10,000. This data type is not supported by the Mi
crosoft® OLE DB Provider for AS/400 and VSAM or the Microsoft OLE DB Provider for DB2.

adDat
e

7 This data type indicates a date value stored as a Double, the whole part of which is the number of days since Decem
ber 30, 1899, and the fractional part of which is the fraction of a day. This data type is not supported by the OLE DB
Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBST
R

8 This data type indicates a null-terminated Unicode character string (DBTYPE_BSTR). This data type is not supported
by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIDis
patch

9 This data type indicates a pointer to an IDispatch interface on an OLE object (DBTYPE_IDISPATCH). This data type is
not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adErro
r

1
0

This data type indicates a 32-bit error code (DBTYPE_ERROR). This data type is not supported by the OLE DB Provid
er for AS/400 and VSAM or the OLE DB Provider for DB2.

adBool
ean

1
1

This data type indicates a Boolean value (DBTYPE_BOOL). This data type is not supported by the OLE DB Provider fo
r AS/400 and VSAM.

datatype = currentfield.Type

adVari
ant

1
2

This data type indicates an Automation variant (DBTYPE_VARIANT). This data type is not supported by the OLE DB P
rovider for AS/400 and VSAM or the OLE DB Provider for DB2.

adIUn
known

1
3

This data type indicates a pointer to an IUnknown interface on an OLE object (DBTYPE_IUNKNOWN). This data type
is not supported by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adDeci
mal

1
4

This data type indicates numeric data with a fixed precision and scale (DBTYPE_DECIMAL).

adTiny
Int

1
6

This data type indicates a single-byte (8-bit) signed integer (DBTYPE_I1). This data type is not supported by the OLE
DB Provider.

adUnsi
gnedTi
nyInt

1
7

This data type indicates a single-byte (8-bit) unsigned integer (DBTYPE_UI1). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedS
mallIn
t

1
8

This data type indicates a 2-byte (16-bit) unsigned integer (DBTYPE_UI2). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adUnsi
gnedIn
t

1
9

This data type indicates a 4-byte (32-bit) unsigned integer (DBTYPE_UI4). This data type is not supported by the OLE
DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBigI
nt

2
0

This data type indicates an 8-byte (64-bit) signed integer (DBTYPE_I8). This data type is not supported by the OLE D
B Provider for AS/400 and VSAM.

adUnsi
gnedBi
gInt

2
1

This data type indicates an 8-byte (64-bit) unsigned integer (DBTYPE_UI8). This data type is not supported by the OL
E DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adGUI
D

7
2

This data type indicates a globally unique identifier or GUID (DBTYPE_GUID). This data type is not supported by the
OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adBina
ry

1
2
8

This data type indicates fixed-length binary data (DBTYPE_BYTES).

adChar 1
2
9

This data type indicates a character string value (DBTYPE_STR).

adWC
har

1
3
0

This data type indicates a null-terminated Unicode character string (DBTYPE_WSTR). This data type is not supported
by the OLE DB Provider for AS/400 and VSAM or the OLE DB Provider for DB2.

adNu
meric

1
3
1

This data type indicates numeric data where the precision and scale are exactly as specified (DBTYPE_NUMERIC).

adUser
Define
d

1
3
2

This data type indicates user-defined data (DBTYPE_UDT). This data type is not supported by the OLE DB Provider fo
r AS/400 and VSAM or the OLE DB Provider for DB2.

adDBD
ate

1
3
3

This data type indicates an OLE DB date structure (DBTYPE_DATE).

adDBT
ime

1
3
4

This data type indicates an OLE DB time structure (DBTYPE_TIME).

adDBT
imeSta
mp

1
3
5

This data type indicates an OLE DB timestamp structure (DBTYPE_TIMESTAMP).

adVar
Char

2
0
0

This data type indicates variable-length character data (DBTYPE_STR).

adLon
gVarC
har

2
0
1

This data type indicates a long string value.

adVar
WChar

2
0
2

This data type indicates a Unicode string value. This data type is not supported by the OLE DB Provider for AS/400 a
nd VSAM or the OLE DB Provider for DB2.

adLon
gVarW
Char

2
0
3

This data type indicates a long Unicode string value. This data type is not supported by the OLE DB Provider for AS/
400 and VSAM or the OLE DB Provider for DB2.

adVar
Binary

2
0
4

This data type indicates variable-length binary data (DBTYPE_BYTES).

adLon
gVarBi
nary

2
0
5

This data type indicates a long binary value.

The corresponding OLE DB type indicator is shown in parentheses in the description column of the above table. For more
information on OLE DB data types, see the OLE DB 2.0 Programmer's Reference.

UnderlyingValue Property (ADO)
The UnderlyingValue property on a Field object indicates the Field object's current value in the database. This property
returns a Variant.

Syntax

Remarks

The UnderlyingValue property is used to return the current field value from the database. The field value in the
UnderlyingValue property is the value that is visible to your transaction and may be the result of a recent update by another
transaction. This may differ from the OriginalValue property, which reflects the value that was originally returned to the
Recordset.

This is similar to the affect of calling the Resync method, however the UnderlyingValue property returns only the value for a
specific field from the current record. This is the same value that the Resync method uses to replace the Value property.

When this property is used with the OriginalValue property, you can resolve conflicts that arise from batch updates.

actualValue = currentfield.UnderlyingValue

Update Method (ADO)
The Update method on a Recordset object saves any changes you make to the current record of a Recordset object.

Syntax

Parameters
Fields

This optional parameter specifies a Variant representing a single name or a Variant array representing names or ordinal
positions of the field or fields you want to modify.

Values

This optional parameter specifies a Variant representing a single value or a Variant array representing values for the field or
fields in the new record.

Remarks

The Update method is used to save any changes you make to the current record of a Recordset object since calling the
AddNew method or since changing any field values in an existing record. The Recordset object must support updates for the
Update method to be used successfully.

To set field values, do one of the following:

Assign values to a Field object's Value property and call the Update method.

Pass a field name and a value as arguments with the Update call.

Pass an array of field names and an array of values with the Update call.

When arrays of fields and values are used, there must be an equal number of elements in both arrays. Also, the order of field
names must match the order of field values. If the number and order of fields and values do not match, an error occurs.

If the Recordset object supports batch updating, then multiple changes to one or more records can be cached locally when the
UpdateBatch method is called. If you are editing the current record or adding a new record when the UpdateBatch method
is called, ActiveX® Data Objects (ADO) will automatically call the Update method to save any pending changes to the current
record before transmitting the batched changes to the OLE DB Provider.

If you move from the record you are adding or editing before calling the Update method, ADO will automatically call Update
to save the changes. The CancelUpdate method must be called if you want to cancel any changes made to the current record
or to discard a newly added record.

The current record remains current after the Update method is called.

recordset.Update Fields, Values

UpdateBatch Method (ADO)
The UpdateBatch method on a Recordset object writes all pending batch updates to the host.

Syntax

Parameters
AffectedRecords

This optional parameter specifies an AffectEnum value that determines how many records the UpdateBatch method will
affect.

The AffectEnum value can be one of the constants listed in the following table.

Enumera
tion

Va
lue

Description

adAffect
Current

1 This value writes pending changes only for the current record.

adAffect
Group

2 This value writes pending changes for the records that satisfy the current Filter property setting. You must set
the Filter property to one of the valid predefined constants to use this option.

adAffect
All

3 This value writes pending changes for all the records in the Recordset object, including any hidden by the cur
rent Filter property setting. This value is the default.

Remarks

The UpdateBatch method is used when modifying a Recordset object in batch update mode to transmit all changes made in
a Recordset object to the underlying database.

If the Recordset object supports batch updating, then multiple changes to one or more records can be cached locally until the
UpdateBatch method is called. If you are editing the current record or adding a new record when the UpdateBatch method
is called, ADO will automatically call the Update method to save any pending changes to the current record before
transmitting the batched changes to the provider.

If the attempt to transmit changes fails because of a conflict with the underlying data (for example, a record has already been
deleted by another user), the provider returns warnings to the Errors collection but does not halt program execution. A run-
time error occurs only if there are conflicts on all the requested records. Use the Filter property (adFilterAffectedRecords)
and the Status property to locate records with conflicts.

To cancel all pending batch updates, use the CancelBatch method.

recordset.UpdateBatch AffectedRecords

https://msdn.microsoft.com/en-us/library/aa746116(v=bts.10).aspx

Value Property (ADO)
The Value property on a Field object indicates the value assigned to a Field or Property object. This property sets or returns a
Variant value. The default value depends on the Type property of the Field object.

Syntax

Remarks

The Value property is used to set or return data from Field objects or to set or return property settings with Property objects.
Whether the Value property is read/write or read-only depends upon numerous factors. For a Field object, this includes
whether the Recordset was opened as read-only or read/write.

ActiveX® Data Objects (ADO) allows setting and returning long binary data with the Value property from the database.

oldValue = currentfield.Value
currentField.Value = newValue

Version Property (ADO)
The Version property on a Connection object indicates the ActiveX® Data Objects (ADO) version number. This property
returns a String value.

Syntax

Remarks

The Version property is used to return the version number of the ADO implementation. The version of the provider will be
available as a dynamic property in the Properties collection.

versionADO = currentConnection.Version

Network Integration Programmer's Reference
This section of Host Integration Server 2009 Help describes the objects, methods, properties, controls, and other interfaces that
enable you to integrate Host Integration Server network technologies into your application.

In This Section

APPC Programmer's Reference

CPI-C Programmer's Reference

LUA Programmer's Reference

3270 Emulation Programmer's Reference

SNA Internationalization Programmer's Reference

SNA Print Server Data Filter Programmer's Reference

Session Integrator Programmer's Reference

Client-Based BizTalk Adapter for WebSphere MQ Programmer's Reference

Reference

SNADIS Drivers Programmer's Reference

Related Sections

Network Integration Programmer's Guide

Network Integration Samples

See Also
Other Resources
Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa771668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745359(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745364(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745583(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744309(v=bts.10).aspx

APPC Programmer's Reference
This section of Host Integration Server 2009 Help provides information about the verbs, extensions, and return codes that
make up the APPC programming interface.

For general information about programming for APPC, see the APPC Programmer's Guide section of the SDK.

For sample code using APPC, see APPC Samples.

In This Section

APPC Management Verbs

APPC TP Verbs

APPC Conversation Verbs

APPC Extensions for the Windows Environment

Host Integration Server Enhancements to the Windows Environment

Common Service Verbs

CSV Extensions for the Windows Environment

Common APPC Return Codes

Common CSV Return Codes

https://msdn.microsoft.com/en-us/library/aa705653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771917(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771307(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771057(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770946(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754395(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705621(v=bts.10).aspx

APPC Management Verbs
This section describes the Advanced Program-to-Program Communications (APPC) management verbs. The management
verbs enable you to establish APPC LU 6.2 session limits, obtain configuration information and current operating values for the
SNA node, and activate or deactivate sessions. The description of each verb provides:

A definition of the verb.

The structure defining the verb control block (VCB) used by the verb. The structure is contained in the WINAPPC.H file.
The length of each VCB field is in bytes. Fields beginning with reserv (for example, reserv2) are reserved.

The parameters (VCB fields) supplied to and returned by APPC. A description of each parameter is provided, along with
its possible values and other information.

The conversation state(s) in which the verb can be issued.

The state(s) to which the conversation can change upon return from the verb. Conditions that do not cause a state
change are not noted. For example, parameter checks and state checks do not cause a state change.

Additional information describing the verb.

Most parameters supplied to and returned by APPC are hexadecimal values. To simplify coding, these values are represented
by meaningful symbolic constants, which are established by #define statements in the WINAPPC.H header file. For example,
the opcode (operation code) member of the mc_send_data structure used by the MC_SEND_DATA verb is the hexadecimal
value represented by the symbolic constant AP_M_SEND_DATA. Use only the symbolic constants when writing transaction
programs (TPs).

In This Section

ACTIVATE_SESSION

CNOS

DEACTIVATE_SESSION

DISPLAY

https://msdn.microsoft.com/en-us/library/aa754409(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705541(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705711(v=bts.10).aspx

ACTIVATE_SESSION
The ACTIVATE_SESSION verb requests Microsoft® Host Integration Server to activate a session between the local logical unit
(LU) and a specified partner LU, using a specified mode. This verb completes either when the specified session has become
active or when it has failed.

The following structure describes the verb control block used by the ACTIVATE_SESSION verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_ACTIVATE_SESSION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3

A reserved field.

lu_alias

Supplied parameter. Provides the 8-byte ASCII name used locally for the LU. If the default local LU is to be used, fill this
parameter with spaces.

plu_alias

Supplied parameter. Provides the 8-byte ASCII name used locally for the partner LU. If the default remote LU is to be used, fill
this parameter with spaces. If the partner LU is to be specified with the fqplu_name parameter, fill this parameter with
binary zeros.

mode_name

Supplied parameter. Specifies the EBCDIC (type A) mode name.

fqplu_name

typedef struct activate_session {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char fqplu_name[17];
 unsigned char polarity;
 unsigned char session_id[8];
 unsigned long conv_group_id;
 unsigned char reserv4[1];
 unsigned char type;
 HANDLE deactivation_event;
 unsigned short* p_deactivation_status;
 unsigned char reserv5[10];
} ACTIVATE_SESSION;

Supplied parameter. Provides the partner LU name in EBCDIC (type A) when no plu_alias name is defined at the local node
and the partner LU is located at a different node. This parameter is ignored if plu_alias is specified.

polarity

Supplied parameter. Specifies the polarity for the session. The possible values are:

AP_POL_EITHER

If AP_POL_EITHER is set, ACTIVATE_SESSION activates a first speaker session if available; otherwise a bidder session is
activated.

AP_POL_FIRST_SPEAKER

If AP_POL_FIRST_SPEAKER is set, ACTIVATE_SESSION only succeeds if a session of the requested polarity is available.

AP_POL_BIDDER

If AP_POL_BIDDER is set, ACTIVATE_SESSION only succeeds if a session of the requested polarity is available.

session_id

Returned parameter. Provides the 8-byte identifier of the activate session.

conv_group_id

Returned parameter. Provides the conversation group identifier. This parameter can be specified on ALLOCATE and
MC_ALLOCATE verbs to start conversations on this particular session.

reserv4

A reserved field.

type

Supplied parameter. Specifies the type of activation. Possible values are:

AP_ACT_ACTIVE

If AP_ACT_ACTIVE is specified, then Host Integration Server will attempt to start the required session (by sending the BIND or
INIT-SELF).

AP_ACT_PASSIVE

If AP_ACT_PASSIVE is specified, then Host Integration Server will not attempt to start the session and the verb will complete
when the partner has started the session.

deactivation_event

Supplied parameter. Provides an event handle that APPC is to signal when the session is deactivated. The event handle
should be obtained by calling either the CreateEvent or OpenEvent Win32® function.

p_deactivation_status

Returned parameter. A pointer to a value that is set when the deactivation event is signaled to provide completion status. The
following values can be returned.

AP_SESSION_DEACTIVATED

AP_COMM_SUBSYSTEM_ABENDED

reserv5

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully. The secondary return code indicates the polarity of the established
session. The following values can be returned.

AP_POL_FIRST_SPEAKER

AP_POL_BIDDER

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_INVALID_LU_ALIAS

Secondary return code; APPC cannot find the specified lu_alias among those defined.

AP_INVALID_PLU_ALIAS

Secondary return code; APPC did not recognize the specified plu_alias.

AP_INVALID_MODE_NAME

Secondary return code; APPC did not recognize the specified mode_name.

AP_INVALID_FQPLU_NAME

Secondary return code; APPC did not recognize the specified fqplu_name.

AP_INVALID_POLARITY

Secondary return code; APPC did not recognize the specified polarity.

AP_INVALID_TYPE

Secondary return code; APPC did not recognize the specified type.

AP_ACTIVATION_FAIL_NO_RETRY

Primary return code; the session could not be activated because of a condition that requires action (such as a configuration
mismatch or a session protocol error).

AP_ACTIVATION_FAIL_RETRY

Primary return code; the session could not be activated because of a temporary condition (such as a link failure).

AP_SESSION_LIMITS_EXCEEDED

Primary return code; the session could not be activated because the session limits have been exceeded.

AP_SESSION_LIMITS_CLOSED

Primary return code; the session could not be activated because the session limits are closed (that is, zero).

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions occurred:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (local area network error occurred).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

Remarks

This verb supports both active and passive activation.

The active form of this verb results in Host Integration Server trying to initiate the session (by sending a BIND for independent
LUs or an INIT-SELF for dependent LUs). The active form of this verb will also result in the following behavior:

If the connection to the partner LU is inactive and is configured as on-demand, the Node will attempt to start the

connection.

If dynamic partnering is being used, the Node will set up the LU-LU/MODE partnership.

If CNOS has not run, the Node will start CNOS (but will not change any of the session limits).

The passive form does not attempt to start the session, but completes when the LU is started by a BIND from its partner LU. For
independent LUs, multiple passive ACTIVATE_SESSION verbs can be queued up for the same LU-LU/MODE, and complete in
turn as new sessions are started.

This verb also includes a deactivation event, which is posted when the session is deactivated by any method other than a
DEACTIVATE_SESSION verb (for example, an unsolicited UNBIND from its partner LU results in this event being posted).

CNOS
The CNOS (Change Number of Sessions) verb establishes APPC LU 6.2 session limits.

The following structure describes the verb control block used by the CNOS verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_CNOS.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

key

Supplied parameter. Specifies either the master or service key in ASCII, if the keylock feature has been secured.

lu_alias

Supplied parameter. Provides the 8-byte ASCII name used locally for the LU.

plu_alias

Supplied parameter. Provides the 8-byte ASCII name used locally for the partner LU.

fqplu_name

Supplied parameter. Provides the partner logical unit (LU) name in EBCDIC (type A) when no plu_alias name is defined at
the local node and the partner LU is located at a different node.

typedef struct cnos {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char key[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char fqplu_name[17];
 unsigned char reserv3;
 unsigned char mode_name[8];
 unsigned int mode_name_select:1;
 unsigned int set_negotiable:1;
 unsigned int reserv4:6;
 unsigned int reserv5:8;
 unsigned short plu_mode_sess_lim;
 unsigned short min_conwinners_source;
 unsigned short min_conwinners_target;
 unsigned short auto_act;
 unsigned int drain_target:1;
 unsigned int drain_source:1;
 unsigned int responsible:1;
 unsigned int reserv6:5;
 unsigned int reserv7:8;
} CNOS;

mode_name

Supplied parameter. Specifies the EBCDIC (type A) mode name to be used when the value of mode_name_select is
AP_ONE.

mode_name_select

Supplied parameter. Specifies the mode name select for which your program is setting or resetting the session limits and
contention-winner polarities. Allowed values are AP_ALL or AP_ONE.

set_negotiable

Supplied parameter. Specifies whether APPC is to change the current setting for the maximum negotiable session limit.
Allowed values are AP_YES and AP_NO.

reserv4

A 6-bit reserved field.

reserv5

An 8-bit reserved field.

plu_mode_sess_lim

Supplied parameter. Specifies the session limit when the value for set_negotiable is YES. Allowed values are 0 to 32767.

min_conwinners_source

Supplied parameter. Specifies the number of sessions of which the LU is guaranteed to be the contention winner. Allowed
values are 0 to 32767.

min_conwinners_target

Supplied parameter. Specifies the minimum number of sessions of which the target LU is guaranteed to be the contention
winner. Allowed values are 0 to 32767.

auto_act

Supplied parameter. Specifies the number of the local LUs contention-winner sessions for APPC to activate automatically.
Allowed values are 0 to 32767. See the Remarks section of this topic before using this parameter.

drain_target

Supplied parameter. Specifies whether the target LU can drain its waiting (outbound) allocation requests. Allowed values are
AP_YES and AP_NO.

drain_source

Supplied parameter. Specifies whether the source LU can drain its waiting (outbound) allocation requests. Allowed values are
AP_YES and AP_NO.

responsible

Supplied parameter. Specifies which LU is responsible for deactivating the sessions as a result of resetting the session limit
for parallel-session connections. Allowed values are AP_SOURCE and AP_TARGET.

reserv6

A 5-bit reserved field.

reserv7

An 8-bit reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_CNOS_ACCEPTED

Secondary return code; APPC accepts the session limits and responsibility as specified.

AP_CNOS_NEGOTIATED

Secondary return code; APPC accepts the session limits and responsibility as negotiable by the partner LU. Values that can be

Secondary return code; APPC accepts the session limits and responsibility as negotiable by the partner LU. Values that can be
negotiated are:

plu_mode_session_limit

min_conwinners_source

min_conwinners_target

responsible

drain_target

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE or MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CNOS_LOCAL_RACE_REJECT

Primary return code; APPC is currently processing a CNOS verb issued by a local LU.

AP_CNOS_PARTNER_LU_REJECT

Primary return code; the partner LU rejected a CNOS request from the local LU.

AP_CNOS_MODE_CLOSED

Secondary return code; the local LU cannot negotiate a nonzero session limit because the local maximum session limit at the
partner LU is zero.

AP_CNOS_MODE_NAME_REJECT

Secondary return code; the partner LU does not recognize the specified mode name.

AP_CNOS_COMMAND_RACE_REJECT

Secondary return code; the local LU is currently processing a CNOS verb issued by the partner LU.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the PU 2.1 node has been broken (a local area network error).

The SnaBase at the TPs computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_KEY

Primary return code; the supplied key was incorrect.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PARAMETER_CHECK

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Primary return code; the verb did not execute because of a parameter error.

AP_ALL_MODE_MUST_RESET

Secondary return code; APPC does not permit a nonzero session limit when the mode_name_select parameter indicates
AP_ALL.

AP_AUTOACT_EXCEEDS_SESSLIM

Secondary return code; on the CNOS verb, the value for auto_act is greater than the value for plu_mode_sess_lim.

AP_BAD_LU_ALIAS

Secondary return code; APPC cannot find the specified lu_alias among those defined.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied plu_alias.

AP_BAD_SNASVCMG_LIMITS

Secondary return code; your program specified invalid settings for plu_mode_sess_lim, min_conwinners_source, or
min_conwinners_target when mode_name was supplied.

AP_CHANGE_SRC_DRAINS

Secondary return code; APPC does not permit mode_name_select (ONE) and drain_source (YES) when drain_source
(NO) is currently in effect for the specified mode.

AP_CNOS_IMPLICIT_PARALLEL

Secondary return code; APPC does not permit a program to change the session limit for a mode other than the SNASVCMG
mode for the implicit partner template when the template specifies parallel sessions. (The term "template" is used because
many of the actual values are yet to be filled in.)

AP_CPSVCMG_MODE_NOT_ALLOWED

Secondary return code; the mode named CPSVCMG cannot be specified as the mode_name on the deactivate session verb.

AP_EXCEEDS_MAX_ALLOWED

Secondary return code; your program issued a CNOS verb, specifying a plu_mode_sess_lim number and set_negotiable
(AP_NO).

AP_MIN_GT_TOTAL

Secondary return code; the sum of min_conwinners_source and min_conwinners_target specifies a number greater than
plu_mode_sess_lim.

AP_MODE_CLOSED

Secondary return code; the local LU cannot negotiate a nonzero session limit because the local maximum session limit at the
partner LU is zero.

AP_RESET_SNA_DRAINS

Secondary return code; SNASVCMG does not support the drain parameter values.

AP_SINGLE_NOT_SRC_RESP

Secondary return code; for a single-session CNOS verb, APPC permits only the local (source) LU to be responsible for
deactivating sessions.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CANT_RAISE_LIMITS

Secondary return code; APPC does not permit setting session limits to a nonzero value unless the limits currently are zero.

AP_LU_DETACHED

Secondary return code; a command has reset the definition of the local LU before CNOS tried to specify the LU.

AP_SNASVCMG_RESET_NOT_ALLOWED

Secondary return code; your local program attempted to issue the CNOS verb for the mode named SNASVCMG, specifying a
session limit of zero.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC verb from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

CNOS identifies an LU by alias alone. If the same local LU alias is used multiple times in a domain (for backup or other
purposes) and that LU alias is specified through CNOS, the verb can flow to a different LU than the one intended.

If CNOS is not issued to set the mode session limit before a program issues its first APPC ALLOCATE, MC_ALLOCATE,
SEND_CONVERSATION, or MC_SEND_CONVERSATION, or Common Programming Interface for Communications (CPI-C)
Allocate call for a given partner LU and mode, APPC will internally generate a session limit using the value from the mode
definition.

When setting the limits for a parallel-session connection, the two LUs negotiate the mode session limits, drain settings, and
responsibility values. APPC updates these parameters in CNOS to reflect the settings agreed to by both LUs during negotiation.
Your program can issue DISPLAY to obtain the negotiated values for the mode session limit.

No CNOS negotiation occurs when setting the limits for a single session (that is, the two LUs do not negotiate drain settings or
responsibility values). Therefore, coordinate the mode definition parameter settings between partner LUs using a single-
session connection by defining a single session mode at each node.

As part of setting up the initial limits, CNOS also sets the guaranteed (that is, the minimum) number of contention-winner and
contention-loser sessions and sets the automatic activation count for the source LUs contention-winner sessions. The action of
CNOS normally affects only the group of sessions with the specified mode name between the source LU and the target LU.
Alternatively, one CNOS can reset the session limits of all modes for a partner LU.

APPC enforces the new mode session limit and the contention-winner polarities until one side or the other changes them by
issuing a subsequent CNOS verb. The CNOS transaction is invisible at the target LU's API, regardless of which LU is the target.
The results of the CNOS transaction can be obtained using DISPLAY.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705711(v=bts.10).aspx

Setting a Session Limit to Zero
After CNOS raises the session limit above zero, it can reset the limit to zero only. It cannot set the session limit to a value that is
not zero, and it cannot redistribute the number of sessions allocated as the contention winners and losers. Therefore, your
program cannot change the mode session limits if the two logical units (LUs) have already set the limits to a nonzero value,
regardless of which LU initiated the CNOS transaction.

A program can change the session limits from a nonzero value, as long as the program first changes the session limit to zero.
For example, if the session limit is 8, a program can change it to 6 by first issuing CNOS and changing the session limit to zero,
and then issuing CNOS again and setting the session limit to 6.

APPC can activate one or more LU-LU sessions with the specified mode name as a result of initializing the session limit. You
cannot use CNOS to activate sessions between two LUs on the same server. APPC deactivates all LU-LU sessions for the
specified mode name (or for all mode names for a partner LU) as a result of resetting the session limit to zero. APPC
deactivates each session as it becomes free and does not interrupt active conversations.

A separate value, the maximum negotiable session limit, is used in CNOS negotiations. If the set_negotiable value is AP_YES,
the mode session limit value given in this CNOS verb also sets the maximum negotiable session limit.

The lu_alias and plu_alias parameters are 8-byte ASCII character strings. If the name is fewer than eight bytes, it must be
padded on the right with ASCII spaces.

You can specify the SNA-defined mode name SNASVCMG for mode_name. Use this mode only in a CNOS transaction when
the source LU and the target LU use parallel user sessions. However, when resetting the session limits to zero for the
SNASVCMG PU 2.1 node, the session limits of all other modes between the two LUs must be reset first. The PU 2.1 mode name
is a type A EBCDIC character string. A mode name consisting of all spaces is supported. The SNA-defined mode name
CPSVCMG is not allowed.

When specifying plu_mode_sess_lim, if the mode session limit is currently greater than zero, the value of this parameter must
be zero. CNOS can raise the limit above zero, but the next CNOS must set the value to zero. A single CNOS cannot change the
mode session limit from one nonzero number to another.

When raising the mode session limit above zero for a parallel-session connection, the target LU can negotiate its parameter to
a value greater than zero and less than the specified session limit. The specified or negotiated limit then becomes the new
mode session limit and is returned in this field.

The value specified for this parameter must be greater than or equal to the sum of the values specified in the
CNOS min_conwinners_source and min_conwinners_target parameters.

Do not reset the SNASVCMG session limit to zero until all other mode session limits between the two LUs are reset to zero and
the count of active sessions for all modes (except SNASVCMG) for the partner LU is zero.

The mode session limit should be large enough to accommodate all active conversations in the mode for all TPs.

For min_conwinners_source and min_conwinners_target, the sum of both parameters cannot exceed the mode session
limit. For single-session connections, these parameters specify the desired contention-winner sessions for the target and
source LUs. For the SNASVCMG mode name (with a mode session limit of 2 or 1), the specified minimum number of
contention-winner sessions for the target LU must be 1. For the source LU, with a mode session limit of 2, the number must be
1; with a mode session limit of 1, the number must be 0. APPC uses these parameters only when the mode session limit is set
to a nonzero value.

APPC uses auto_act only when the mode session limit is set to a nonzero value. If the value is greater than the
min_conwinners_source value, APPC uses the new minimum number of contention winners for the source LU as the
autoactivation limit.

Caution
The auto_act parameter can conflict with the on-demand definition of a connection. Autoactivations by either peer partner c
an re-establish sessions and connections, possibly resulting in a thrashing situation. Therefore, avoid specifying autoactivatio
n between peer PU 2.1 nodes using on-demand connections.

Whether an LU deactivates a session immediately after the current conversation or after all queued conversations are complete
depends on the drain_source and drain_target parameters.

If an LU is to drain its waiting (outbound) allocation requests, it continues to allocate conversations to active sessions. The
responsible LU deactivates a session only when the conversation allocated to the session is deallocated and no request is
waiting for allocation to any session with the specified mode name between the two LUs. The allocation of a waiting request
takes precedence over the deactivation of a session.

If an LU is not to drain its waiting (outbound) allocation requests, the responsible LU deactivates a session as soon as the
conversation allocated to the session is deallocated. If no conversation is allocated to the session, the responsible LU
deactivates the session immediately. However, this verb does not force deallocation of active conversations.

The responsible and mode_name_select parameters are interrelated as follows:

APPC ignores the responsible parameter for mode names for which the session limit is currently zero if this CNOS verb
specifies mode_name_select (AP_ALL).

If CNOS specifies mode_name_select (AP_ONE) with a mode session limit of zero, and the current session limit for that
mode name is already zero, the responsible parameter must specify the same LU (SOURCE or TARGET) that is currently
responsible for deactivating sessions. APPC uses this parameter only when CNOS specifies a mode session limit of zero.

For parallel-session connections, the drain_source and mode_name_select parameters are interrelated as follows:

If CNOS specifies mode_name_select (AP_ALL) and drain_source (AP_YES), APPC ignores drain_source for those
mode names for which the session limit is currently zero.

If CNOS specifies mode_name_select (AP_ALL) and drain_source (AP_NO), APPC accepts drain_source for all mode
names. APPC ends draining for any mode currently draining its requests.

If CNOS specifies mode_name_select (AP_ONE), and drain_source (AP_YES) is currently in effect, drain_source
(AP_NO) directs APPC to end the draining at the source LU for requests for the specified mode name.

If CNOS specifies mode_name_select (AP_ONE) and drain_source (AP_NO) is currently in effect, your program must
specify drain_source (AP_NO) again.

For parallel-session connections, the drain_target parameter and the mode_name_select parameter are interrelated as
follows:

If CNOS specifies mode_name_select (AP_ALL) and drain_target (AP_YES), APPC ignores drain_target for the mode
names for which the session limit is currently zero.

If CNOS specifies mode_name_select (AP_ALL) and drain_target (AP_NO), APPC accepts drain_target for all mode
names, regardless of the current session limit. Any draining of waiting (outbound) allocation requests at the target LU is
ended.

If CNOS specifies mode_name_select (AP_ONE) and drain_target (AP_YES) is currently in effect, drain_target
(AP_NO) ends the target LUs draining.

If CNOS specifies mode_name_select (AP_ONE) and drain_target (AP_YES), and drain_target (AP_NO) is currently in
effect, the target LU can either accept drain_target (AP_YES) or negotiate the parameter to AP_NO. After the target LU
accepts the drain_target (AP_YES) parameter, it can drain any remaining waiting (outbound) allocation requests.

DEACTIVATE_SESSION
The DEACTIVATE_SESSION verb requests Microsoft® Host Integration Server to deactivate a particular session between the
local logical unit (LU) and a specified partner LU, or all sessions on a particular mode.

The following structure describes the verb control block used by the DEACTIVATE_SESSION verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_DEACTIVATE_SESSION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3

A reserved field.

lu_alias

Supplied parameter. Provides the 8-byte ASCII name used locally for the LU.

session_id

Supplied parameter. Provides the 8-byte identifier of the session to deactivate (returned on the ACTIVATE_SESSION verb). If
this field is set to 8 binary zeros, Host Integration Server deactivates all sessions for the partner LU and mode.

plu_alias

Supplied parameter. Provides the 8-byte ASCII name used locally for the partner LU. If the default remote LU is to be used, fill
this parameter with spaces. If the partner LU is to be specified with the fqplu_name parameter, fill this parameter with
binary zeros.

mode_name

Supplied parameter. Specifies the EBCDIC (type A) mode name.

type

Supplied parameter. Specifies the type of deactivation. Possible values are:

typedef struct deactivate_session {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char lu_alias[8];
 unsigned char session_id[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char type;
 unsigned char reserv4[3];
 unsigned short sense_data;
 unsigned char fqplu_name[17];
 unsigned char reserv5[19];
} DEACTIVATE_SESSION;

Supplied parameter. Specifies the type of deactivation. Possible values are:

AP_DEACT_CLEANUP

Deactivate the session immediately, without waiting for sessions to end.

AP_DEACT_NORMAL

Do not deactivate the session until all conversations using the session have ended.

sense_data

Returned parameter. Specifies the deactivation sense data for the session.

reserv4

A reserved field.

fqplu_name

Supplied parameter. Provides the partner LU name in EBCDIC (type A) when no plu_alias name is defined at the local node
and the partner LU is located at a different node. This parameter is ignored if plu_alias is specified.

reserv5

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully. The secondary return code indicates the polarity of the established
session. The following values can be returned.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error, specified by one of the following secondary
return codes:

AP_INVALID_LU_ALIAS

Secondary return code; APPC cannot find the specified lu_alias among those defined.

AP_INVALID_PLU_ALIAS

Secondary return code; APPC did not recognize the specified plu_alias.

AP_INVALID_SESSION_ID

Secondary return code; APPC did not recognize the specified session_id.

AP_INVALID_MODE_NAME

Secondary return code; APPC did not recognize the specified mode_name.

AP_INVALID_FQPLU_NAME

Secondary return code; APPC did not recognize the specified fqplu_name.

AP_INVALID_TYPE

Secondary return code; APPC did not recognize the specified type.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions occurred:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a local area network error occurred).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,

communication could not take place. Contact the system administrator for corrective action.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

DISPLAY
The DISPLAY verb returns configuration information and current operating values for the SNA node.

It is recommended that you use the GetAppcConfig Windows extension function to obtain system configuration information
relating to APPC LUs. Users of 5250 emulators, in particular, should use the GetAPPCConfig Windows extension.

Note
Because of the nature of client/server architecture, the implementation of the DISPLAY verb on Host Integration Server 2009
contains important differences from the IBM Extended Services for OS/2 version 1.0 (IBM ES for OS/2 version 1.0) on which i
t was based.

Note
For applications that use the APPC DISPLAY verb in IBM ES for OS/2 version 1.0 compatibility mode and that do not use the
Host Integration Server extensions for enumerating all active servers and connections, Host Integration Server will randomly
choose a default DISPLAY connection, unless a specific default DISPLAY connection has been configured in SNA Manager. T
his connection is used as the basis for all DISPLAY requests. For information about specifying the default DISPLAY connecti
on, see Host Integration Server 2009 Help.

The following structure describes the verb control block used by the DISPLAY verb.

Syntax

struct display {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned long init_sect_len;
 unsigned long buffer_len;
 unsigned char FAR * buffer_ptr;
 unsigned long num_sections;
 unsigned long display_len;
 unsigned long area_needed;
 unsigned char sna_global_info;
 unsigned char lu62_info;
 unsigned char am_info;
 unsigned char tp_info;
 unsigned char sess_info;
 unsigned char link_info;
 unsigned char lu_0_3_info;
 unsigned char gw_info;
 unsigned char x25_physical_link_info;
 unsigned char sys_def_info;
 unsigned char adapter_info;
 unsigned char lu_def_info;
 unsigned char plu_def_info;
 unsigned char mode_def_info;
 unsigned char link_def_info;
 unsigned char ms_info;
 struct sna_global_info_sect FAR * sna_global_info_ptr;
 struct lu62_info_sect FAR * lu62_info_ptr;
 struct am_info_sect FAR * am_info_ptr;
 struct tp_info_sect FAR * tp_info_ptr;
 struct sess_info_sect FAR * sess_info_ptr;
 struct link_info_sect FAR * link_info_ptr;
 struct lu_0_3_info_sect FAR * lu_0_3_info_ptr;
 struct gw_info_sect FAR * gw_info_ptr;
 struct x25_physical_link_info_sect FAR * x25_physical_link_info_ptr;
 struct sys_def_info_sect FAR * sys_def_info_ptr;
 struct adapter_info_sect FAR * adapter_info_ptr;
 struct lu_def_info_sect FAR * lu_def_info_ptr;

https://msdn.microsoft.com/en-us/library/aa744984(v=bts.10).aspx

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_DISPLAY.

reserv2

A reserved field, this value must be set to NULL.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

init_sect_len

Supplied parameter. Specifies the number of bytes in the initial section of the VCB, up to the beginning of information
pointers. This parameter and the num_sections parameter must be set to specific values depending on the format being
requested. See the notes below for details.

buffer_len

Supplied parameter. Specifies the length (0 to 65535 bytes) of the passed display data buffer.

buffer_ptr

Supplied parameter. Provides the address of the display data buffer that will contain the requested information.

num_sections

Supplied parameter. Specifies the maximum number of information sections that can be returned by the verb. This
parameter and the init_sect_len parameter must be set to specific values depending on the format being requested. See the
notes below for details.

display_len

Returned parameter. Provides the total number of bytes used that are returned into the display data buffer.

area_needed

Returned parameter. Provides the total number of bytes needed for all of the displayed data.

sna_global_info

Supplied parameter. Specifies if global information is requested. Allowed values are AP_YES and AP_NO.

lu62_info

Supplied parameter. Specifies if information on all active LUs, their partners, and their modes is requested. Allowed values
are AP_YES and AP_NO.

am_info

Supplied parameter. Specifies if Attach Manager information on the defined TP is requested. Allowed values are AP_YES and
AP_NO.

Note
This option is not supported by Host Integration Server and this parameter must be set to AP_NO.

tp_info

 struct plu_def_info_sect FAR * plu_def_info_ptr;
 struct mode_def_info_sect FAR * mode_def_info_ptr;
 struct link_def_info_sect FAR * link_def_info_ptr;
 struct ms_info_sect FAR * ms_info_ptr;
} DISPLAY;

Supplied parameter. Specifies if information on the active TPs and any active conversations is requested. Allowed values are
AP_YES and AP_NO.

Note
This option is not supported by Host Integration Server and this parameter must be set to AP_NO.

sess_info

Supplied parameter. Specifies if information on sessions is requested. Allowed values are AP_YES and AP_NO.

link_info

Supplied parameter. Specifies if information on the active SNA logical lines is requested. Allowed values are AP_YES and
AP_NO.

lu_0_3_info

Supplied parameter. Specifies if information on logical units type 0, 1, 2, and 3 is requested. Allowed values are AP_YES and
AP_NO.

gw_info

Supplied parameter. Specifies if information on the SNA gateway is requested. Allowed values are AP_YES and AP_NO.

x25_physical_link_info

Supplied parameter. Specifies if X.25 information is required. Allowed values are AP_YES and AP_NO.

Note
This option is not supported by Host Integration Server and this parameter must be set to AP_NO.

sys_def_info

Supplied parameter. Specifies if information about the default LU, node names, and default parameters for inbound and
outbound implicit partners is requested. Allowed values are AP_YES and AP_NO.

adapter_info

Supplied parameter. Specifies if information about the configured communications adapters is requested. Allowed values are
AP_YES and AP_NO. This parameter must be set to AP_NO when NS/2 format is requested.

lu_def_info

Supplied parameter. Specifies if information about the defined LUs is requested. Allowed values are AP_YES and AP_NO.

plu_def_info

Supplied parameter. Specifies if information about the defined partner LUs is requested. Allowed values are AP_YES and
AP_NO.

mode_def_info

Supplied parameter. Specifies if information about the defined nodes is requested. Allowed values are AP_YES and AP_NO.

link_def_info

Supplied parameter. Specifies if information about the defined logical links is requested. Allowed values are AP_YES and
AP_NO.

ms_info

Supplied parameter. Specifies if information about management services is requested. Allowed values are AP_YES and
AP_NO. This parameter must be set to AP_NO when NS/2 format is requested.

sna_global_info_ptr

Returned parameter. Indicates the address of the beginning of SNA global information in the data buffer.

lu62_info_ptr

Returned parameter. Indicates the address of the beginning of LU 6.2 information in the data buffer.

am_info_ptr

Returned parameter. Indicates the address of the beginning of the Attach Manager information in the data buffer.

Note
This option is not supported by Host Integration Server.

tp_info_ptr

Returned parameter. Indicates the address of the beginning of TP information in the data buffer.

Note
This option is not supported by Host Integration Server.

sess_info_ptr

Returned parameter. Indicates the address of the beginning of session information in the data buffer.

link_info_ptr

Returned parameter. Indicates the address of the beginning of link information in the data buffer.

lu_0_3_info_ptr

Returned parameter. Indicates the address of the beginning of LU information in the data buffer.

gw_info_ptr

Returned parameter. Indicates the address of the beginning of gateway information in the data buffer.

x25_physical_link_info_ptr

Returned parameter. Indicates the address of the beginning of X.25 information in the data buffer.

Note
This option is not supported by Host Integration Server.

sys_def_info_ptr

Returned parameter. Indicates the address of the beginning of system default information in the data buffer.

adapter_info_ptr

Returned parameter. Indicates the address of the beginning of adapter information in the data buffer.

lu_def_info_ptr

Returned parameter. Indicates the address of the beginning of local LU definition information in the data buffer.

plu_def_info_ptr

Returned parameter. Indicates the address of the beginning of partner LU definition information in the data buffer.

mode_def_info_ptr

Returned parameter. Indicates the address of the beginning of mode definition information in the data buffer.

link_def_info_ptr

Returned parameter. Indicates the address of the beginning of link definition information in the data buffer.

ms_info_ptr

Returned parameter. Indicates the address of the beginning of management services information in the data buffer.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_DISPLAY_INVALID_CONSTANT

Secondary return code; the value supplied for NUM_SECTIONS or INIT_SEC_LEN is invalid.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_DISPLAY_INFO_EXCEEDS_LEN

Secondary return code; the returned DISPLAY information did not fit in the buffer.

AP_INVALID_DATA_SEGMENT

Secondary return code; the segment containing the data buffer is too small for the specified data length.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation has encountered an ABEND.

The connection between the TP and the node type 2.1 has been broken (a LAN error).

The SnaBase at the TPs computer has encountered an ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

DISPLAY identifies an LU by alias alone. If the same local LU alias is used multiple times in a domain (for backup or other
purposes) and that LU alias is specified through DISPLAY, the verb can flow to a different LU than the one intended.

For the DISPLAY verb to return successfully, a specific connection must be defined in the SNA Manager program Display
Verb dialog box. IBM originally defined the DISPLAY verb with the IBM OS/2 Extended Edition product which assumed a
single connection. However, because Host Integration Server supports multiple connections, the specific connection associated
with the DISPLAY verb must be configured.

The DISPLAY verb requires a user-supplied buffer for the return of system information. If the buffer is not large enough, APPC
returns the AP_DISPLAY_INFO_EXCEEDS_LEN return code, along with the size actually needed at the time of the request (in the
area_needed parameter). One possible strategy for the use of this verb follows:

If the buffer_len value is less than the area_needed value returned by APPC, and the required length is less than 64
kilobytes (KB), then increase the size of the display buffer to equal or greater than the area_needed value.

If the area_needed value is greater than 64KB, you can choose to request each information section individually. Or, you
can take the following steps:

1. Process the information sections with complete information, whose total number displayed equals the total actual
number.

2. Choose a subset of the information sections you requested that contains incomplete information, and reissue the
verb requesting those information sections.

3. Repeat steps a and b as needed.

Note
If an individual information section is greater than 64 KB, then you cannot get all of the requested information from AP
PC.

The DISPLAY verb should not be executed from different threads of the same process, since it is not thread-safe.

The DISPLAY verb returns AP_DISPLAY_INVALID_CONSTANT if the following values are not set for the supplied parameters
for init_sect_len and num_sections:

 NS/2 format IBM EE format NS/2 format (Windows 2000 only) IBM EE format (Windows 2000 only)

init_sect_len 50 44 52 48

num_sections 16 9 16 9

The AP_DISPLAY_INVALID_CONSTANT is also returned when the following parameters are not set properly:

reserv2 must be set to NULL.

am_info must be set to AP_NO.

tp_info must be set to AP_NO.

adapter_info must be set to AP_NO if NS/2 format is requested.

ms_info must be set to AP_NO if NS/2 format is requested.

See Also
Reference
Host Integration Server Extensions
Other Resources
Differences by Information Type

https://msdn.microsoft.com/en-us/library/aa745351(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745431(v=bts.10).aspx

Host Integration Server Extensions
The Host Integration Server DISPLAY verb is compatible with the IBM ES for OS/2 version 1.0 DISPLAY verb. However, since
IBM ES for OS/2 version 1.0 is a single-server system and Host Integration Server supports multiple-server systems, the
DISPLAY verb has been extended to allow the user to target a specific server running Host Integration Server by which the
DISPLAY verb will be processed.

To direct a DISPLAY verb at a particular server running Host Integration Server, place the ASCII string CSEXTNID, followed by
the computer name of the server running Host Integration Server at the start of the buffer pointed to by buffer_ptr. The
computer name is a 32-byte ASCII string and can be zero or padded with spaces.

Because the local node identifier is configured on a per-node basis for IBM ES for OS/2 version 1.0 and can be different for
each connection in Host Integration Server, Host Integration Server also allows you to specify an optional connection name.
This is an 8-byte ASCII string, which is placed after the 32-byte computer name. Again, the string can be zero or padded with
spaces. The following example illustrates the CSEXTNID extension:

csextnid computername 00000000000000000000 name

If you do not specify a connection name, Host Integration Server returns information about the first connection configured for
the Host Integration Server system.

If you do not specify a computer name, Host Integration Server will randomly choose a default DISPLAY computer and
connection, unless a specific default DISPLAY connection has been configured on the server. These parameters can be
configured with the SNA Manager or the Host Integration Server Administrator Client when using Host Integration
Server 2009. DISPLAY will behave as if you specified the connection and the computer name of the server that owns the verb.
For additional information about using default LUs, see Host Integration Server 2009 Help.

Host Integration Server also allows you to use DISPLAY to return a list of active servers. To do so, place the string
CSEXTNIDCSLISTND in the DISPLAY buffer and set the supplied parameters sna_global_info, lu62_info, and so on, to
AP_NO. The information is returned in the DISPLAY buffer in the following format.

Syntax

Remarks

In the current version of Host Integration Server, node_name is always SNASERVR and box_name is the computer name of
the server.

#activenodes - 2 bytes
 node_name 1 - 8 bytes
 box_name 1 - 32 bytes
 .
 node_name m
 box_name m

Differences by Information Type
Differences in the implementation of the DISPLAY verb between Host Integration Server 2009 and IBM ES for OS/2 are
described in this section by information type. For each information type, there is a topic that describes:

The information defined by IBM ES for OS/2 version 1.0.

The information returned by Host Integration Server.

Note
Host Integration Server does not support all of the information types supported by IBM ES for OS/2 version 1.0. If an informa
tion type is not listed in this section, it is not supported by Host Integration Server.

In This Section

SNA Global Information

LU 6.2 Information

Session Information

Active Link Information

LU 0 to 3 Information

System Default Information

LU 6.2 Definition Information

Partner Definition Information

Mode Definition Information

Link Definition Information

Management Services Information

https://msdn.microsoft.com/en-us/library/aa746234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771127(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771480(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704665(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705215(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770483(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705011(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772012(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754296(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745009(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754251(v=bts.10).aspx

SNA Global Information
SNA global information is defined or returned as described here.

Defined by IBM ES for OS/2 version 1.0

Information on SNA global information is provided in the sna_global_info_sect structure as defined below.

Members
version

Communications Manager Extended Edition version number.

release

Communications Manager Extended Edition release number.

net_name

Network name, first part of fully qualified control program (CP) name, in EBCDIC (type A).

pu_name

PU name, second part of fully qualified CP name, in EBCDIC (type A).

node_id

4-byte hexadecimal exchange identifier.

product_set_id

Computer product data.

alias_cp_name

Node name (local name for CP) in ASCII.

node_type

AP_NN, AP_EN, or AP_LEN.

cp_nau_addr

CP NAU address where 0 means not used (an independent LU). Other legal values are 1 to 254.

corr_serv_disk

Last four digits of corrective service disk number.

reserved

Reserved field.

appc_version

APPC version number.

typedef struct sna_global_info_sect {
 unsigned char version;
 unsigned char release;
 unsigned char net_name[8];
 unsigned char pu_name[8];
 unsigned char node_id[4];
 type_product_set_id product_set_id;
 unsigned char alias_cp_name[8];
 unsigned char node_type;
 unsigned char cp_nau_addr;
 unsigned char corr_serv_disk;
 unsigned char reserved;
 unsigned char appc_version;
 unsigned char appc_release;
 unsigned char appc_fixlevel;
} SNA_GLOBAL_INFO_SECT;

APPC version number.

appc_release

APPC release number.

appc_fixlevel

APPC patch number.

Returned by Host Integration Server

Information on SNA global information is provided in the sna_global_info_sect structure defined below.

Members
version

Major operating system (OS) version number.

release

Minor OS version number.

net_name

Node network name in EBCDIC (type A).

pu_name

PU name in EBCDIC (type A) associated with connection.

node_id

Node identifier to send.

product_set_id

Set to EBCDIC zeros.

alias_cp_name

Node name, local name for the control program (CP), in ASCII.

node_type

Set to AP_LEN.

cp_nau_addr

CP NAU address where 0 means not used (an independent LU). Other legal values are 1 to 254.

corr_serv_disk

Reserved field set to zero.

reserved

Reserved field set to zero.

typedef struct sna_global_info_sect {
 unsigned char version;
 unsigned char release;
 unsigned char net_name[8];
 unsigned char pu_name[8];
 unsigned char node_id[4];
 type_product_set_id product_set_id;
 unsigned char alias_cp_name[8];
 unsigned char node_type;
 unsigned char cp_nau_addr;
 unsigned char corr_serv_disk;
 unsigned char reserved;
 unsigned char appc_version;
 unsigned char appc_release;
 unsigned char appc_fixlevel;
} SNA_GLOBAL_INFO_SECT;

appc_version

Host Integration Server major version number.

appc_release

Host Integration Server minor version number.

appc_fixlevel

Host Integration Server patch number.

Remarks

Host Integration Server returns version and release as the major and minor OS version numbers from GetVersion. Because
Host Integration Server 2009 has no information on the computer type, serial number, and manufacturer, product_set_id is
set to EBCDIC zeros.

Host Integration Server does not support APPN node types, so the node type is returned as 1 (an AP_LEN node), and not 2 or 3
(AP_NN or AP_EN nodes), as defined by IBM ES for OS/2 version 1.0.

LU 6.2 Information
Information on LUs is provided in the lu62_info_sect structure as defined below.

Syntax

Members
lu62_init_sect_len

Structure length.

num_lu62s

Number of configured LUs displayed.

total_lu62s

Total number of configured LUs.

For each configured LU, an lu62_overlay structure is provided as defined below.

Syntax

Members
lu62_entry_len

Size of this LU entry.

lu62_overlay_len

This value contains sizeof(struct lu62_overlay)–sizeof(lu62_entry_len).

lu_name

LU name (EBCDIC type A).

lu_alias

LU alias (ASCII).

num_plus

Number of partner LUs.

fqlu_name

Fully qualified LU name (EBCDIC type A).

default_lu

For local LU group, an LU equal to the default_lu is used if none is specified. Legal values are AP_NO and AP_YES.

typedef struct lu62_info_sect {
 unsigned long lu62_init_sect_len;
 unsigned short num_lu62s;
 unsigned short total_lu62s;
} LU62_INFO_SECT;

typedef struct lu62_overlay {
 unsigned long lu62_entry_len;
 unsigned long lu62_overlay_len;
 unsigned char lu_name[8];
 unsigned char lu_alias[8];
 unsigned short num_plus;
 unsigned char fqlu_name[17];
 unsigned char default_lu;
 unsigned char reserv3;
 unsigned char lu_local_addr;
 unsigned short lu_sess_lim;
 unsigned char max_tps;
 unsigned char lu_type;
} LU62_OVERLAY;

For local LU group, an LU equal to the default_lu is used if none is specified. Legal values are AP_NO and AP_YES.

On Host Integration Server, there is no concept of a default local LU. Therefore, the default_lu flag, which is set to AP_YES
for the node in IBM ES for OS/2 version 1.0, is set to AP_NO for Host Integration Server.

lu_local_addr

NAU address, 0–254.

lu_sess_lim

Configured session limit, 0–255.

max_tps

Maximum number of TPs, 1–255.

lu_type

Always LU type 6.2.

For each configured LU, a plu_62_overlay structure for the partner LU is provided as defined below.

Syntax

Members
plu62_entry_len

Size of this partner LU entry.

plu62_overlay_len

This value contains sizeof(struct plu62_overlay)–sizeof(plu62_entry_len).

plu_alias

Partner LU alias (ASCII).

num_modes

Number of modes.

plu_un_name

Partner LU uninterpreted name (EBCDIC).

fqplu_name

Fully qualified partner LU name (EBCDIC type A).

typedef struct plu62_overlay {
 unsigned long plu62_entry_len;
 unsigned long plu62_overlay_len;
 unsigned char plu_alias[8];
 unsigned short num_modes;
 unsigned char plu_un_name[8];
 unsigned char fqplu_name[17];
 unsigned char reserv3;
 unsigned char plu_sess_lim;
 unsigned char dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned int par_sess_supp:1;
 unsigned int reserv4:7;
 unsigned int def_already_ver:1;
 unsigned int def_conv_sec:1;
 unsigned int def_sess_sec:1;
 unsigned int reserv5:5;
 unsigned int act_already_ver:1;
 unsigned int act_conv_sec:1;
 unsigned int reserv6:6;
 unsigned int implicit_part:1;
 unsigned int reserv7:7;
} PLU62_OVERLAY;

Fully qualified partner LU name (EBCDIC type A).

reserv3

Reserved field set to zero.

plu_sess_lim

Partner LU session limit, 0–255.

dlc_name

DLC name (ASCII).

adapter_num

DLC adapter number.

dest_addr_len

Length of destination adapter address.

dest_addr

Destination adapter address.

par_sess_supp

Bit 15 of a bitfield specifying parallel sessions. Valid values are AP_NOT_SUPPORTED and AP_SUPPORTED.

reserv4

Bits 8–14 of a bitfield specifying a reserved field set to zero.

def_already_ver

Bit 7 of a bitfield specifying whether the configured already verified option is supported. Valid values are
AP_NOT_SUPPORTED and AP_SUPPORTED.

def_conv_sec

Bit 6 of a bitfield specifying whether the configured conversation security option is supported. Valid values are
AP_NOT_SUPPORTED and AP_SUPPORTED.

def_sess_sec

Bit 5 of a bitfield specifying whether the configured session security option is supported. Valid values are
AP_NOT_SUPPORTED and AP_SUPPORTED.

reserv5

Bits 0–4 of a bitfield specifying a reserved field set to zero.

act_already_ver

Bit 15 of a bitfield specifying whether the active already verified option is supported. Valid values are AP_NOT_SUPPORTED
and AP_SUPPORTED.

act_conv_sec

Bit 14 of a bitfield specifying whether the active conversation security option is supported. Valid values are
AP_NOT_SUPPORTED and AP_SUPPORTED.

reserv6

Bits 8–13 of a bitfield specifying a reserved field set to zero.

implicit_part

Bit 7 of a bitfield specifying whether this is an implicit partner. Valid values are AP_NO and AP_YES.

For partner LU group, implicit_part indicates the partner LU group was configured as an implicit primary logical unit (PLU).

reserv7

Bits 0–6 of a bitfield specifying a reserved field set to zero.

Remarks

Host Integration Server returns information on all the configured LU 6.2s in the system, including the implicit PLU and all
instances of implicit modes. IBM ES for OS/2 version 1.0 only returns information on those that are in use or have been in use.

For partner LU group, implicit_part indicates the partner LU group was configured as an implicit primary logical unit (PLU).

For mode group, implicit_mode bitfield returned in the mode_overlay structure indicates the mode group was configured
as an implicit mode.

Session Information
Information on session information is provided in the sess_info_sect structure as defined below.

Syntax

Members
sess_sect_len

The length of the initial session information section, including this parameter, up to the first session group. The length does
not include any previous information sections.

num_sessions

The number of session groups returned by the DISPLAY verb into your program's buffer. This is the number of times the
session group is repeated.

total_sessions

The total number of session groups. This number is the same as the number returned in the num_sessions member except
when APPC has more information about session groups than it can place in the supplied buffer, in which case this number is
larger.

For each session group, a sess_overlay structure for the session is provided as defined below.

Syntax

Defined by IBM ES for OS/2 version 1.0

Members
sess_entry_len

Size of this session group entry.

sess_id

typedef struct sess_info_sect {
 unsigned long sess_sect_len;
 unsigned short num_sessions;
 unsigned short total_sessions;
} SESS_INFO_SECT;

typedef struct sess_overlay {
 unsigned long sess_entry_len;
 unsigned long reserv3;
 unsigned char sess_id[8];
 unsigned long conv_id[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned short send_ru_size;
 unsigned short rcv_ru_size;
 unsigned short send_pacing_size;
 unsigned short rcv_pacing_size;
 unsigned char link_id[12];
 unsigned char daf;
 unsigned char oaf;
 unsigned char odai;
 unsigned char sess_type;
 unsigned char conn_type;
 unsigned char reserv4;
 FPCID_OVERLAY fpcid;
 unsigned char cgid[4];
 unsigned char fqlu_name[17];
 unsigned char fqplu_name[17];
 unsigned char pacing_type;
 unsigned char reserv5;
 } SESS_OVERLAY;

The internal identifier of the session for which this information is displayed.

conv_id

The unique four-byte ID of the conversation currently using this session.

lu_alias

LU alias (ASCII).

plu_alias

Partner LU alias (ASCII).

mode_name

The name of the mode (EBCDIC).

send_ru_size

The maximum RU size used on this session and this mode_name for sending RUs.

rcv_ru_size

The maximum RU size used on this session and this mode_name for receiving RUs.

send_pacing_size

The size of the send pacing window on this session.

rcv_pacing_size

The size of the receive pacing window on this session.

link_id

Name of local logical link station.

daf

The destination address field for this session.

oaf

The origin address field for this session.

odai

The origin destination address indicator field for this session.

sess_type

The type of the session. The session type can be one of the following:

SSCP_PU_SESSION

This session is between a workstation physical unit and a host system services control point. This type of session exists if the
local node contains a dependent LU, or if the session has been solicited in order to send alerts to the host.

SSCP_LU_SESSION

This session is between a dependent LU and a host system services control point.

LU_LU _SESSION

This session is between two LUs.

conn_type

Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel
sessions to the same partner LU.

fq_pc_id

Fully qualified procedure correlation identifier of the session.

cgid

Unique identifier for the conversation group of the session.

fqlu_name

The fully-qualified LU name in EBCDIC (type A).

fqplu_name

The fully-qualified partner LU name in EBCDIC (type A).

pacing_type

The pacing type can be one of the following:

AP_FIXED

Fixed pacing.

AP_ADAPTIVE

Adaptive pacing.

Returned by Host Integration Server

Members
sess_entry_len

Size of this session group entry.

sess_id

The internal identifier of the session for which this information is displayed.

conv_id

The unique four-byte ID of the conversation currently using this session.

lu_alias

LU alias (ASCII).

plu_alias

Partner LU alias (ASCII).

mode_name

The name of the mode (EBCDIC).

mode_name

The name of the mode (EBCDIC).

send_ru_size

The maximum RU size used on this session and this mode_name for sending RUs.

rcv_ru_size

The maximum RU size used on this session and this mode_name for receiving RUs.

send_pacing_size

The size of the send pacing window on this session.

rcv_pacing_size

The size of the receive pacing window on this session.

link_id

Connection name.

daf

The destination address field for this session.

oaf

The origin address field for this session.

odai

The origin destination address indicator field for this session.

sess_type

The type of the session. The session type can be one of the following:

SSCP_PU_SESSION

This session is between a workstation physical unit and a host system services control point. This value is never returned by
Host Integration Server.

SSCP_LU_SESSION

This session is between a dependent LU and a host system services control point.

LU_LU _SESSION

This session is between two LUs.

conn_type

Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel
sessions to the same partner LU.

AP_BOTH_SESSION

Connections can support both Dependent and Independent LUs.

fq_pc_id

Set to zero.

cgid

Set to zero.

type_of_pacing

The pacing type can be one of the following:

AP_FIXED

Fixed pacing.

AP_ADAPTIVE

Adaptive pacing. This value is never returned by Host Integration Server.

Active Link Information
Active link information is provided in the link_info_sect structure as defined below.

Syntax

Members
link_init_sect_len

The length of the initial active link information section, including this parameter, up to the first link overlay group. The length
does not include any previous information sections.

num_links

The number of active links returned by the DISPLAY verb into your program's buffer. This is the number of times the link
overlay group is repeated.

total_links

The total number of active links. This number is the same as the number returned in the num_links member except when
APPC has more information about active links than it can place in the supplied buffer, in which case this number is larger.

For each active link, a link_overlay structure for the active link is provided as defined below.

Syntax

Defined by IBM ES for OS/2 version 1.0
Members

typedef struct link_info_sect {
 unsigned long link_init_sect_len;
 unsigned short num_links;
 unsigned short total_links;
} LINK_INFO_SECT;

typedef struct link_overlay {
 unsigned long link_entry_len;
 unsigned char link_id[12];
 unsigned long dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned char inbound_outbound;
 unsigned char state;
 unsigned char deact_link_flag;
 unsigned char reserv3;
 unsigned short num_sessions;
 unsigned short ru_size;
 unsigned short reserv4;
 unsigned char adj_fq_cp_name[17];
 unsigned char adj_node_type;
 unsigned char reserv5;
 unsigned char cp_cp_sess_spt;
 unsigned char conn_type;
 unsigned char ls_role;
 unsigned char line_type;
 unsigned char tg_number;
 unsigned long eff_capacity;
 unsigned char conn_cost;
 unsigned char byte_cost;
 unsigned char propagation_delay;
 unsigned char user_def_1;
 unsigned char user_def_2;
 unsigned char user_def_3;
 unsigned char security;
 unsigned char reserv6;
 } LINK_OVERLAY;

link_entry_len

Size of this link entry.

link_id

Local logical link station name (EBCDIC).

dlc_name

Data link control (DLC) name set to one of the following:

ETHERAND

IBMTRNET

IBMPCNET

SDLC

TWINAX (Not supported by Host Integration Server 2009)

X25DLC

adapter_num

Adapter number used by this link to connect to the adjacent node.

dest_addr_len

Length of the destination adapter address.

dest_addr

The destination adapter address.

inbound_outbound

The direction of the link. Values can be:

AP_OUTBOUND

The link is outbound.

AP_INBOUND

The link is inbound.

state

The state of the link. The link state can be one of the following:

AP_CONALS_PND

The process to bring up the link has started but XID negotiation has not started.

AP_XID_PND

XID negotiation is in process.

AP_CONTACT_PND

XID negotiation has been completed but the final response from the DLC has not been received.

AP_CONTACTED

The link is fully functioning.

AP_DISC_PND

A request to disconnect the link has been issued to the DLC.

AP_DISC_RQ

The operator has requested that the link be disconnected.

deact_link_flag

Deactivate logical link.

reserv3

A reserved field.

num_sessions

Number of active sessions.

ru_size

RU size.

reserv4

A reserved field.

adj_fq_cp_name

Fully qualified cp_name in adjacent node.

adj_node_type

The adjacent node type (NN, EN, or LEN).

cp_cp_sess_spt

Specifies whether the link supports CP-CP sessions.

conn_type

Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel
sessions to the same partner LU.

AP_BOTH_SESSION

Connections can support both Dependent and Independent LUs.

ls_role

Specifies the link station role.

line_type

The line type.

tg_number

Transmission group number.

eff_capacity

Highest bit rate transmission effective capacity supported.

conn_cost

Relative cost per connection time using this link.

byte_cost

Relative cost of transmitting a byte over link.

propagation_delay

Indicates amount of time for signal to travel length of link. Set to one of the following:

AP_PROP_DELAY_MINIMUM

AP_PROP_DELAY_LAN

AP_PROP_DELAY_TELEPHONE

AP_PROP_DELAY_PKT_SWITCHED_NET

AP_PROP_DELAY_SATELLITE

AP_PROP_DELAY_MAXIMUM

user_def_1

User-defined TG characteristics.

user_def_2

User-defined TG characteristics.

user_def_3

User-defined TG characteristics.

security

The security value for this link. Set to one of the following:

AP_SEC_NONSECURE

AP_SEC_PUBLIC_SWITCHED_NETWORK

AP_SEC_UNDERGROUND_CABLE

AP_SEC_SECURE_CONDUIT

AP_SEC_GUARDED_CONDUIT

AP_SEC_ENCRYPTED

AP_SEC_GUARDED_RADIATION

reserv6

A reserved field.

Returned by Host Integration Server
Members
link_entry_len

Size of this link entry.

link_id

Connection name.

dlc_name

DLC name set to one of the following:

IBMTRNET

SDLC

X25DLC

adapter_num

Adapter number used by this link to connect to the adjacent node. Always set to zero.

dest_addr_len

Length of the destination adapter address.

dest_addr

The destination adapter address.

inbound_outbound

The direction of the link. Values can be:

AP_OUTBOUND

The link is outbound.

AP_INBOUND

The link is inbound.

state

The state of the link. The link state can be one of the following:

AP_CONALS_PND

The process to bring up the link has started but XID negotiation has not started.

AP_XID_PND

XID negotiation is in process.

AP_CONTACT_PND

XID negotiation has been completed but the final response from the DLC has not been received.

AP_CONTACTED

The link is fully functioning.

AP_DISC_PND

A request to disconnect the link has been issued to the DLC.

AP_DISC_RQ

The operator has requested that the link be disconnected.

deact_link_flag

Deactivate logical link.

num_sessions

Number of active sessions.

ru_size

RU size.

adj_fq_cp_name

Fully qualified cp_name in adjacent node. Always set to EBCDIC spaces.

adj_node_type

The adjacent node type. Always set to AP_LEN.

cp_cp_sess_spt

Specifies whether the link supports CP-CP sessions. Always set to AP_NO.

conn_type

Indicates whether the session activation protocol follows the rules for an independent LU or a dependent LU. The connection
type can be one of the following:

AP_HOST_SESSION

For dependent LU protocols, the workstation LU is defined as dependent at the host, the host LU sends the session activation
request (BIND), and each workstation LU can support only one session at a time.

AP_PEER_SESSION

For independent LU protocols, an LU can send a BIND, and can have multiple sessions to different partners, or parallel
sessions to the same partner LU.

ls_role

Specifies the link station role.

line_type

The line type.

tg_number

Transmission group number. Always set to zero.

effective_capacity

Highest bit rate transmission effective capacity supported. Always set to zero.

conn_cost

Relative cost per connection time using this link. Always set to zero.

byte_cost

Relative cost of transmitting a byte over link. Always set to zero.

propagation_delay

Indicates amount of time for signal to travel length of link. This parameter is always set to AP_PROP_DELAY_MAXIMUM.

user_def_1

User-defined TG characteristics. Always set to zero.

user_def_2

User-defined TG characteristics. Always set to zero.

user_def_3

User-defined TG characteristics. Always set to zero.

security

The security value for this link. Always set to AP_SEC_NONSECURE.

LU 0 to 3 Information
LU 0 to 3 information is provided in the lu_0_3_info_sect structure as defined below.

Syntax

Members
lu_0_3_init_sect_len

The length of the initial LU 0 to 3 information section, including this parameter, up to the first link overlay group. The length
does not include any previous information sections.

num_lu_0_3s

The number of LU groups. This is the number of times the lu_0_3 overlay group is repeated.

For each configured LU, an lu_0_3_overlay structure for the LU is provided as defined below.

Syntax

Defined by IBM ES for OS/2 version 1.0
Members
lu_0_3_entry_len

Size of this LU entry.

access_type

The access type (AP_3270 or AP_LUA).

lu_type

The LU type (AP_LU0, AP_LU1, AP_LU2, or AP_LU3).

lu_daf

The network addressable unit of the LU for which the information is displayed.

lu_short_name

The 1-byte LU short name (ASCII).

lu_long_name

The 8-byte ASCII LU long name.

session_id

typedef struct lu_0_3_info_sect {
 unsigned long lu_0_3_init_sect_len;
 unsigned short num_lu_0_3s;
} LU_0_3_ INFO_SECT;

typedef struct lu_0_3_overlay {
 unsigned long lu_0_3_entry_len;
 unsigned char access_type;
 unsigned char lu_type;
 unsigned char lu_daf;
 unsigned char lu_short_name;
 unsigned char lu_long_name[8];
 unsigned char session_id[8];
 unsigned long dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned char sscp_lu_sess_state;
 unsigned char lu_lu_sess_state;
 unsigned char link_id[12];
 } LU_0_3_OVERLAY;

The LU-LU session ID.

dlc_name

DLC name set to one of the following:

ETHERAND

IBMTRNET

IBMPCNET

SDLC

TWINAX (Not supported by Host Integration Server 2009)

X25DLC

adapter_num

The DLC adapter number for host link.

dest_addr_len

Length of the destination adapter address.

dest_addr

The destination adapter address.

sscp_lu_sess_state

Specifies the state of the SSCP-LU session.

lu_lu_sess_state

Specifies the state of the LU-LU session. The state can be one of the following:

AP_NOT_BOUND

The LU-LU session is not bound.

AP_BOUND

The LU-LU session is bound.

AP_BINDING

The LU-LU session is in the process of binding.

AP_UNBINDING

The LU-LU session is in the process of unbinding.

link_id

Name of local logical link station being used.

Returned by Host Integration Server
Members
lu_0_3_entry_len

Size of this LU entry.

access_type

The access type (AP_3270 or AP_LUA).

lu_type

The LU type (AP_LU0, AP_LU1, AP_LU2, or AP_LU3).

lu_daf

The network addressable unit of the LU for which the information is displayed.

lu_short_name

The 1 byte ASCII LU short name.

lu_long_name

The 8 byte ASCII LU long name.

session_id

The LU-LU session ID.

dlc_name

DLC name set to one of the following:

IBMTRNET

SDLC

TWINAX (Not supported by Host Integration Server 2009)

X25DLC

adapter_num

The DLC adapter number for host link. Always set to zero.

dest_addr_len

Length of the destination adapter address.

dest_addr

The destination adapter address.

sscp_lu_sess_state

Specifies the state of the SSCP-LU session.

lu_lu_sess_state

Specifies the state of the LU-LU session. The state can be one of the following:

AP_NOT_BOUND

The LU-LU session is not bound.

AP_BOUND

The LU-LU session is bound.

AP_BINDING

The LU-LU session is in the process of binding.

AP_UNBINDING

The LU-LU session is in the process of unbinding.

link_id

Name of connection.

System Default Information
System default information is defined or returned as described here.

Defined by IBM ES for OS/2 version 1.0
Members
default_mode_name

Mode name used for undefined mode name is sent or received.

default_local_lu_name

Alias or local default LU.

implicit_partner_lu_support

Indicates if implicit partner LU support is enabled.

maximum_held_alerts

Number of alerts that will be held by NS/2 if there is no active link to a focal point.

default_tp_conversation_security_rqd

Specifies if conversation security is used for default TPs.

maximum_mc_ll_send_size

Maximum length of a logical record used on a mapped conversation for sending data to either the inbound or outbound
implicit remote LU.

directory_for_inbound_attaches

Name of OS/2 directory used by Attach Manager.

default_tp_operation

Set to one of the following:

QUEUED_OPERATOR_STARTED

QUEUED_OPERATOR_PRELOADED

QUEUED_AM_STARTED

NONQUEUED_AM_STARTED

default_tp_program_type

Set to one of the following:

BACKGROUND

FULL_SCREEN

PRESENTATION_MANAGER

VIO_WINDOWABLE

Returned by Host Integration Server
Members
default_mode_name

Always set to NULL.

default_local_lu_name

Always set to spaces.

implicit_partner_lu_support

Always set to NO.

maximum_held_alerts

Always set to zero.

Always set to zero.

default_tp_conversation_security_rqd

Always set to NO.

maximum_mc_ll_send_size

Always set to 16384.

directory_for_inbound_attaches

Always returned * and indicates that the current path should be used.

default_tp_operation

Always set to QUEUED_AM_STARTED.

default_tp_program_type

Always set to FULL_SCREEN.

LU 6.2 Definition Information
There are no differences for this information type.

Partner Definition Information
Partner definition information is defined or returned as described here.

Defined by IBM ES for OS/2 version 1.0

Members
maximum_mc_ll_send_size

Maximum length of a logical record used on a mapped conversation for sending data to the partner LU.

number_of_alternate_aliases

Specifies number of alternate aliases configured.

Returned by Host Integration Server
maximum_mc_ll_send_size

Always set to 16384.

number_of_alternate_aliases

Always set to zero.

Mode Definition Information
Mode definition information is defined or returned as described here.

Defined by IBM ES for OS/2 version 1.0

Members
cos_name

Name of class of service.

Returned by Host Integration Server

Members
cos_name

Set to EBCDIC spaces.

Link Definition Information
Link definition information is provided in the link_def_info_sect structure as defined below.

Syntax

Members
link_def_init_sect_len

The length of the initial link definition information section, including this parameter, up to the first link definition overlay
group. The length does not include any previous information sections.

num_link_def

The number of link definitions returned by the DISPLAY verb into your program's buffer. This is the number of times the link
definition overlay is repeated.

total_link_def

The total number of link definitions. This number is the same as the number returned in the num_link_def member except
when APPC has more information about link definitions than it can place in the supplied buffer, in which case this number is
larger.

For each link definition, a link_def_overlay structure for the link definition is provided as defined below.

Syntax

Defined by IBM ES for OS/2 version 1.0
Members
link_def_entry_len

Size of this link definition entry.

typedef struct link_def_info_sect {
 unsigned long link_def_init_sect_len;
 unsigned short num_link_def;
 unsigned short total_link_def;
} LINK_DEF_INFO_SECT;

typedef struct link_def_overlay {
 unsigned long link_def_entry_len;
 unsigned char link_name[8];
 unsigned char adj_fq_cp_name[17];
 unsigned char adj_node_type;
 unsigned long dlc_name[8];
 unsigned char adapter_num;
 unsigned char dest_addr_len;
 unsigned char dest_addr[32];
 unsigned char preferred_nn_server;
 unsigned char auto_act_link;
 unsigned char tg_number;
 unsigned char lim_res;
 unsigned char solicit_sscp_session;
 unsigned char initself;
 unsigned char bind_support;
 unsigned char ls_role;
 unsigned char line_type;
 unsigned long eff_capacity;
 unsigned char conn_cost;
 unsigned char byte_cost;
 unsigned char propagation_delay;
 unsigned char user_def_1;
 unsigned char user_def_2;
 unsigned char user_def_3;
 unsigned char security;
 unsigned char reserv;
 } LINK_OVERLAY;

link_name

Local logical link station name (EBCDIC).

dlc_name

Data link control (DLC) name set to one of the following:

ETHERAND

IBMTRNET

IBMPCNET

SDLC

TWINAX (Not supported by Host Integration Server 2009)

X25DLC

adj_fq_cp_name

Fully qualified cp_name in adjacent node.

adj_node_type

The adjacent node type (AP_ADJACENT_NN, AP_LEARN, or AP_LEN).

adapter_num

DLC adapter number used by this link.

dest_addr_len

Length of the destination adapter address.

dest_addr

The destination adapter address.

cp_cp_sess_spt

Specifies whether the link supports CP-CP sessions.

preferred_nn_server

Indicates if this is the preferred NN server.

auto_act_link

Indicates if the link should be automatically activated.

tg_number

Transmission group number.

lim_res

Indicates if this is a limited resource.

solicit_sscp_session

Indicates whether to solicit an SSCP session.

initself

Indicates if the node supports receiving INIT_SELF over this link.

bind_support

Indicates whether BIND support is available.

ls_role

Specifies the link station role.

line_type

The line type.

eff_capacity

Highest bit rate transmission effective capacity supported.

conn_cost

Relative cost per connection time using this link.

byte_cost

Relative cost of transmitting a byte over link.

propagation_delay

Indicates amount of time for signal to travel length of link. Set to one of the following:

AP_PROP_DELAY_MINIMUM

AP_PROP_DELAY_LAN

AP_PROP_DELAY_TELEPHONE

AP_PROP_DELAY_PKT_SWITCHED_NET

AP_PROP_DELAY_SATELLITE

AP_PROP_DELAY_MAXIMUM

user_def_1

User-defined TG characteristics.

user_def_2

User-defined TG characteristics.

user_def_3

User-defined TG characteristics.

security

The security value for this link. Set to one of the following:

AP_SEC_NONSECURE

AP_SEC_PUBLIC_SWITCHED_NETWORK

AP_SEC_UNDERGROUND_CABLE

AP_SEC_SECURE_CONDUIT

AP_SEC_GUARDED_CONDUIT

AP_SEC_ENCRYPTED

AP_SEC_GUARDED_RADIATION

Returned by Host Integration Server
Members
link_def_entry_len

Size of this link definition entry.

link_name

Local logical link station name (EBCDIC).

dlc_name

Data link control (DLC) name set to one of the following:

IBMTRNET

SDLC

X25DLC

adj_fq_cp_name

Fully qualified cp_name in adjacent node. Always set to EBCDIC spaces.

adj_node_type

The adjacent node type. Always set to AP_LEN.

adapter_num

DLC adapter number used by this link. Always set to zero.

dest_addr_len

Length of the destination adapter address.

dest_addr

The destination adapter address.

cp_cp_sess_spt

Specifies whether the link supports CP-CP sessions. Always set to AP_NO.

preferred_nn_server

Indicates if this is the preferred NN server.

auto_act_link

Indicates if the link should be automatically activated.

tg_number

Transmission group number. Always set to zero.

lim_res

Indicates if this is a limited resource.

solicit_sscp_session

Indicates whether to solicit an SSCP session.

initself

Indicates if the node supports receiving INIT_SELF over this link.

bind_support

Indicates whether BIND support is available.

ls_role

Specifies the link station role.

line_type

The line type.

effective_capacity

Highest bit rate transmission effective capacity supported. Always set to zero.

conn_cost

Relative cost per connection time using this link. Always set to zero.

byte_cost

Relative cost of transmitting a byte over link. Always set to zero.

propagation_delay

Indicates amount of time for signal to travel length of link. Set to one of the following: Always set to
AP_PROP_DELAY_MAXIMUM.

user_def_1

User-defined TG characteristics. Always set to zero.

user_def_2

User-defined TG characteristics. Always set to zero.

user_def_3

User-defined TG characteristics. Always set to zero.

security

The security value for this link. Always set to AP_SEC_NONSECURE.

Management Services Information
Information on management services is provided in the ms_info_sect structure as defined below.

Syntax

Members
ms_init_sect_len

The length of the initial MS information section, including this parameter, up to the first MS focal point group. The length
does not include any previous information sections.

held_mds_mu_alerts

The number of management service MDS alerts being held that will be sent to the management service alert focal point (FP)
when one becomes available.

held_nmvt_alerts

The number of management service NMVT alerts being held that will be sent to the management service alert focal point
(FP) when one becomes available.

num_fps

The number of management service focal points (MS FPs) for which the information listed under MS Focal Point Group is
returned. This is the number of times the information group is repeated.

total_fps

The total number of management service focal points for which APPC has information. This number is the same as the
number returned in the num_fps member except when APPC has more information about management service focal points
than it can place in the supplied buffer, in which case this number is larger.

num_ms_appls

The number of registered MS applications for which the information listed under Registered MS Application Group is
returned. This is the number of times the information group is repeated.

total_ms_appls

The total number of registered MS applications for which APPC has information. This number is the same as the number
returned in the num_ms_appls member except when APPC has more information about registered MS applications than it
can place in the supplied buffer, in which case this number is larger.

num_act_trans

The number of MS active transactions for which the information listed under MS Active Transaction Group is returned. This is
the number of times the information group is repeated.

total_act_trans

The number or MS active transactions for which APPC has information. This number is the same as the number returned in
the num_act_trans member except when APPC has more information about registered MS active transactions than it can
place in the supplied buffer, in which case this number is larger.

For each local and remote management service focal point group, an ms_fp_overlay structure for the focal point group is
provided as defined below.

typedef struct ms_info_sect {
 unsigned long ms_init_sect_len;
 unsigned char held_mds_mu_alerts;
 unsigned char held_nmvt_alerts;
 unsigned short num_fps;
 unsigned short total_fps;
 unsigned short num_ms_appls;
 unsigned short total_ms_appls;
 unsigned short num_act_trans;
 unsigned short total_act_trans;
} MS_INFO_SECT;

Syntax

Members
ms_fp_entry_len

Size of this management service focal point information entry.

ms_appl_name

The management service application name of the current active focal point (EBCDIC).

ms_category

The management service category.

fp_fq_cp_name

The fully qualified control point name of the node on which the current (active) management service focal point is located
(EBCDIC). If the local node has no focal point, a value of all EBCDIC space characters (0x40) is returned.

bkup_appl_name

The management service application name of the backup focal point, if one is known (EBCDIC).

bkup_fp_fq_cp_name

The fully qualified control point name of the node on which the backup management service focal point is located, if one is
known (EBCDIC). If the local node has no backup focal point, a value of all EBCDIC space characters (0x40) is returned.

fp_type

The type of the focal point for the local management service entry point node. The focal point type depends on how the focal
point-end point relationship was established, and on whether the local node is configured as an NN, EN, or LEN node (an EN
without CP-CP session support). The type can be one of the following:

AP_EXPLICIT_PRIMARY_FP

The current focal point type is explicit primary.

AP_BACKUP_FP

The current focal point type is back up.

AP_DEFAULT_PRIMARY_FP

The current focal point type is default primary.

AP_DOMAIN_FP

The current focal point type is domain.

AP_HOST_FP

The current focal point type is host.

AP_NO_FP

Currently the local node has no focal point.

fp_status

The status of the management service focal point. The status can be one of the following:

typedef struct ms_fp_overlay {
 unsigned long ms_fp_entry_len;
 unsigned char ms_appl_name[8];
 unsigned char ms_category[4];
 unsigned char fp_fq_cp_name[17];
 unsigned char bkup_appl_name[8];
 unsigned char bkup_fp_fq_cp_name[17];
 unsigned char reserv1;
 unsigned char fp_type;
 unsigned char fp_status;
 unsigned char fp_routing;
} MS_FP_OVERLAY;

The status of the management service focal point. The status can be one of the following:

AP_NOT_ACTIVE

The focal point has been acquired, but has since become unavailable.

AP_ACTIVE

The remote focal point has been acquired and is available.

AP_PENDING

A request has been sent to a remote primary or backup focal point to acquire that FP, and its reply has not yet been received.

AP_NEVER_ACTIVE

The focal point has never been acquired, but one or more registered management service applications have requested focal
point information.

fp_routing

The routing used to send unsolicited requests to the management service focal point when the local node is an EN. Note that
requests from an NN are always sent directly to the focal point.

The routing can be one of the following:

AP_DEFAULT

Unsolicited management service requests destined for the focal point are sent from the EN to its serving NN for forwarding
to the focal point.

AP_DIRECT

Unsolicited management service requests destined for the focal point are sent directly to the focal point.

Remarks

When a program registers a management service application name, it can request focal point information. When APPC
acquires the focal point, it passes the program the focal point information, which includes the type of routing to use to send
unsolicited management service requests to the focal point.

APPC TP Verbs
This section describes the Advanced Program-to-Program Communications (APPC) transaction program (TP) verbs. The
description of each verb provides:

A definition of the verb.

The structure defining the verb control block (VCB) used by the verb. The structure is contained in the WINAPPC.H file.
The length of each VCB field is in bytes. Fields beginning with reserv (for example, reserv2) are reserved.

The parameters (VCB fields) supplied to and returned by APPC. A description of each parameter is provided, along with
its possible values and other information.

The conversation state(s) in which the verb can be issued.

The state(s) to which the conversation can change upon return from the verb. Conditions that do not cause a state
change are not noted. For example, parameter checks and state checks do not cause a state change.

Additional information describing the verb.

Most parameters supplied to and returned by APPC are hexadecimal values. To simplify coding, these values are represented
by meaningful symbolic constants, which are established by #define statements in the WINAPPC.H header file. For example,
the opcode (operation code) member of the mc_send_data structure used by the MC_SEND_DATA verb is the hexadecimal
value represented by the symbolic constant AP_M_SEND_DATA. Use only the symbolic constants when writing TPs.

In This Section

GET_TP_PROPERTIES

SET_TP_PROPERTIES

TP_ENDED

TP_STARTED

https://msdn.microsoft.com/en-us/library/aa770965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754490(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

GET_TP_PROPERTIES
The GET_TP_PROPERTIES verb returns attributes of the transaction program (TP) and the current transaction.

The following structure describes the verb control block used by the GET_TP_PROPERTIES verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_GET_TP_PROPERTIES.

opext

Supplied parameter. Specifies the verb operation extension. If the AP_EXTD_VCB bit is set, this indicates that the
get_tp_properties structure includes the prot_luw_id member used for Sync Point support. Otherwise the verb control
block ends immediately after the user_id member.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

tp_name

Returned parameter. Supplies the TP name of the TP that issued the verb. The name is returned as a 64-byte EBCDIC string,
padded on the right with EBCDIC spaces.

lu_alias

Returned parameter. Supplies the alias name assigned to the local LU. It is returned as an 8-byte ASCII string padded on the
right with ASCII spaces.

luw_id

Returned parameter. Supplies the unprotected logical unit-of-work identifier for the transaction in which the TP is
participating. Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the

struct get_tp_properties {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char tp_name[64];
 unsigned char lu_alias[8];
 unsigned char luw_id[26];
 unsigned char fqlu_name[17];
 unsigned char reserve3[10];
 unsigned char user_id[10];
 unsigned char prot_luw_id[26];
 unsigned char pwd[10];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

transaction, allows the conversation that makes up the transaction to be logically connected.

The luw_id can be represented as an luw_id_overlay structure with the following fields:
typedef struct luw_id_overlay { unsigned char fqla_name_len; unsigned char fqla_name[17]; nsigned char
instance[6]; unsigned char sequence[2];} LUW_ID_OVERLAY;

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers
follow immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those
values. These are provided for compatibility only.)

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1, if Sync Point is not supported.)

If the luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

fqlu_name

Returned parameter. Supplies the fully qualified name of the local LU. The name is returned as a 17-byte EBCDIC string,
consisting of the NETID, a period, and the LU name. The name is padded on the right with EBCDIC spaces.

reserve3

A reserved field.

user_id

Supplied parameter. Indicates the user_id supplied by the initiating TP in the allocation request. The name is supplied as a
10-byte EBCDIC string, padded on the right with EBCDIC spaces.

prot_luw_id

Returned parameter. Contains the protected logical unit-of-work identifier for the transaction in which the TP is participating,
if the conversation was allocated with synclevel Sync Point.

Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The prot_luw_id can be represented as an luw_id_overlay structure with the following fields:
typedef struct luw_id_overlay { unsigned char fqla_name_len; unsigned char fqla_name[17]; nsigned char
instance[6]; unsigned char sequence[2];} LUW_ID_OVERLAY;

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers
follow immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those
values. These are provided for compatibility only).

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1, if Sync Point is not supported.)

If the prot_luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

pwd

Supplied parameter. Contains the password of the user_id of the initiating TP in the allocation request. The password is
supplied as a 10-byte EBCDIC string, padded on the right with EBCDIC spaces.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_TP_BUSY

Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP. This can
occur if the local TP has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

This verb relates to the TP rather than a specification conversation, so the TP can issue the verb in any state. There is no state
change.

The luw_id member contains fields for fqla_name_len (the length of the fully qualified LU name of the LU originating the TP),
fqla_name (the fully qualified name of the LU originating the TP), instance (generated uniquely by the LU originating the TP),
and sequence (always set to 1 and indicating the segment of unit-of-work).

SET_TP_PROPERTIES
The SET_TP_PROPERTIES verb enables a transaction program (TP) to set its logical unit-of-work identifiers (LUWIDs) to either
an existing value, by providing the LUWIDs, or request that the SNA server generate new ones and use them from then on.
When the LUWID is generated by the SNA server, it is guaranteed to be unique. This verb is used only if Sync Point support is
enabled.

The following structure describes the verb control block (VCB) used by the SET_TP_PROPERTIES verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_SET_TP_PROPERTIES.

opext

Supplied parameter. Specifies the verb operation extension. The AP_EXTD_VCB bit must be set to indicate that the
set_tp_properties structure requires Sync Point support.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

set_prot_id

Supplied parameter. Indicates whether the prot_id member should be modified. Legal values are AP_YES or AP_NO.

new_prot_id

Supplied parameter. Indicates whether Microsoft® Host Integration Server should use the supplied prot_id LUWID member
or create a new LUWID. Legal values are AP_YES (create a new LUWID) or AP_NO (use the supplied LUWID).

prot_id

struct set_tp_properties {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char set_prot_id;
 unsigned char new_prot_id;
 unsigned char prot_id[26];
 unsigned char set_unprot_id;
 unsigned char new_unprot_id;
 unsigned char unprot_id[26];
 unsigned char set_user_id;
 unsigned char reserv3;
 unsigned char user_id[10];
 unsigned char reserv4[10];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

This member is the protected logical unit-of-work identifier for the transaction in which the TP is participating. It is ignored if
set_prot_id is AP_NO. It is a supplied parameter if new_unprot_id is AP_NO or a returned parameter if new_unprot_id is
AP_YES.

Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The prot_id can be represented as an luw_id_overlay structure with the following fields:
typedef struct luw_id_overlay { unsigned char fqla_name_len; unsigned char fqla_name[17]; nsigned char
instance[6]; unsigned char sequence[2];} LUW_ID_OVERLAY;

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers
follow immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those
values. These are provided for compatibility only).

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1 if Sync Point is not supported.)

If the luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

set_unprot_id

Supplied parameter. Indicates whether the unprot_id member should be modified. Legal values are AP_YES or AP_NO.

new_unprot_id

Supplied parameter. Indicates whether Host Integration Server should use the supplied unprot_id LUWID member or create
a new LUWID. Legal values are AP_YES (create a new LUWID) or AP_NO (use the supplied LUWID).

unprot_id

This member is the unprotected logical unit-of-work identifier for the transaction in which the TP is participating. It is ignored
if set_unprot_id is AP_NO. It is a supplied parameter if new_unprot_id is AP_NO or a returned parameter if
new_unprot_id is AP_YES.

Several TPs can be involved in a transaction. This identifier, which is assigned on behalf of the TP initiating the transaction,
allows the conversation that makes up the transaction to be logically connected.

The prot_id can be represented as an luw_id_overlay structure with the following fields:
typedef struct luw_id_overlay { unsigned char fqla_name_len; unsigned char fqla_name[17]; nsigned char
instance[6]; unsigned char sequence[2];} LUW_ID_OVERLAY;

luw_id.fqla_name_len

A 1-byte length of the fully qualified LU name for the LU of the originating TP.

luw_id.fqla_name

The fully qualified name of the LU for the originating TP. The name is returned as a 17-byte EBCDIC string, consisting of the
NETID, a period, and the LU name. If the length of the name is fewer than 17 bytes, the instance and sequence numbers
follow immediately. (Note that because of this, you should not use the fields of the luw_id_overlay structure to access those
values. These are provided for compatibility only.)

luw_id.instance

A 6-byte string uniquely generated by the LU for the originating TP.

luw_id.sequence

A 2-byte number that indicates the segment of unit-of-work. (This is always set to 1 if Sync Point is not supported.)

If the luw_id length is fewer than 26 bytes, it is padded on the right with EBCDIC spaces.

set_user_id

Supplied parameter. Indicates whether the user_id member should be modified. Legal values are AP_YES or AP_NO.

reserve3

A reserved field.

user_id

Supplied parameter. Indicates the user_id that should be used by the initiating TP in the allocation request. The name is a 10-
byte EBCDIC string, padded on the right with EBCDIC spaces. This parameter is ignored if set_user_id is AP_NO.

reserve4

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_TP_BUSY

Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP. This can
occur if the local TP has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

This verb relates to the TP rather than a specification conversation, so the TP can issue the verb in any state. There is no state
change.

The prot_id and unprot_id members contain fields for fqla_name_len (the length of the fully qualified LU name of the LU

originating the TP), fqla_name (the fully qualified name of the LU originating the TP), instance (generated uniquely by the LU
originating the TP), and sequence (always set to 1 and indicating the segment of unit-of-work).

It is the responsibility of the application (the Sync Point support component) to transmit the new LUWID PS header to the
partner Sync Point support when the protected LUWID is changed. Similarly, when the new LUWID PS header is received, the
application must inform the LU by issuing a SET_TP_PROPERTIES verb.

TP_ENDED
The TP_ENDED verb is issued by both the invoking and invoked transaction program (TP), and notifies APPC that the TP is
ending.

For the Microsoft® Windows® version 3.x system, it is recommended that you use the WinAsyncAPPC function rather than
the blocking version of this call.

The following structure describes the verb control block (VCB) used by the TP_ENDED verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_TP_ENDED.

opext

Supplied parameter. Specifies the verb operation extension. This field is not used by the TP_ENDED verb.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

type

Supplied parameter. Specifies the type of termination to be performed. The following are allowed values:

AP_HARD indicates that all active verbs for the TP are terminated; the session(s) being used by the conversation(s) are
ended. Both the local TP and the partner TP can receive conversation failure return codes (AP_DEALLOC_ABEND for
mapped conversations and AP_DEALLOC_ABEND_PROG for basic conversations).

AP_SOFT indicates that the TP waits for all active verbs to complete; the session being used by the conversation
remains active.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

struct tp_ended {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char type;
};

https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_TP_ID

Secondary return code; APPC did not recognize the tp_id as an assigned TP identifier.

AP_BAD_TYPE

Secondary return code; the specified type value was not recognized by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_TP_BUSY

Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP. This can
occur if the local TP has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

In response to TP_ENDED, APPC frees the resources used by the TP. After this verb executes, the TP identifier is no longer
valid; the TP cannot issue any more APPC conversation verbs.

The conversation can be in any state when the TP issues this verb.

If the conversation is in SEND state, TP_ENDED performs the function of DEALLOCATE or MC_DEALLOCATE with
dealloc_type set to AP_FLUSH.

If the conversation is in a state other than RESET or SEND, TP_ENDED performs the function of DEALLOCATE or
MC_DEALLOCATE with dealloc_type set to AP_ABEND (for a mapped conversation) or AP_ABEND_PROG (for a basic
conversation).

After successful execution (primary_rc is AP_OK), there is no APPC state.

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

TP_STARTED
The TP_STARTED verb is issued by the invoking transaction program (TP), and notifies APPC that the TP is starting.

For the Microsoft® Windows® version 3.x system, it is recommended that you use the WinAsyncAPPC function rather than
the blocking version of this call.

The following structure describes the verb control block used by the TP_STARTED verb.

Syntax

Remarks

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_TP_STARTED.

opext

Supplied parameter. Specifies the verb operation extension. If the AP_EXTD_VCB bit is set, this indicates that the tp_started
structure includes the syncpoint_rqd member used for Sync Point support. Otherwise, the verb control block ends
immediately after the tp_name member.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

lu_alias

Supplied parameter. Specifies the alias by which the local LU is known to the local TP.

The name must match an LU alias established during configuration. APPC checks the LU alias against the current Host
Integration Server configuration file. Due to the client/server architecture used by Host Integration Server, however, this
parameter is not validated until an ALLOCATE or MC_ALLOCATE is performed.

This parameter is an 8-byte ASCII character string. It can consist of the following ASCII characters:

Uppercase letters

Numerals from 0 through 9

Spaces

Special characters $, #, % and @

struct tp_started {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char lu_alias[8];
 unsigned char tp_id[8];
 unsigned char tp_name[64];
 unsigned char syncpoint_rqd;
};

https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

The first character of this string cannot be a space.

If the value of this parameter is fewer than eight bytes in length, pad it on the right with ASCII spaces (0x20).

To use an LU from the default LU pool, set this field to eight hexadecimal zeros. For more information, see Default LUs.

tp_id

Returned parameter. Identifies the newly established TP.

tp_name

Supplied parameter. Specifies the name of the local TP.

Under the Host Integration Server implementation of APPC, this parameter is ignored when issued by TP_STARTED.
However, this parameter is required if the program runs under the IBM ES for OS/2 version 1.0 implementation of APPC.

This parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of the
following EDCDIC characters:

Uppercase and lowercase letters

Numerals from 0 through 9

Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes in length, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention for a service TP name is up to four characters. The first character is a hexadecimal byte between 0x00
and 0x3F.

syncpoint_rqd

This optional parameter is only applicable if the AP_EXTD_VCB bit is set in the opext parameter and Sync Point services are
required.

AP_YES if Sync Point is required.

AP_NO if Sync Point is not required.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

https://msdn.microsoft.com/en-us/library/aa745545(v=bts.10).aspx

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_TP_BUSY

Primary return code; the local TP has issued a call to APPC while APPC was processing another call for the same TP.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

In response to TP_STARTED, APPC generates a TP identifier for the invoking TP. This identifier is a required parameter for
subsequent APPC verbs issued by the invoking TP.

This must be the first APPC verb issued by the invoking TP. Consequently, no prior APPC state exists.

If the verb executes successfully (primary_rc is AP_OK), the state changes to RESET.

In This Section

Default LUs

https://msdn.microsoft.com/en-us/library/aa745545(v=bts.10).aspx

Default LUs
Any LU can be configured to be in a pool of default local LUs available for use by invoking transaction programs (TPs).

For a user or group who will be using TPs, 5250 emulators, and/or APPC applications, you can assign a default local APPC LU
and a default remote APPC LU. If the invoking TP specifies the LU alias that it uses (in TP_STARTED), that LU alias must match a
local APPC LU alias on the supporting SNA server. If the invoking TP leaves the LU alias blank in TP_STARTED, one of two
methods for designating a default LU must be carried out on the supporting SNA server:

Assign a default local APPC LU to the user or group that starts the invoking TP (that is, the user or group logged on at the
system from which TP_STARTED is issued).

—or—

Designate one or more LUs as members of the default outgoing local APPC LU pool. The SNA server first attempts to
determine the default local APPC LU of the associated user or group, then attempts to assign an available LU from the
default outgoing local APPC LU pool; if these attempts fail, the SNA server rejects the request.

AS/400 Environment

In AS/400 environments, the ability to assign default APPC LUs to users or groups is especially useful because it gives the
administrator centralized control over these LU assignments. In such environments, for each user or group, assign both a
default local APPC LU and a default remote APPC LU. Assigning a default local APPC LU for each user fulfills the normal
AS/400 procedure of assigning local LUs on a per-user basis. Assigning a default remote APPC LU is equivalent to assigning a
default AS/400 for the user to connect to, since the remote LU designates the AS/400. By making these assignments, the
administrator can centrally control the default AS/400 that a 5250 emulator user connects to.

See Also
Reference
TP_STARTED

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

APPC Conversation Verbs
This section describes the Advanced Program-to-Program Communications (APPC) conversation verbs. The description of each
verb provides:

A definition of the verb.

The structure defining the verb control block (VCB) used by the verb. The structure is contained in the WINAPPC.H file.
The length of each VCB field is in bytes. Fields beginning with reserv (for example, reserv2) are reserved.

The parameters (VCB fields) supplied to and returned by APPC. A description of each parameter is provided, along with
its possible values and other information.

The conversation state(s) in which the verb can be issued.

The state(s) to which the conversation can change upon return from the verb. Conditions that do not cause a state
change are not noted. For example, parameter checks and state checks do not cause a state change.

Additional information describing the verb.

Mapped conversation verbs are preceded by an MC_ designator. For example, the mapped conversation verb MC_ALLOCATE
corresponds to the basic conversation verb ALLOCATE.

Most parameters supplied to and returned by APPC are hexadecimal values. To simplify coding, these values are represented
by meaningful symbolic constants, which are established by #define statements in the WINAPPC.H header file. For example,
the opcode (operation code) member of the mc_send_data structure used by the MC_SEND_DATA verb is the hexadecimal
value represented by the symbolic constant AP_M_SEND_DATA. Use only the symbolic constants when writing transaction
programs (TPs).

In This Section

ALLOCATE

CONFIRM

CONFIRMED

DEALLOCATE

FLUSH

GET_ATTRIBUTES

GET_LU_STATUS

GET_STATE

GET_TYPE

MC_ALLOCATE

MC_CONFIRM

MC_CONFIRMED

MC_DEALLOCATE

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771859(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

MC_FLUSH

MC_GET_ATTRIBUTES

MC_POST_ON_RECEIPT

MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_RECEIVE_LOG_DATA

MC_REQUEST_TO_SEND

MC_SEND_CONVERSATION

MC_SEND_DATA

MC_SEND_ERROR

MC_TEST_RTS

MC_TEST_RTS_AND_POST

POST_ON_RECEIPT

PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE

RECEIVE_ALLOCATE_EX

RECEIVE_ALLOCATE_EX_END

RECEIVE_AND_POST

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

RECEIVE_LOG_DATA

REQUEST_TO_SEND

SEND_CONVERSATION

SEND_DATA

SEND_ERROR

TEST_RTS

https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771985(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705747(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771035(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754660(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771456(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx

TEST_RTS_AND_POST

https://msdn.microsoft.com/en-us/library/aa771915(v=bts.10).aspx

ALLOCATE
The ALLOCATE verb is issued by the invoking transaction program (TP). It allocates a session between the local logical unit
(LU) and partner LU and (in conjunction with RECEIVE_ALLOCATE) establishes a conversation between the invoking TP and the
invoked TP. After this verb executes successfully, APPC generates a conversation identifier (conv_id). The conv_id is a required
parameter for all other APPC conversation verbs.

The following structure describes the verb control block used by the ALLOCATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_ALLOCATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION. If the AP_EXTD_VCB bit is set, this
indicates that an extended version of the verb control block is used. In this case, the ALLOCATE structure includes Sync Point
support or privileged proxy feature support.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

struct allocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char conv_type;
 unsigned char synclevel;
 unsigned char reserv3[2];
 unsigned char rtn_ctl;
 unsigned char reserv4;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv5[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv7;
 unsigned char fqplu_name[17];
 unsigned char reserv8[8];
 unsigned long proxy_user;
 unsigned long proxy_domain;
 unsigned char reserv9[16];
};

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id

Returned parameter. Identifies the conversation established between the two TPs.

conv_type

Supplied parameter. Used only by ALLOCATE to specify the type of conversation to allocate and is either
AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

If ALLOCATE establishes a mapped conversation, the local TP must issue basic-conversation verbs and provide its own
mapping layer to convert data records to logical records and logical records to data records. The partner TP can issue basic-
conversation verbs and provide the mapping layer, or it can use mapped-conversation verbs (if the partner TP is using an
implementation of APPC that supports mapped-conversation verbs). For more information, see your IBM SNA manual(s).

synclevel

Supplied parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.

AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

reserv3

A reserved field.

rtn_ctl

Supplied parameter. Specifies when the local LU, acting on a session request from the local TP, should return control to the
local TP. For information about sessions, see About Transaction Programs.

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns
control to the TP.

AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU returns
control immediately.) If a session is not available, the TP waits for one.

AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs, (as documented in Return Codes in
this topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.

AP_WHEN_CONWINNER_ALLOCATED specifies that the LU does not return control until it allocates a contention-
winner session or encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero,
the LU returns control immediately.) If a session is not available, the TP waits for one.

AP_WHEN_CONV_GROUP_ALLOCATED specifies that the LU does not return control to the TP until it allocates the
session specified by conv_group_idor encounters one of the errors documented in Return Codes in this topic. If a
session is not available, the TP waits for it to become free.

Note
AP_IMMEDIATE is the only value for rtn_ctl that never causes a new session to start. For values other than AP_IMMEDIATE,
if an appropriate session is not immediately available, Host Integration Server 2009 tries to start one. This causes the on-de
mand connection to be activated.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771060(v=bts.10).aspx

reserv4

A reserved field.

conv_group_id

Supplied/returned parameter. Specifies the identifier of the conversation group from which the session should be allocated.
The conv_group_id is required only if rtn_ctlis set to WHEN_CONV_GROUP_ALLOC. Whenrtn_ctl specifies a different value
and the primary_rc is AP_OK, this is a returned value.

sense_data

Returned parameter. Indicates an allocation error (retry or no-retry) and contains sense data.

plu_alias

Supplied parameter. Specifies the alias by which the partner LU is known to the local TP.

The plu_alias must match the name of a partner LU established during configuration.

The parameter is an 8-byte ASCII character string. It can consist of the following ASCII characters:

Uppercase letters

Numerals 0 through 9

Spaces

Special characters $, #, %, and @

The first character of this string cannot be a space.

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

If you want to specify the partner LU with the fqplu_name parameter, fill this parameter with binary zeros.

For a user or group using TPs, 5250 emulators, and/or APPC applications, the system administrator can assign default local
and remote LUs. In this case, the field is left blank or null and the default LUs are accessed when the user or group member
starts an APPC program. For more information on default LUs, see Microsoft Host Integration Server 2009 Help.

mode_name

Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration.

The value of mode_name must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set:

Uppercase letters

Numerals 0 through 9

Special characters $, #, and @

The first character in the string must be an uppercase letter or a special character.

Do not use SNASVCMG in a mapped conversation. SNASVCMG is a reserved mode_name used internally by APPC. Using
this name in a basic conversation is not recommended.

tp_name

Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by ALLOCATE in the invoking TP
must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of the
following EBCDIC characters:

Uppercase and lowercase letters

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Numerals 0 through 9

Special characters $, #, @, and period (.)

If tp_name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte
between 0x00 and 0x3F. The other characters are from the type AE EBCDIC character set.

security

Supplied parameter. Provides the information that the partner LU requires to validate access to the invoked TP.

Based on the conversation security established for the invoked TP during configuration, use one of the following values:

AP_NONE for an invoked TP that uses no conversation security.

AP_PGM for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply
this information through the user_id and pwd parameters.

AP_PROXY_PGM for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password. Pointers must be set up for proxy_user and proxy_domain to point to Unicode strings
containing the user name and domain name of the user to be impersonated. The application does not need to set the
user_id and pwd fields.

AP_PROXY_SAME for a TP that has been invoked using privileged proxy with a valid user identifier and password
supplied by the proxy, which in turn invokes another TP. Pointers must be set up for proxy_user and proxy_domain
to point to Unicode strings containing the user name and domain name of the user to be impersonated. The
application does not need to set the user_id and pwd fields.

For example, assume that TP A invokes TP B with a valid user identifier and password supplied by the privileged proxy, and
TP B in turn invokes TP C. If TP B specifies the value AP_PROXY_SAME, APPC will send the LU for TP C the user identifier from
TP A and an already-verified indicator. This indicator tells TP C to not require the password (if TP C is configured to accept an
already-verified indicator).

AP_PROXY_STRONG for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password provided by the privileged proxy mechanism. Pointers must be set up for proxy_user and
proxy_domain to point to Unicode strings containing the user name and domain name of the user to be
impersonated. The application does not need to set the user_id and pwd fields. AP_PROXY_STRONG differs from
AP_PROXY_PGM in that AP_PROXY_STRONG does not allow clear-text passwords. If the remote system does not
support encrypted passwords (strong conversation security), then this call fails.

AP_SAME for a TP that has been invoked with a valid user identifier and password, which in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP B
specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified indicator.
This indicator tells TP C to not require the password (if TP C is configured to accept an already-verified indicator).

When AP_SAME is used in an ALLOCATE verb, your application must always provide values for the user_id and pwd
parameters in the verb control block. Depending on the properties negotiated between the SNA server and the peer LU, the
ALLOCATE verb will send one of three kinds of Attach (FMH-5) messages, in this order of precedence:

1. If the LUs have negotiated "already verified" security, then the Attach sent by the SNA server will not include the
contents of the pwd parameter field specified in the VCB.

2. If the LUs have negotiated "persistent verification" security, then the Attach sent by the SNA server will include the pwd
parameter specified in the VCB, but only when the Attach is the first for the specified user_id parameter since the start
of the LU-LU session, and will omit the pwd parameter on all subsequent Attaches (issued by your application or any
other application using this LU-LU-mode triplet).

3. If the LUs have not negotiated either of the above, then the Attach sent by the SNA server will omit both the user_id
and pwd parameters on all Attaches.

Your application cannot tell which mode of security has been negotiated between the LUs, nor can it tell whether the
ALLOCATE verb it is issuing is the first for that LU-LU-mode triplet. So your application must always set the user_id
and pwd parameter fields in the VCB when security is set to AP_SAME.

For more information on persistent verification and already verified security, see the SNA Formats Guide, section "FM
Header 5: Attach (LU 6.2)".

AP_STRONG for an invoked TP that uses conversation security and thus requires a user identifier and password.
Supply this information through the user_id and pwd parameters. AP_STRONG differs from AP_PGM in that
AP_STRONG does not allow clear-text passwords. If the remote system does not support encrypted passwords (strong
conversation security), then this call fails.

If the APPC automatic logon feature is to be used, security must be set to AP_PGM. See the Remarks section for
details.

reserv5

A reserved field.

pwd

Supplied parameter. Specifies the password associated with user_id.

The pwd parameter is required only if security is set to AP_PGM or AP_SAME. It must match the password for user_id that
was established during configuration.

The pwd parameter is a 10-byte EBCDIC character string and is case-sensitive. It can consist of the following EBCDIC
characters:

Uppercase and lowercase letters

Numerals 0 through 9

Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the pwd character string must be hard-coded to MS$SAME. See the
Remarks section for details.

user_id

Supplied parameter. Specifies the user identifier required to access the partner TP. It is required only if the security
parameter is set to AP_PGM or AP_SAME.

The user_id parameter is a 10-byte EBCDIC character string and is case-sensitive. It must match one of the user identifiers
configured for the partner TP.

The parameter can consist of the following EBCDIC characters:

Uppercase and lowercase letters

Numerals 0 through 9

Special characters $, #, @, and period (.)

If user_id is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the user_id character string must be hard-coded to MS$SAME. See the
Remarks section for details.

pip_dlen

Supplied parameter. Specifies the length of the program initialization parameters (PIP) to be passed to the partner TP. The
range is from 0 through 32767.

pip_dptr

Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater
than zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the general data stream (GDS) format. For more information, see SNA LU6.2
Reference: Peer Protocols published by IBM.

For Microsoft Windows® 2000, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

reserv7

A reserved field.

fqplu_name

Supplied parameter. Specifies the fully qualified name of the partner LU. This must match the fully qualified name of the local
LU defined in the remote node. The parameter consists of two type A EBCDIC character strings for the NETID and the LU
name of the partner LU. The names are separated by an EBCDIC period (.).

This name must be provided if no plu_alias is specified. It can consist of the following EBCDIC characters:

Uppercase letters

Numerals 0 through 9

Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

reserv8

A reserved field.

proxy_user

Supplied parameter. Specifies a LPWSTR pointing to a Unicode string containing the user name to be impersonated using
the privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext field, indicating an
extended VCB.

proxy_domain

Supplied parameter. Specifies a LPWSTR pointing to a Unicode string containing the domain name of the user to be
impersonated using the privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext
field, indicating an extended VCB.

reserv9

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL

Primary return code; the supplied parameter rtn_ctl specified immediate (AP_IMMEDIATE) return of control to the TP, and
the local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_SYNC_LEVEL

Secondary return code; the value specified for sync_level was invalid.

AP_BAD_TP_ID

Secondary return code; the value specified for tp_id was invalid.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied partner_lu_alias.

AP_BAD_CONV_TYPE (for a basic conversation)

Secondary return code; the value specified for conv_type was invalid.

AP_NO_USE_OF_SNASVCMG (for a mapped conversation)

Secondary return code; SNASVCMG is not a valid value for mode_name.

AP_INVALID_DATA_SEGMENT

Secondary return code; the PIP data was longer than the allocated data segment, or the address of the PIP data buffer was
wrong.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications system could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for system configured with multiple nodes using Host Integration Server, there
are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

ALLOCATE can establish either a basic or mapped conversation.

The conversation state is RESET when the TP issues this verb. After successful execution (primary_rc is AP_OK), the state
changes to SEND. If the verb does not execute, the state remains unchanged.

Several parameters of ALLOCATE are EBCDIC or ASCII strings. A TP can use the common service verb (CSV) CONVERT to
translate a string from one character set to the other.

To send the ALLOCATE request immediately, the invoking TP can issue FLUSH or CONFIRM immediately after ALLOCATE.
Otherwise, the ALLOCATE request accumulates with other data in the local LU's send buffer until the buffer is full.

By issuing CONFIRM after ALLOCATE, the invoking TP can immediately determine whether the allocation was successful (if
synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established
between the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of
mode_name.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx

Host Integration Server supports a feature called password substitution. This is a security feature supported by the latest
version of the OS/400 operating system (V3R1) which encrypts any password that flows between two nodes on an Attach
message. A password flows on an Attach whenever someone invokes an APPC transaction program specifying a user identifier
and password. For example, this happens whenever anyone logs on to an AS/400.

Support for password substitution is indicated by setting bit 5 in byte 23 of the BIND request to 1 (which indicates that
password substitution is supported). If the remote system sets this bit in the BIND response, the SNA server automatically
encrypts the LU 6.2 conversation security password included in the FMH-5 Attach message. APPC applications using Host
Integration Server 2009 automatically take advantage of this feature by setting the security field of the VCB to AP_PGM or
AP_STRONG in the ALLOCATE request.

If an APPC application wants to force an encrypted password to flow, the application can specify AP_STRONG for the security
field in the VCB in the ALLOCATE request. This option is implemented as defined in OS/400 V3R1, and is documented in the
OS/400 CPI-C programmer reference as CM_SECURITY_PROGRAM_STRONG, where the LU 6.2 pwd (password) field is
encrypted before it flows over the physical network.

The password substitution features is currently only supported by OS/400 V3R1 or later. If the remote system does not
support this feature, the SNA server will UNBIND the session with the sense code of 10060006. The two nodes negotiate
whether or not they support this feature in the BIND exchange. Host Integration Server sets a bit in the BIND, and also adds
some random data on the BIND for encryption. If the remote node supports password substitution, it sets the same bit in the
BIND response, and adds some (different) random data for decryption.

Host Integration Server 2009 supports automatic logon for APPC applications. This feature requires specific configuration by
the network administrator: The APPC application must be invoked on the LAN side from a client of Host Integration
Server 2009. The client must be logged into a Windows 2000 domain, but the client can be running on any operating system
supported by the Host Integration Server 2009 APPC APIs.

The client application is coded to use "program" level security, with a special hard-coded APPC user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA server, the server looks up the host account and
password corresponding to the Windows 2000 account under which the client is logged in, and substitutes the host account
information into the APPC attach message it sends to the host.

Note
It is illegal for the remote node to set the bit specifying password substitution and not add the random data.

According to IBM, there are implementations of LU 6.2 password substitution that do not support password substitution but do
echo the password substitution bit back to Host Integration Server 2009, without specifying any random data. When they do
this, the SNA server will UNBIND the session with the sense code 10060006.This sense code is interpreted as:

1006 = Required field or parameter missing.

0006 = A required subfield of a control vector was omitted.

Host Integration Server should also log an Event 17 (APPC session activation failure: BIND negative response sent).

The correct solution is for the failing implementation to be fixed. However, as a short-term workaround, the following Host
Integration Server service registry setting can be set:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\snaservr\parameters\NOPWDSUB: REG_SZ: YES

When this parameter is specified in the registry, password substitution support will be disabled.

Several updates have been made to Host Integration Server to allow a privileged APPC application to open an APPC
conversation using the Single Sign-On feature on behalf of any defined Windows 2000 user. This is referred to as the
privileged proxy feature. An extension has been added to the APPC ALLOCATE verb to invoke this feature.

An APPC application becomes privileged by being started in a Windows 2000 user account that is a member of a special
Windows 2000 group. When a Host Security Domain is configured, SNA Manager will define a second Windows 2000 group
for use with the host security features of Host Integration Server 2009. If the user account under which the actual client is
running is a member of this second Windows 2000 group, the client is privileged to initiate an APPC conversation on behalf of
any user account defined in the Host Account Cache.

The following illustrates how the privileged proxy feature works:

The Host Integration Server 2009 administrator creates a Host Security Domain called APP. SNA Manager now creates two

Windows 2000 groups. The first group is called APP and the second is called APP_PROXY for this example. Users that are
assigned to the APP group are enabled for Single Sign-On. Users assigned to the APP_PROXY group are privileged proxies. The
administrator adds the Windows 2000 user AppcUser to the APP_PROXY group using the Users button on the Host Security
Domain property dialog box in SNA Manager.

The administrator then sets up an APPC application on the Host Integration Server to run as a Windows 2000 service called
APPCAPP and that service has been set up to operate under the AppcUser user account. When APPCAPP runs, it opens an
APPC session via an ALLOCATE verb using the extended VCB format and specifies the Windows 2000 user name of the
desired user, UserA (for example).

The SNA Service sees the session request coming from a connection that is a member of the Host Security Domain APP. The
Client/Server interface tells the SNA Service that the actual client is AppcUser.

The SNA Service checks to see if AppcUser is a member of the APP_PROXY group. Because AppcUser is a member of
APP_PROXY, the SNA Service inserts the Username/Password for UserA in the APPC Attach (FMH-5) command and sends it off
to the partner TP.

In order to support the privileged proxy feature, the APPC application must implement the following program logic:

The APPC application must determine the Windows 2000 user ID and domain name that it wishes to impersonate.

The APPC application must set the following parameters before calling the ALLOCATE verb:

Enable the use of the extended ALLOCATE verb control block structure by setting the AP_EXTD_VCB flag in the opext field.

Set security to AP_PROXY_SAME, AP_PROXY_PGM or AP_PROXY_STRONG.

Set up the pointers for proxy_user and proxy_domain to point to Unicode strings containing the user name and domain
name of the user to be impersonated.

Note
The application does not need to set up the user_id and pwd fields in the ALLOCATE VCB.

When the APPC application performs the above steps and issues the ALLOCATE verb, the Host Integration Server 2009 server
will perform a lookup in the host security domain for the specified Windows 2000 user and set the user ID and password fields
in the FMH-5 Attach message sent to the remote system.

CONFIRM
The CONFIRM verb sends the contents of the local logical unit's (LU) send buffer and a confirmation request to the partner
transaction program (TP).

The following structure describes the verb control block used by the CONFIRM verb.

Syntax

Remarks

Members

opcode

Supplied parameter. Specifies the verb operation code, AP_B_CONFIRM.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id

Returned parameter. Identifies the conversation established between the two TPs.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued REQUEST_TO_SEND, which requests the local TP to change the
conversation to RECEIVE state.

To change to RECEIVE state operating on Microsoft Windows 2000 the local TP can use PREPARE_TO_RECEIVE,
RECEIVE_AND_WAIT, or RECEIVE_AND_POST.

Return Codes

AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

struct confirm {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_CONFIRM_ON_SYNC_LEVEL_NONE

Secondary return code; the local TP attempted to use CONFIRM in a conversation with a synchronization level of AP_NONE.
The synchronization level, established by ALLOCATE, must be AP_CONFIRM_SYNC_LEVEL.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state.

AP_CONFIRM_NOT_LL_BDY

Secondary return code; the conversation for the local TP was in SEND state, and the local TP did not finish sending a logical
record.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE, AP_CONFIRM_SYNC_LEVEL, or
AP_SYNCPT) specified in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer has encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_typeset to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

Remarks

In response to CONFIRM, the partner TP normally issues CONFIRMED to confirm that it has received the data without error. (If
the partner TP encounters an error, it issues SEND_ERROR or abnormally deallocates the conversation.)

The TP can issue CONFIRM only if the conversation's synchronization level, established by ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL.

The conversation must be in SEND state when the TP issues this verb. State changes, summarized in the following table, are
based on the value of the primary_rc.

primary_rc New state

AP_OK No change

AP_ALLOCATION_ERROR RESET

AP_COMM_SUBSYSTEM_ABENDED AP_COMM_SUBSYSTEM_NOT_LOADED RESET RESET

AP_CONV_FAILURE_RETRY AP_CONV_FAILURE_NO_RETRY RESET RESET

AP_DEALLOC_ABEND AP_DEALLOC_ABEND_PROG AP_DEALLOC_ABEND_SVC AP_DEALLOC_ABEND
_TIMER

RESET RESET RESET RES
ET

AP_PROG_ERROR_PURGING AP_SVC_ERROR_PURGING RECEIVE RECEIVE

CONFIRM waits for a response from the partner TP. A response is generated by one of the following verbs in the partner TP:

CONFIRMED

SEND_ERROR

DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER

TP_ENDED

By issuing CONFIRM afterALLOCATE, the invoking TP can immediately determine whether the allocation was successful (if
synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established
between the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of
mode_name. For more information, see Host Integration Server 2009 Help.

Several parameters of ALLOCATE are EBCDIC or ASCII strings. A TP can use the common service verb (CSV) CONVERT to
translate a string from one character set to the other.

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx

To send the ALLOCATE request immediately, the invoking TP can issue FLUSH or CONFIRM immediately after ALLOCATE.
Otherwise, the ALLOCATE request accumulates with other data in the local LU's send buffer until the buffer is full.

https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx

CONFIRMED
The CONFIRMED verb responds to a confirmation request from the partner transaction program (TP). It informs the partner
TP that the local TP has not detected an error in the received data. Because the TP issuing the confirmation request waits for a
confirmation, CONFIRMED synchronizes the processing of the two TPs.

The following structure describes the verb control block (VCB) used by the CONFIRMED verb.

Syntax

Remarks

Members

opcode

Supplied parameter. Specifies the verb operation code, AP_B_CONFIRMED.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTEDin the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND, which requests the local TP to change
the conversation to RECEIVE state.

To change to RECEIVE state the local TP can use MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_POST.

Return Codes

AP_OK

Primary return code; the verb executed successfully.

struct confirmed {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRMED_BAD_STATE

Secondary return code; the conversation is not in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation must be in one of the following states when the TP issues this verb:

CONFIRM

CONFIRM_SEND

CONFIRM_DEALLOCATE

The new state is determined by the old state—the state of the conversation when the local TP issued CONFIRMED. The old
state is indicated by the value of the what_rcvd parameter of the preceding receive verb. The following state changes are
possible:

Old state New state

CONFIRM RECEIVE

CONFIRM_SEND SEND

CONFIRM_DEALLOCATE RESET

Confirmation Requests

A confirmation request is issued by one of the following verbs in the partner TP:

CONFIRM

PREPARE_TO_RECEIVE if ptr_type is set to AP_SYNC_LEVEL and the conversation's synchronization level (established by
ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

DEALLOCATE if dealloc_type is set to AP_SYNC_LEVEL and the conversation's synchronization level (established by
ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

SEND_DATA if type is set to AP_SEND_DATA_CONFIRM and the conversation's synchronization level (established by
ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

A confirmation request is received by the local TP through the what_rcvd parameter of one of the following verbs:

RECEIVE_IMMEDIATE

RECEIVE_AND_WAIT

RECEIVE_AND_POST

CONFIRMED is issued by the local TP only if what_rcvd contains one of the following values:

AP_CONFIRM_WHAT_RECEIVED

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

If the rtn_status parameter is set to AP_YES, what_rcvd can also contain the following values:

AP_DATA_COMPLETE_CONFIRM

AP_DATA_COMPLETE_CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_DEALL

For basic conversations, what_rcvd can also contain the following values:

https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx

AP_DATA_CONFIRM

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

DEALLOCATE
The DEALLOCATE verb deallocates a conversation between two transaction programs (TPs).

The following structure describes the verb control block (VCB) used by the DEALLOCATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_DEALLOCATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3

A reserved field.

dealloc_type

Supplied parameter. Specifies how to perform the deallocation.

Using one of the following values deallocates the conversation abnormally:

AP_ABEND_PROG

struct deallocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char dealloc_type;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
 void (WINAPI *callback)();
 void *correlator;
 unsigned char reserv6[4];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

AP_ABEND_SVC

AP_ABEND_TIMER

If the conversation is in SEND state when the local TP issues DEALLOCATE, APPC sends the contents of the local logical
unit's (LU) send buffer to the partner TP before deallocating the conversation. If the conversation is in RECEIVE or
PENDING_POST state, APPC purges any incoming data before deallocating the conversation.

An application or service TP should specify AP_ABEND_PROG when it encounters an error preventing the successful
completion of a transaction.

A service TP should specify AP_ABEND_SVC when it encounters an error caused by its partner service TP (for example, a
format error in control information sent by the partner service TP). A service TP should specify AP_ABEND_TIMER when it
encounters an error requiring immediate deallocation (for example, an operator ending the program prematurely).

AP_FLUSH sends the contents of the local LU's send buffer to the partner TP before deallocating the conversation. This value
is allowed only if the conversation is in SEND state.

AP_SYNC_LEVEL uses the conversation's synchronization level (established by ALLOCATE) to determine how to deallocate
the conversation. This value is allowed only if the conversation is in SEND state.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before deallocating the conversation.

If the synchronization level is AP_CONFIRM_SYNC_LEVEL, APPC sends the contents of the local LU's send buffer and a
confirmation request to the partner TP. Upon receiving confirmation from the partner TP, APPC deallocates the conversation.
If, however, the partner TP reports an error, the conversation remains allocated.

log_dlen

Supplied parameter. Specifies the number of bytes of data to be sent to the error log file. The range is from 0 through 32767.

You can set this parameter to a number greater than zero if dealloc_type is set to AP_ABEND_PGM, AP_ABEND_SVC, or
AP_ABEND_TIMER. Otherwise, this parameter must be zero.

log_dptr

Supplied parameter. Provides the address of the data buffer containing error information. The data is sent to the local error
log and to the partner LU.

This parameter is used by DEALLOCATE if log_dlen is greater than zero.

For Microsoft Windows 2000, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

For OS/2, the log data buffer must reside on an unnamed, shared segment, which is allocated by the function DosAllocSeg
with Flags equal to 1. The log data buffer must fit entirely on the segment.

The TP must format the error data as a GDS error log variable. For more information, see your IBM SNA manual(s).

callback

Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member, indicating support for Sync Point. This
parameter is the address of a user-supplied callback function. If this field is NULL, no notification will be provided.

The prototype of the callback routine is as follows:

The callback procedure can take any name, since the address of the procedure is passed to the APPC DLL. The parameters
passed to the function are as follows:

vcb

void WINAPI callback_proc(
 struct appc_hdr *vcb,
 unsigned char tp_id[8],
 unsigned long conv_id,
 unsigned short type,
 void *correlator
);

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

A pointer to the DEALLOCATE verb control block that caused the conversation to be deallocated.

tp_id

The TP identifier of the TP that owned the deallocated conversation.

conv_id

The conversation identifier of the deallocated conversation.

type

The type of the message flow that caused the callback to be invoked. Possible values are:

AP_DATA_FLOW

Normal data flow on the session.

AP_UNBIND

The session was unbound normally.

AP_FAILURE

The session terminated due to an outage.

correlator

This value is the correlator specified on the DEALLOCATE verb.

correlator

Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member, indicating support for the Sync Point
API. This correlator field allows the TP to specify a value it can use to correlate a call to the callback function with, for
example, its own internal data structures. This value is returned to the TP as one of the parameters of the callback routine
when it is invoked.

reserv4

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_DEALLOC_BAD_TYPE

Secondary return code; the dealloc_type parameter was not set to a valid value.

AP_DEALLOC_LOG_LL_WRONG

Secondary return code; the LL field of the GDS error log variable did not match the actual length of the log data.

AP_INVALID_DATA_SEGMENT

Secondary return code; the error data for the log file was longer than the segment allocated to contain the error data, or the
address of the error data buffer was wrong.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_DEALLOC_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state, and the TP attempted to flush the send buffer and send a
confirmation request. This attempt occurred because the value of dealloc_type was AP_SYNC_LEVEL and the
synchronization level of the conversation was AP_CONFIRM_SYNC_LEVEL.

AP_DEALLOC_FLUSH_BAD_STATE

Secondary return code; the conversation was not in SEND state and the TP attempted to flush the send buffer. This attempt
occurred because the value of dealloc_type was AP_FLUSH or because the value of dealloc_type was AP_SYNC_LEVEL and
the synchronization level of the conversation was AP_NONE. In either case, the conversation must be in SEND state.

AP_DEALLOC_NOT_LL_BDY

Secondary return code; the conversation was in SEND state, and the TP did not finish sending a logical record. The
dealloc_type parameter was set to AP_SYNC_LEVEL or AP_FLUSH.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

Remarks

Depending on the value of the dealloc_type parameter, the conversation can be in one of the states indicated in the following
table when the TP issues DEALLOCATE.

dealloc_type Allowed state

AP_FLUSH SEND

AP_SYNC_LEVEL SEND

AP_ABEND Any except RESET

AP_ABEND_PROG Any except RESET

AP_ABEND_SVC Any except RESET

AP_ABEND_TIMER Any except RESET

State changes, summarized in the following table, are based on the value of the primary_rc.

primary_rc New state

AP_OK RESET

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

Before deallocating the conversation, this verb performs the equivalent of one of the following:

FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).

CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx

After this verb has successfully executed, the conversation identifier is no longer valid.

LU 6.2 Sync Point can use an optimization of the message flows known as implied forget. When the protocol specifies that a
FORGET PS header is required, the next data flow on the session implies that a FORGET has been received. In the normal
situation, the TP is aware of the next data flow when data is received or sent on one of its Sync Point conversations.

However, it is possible that the last message to flow is caused by the conversation being deallocated. In this case, the TP is
unaware when the next data flow on the session occurs. To provide the TP with this notification, the DEALLOCATE verb is
modified to allow the TP to register a callback function which will be called:

On the first normal flow transmission (request or response) over the session used by the conversation.

If the session is unbound before any other data flows.

If the session is terminated abnormally due to a DLC outage.

The DEALLOCATE verb also contains a correlator field member that is returned as one of the parameters when the callback
function is invoked. The application can use this parameter in any way (for example, as a pointer to a control block within the
application).

The TP can use the type parameter passed to the callback function to determine whether the message flow indicates an implied
forget has been received.

Note that the DEALLOCATE verb will probably complete before the callback routine is called. The conversation is considered to
be in RESET state and no further verbs can be issued using the conversation identifier. If the application issues a TP_ENDED
verb before the next data flow on the session, the callback routine will not be invoked.

Host Integration Server 2009 allows TPs to deallocate conversations immediately after sending data by specifying the type
parameter on SEND_DATA as AP_SEND_DATA_DEALLOC_*. However, the SEND_DATA verbs do not contain the implied forget
callback function. TPs that want to receive implied forget notification must issue DEALLOCATE explicitly.

https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx

FLUSH
The FLUSH verb sends the contents of the local logical unit's (LU) send buffer to the partner LU and transaction program (TP).
If the send buffer is empty, no action takes place.

The following structure describes the verb control block (VCB) used by the FLUSH verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_FLUSH.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

struct flush {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_FLUSH_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

Data processed by SEND_DATA accumulates in the local LU's send buffer until one of the following happens:

The local TP issues FLUSH (or other verb that flushes the LU's send buffer).

The buffer is full.

The request generated by ALLOCATE is also buffered.

The conversation must be in SEND state when the TP issues this verb.

There is no state change.

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

GET_ATTRIBUTES
The GET_ATTRIBUTES verb returns the attributes of the conversation.

The following structure describes the verb control block (VCB) used by the GET_ATTRIBUTES verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_GET_ATTRIBUTES.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local transaction program (TP). The value of this parameter is returned by TP_STARTED in
the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

struct get_attributes {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char sync_level;
 unsigned char mode_name[8];
 unsigned char net_name[8];
 unsigned char lu_name[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char plu_un_name[8];
 unsigned char reserv4[2];
 unsigned char fqplu_name[17];
 unsigned char reserv5;
 unsigned char user_id[10];
 unsigned long conv_group_id;
 unsigned char conv_corr_len;
 unsigned char conv_corr[8];
 unsigned char reserv6[13];
NOTE: The following fields are present when the high bit of opext is set (opext & AP_EXTD_V
CB) != 0.
 unsigned char luw_id[26];
 unsigned char sess_id[8];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

sync_level

Returned parameter. Specifies the level of synchronization processing for the conversation. This parameter determines
whether the TPs can request confirmation of receipt of data and confirm receipt of data.

AP_NONE indicates that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL indicates that TPs can use confirmation processing in this conversation.

AP_SYNCPT indicates that TPs can use Sync Point Level 2 confirmation processing in this conversation.

mode_name

Returned parameter. Specifies the name of a set of networking characteristics. It is a type A EBCDIC character string.

net_name

Returned parameter. Specifies the name of the SNA network containing the local logical unit (LU) used by this TP. It is a type
A EBCDIC character string.

lu_name

Returned parameter. Provides the name of the local LU.

lu_alias

Returned parameter. Provides the alias by which the local LU is known to the local TP. It is an ASCII character string.

plu_alias

Returned parameter. Provides the alias by which the partner LU is known to the local TP. It is an ASCII character string.

plu_un_name

Returned parameter. Specifies the uninterpreted name of the partner LU—the name of the partner LU as defined to the
system services control point (SSCP). It is a type AE EBCDIC character string. This parameter is returned only if the local LU is
dependent.

fqplu_name

Returned parameter. Provides the fully qualified name of the partner LU. It is a type A EBCDIC character string. The field
contains the network name, an EBCDIC period, and the partner-LU name.

user_id

Returned parameter. Specifies the user identifier sent by the invoking TP through ALLOCATE to access the invoked TP (if
applicable). It is a type AE EBCDIC character string. The field contains the user identifier if the following conditions are true:

The invoked TP requires conversation security.

GET_ATTRIBUTES was issued by the invoked TP.

Otherwise, the field contains spaces.

conv_group_id

Returned parameter. Specifies the conversation group identifier for the session to which the conversation has been allocated.
This is also returned on ALLOCATE and RECEIVE_ALLOCATE.

conv_corr_len

Returned parameter. Specifies the length of the conversation correlator identifier that is returned.

conv_corr

Returned parameter. Specifies the conversation correlator identifier (if any) that the source LU assigns to identify the
conversation, which is unique for the source/partner LU pair. It is sent by the source LU on the allocation request.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Note
The following fields are present when the high bit of opext is set(opext & AP_EXTD_VCB) != 0.These fields are only presen
t when using Sync Point Level 2 support.

luw_id

Logical unit-of-work identifier.

sess_id

Session identifier.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

GET_LU_STATUS
The GET_LU_STATUS verb returns the status of a particular logical unit (LU). This conversation verb is only available when
Sync Point conversations are supported.

The following structure describes the verb control block (VCB) used by the GET_LU_STATUS verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_GET_LU_STATUS.

opext

This field is unused by the GET_LU_STATUS verb.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local transaction program (TP). The value of this parameter was returned by TP_STARTED
in the invoking TP, or by RECEIVE_ALLOCATE or RECEIVE_ALLOCATE_EX in the invoked TP.

plu_alias

Supplied parameter. Provides the identifier for the LU about which this TP is inquiring. The value of this parameter was
returned by MC_ALLOCATE or ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Not required if local_only is set to AP_YES

active_sess

Returned parameter. Supplies the number of active sessions on this LU.

zero_sess

Returned parameter. Indicates whether a zero session is on this LU. Values are AP_YES or AP_NO.

active_sess

struct get_type {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned char plu_alias[8];
 unsigned short active_sess;
 unsigned char zero_sess;
 unsigned char local_only;
 unsigned char synchpoint;
 unsigned char pool_member;
 unsigned char reserv3[7];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Returned parameter.

zero_sess

Returned parameter.

local_only

If this field is set to AP_YES then the plu_alias does not need to be specified and the verb only returns the local LU
information - syncpoint and default_pool.

synchpoint

Returned parameter.

pool_member

If this field is set to AP_YES then the plu_alias does not need to be specified and the verb only returns the local LU
information - syncpoint and default_pool.

reserv3

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_LU_ALIAS

Secondary return code; the value of plu_alias did not match any LUs assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

The current version of GET_LU_STATUS allows for an application to retrieve configuration parameters for a Local APPC LU.

To check the configuration of a particular Local LU before issuing a RECEIVE_ALLOCATE_EX verb, the following verb sequence
should be issued:

TP_STARTED (specifying the Local LU of interest)

GET_LU_STATUS (with local_only set to AP_YES)

TP_ENDED (AP_SOFT)

GET_STATE
The GET_STATE verb returns the state of a particular conversation.

The following structure describes the verb control block (VCB) used by the GET_STATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_GET_STATE.

opext

This field is unused by the GET_STATE verb.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local transaction program (TP). The value of this parameter was returned by TP_STARTED
in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the identifier for the conversation about which this TP is inquiring. The value of this parameter
was returned by MC_ALLOCATE or ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_state

Returned parameter. Indicates the state of the conversation. The conv_state parameter can be one of the following values:

AP_RESET_STATE

The conversation is in the RESET state.

AP_SEND_STATE

The conversation is in the SEND state.

AP_RECEIVE_STATE

The conversation is in the RECEIVE state.

AP_CONFIRM_STATE

The conversation is in the CONFIRM state.

struct get_state {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char conv_state;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

AP_CONFIRM_SEND_STATE

The conversation is in the CONFIRM_SEND state.

AP_CONFIRM_DEALL_STATE

The conversation is in the CONFIRM_DEALLOCATE state.

AP_PEND_POST_STATE

The conversation has a POST verb pending.

AP_PEND_DEALL_STATE

The conversation has a DEALLOCATE verb pending.

AP_END_CONV_STATE

The conversation is in the END_CONVERSATION state.

AP_SEND_PENDING_STATE

The conversation is in the SEND_PENDING state.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state when the TP issues this verb.

There is no state change.

GET_TYPE
The GET_TYPE verb returns the conversation type (basic or mapped) of a particular conversation so the transaction program
(TP) can decide whether to use basic or mapped conversation verbs.

The following structure describes the verb control block (VCB) used by the GET_TYPE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_GET_TYPE.

opext

This field is unused by the GET_TYPE verb.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the identifier for the conversation about which this TP is inquiring. The value of this parameter
was returned by MC_ALLOCATE or ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_type

Returned parameter. Supplies the type of conversation, either AP_BASIC_CONVERSATION or AP_MAPPED_CONVERSATION.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

struct get_type {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char conv_type;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

MC_ALLOCATE
The MC_ALLOCATE verb is issued by the invoking transaction program (TP). It allocates a session between the local logical
unit (LU) and partner LU and (in conjunction with RECEIVE_ALLOCATE) establishes a conversation between the invoking TP and
the invoked TP. After this verb executes successfully, APPC generates a conversation identifier (conv_id). The conv_id is a
required parameter for all other APPC conversation verbs.

The following structure describes the verb control block (VCB) used by the MC_ALLOCATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code; AP_M_ALLOCATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION. If the AP_EXTD_VCB bit is set, this
indicates that an extended version of the verb control block is used. In this case, the MC_ALLOCATE structure includes Sync
Point support or privileged proxy feature support.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

struct mc_allocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char synclevel;
 unsigned char reserv4[2];
 unsigned char rtn_ctl;
 unsigned char reserv5;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv6[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv7;
 unsigned char fqplu_name[17];
 unsigned char reserv8[8];
 unsigned long proxy_user;
 unsigned long proxy_domain;
 unsigned char reserv9[16];
};

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id

Returned parameter. Identifies the conversation established between the two TPs.

reserv3

A reserved field.

synclevel

Supplied parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.

AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

reserv4

A reserved field.

reserv5

A reserved field.

rtn_ctl

Supplied parameter. Specifies when the local LU, acting on a session request from the local TP, should return control to the
local TP. For information about sessions, see Transaction Programs Overview.

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns
control to the TP.

AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU returns
control immediately.) If a session is not available, the TP waits for one.

AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs, (as documented in Return Codes in
this topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.

AP_WHEN_CONWINNER_ALLOC specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors documented in Return Codes in this topic. (If the session limit is zero, the LU
returns control immediately.) If a session is not available, the TP waits for one.

AP_WHEN_CONV_GROUP_ALLOC specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_idor encounters one of the errors documented in Return Codes in this topic. If a session is
not available, the TP waits for it to become free.

Note
AP_IMMEDIATE is the only value for rtn_ctl that never causes a new session to start. For values other than AP_IMMEDIATE,
if an appropriate session is not immediately available, Microsoft® Host Integration Server tries to start one. This causes the
on-demand connection to be activated.

conv_group_id

Supplied/returned parameter. Specifies the identifier of the conversation group from which the session should be allocated.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771060(v=bts.10).aspx

The conv_group_id is required only if rtn_ctlis set to WHEN_CONV_GROUP_ALLOC. Whenrtn_ctl specifies a different value
and the primary_rc is AP_OK, this is a returned value.

sense_data

Returned parameter. Indicates an allocation error (retry or no-retry) and contains sense data.

plu_alias

Supplied parameter. Specifies the alias by which the partner LU is known to the local TP.

The plu_alias must match the name of a partner LU established during configuration.

The parameter is an 8-byte ASCII character string. It can consist of the following ASCII characters:

Uppercase letters

Numerals 0 through 9

Spaces

Special characters $, #, %, and @

The first character of this string cannot be a space.

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

If you want to specify the partner LU with the fqplu_name parameter, fill this parameter with binary zeros.

For a user or group using TPs, 5250 emulators, and/or APPC applications, the system administrator can assign default local
and remote LUs. In this case, the field is left blank or null and the default LUs are accessed when the user or group member
starts an APPC program. For more information on default LUs, see Host Integration Server 2009 Help.

mode_name

Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration.

The value of mode_name must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set:

Uppercase letters

Numerals 0 through 9

Special characters $, #, and @

The first character in the string must be an uppercase letter or a special character.

Do not use SNASVCMG in a mapped conversation. SNASVCMG is a reserved mode_name used internally by APPC.

tp_name

Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by MC_ALLOCATE in the
invoking TP must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of the
following EBCDIC characters:

Uppercase and lowercase letters

Numerals 0 through 9

Special characters $, #, @, and period (.)

If tp_name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte
between 0x00 and 0x3F. The other characters are from the type AE EBCDIC character set.

security

Supplied parameter. Provides the information that the partner LU requires to validate access to the invoked TP. See the
section Possible values for the Security parameter in this topic.

Reserv6

A reserved field.

pwd

Supplied parameter. Specifies the password associated with user_id.

The pwd parameter is required only if security is set to AP_PGM or AP_SAME. It must match the password for user_id that
was established during configuration.

The pwd parameter is a 10-byte EBCDIC character string and is case-sensitive. It can consist of the following EBCDIC
characters:

Uppercase and lowercase letters

Numerals 0 through 9

Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the pwd character string must be hard-coded to MS$SAME. See the
Remarks section for details.

user_id

Supplied parameter. Specifies the user identifier required to access the partner TP. It is required only if the security
parameter is set to AP_PGM or AP_SAME.

The user_id parameter is a 10-byte EBCDIC character string and is case-sensitive. It must match one of the user identifiers
configured for the partner TP.

The parameter can consist of the following EBCDIC characters:

Uppercase and lowercase letters

Numerals 0 through 9

Special characters $, #, @, and period (.)

If user_id is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

If the APPC automatic logon feature is to be used, the user_id character string must be hard-coded to MS$SAME. See the
Remarks section for details.

pip_dlen

Supplied parameter. Specifies the length of the program initialization parameters (PIP) to be passed to the partner TP. The
range is from 0 through 32767.

pip_dptr

Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater
than zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the general data stream (GDS) format. For more information, see your IBM SNA
manual(s).

For Microsoft Windows 2000, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

reserv7

A reserved field.

fqplu_name

Supplied parameter. Specifies the fully qualified name of the partner LU. This must match the fully qualified name of the local
LU defined in the remote node. The parameter consists of two type A EBCDIC character strings for the NETID and the LU
name of the partner LU. The names are separated by an EBCDIC period (.).

This name must be provided if no plu_alias is specified. It can consist of the following EBCDIC characters:

18Uppercase letters

Numerals 0 through 9

Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

reserv8

A reserved field.

proxy_user

Supplied parameter. Specifies a LPWSTR pointing to a Unicode string containing the user name to be impersonated using
the privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext field, indicating an
extended VCB.

proxy_domain

Supplied parameter. Specifies a LPWSTR pointing to a Unicode string containing the domain name of the user to be
impersonated using the privileged proxy feature. This field can only be used when the AP_EXTD_VCB bit is set on the opext
field, indicating an extended VCB.

reserv9

A reserved field.

Possible Values for the Security Parameter

Based on the conversation security established for the invoked TP during configuration, use one of the following values:

AP_NONE for an invoked TP that uses no conversation security.

AP_PGM for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply this
information through the user_id and pwd parameters.

AP_PROXY_PGM for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password. Pointers must be set up for proxy_user and proxy_domain to point to Unicode strings
containing the user name and domain name of the user to be impersonated. The application does not need to set the
user_id and pwd fields.

AP_PROXY_SAME for a TP that has been invoked using privileged proxy with a valid user identifier and password
supplied by the proxy, which in turn invokes another TP. Pointers must be set up for proxy_user and proxy_domain to
point to Unicode strings containing the user name and domain name of the user to be impersonated. The application
does not need to set the user_id and pwd fields.

For example, assume that TP A invokes TP B with a valid user identifier and password supplied by the privileged proxy,
and TP B in turn invokes TP C. If TP B specifies the value AP_PROXY_SAME, APPC will send the LU for TP C the user
identifier from TP A and an already-verified indicator. This indicator tells TP C to not require the password (if TP C is
configured to accept an already-verified indicator).

AP_PROXY_STRONG for an invoked TP with privileged proxy that uses conversation security and thus requires a user
identifier and password provided by the privileged proxy mechanism. Pointers must be set up for proxy_user and
proxy_domain to point to Unicode strings containing the user name and domain name of the user to be impersonated.
The application does not need to set the user_id and pwd fields. AP_PROXY_STRONG differs from AP_PROXY_PGM in
that AP_PROXY_STRONG does not allow clear-text passwords. If the remote system does not support encrypted
passwords (strong conversation security), then this call fails.

AP_SAME for a TP that has been invoked with a valid user identifier and password, which in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP
B specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified
indicator. This indicator tells TP C to not require the password (if TP C is configured to accept an already-verified
indicator).

When AP_SAME is used in an MC_ALLOCATE verb, your application must always provide values for the user_id and
pwd parameters in the verb control block. Depending on the properties negotiated between Host Integration
Server 2009 and the peer LU, the MC_ALLOCATE verb will send one of three kinds of Attach (FMH-5) messages, in this
order of precedence:

1. If the LUs have negotiated "already verified" security, then the Attach sent by Host Integration Server 2009 will not
include the contents of the pwd parameter field specified in the VCB.

2. If the LUs have negotiated "persistent verification" security, then the Attach sent by Host Integration Server will
include the pwd parameter specified in the VCB, but only when the Attach is the first for the specified user_id
parameter since the start of the LU-LU session, and will omit the pwd parameter on all subsequent Attaches
(issued by your application or any other application using this LU-LU-mode triplet).

3. If the LUs have not negotiated either of the above, then the Attach sent by Host Integration Server will omit both
the user_id and pwd parameters on all Attaches.

Your application cannot tell which mode of security has been negotiated between the LUs, nor can it tell whether
the MC_ALLOCATE verb it is issuing is the first for that LU-LU-mode triplet. So your application must always set
the user_id and pwd parameter fields in the VCB when security is set to AP_SAME.

For more information on persistent verification and already verified security, see the SNA Formats Guide, section
"FM Header 5: Attach (LU 6.2)".

AP_STRONG for an invoked TP that uses conversation security and thus requires a user identifier and password. Supply
this information through the user_id and pwd parameters. AP_STRONG differs from AP_PGM in that AP_STRONG does
not allow clear-text passwords. If the remote system does not support encrypted passwords (strong conversation
security), then this call fails.

If the APPC automatic logon feature is to be used, security must be set to AP_PGM. See the Remarks section for details.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL

Primary return code; the supplied parameter rtn_ctl specified immediate (AP_IMMEDIATE) return of control to the TP, and
the local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was not valid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was not valid.

AP_BAD_SYNC_LEVEL

Secondary return code; the value specified for sync_level was not valid.

AP_BAD_TP_ID

Secondary return code; the value specified for tp_id was not valid.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was not valid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied partner_lu_alias.

AP_NO_USE_OF_SNASVCMG

Secondary return code; SNASVCMG is not a valid value for mode_name.

AP_INVALID_DATA_SEGMENT

Secondary return code; the PIP data was longer than the allocated data segment, or the address of the PIP data buffer was
wrong.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it can indicate that no communications system could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.)
Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces
to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that can

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Host Integration Server system configured with multiple nodes, there
are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

MC_ALLOCATE establishes a mapped conversation.

The conversation state is RESET when the TP issues this verb. After successful execution (primary_rc is AP_OK), the state
changes to SEND. If the verb does not execute, the state remains unchanged.

Several parameters of MC_ALLOCATE are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a string from
one character set to the other.

To send the MC_ALLOCATE request immediately, the invoking TP can issue MC_FLUSH or MC_CONFIRM immediately after
MC_ALLOCATE. Otherwise, the MC_ALLOCATE request accumulates with other data in the local LU's send buffer until the
buffer is full.

By issuing MC_CONFIRM after MC_ALLOCATE, the invoking TP can immediately determine whether the allocation was
successful (if synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the MC_ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established
between the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of
mode_name.

Host Integration Server 2009 supports a feature called password substitution. This is a security feature supported by the latest
version of the OS/400 operating system (V3R1) that encrypts any password that flows between two nodes on an Attach
message. A password flows on an Attach whenever someone invokes an APPC transaction program specifying a user identifier
and password. For example, this happens whenever anyone logs on to an AS/400.

https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx

Support for password substitution is indicated by setting bit 5 in byte 23 of the BIND request to 1 (which indicates that
password substitution is supported). If the remote system sets this bit in the BIND response, Host Integration Server
automatically encrypts the LU 6.2 conversation security password included in the FMH-5 Attach message. Host Integration
Server APPC applications automatically take advantage of this feature by setting the security field of the VCB to AP_PGM or
AP_STRONG in the MC_ALLOCATE request.

If an APPC application wants to force an encrypted password to flow, the application can specify AP_STRONG for the security
field in the VCB in the MC_ALLOCATE request. This option is implemented as defined in OS/400 V3R1, and is documented in
the OS/400 CPI-C programmer reference as CM_SECURITY_PROGRAM_STRONG, where the LU 6.2 pwd (password) field is
encrypted before it flows over the physical network.

The password substitution feature is currently only supported by OS/400 V3R1 or later. If the remote system does not support
this feature, Host Integration Server will UNBIND the session with the sense code of 10060006. The two nodes negotiate
whether or not they support this feature in the BIND exchange. Host Integration Server sets a bit in the BIND, and also adds
some random data on the BIND for encryption. If the remote node supports password substitution, it sets the same bit in the
BIND response, and adds some (different) random data for decryption.

Host Integration Server 2009 supports automatic logon for APPC applications. This feature requires specific configuration by
the network administrator: The APPC application must be invoked on the LAN side from a client of Host Integration Server. The
client must be logged into a Windows 2000 domain, but can be any platform that supports the Host Integration Server 2009
APPC APIs.

The client application is coded to use "program" level security, with a special hard-coded APPC user name MS$SAME and
password MS$SAME. When this session allocation flows from client to Host Integration Server, the Host Integration Server
server looks up the host account and password corresponding to the Windows 2000 account under which the client is logged
in, and substitutes the host account information into the APPC attach message it sends to the host.

Note
It is illegal for the remote node to set the bit specifying password substitution and not add the random data.

According to IBM, there are implementations of LU 6.2 password substitution that do not support password substitution but do
echo the password substitution bit back to Host Integration Server, without specifying any random data. When they do this,
Host Integration Server will UNBIND the session with the sense code 10060006.This sense code is interpreted as:

1006 = Required field or parameter missing.

0006 = A required subfield of a control vector was omitted.

Host Integration Server should also log an Event 17 (APPC session activation failure: BIND negative response sent).

The correct solution is for the failing implementation to be fixed. However, as a short-term workaround, the following Host
Integration Server SNA Service registry setting can be set:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\snaservr\parameters\NOPWDSUB: REG_SZ: YES

When this parameter is specified in the registry, Host Integration Server password substitution support will be disabled.

Several updates have been made to Host Integration Server to allow a privileged APPC application to open an APPC
conversation using the Single Sign-On feature on behalf of any defined Windows 2000 user. This is referred to as the
privileged proxy feature. An extension has been added to the APPC MC_ALLOCATE verb to invoke this feature.

An APPC application becomes privileged by being started in a Windows 2000 user account that is a member of a special
Windows 2000 group. When a Host Security Domain is configured, SNA Manager will define a second Windows 2000 group
for use with the host security features of Host Integration Server. If the user account under which the actual client is running is
a member of this second Windows 2000 group, the client is privileged to initiate an APPC conversation on behalf of any user
account defined in the Host Account Cache.

The following illustrates how the privileged proxy feature works:

The Host Integration Server administrator creates a Host Security Domain called APP. SNA Manager now creates two Windows
2000 groups. The first group is called APP and the second is called APP_PROXY for this example. Users that are assigned to the
APP group are enabled for Single Sign-On. Users assigned to the APP_PROXY group are privileged proxies. The administrator
adds the Windows 2000 user AppcUser to the APP_PROXY group using the Users button on the Host Security Domain
property dialog box in SNA Manager.

The administrator then sets up an APPC application on the Host Integration Server server to run as a Windows 2000 service
called APPCAPP, and that service has been set up to operate under the AppcUser user account. When APPCAPP runs, it opens
an APPC session via an ALLOCATE verb using the extended VCB format and specifies the Windows 2000 user name of the
desired user, UserA (for example).

The SNA Service sees the session request coming from a connection that is a member of the Host Security Domain APP. The
Client/Server interface tells the SNA Service that the actual client is AppcUser.

The SNA Service checks to see if AppcUser is a member of the APP_PROXY group. Because AppcUser is a member of
APP_PROXY, the SNA Service inserts the Username/Password for UserA in the APPC Attach (FMH-5) command and sends it off
to the partner TP.

In order to support the privileged proxy feature, the APPC application must implement the following program logic:

The APPC application must determine the Windows 2000 user ID and domain name that it wishes to impersonate.

The APPC application must set the following parameters before calling the MC_ALLOCATE verb:

Enable the use of the extended MC_ALLOCATE verb control block structure by setting the AP_EXTD_VCB flag in the opext
field.

Set security to AP_PROXY_SAME, AP_PROXY_PGM, or AP_PROXY_STRONG.

Set up the pointers for proxy_user and proxy_domain to point to Unicode strings containing the user name and domain
name of the user to be impersonated.

Note
The application does not need to set up the user_id and pwd fields in the MC_ALLOCATE VCB.

When the APPC application performs the above steps and issues the MC_ALLOCATE verb, the Host Integration Server server
will perform a lookup in the host security domain for the specified Windows 2000 user and set the user ID and password fields
in the FMH-5 Attach message sent to the remote system.

MC_CONFIRM
The MC_CONFIRM verb sends the contents of the local logical unit's (LU) send buffer and a confirmation request to the
partner transaction program (TP).

The following structure describes the verb control block (VCB) used by the MC_CONFIRM verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_CONFIRM.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED.

conv_id

Returned parameter. Identifies the conversation established between the two TPs.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND, which requests the local TP to change
the conversation to RECEIVE state.

To change to RECEIVE state the local TP can use MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_POST.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

struct mc_confirm {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_CONFIRM_ON_SYNC_LEVEL_NONE

Secondary return code; the local TP attempted to use MC_CONFIRM in a conversation with a synchronization level of
AP_NONE. The synchronization level, established by MC_ALLOCATE, must be AP_CONFIRM_SYNC_LEVEL.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state.

AP_CONFIRM_NOT_LL_BDY

Secondary return code; the conversation for the local TP was in SEND state, and the local TP did not finish sending a logical
record.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE, AP_CONFIRM_SYNC_LEVEL, or
AP_SYNCPT) specified in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer has encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE withdealloc_typeset to AP_ABEND.

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

In response to MC_CONFIRM, the partner TP normally issues MC_CONFIRMED to confirm that it has received the data without
error. (If the partner TP encounters an error, it issues MC_SEND_ERROR or abnormally deallocates the conversation.)

The TP can issue MC_CONFIRM only if the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL.

The conversation must be in SEND state when the TP issues this verb. State changes, summarized in the following table, are
based on the value of the primary_rc.

primary_rc New state

AP_OK No change

AP_ALLOCATION_ERROR RESET

AP_COMM_SUBSYSTEM_ABENDED AP_COMM_SUBSYSTEM_NOT_LOADED RESET RESET

AP_CONV_FAILURE_RETRY AP_CONV_FAILURE_NO_RETRY RESET RESET

AP_DEALLOC_ABEND AP_DEALLOC_ABEND_PROG AP_DEALLOC_ABEND_SVC AP_DEALLOC_ABEND
_TIMER

RESET RESET RESET RES
ET

AP_PROG_ERROR_PURGING AP_SVC_ERROR_PURGING RECEIVE RECEIVE

MC_CONFIRM waits for a response from the partner TP. A response is generated by one of the following verbs in the partner
TP:

MC_CONFIRMED

MC_SEND_ERROR

MC_DEALLOCATE with dealloc_type set to AP_ABEND

TP_ENDED

By issuing MC_CONFIRM afterMC_ALLOCATE, the invoking TP can immediately determine whether the allocation was
successful (if synclevel is set to AP_CONFIRM_SYNC_LEVEL).

Normally, the value of the MC_ALLOCATE verb's mode_name parameter must match the name of a mode configured for the
invoked TP's node and associated during configuration with the partner LU.

If one of the modes associated with the partner LU on the invoked TP's node is an implicit mode, the session established
between the two LUs will be of the implicit mode when no mode name associated with the partner LU matches the value of
mode_name. For more information, see Host Integration Server 2009 Help.

Several parameters of MC_ALLOCATE are EBCDIC or ASCII strings. A TP can use the common service verb (CSV) CONVERT to
translate a string from one character set to the other.

To send the MC_ALLOCATE request immediately, the invoking TP can issue MC_FLUSH or MC_CONFIRM immediately after
MC_ALLOCATE. Otherwise, the MC_ALLOCATE request accumulates with other data in the local LU's send buffer until the
buffer is full.

https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx

MC_CONFIRMED
The MC_CONFIRMED verb responds to a confirmation request from the partner transaction program (TP). It informs the
partner TP that the local TP has not detected an error in the received data. Because the TP issuing the confirmation request
waits for a confirmation, MC_CONFIRMED synchronizes the processing of the two TPs.

The following structure describes the verb control block (VCB) used by the MC_CONFIRMED verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_CONFIRMED.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTEDin the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND, which requests the local TP to change
the conversation to RECEIVE state.

To change to RECEIVE state the local TP can use MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_WAIT, or
MC_RECEIVE_AND_POST.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

struct mc_confirmed {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_CONFIRMED_BAD_STATE

Secondary return code; the conversation is not in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation must be in one of the following states when the TP issues this verb:

CONFIRM

CONFIRM_SEND

CONFIRM_DEALLOCATE

The new state is determined by the old state—the state of the conversation when the local TP issued MC_CONFIRMED. The
old state is indicated by the value of the what_rcvd parameter of the preceding receive verb. The following state changes are
possible:

Old state New state

CONFIRM RECEIVE

CONFIRM_SEND SEND

CONFIRM_DEALLOCATE RESET

Confirmation Requests

A confirmation request is issued by one of the following verbs in the partner TP:

MC_CONFIRM

MC_PREPARE_TO_RECEIVE if ptr_type is set to AP_SYNC_LEVEL and the conversation's synchronization level
(established by MC_ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

MC_DEALLOCATE if dealloc_type is set to AP_SYNC_LEVEL and the conversation's synchronization level (established by
MC_ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

MC_SEND_DATA if type is set to AP_SEND_DATA_CONFIRM and the conversation's synchronization level (established by
MC_ALLOCATE) is AP_CONFIRM_SYNC_LEVEL

A confirmation request is received by the local TP through the what_rcvd parameter of one of the following verbs:

MC_RECEIVE_IMMEDIATE

MC_RECEIVE_AND_WAIT

MC_RECEIVE_AND_POST

MC_CONFIRMED is issued by the local TP only if what_rcvd contains one of the following values:

AP_CONFIRM_WHAT_RECEIVED

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

If the rtn_status parameter is set to AP_YES, what_rcvd can also contain the following values:

AP_DATA_COMPLETE_CONFIRM

AP_DATA_COMPLETE_CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_DEALL

https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

MC_DEALLOCATE
The MC_DEALLOCATE verb deallocates a conversation between two transaction programs (TP).

The following structure describes the verb control block (VCB) used by the MC_DEALLOCATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_DEALLOCATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Identifies the conversation established between the two TPs. The value of this parameter is returned by
MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3

A reserved field.

dealloc_type

Supplied parameter. Specifies how to perform the deallocation.

For MC_DEALLOCATE, use AP_ABEND to deallocate the conversation abnormally. If the conversation is in SEND state when
the local TP issues MC_DEALLOCATE, APPC sends the contents of the local logical unit's (LU) send buffer to the partner TP
before deallocating the conversation. If the conversation is in RECEIVE or PENDING_POST state, APPC purges any incoming

struct mc_deallocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char dealloc_type;
 unsigned char reserv4[2];
 unsigned char reserv5[4];
 void (WINAPI *callback)();
 void *correlator;
 unsigned char reserv6[4];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

data before deallocating the conversation.

A TP should specify AP_ABEND when it encounters an error preventing the successful completion of a transaction.

AP_FLUSH sends the contents of the local LU's send buffer to the partner TP before deallocating the conversation. This value
is allowed only if the conversation is in SEND state.

AP_SYNC_LEVEL uses the conversation's synchronization level (established by MC_ALLOCATE) to determine how to
deallocate the conversation. This value is allowed only if the conversation is in SEND state.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before deallocating the conversation.

If the synchronization level is AP_CONFIRM_SYNC_LEVEL, APPC sends the contents of the local LU's send buffer and a
confirmation request to the partner TP. Upon receiving confirmation from the partner TP, APPC deallocates the conversation.
If, however, the partner TP reports an error, the conversation remains allocated.

callback

Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member indicating support for Sync Point. This
parameter is the address of a user-supplied callback function. If this field is NULL, no notification will be provided.

The prototype of the callback routine is as follows:

The callback procedure can take any name, since the address of the procedure is passed to the APPC DLL. The parameters
passed to the function are as follows:

vcb

A pointer to the MC_DEALLOCATE verb control block that caused the conversation to be deallocated.

tp_id

The TP identifier of the TP that owned the deallocated conversation.

conv_id

The conversation identifier of the deallocated conversation.

type

The type of the message flow that caused the callback to be invoked. Possible values are:

AP_DATA_FLOW

Normal data flow on the session.

AP_UNBIND

The session was unbound normally.

AP_FAILURE

The session terminated due to an outage.

correlator

This value is the correlator specified on the MC_DEALLOCATE verb.

correlator

Supplied parameter. Only present if the AP_EXTD_VCB bit is set in the opext member indicating support for the Sync Point
API. This correlator field allows the TP to specify a value it can use to correlate a call to the callback function with, for
example, its own internal data structures. This value is returned to the TP as one of the parameters of the callback routine
when it is invoked.

void WINAPI callback_proc(
 struct appc_hdr *vcb,
 unsigned char tp_id[8],
 unsigned long conv_id,
 unsigned short type,
 void *correlator
);

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

reserv4

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_DEALLOC_BAD_TYPE

Secondary return code; the dealloc_type parameter was not set to a valid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_DEALLOC_CONFIRM_BAD_STATE

Secondary return code; the conversation was not in SEND state, and the TP attempted to flush the send buffer and send a
confirmation request. This attempt occurred because the value of dealloc_type was AP_SYNC_LEVEL and the
synchronization level of the conversation was AP_CONFIRM_SYNC_LEVEL.

AP_DEALLOC_FLUSH_BAD_STATE

Secondary return code; the conversation was not in SEND state and the TP attempted to flush the send buffer. This attempt
occurred because the value of dealloc_type was AP_FLUSH or because the value of dealloc_type was AP_SYNC_LEVEL and
the synchronization level of the conversation was AP_NONE. In either case, the conversation must be in SEND state.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

Depending on the value of the dealloc_type parameter, the conversation can be in one of the states indicated in the following
table when the TP issues MC_DEALLOCATE.

Dealloc_type Allowed state

AP_FLUSH SEND

AP_SYNC_LEVEL SEND

AP_ABEND Any state except RESET

AP_ABEND_PROG Any state except RESET

AP_ABEND_SVC Any state except RESET

AP_ABEND_TIMER Any state except RESET

State changes, summarized in the following table, are based on the value of the primary_rc.

Primary_rc New state

AP_OK RESET

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_PROG_ERROR_PURGING RECEIVE

Before deallocating the conversation, this verb performs the equivalent of one of the following:

MC_FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).

MC_CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx

After this verb has successfully executed, the conversation identifier is no longer valid.

LU 6.2 Sync Point can use an optimization of the message flows known as implied forget. When the protocol specifies that a
FORGET PS header is required, the next data flow on the session implies that a FORGET has been received. In the normal
situation, the TP is aware of the next data flow when data is received or sent on one of its Sync Point conversations.

However, it is possible that the last message to flow is caused by the conversation being deallocated. In this case, the TP is
unaware when the next data flow on the session occurs. In order to provide the TP with this notification, the MC_DEALLOCATE
verb is modified to allow the TP to register a callback function which will be called:

On the first normal flow transmission (request or response) over the session used by the conversation.

If the session is unbound before any other data flows.

If the session is terminated abnormally due to a DLC outage.

The MC_DEALLOCATE verb also contains a correlator field member that is returned as one of the parameters when the
callback function is invoked. The application can use this parameter in any way (for example, as a pointer to a control block
within the application).

The TP can use the type parameter passed to the callback function to determine whether the message flow indicates an implied
forget has been received.

Note that the MC_DEALLOCATE verb will probably complete before the callback routine is called. The conversation is
considered to be in RESET state and no further verbs can be issued using the conversation identifier. If the application issues a
TP_ENDED verb before the next data flow on the session, the callback routine will not be invoked.

Host Integration Server 2009 allows TPs to deallocate conversations immediately after sending data by specifying the type
parameter on MC_SEND_DATA as AP_SEND_DATA_DEALLOC_*. However, the MC_SEND_DATA verbs do not contain the
implied forget callback function. TPs wishing to receive implied forget notification must issue MC_DEALLOCATE explicitly.

https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx

MC_FLUSH
The MC_FLUSH verb sends the contents of the local logical unit's (LU) send buffer to the partner LU and transaction program
(TP). If the send buffer is empty, no action takes place.

The following structure describes the verb control block (VCB) used by the MC_FLUSH verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_FLUSH.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

struct mc_flush {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_FLUSH_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

Data processed by MC_SEND_DATA accumulates in the local LU's send buffer until one of the following happens:

The local TP issues MC_FLUSH (or other verb that flushes the LU's send buffer).

The buffer is full.

The request generated by MC_ALLOCATE is also buffered.

The conversation must be in SEND state when the TP issues this verb.

There is no state change.

https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

MC_GET_ATTRIBUTES
The MC_GET_ATTRIBUTES verb returns the attributes of the conversation.

The following structure describes the verb control block (VCB) used by the MC_GET_ATTRIBUTES verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_GET_ATTRIBUTES.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local transaction program (TP). The value of this parameter is returned by TP_STARTED in
the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

struct mc_get_attributes {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned char sync_level;
 unsigned char mode_name[8];
 unsigned char net_name[8];
 unsigned char lu_name[8];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char plu_un_name[8];
 unsigned char reserv4[2];
 unsigned char fqplu_name[17];
 unsigned char reserv5;
 unsigned char user_id[10];
 unsigned long conv_group_id;
 unsigned char conv_corr_len;
 unsigned char conv_corr[8];
 unsigned char reserv6[13];
// NOTE: The following fields are present
// when the high bit of opext is set
// (opext & AP_EXTD_VCB) != 0.
 unsigned char luw_id[26];
 unsigned char sess_id[8];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

sync_level

Returned parameter. Specifies the level of synchronization processing for the conversation. This parameter determines
whether the TPs can request confirmation of receipt of data and confirm receipt of data.

AP_NONE indicates that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL indicates that TPs can use confirmation processing in this conversation.

AP_SYNCPT indicates that TPs can use Sync Point Level 2 confirmation processing in this conversation.

mode_name

Returned parameter. Specifies the name of a set of networking characteristics. It is a type A EBCDIC character string.

net_name

Returned parameter. Specifies the name of the SNA network containing the local logical unit (LU) used by this TP. It is a type
A EBCDIC character string.

lu_name

Returned parameter. Provides the name of the local LU.

lu_alias

Returned parameter. Provides the alias by which the local LU is known to the local TP. It is an ASCII character string.

plu_alias

Returned parameter. Provides the alias by which the partner LU is known to the local TP. It is an ASCII character string.

plu_un_name

Returned parameter. Specifies the uninterpreted name of the partner LU—the name of the partner LU as defined to the
system services control point (SSCP). It is a type AE EBCDIC character string. This parameter is returned only if the local LU is
dependent.

fqplu_name

Returned parameter. Provides the fully qualified name of the partner LU. It is a type A EBCDIC character string. The field
contains the network name, an EBCDIC period, and the partner-LU name.

user_id

Returned parameter. Specifies the user identifier sent by the invoking TP through MC_ALLOCATE to access the invoked TP (if
applicable). It is a type AE EBCDIC character string. The field contains the user identifier if the following conditions are true:

The invoked TP requires conversation security.

MC_GET_ATTRIBUTES was issued by the invoked TP.

Otherwise, the field contains spaces.

conv_group_id

Returned parameter. Specifies the conversation group identifier for the session to which the conversation has been allocated.
This is also returned on MC_ALLOCATE and RECEIVE_ALLOCATE.

conv_corr_len

Returned parameter. Specifies the length of the conversation correlator identifier that is returned.

conv_corr

Returned parameter. Specifies the conversation correlator identifier (if any) that the source LU assigns to identify the
conversation, which is unique for the source/partner LU pair. It is sent by the source LU on the allocation request.

Note

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

The following fields are present when the high bit of opext is set (opext & AP_EXTD_VCB) != 0.These fields are only present
when using Sync Point Level 2 support.

luw_id

Logical unit-of-work identifier.

sess_id

Session identifier.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

MC_POST_ON_RECEIPT
The MC_POST_ON_RECEIPT verb allows the application to register to receive a notification when data or status arrives at the
local logical unit (LU) without actually receiving it at the same time. This verb can only be issued while in RECEIVE state and it
never causes a change in conversation state.

When the transaction program (TP) issues this verb, APPC returns control to the TP immediately. When the specified conditions
are satisfied, the Win32® event specified by the sema parameter is signaled and the verb completes. Then the TP looks at the
return code in the verb control block (VCB) to determine whether or not any data or status notification has arrived at the local
LU and issues an MC_RECEIVE_IMMEDIATE or MC_RECEIVE_AND_WAIT verb to actually receive the data or status notification.

The MC_POST_ON_RECEIPT verb implements both the POST_ON_RECEIPT and TEST verbs as described in the IBM
Transaction Programmer's manual for LU Type 6.2.

The following structure describes the verb control block used by the MC_POST_ON_RECEIPT verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_POST_ON_RECEIPT.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv1

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or
byRECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

struct mc_post_on_receipt {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned char primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short reserv2;
 unsigned char reserv3;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short reserv5;
 unsigned char * reserv6;
 unsigned char reserv7[5];
 unsigned long sema;
};

https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

reserv2

A reserved field.

reserv3

A reserved field.

reserv4

A reserved field.

max_len

Supplied parameter. Specifies the length of data that triggers APPC to post a notification to the TP.

reserv5

A reserved field.

reserv6

A reserved field.

reserv7

A reserved field.

sema

Supplied parameter. Specifies the handle of a Win32 event. The event should have been created by the TP and the TP is
responsible for ensuring that it is reset before a call is made and after the verb completes.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_DATA

Secondary return code; data is available for the program to receive.

AP_NOT_DATA

Secondary return code; information other than data is available for the program to receive.

AP_CANCELLED

Primary return code; the verb was canceled.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the sema parameter was not set to a valid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE.

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

The partner TP has encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

AP_DEALLOC_NORMAL

Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued
MC_DEALLOCATE with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_PROG_ERROR_TRUNC

Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was
truncated.

AP_SVC_ERROR_NO_TRUNC

Primary return code; the partner TP (or partner LU) issued MC_SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP was not
truncated.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued MC_SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

AP_SVC_ERROR_TRUNC

Primary return code; the partner TP (or partner LU) issued MC_SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
truncated.

Remarks

While an MC_POST_ON_RECEIPT verb is outstanding, the following verbs can be issued on the same conversation:

GET_ATTRIBUTES

GET_TYPE

MC_DEALLOCATE

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_REQUEST_TO_SEND

MC_SEND_ERROR

MC_TEST_RTS

TP_ENDED

Issuing any of the following verbs prior to completion of the asynchronous MC_POST_ON_RECEIPT verb causes the

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

MC_POST_ON_RECEIPT verb to be canceled (the Win32 event is signaled and the primary return code in the verb control
block is set to AP_CANCELLED).

MC_DEALLOCATE

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_SEND_ERROR

TP_ENDED

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

MC_PREPARE_TO_RECEIVE
The MC_PREPARE_TO_RECEIVE verb changes the state of the conversation for the local transaction program (TP) from SEND
to RECEIVE.

The following structure describes the verb control block (VCB) used by the MC_PREPARE_TO_RECEIVE verb.

Syntax

Remarks

Members

opcode

Supplied parameter. Specifies the verb operation code, AP_M_PREPARE_TO_RECEIVE.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or
byRECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

ptr_type

Supplied parameter. Specifies how to perform the state change.

Use AP_FLUSH to send the contents of the local logical unit's (LU) send buffer to the partner LU (and TP) before changing the
conversation's state to RECEIVE.

The AP_SYNC_LEVEL value uses the conversation's synchronization level (established by MC_ALLOCATE) to determine how
to perform the state change.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before changing the conversation's state to RECEIVE. If the synchronization level is AP_CONFIRM_SYNC_LEVEL,
APPC sends the contents of the local LU's send buffer and a confirmation request to the partner TP. Upon receiving

struct mc_prepare_to_receive {
 unsigned short opcode;
 unsigned char opext;
 unsigned char primary_rc;
 unsigned short reserv2;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char ptr_type;
 unsigned char locks;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

confirmation from the partner TP, APPC changes the conversation's state to RECEIVE. If, however, the partner TP reports an
error, the state changes to RECEIVE or RESET. See the Remarks in this topic.

locks

Supplied parameter. Specifies when APPC should return control to the local TP.

Use this parameter only if ptr_type is set to AP_SYNC_LEVEL and the synchronization level of the conversation, established
by MC_ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. (Otherwise, the parameter is ignored.)

AP_LONG indicates that APPC returns control to the local TP when the confirmation and subsequent data from the
partner TP arrive at the local LU. (This method results in more efficient use of the network but requires a longer time to
return control to the local TP.)

AP_SHORT indicates that APPC returns control to the local TP when the confirmation from the partner TP arrives at the
local LU.

Return Codes

AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_P_TO_R_INVALID_TYPE

Secondary return code; the ptr_type parameter was not set to a valid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_P_TO_R_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_P_TO_R_NOT_LL_BDY

Secondary return code; the local TP did not finish sending a logical record.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

Before changing the conversation state, this verb performs the equivalent of one of the following:

MC_FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).

MC_CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

After this verb has successfully executed, the local TP can receive data.

The conversation must be in SEND state when the TP issues this verb.

State changes, summarized in the following table, are based on the value of primary_rc.

primary_rc New state

AP_OK RECEIVE

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx

The conversation does not change to SEND state for the partner TP until the partner TP receives one of the following values
through the what_rcvd parameter of a subsequent receive verb:

AP_SEND

AP_CONFIRM_SEND and replies with MC_CONFIRMED

AP_DATA_COMPLETE_CONFIRM_SEND and replies with MC_CONFIRMED

AP_DATA_CONFIRM_SEND and replies with MC_CONFIRMED

The receive verbs are MC_RECEIVE_AND_POST, MC_RECEIVE_IMMEDIATE, and MC_RECEIVE_AND_WAIT.

https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx

MC_RECEIVE_AND_POST
The MC_RECEIVE_AND_POST verb receives application data and status information asynchronously. This allows the local
transaction program (TP) to proceed with processing while data is still arriving at the local logical unit (LU).

While an asynchronous MC_RECEIVE_AND_POST is outstanding, the following verbs can be issued on the same conversation:

GET_TYPE

MC_GET_ATTRIBUTES

MC_REQUEST_TO_SEND

MC_SEND_ERROR

MC_TEST_RTS

TP_ENDED

This allows an application to use an asynchronous MC_RECEIVE_AND_POST to receive data. While the
MC_RECEIVE_AND_POST is outstanding, it can still use MC_SEND_ERROR and REQUEST_TO_SEND. It is recommended that
you use this feature for full asynchronous support. For information on how a TP receives data and how to use this verb, see
Remarks in this topic.

The following structure describes the verb control block (VCB) used by the MC_RECEIVE_AND_POST verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_AND_POST.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary

struct mc_receive_and_post {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char reserv4;
 unsigned char rts_rcvd;
 unsigned char reserv5;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char FAR * sema;
 unsigned char reserv6;
};

https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or
byRECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd

Returned parameter. Indicates whether data or conversation status was received.

AP_CONFIRM_DEALLOCATE indicates that the partner TP issued MC_DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL. The conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED.

AP_CONFIRM_SEND indicates that the partner TP issued MC_PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL. The conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED, and begins to
send data.

AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP issued MC_CONFIRM. Upon receiving this value, the local
TP normally issues MC_CONFIRMED.

AP_DATA_COMPLETE indicates, for MC_RECEIVE_AND_POST, that the local TP has received a complete data record or
the last part of a data record. Upon receiving this value, the local TP normally reissues MC_RECEIVE_AND_POST or
issues another receive verb. If the partner TP has sent more data, the local TP begins to receive a new unit of data.
Otherwise, the local TP examines status information.

If primary_rc contains AP_OK and what_rcvd contains AP_SEND, AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE,
or AP_CONFIRM_WHAT_RECEIVED, see the description of the value (in this section) for the next action the local TP
normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to the
MC_DEALLOCATE issued by the partner TP.

AP_DATA_INCOMPLETE indicates, for MC_RECEIVE_AND_POST, that the local TP has received an incomplete data
record. The max_len parameter specified a value less than the length of the data record (or less than the remainder of
the data record if this is not the first receive verb to read the record). Upon receiving this value, the local TP normally
reissues MC_RECEIVE_AND_POST (or issues another receive verb) to receive the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.

AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the
conversation is now in SEND state. Upon receiving this value, the local TP normally uses MC_SEND_DATA to begin
sending data.

rtn_status

Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.

AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The data is the last data record before the status indicator.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND.

AP_YES indicates that the partner TP issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.

AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

Max_len

Supplied parameter. Specifies the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

The value must not exceed the length of the buffer to contain the received data. The offset of dptr plus the value of max_len
must not exceed the size of the data segment.

dlen

Returned parameter. Specifies the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr

Supplied parameter. Provides the address of the buffer to contain the data received by the local LU.

For the Microsoft® Windows® 2000 operating system, the data buffer can reside in a static data area or in a globally
allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
DosAllocSeg function with Flags equal to 1. The data buffer must fit entirely on the data segment.

sema

Supplied parameter. Provides the address of the semaphore that APPC is to clear when the asynchronous receiving
operation is finished. The sema parameter is an event handle obtained by calling either the CreateEvent or OpenEvent
Win32 function.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL

Primary return code; the partner TP issued MC_DEALLOCATE with dealloc_type set to AP_FLUSH or AP_SYNC_LEVEL with
the synchronization level of the conversation specified as AP_NONE.

https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the address of the RAM semaphore or system semaphore handle was invalid.

Note
APPC cannot trap all invalid semaphore handles. If the TP passes a bad RAM semaphore handle, a protection violation resu
lts.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_POST_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_RCV_AND_POST_NOT_LL_BDY

Secondary return code; the conversation was in SEND state; the TP began but did not finish sending a logical record.

AP_CANCELED

Primary return code; the local TP issued one of the following verbs, which canceled MC_RECEIVE_AND_POST:

MC_DEALLOCATE with dealloc_type set to AP_ABEND

MC_SEND_ERROR

TP_ENDED

Issuing one of these verbs causes the semaphore to be cleared.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP issued MC_SEND_ERROR while the conversation was in SEND state. Data was not

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx

truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received is one data record.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it. The receive verbs are MC_RECEIVE_AND_POST,
MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.

If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The following procedure shows tasks performed by the local TP in using MC_RECEIVE_AND_POST.

To use MC_RECEIVE_AND_POST

1. For the Windows® 2000 operating system, the TP retrieves the WinAsyncAPPC message number by calling the
RegisterWindowMessage API or allocating a semaphore. The sema field should be set to NULL if the application
expects to be notified through the Windows message mechanism.

APPC sends the Windows message or clears the semaphore when the local TP finishes receiving data.

For the OS/2 operating system, the TP uses the DosSemSet function to set the semaphore pointed to by sema.

The semaphore will remain set while the local TP receives data asynchronously. APPC will clear the semaphore when the
local TP finishes receiving data.

2. The TP issues MC_RECEIVE_AND_POST.

3. The TP checks the value of primary_rc.

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx

If primary_rc is AP_OK, the receive buffer (pointed to by dptr) is asynchronously receiving data from the partner TP.
While receiving data asynchronously, the local TP can:

Perform tasks not related to this conversation.

Issue MC_REQUEST_TO_SEND.

Gather information about this conversation by issuing GET_TYPE, MC_GET_ATTRIBUTES, or MC_TEST_RTS.

Prematurely cancel MC_RECEIVE_AND_POST by issuing MC_DEALLOCATE with dealloc_type set to AP_ABEND;
MC_SEND_ERROR; or TP_ENDED.

If, however, primary_rc is not AP_OK, MC_RECEIVE_AND_POST has failed. In this case, the local TP does not perform
the next two tasks.

4. For the Windows 2000 operating system, when the TP finishes receiving data asynchronously, APPC issues the
WinAsyncAPPC Windows message or clears the semaphore.

For the OS/2 operating system, the TP uses the DosSemWait function to wait for APPC to clear the semaphore pointed
to by sema. When the TP finishes receiving data asynchronously, APPC clears the semaphore. To prevent the local TP
from waiting, have it test the semaphore (invoking DosSemWait with Timeout set to zero) until APPC clears the
semaphore.

5. The TP checks the new value of primary_rc.

If primary_rc is AP_OK, the local TP can examine the other returned parameters and manipulate the asynchronously
received data.

If primary_rc is not AP_OK, only secondary_rc and rts_rcvd (request-to-send received) are meaningful.

Conversation State Effects

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing MC_RECEIVE_AND_POST while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.

The conversation changes to PENDING_POST state; the local TP is ready to receive information from the partner TP
asynchronously.

The conversation changes states twice:

Upon initial return of the verb, if primary_rc contains AP_OK, the conversation changes to PENDING_POST state.

After completion of the verb, the state changes depending on the value of the following:

The primary_rc parameter

The what_rcvd parameter if primary_rc is AP_OK

The following table shows the new state associated with each value of what_rcvd when primary_rc is AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA RECEIVE

AP_DATA_COMPLETE RECEIVE

AP_DATA_INCOMPLETE RECEIVE

AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table shows the new state associated with each value of primary_rc other than AP_OK.

primary_rc New state

AP_CANCELED No change

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_PROG_ERROR_NO_TRUNC RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

AP_SVC_ERROR_NO_TRUNC RECEIVE

AP_PROG_ERROR_TRUNC RECEIVE

AP_SVC_ERROR_TRUNC RECEIVE

MC_RECEIVE_AND_WAIT
The MC_RECEIVE_AND_WAIT verb receives any data that is currently available from the partner transaction program (TP). If
no data is currently available, the local TP waits for data to arrive.

To allow full use to be made of the asynchronous support, asynchronously issued MC_RECEIVE_AND_WAIT verbs have been
altered to act like MC_RECEIVE_AND_POST verbs. Specifically, while an asynchronous MC_RECEIVE_AND_WAIT is
outstanding, the following verbs can be issued on the same conversation:

GET_TYPE

MC_GET_ATTRIBUTES

MC_REQUEST_TO_SEND

MC_SEND_ERROR

MC_TEST_RTS

TP_ENDED

This allows an application, and in particular, a 5250 emulator, to use an asynchronous MC_RECEIVE_AND_WAIT to receive
data. While the MC_RECEIVE_AND_WAIT is outstanding, it can still use MC_SEND_ERROR and MC_REQUEST_TO_SEND. It
is recommended that you use this feature for full asynchronous support.

The following structure describes the verb control block (VCB) used by the MC_RECEIVE_AND_WAIT verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_AND_WAIT.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

struct mc_receive_and_wait {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char reserv4;
 unsigned char rts_rcvd;
 unsigned char reserv5;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv6[5];
};

https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Specifies the conversation identifier.

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd

Returned parameter. Indicates whether data or conversation status was received.

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued MC_DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED.

AP_CONFIRM_SEND indicates that the partner TP has issued MC_PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED and begins to
send data.

AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued MC_CONFIRM. Upon receiving this value, the
local TP normally issues MC_CONFIRMED.

AP_DATA_COMPLETE indicates, for MC_RECEIVE_AND_WAIT, that the local TP has received a complete data record or
the last part of a data record. Upon receiving this value, the local TP normally reissues MC_RECEIVE_AND_WAIT or
issues another receive verb. If the partner TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information, if primary_rc contains AP_OK and what_rcvd contains AP_SEND,
AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or AP_CONFIRM_WHAT_RECEIVED.

See Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to MC_DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates that the local TP has received an incomplete data record. The max_len parameter
specified a value less than the length of the data record (or less than the remainder of the data record if this is not the
first receive verb to read the record). Upon receiving this value, the local TP normally reissues
MC_RECEIVE_AND_WAIT (or issues another receive verb) to receive the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.

AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the
conversation is now in SEND state. Upon receiving this value, the local TP normally uses MC_SEND_DATA to begin
sending data.

rtn_status

Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx

AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The data is the last data record before the status indicator.

rts_rcvd

Returned parameter. Contains the request-to-send indicator.

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.

AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

max_len

Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Microsoft® Windows® 2000 operating system and the Windows graphical environment, this value must not exceed
the length of the buffer to contain the received data.

For the OS/2 operating system, the offset of dptr plus the value of max_len must not exceed the size of the data segment.

By issuing MC_RECEIVE_AND_WAIT with max_len set to zero, the local TP can determine whether the partner TP has data
to send, seeks confirmation, or has changed the conversation state.

dlen

Returned parameter. Indicates the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr

Supplied parameter. Provides the address of the buffer to contain the data received by the local TP.

For the Windows 2000 operating system and the Windows graphical environment, the data buffer can reside in a static data
area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
DosAllocSeg function with Flags equal to 1. The data buffer must fit entirely on the data segment.

For the Windows environment, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx

AP_DEALLOC_NORMAL

Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued
MC_DEALLOCATE with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_WAIT_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner logical unit (LU) or TP does not support the conversation type (basic or mapped)
specified in the allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received is one data record.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it.

The receive verbs are MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.

If the partner TP has finished sending data or is waiting for confirmation, status information (available through the
what_rcvd parameter) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing the Verb in SEND State

Issuing MC_RECEIVE_AND_WAIT while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.

The conversation changes to RECEIVE state; the local TP waits for the partner TP to send data.

State Change

The new conversation state is determined by the following factors:

The state the conversation is in when the TP issues the verb.

The primary_rc parameter.

The what_rcvd parameter if primary_rc contains AP_OK.

Verb Issued in SEND State

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in SEND state and primary_rc is
AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA RECEIVE

AP_DATA_COMPLETE RECEIVE

AP_DATA_INCOMPLETE RECEIVE

AP_SEND No change

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in SEND state and primary_rc is not
AP_OK.

primary_rc New state

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_PROG_ERROR_NO_TRUNC RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

AP_SVC_ERROR_NO_TRUNC RECEIVE

Verb Issued in RECEIVE State

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is
AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA No change

AP_DATA_COMPLETE No change

AP_DATA_INCOMPLETE No change

AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when MC_RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is not
AP_OK.

primary_rc New state

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING No change

AP_PROG_ERROR_NO_TRUNC No change

AP_SVC_ERROR_PURGING No change

AP_SVC_ERROR_NO_TRUNC No change

AP_PROG_ERROR_TRUNC No change

AP_SVC_ERROR_TRUNC No change

MC_RECEIVE_IMMEDIATE
The MC_RECEIVE_IMMEDIATE verb receives any data currently available from the partner transaction program (TP). If no
data is available, the local TP does not wait. To avoid blocking the conversation, issue MC_RECEIVE_AND_WAIT in conjunction
with WinAsyncAPPC. The following structure describes the verb control block (VCB) used by the MC_RECEIVE_IMMEDIATE
verb.

Syntax

Members
Opcode

Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_IMMEDIATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

Reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd

Returned parameter. Contains information received with the incoming data:

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued MC_DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED.

struct mc_receive_immediate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char reserv4;
 unsigned char rts_rcvd;
 unsigned char reserv5;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv6[5];
};

https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx

AP_CONFIRM_SEND indicates that the partner TP has issued MC_PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by MC_ALLOCATE, is
AP_CONFIRM_SYNC_LEVEL. Upon receiving this value, the local TP normally issues MC_CONFIRMED, and begins to
send data.

AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued MC_CONFIRM. Upon receiving this value, the
local TP normally issues MC_CONFIRMED.

AP_DATA_COMPLETE indicates, for MC_RECEIVE_IMMEDIATE in mapped conversations, that the local TP has received
a complete data record or the last part of a data record. Upon receiving this value, the local TP normally reissues
MC_RECEIVE_IMMEDIATE or issues another receive verb. If the partner TP has sent more data, the local TP begins to
receive a new unit of data.

Otherwise, the local TP examines status information if primary_rc contains AP_OK and what_rcvd contains any of
these values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

See the description of the value in Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to
MC_DEALLOCATE issued by the partner TP.

AP_DATA_INCOMPLETE indicates for MC_RECEIVE_IMMEDIATE in mapped conversations that the local TP has
received an incomplete data record. The max_len parameter specified a value less than the length of the data record
(or less than the remainder of the data record if this is not the first receive verb to read the record). Upon receiving this
value, the local TP normally reissues MC_RECEIVE_IMMEDIATE (or issues another receive verb) to receive the next
part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.

AP_SEND indicates, for the partner TP, the conversation has entered RECEIVE state. For the local TP, the conversation is
now in SEND state. Upon receiving this value, the local TP normally uses MC_SEND_DATA to begin sending data.

rtn_status

Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.

AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The data is the last data record before the status indicator.

rts_rcvd

Returned parameter. Contains the request-to-send indicator. Possible values are:

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the

https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx

conversation to RECEIVE state.

AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

max_len

Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Microsoft® Windows® 2000 operating system and the Windows graphical environment, this value must not exceed
the length of the buffer to contain the received data.

For the OS/2 operating system, the offset of dptr plus the value of max_len must not exceed the size of the data segment.

By issuing MC_RECEIVE_IMMEDIATE with max_len set to zero, the local TP can determine whether the partner TP has data
to send, seeks confirmation, or has changed the conversation state.

dlen

Returned parameter. Provides the number of bytes of data received. Data is stored in a buffer specified by dptr. A length of
zero indicates that no data was received.

dptr

Supplied parameter. Address of the buffer to contain the data received by the local TP.

For the Windows 2000 operating system and the Windows graphical environment, the data buffer can reside in a static data
area or in a globally allocated area. The data buffer must fit entirely within this area.

For the OS/2 operating system, the data buffer must reside on an unnamed, shared segment, which is allocated by the
function DosAllocSeg with Flags equal to 1. The data buffer must fit entirely on the data segment.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_UNSUCCESSFUL

Primary return code; no data is immediately available from the partner TP.

AP_DEALLOC_NORMAL

Primary return code; the partner TP has deallocated the conversation without requesting confirmation. The partner TP issued
MC_DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_IMMD_BAD_STATE

Secondary return code; the conversation was not in RECEIVE state.

AP_ALLOCATION_ERROR

Secondary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner logical unit (LU) or TP does not support the conversation type (basic or mapped)
specified in the allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued MC_SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received is one data record.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it.

The receive verbs are MC_RECEIVE_AND_POST, MC_RECEIVE_AND_WAIT, and MC_RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.

If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE state when the TP issues this verb.

The new state is determined by primary_rc. If primary_rc is AP_OK, the new state is determined by what_rcvd.

The following table details the state changes when the primary_rc is AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA No change

AP_DATA_COMPLETE No change

AP_DATA_INCOMPLETE No change

AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when the primary_rc is not AP_OK.

https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx

primary_rc New state

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING No change

AP_PROG_ERROR_NO_TRUNC No change

AP_SVC_ERROR_PURGING No change

AP_SVC_ERROR_NO_TRUNC No change

AP_PROG_ERROR_TRUNC No change

AP_SVC_ERROR_TRUNC No change

AP_UNSUCCESSFUL No change

MC_RECEIVE_LOG_DATA
The MC_RECEIVE_LOG_DATA verb allows the user to register to receive the log data associated with an inbound Function
Management Header 7 (FMH7) error report. The verb passes a buffer to APPC, and any log data received is placed in that
buffer. APPC continues to use this buffer as successive FMH7s arrive until it is provided with another buffer (that is, until the
transaction program (TP) issues another MC_RECEIVE_LOG_DATA specifying a different buffer or no buffer at all).

Note that the TP itself is responsible for allocating and freeing the buffer. After the buffer has been passed to APPC, the TP
should either issue another MC_RECEIVE_LOG_DATA specifying a new buffer or a zero-length buffer, or wait until the
conversation has finished before freeing the original buffer.

When an FMH7 is received, APPC copies any associated error log general data stream (GDS) into the buffer. If there is no
associated error log variable, the buffer is zeroed out. It is up to the TP to check the buffer whenever a return code from a
receive verb indicates that an error has been received.

The following structure describes the verb control block (VCB) used by the MC_RECEIVE_LOG_DATA verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_RECEIVE_LOG_DATA.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv1

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

log_dlen

Supplied parameter. Specifies the maximum length of log data that APPC can place in the buffer (that is, the buffer size). The
range is from 0 through 65535. Note that a length of zero here indicates that any previous MC_RECEIVE_LOG_DATA verb

struct mc_receive_log_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

should be cancelled.

log_dptr

Supplied parameter. Specifies the address of the buffer that APPC will use to store the log data.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

MC_REQUEST_TO_SEND
The MC_REQUEST_TO_SEND verb notifies the partner transaction program (TP) that the local TP wants to send data.

The following structure describes the verb control block (VCB) used by the MC_REQUEST_TO_SEND verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_REQUEST_TO_SEND.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

struct mc_request_to_send {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_R_T_S_BAD_STATE

Secondary return code; the conversation is not in an allowed state when the TP issued this verb.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications system could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.)
Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces
to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that can
satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft Host Integration Server 2009 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any of the following states when the TP issues this verb:

CONFIRM

PENDING_POST (OS/2)

RECEIVE

There is no state change.

The request-to-send notification is received by the partner program through the rts_rcvd parameter of the following verbs:

MC_CONFIRM

MC_RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE

MC_SEND_DATA

MC_SEND_ERROR

It is also indicated by a primary_rc of AP_OK on MC_TEST_RTS.

Request-to-send notification is sent to the partner TP immediately; APPC does not wait until the send buffer fills up or is
flushed. Consequently, the request-to-send notification may arrive out of sequence. For example, if the local TP is in SEND state
and issues MC_PREPARE_TO_RECEIVE followed by MC_REQUEST_TO_SEND, the partner TP, in RECEIVE state, may receive the
request-to-send notification before it receives the send notification. For this reason, request-to-send can be reported to a TP
through a receive verb.

In response to this request, the partner TP can change the conversation to:

RECEIVE state by issuing MC_PREPARE_TO_RECEIVE or MC_RECEIVE_AND_WAIT.

PENDING_POST state by issuing MC_RECEIVE_AND_POST.

The partner TP can also ignore the request-to-send.

The conversation state changes to SEND for the local TP when the local TP receives one of the following values through the
what_rcvd parameter of a subsequent receive verb:

AP_CONFIRM_SEND and replies with MC_CONFIRMED

AP_DATA_COMPLETE_CONFIRM_SEND and replies with MC_CONFIRMED

AP_SEND

The receive verbs are MC_RECEIVE_AND_POST, MC_RECEIVE_IMMEDIATE, and MC_RECEIVE_AND_WAIT.

https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745563(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx

MC_SEND_CONVERSATION
The MC_SEND_CONVERSATION verb allocates a session between the local logical unit (LU) and partner LU, sends data on the
session, and then deallocates the session.

The following structure describes the verb control block (VCB) used by the MC_SEND_CONVERSATION verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_SEND_CONVERSATION.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local transaction program (TP). The value of this parameter was returned by TP_STARTED.

conv_id

Supplied parameter. Provides the conversation identifier.

struct mc_send_conversation {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3[8];
 unsigned char rtn_ctl;
 unsigned char reserv4;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv6[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv6;
 unsigned char fqplu_name[17];
 unsigned char reserv7[8];
 unsigned short dlen;
 unsigned char FAR * dptr;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_ctl

Supplied parameter. Specifies how APPC should select a session to allocate for the conversation and when the local LU
should return control to the local TP. The allowed values are:

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns
control to the TP.

AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU returns control
immediately. Note that if a session is not available, the TP waits for one.

AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs (as described in Return Codes in this
topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.

AP_WHEN_CONWINNER_ALLOC specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU
returns control immediately. Note that if a session is not available, the TP waits for one.

AP_WHEN_CONV_GROUP_ALLOC specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_id or encounters one of the errors described in Return Codes in this topic. If the session is
not available, the TP waits for it to become free.

conv_group_id

Supplied/returned parameter. Used as a supplied parameter when rtn_ctl is WHEN_CONV_GROUP_ALLOC to specify the
identity of the conversation group from which the session should be allocated. When rtn_ctl specifies a different value, and
the primary_rc is AP_OK, this is a returned value. The purpose of this parameter is to provide a TP with the assurance that
the same session will be reallocated and therefore the conversations conducted over the session will occur in the same
sequence that they were initiated.

sense_data

Returned parameter. If the primary and secondary return codes indicate an allocation error (retry or no-retry), an SNA-
defined sense code is returned.

plu_alias

Supplied parameter. Specifies the alias by which the partner LU is known to the local TP. This parameter must match the
name of a partner LU established during configuration. The parameter is an 8-byte, type G ASCII character set that includes:

Uppercase letters

Numerals 0 to 9

Spaces

Special characters $, #, %, and @

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

mode_name

Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration. This parameter
must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set,
including all EBCDIC spaces. These characters are:

Uppercase letters

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Numerals 0 to 9

Special characters $, #, and @

The first character in the string must be an uppercase letter or special character.

In a mapped conversation, the name cannot be SNASVCMG (a reserved mode name used internally by APPC).

tp_name

Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by MC_ALLOCATE in the invoking
TP must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte, case-sensitive, EBCDIC character string. This parameter can consist of characters from the type
AE EBCDIC character set. These characters are:

Uppercase and lowercase letters

Numerals 0 to 9

Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte
between 0x00 and 0x3F. The other characters are from the EBCDIC AE character set.

security

Supplied parameter. Specifies the information the partner LU requires in order to validate access to the invoked TP.

AP_NONE specifies that the invoked TP uses no conversation security.

AP_PGM specifies that the invoked TP uses conversation security and requires a user identifier and password. Use
user_id and pwd to supply this information.

AP_SAME specifies that the invoked TP, invoked with a valid user identifier and password, in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP B
specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified indicator.
This indicator indicates to TP C not to require the password (if TP C is configured to accept an already-verified indicator).

pwd

Supplied parameter. Specifies the password associated with user_id. This parameter is required only if the security
parameter is set to AP_PGM and must match the password for user_id that was established during configuration.

This parameter is a 10-byte, case-sensitive, EBCDIC character string. It can consist of characters from the type AE EBCDIC
character set. These characters are:

Uppercase and lowercase letters

Numerals 0 to 9

Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

user_id

Supplied parameter. Specifies the user identifier required to access the partner TP. This parameter is required only if the
security parameter is set to AP_PGM and must match one of the user identifiers configured for the partner TP.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

The parameter can consist of characters from the type AE EBCDIC character set. These characters are:

Uppercase and lowercase letters

Numerals 0 to 9

Special characters $, #, @, and period (.)

If the user identifier is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

pip_dlen

Supplied parameter. Specifies the length of the PIP to be passed to the partner TP. The range for this parameter is from 0
through 32767.

pip_dptr

Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater
than zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the GDS format. For more information, see your IBM SNA manual(s).

For the Microsoft® Windows® 2000 operating system, the data buffer can reside in a static data area or in a globally
allocated area.

fqplu_name

Supplied parameter. Specifies the fully qualified name of the local LU. This parameter must match the fully qualified name of
the local LU defined in the remote node. The parameter is made up of two type A EBCDIC character strings (each of up to
eight characters), which are the network name (NETID) and the LU name of the partner LU. The names are separated by an
EBCDIC period (.). The NETID can be omitted, and if this is the case, the period should also be omitted.

This name must be provided if no plu_alias is provided.

Type A EBCDIC characters contain:

Uppercase letters

Numerals 0 to 9

Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

dlen

Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range for this
parameter is from 0 through 65535.

dptr

Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated area. The
data buffer must fit entirely within this area.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL

Primary return code; the supplied parameter rtn_ctl specified immediate return of the control to the TP (AP_IMMEDIATE),
and the local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code, APPC did not recognize the supplied partner_lu_alias.

AP_NO_USE_OF_SNASVCMG

Secondary return code; SNASVCMG is not a valid value for mode_name.

AP_INVALID_DATA_SEGMENT

Secondary return code; the PIP data or application data was longer than the allocated data segment, or the address of a data
buffer was wrong.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications system could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.)
Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces
to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that can

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

This verb is issued by the invoking TP to conduct an entire conversation with the remote TP. If the remote TP rejects either the
conversation initiation or the data, the invoking TP will not receive notification of the rejection.

The conversation state is RESET when the TP issues this verb. There is no state change.

Several parameters of MC_SEND_CONVERSATION are EBCDIC or ASCII strings. A TP can use the common service verb (CSV)
CONVERT to translate a string from one character set to the other.

Normally, the value of mode_name must match the name of a mode configured for the invoked TP's node and associated
during configuration with the partner LU. If one of the modes associated with the partner LU on the invoked TP's node is an
implicit mode, the session established between the two LUs will be of the implicit mode when no mode name associated with
the partner LU matches the value of mode_name.

https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx

MC_SEND_DATA
The MC_SEND_DATA verb places data in the local logical unit's (LU) send buffer for transmission to the partner transaction
program (TP).

The following structure describes the verb control block (VCB) used by the MC_SEND_DATA verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_SEND_DATA.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by MC_ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd

Returned parameter. Provides the request-to-send-received indicator.

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use MC_PREPARE_TO_RECEIVE,
MC_RECEIVE_AND_WAIT, or MC_RECEIVE_AND_POST.

AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

struct mc_send_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char data_type;
 unsigned short int dlen;
 unsigned char FAR * dptr ;
 unsigned char type;
 unsigned char reserv4;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

data_type

Supplied parameter. Specifies the type of data to be sent if Sync Point is supported. Valid parameters are:

AP_APPLICATION

AP_USER_CONTROL_DATA

AP_PS_HEADER

dlen

Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range is from 0
through 65535.

dptr

Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated area. The
data buffer must fit entirely within this area.

type

Supplied parameter. Allows a TP to send data and perform other functions within one API call. For example, you can combine
MC_SEND_DATA with type set to CONFIRM to accomplish the same objective as issuing MC_SEND_DATA followed by
MC_CONFIRM.

AP_SEND_DATA_CONFIRM corresponds to MC_SEND_DATA followed by MC_CONFIRM.

AP_SEND_DATA_FLUSH corresponds to MC_SEND_DATA followed by MC_FLUSH.

AP_SEND_DATA_DEALLOC_ABEND corresponds to MC_SEND_DATA followed by MC_DEALLOCATE with a
dealloc_type of AP_ABEND.

AP_SEND_DATA_DEALLOC_FLUSH corresponds to MC_SEND_DATA followed by MC_DEALLOCATE with a
dealloc_type of AP_FLUSH.

AP_SEND_DATA_DEALLOC_SYNC_LEVEL corresponds to MC_SEND_DATA followed by MC_DEALLOCATE with a
dealloc_type of AP_SYNC_LEVEL.

AP_SEND_DATA_P_TO_R_FLUSH corresponds to MC_SEND_DATA followed by MC_PREPARE_TO_RECEIVE with a
ptr_type of AP_FLUSH.

AP_SEND_DATA_P_TO_R_SYNC_LEVEL corresponds to MC_SEND_DATA followed by MC_PREPARE_TO_RECEIVE
with a ptr_type of AP_SYNC_LEVEL and locks set to AP_SHORT.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_DATA_SEGMENT

https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_SEND_DATA_INVALID_TYPE

Secondary return code; the specified type was not recognized by APPC.

AP_SEND_DATA_CONFIRM_SYNC_NONE

Secondary return code; the type CONFIRM is not permitted for a conversation that was allocated with a sync_level of
NONE.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_SEND_DATA_NOT_SEND_STATE

Secondary return code; the local TP issued MC_SEND_DATA, but the conversation was not in SEND state.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications system could be found to
support the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.)
Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces
to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that can
satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft Host Integration Server 2009 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

Remarks

The conversation must be in SEND state when the TP issues this verb. State changes, based on primary_rc, are summarized in
the following table.

primary_rc New state

AP_OK No change

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

MC_SEND_DATA may wait indefinitely because the partner TP has not issued a receive verb. If this occurs, the send buffer
may fill up.

The data collected in the local LU's send buffer is transmitted to the partner LU (and partner TP) when one of the following
occurs:

The send buffer fills up.

The local TP issues MC_FLUSH, MC_CONFIRM, or MC_DEALLOCATE (or other verb that flushes the LU's send buffer).

https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

MC_SEND_ERROR
The MC_SEND_ERROR verb notifies the partner transaction program (TP) that the local TP has encountered an application-
level error.

The following structure describes the verb control block (VCB) used by the MC_SEND_ERROR verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_SEND_ERROR.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by MC_ALLOCATEin the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued MC_REQUEST_TO_SEND.Possible values include:

AP_YES indicates that the partner TP has issued MC_REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use MC_PREPARE_TO_RECEIVE,
MC_RECEIVE_AND_WAIT, or MC_RECEIVE_AND_POST.

AP_NO indicates that the partner TP has not issued MC_REQUEST_TO_SEND.

struct mc_send_error {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char err_type;
 unsigned char err_dir;
 unsigned char reserv4;
 unsigned char reserv5[2];
 unsigned char reserv6[4];
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx

err_type

For a mapped conversation, this parameter is supplied if Sync Point is supported. Valid values are:

AP_PROG

AP_BACKOUT_NO_RESYNC

AP_BACKOUT_RESYNC

err_dir

Supplied parameter. Indicates whether the error is with data just received or with data that is about to be sent. Use this
parameter only when the conversation is in SEND_PENDING state. The parameter is ignored otherwise. The following are
allowed values:

AP_RCV_DIR_ERROR indicates that the TP issued MC_SEND_ERROR after detecting an error associated with the data
just received.

AP_SEND_DIR_ERROR indicates that the TP issued MC_SEND_ERROR after detecting an error associated with data it
was going to send. For example, the TP encountered an error while reading data from the disk drive.

reserv3

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_ERROR_DIRECTION

Secondary return code; the specified err_dir was not recognized by APPC.

AP_SEND_ERROR_BAD_TYPE

Secondary return code; the value of err_type was invalid.

AP_SEND_ERROR_LOG_LL_WRONG

Secondary return code; the LL field of the error log GDS variable did not match the actual length of the data.

The following return codes can be generated when MC_SEND_ERROR is issued in any allowed state:

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications system could be found to
support the local logical unit (LU). (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available
that can satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Microsoft Host Integration Server 2009 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This may occur if
the local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

The following return codes can be generated only if MC_SEND_ERROR is issued in SEND state:

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

This code may be returned through a verb issued after MC_ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued MC_SEND_ERROR. Data sent but not yet received is purged.

AP_DEALLOC_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner LU to send an MC_DEALLOCATE request.

The following return code can be generated only if MC_SEND_ERROR is issued in RECEIVE state:

AP_DEALLOC_NORMAL

Primary return code; this return code does not indicate an error.

The partner TP issued MC_DEALLOCATE with dealloc_type set to one of the following:

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

Remarks

The conversation can be in any state except RESET when the TP issues this verb. The conversation state must be
SEND_PENDING if err_dir is used.

The local TP sends the error notification immediately to the partner TP; it does not hold the information in the local LU's send
buffer.

Upon successful execution of this verb, the conversation is in SEND state for the local TP and in RECEIVE state for the partner
TP.

The new state is determined by primary_rc. Possible state changes are summarized in the following table.

primary_rc New state

AP_OK SEND

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

If the conversation is in RECEIVE state when the TP issues MC_SEND_ERROR, incoming data is purged by APPC. This data
includes:

Data sent by MC_SEND_DATA.

Return code indicators.

Confirmation requests.

Deallocation requests.

APPC does not purge an incoming request-to-send indicator. APPC replaces purged incoming return code indicators with
other return codes. The primary return code AP_OK replaces the following purged return code indicators:

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

The primary return code AP_DEALLOC_NORMAL replaces the following purged return code indicators:

AP_ALLOCATION_ERROR

AP_ALLOCATION_FAILURE_NO_RETRY

AP_ALLOCATION_FAILURE_RETRY

AP_CONVERSATION_TYPE_MISMATCH

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PIP_NOT_ALLOWED

AP_PIP_NOT_SPECIFIED_CORRECTLY

AP_SECURITY_NOT_VALID

AP_SYNC_LEVEL_NOT_SUPPORTED

AP_TP_NAME_NOT_RECOGNIZED

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

AP_TRANS_PGM_NOT_AVAIL_RETRY

When the conversation is in SEND_PENDING state, APPC reports the following return codes to the partner TP based on the
value in err_dir:

AP_PROG_ERROR_PURGING

The local TP issued MC_SEND_ERROR with RECEIVE as the err_dir.

AP_PROG_ERROR_NO_TRUNC

The local TP issued MC_SEND_ERROR with SEND as the err_dir.

MC_TEST_RTS
The MC_TEST_RTS verb determines whether a request-to-send notification has been received from the partner transaction
program (TP).

The following structure describes the verb control block (VCB) used by the MC_TEST_RTS verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_TEST_RTS.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL

Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

struct mc_test_rts {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications system could be found to
support the local logical unit (LU). (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available
that can satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

MC_TEST_RTS_AND_POST
The MC_TEST_RTS_AND_POST verb allows an application, typically a 5250 emulator, to request asynchronous notification
when a partner transaction program (TP) requests send direction.

The following structure describes the verb control block (VCB) used by the MC_TEST_RTS_AND_POST verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_M_TEST_RTS_AND_POST.

opext

Supplied parameter. Specifies the verb operation extension, AP_MAPPED_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by MC_ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3

A reserved field.

handle

Supplied parameter. On Microsoft® Windows® 2000, this field provides the event handle to set.

Return Codes from Initial Verb
AP_OK

Primary return code; the verb executed successfully. Note particularly that a return code of AP_OK from the initial verb does
not indicate that MC_REQUEST_TO_SEND verb received from the partner TP. It simply indicates that the facility to receive
asynchronous notification has been registered.

AP_UNSUCCESSFUL

struct mc_test_rts_and_post {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned long handle;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with MC_ALLOCATE, it may indicate that no communications system could be found to
support the local logical unit (LU). (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available
that can satisfy the MC_ALLOCATE request.

When MC_ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Return Codes from Asynchronous Completion
AP_OK

Primary return code; the request-to-send notification has been received from the partner TP.

AP_CANCELLED

The outstanding TEST_RTS_AND_POST verb has been terminated. This will occur if the underlying conversation has been
deallocated or an AP_TP_ENDED has been issued. Note that as with RECEIVE_AND_POST, the TP is still responsible for
correctly terminating the conversation and possibly terminating the TP. Issuing another verb, such as RECEIVE_IMMEDIATE,
at this point will indicate the reason for the conversation failure.

Remarks

The conversation can be in any state except RESET when the TP issues this verb. There is no state change.

A common feature of many APPC applications, such as 5250 emulators, is a requirement to detect a partner's request to send.
Currently, this can be done by polling the APPC interface to detect the partner's request. For example, an application can
occasionally issue one of the following verbs:

MC_TEST_RTS

MC_RECEIVE_IMMEDIATE and check the rts_rcvd field

MC_SEND_DATA of zero bytes, again checking the rts_rcvd field.

Some of the problems associated with this polling approach are:

The application must continually interrupt its main work to poll APPC.

The partner's request is not detected as soon as it becomes available.

These approaches are processor-intensive.

The MC_TEST_RTS_AND_POST verb allows an application running on Windows 2000, typically a 5250 emulator, to request
asynchronous notification when the partner TP requests send direction.

An APPC application typically issues the MC_TEST_RTS_AND_POST verb while in SEND state and then continues with its main
processing. A request for send direction from the partner TP is indicated asynchronously to the application. After dealing with
the partner's request, the application typically returns to SEND state, reissues MC_TEST_RTS_AND_POST, and continues.

The MC_TEST_RTS_AND_POST verb completes synchronously and the return code AP_OK indicates that a request for
asynchronous notification has been registered. It is important to emphasize that this does not indicate that request-to-send
was received from the partner TP.

When the partner's request to send is received, the asynchronous event completion occurs. It is important to note that this may
be before the completion of the local TP's original MC_TEST_RTS_AND_POST verb. This will be the case if the partner's
request to send was received before the local TP's MC_TEST_RTS_AND_POST verb was issued, or while the local TP's
MC_TEST_RTS_AND_POST verb was being processed.

POST_ON_RECEIPT
The POST_ON_RECEIPT verb allows the application to register to receive a notification when data or status arrives at the local
logical unit (LU) without actually receiving it at the same time. This verb can only be issued while in RECEIVE state and it never
causes a change in conversation state. This verb is only supported on Microsoft® Windows® 2000.

When the transaction program (TP) issues this verb, APPC returns control to the TP immediately. When the specified conditions
are satisfied the Win32® event specified by the sema parameter is signaled and the verb completes. Then the TP looks at the
return code in the verb control block to determine whether or not any data or status notification has arrived at the local LU and
issues a RECEIVE_IMMEDIATE or RECEIVE_AND_WAIT verb to actually receive the data or status notification.

The POST_ON_RECEIPT verb implements both the POST_ON_RECEIPT and TEST verbs as described in the IBM Transaction
Programmer's manual for LU Type 6.2.

The following structure describes the verb control block (VCB) used by the POST_ON_RECEIPT verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_POST_ON_RECEIPT.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv1

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or
byRECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATEin the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

struct post_on_receipt {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned char primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short reserv2;
 unsigned char fill;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short reserv5;
 unsigned char * reserv6;
 unsigned char reserv7[5];
 unsigned long sema;
};

https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

reserv2

A reserved field.

fill

Supplied parameter. Specifies how the local TP receives data. The following values are allowed:

AP_BUFFER

Specifies that APPC should post a notification when the number of data bytes specified by max_len have arrived at the local
LU, the end of the data has been reached, or information other than data is received (such as a conversation status, a
confirmation, or a syncpoint request).

AP_LL

Specifies that APPC should post a notification when a complete or truncated logical record is received, when a portion of a
logical record is received which is at least equal in length to the length specified by max_len, or when information other
than data is received.

reserv4

A reserved field.

max_len

Supplied parameter. Specifies the length of data that triggers APPC to post a notification to the TP.

reserv5

A reserved field.

reserv6

A reserved field.

reserv7

A reserved field.

sema

Supplied parameter. Specifies the handle of a Win32 event. The event should have been created by the TP and the TP is
responsible for ensuring that it is reset before a call is made and after the verb completes.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_DATA

Secondary return code; data is available for the program to receive.

AP_NOT_DATA

Secondary return code; information other than data is available for the program to receive.

AP_CANCELLED

Primary return code; the verb was canceled.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the sema parameter was not set to a valid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_typeset to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_DEALLOC_NORMAL

Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued
DEALLOCATE with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued SEND_ERROR while the conversation was in SEND state. Data was not
truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR. Data sent but not yet received is purged.

AP_PROG_ERROR_TRUNC

Primary return code; the partner TP has issued SEND_ERROR while the conversation was in SEND state. Data was truncated.

AP_SVC_ERROR_NO_TRUNC

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP was not
truncated.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

AP_SVC_ERROR_TRUNC

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
truncated.

Remarks

While a POST_ON_RECEIPT verb is outstanding, the following verbs can be issued on the same conversation:

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

GET_ATTRIBUTES

GET_TYPE

DEALLOCATE

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

REQUEST_TO_SEND

SEND_ERROR

TEST_RTS

TP_ENDED

Issuing any of the following verbs prior to completion of the asynchronous POST_ON_RECEIPT verb causes the
POST_ON_RECEIPT verb to be canceled (the Win32 event is signaled and the primary return code in the verb control block is
set to AP_CANCELLED).

DEALLOCATE

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

SEND_ERROR

TP_ENDED

https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

PREPARE_TO_RECEIVE
The PREPARE_TO_RECEIVE verb changes the state of the conversation for the local transaction program (TP) from SEND to
RECEIVE.

The following structure describes the verb control block (VCB) used by the PREPARE_TO_RECEIVE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_PREPARE_TO_RECEIVE.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or
byRECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATEin the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

ptr_type

Supplied parameter. Specifies how to perform the state change.

Use AP_FLUSH to send the contents of the local logical unit's (LU) send buffer to the partner LU (and TP) before changing the
conversation's state to RECEIVE.

The AP_SYNC_LEVEL value uses the conversation's synchronization level (established by ALLOCATE) to determine how to
perform the state change.

If the synchronization level of the conversation is AP_NONE, APPC sends the contents of the local LU's send buffer to the
partner TP before changing the conversation's state to RECEIVE. If the synchronization level is AP_CONFIRM_SYNC_LEVEL,
APPC sends the contents of the local LU's send buffer and a confirmation request to the partner TP. Upon receiving
confirmation from the partner TP, APPC changes the conversation's state to RECEIVE. If, however, the partner TP reports an
error, the state changes to RECEIVE or RESET. See the Remarks in this topic.

struct prepare_to_receive {
 unsigned short opcode;
 unsigned char opext;
 unsigned char primary_rc;
 unsigned short reserv2;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char ptr_type;
 unsigned char locks;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

locks

Supplied parameter. Specifies when APPC should return control to the local TP.

Use this parameter only if ptr_type is set to AP_SYNC_LEVEL and the synchronization level of the conversation, established
by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. (Otherwise, the parameter is ignored.)

Use AP_LONG to indicate that APPC returns control to the local TP when the confirmation and subsequent data from the
partner TP arrive at the local LU. (This method results in more efficient use of the network but requires a longer time to
return control to the local TP.)

Use AP_SHORT to indicate that APPC returns control to the local TP when the confirmation from the partner TP arrives at the
local LU.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_P_TO_R_INVALID_TYPE

Secondary return code; the ptr_type parameter was not set to a valid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_P_TO_R_NOT_SEND_STATE

Secondary return code; the conversation was not in SEND state.

AP_P_TO_R_NOT_LL_BDY

Secondary return code; the local TP did not finish sending a logical record.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications system could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued a SEND_ERROR verb with err_type set to AP_SVC while in
RECEIVE, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may
have been purged.

Remarks

Before changing the conversation state, this verb performs the equivalent of one of the following:

FLUSH, by sending the contents of the local LU's send buffer to the partner LU (and TP).

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx

CONFIRM, by sending the contents of the local LU's send buffer and a confirmation request to the partner TP.

After this verb has successfully executed, the local TP can receive data.

The conversation must be in SEND state when the TP issues this verb.

State changes, summarized in the following table, are based on the value of primary_rc.

primary_rc New state

AP_OK RECEIVE

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

The conversation does not change to SEND state for the partner TP until the partner TP receives one of the following values
through the what_rcvd parameter of a subsequent receive verb:

AP_SEND

AP_CONFIRM_SEND and replies with CONFIRMED

AP_DATA_COMPLETE_CONFIRM_SEND and replies with CONFIRMED

AP_DATA_CONFIRM_SEND and replies with CONFIRMED

The receive verbs are RECEIVE_AND_POST, RECEIVE_IMMEDIATE, and RECEIVE_AND_WAIT.

https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx

RECEIVE_ALLOCATE
The RECEIVE_ALLOCATE verb is issued by the invoked transaction program (TP) to confirm that the invoked TP is ready to
begin a conversation with the invoking TP that issued ALLOCATE or MC_ALLOCATE.

The following structure describes the verb control block (VCB) used by the RECEIVE_ALLOCATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_RECEIVE_ALLOCATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_name

Supplied parameter. Provides the name of the local TP. The value of tp_name must match the TP name configured through
registry or environment variables. APPC matches the RECEIVE_ALLOCATE verb's tp_name parameter with the TP name
specified by the incoming allocate, which is generated by MC_ALLOCATE or ALLOCATE in the invoking TP.

This parameter is a 64-byte EBCDIC character string and is case-sensitive. The tp_name parameter can consist of characters
from the type AE EBCDIC character set:

Uppercase and lowercase letters

Numerals 0 through 9

struct receive_allocate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_name[64];
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char sync_level;
 unsigned char conv_type;
 unsigned char user_id[10];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char reserv3[2];
 unsigned long conv_group_id;
 unsigned char fqplu_name[17];
 unsigned char pip_incoming;
 unsigned char syncpoint_rqd;
 unsigned char reserv4[3];
};

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Special characters $, #, and period (.)

If tp_name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention is that a service TP name can have up to four characters. The first character is a hexadecimal byte
between 0x00 and 0x3F. The other characters are from the type AE EBCDIC character set.

tp_id

Returned parameter. Identifies the local TP.

conv_id

Returned parameter. Provides the conversation identifier. It identifies the conversation APPC has established between the
two partner TPs.

sync_level

Returned parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.

AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

conv_type

Returned parameter. Specifies the type of conversation chosen by the partner TP, using MC_ALLOCATE or ALLOCATE. The
following are possible values:

AP_BASIC_CONVERSATION

AP_MAPPED_CONVERSATION

user_id

Returned parameter. Provides the user identifier specified by the partner TP, using MC_ALLOCATE or ALLOCATE (if the
partner TP set the MC_ALLOCATE or ALLOCATE verb's security parameter to AP_PGM or AP_SAME). It is a type AE EBCDIC
character string.

lu_alias

Returned parameter. Provides the alias by which the local logical unit (LU) is known to the local TP. It is an ASCII character
string.

plu_alias

Returned parameter. Provides the alias by which the partner LU (which initiated the incoming allocate) is known to the local
TP. It is an ASCII character string.

mode_name

Returned parameter. Provides the mode name specified by MC_ALLOCATE or ALLOCATE in the partner TP. It is the name of
a set of networking characteristics defined during configuration. The mode_name is a type A EBCDIC character string.

reserv3

A reserved field.

conv_group_id

Conversation group identifier.

fqplu_name

This returned parameter provides the fully qualified LU name.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

pip_incoming

This optional supplied and returned parameter is applicable only if Sync Point services are required.

For the supplied parameter:

AP_YES if TP does accept PIP data.

AP_NO if TP does not accept PIP data.

For the returned parameter:

AP_YES if PIP data is available.

AP_NO if PIP data is not available.

syncpoint_rqd

This parameter indicates if Sync Point services are required.

AP_YES if Sync Point is required.

AP_NO if Sync Point is not required.

reserv4

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_UNDEFINED_TP_NAME

Secondary return code; the TP name was not configured correctly.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_ALLOCATE_NOT_PENDING

Secondary return code; APPC did not find an incoming allocate (from the invoking TP) to match the value of tp_name,
supplied by RECEIVE_ALLOCATE. RECEIVE_ALLOCATE waited for the incoming allocate and eventually timed out.

AP_INVALID_PROCESS

Secondary return code; the process issuing RECEIVE_ALLOCATE was different from the one started by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

This must be the first APPC verb issued by the invoked TP. The initial state is RESET. If the verb executes successfully
(primary_rc is AP_OK), the state changes to RECEIVE.

In response to this verb, APPC establishes a conversation between the two TPs and generates a TP identifier for the invoked TP
and a conversation identifier. These identifiers are required parameters for subsequent APPC verbs.

If the invoked TP issues RECEIVE_ALLOCATE and a corresponding incoming allocate (resulting from MC_ALLOCATE or
ALLOCATE issued by the invoking TP) is not present, the invoked TP waits until the incoming allocate arrives or the verb times
out. The time-out value is set by the system administrator.

Host Integration Server also supports APPC RECEIVE_ALLOCATE_EX and RECEIVE_ALLOCATE_EX_END functions, to simplify the
design and implementation of some invokable transaction programs. This function allows an APPC application to receive all
incoming FMH-5 Attach requests received by Host Integration Server over a specific Local APPC LU, allowing an application to
act as an "attach manager." An attach manager is a program that handles an incoming FMH-5 Attach request to start an LU6.2
conversation. When an APPC application calls RECEIVE_ALLOCATE (as opposed to RECEIVE_ALLOCATE_EX), Host Integration
Server handles the attach manager functionality.

For more information on attach manager, see RECEIVE_ALLOCATE_EX.

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771035(v=bts.10).aspx

RECEIVE_ALLOCATE_EX
The RECEIVE_ALLOCATE_EX verb accepts a new VCB structure to allow registration of an attach manager.

Syntax

Members
opcode

Supplied parameter: RECEIVE_ALLOCATE_EX

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

format

Reserved parameter.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued.

tp_name

Supplied parameter. The tp_name is a returned parameter only. However, the application must allocate sufficient buffer
space to hold the tp_name (that is, 64 characters) and initialize the name to EBCDIC spaces (hexadecimal X'40')

The returned verb will contain the actual TP name sent by the remote system.

tp_id

Returned parameter. Identifies the local TP.

conv_id

Returned parameter. Provides the conversation identifier. It identifies the conversation APPC has established between the
two partner TPs.

typedef struct receive_allocate_ex {
 unsigned short opcode;
 unsigned char opext;
 unsigned char format;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_name[64];
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char sync_level;
 unsigned char conv_type;
 unsigned char user_id[10];
 unsigned char lu_alias[8];
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char reserv3[2];
 unsigned long conv_group_id;
 unsigned char fqplu_name[17];
 unsigned char pip_incoming;
 unsigned long timeout;
 unsigned char password[10];
 unsigned char reserv5[2];
 unsigned char attach_id[8];
 }

sync_level

Returned parameter. Specifies the synchronization level of the conversation. It determines whether the TPs can request
confirmation of receipt of data and confirm receipt of data.

AP_NONE specifies that confirmation processing will not be used in this conversation.

AP_CONFIRM_SYNC_LEVEL specifies that the TPs can use confirmation processing in this conversation.

AP_SYNCPT specifies that TPs can use Sync Point Level 2 confirmation processing in this conversation.

conv_type

Returned parameter. Specifies the type of conversation chosen by the partner TP, using MC_ALLOCATE or ALLOCATE. The
following are possible values:

AP_BASIC_CONVERSATION

AP_MAPPED_CONVERSATION

user_id

This is the EBCDIC user_id sent by the remote system

lu_alias

Supplied parameter. Local LU alias. Must be supplied to register an attach manager. Only one attach manager may be
registered for a given Local LU alias within the Host Integration Server subdomain. If another attach manager process is
already registered for this lu_alias, the following error will be returned:

primary_rc = AP_STATE_CHECK (0x0002) secondary_rc = AP_LU_ALREADY_REGISTERED (0x0000050A)

This indicates that Host Integration Server was unable to register this attach manager.

plu_alias

Returned parameter. Provides the alias by which the partner LU (which initiated the incoming allocate) is known to the local
TP. It is an ASCII character string.

mode_name

Returned parameter. Provides the mode name specified by MC_ALLOCATE or ALLOCATE in the partner TP. It is the name of
a set of networking characteristics defined during configuration. The mode_name is a type A EBCDIC character string.

reserv3

Reserved parameter.

conv_group_id

Conversation group identifier.

fqplu_name

This returned parameter provides the fully qualified LU name.

pip_incoming

Supplied parameter. If this attach manager will accept incoming FMH-5 Attaches which include PIP data, then set this to
AP_YES. Otherwise, set this to AP_NO.

Returned parameter: If PIP data is present in the incoming Attach, this is set to AP_YES. If no PIP data is present, this will be
set to AP_NO.

timeout

Timeout, in seconds. A value of 0xFFFFFFFF can be used to wait forever.

password

Returned parameter: This is the EBCDIC password sent by the remote system. If the remote system supports "Password
substitution" (password encryption), the encrypted password will be received in RECEIVE_ALLOCATE_EX. There is no facility
to decrypt this password, so the application will not be able to verify the user credentials.

reserv5

Reserved parameter.

attach_id

Returned parameter. Always set to 0. This field is defined for source compatibility with non-Microsoft SNA products.

Remarks

Host Integration Server supports APPC RECEIVE_ALLOCATE_EX and RECEIVE_ALLOCATE_EX_END to simplify the design
and implementation of some invokable transaction programs. This function allows an APPC application to receive all incoming
FMH-5 Attach requests received by Host Integration Server over a specific Local APPC LU, allowing an application to act as an
"attach manager." An attach manager is a program that handles an incoming FMH-5 Attach request to start an LU6.2
conversation. When an APPC application calls RECEIVE_ALLOCATE (as opposed to RECEIVE_ALLOCATE_EX), Host Integration
Server handles the attach manager functionality. To implement the attach manager functionality within an APPC application,
the following occurs:

The application supplies a Local APPC LU alias to the RECEIVE_ALLOCATE_EX function, with a tp_name of EBCDIC
spaces (hexadecimal X'40').

When Host Integration Server receives an incoming FMH-5 Attach request over an LU6.2 session using that Local APPC
LU, Host Integration Server will route the request to the application.

When the RECEIVE_ALLOCATE_EX completes, the application is responsible for the following:

1. Accepting or rejecting the FMH-5 Attach

2. Verifying any conversation level security, and

3. If accepting the attach request, completely handling the request within its Win32 process context.

To stop listening for new incoming attach requests, the application calls RECEIVE_ALLOCATE_EX_END.

After a process issues RECEIVE_ALLOCATE_EX, the process should not call RECEIVE_ALLOCATE with a specific TP
name. Likewise, if a process calls RECEIVE_ALLOCATE, that process should not later call RECEIVE_ALLOCATE_EX. In
other words, for the duration of a process supporting an invokable TP, the process should exclusively call
RECEIVE_ALLOCATE, or RECEIVE_ALLOCATE_EX, but not both.

It is not possible for the application to dispatch the incoming attach request to another process, as the conversation ID is only
valid within its own application context.

Note
: Host Integration Server does not support auto starting an attach manager application. In other words, if an application calls
RECEIVE_ALLOCATE_EX, the application must be started before any incoming Attach requests arrive over the Local LU.

The current specification does not return the Security Indicator (Byte 4 of the FMH-5 Attach). So, the application will need to
accommodate incoming attach requests that contain the following:

1. Neither a user_id or password (when no security is sent in the attach),

2. A user_id only (such as for "already verified" attaches), or

3. Both a user_id and password (if user authorization is required).

In the LU6.2 BIND request, Host Integration Server indicates support for incoming FMH-5 Attach requests that contain user
security, already verified, and password substitution. Host Integration Server does not support incoming attaches which
request persistent verification.

The RECEIVE_ALLOCATE_EX function allows an application to register as an attach manager if the tp_name is set to all EBCDIC
spaces (X'40') and a Local LU alias is supplied in the lu_alias field. When registered as an attach manager for a given lu_alias,
Host Integration Server will route all incoming attaches received over the lu_alias to the application. See below for more
information on how Host Integration Server routes incoming FMH-5 attach requests.

The application may call RECEIVE_ALLOCATE_EX more than once to register as the attach manager for one or more Local LU.
However, only one attach manager may be registered on a given lu_alias within the SNA subdomain (that is, across all Host
Integration Servers and attached Host Integration Server clients). The application cannot supply a blank tp_name and blank
lu_alias. In other words, an application cannot register as the default attach manager to receive all incoming attach requests for
an SNA subdomain.

When RECEIVE_ALLOCATE_EX completes, the application is responsible for the following:

Deciding whether the attach will be accepted or not. Host Integration Server provides no mechanism for configuring
transaction programs (TPs). The application must have its own means of defining which tp names it will support.

If accepted, the application must verify conversation security attributes (user_id, password) and for handling the
processing of the new conversation.

The tp_id and conv_id cannot be passed to a separate process for handling. All TP processing must be provided by the
application.

If the application chooses to reject the attach request, [MC_]DEALLOCATE must be called, specifying the conv_id received in
the completed RECEIVE_ALLOCATE_EX, along with an appropriate reason code in the dealloc_type parameter, using these
new extended codes:
#define AP_DEALLOC_SECURITY_NOT_VALID_PASSWORD_EXPIRED 0x10
#define AP_DEALLOC_SECURITY_NOT_VALID_PASSWORD_INVALID 0x11
#define AP_DEALLOC_SECURITY_NOT_VALID_USERID_REVOKED 0x12
#define AP_DEALLOC_SECURITY_NOT_VALID_USERID_INVALID 0x13
#define AP_DEALLOC_SECURITY_NOT_VALID_USERID_MISSING 0x14
#define AP_DEALLOC_SECURITY_NOT_VALID_PASSWORD_MISSING 0x15
#define AP_DEALLOC_SECURITY_NOT_VALID_GROUP_INVALID 0x16
#define AP_DEALLOC_SECURITY_NOT_VALID_USERID_REVOKED_IN_GROUP 0x17
#define AP_DEALLOC_SECURITY_NOT_VALID_USERID_NOT_DEFD_TO_GROUP 0x18
#define AP_DEALLOC_SECURITY_NOT_VALID_NOT_AUTHORIZED_AT_REMOTE_LU 0x19
#define AP_DEALLOC_SECURITY_NOT_VALID_NOT_AUTHORIZED_FROM_LOCAL_LU 0x1A
#define AP_DEALLOC_SECURITY_NOT_VALID_NOT_AUTHORIZED_TO_TRANSACTION_PROGRAM 0x1B
#define AP_DEALLOC_SECURITY_NOT_VALID_INSTALLATION_EXIT_FAILED 0x1C
#define AP_DEALLOC_SECURITY_NOT_VALID_PROCESSING_FAILURE 0x1D
#define AP_DEALLOC_SECURITY_NOT_VALID_PROTOCOL_VIOLATION 0x1E

When the application sets the above dealloc_type, the Host Integration Server then sends the corresponding sense code within
the FMH-7 error sent to the remote system when rejecting the FMH-5 Attach request:
#define AP_SECURITY_NOT_VALID_PASSWORD_EXPIRED APPC_FLIPL(x080fff00)
#define AP_SECURITY_NOT_VALID_PASSWORD_INVALID APPC_FLIPL(x080fff01)
#define AP_SECURITY_NOT_VALID_USERID_REVOKED APPC_FLIPL(x080fff02)
#define AP_SECURITY_NOT_VALID_USERID_INVALID APPC_FLIPL(x080fff03)
#define AP_SECURITY_NOT_VALID_USERID_MISSING APPC_FLIPL(x080fff04)
#define AP_SECURITY_NOT_VALID_PASSWORD_MISSING APPC_FLIPL(x080fff05)
#define AP_SECURITY_NOT_VALID_GROUP_INVALID APPC_FLIPL(x080fff06)
#define AP_SECURITY_NOT_VALID_USERID_REVOKED_IN_GROUP APPC_FLIPL(x080fff07)
#define AP_SECURITY_NOT_VALID_USERID_NOT_DEFD_TO_GROUP APPC_FLIPL(x080fff08)
#define AP_SECURITY_NOT_VALID_NOT_AUTHORIZED_AT_REMOTE_LU APPC_FLIPL(x080fff09)

#define AP_SECURITY_NOT_VALID_NOT_AUTHORIZED_FROM_LOCAL_LU APPC_FLIPL(x080fff0A)
#define AP_SECURITY_NOT_VALID_NOT_AUTHORIZED_TO_TRANSACTION_PROGRAM APPC_FLIPL(x080fff0B)
#define AP_SECURITY_NOT_VALID_INSTALLATION_EXIT_FAILED APPC_FLIPL(x080fff0C)
#define AP_SECURITY_NOT_VALID_PROCESSING_FAILURE APPC_FLIPL(x080fff0D)
#define AP_SECURITY_NOT_VALID_PROTOCOL_VIOLATION APPC_FLIPL(x080fff0E)

Before calling RECEIVE_ALLOCATE_EX, the application may want to verify the configuration settings for the Local APPC LU to
determine if the LU supports sync level 2, or is a member of the default LU pool. To do this, use the enhanced
GET_LU_STATUS API.

To deregister as the attach manager for a given Local APPC LU, the application must call RECEIVE_ALLOCATE_EX_END,
documented below. If an application has registered as the attach manager for more than one lu_alias,
RECEIVE_ALLOCATE_EX_END must be called for each lu_alias.

The application should try to have a RECEIVE_ALLOCATE_EX pending at all times, in order to handle incoming attach requests
in a timely manner. If the application fails to post new RECEIVE_ALLOCATE_EX, Host Integration Server queues up to 2,048
incoming attaches against the application, if the application is running on the Host Integration Server, or 256 if running on an
SNA Windows NT client. If the limit is exceeded, Host Integration Server rejects the attach request with sense code
X'084B6031', or AP_TRANS_PGM_NOT_AVAIL_RETRY.

RECEIVE_ALLOCATE_EX_END
The RECEIVE_ALLOCATE_EX_END verb allows an application to deregister as the attach manager for a given Local APPC LU
(lu_alias). This verb must be called for each lu_alias previously passed to the RECEIVE_ALLOCATE_EX request.

Syntax

Members
Opcode

A supplied parameter. Specifies the verb operation code, RECEIVE_ALLOCATE_EX_END.

reserv2

A reserved field.

primary_rc

If the lu_alias has not been previously registered by the application, the following error is returned:

AP_STATE_CHECK (0x0002)

secondary_rc

If the lu_alias has not been previously registered by the application, the following error is returned:

AP_ATTACH_MANAGER_INACTIVE (0x00000508)

tp_name

Must be all EBCDIC spaces (X'40')

lu_alias

Must be supplied and must match the lu_alias provided in a previous RECEIVE_ALLOCATE_EX request from the same process

reserved3

A reserved field.

Remarks

If the application is providing sync point support, the application needs to know when the LU-LU session limits have dropped
to zero. This can be done by polling the GET_LU_STATUS API.

After calling RECEIVE_ALLOCATE_EX_END to deregister an attach manager, Host Integration Server does not tear down any
existing LU6.2 sessions. To tear down an existing session, call the DEACTIVATE_SESSION function, supplying the appropriate
lu_alias and plu_alias. If you are using Sync Level 2, deactivating the LU6.2 sessions notifies the Remote LU that the syncpoint
manager has gone away and thus, a new ExchangeLogNames is required for the next connection.

typedef struct receive_allocate_ex_end {
 unsigned short opcode;
 unsigned char reserv2[2];
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_name[64];
 unsigned char lu_alias[8];
 unsigned char reserved3[20];
 };

RECEIVE_AND_POST
The RECEIVE_AND_POST verb receives application data and status information asynchronously. This allows the local
transaction program (TP) to proceed with processing while data is still arriving at the local logical unit (LU).

While an asynchronous RECEIVE_AND_POST is outstanding, the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES

GET_TYPE

REQUEST_TO_SEND

SEND_ERROR

TEST_RTS

TP_ENDED

This allows an application to use an asynchronous RECEIVE_AND_POST to receive data. While the RECEIVE_AND_POST is
outstanding, it can still use SEND_ERROR and REQUEST_TO_SEND. It is recommended that you use this feature for full
asynchronous support. For information on how a TP receives data and how to use this verb, see Remarks in this topic.

The following structure describes the verb control block (VCB) used by the RECEIVE_AND_POST verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_AND_POST.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

struct receive_and_post {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char fill;
 unsigned char rts_rcvd;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char FAR * sema;
 unsigned char reserv5;
};

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or
byRECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATEin the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd

Returned parameter. Indicates whether data or conversation status was received. Possible values are listed following the
Members section

rtn_status

Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.

AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The fill parameter specifies BUFFER or LL, and the data is the last logical record before the status indicator.

fill

Supplied parameter. Specifies how the local TP receives data.

Use AP_BUFFER to indicate that the local TP receives data until the number of bytes specified by max_len is reached or until
end of data. Data is received without regard for the logical-record format.

Use AP_LL to indicate that data is received in logical-record format. The data received can be:

A complete logical record.

A max_len byte portion of a logical record.

The end of a logical record.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued REQUEST_TO_SEND. Possible values are:

AP_YES indicates that the partner TP issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.

AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

max_len

Supplied parameter. Specifies the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

The value must not exceed the length of the buffer to contain the received data. The offset of dptr plus the value of max_len
must not exceed the size of the data segment.

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx

Dlen

Returned parameter. Specifies the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr

Supplied parameter. Provides the address of the buffer to contain the data received by the local LU.

For Microsoft® Windows® 2000, the data buffer can reside in a static data area or in a globally allocated area. The data
buffer must fit entirely within this area.

sema

Supplied parameter. Provides the address of the semaphore that APPC is to clear when the asynchronous receiving
operation is finished. The sema parameter is an event handle obtained by calling either the CreateEvent or OpenEvent
Win32 function.

Values Returned by the what_rcvd Parameter

AP_CONFIRM_DEALLOCATE indicates that the partner TP issued DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL. The conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED.

AP_CONFIRM_SEND indicates that the partner TP issued PREPARE_TO_RECEIVE with ptr_type set to AP_SYNC_LEVEL.
The conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL. Upon receiving this
value, the local TP normally issues CONFIRMED, and begins to send data.

AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP issued CONFIRM. Upon receiving this value, the local TP
normally issues CONFIRMED.

AP_DATA indicates that this value can be returned by RECEIVE_AND_POST if fill is set to AP_BUFFER. The local TP
received data until max_len or the end of the data was reached. For more information, see Remarks in this topic.

AP_DATA_COMPLETE indicates, for RECEIVE_AND_POST, that the local TP has received a complete data record or the
last part of a data record.

For RECEIVE_AND_POST with fill set to AP_LL, this value indicates that the local TP has received a complete logical
record or the end of a logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_POST or issues another receive verb. If the
partner TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information.

If primary_rc contains AP_OK and what_rcvd contains AP_SEND, AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or
AP_CONFIRM_WHAT_RECEIVED, see the description of the value (in this section) for the next action the local TP normally
takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to the DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates, for RECEIVE_AND_POST, that the local TP has received an incomplete data record.
The max_len parameter specified a value less than the length of the data record (or less than the remainder of the data
record if this is not the first receive verb to read the record).

For RECEIVE_AND_POST with fill set to AP_LL, this value indicates that the local TP has received an incomplete logical
record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_POST (or issues another receive verb) to receive
the next part of the record.

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

AP_NONE indicates that the TP did not receive data or conversation status indicators.

AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the conversation
is now in SEND state. Upon receiving this value, the local TP normally uses SEND_DATA to begin sending data.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DATA_SEND

Primary return code; this is a combination of AP_DATA and AP_SEND.

AP_DATA_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_SEND.

AP_DATA_CONFIRM

Primary return code; this is a combination of AP_DATA and AP_CONFIRM.

AP_DATA_CONFIRM_DEALLOCATE

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL

Primary return code; the partner TP issued DEALLOCATE with dealloc_type set to AP_FLUSH or AP_SYNC_LEVEL with the
synchronization level of the conversation specified as AP_NONE.

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code; the address of the RAM semaphore or system semaphore handle was invalid.

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

APPC cannot trap all invalid semaphore handles. If the TP passes a bad RAM semaphore handle, a protection violation results.

AP_RCV_AND_POST_BAD_FILL

Secondary return code; the fill parameter was set to an invalid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_POST_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_RCV_AND_POST_NOT_LL_BDY

Secondary return code; the conversation was in SEND state; the TP began but did not finish sending a logical record.

AP_CANCELED

Primary return code; the local TP issued one of the following verbs, which canceled RECEIVE_AND_POST:

DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER

SEND_ERROR

TP_ENDED

Issuing one of these verbs causes the semaphore to be cleared.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications system could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP issued SEND_ERROR with err_type set to AP_PROG while the conversation was in SEND
state. Data was not truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_PROG_ERROR_TRUNC

Primary return code; in SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR with
err_type set to AP_PROG. The local TP may have received the first part of the logical record through a receive verb.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_NO_TRUNC

Primary return code; while in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC.
Data was not truncated.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

AP_SVC_ERROR_TRUNC

Primary return code; in SEND state, after sending an incomplete logical record, the partner TP (or partner LU) issued
SEND_ERROR. The local TP may have received the first part of the logical record.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received can be:

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

One logical record.

A buffer of data received independent of its logical-record format.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it. The receive verbs are RECEIVE_AND_POST,
RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.

If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The following procedure shows tasks performed by the local TP in using RECEIVE_AND_POST.

To use RECEIVE_AND_POST

1. For the Microsoft Windows® 2000 operating system, the TP retrieves the WinAsyncAPPC message number by calling
the RegisterWindowMessage API or allocating a semaphore. The sema field should be set to NULL if the application
expects to be notified through the Windows message mechanism.

APPC sends the Windows message or clears the semaphore when the local TP finishes receiving data.

The semaphore will remain set while the local TP receives data asynchronously. APPC will clear the semaphore when the
local TP finishes receiving data.

2. The TP issues RECEIVE_AND_POST.

3. The TP checks the value of primary_rc.

If primary_rc is AP_OK, the receive buffer (pointed to by dptr) is asynchronously receiving data from the partner TP.
While receiving data asynchronously, the local TP can:

Perform tasks not related to this conversation.

Issue REQUEST_TO_SEND.

Gather information about this conversation by issuing GET_TYPE, GET_ATTRIBUTES, or TEST_RTS.

Prematurely cancel RECEIVE_AND_POST by issuing DEALLOCATE with dealloc_type set to AP_ABEND_PROG,
AP_ABEND_SVC, or AP_ABEND_TIMER; SEND_ERROR;or TP_ENDED.

If, however, primary_rc is not AP_OK, RECEIVE_AND_POST has failed. In this case, the local TP does not perform the
next two tasks.

4. For the Windows 2000 operating system, when the TP finishes receiving data asynchronously, APPC issues the
WinAsyncAPPC Windows message or clears the semaphore.

5. The TP checks the new value of primary_rc.

If primary_rc is AP_OK, the local TP can examine the other returned parameters and manipulate the asynchronously
received data.

If primary_rc is not AP_OK, only secondary_rc and rts_rcvd (request-to-send received) are meaningful.

Conversation State Effects

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing RECEIVE_AND_POST while the conversation is in SEND state has the following effects:

https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.

The conversation changes to PENDING_POST state; the local TP is ready to receive information from the partner TP
asynchronously.

The conversation changes states twice:

Upon initial return of the verb, if primary_rc contains AP_OK, the conversation changes to PENDING_POST state.

After completion of the verb, the state changes depending on the value of the following:

The primary_rc parameter

The what_rcvd parameter if primary_rc is AP_OK

The following table shows the new state associated with each value of what_rcvd when primary_rc is AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA RECEIVE

AP_DATA_COMPLETE RECEIVE

AP_DATA_INCOMPLETE RECEIVE

AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table shows the new state associated with each value of primary_rc other than AP_OK.

primary_rc New state

AP_CANCELED No change

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_PROG_ERROR_NO_TRUNC RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

AP_SVC_ERROR_NO_TRUNC RECEIVE

AP_PROG_ERROR_TRUNC RECEIVE

AP_SVC_ERROR_TRUNC RECEIVE

End of Data for a Basic Conversation

If the local TP issues RECEIVE_AND_POST and sets fill to AP_BUFFER, the receipt of data ends when max_len or the end of
the data is reached. The end of the data is indicated by either primary_rc with a value other than AP_OK (for example,
AP_DEALLOC_NORMAL), or by what_rcvd with one of the following values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM

To determine if the end of the data has been reached, the local TP reissues RECEIVE_AND_POST. If the new primary_rc
contains AP_OK and what_rcvd contains AP_DATA, the end of the data has not been reached. If, however, the end of the data
has been reached, primary_rc or what_rcvd will indicate the cause of the end of the data.

Troubleshooting

The local TP can wait indefinitely if one of the following situations occurs:

For the Windows 2000 operating system, the local TP issues a RECEIVE_AND_POST request, but either the partner TP
has not sent data or the initial primary_rc is not AP_OK.

For the OS/2 operating system, the local TP issues a DosSemWait function call, but either the partner TP has not sent
data or the initial primary_rc is not AP_OK.

This is because APPC will not issue the Windows message or clear the semaphore.

When a condition resulting in one of the following primary_rc parameters occurs, APPC does not clear the semaphore:

AP_INVALID_SEMAPHORE_HANDLE

AP_INVALID_VERB_SEGMENT

AP_STACK_TOO_SMALL

To test what_rcvd, issue RECEIVE_AND_POST with max_len set to zero, so that the local TP can determine whether the
partner TP has data to send, seeks confirmation, or has changed the conversation state.

RECEIVE_AND_WAIT
The RECEIVE_AND_WAIT verb receives any data that is currently available from the partner transaction program (TP). If no
data is currently available, the local TP waits for data to arrive.

To allow full use to be made of the asynchronous support, asynchronously issued RECEIVE_AND_WAIT verbs have been
altered to act like RECEIVE_AND_POST verbs. Specifically, while an asynchronous RECEIVE_AND_WAIT is outstanding, the
following verbs can be issued on the same conversation:

DEALLOCATE(AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES

GET_TYPE

REQUEST_TO_SEND

SEND_ERROR

TEST_RTS

TP_ENDED

This allows an application, and in particular, a 5250 emulator, to use an asynchronous RECEIVE_AND_WAIT to receive data.
While the RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR and REQUEST_TO_SEND. It is recommended
that you use this feature for full asynchronous support.

The following structure describes the verb control block (VCB) used by the RECEIVE_AND_WAIT verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_AND_WAIT.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

struct receive_and_wait {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char fill;
 unsigned char rts_rcvd;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv5[5];
};

https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Specifies the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd

Returned parameter. Indicates whether data or conversation status was received. Possible values are listed in the table
following the Members section.

rtn_status

Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

AP_NO specifies that indicators should be returned individually on separate invocations of the verb.

AP_YES specifies that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The fill parameter specifies BUFFER or LL, and the data is the last logical record before the status indicator.

fill

Supplied parameter. Used in a basic conversation to specify how the local TP receives data. The following are allowed values:

AP_BUFFER specifies that the local TP receives data until the number of bytes specified by max_len is reached or until
the end of the data. Data is received without regard for the logical-record format.

AP_LL specifies that data is received in logical-record format. The data received can be a complete logical record, a
max_len byte portion of a logical record, or the end of a logical record.

rts_rcvd

Returned parameter. Contains the request-to-send indicator. Possible values are:

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.

AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

max_len

Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Microsoft Windows 2000 operating system, this value must not exceed the length of the buffer to contain the
received data.

By issuing RECEIVE_AND_WAIT with max_len set to zero, the local TP can determine whether the partner TP has data to

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx

send, seeks confirmation, or has changed the conversation state.

dlen

Returned parameter. Indicates the number of bytes of data received. Data is stored in the buffer specified by dptr. A length of
zero indicates that no data was received.

dptr

Supplied parameter. Provides the address of the buffer to contain the data received by the local TP.

For the Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated area. The
data buffer must fit entirely within this area.

Values Returned by the what_rcvd Parameter

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED.

AP_CONFIRM_SEND indicates that the partner TP has issued PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED and begins to send data.

AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued CONFIRM. Upon receiving this value, the local
TP normally issues CONFIRMED.

AP_DATA can be returned in a basic conversation by RECEIVE_AND_WAIT if fill is set to AP_BUFFER. The local TP
received data until max_len or end of data was reached. For more information, see "RECEIVE_AND_WAIT End of Data"
at the end of this topic.

AP_DATA_COMPLETE indicates, for RECEIVE_AND_WAIT, that the local TP has received a complete data record or the
last part of a data record.

For RECEIVE_AND_WAIT with fill set to AP_LL, this value indicates that the local TP has received a complete logical
record or the end of a logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_WAIT or issues another receive verb. If the
partner TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information, if primary_rc contains AP_OK and what_rcvd contains AP_SEND,
AP_CONFIRM_SEND, AP_CONFIRM_DEALLOCATE, or AP_CONFIRM_WHAT_RECEIVED.

See Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates, for RECEIVE_AND_WAIT, that the local TP has received an incomplete data record.
The max_len parameter specified a value less than the length of the data record (or less than the remainder of the data
record if this is not the first receive verb to read the record).

For RECEIVE_AND_WAIT with fill set to AP_LL, this value indicates that the local TP has received an incomplete logical
record.

Upon receiving this value, the local TP normally reissues RECEIVE_AND_WAIT (or issues another receive verb) to
receive the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.

AP_SEND indicates, for the partner TP, that the conversation has entered RECEIVE state. For the local TP, the conversation

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

is now in SEND state. Upon receiving this value, the local TP normally uses SEND_DATA to begin sending data.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DATA_SEND

Primary return code; this is a combination of AP_DATA and AP_SEND.

AP_DATA_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_SEND.

AP_DATA_CONFIRM

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_CONFIRM_DEALLOCATE

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE.

AP_DEALLOC_NORMAL

Primary return code; the partner TP has deallocated the conversation without requesting confirmation and issued
DEALLOCATE with dealloc_type set to one of the following:

AP_CONFIRM_SYNC_LEVEL

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_RCV_AND_WAIT_BAD_FILL

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

Secondary return code; for basic conversations, fill was set to an invalid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_AND_WAIT_BAD_STATE

Secondary return code; the conversation was not in RECEIVE or SEND state when the TP issued this verb.

AP_RCV_AND_WAIT_NOT_LL_BDY

Secondary return code; for basic conversations, the conversation was in SEND state; the TP began but did not finish sending
a logical record.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner logical unit (LU) or TP does not support the conversation type (basic or mapped)
specified in the allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued SEND_ERROR with err_type set to AP_PROG while the conversation was in
SEND state. Data was not truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_PROG_ERROR_TRUNC

Primary return code; in SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR with
err_type set to AP_PROG. The local TP may have received the first part of the logical record through a receive verb.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_NO_TRUNC

Primary return code; while in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC.
Data was not truncated.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

AP_SVC_ERROR_NO_TRUNC

Primary return code; while in SEND state, after sending an incomplete logical record, the partner TP (or partner LU) issued
SEND_ERROR. The local TP may have received the first part of the logical record.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received can be:

One logical record.

A buffer of data received independent of its logical-record format.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it.

The receive verbs are RECEIVE_AND_POST, RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE.

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.

If the partner TP has finished sending data or is waiting for confirmation, status information (available through the
what_rcvd parameter) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE or SEND state when the TP issues this verb.

Issuing the Verb in SEND State

Issuing RECEIVE_AND_WAIT while the conversation is in SEND state has the following effects:

The local LU sends the information in its send buffer and a SEND indicator to the partner TP.

The conversation changes to RECEIVE state; the local TP waits for the partner TP to send data.

State Change

The new conversation state is determined by the following factors:

The state the conversation is in when the TP issues the verb.

The primary_rc parameter.

The what_rcvd parameter if primary_rc contains AP_OK.

Verb Issued in SEND State

The following table details the state changes when RECEIVE_AND_WAIT is issued in SEND state and primary_rc is AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA RECEIVE

AP_DATA_COMPLETE RECEIVE

AP_DATA_INCOMPLETE RECEIVE

AP_SEND No change

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when RECEIVE_AND_WAIT is issued in SEND state and primary_rc is not
AP_OK.

primary_rc New state

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_PROG_ERROR_NO_TRUNC RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

AP_SVC_ERROR_NO_TRUNC RECEIVE

Verb Issued in RECEIVE State

The following table details the state changes when RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA No change

AP_DATA_COMPLETE No change

AP_DATA_INCOMPLETE No change

AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when RECEIVE_AND_WAIT is issued in RECEIVE state and primary_rc is not
AP_OK.

primary_rc New state

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING No change

AP_PROG_ERROR_NO_TRUNC No change

AP_SVC_ERROR_PURGING No change

AP_SVC_ERROR_NO_TRUNC No change

AP_PROG_ERROR_TRUNC No change

AP_SVC_ERROR_TRUNC No change

RECEIVE_AND_WAIT End of Data

In basic conversations, if the local TP issues RECEIVE_AND_WAIT and sets fill to AP_BUFFER, the receipt of the data ends
when max_len or the end of the data is reached. The end of the data is indicated by either:

A primary_rc parameter with a value other than AP_OK (for example, AP_DEALLOC_NORMAL).

A what_rcvd parameter with one of the following values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM

To determine if the end of the data has been reached, the local TP reissues RECEIVE_AND_WAIT. If the new primary_rc
contains AP_OK and what_rcvd contains AP_DATA, the end of the data has not been reached. If, however, the end of the data
has been reached, primary_rc or what_rcvd will indicate the cause of the end of the data.

RECEIVE_AND_WAIT waits for data or an indicator to be sent by the partner TP. If you need the local TP to operate
continuously, use RECEIVE_IMMEDIATE instead.

https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx

RECEIVE_IMMEDIATE
The RECEIVE_IMMEDIATE verb receives any data currently available from the partner transaction program (TP). If no data is
available, the local TP does not wait. To avoid blocking the conversation, the Microsoft Windows 2000 system can issue
RECEIVE_AND_WAIT in conjunction with WinAsyncAPPC.

The following structure describes the verb control block used by the RECEIVE_IMMEDIATE verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_IMMEDIATE.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

what_rcvd

Returned parameter. Contains information received with the incoming data. Possible values are listed following the
Members section.

rtn_status

struct receive_immediate {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short what_rcvd;
 unsigned char rtn_status;
 unsigned char fill;
 unsigned char rts_rcvd;
 unsigned char reserv4;
 unsigned short max_len;
 unsigned short dlen;
 unsigned char FAR * dptr;
 unsigned char reserv5[5];
};

https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Supplied parameter. Indicates whether both data and conversation status indicators should be returned within one API call.

Use AP_NO to specify that indicators should be returned individually on separate invocations of the verb.

Use AP_YES to specify that indicators should be returned together, provided both are available. Both can be returned when:

The receive buffer is large enough to hold all of the data that precedes the status indicator.

The fill parameter specifies either BUFFER or LL, and the data is the last logical record before the status indicator.

fill

Supplied parameter. Specifies the manner in which the local TP receives data. It is used only for RECEIVE_IMMEDIATE.

Use AP_BUFFER to indicate that the local TP receives data until the number of bytes specified by max_len is reached or until
end of data. Data is received without regard for the logical-record format.

Use AP_LL to indicate that data is received in logical-record format. The data received can be a complete logical record, a
max_len byte portion of a logical record, or the end of a logical record.

rts_rcvd

Returned parameter. Contains the request-to-send indicator. Possible values are:

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state.

AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

max_len

Supplied parameter. Indicates the maximum number of bytes of data the local TP can receive. The range is from 0 through
65535.

For the Windows 2000 operating system, this value must not exceed the length of the buffer to contain the received data.

By issuing RECEIVE_IMMEDIATE with max_len set to zero, the local TP can determine whether the partner TP has data to
send, seeks confirmation, or has changed the conversation state.

dlen

Returned parameter. Provides the number of bytes of data received. Data is stored in a buffer specified by dptr. A length of
zero indicates that no data was received.

dptr

Supplied parameter. Address of the buffer to contain the data received by the local TP.

For the Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated area. The
data buffer must fit entirely within this area.

Values Returned by the what_rcvd Parameter

AP_CONFIRM_DEALLOCATE indicates that the partner TP has issued DEALLOCATE with dealloc_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED.

AP_CONFIRM_SEND indicates that the partner TP has issued PREPARE_TO_RECEIVE with ptr_type set to
AP_SYNC_LEVEL, and the conversation's synchronization level, established by ALLOCATE, is AP_CONFIRM_SYNC_LEVEL.
Upon receiving this value, the local TP normally issues CONFIRMED, and begins to send data.

AP_CONFIRM_WHAT_RECEIVED indicates that the partner TP has issued CONFIRM. Upon receiving this value, the local
TP normally issues CONFIRMED.

AP_DATA is returned for basic conversations by RECEIVE_IMMEDIATE if fill is set to AP_BUFFER. The local TP received
data until max_len or end of data was reached. For more information, see "RECEIVE_IMMEDIATE End of Data" at the end

https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx

of this topic.

AP_DATA_COMPLETE indicates, for RECEIVE_IMMEDIATE with fill set to AP_LL in basic conversations, that the local TP
has received a complete logical record or the end of a logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_IMMEDIATE or issues another receive verb. If the
partner TP has sent more data, the local TP begins to receive a new unit of data.

Otherwise, the local TP examines status information if primary_rc contains AP_OK and what_rcvd contains any of these
values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

See the description of the value in Return Codes in this topic for the next action the local TP normally takes.

If primary_rc contains AP_DEALLOC_NORMAL, the conversation has been deallocated in response to DEALLOCATE
issued by the partner TP.

AP_DATA_INCOMPLETE indicates for RECEIVE_IMMEDIATE in mapped conversations that the local TP has received an
incomplete data record. The max_len parameter specified a value less than the length of the data record (or less than the
remainder of the data record if this is not the first receive verb to read the record).

For RECEIVE_IMMEDIATE with fill set to AP_LL in basic conversations, this value indicates that the local TP has received
an incomplete logical record.

Upon receiving this value, the local TP normally reissues RECEIVE_IMMEDIATE (or issues another receive verb) to receive
the next part of the record.

AP_NONE indicates that the TP did not receive data or conversation status indicators.

AP_SEND indicates, for the partner TP, the conversation has entered RECEIVE state. For the local TP, the conversation is
now in SEND state. Upon receiving this value, the local TP normally uses SEND_DATAto begin sending data.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

When rtn_status is AP_YES, the preceding return code or one of the following return codes can be returned.

AP_DATA_COMPLETE_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_SEND.

AP_DATA_COMPLETE_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_SEND.

AP_DATA_COMPLETE_CONFIRM

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_COMPLETE_CONFIRM_DEALL

Primary return code; this is a combination of AP_DATA_COMPLETE and AP_CONFIRM_DEALLOCATE.

AP_DATA_SEND

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx

Primary return code; this is a combination of AP_DATA and AP_SEND.

AP_DATA_CONFIRM_SEND

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_SEND.

AP_DATA_CONFIRM

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_WHAT_RECEIVED.

AP_DATA_CONFIRM_DEALLOCATE

Primary return code; this is a combination of AP_DATA and AP_CONFIRM_DEALLOCATE.

AP_UNSUCCESSFUL

Primary return code; no data is immediately available from the partner TP.

AP_DEALLOC_NORMAL

Primary return code; the partner TP has deallocated the conversation without requesting confirmation. The partner TP issued
DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

If rtn_status is AP_YES, examine what_rcvd also.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_RETURN_STATUS_WITH_DATA

Secondary return code; the specified rtn_status value was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_RCV_IMMD_BAD_FILL

Secondary return code for a basic conversation; the fill parameter was set to an invalid value.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_RCV_IMMD_BAD_STATE

Secondary return code; the conversation was not in RECEIVE state.

AP_ALLOCATION_ERROR

Secondary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner logical unit (LU) or TP does not support the conversation type (basic or mapped)
specified in the allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it can indicate that no communications system could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_NO_TRUNC

Primary return code; the partner TP has issued SEND_ERROR with err_type set to AP_PROG while the conversation was in
SEND state. Data was not truncated.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_PROG_ERROR_TRUNC

Primary return code; in SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR with
err_type set to AP_PROG. The local TP may have received the first part of the logical record through a receive verb.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_NO_TRUNC

Primary return code; while in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC.
Data was not truncated.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

AP_SVC_ERROR_TRUNC

Primary return code; in SEND state, after sending an incomplete logical record, the partner TP (or partner LU) issued
SEND_ERROR. The local TP may have received the first part of the logical record.

Remarks

The local TP receives data through the following process:

1. The local TP issues a receive verb until it finishes receiving a complete unit of data. The data received can be:

One logical record.

A buffer of data received independent of its logical-record format.

The local TP may need to issue the receive verb several times in order to receive a complete unit of data. After a complete
unit of data has been received, the local TP can manipulate it.

The receive verbs are RECEIVE_AND_POST, RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE.

2. The local TP issues the receive verb again. This has one of the following effects:

If the partner TP has sent more data, the local TP begins to receive a new unit of data.

If the partner TP has finished sending data or is waiting for confirmation, status information (available through
what_rcvd) indicates the next action the local TP normally takes.

The conversation must be in RECEIVE state when the TP issues this verb.

The new state is determined by primary_rc. If primary_rc is AP_OK, the new state is determined by what_rcvd.

The following table details the state changes when the primary_rc is AP_OK.

what_rcvd New state

AP_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_DATA_COMPLETE_CONFIRM_DEALL CONFIRM_DEALLOCATE

AP_DATA_CONFIRM_DEALLOCATE CONFIRM_DEALLOCATE

AP_CONFIRM_SEND CONFIRM_SEND

https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx

AP_DATA_COMPLETE_CONFIRM_SEND CONFIRM_SEND

AP_DATA_CONFIRM_SEND CONFIRM_SEND

AP_CONFIRM_WHAT_RECEIVED CONFIRM

AP_DATA_COMPLETE_CONFIRM CONFIRM

AP_DATA_CONFIRM CONFIRM

AP_DATA No change

AP_DATA_COMPLETE No change

AP_DATA_INCOMPLETE No change

AP_SEND SEND

AP_DATA_COMPLETE_SEND SEND_PENDING

The following table details the state changes when the primary_rc is not AP_OK.

primary_rc New state

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING No change

AP_PROG_ERROR_NO_TRUNC No change

AP_SVC_ERROR_PURGING No change

AP_SVC_ERROR_NO_TRUNC No change

AP_PROG_ERROR_TRUNC No change

AP_SVC_ERROR_TRUNC No change

AP_UNSUCCESSFUL No change

RECEIVE IMMEDIATE End of Data

In basic conversations, if the local TP issues RECEIVE_IMMEDIATE and sets fill to AP_BUFFER, the receipt of the data ends
when max_len or the end of the data is reached. The end of the data is indicated by either:

A primary_rc parameter with a value other than AP_OK (for example, AP_DEALLOC_NORMAL).

A what_rcvd parameter with one of the following values:

AP_SEND

AP_CONFIRM_SEND

AP_CONFIRM_DEALLOCATE

AP_CONFIRM_WHAT_RECEIVED

AP_DATA_CONFIRM_SEND

AP_DATA_CONFIRM_DEALLOCATE

AP_DATA_CONFIRM

To determine if the end of the data has been reached, the local TP reissues RECEIVE_IMMEDIATE. If the new primary_rc
parameter contains AP_OK and what_rcvd contains AP_DATA, the end of the data has not been reached. If, however, the end
of the data has been reached, primary_rc or what_rcvd will indicate the cause of the end of the data.

RECEIVE_LOG_DATA
The RECEIVE_LOG_DATA verb allows the user to register to receive the log data associated with an inbound Function
Management Header 7 (FMH7) error report. The verb passes a buffer to APPC, and any log data received is placed in that
buffer. APPC continues to use this buffer as successive FMH7s arrive until it is provided with another one (that is, until the
transaction program (TP) issues another RECEIVE_LOG_DATA specifying a different buffer or no buffer at all).

Note that the TP itself is responsible for allocating and freeing the buffer. After the buffer has been passed to APPC, the TP
should either issue another RECEIVE_LOG_DATA specifying a new buffer or a zero-length buffer, or wait until the
conversation has finished before freeing the original buffer.

When an FMH7 is received, APPC copies any associated error log general data stream (GDS) into the buffer. If there is no
associated error log variable, the buffer is zeroed out. It is up to the TP to check the buffer whenever a return code from a
receive verb indicates that an error has been received.

The following structure describes the verb control block (VCB) used by the RECEIVE_LOG_DATA verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_RECEIVE_LOG_DATA.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv1

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter is returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

log_dlen

Supplied parameter. Specifies the maximum length of log data that APPC can place in the buffer (that is, the buffer size). The
range is from 0 through 65535. Note that a length of zero here indicates that any previous RECEIVE_LOG_DATA verb

struct receive_log_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv1;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

should be cancelled.

log_dptr

Supplied parameter. Specifies the address of the buffer that APPC will use to store the log data.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

REQUEST_TO_SEND
The REQUEST_TO_SEND verb notifies the partner transaction program (TP) that the local TP wants to send data.

The following structure describes the verb control block (VCB) used by the REQUEST_TO_SEND verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_REQUEST_TO_SEND.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

struct request_to_send {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_R_T_S_BAD_STATE

Secondary return code; the conversation is not in an allowed state when the TP issued this verb.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support the
local logical unit (LU). (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.)
Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces
to the right. This error is returned if these parameters are not filled with spaces, since there is no node available that can
satisfy the ALLOCATE request.

When ALLOCATE produces this return code for a Microsoft Host Integration Server 2009 Client system configured with
multiple nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any of the following states when the TP issues this verb:

CONFIRM

PENDING_POST (OS/2)

RECEIVE

There is no state change.

The request-to-send notification is received by the partner program through the rts_rcvd parameter of the following verbs:

CONFIRM

RECEIVE_AND_POST

RECEIVE_AND_WAIT

RECEIVE_IMMEDIATE

SEND_DATA

SEND_ERROR

It is also indicated by a primary_rc of AP_OK on TEST_RTS.

Request-to-send notification is sent to the partner TP immediately; APPC does not wait until the send buffer fills up or is
flushed. Consequently, the request-to-send notification may arrive out of sequence. For example, if the local TP is in SEND state
and issues PREPARE_TO_RECEIVE followed by REQUEST_TO_SEND, the partner TP, in RECEIVE state, may receive the request-
to-send notification before it receives the send notification. For this reason, request-to-send can be reported to a TP through a
receive verb.

In response to this request, the partner TP can change the conversation to:

RECEIVE state by issuing PREPARE_TO_RECEIVE or RECEIVE_AND_WAIT.

PENDING_POST state by issuing RECEIVE_AND_POST.

The partner TP can also ignore the request-to-send.

The conversation state changes to SEND for the local TP when the local TP receives one of the following values through the
what_rcvd parameter of a subsequent receive verb:

AP_CONFIRM_SEND and replies with CONFIRMED

AP_DATA_COMPLETE_CONFIRM_SEND and replies with CONFIRMED

AP_DATA_CONFIRM_SEND and replies with CONFIRMED

AP_SEND

The receive verbs are RECEIVE_AND_POST, RECEIVE_IMMEDIATE, and RECEIVE_AND_WAIT.

https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx

SEND_CONVERSATION
The SEND_CONVERSATION verb allocates a session between the local logical unit (LU) and partner LU, sends data on the
session, and then deallocates the session.

The following structure describes the verb control block (VCB) used by the SEND_CONVERSATION verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_SEND_CONVERSATION.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local transaction program (TP). The value of this parameter was returned by TP_STARTED.

conv_id

Supplied parameter. Provides the conversation identifier.

struct send_conversation {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3[8];
 unsigned char rtn_ctl;
 unsigned char reserv4;
 unsigned long conv_group_id;
 unsigned long sense_data;
 unsigned char plu_alias[8];
 unsigned char mode_name[8];
 unsigned char tp_name[64];
 unsigned char security;
 unsigned char reserv6[11];
 unsigned char pwd[10];
 unsigned char user_id[10];
 unsigned short pip_dlen;
 unsigned char FAR * pip_dptr;
 unsigned char reserv6;
 unsigned char fqplu_name[17];
 unsigned char reserv7[8];
 unsigned short dlen;
 unsigned char FAR * dptr;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rtn_ctl

Supplied parameter. Specifies how APPC should select a session to allocate for the conversation and when the local LU
should return control to the local TP. The allowed values are:

AP_IMMEDIATE specifies that the LU allocates a contention-winner session, if one is immediately available, and returns
control to the TP.

AP_WHEN_SESSION_ALLOCATED specifies that the LU does not return control to the TP until it allocates a session or
encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU returns control
immediately. Note that if a session is not available, the TP waits for one.

AP_WHEN_SESSION_FREE specifies that the LU allocates a contention-winner or contention-loser session, if one is
available or able to be activated, and returns control to the TP. If an error occurs (as described in Return Codes in this
topic) the call will return immediately with the error in the primary_rc and secondary_rc fields.

AP_WHEN_CONWINNER_ALLOC specifies that the LU does not return control until it allocates a contention-winner
session or encounters one of the errors described in Return Codes in this topic. If the session limit is zero, the LU
returns control immediately. Note that if a session is not available, the TP waits for one.

AP_WHEN_CONV_GROUP_ALLOC specifies that the LU does not return control to the TP until it allocates the session
specified by conv_group_id or encounters one of the errors described in Return Codes in this topic. If the session is
not available, the TP waits for it to become free.

conv_group_id

Supplied/returned parameter. Used as a supplied parameter when rtn_ctl is WHEN_CONV_GROUP_ALLOC to specify the
identity of the conversation group from which the session should be allocated. When rtn_ctl specifies a different value, and
the primary_rc is AP_OK, this is a returned value. The purpose of this parameter is to provide a TP with the assurance that
the same session will be reallocated and therefore the conversations conducted over the session will occur in the same
sequence that they were initiated.

sense_data

Returned parameter. If the primary and secondary return codes indicate an allocation error (retry or no-retry), an SNA-
defined sense code is returned.

plu_alias

Supplied parameter. Specifies the alias by which the partner LU is known to the local TP. This parameter must match the
name of a partner LU established during configuration. The parameter is an 8-byte, type G ASCII character set that includes:

Uppercase letters

Numerals 0 to 9

Spaces

Special characters $, #, %, and @

If the value of this parameter is fewer than eight bytes, pad it on the right with ASCII spaces (0x20).

mode_name

Supplied parameter. Specifies the name of a set of networking characteristics defined during configuration. This parameter
must match the name of a mode associated with the partner LU during configuration.

The parameter is an 8-byte EBCDIC character string. It can consist of characters from the type A EBCDIC character set,
including all EBCDIC spaces. These characters are:

Uppercase letters

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Numerals 0 to 9

Special characters $, #, and @

The first character in the string must be an uppercase letter or special character.

Using the name SNASVCMG (a reserved mode name used internally by APPC) in a basic conversation is not recommended.

tp_name

Supplied parameter. Specifies the name of the invoked TP. The value of tp_name specified by ALLOCATE in the invoking TP
must match the value of tp_name specified by RECEIVE_ALLOCATE in the invoked TP.

The parameter is a 64-byte, case-sensitive, EBCDIC character string. This parameter can consist of characters from the type
AE EBCDIC character set. These characters are:

Uppercase and lowercase letters

Numerals 0 to 9

Special characters $, #, @, and period (.)

If the TP name is fewer than 64 bytes, use EBCDIC spaces (0x40) to pad it on the right.

The SNA convention for naming a service TP is up to four characters. The first character is a hexadecimal byte between 0x00
and 0x3F. The other characters are from the EBCDIC AE character set.

security

Supplied parameter. Specifies the information the partner LU requires in order to validate access to the invoked TP.

AP_NONE specifies that the invoked TP uses no conversation security.

AP_PGM specifies that the invoked TP uses conversation security and requires a user identifier and password. Use
user_id and pwd to supply this information.

AP_SAME specifies that the invoked TP, invoked with a valid user identifier and password, in turn invokes another TP.

For example, assume that TP A invokes TP B with a valid user identifier and password, and TP B in turn invokes TP C. If TP B
specifies the value AP_SAME, APPC will send the LU for TP C the user identifier from TP A and an already-verified indicator.
This indicator indicates to TP C not to require the password (if TP C is configured to accept an already-verified indicator).

pwd

Supplied parameter. Specifies the password associated with user_id. This parameter is required only if the security
parameter is set to AP_PGM and must match the password for user_id that was established during configuration.

This parameter is a 10-byte, case-sensitive, EBCDIC character string. It can consist of characters from the type AE EBCDIC
character set. These characters are:

Uppercase and lowercase letters

Numerals 0 to 9

Special characters $, #, @, and period (.)

If the password is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

user_id

Supplied parameter. Specifies the user identifier required to access the partner TP. This parameter is required only if the
security parameter is set to AP_PGM and must match one of the user identifiers configured for the partner TP.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

The parameter can consist of characters from the type AE EBCDIC character set. These characters are:

Uppercase and lowercase letters

Numerals 0 to 9

Special characters $, #, @, and period (.)

If the user identifier is fewer than 10 bytes, use EBCDIC spaces (0x40) to pad it on the right.

pip_dlen

Supplied parameter. Specifies the length of the PIP to be passed to the partner TP. The range for this parameter is from 0
through 32767.

pip_dptr

Supplied parameter. Specifies the address of the buffer containing PIP data. Use this parameter only if pip_dlen is greater
than zero.

PIP data can consist of initialization parameters or environmental setup information required by a partner TP or remote
operating system. The PIP data must follow the GDS format. For more information, see your IBM SNA manual(s).

For the Microsoft Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated
area.

fqplu_name

Supplied parameter. Specifies the fully qualified name of the local LU. This parameter must match the fully qualified name of
the local LU defined in the remote node. The parameter is made up of two type A EBCDIC character strings (each of up to
eight characters), which are the network name (NETID) and the LU name of the partner LU. The names are separated by an
EBCDIC period (.). The NETID can be omitted, and if this is the case, the period should also be omitted.

This name must be provided if no plu_alias is provided.

Type A EBCDIC characters contain:

Uppercase letters

Numerals 0 to 9

Special characters $, #, and @

If the value of this parameter is fewer than 17 bytes, pad it on the right with EBCDIC spaces (0x40).

dlen

Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range for this
parameter is from 0 through 65535.

dptr

Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated area. The
data buffer must fit entirely within this area.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL

Primary return code; the supplied parameter rtn_ctl specified immediate return of the control to the TP (AP_IMMEDIATE),
and the local LU did not have an available contention-winner session.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_RETURN_CONTROL

Secondary return code; the value specified for rtn_ctl was invalid.

AP_BAD_SECURITY

Secondary return code; the value specified for security was invalid.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_PIP_LEN_INCORRECT

Secondary return code; the value of pip_dlen was greater than 32767.

AP_UNKNOWN_PARTNER_MODE

Secondary return code; the value specified for mode_name was invalid.

AP_BAD_PARTNER_LU_ALIAS

Secondary return code; APPC did not recognize the supplied partner_lu_alias.

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support the
local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

This verb is issued by the invoking TP to conduct an entire conversation with the remote TP. If the remote TP rejects either the
conversation initiation or the data, the invoking TP will not receive notification of the rejection.

The conversation state is RESET when the TP issues this verb. There is no state change.

Several parameters of SEND_CONVERSATION are EBCDIC or ASCII strings. A TP can use the CSV CONVERT to translate a
string from one character set to the other.

Normally, the value of mode_name must match the name of a mode configured for the invoked TP's node and associated
during configuration with the partner LU. If one of the modes associated with the partner LU on the invoked TP's node is an
implicit mode, the session established between the two LUs will be of the implicit mode when no mode name associated with
the partner LU matches the value of mode_name.

https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx

SEND_DATA
The SEND_DATA verb places data in the local logical unit's (LU) send buffer for transmission to the partner transaction
program (TP).

The following structure describes the verb control block (VCB) used by the SEND_DATA verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_SEND_DATA.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier.

The value of this parameter is returned by ALLOCATE in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd

Returned parameter. Provides the request-to-send-received indicator.

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use PREPARE_TO_RECEIVE,
RECEIVE_AND_WAIT, or RECEIVE_AND_POST.

AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

struct send_data {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char data_type;
 unsigned short int dlen;
 unsigned char FAR * dptr ;
 unsigned char type;
 unsigned char reserv4;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx

data_type

Supplied parameter. Specifies the type of data to be sent if Sync Point is supported. Valid parameters are:

AP_APPLICATION

AP_USER_CONTROL_DATA

AP_PS_HEADER

dlen

Supplied parameter. Specifies the number of bytes of data to be put in the local LU's send buffer. The range is from 0
through 65535.

dptr

Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LU's send buffer.

For the Microsoft Windows 2000 operating system, the data buffer can reside in a static data area or in a globally allocated
area. The data buffer must fit entirely within this area.

type

Supplied parameter. Allows a TP to send data and perform other functions within one API call. For example, you can combine
SEND_DATA with type set to CONFIRM to accomplish the same objective as issuing SEND_DATA followed by CONFIRM.

AP_SEND_DATA_CONFIRM corresponds to SEND_DATA followed by CONFIRM.

AP_SEND_DATA_FLUSH corresponds to SEND_DATA followed by FLUSH.

AP_SEND_DATA_DEALLOC_ABEND corresponds to SEND_DATA followed by DEALLOCATE with a dealloc_type of
AP_ABEND_PROG.

AP_SEND_DATA_DEALLOC_FLUSH corresponds to SEND_DATA followed by DEALLOCATE with a dealloc_type of
AP_FLUSH.

AP_SEND_DATA_DEALLOC_SYNC_LEVEL corresponds to SEND_DATA followed by DEALLOCATE with a dealloc_type
of AP_SYNC_LEVEL.

AP_SEND_DATA_P_TO_R_FLUSH corresponds to SEND_DATA followed by PREPARE_TO_RECEIVE with a ptr_type of
AP_FLUSH.

AP_SEND_DATA_P_TO_R_SYNC_LEVEL corresponds to SEND_DATA followed by PREPARE_TO_RECEIVE with a
ptr_type of AP_SYNC_LEVEL and locks set to AP_SHORT.

reserv4

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_LL

Secondary return code; the logical record length field of a logical record contained an invalid value—0x0000, 0x0001,

https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx

0x8000, or 0x8001. See About Transaction Programs for information on logical records.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the length specified for the data buffer was longer than the segment allocated to contain the buffer.

AP_SEND_DATA_INVALID_TYPE

Secondary return code; the specified type was not recognized by APPC.

AP_SEND_DATA_CONFIRM_SYNC_NONE

Secondary return code; the type CONFIRM is not permitted for a conversation that was allocated with a sync_level of
NONE.

AP_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

AP_SEND_DATA_NOT_SEND_STATE

Secondary return code; the local TP issued SEND_DATA, but the conversation was not in SEND state.

AP_SEND_DATA_NOT_LL_BDY

Secondary return code; the TP started but did not finish sending a logical record. This occurs only when the type parameter
is one of the following:

AP_SEND_DATA_CONFIRM

AP_SEND_DATA_DEALLOC_FLUSH

AP_SEND_DATA_DEALLOC_SYNC_LEVEL

AP_SEND_DATA_P_TO_R_FLUSH

AP_SEND_DATA_P_TO_R_SYNC_LEVEL

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

https://msdn.microsoft.com/en-us/library/aa771060(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem
occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued a SEND_ERROR verb with err_type set to AP_SVC while in
RECEIVE, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may
have been purged.

Remarks

The conversation must be in SEND state when the TP issues this verb. State changes, based on primary_rc, are summarized in
the following table.

primary_rc New state

AP_OK No change

AP_ALLOCATION_ERROR RESET

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

SEND_DATA may wait indefinitely because the partner TP has not issued a receive verb. If this occurs, the send buffer may fill
up.

The data collected in the local LU's send buffer is transmitted to the partner LU (and partner TP) when one of the following
occurs:

The send buffer fills up.

The local TP issues FLUSH, CONFIRM, or DEALLOCATE (or other verb that flushes the LU's send buffer).

https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

SEND_ERROR
The SEND_ERROR verb notifies the partner transaction program (TP) that the local TP has encountered an application-level
error.

The following structure describes the verb control block (VCB) used by the SEND_ERROR verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_SEND_ERROR.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP.

The value of this parameter is returned by TP_STARTED in the invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter is returned by ALLOCATEin the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

rts_rcvd

Returned parameter. Indicates whether the partner TP issued REQUEST_TO_SEND.Possible values include:

AP_YES indicates that the partner TP has issued REQUEST_TO_SEND, which requests that the local TP change the
conversation to RECEIVE state. To change to RECEIVE state, the local TP can use PREPARE_TO_RECEIVE,
RECEIVE_AND_WAIT, or RECEIVE_AND_POST.

AP_NO indicates that the partner TP has not issued REQUEST_TO_SEND.

struct send_error {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char rts_rcvd;
 unsigned char err_type;
 unsigned char err_dir;
 unsigned char reserv3;
 unsigned short log_dlen;
 unsigned char FAR * log_dptr;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx

err_type

Supplied parameter. Indicates the type of the error being reported—application program or service program.

AP_PROG indicates that the error is to be reported to an end-user application program. This value causes APPC to send one
of the following return codes to the partner TP:

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC indicates that the error is to be reported to a service program. This value causes APPC to send one of the following
return codes to the partner TP:

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

err_dir

Supplied parameter. Indicates whether the error is with data just received or with data that is about to be sent. Use this
parameter only when the conversation is in SEND_PENDING state. The parameter is ignored otherwise. The following are
allowed values:

AP_RCV_DIR_ERROR indicates that the TP issued SEND_ERROR after detecting an error associated with the data just
received.

AP_SEND_DIR_ERROR indicates that the TP issued SEND_ERROR after detecting an error associated with data it was
going to send. For example, the TP encountered an error while reading data from the disk drive.

reserv3

A reserved field.

log_dlen

Supplied parameter for basic conversations; specifies the number of bytes of data to be sent to the error log file. The range is
from 0 through 32767.

A length of zero indicates that there is no error log data.

log_dptr

Supplied parameter for basic conversations; specifies the address of the data buffer containing error information. The data is
sent to the local error log and to the partner logical unit (LU).

This parameter is used by SEND_ERROR if log_dlen is greater than zero.

For Microsoft Windows 2000, the data buffer can reside in a static data area or in a globally allocated area. The data buffer
must fit entirely within this area.

The TP must format the error data as a GDS error log variable. For more information, see your IBM SNA manual(s).

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_BAD_ERROR_DIRECTION

Secondary return code; the specified err_dir was not recognized by APPC.

AP_INVALID_DATA_SEGMENT

Secondary return code; the error data for the log file was longer than the segment allocated to contain the error data, or the
address of the error data buffer was wrong.

AP_SEND_ERROR_BAD_TYPE

Secondary return code; the value of err_type was invalid.

AP_SEND_ERROR_LOG_LL_WRONG

Secondary return code; the LL field of the error log GDS variable did not match the actual length of the data.

The following return codes can be generated when SEND_ERROR is issued in any allowed state:

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support
the local LU. (For example, the local LU alias specified with TP_STARTED is incorrect or has not been configured.) Note that if
lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled with spaces to the right.
This error is returned if these parameters are not filled with spaces, since there is no node available that can satisfy the
ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONV_FAILURE_NO_RETRY

Primary return code; the conversation was terminated because of a permanent condition, such as a session protocol error.
The system administrator should examine the system error log to determine the cause of the error. Do not retry the
conversation until the error has been corrected.

AP_CONV_FAILURE_RETRY

Primary return code; the conversation was terminated because of a temporary error. Restart the TP to see if the problem

occurs again. If it does, the system administrator should examine the error log to determine the cause of the error.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This may occur if
the local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

The following return codes can be generated only if SEND_ERROR is issued in SEND state:

AP_ALLOCATION_ERROR

Primary return code; APPC has failed to allocate a conversation. The conversation state is set to RESET.

This code may be returned through a verb issued after ALLOCATE.

AP_ALLOCATION_FAILURE_NO_RETRY

Secondary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY

Secondary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

AP_CONVERSATION_TYPE_MISMATCH

Secondary return code; the partner LU or TP does not support the conversation type (basic or mapped) specified in the
allocation request.

AP_PIP_NOT_ALLOWED

Secondary return code; the allocation request specified PIP data, but either the partner TP does not require this data, or the
partner LU does not support it.

AP_PIP_NOT_SPECIFIED_CORRECTLY

Secondary return code; the partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect
number of parameters.

AP_SECURITY_NOT_VALID

Secondary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

AP_SYNC_LEVEL_NOT_SUPPORTED

Secondary return code; the partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified
in the allocation request, or the sync_level was not recognized.

AP_TP_NAME_NOT_RECOGNIZED

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Secondary return code; the partner LU does not recognize the TP name specified in the allocation request.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition is permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the
error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY

Secondary return code; the remote LU rejected the allocation request because it was unable to start the requested partner TP.
The condition may be temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the
allocation.

AP_PROG_ERROR_PURGING

Primary return code; while in RECEIVE, PENDING, PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE
state, the partner TP issued SEND_ERROR with err_type set to AP_PROG. Data sent but not yet received is purged.

The following return codes can be generated only if SEND_ERROR is issued in SEND state:

AP_DEALLOC_ABEND_PROG

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner TP has issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP has encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

AP_DEALLOC_ABEND_SVC

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_SVC.

AP_DEALLOC_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type
set to AP_ABEND_TIMER.

AP_SVC_ERROR_PURGING

Primary return code; the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE,
PENDING_POST, CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been
purged.

The following return code can be generated only if SEND_ERROR is issued in RECEIVE state:

AP_DEALLOC_NORMAL

Primary return code; this return code does not indicate an error.

The partner TP issued DEALLOCATE with dealloc_type set to one of the following:

AP_FLUSH

AP_SYNC_LEVEL with the synchronization level of the conversation specified as AP_NONE

Remarks

The conversation can be in any state except RESET when the TP issues this verb. The conversation state must be
SEND_PENDING if err_dir is used.

The local TP sends the error notification immediately to the partner TP; it does not hold the information in the local LU's send
buffer.

Upon successful execution of this verb, the conversation is in SEND state for the local TP and in RECEIVE state for the partner
TP.

The new state is determined by primary_rc. Possible state changes are summarized in the following table.

https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx

primary_rc New state

AP_OK SEND

AP_ALLOCATION_ERROR RESET

AP_CONV_FAILURE_RETRY RESET

AP_CONV_FAILURE_NO_RETRY RESET

AP_DEALLOC_ABEND RESET

AP_DEALLOC_ABEND_PROG RESET

AP_DEALLOC_ABEND_SVC RESET

AP_DEALLOC_ABEND_TIMER RESET

AP_DEALLOC_NORMAL RESET

AP_PROG_ERROR_PURGING RECEIVE

AP_SVC_ERROR_PURGING RECEIVE

If the conversation is in RECEIVE state when the TP issues SEND_ERROR, incoming data is purged by APPC. This data includes:

Data sent by SEND_DATA.

Return code indicators.

Confirmation requests.

Deallocation requests.

APPC does not purge an incoming request-to-send indicator. APPC replaces purged incoming return code indicators with
other return codes. The primary return code AP_OK replaces the following purged return code indicators:

AP_PROG_ERROR_NO_TRUNC

AP_PROG_ERROR_PURGING

AP_PROG_ERROR_TRUNC

AP_SVC_ERROR_NO_TRUNC

AP_SVC_ERROR_PURGING

AP_SVC_ERROR_TRUNC

The primary return code AP_DEALLOC_NORMAL replaces the following purged return code indicators:

AP_ALLOCATION_ERROR

AP_ALLOCATION_FAILURE_NO_RETRY

AP_ALLOCATION_FAILURE_RETRY

AP_CONVERSATION_TYPE_MISMATCH

AP_DEALLOC_ABEND

AP_DEALLOC_ABEND_PROG

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx

AP_DEALLOC_ABEND_SVC

AP_DEALLOC_ABEND_TIMER

AP_PIP_NOT_ALLOWED

AP_PIP_NOT_SPECIFIED_CORRECTLY

AP_SECURITY_NOT_VALID

AP_SYNC_LEVEL_NOT_SUPPORTED

AP_TP_NAME_NOT_RECOGNIZED

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

AP_TRANS_PGM_NOT_AVAIL_RETRY

When the conversation is in SEND_PENDING state, APPC reports the following return codes to the partner TP based on the
value in err_dir:

AP_PROG_ERROR_PURGING

The local TP issued SEND_ERROR with RECEIVE as the err_dir.

AP_PROG_ERROR_NO_TRUNC

The local TP issued SEND_ERROR with SEND as the err_dir.

AP_SVC_ERROR_PURGING

The local TP issued SEND_ERROR with RECEIVE as the err_dir.

AP_SVC_ERROR_NO_TRUNC

The local TP issued SEND_ERROR with SEND as the err_dir.

TEST_RTS
The TEST_RTS verb determines whether a request-to-send notification has been received from the partner transaction
program (TP).

The following structure describes the verb control block (VCB) used by the TEST_RTS verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_TEST_RTS.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3

A reserved field.

Return Codes
AP_OK

Primary return code; the verb executed successfully.

AP_UNSUCCESSFUL

Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

struct test_rts {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support
the local logical unit (LU). (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available
that can satisfy the ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Remarks

The conversation can be in any state except RESET when the TP issues this verb.

There is no state change.

TEST_RTS_AND_POST
The TEST_RTS_AND_POST verb allows an application, typically a 5250 emulator, to request asynchronous notification when a
partner transaction program (TP) requests send direction.

The following structure describes the verb control block (VCB) used by the TEST_RTS_AND_POST verb.

Syntax

Members
opcode

Supplied parameter. Specifies the verb operation code, AP_B_TEST_RTS_AND_POST.

opext

Supplied parameter. Specifies the verb operation extension, AP_BASIC_CONVERSATION.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

tp_id

Supplied parameter. Identifies the local TP. The value of this parameter was returned by TP_STARTED in the invoking TP or by
RECEIVE_ALLOCATE in the invoked TP.

conv_id

Supplied parameter. Provides the conversation identifier. The value of this parameter was returned by ALLOCATE in the
invoking TP or by RECEIVE_ALLOCATE in the invoked TP.

reserv3

A reserved field.

handle

Supplied parameter. On Microsoft® Windows® 2000, this field provides the event handle to set.

Return Codes from Initial Verb
AP_OK

Primary return code; the verb executed successfully. Note particularly that a return code of AP_OK from the initial verb does
not indicate that REQUEST_TO_SEND verb received from the partner TP. It simply indicates that the facility to receive
asynchronous notification has been registered.

AP_UNSUCCESSFUL

struct test_rts {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char tp_id[8];
 unsigned long conv_id;
 unsigned char reserv3;
 unsigned long handle;
};

https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx

Primary return code; request-to-send notification has not been received.

AP_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

AP_BAD_CONV_ID

Secondary return code; the value of conv_id did not match a conversation identifier assigned by APPC.

AP_BAD_TP_ID

Secondary return code; the value of tp_id did not match a TP identifier assigned by APPC.

AP_INVALID_SEMAPHORE_HANDLE

Secondary return code, the value of handle was invalid.

AP_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

AP_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

When this return code is used with ALLOCATE, it may indicate that no communications system could be found to support
the local logical unit (LU). (For example, the local LU alias specified with TP_STARTED is incorrect or has not been
configured.) Note that if lu_alias or mode_name is fewer than eight characters, you must ensure that these fields are filled
with spaces to the right. This error is returned if these parameters are not filled with spaces, since there is no node available
that can satisfy the ALLOCATE request.

When ALLOCATE produces this return code for a Host Integration Server 2009 Client system configured with multiple
nodes, there are two secondary return codes as follows:

0xF0000001

Secondary return code; no nodes have been started.

0xF0000002

Secondary return code; at least one node has been started, but the local LU (when TP_STARTED is issued) is not configured
on any active nodes. The problem could be either of the following:

The node with the local LU is not started.

The local LU is not configured.

AP_CONVERSATION_TYPE_MIXED

Primary return code; the TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single
conversation.

AP_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

AP_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

AP_CONV_BUSY

Primary return code; there can only be one outstanding conversation verb at a time on any conversation. This can occur if the
local TP has multiple threads, and more than one thread is issuing APPC calls using the same conv_id.

AP_THREAD_BLOCKING

Primary return code; the calling thread is already in a blocking call.

AP_UNEXPECTED_DOS_ERROR

Primary return code; the operating system has returned an error to APPC while processing an APPC call from the local TP.
The operating system return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the
problem persists, consult the system administrator.

Return Codes from Asynchronous Completion
AP_OK

Primary return code; the request-to-send notification has been received from the partner TP.

AP_CANCELLED

The outstanding TEST_RTS_AND_POST verb has been terminated. This will occur if the underlying conversation has been
deallocated or an AP_TP_ENDED has been issued. Note that as with RECEIVE_AND_POST, the TP is still responsible for
correctly terminating the conversation and possibly terminating the TP. Issuing another verb, such as RECEIVE_IMMEDIATE,
at this point will indicate the reason for the conversation failure.

The conversation can be in any state except RESET when the TP issues this verb. There is no state change.

A common feature of many APPC applications, such as 5250 emulators, is a requirement to detect a partner's request to send.
Currently, this can be done by polling the APPC interface to detect the partner's request. For example, an application can
occasionally issue one of the following verbs:

TEST_RTS

Remarks

RECEIVE_IMMEDIATE and check the rts_rcvd field

SEND_DATA of zero bytes, again checking the rts_rcvd field.

Some of the problems associated with this polling approach are:

The application must continually interrupt its main work to poll APPC.

The partner's request is not detected as soon as it becomes available.

These approaches are processor-intensive.

The TEST_RTS_AND_POST verb allows an application running on Windows 2000, typically a 5250 emulator, to request
asynchronous notification when the partner TP requests send direction.

An APPC application typically issues the TEST_RTS_AND_POST verb while in SEND state and then continues with its main
processing. A request for send direction from the partner TP is indicated asynchronously to the application. After dealing with
the partner's request, the application typically returns to SEND state, reissues TEST_RTS_AND_POST, and continues.

The TEST_RTS_AND_POST verb completes synchronously and the return code AP_OK indicates that a request for
asynchronous notification has been registered. It is important to emphasize that this does not indicate that request-to-send
was received from the partner TP.

When the partner's request to send is received, the asynchronous event completion occurs. It is important to note that this may
be before the completion of the local TP's original TEST_RTS_AND_POST verb. This will be the case if the partner's request to
send was received before the local TP's TEST_RTS_AND_POST verb was issued, or while the local TP's TEST_RTS_AND_POST
verb was being processed.

APPC Extensions for the Windows Environment
This section describes API extensions to Windows Advanced Program-to-Program Communications (APPC) that allow
asynchronous communication. Asynchronous communication occurs when a function returns before the request completes.
The application is notified later when the request is completed.

Under Microsoft® Windows® 2000, three methods are available for asynchronous communication using the APPC API:

Message posting using window handles.

Waiting on Win32® events.

Using Win32 I/O completion ports.

The first method uses messages posted to a window handle to notify an application of verb completion. This method using
window handles and messages was supported on Microsoft Windows 3.x. There is one such window for each APPC application,
independent of the number of conversations. Each APPC conversation can have one asynchronous verb outstanding at any
time. When a verb completes, the posting to the window takes as parameters the asynchronous task handle returned by the
original call and a pointer to the verb control block which has completed, containing the return codes of the verb.

The extensions using window handles and message posting described in this section (WinAsyncAPPC) were designed for all
implementations and versions of Microsoft Windows from version 3.0 through the latest versions of Windows 2000. They
provided compatibility for Windows programming and optimum application performance in the 16-bit Windows operating
environment.

A second method using Win32 events for notification is supported. The extensions using Win32 events described in this
section (WinAsyncAPPCEx) operate only on Windows 2000, and offer optimum application performance in the 32-bit Windows
operating environment. If an event has been registered with the conversation, then an application can call the Win32
WaitForSingleObject or WaitForMultipleObjects function to wait to be notified of the completion of the verb.

A third method using Win32 I/O completion ports for notification is supported on Windows 2000. The extensions using I/O
completion ports described in this section (WinAsyncAPPCIOCP) operate only on Windows 2000, and offer optimum
application performance in the 32-bit Windows operating environment. If an I/O completion port has been created using
CreateIoCompletionPort, then an application can call the Win32 GetQueuedCompletionStatus function to wait to be
notified of the completion of the verb.

Windows APPC allows multithreaded Windows-based processes. A process contains one or more threads of execution. All
references to threads in this document refer to actual threads in multithreaded Windows environments.

This section provides, for each extension, a definition of the function, syntax, returns, and remarks for using the function.

In This Section

WinAsyncAPPC

WinAsyncAPPCEx

WinAsyncAPPCIOCP

WinAPPCCancelAsyncRequest

WinAPPCCancelBlockingCall

WinAPPCCleanup

WinAPPCIsBlocking

WinAPPCStartup

WinAPPCSetBlockingHook

https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705564(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754073(v=bts.10).aspx

WinAPPCUnhookBlockingHook

https://msdn.microsoft.com/en-us/library/aa745646(v=bts.10).aspx

WinAsyncAPPC
The WinAsyncAPPC function provides an asynchronous entry point for all of the APPC verbs. Use this function instead of the
blocking versions of the verbs if you run your application and want to use message posting using Windows handles for
asynchronous verb completion.

Syntax

Parameters
hWnd

A window handle that will be used for message posting to notify an application when an APPC verb completes.

lpVcb

Pointer to the verb control block.

Return Value

The return value specifies whether the asynchronous request was successful. If the function was successful, the return value is
an asynchronous task handle. If the function was not successful, a zero is returned.

When this function returns with a successful value, this does not indicate that the APPC call will ultimately return successfully. It
only indicates that it was possible for the APPC library to attempt the APPC call asynchronously using message posting for
notification.

Remarks

For an example of how to use this verb in transaction programs (TPs), see the send and receive sample TP (SENDRECV.C
located in the APPC folder) included in the SDK.

APPC verbs used in basic conversations that can block are as follows:

ALLOCATE

CONFIRM

CONFIRMED

DEALLOCATE

FLUSH

PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE

RECEIVE_AND_WAIT

REQUEST_TO_SEND

SEND_CONVERSATION

SEND_DATA

SEND_ERROR

HANDLE WINAPI WinAsyncAPPC(
HANDLE hWnd,
Long lpVcb
);

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

TP_ENDED

TP_STARTED

APPC verbs used in mapped conversations that can block are as follows:

MC_ALLOCATE

MC_CONFIRM

MC_CONFIRMED

MC_DEALLOCATE

MC_FLUSH

MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_WAIT

MC_REQUEST_TO_SEND

MC_SEND_CONVERSATION

MC_SEND_DATA

MC_SEND_ERROR

When using the synchronous or asynchronous versions of a verb, an application can only have one outstanding function in
progress on a conversation at a time. An attempt to initiate a second function results in the error code AP_CONV_BUSY.

The exceptions to the preceding paragraph are:

RECEIVE_AND_POST

MC_RECEIVE_AND_POST

RECEIVE_AND_WAIT

MC_RECEIVE_AND_WAIT

To allow full use of the asynchronous support, asynchronously issued RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT
verbs have been altered to act like the RECEIVE_AND_POST and MC_RECEIVE_AND_POST verbs. Specifically, while an
asynchronous version of one of these verbs is outstanding, the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

GET_TYPE

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

SEND_ERROR or MC_SEND_ERROR

https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx

TEST_RTS or MC_TEST_RTS

TP_ENDED

This allows an application, in particular, a 5250 emulator, to use an asynchronous RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST, MC_RECEIVE_AND_POST,
RECEIVE_AND_WAIT, or MC_RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR or MC_SEND_ERROR and
REQUEST_TO_SEND or MC_REQUEST_TO_SEND. It is recommended that you use this feature for full asynchronous support.

When the asynchronous operation is complete, the application's window hWnd receives the message returned by
RegisterWindowMessage with "WinAsyncAPPC" as the input string. The wParam argument contains the asynchronous task
handle returned by the original function call. The lParam argument contains the original VCB pointer and can be dereferenced
to determine the final return code.

As part of the Windows APPC definition, WinAPPCCancelAsyncRequest allows an application to cancel any asynchronous APPC
action; but terminates the related conversation or TP as appropriate. Any outstanding operations return with AP_CANCELED as
the return code.

If the function returns successfully, a WinAsyncAPPC message is posted to the application when the operation completes or
the conversation is canceled.

https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745006(v=bts.10).aspx

WinAsyncAPPCEx
The WinAsyncAPPCEx function provides an asynchronous entry point for all of the APPC verbs. Use this function instead of
the blocking versions of the verbs to allow multiple sessions to be handled on the same thread using events. This verb is only
supported on Microsoft® Windows® 2000 and uses Win32® events.

Syntax

Parameters
event_handle

Handle used for event notification using Win32 events.

lpVcb

Pointer to the verb control block.

Return Value

The return value specifies whether the asynchronous resolution request was successful. If the function was successful, the
return value is an asynchronous task handle. If the function was not successful, a zero is returned.

When this function returns with a successful value, this does not indicate that the APPC call will ultimately return successfully. It
only indicates that it was possible for the APPC library to attempt the APPC call asynchronously using events for notification.

Remarks

This function is intended for use with WaitForSingleObject or WaitForMultipleObjects in the Win32 API. These functions
are described in the "Reference" section of the Microsoft Platform SDK documentation.

For an example of how to use this verb in multithreaded TPs, see the multithreaded send and receive sample TPs (MRCV.C,
MSEND.C, and MSENDRCV.C located in the MSENDRCV folder) included in the SDK.

APPC verbs used in basic conversations that can block are as follows:

ALLOCATE

CONFIRM

CONFIRMED

DEALLOCATE

FLUSH

PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE

RECEIVE_AND_WAIT

REQUEST_TO_SEND

SEND_CONVERSATION

SEND_DATA

 HANDLE WINAPI WinAsyncAPPCEx(
 HANDLEevent_handle,
 longlpVcb);

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx

SEND_ERROR

TP_ENDED

TP_STARTED

APPC verbs used in mapped conversations that can block are as follows:

MC_ALLOCATE

MC_CONFIRM

MC_CONFIRMED

MC_DEALLOCATE

MC_FLUSH

MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_WAIT

MC_REQUEST_TO_SEND

MC_SEND_CONVERSATION

MC_SEND_DATA

MC_SEND_ERROR

RECEIVE_ALLOCATE

TP_ENDED

TP_STARTED

When using the synchronous or asynchronous versions of a verb, an application can only have one outstanding function in
progress on a conversation at a time. An attempt to initiate a second function results in the error code AP_CONV_BUSY.

Note
The exceptions to the preceding paragraph are RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, and
MC_RECEIVE_AND_WAIT.

Note
To allow full use of the asynchronous support, asynchronously issued RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT
verbs have been altered to act like the RECEIVE_AND_POST and MC_RECEIVE_AND_POST verbs. Specifically, while an asy
nchronous version of one of these verbs is outstanding, the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

GET_TYPE

https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

SEND_ERROR or MC_SEND_ERROR

TEST_RTS or MC_TEST_RTS

TP_ENDED

Note
This allows an application, in particular, a server application, to use an asynchronous RECEIVE_AND_WAIT or MC_RECEIVE
_AND_WAIT to receive data. While the RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, or MC_RE
CEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR or MC_SEND_ERROR and REQUEST_TO_SEND or MC_RE
QUEST_TO_SEND. It is recommended that you use this feature for full asynchronous support, and in particular, for support
of multiple conversations on the same thread.

When the asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of
the event, examine the APPC primary return code and secondary return code in the verb control block for any error conditions.

https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

WinAsyncAPPCIOCP
The WinAsyncAPPCIOCP function provides an asynchronous entry point for all of the APPC verbs. Use this function instead
of the blocking versions of the verbs to allow multiple sessions to be handled on the same thread using I/O completion ports.
This verb is only supported on Microsoft Windows 2000, and uses Win32 I/O completion ports.

Syntax

Parameters
iocp_handle

A pointer to an APPC_IOCP_INFO structure used for passing I/O completion port information.

lpVcb

Pointer to the verb control block

The APPC_IOCP_INFO structure has the following prototype:

APPC_CompletionPort

This supplied parameter is the HANDLE returned by the call to the CreateIoCompletionPort function when the I/O
completion port is created. The I/O completion port must be created before calling the WinAsyncAPPCIOCP function. When
the verb completes, the APPC Library calls the PostQueuedCompletionStatus function with the remaining fields in the
structure as inputs, and these fields are simply passed through to the GetQueuedCompletionStatus function issued by the
application.

APPC_NumberOfBytesTransferred

This supplied parameter is ignored. When the APPC verb completes, the APPC Library calls the
PostQueuedCompletionStatus function with this field as an input, and the value returned for the
dwNumberOfBytesTransferred is simply passed through to the GetQueuedCompletionStatus function issued by the
application.

APPC_CompletionKey

This supplied parameter is ignored. When the APPC verb completes, the APPC Library calls the
PostQueuedCompletionStatus function with this field as an input, and the value returned for the dwCompletionKey is
simply passed through to the GetQueuedCompletionStatus function issued by the application.

APPC_pOverlapped

This supplied parameter is ignored. When the APPC verb completes, the APPC Library calls the
PostQueuedCompletionStatus function with this field as an input, and the value returned for the lpOverlapped is simply
passed through to the GetQueuedCompletionStatus function issued by the application.

Return Value

The return value specifies whether the asynchronous resolution request was successful. If the function was successful, the
return value is an asynchronous task handle. If the function was not successful, a zero is returned.

When this function returns with a successful value, this does not indicate that the APPC call will ultimately return successfully. It
only indicates that it was possible for the APPC library to attempt the APPC call asynchronously using an I/O completion port
for notification.

 HANDLE WINAPI WinAsyncAPPCIOCP(
 APPC_IOCP_INFO *iocp_handle,
 longlpVcb);

APPC_CompletionPort;APPC_NumberOfBytesTransferred;
 APPC_CompletionKey;
 APPC_pOverlapped;

Remarks

This function is intended for use with CreateIoCompletionPort and GetQueuedCompletionStatus in the Win32 API. These
functions are described in the "Reference" section of the Microsoft Platform SDK documentation.

For an example of how to use this verb in multithreaded TPs, see the multithreaded receive sample TP (MRCVIO located in the
SNA\MSENDRCV folder) using I/O completion ports included in the Host Integration Server 2009 SDK.

APPC verbs used in basic conversations that can block are as follows:

ALLOCATE

CONFIRM

CONFIRMED

DEALLOCATE

FLUSH

PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE

RECEIVE_AND_WAIT

REQUEST_TO_SEND

SEND_CONVERSATION

SEND_DATA

SEND_ERROR

TP_ENDED

TP_STARTED

APPC verbs used in mapped conversations that can block are as follows:

MC_ALLOCATE

MC_CONFIRM

MC_CONFIRMED

MC_DEALLOCATE

MC_FLUSH

MC_PREPARE_TO_RECEIVE

MC_RECEIVE_AND_WAIT

MC_REQUEST_TO_SEND

MC_SEND_CONVERSATION

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745866(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771995(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx

MC_SEND_DATA

MC_SEND_ERROR

RECEIVE_ALLOCATE

TP_ENDED

TP_STARTED

When using the synchronous or asynchronous versions of a verb, an application can only have one outstanding function in
progress on a conversation at a time. An attempt to initiate a second function results in the error code AP_CONV_BUSY.

The exceptions to the preceding paragraph are RECEIVE_AND_POST, MC_RECEIVE_AND_POST, RECEIVE_AND_WAIT, and
MC_RECEIVE_AND_WAIT.

To allow full use of the asynchronous support, asynchronously issued RECEIVE_AND_WAIT and MC_RECEIVE_AND_WAIT
verbs have been altered to act like the RECEIVE_AND_POST and MC_RECEIVE_AND_POST verbs. Specifically, while an
asynchronous version of one of these verbs is outstanding, the following verbs can be issued on the same conversation:

DEALLOCATE (AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER)

GET_ATTRIBUTES or MC_GET_ATTRIBUTES

GET_TYPE

REQUEST_TO_SEND or MC_REQUEST_TO_SEND

SEND_ERROR or MC_SEND_ERROR

TEST_RTS or MC_TEST_RTS

TP_ENDED

This allows an application, in particular, a server application, to use an asynchronous RECEIVE_AND_WAIT or
MC_RECEIVE_AND_WAIT to receive data. While the RECEIVE_AND_POST, MC_RECEIVE_AND_POST,
RECEIVE_AND_WAIT, or MC_RECEIVE_AND_WAIT is outstanding, it can still use SEND_ERROR or MC_SEND_ERROR and
REQUEST_TO_SEND or MC_REQUEST_TO_SEND. It is recommended that you use this feature for full asynchronous support,
and in particular, for support of multiple conversations on the same thread.

When the asynchronous operation is complete, the application is notified through the GetQueuedCompletionStatus
function. Upon I/O completion, examine the APPC primary return code and secondary return code in the verb control block for
any error conditions.

https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753879(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745600(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744314(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770522(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

WinAPPCCancelAsyncRequest
The WinAPPCCancelAsyncRequest function cancels an outstanding WinAsyncAPPC-based request.

Syntax

Parameters
hAsyncTaskID

Supplied parameter. Specifies the asynchronous task to be canceled.

Return Value

The return value specifies whether the asynchronous request was canceled. If the value is zero, the request was canceled.
Otherwise, the value is one of the following:

WAPPCINVALID

An error code indicating that the specified asynchronous task identifier was invalid.

WAPPCALREADY

An error code indicating that the asynchronous routine being canceled has already completed.

Remarks

An asynchronous task previously initiated by issuing one of the WinAsyncAPPC, WinAsyncAPPCEx, or
WinAsyncAPPCIOCP functions can be canceled prior to completion by issuing the WinAPPCCancelAsyncRequest function,
specifying the asynchronous task identifier as returned by the initial function in hAsyncTaskID.

If the outstanding verb relates to a conversation (for example, SEND_DATA or RECEIVE_AND_WAIT), the verb is purged and the
session is closed. If the verb relates to a TP (for example, RECEIVE_ALLOCATE or TP_STARTED), the TP is ended. In both cases,
while the implementation closes conversations and sessions as cleanly as possible, it does not flush send buffers, wait for
confirmations, and so on. This call is synchronous, and after the processing described above is complete, a completion
message is posted for the canceled verb.

If an attempt to cancel an existing asynchronous WinAsyncAPPC routine fails with an error code of WAPPCALREADY, one of
two things has occurred. Either the original routine has already completed and the application has dealt with the resulting
message, or the original routine has already completed and the resulting message is still waiting in the application window
queue.

 int WINAPI WinAPPCCancelAsyncRequest(
 HANDLE hAsyncTaskID);

https://msdn.microsoft.com/en-us/library/aa745574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx

WinAPPCCancelBlockingCall
The WinAPPCCancelBlockingCall function cancels any outstanding blocking operation for its thread. Any outstanding
blocked call canceled will cause an error code of WAPPCCANCEL to be generated.

Syntax

Return Value

The return value specifies whether the cancellation request was successful. If the value is zero, the request was canceled.
Otherwise, the value is the following:

WAPPCINVALID

An error code indicating that there is no outstanding blocking call.

Remarks

If the outstanding verb relates to a conversation (for example, SEND_DATA or RECEIVE_AND_WAIT), the verb is purged and the
session is closed. If the verb relates to a TP (for example, RECEIVE_ALLOCATE or TP_STARTED), the TP is ended. In both cases,
while the implementation brings down conversations and sessions as cleanly as possible, it does not flush send buffers, wait
for confirmations, and so on. This call is synchronous and after the processing described above is complete, the function is
finished.

In Microsoft® Windows® 2000, a multithreaded application can have multiple blocking operations outstanding, but only one
per thread. To distinguish between multiple outstanding calls, WinAPPCCancelBlockingCall cancels the outstanding
operation on the current, or calling, application thread if one exists; otherwise, it fails. By default in Windows 2000, Windows
APPC suspends the calling application thread while an operation is outstanding. As a result, the thread on which the blocking
operation was initiated will not regain control (and therefore, will not be able to issue a call to WinAPPCCancelBlockingCall)
unless a blocking hook is registered for the thread using WinAPPCSetBlockingHook.

 BOOL WINAPI WinAPPCCancelBlockingCall(
 void
);

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754073(v=bts.10).aspx

WinAPPCCleanup
The WinAPPCCleanup function terminates and deregisters an application from a Windows APPC implementation.

Syntax

Return Value

The return value specifies whether the deregistration was successful. If the value is nonzero, the application was successfully
deregistered. The application was not deregistered if a value of zero is returned.

Remarks

Use WinAPPCCleanup to indicate deregistration of a Windows APPC application from a Windows APPC implementation.

Conversations that are still active will be terminated and TPs ended. This function is equivalent to issuing TP_ENDED (HARD) on
all TPs owned by the application.

See Also
Reference
WinAPPCStartup

 BOOL WINAPI WinAPPCCleanup(
 void
);

https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705564(v=bts.10).aspx

WinAPPCIsBlocking
The WinAPPCIsBlocking function determines if a thread is executing while waiting for a previous blocking call to finish.

Syntax

Return Value

The return value specifies the outcome of the function. If the value is nonzero, there is an outstanding blocking call awaiting
completion. A zero indicates the absence of an outstanding blocking call.

Remarks

Although a call issued on a blocking function appears to an application as though it blocks, the Windows APPC DLL has to
relinquish the processor to allow other applications to run. This means that it is possible for the application that issued the
blocking call to be re-entered, depending on the message(s) it receives. In this instance, the WinAPPCIsBlocking call can be
used to determine whether the application task currently has been re-entered while waiting for an outstanding blocking call to
finish. Note that Windows APPC prohibits more than one outstanding blocking call per thread.

The Windows APPC DLL prohibits more than one blocking call per thread and returns AP_THREAD_BLOCKING if this occurs.

See Also
Reference
WinAPPCSetBlockingHook
WinAPPCUnhookBlockingHook
WinAPPCCancelBlockingCall

 BOOL WINAPI WinAPPCIsBlocking(
 void
);

https://msdn.microsoft.com/en-us/library/aa754073(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704823(v=bts.10).aspx

WinAPPCStartup
The WinAPPCStartup function allows an application to specify the version of Windows APPC required and to retrieve details
of the specific Windows APPC implementation. An application must call this function to register itself with a Windows APPC
implementation before issuing any further Windows APPC calls.

Syntax

Parameters
wVersionRequired

Specifies the version of Windows APPC support required. The high-order byte specifies the minor version (revision) number;
the low-order byte specifies the major version number. The current version of the Windows APPC API is 1.0.

lpAPPCData

Pointer to a returned structure containing a Windows APPC version number and a description of the Windows APPC
implementation.

Return Value

The return value specifies whether the application was registered successfully and whether the Windows APPC implementation
can support the specified version number. If the value is zero, it was registered successfully and the specified version can be
supported. Otherwise, the return value is one of the following:

WAPPCSYSNOTREADY

The underlying network system is not ready for network communication.

WAPPCVERNOTSUPPORTED

The version of Windows APPC support requested is not provided by this particular Windows APPC implementation.

WAPPCINVALID

The Windows APPC version specified by the application is not supported by this DLL.

Remarks

To support future Windows APPC implementations and applications that may have functionality differences from Windows
APPC version 1.0, a negotiation takes place in WinAPPCStartup. An application passes to WinAPPCStartup the Windows
APPC version that it can use. If this version is lower than the lowest version supported by the Windows APPC DLL, the DLL
cannot support the application and WinAPPCStartup fails. If the version is not lower, however, the call succeeds and returns
the highest version of Windows APPC supported by the DLL. If this version is lower than the lowest version supported by the
application, the application either fails its initialization or attempts to find another Windows APPC DLL on the system.

This negotiation allows both a Windows APPC DLL and a Windows APPC application to support a range of Windows APPC
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinAPPCStartup works in conjunction with different application and DLL versions.

Application versions DLL versions To WinAPPCStartup From WinAPPCStartup Result

1.0 1.0 1.0 1.0 Use 1.0

 int WINAPI WinAPPCStartup(
 WORDwVersionRequired,
 LPWAPPCDATAlpAPPCData
);

typedef struct {
 WORD wVersion;
 char szDescription[WAPPCDESCRIPTION_LEN+1];
} WAPPCDATA, FAR * LPWAPPCDATA;

where WAPPCDESCRIPTION_LEN is defined as 127

1.0, 2.0 1.0 2.0 1.0 Use 1.0

1.0 1.0, 2.0 1.0 2.0 Use 1.0

1.0 2.0, 3.0 1.0 WAPPCINVALID Fail

2.0, 3.0 1.0 3.0 1.0 App Fails

1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

Details of the actual Windows APPC implementation are described in the WAPPCDATA structure defined as follows that is
returned by WinAPPCStartup:

The structure members are as follows:

wVersion

The highest APPC version number supported by the Windows APPC DLL.

szDescription

A descriptive string describing the WinAPPC implementation.

After it makes its last Windows APPC call, an application should call the WinAPPCCleanup routine.

Each Windows APPC implementation must make a WinAPPCStartup call before issuing any other Windows APPC calls.

typedef struct tagWAPPCDDATA { WORD wVersion;
char szDescription[WAPPCDESCRIPTION_LEN+1];
} WAPPCDATA, FAR *LPWAPPCDATA;

https://msdn.microsoft.com/en-us/library/aa745423(v=bts.10).aspx

WinAPPCSetBlockingHook
The WinAPPCSetBlockingHook function allows a Windows APPC implementation to block APPC function calls by means of a
new function. By default in Microsoft Windows 2000, blocking calls suspend the calling application's thread until the request is
finished.

Syntax

Parameters
lpBlockFunc

Specifies the procedure instance address of the blocking function to be installed.

Return Value

The return value points to the procedure instance of the previously installed blocking function. The application or library that
calls WinAPPCSetBlockingHook should save this return value so that it can be restored if needed. (If nesting is not
important, the application can simply discard the value returned by WinAPPCSetBlockingHook and eventually use
WinAPPCUnhookBlockingHook to restore the default mechanism.)

Remarks

A Windows APPC implementation has a default mechanism by which blocking APPC functions are implemented. This function
gives the application the ability to execute its own function at blocking time in place of the default function.

The default blocking function is equivalent to:

A blocking function must return FALSE if it receives a WM_QUIT message so Windows APPC can return control to the
application to process the message and terminate gracefully. Otherwise, the function should return TRUE.

This function is implemented on a per-thread basis. It provides for a particular thread to replace the blocking mechanism
without affecting other threads.

The WinAPPCSetBlockingHook function is provided to support those applications that require more complex message
processing—for example, those employing the multiple document interface (MDI) model.

See Also
Reference
WinAPPCIsBlocking
WinAPPCCancelBlockingCall

 FARPROC WINAPI WinAPPCSetBlockingHook (
 FARPROC lpBlockFunc);

BOOL DefaultBlockingHook (void) {
 MSG msg;
 /* get the next message if any */
 if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {
 if (msg.message = = WM_QUIT)
 return FALSE; // let app process WM_QUIT
 PeekMessage (&msg,0,0,PM_REMOVE) ;
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 /* TRUE if no WM_QUIT received */
 return TRUE;
}

https://msdn.microsoft.com/en-us/library/aa745646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744699(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704823(v=bts.10).aspx

WinAPPCUnhookBlockingHook
The WinAPPCUnhookBlockingHook function removes any previous blocking hook that has been installed and reinstalls the
default blocking mechanism.

Syntax

Return Value

The return value specifies the outcome of the function. It is nonzero if the default mechanism is successfully reinstalled. The
value is zero if the mechanism did not reinstall.

See Also
Reference
WinAPPCSetBlockingHook

 BOOL WINAPI WinAPPCUnhookBlockingHook(
 void
);

https://msdn.microsoft.com/en-us/library/aa754073(v=bts.10).aspx

Host Integration Server Enhancements to the Windows
Environment

This section describes the extensions to Windows Advanced Program-to-Program Communications (APPC) and the Common
Service Verb (CSV) API that are specific to Host Integration Server 2009.

The GetAppcConfig function takes a local logical unit (LU) and returns the remote LUs that are accessible to the user through
that LU. If left blank, and a default local LU has been configured, the user's default local LU will be used. In all instances, if one
of the returned remote LUs is the user's default, it is indicated as such.

The call is asynchronous and completion is normally signaled by the posting of a Microsoft Windows message. However, an
alternative completion mechanism is provided for console applications.

The GetAppcReturnCode and GetCsvReturnCode functions convert the primary and secondary return codes in the verb control
block (VCB) to a printable string. These functions provide a standard set of error strings for use by applications.

For each extension, this section provides a definition of the function, syntax, returns, and remarks for using the function.

In This Section

GetAppcConfig

GetAppcReturnCode

GetCsvReturnCode

https://msdn.microsoft.com/en-us/library/aa744984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745400(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754387(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745400(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754387(v=bts.10).aspx

GetAppcConfig
The GetAppcConfig function provides an asynchronous entry point for retrieving the remote systems to which a particular
local LU can connect.

Syntax

Parameters
hWnd

Supplied parameter. Contains the handle of the window that is to receive an asynchronous completion message when the
call has completed. If non-null, the completion message will be posted to this window handle. In this case, pAsyncRetCode
(the last parameter) must be null. Asynchronous message completion is the recommended approach for Windows
applications to use this function.

pLocalLu

Supplied parameter. Specifies the address of a buffer containing the local LU name for which information is returned. This
local LU name must be specified as follows:

Nonpadded

Null-terminated

ASCII string

Maximum length of eight bytes (excluding the terminator)

To request that the user's default local LU be used, the buffer should contain eight spaces followed by a null.

pMode

Supplied parameter. Specifies the address of a buffer containing the mode name for which information is returned. In
Microsoft Host Integration Server, this parameter is not used, but for compatibility with earlier versions of SNA Server a
mode name must be specified as follows:

Nonpadded

Null-terminated

ASCII string

Maximum length of eight bytes (excluding the terminator)

pNumRemLu

Supplied parameter. Specifies the address of an integer variable that when the function completes will contain the number of
remote LUs that would have been returned, had the buffer specified by pRemLu been large enough to accommodate all of
the remote LUs.

iMaxRemLu

HANDLE WINAPI GetAppcConfig(
HANDLE hWnd,
LPSTR pLocalLu,
LPSTR pMode,
LPINT pNumRemLu,
INT iMaxRemLu,
PSTR pRemLu,
LPINT pAsyncRetCode
);

Supplied parameter. Specifies the number of remote LU names that can be held by the buffer indicated by pRemLu.

pRemLu

Supplied parameter. Specifies the address of the buffer that will hold the remote LU names after the function completes. The
information will be returned as an array of strings. Each remote LU name will be stored in the buffer as follows:

Nonpadded

Null-terminated

ASCII string

Maximum length of eight bytes (excluding the terminator)

The strings start every nine bytes in the buffer, and thus (pRemLu + (i–1)*9) gives the start of the ith string. In the case where
the buffer is too small to hold all the names, only iMaxRemLu strings will be returned.

pAsyncRetCode

Supplied parameter. Specifies the address of an integer variable used to store the return code from this function, if the
supplied address is non-null. The return codes will be the same as those returned by an asynchronous completion message.
While the call is completing, the value of this variable will be APPC_CFG_PENDING. When this asynchronous call is
completed, the value of this variable will contain some return code other than APPC_CFG_PENDING.

This variable is used by polling for completion when asynchronous message completion to a window handle is not used.

Note that if pAsyncRetCode is used, hWnd must be null.

Return Value

The meaning of the immediate return value depends on whether or not the asynchronous request was accepted. To test for
acceptance, evaluate the expression:

(<Returned Handle> & APPC_CFG_SUCCESS)

If the expression is FALSE, the request was rejected. The return value is then one of the synchronous return codes in the
following list. If the expression is TRUE, the request was accepted, and one of the following cases will apply.

If hWnd was non-null, a completion message will arrive in the following form:

Message p
arameter

Description

hWnd The handle of the target window. This value is the same as the value passed in hWnd on the initial call.

uMsg Matches the number returned by a call to RegisterWindowMessage, with WinAppcCfg used as the identify
ing string. This string is available by the #define WIN_APPC_CFG_COMPLETION_MSG.

wParam Matches the HANDLE returned from the initial call. It is used as a correlator.

lParam Contains one of the asynchronous return codes in the following list.

If pAsyncRetCode was non-null, then the specified integer variable will be set to APPC_CFG_PENDING. After this function
completes asynchronously, its value will change to one of the asynchronous return codes listed below.

Synchronous Return Codes
APPC_CFG_ERROR_NO_APPC_INIT

The Windows APPC library needs to be initialized by a call to WinAPPCStartup before calling GetAppcConfig and this has
not been done.

APPC_CFG_ERROR_INVALID_HWND

The handle passed in hWnd was non-null, yet not a valid window handle.

https://msdn.microsoft.com/en-us/library/aa705564(v=bts.10).aspx

APPC_CFG_ERROR_BAD_POINTER

The hWnd parameter was null, indicating that completion was signaled by setting the integer variable pointed to by
pAsyncRetCode, but pAsyncRetCode was not a valid pointer.

APPC_CFG_ERROR_UNCLEAR_COMPLETION_MODE

Both hWnd and pAsyncCompletion were non-null, so GetAppcConfig was unable to decide how completion should be
signaled.

APPC_CFG_ERROR_TOO_MANY_REQUESTS

Too many GetAppcConfig calls are already being processed (currently, this indicates 16 requests are outstanding). Try the
call again after a delay. For the Microsoft Windows version 3.x system, you must yield during this period.

APPC_CFG_ERROR_GENERAL_FAILURE

An unexpected error occurred, probably of a system nature.

Asynchronous Return Codes
APPC_CFG_SUCCESS_NO_DEFAULT_REMOTE

The configuration information has been retrieved, and either no default remote LU was defined or it was not accessible by
the specified local LU.

APPC_CFG_SUCCESS_DEFAULT_REMOTE

The configuration information has been retrieved, and there is a default remote LU that is accessible by the specified local LU.

APPC_CFG_ERROR_NO_DEFAULT_LOCAL_LU

An attempt was made to retrieve remote LUs partnered with the default local LU, but no default local LU was configured.

APPC_CFG_ERROR_BAD_LOCAL_LU

The local LU specified is either not configured, or is not valid for the calling verb.

APPC_CFG_ERROR_GENERAL_FAILURE

An unexpected error occurred, probably of a system nature.

Remarks

WinAPPCStartup must be called before using GetAppcConfig.

Whether an error code represents success or failure can be determined by evaluating either (RetCode& APPC_CFG_SUCCESS)
to test for success or (RetCode& APPC_CFG_FAILURE) to test for failure.

The following code fragment shows how a console application can test completion:

while (*pAsyncRetCode == APPC_CFG_PENDING)
{
 sleep(250);
}

https://msdn.microsoft.com/en-us/library/aa705564(v=bts.10).aspx

GetAppcReturnCode
The GetAppcReturnCode function converts the primary and secondary return codes in the verb control block to a printable
string. This function provides a standard set of error strings for use by APPC applications such as 5250 emulators.

Syntax

Parameters
vpb

Supplied parameter. Specifies the address of the verb control block.

buffer_length

Supplied parameter. Specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr

Supplied parameter. Specifies the address of the buffer that will hold the formatted, null-terminated string.

Return Value

The GetAppcReturnCode function returns a positive value on success that indicates the length of the error string passed back
in buffer_addr.

A return value of zero indicates an error. On Microsoft® Windows® 2000 a call to GetLastError provides the actual error
return code as follows:

0x20000001

The parameters are invalid; the function could not read from the specified verb control block or could not write to the
specified buffer.

0x20000002

The specified buffer is too small.

0x20000003

The APPC string library APPCST32.DLL could not be loaded.

Remarks

The descriptive error string returned in buffer_addr does not terminate with a new line character (\n).

The descriptive error strings are contained in APPCST32.DLL and can be customized for different languages.

 int WINAPI GetAppcReturnCode(
 struct appc_hdr FAR * vpb,
 UINTbuffer_length,
 unsigned char FAR * buffer_addr);

GetCsvReturnCode
The GetCsvReturnCode function converts the primary and secondary return codes in the verb control block to a printable
string. This function provides a standard set of error strings for use by applications using common service verbs (CSVs).

Syntax

Parameters
vpb

Supplied parameter. Specifies the address of the verb control block.

buffer_length

Supplied parameter. Specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr

Supplied parameter. Specifies the address of the buffer that will hold the formatted, null-terminated string when the function
completes.

Return Value

The GetCsvReturnCode function returns a positive value on success that indicates the length of the error string passed back
in buffer_addr.

A return value of zero indicates an error. On Microsoft® Windows® 2000 a call to GetLastError provides the actual error
return code as follows:

0x20000001

The parameters are invalid; the function could not read from the specified verb parameter block or could not write to the
specified buffer.

0x20000002

The specified buffer is too small.

0x20000003

The CSV string library CSVST32.DLL could not be loaded.

Remarks

The descriptive error string returned in buffer_addr does not terminate with a newline character (\n).

The descriptive error strings are contained in CSVST32.DLL and can be customized for different languages.

 int WINAPI GetCsvReturnCode(
 struct csv_hdr FAR * vpb,
 UINTbuffer_length,
 unsigned char FAR * buffer_addr);

Common Service Verbs
This section describes each of the common service verbs (CSVs) and provides:

A definition of the verb.

The structure that defines the verb control block (VCB) used by the verb. The structure is declared in the WINCSV.H file.

The parameters (VCB fields) supplied to and returned by the verb. A description of each parameter is provided, along
with its possible values and other information.

Additional information describing the use of the verb.

Most parameters supplied to and returned by CSVs are hexadecimal values. To simplify coding, these values are represented
by meaningful symbolic constants, which are established by #define statements in the header file WINCSV.H. For example, the
opcode (operation code) parameter for CONVERT is the hexadecimal value represented by the symbolic constant
SV_CONVERT. Use only the symbolic constants when programming CSVs.

This section contains:

CONVERT

COPY_TRACE_TO_FILE

DEFINE_TRACE

GET_CP_CONVERT_TABLE

LOG_MESSAGE

TRANSFER_MS_DATA

https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754306(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770663(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754106(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx

CONVERT
The CONVERT verb translates an ASCII character string to EBCDIC or an EBCDIC character string to ASCII. The string to be
converted is called the source string. The converted string is called the target string.

The following structure describes the verb control block (VCB) used by the CONVERT verb.

Syntax

Members
opcode

Supplied parameter. The verb identifying the operation code, SV_CONVERT.

opext

A reserved field.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

direction

Supplied parameter. Specifies the direction of the conversion. To convert from ASCII to EBCDIC, use SV_ASCII_TO_EBCDIC. To
convert from EBCDIC to ASCII, use SV_EBCDIC_TO_ASCII.

char_set

Supplied parameter. Specifies the character set to use in converting the source string. Allowed values include SV_A (type A
character set), SV_AE (type AE character set), and SV_G (user-defined type G character set).

len

Supplied parameter. Specifies the number of characters to be converted.

This length plus the offset from the beginning of the source or target buffer must not exceed the segment boundary.

source

Supplied parameter. Specifies the address of the buffer containing the character string to be converted.

target

Supplied parameter. Specifies the address of the buffer to contain the converted character string.

This buffer can overlap or coincide with the buffer pointed to by the source parameter. In this case, the converted data string

struct convert {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char direction;
 unsigned char char_set;
 unsigned short len;
 unsigned char FAR * source;
 unsigned char FAR * target;
};

overwrites the source data string.

Return Codes
SV_OK

Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

SV_CONVERSION_ERROR

Secondary return code; one or more characters in the source string were not found in the conversion table. These characters
were converted to nulls (0x00). The verb still executed.

SV_INVALID_CHARACTER_SET

Secondary return code; the char_set parameter contained an invalid value.

SV_INVALID_DATA_SEGMENT

Secondary return code; the data buffer containing the source or target string did not fit in one segment, or the target
segment was not a read/write segment.

SV_INVALID_DIRECTION

Secondary return code; the direction contained an invalid value.

SV_INVALID_FIRST_CHARACTER

Secondary return code; the first character of a type A source string was invalid.

SV_TABLE_ERROR

Secondary return code; one of the following occurred:

The file containing the user-written type G conversion table was not specified by the environment variable CSVTBLG.

The table was not in the correct format.

The file specified by the CSVTBLG variable was not found.

SV_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB

Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR

Primary return code; one of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has
been invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

The type A character set consists of:

Uppercase letters.

Numerals 0 through 9.

Special characters $, #, @, and space.

This character set is supported by a system-supplied type A conversion table.

The first character of the source string must be an uppercase letter or the special character $, #, or @. Spaces are allowed only
in trailing positions. Lowercase ASCII letters are translated to uppercase EBCDIC letters when the direction is ASCII to EBCDIC.

The type AE character set consists of:

Uppercase letters.

Lowercase letters.

Numerals 0 through 9.

Special characters $, #, @, period, and space.

This character set is supported by a system-supplied type AE conversion table.

The first character of the source string can be any character in the character set, except the space. Spaces are allowed only in
trailing positions.

During conversion, embedded blanks (including blanks in the first position) are converted to 0x00. Although such a conversion
will complete, CONVERSION_ERROR is returned as the secondary return code, indicating that the CSV library has completed
an irreversible conversion on the supplied data.

For Windows 2000 a description of COMTBLG should point to the Windows 2000 registry under
\SnaBase\Parameters\Client.

The data for a type G conversion table must be an ASCII file 32 lines long. Each line must consist of 32 hexadecimal digits,
representing 16 characters, and be terminated by a carriage return and line feed. The first 16 lines (256 characters) specify the
EBCDIC characters to which ASCII characters are converted; the remaining 16 lines specify the ASCII characters to which
EBCDIC characters are converted.

The hexadecimal digits A through F can be either uppercase or lowercase. However, you may want to make these digits
uppercase to ensure compatibility with IBM ES for OS/2 version 1.0.

Note
You can use GET_CP_CONVERT_TABLE to build a type G user-written conversion table in memory, and then store the table in
a file.

https://msdn.microsoft.com/en-us/library/aa770663(v=bts.10).aspx

COPY_TRACE_TO_FILE
The COPY_TRACE_TO_FILE verb concatenates individual API/link service trace files to form a single file.

The following structure describes the verb control block (VCB) used by the COPY_TRACE_TO_FILE verb.

Syntax

Remarks

Members
opcode

Supplied parameter. The verb identifying the operation code, SV_COPY_TRACE_TO_FILE.

opext

A reserved field.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3

A reserved field.

file_name

Supplied parameter. Specifies the name of the file to which trace data is to be copied. This parameter is a 64-byte character
string, and it can include a path. If the name is fewer than 64 bytes, use spaces to pad it on the right.

file_option

Supplied parameter. Specifies the output file copy option:

Use SV_NEW to copy the trace only if the specified file does not already exist.

Use SV_OVERWRITE to copy the trace to an existing file, overwriting the current data. The size of the file is increased if
necessary; and the file is created if it does not already exist.

reserv4

The address at which supplied data resides.

Return Codes

struct copy_trace_to_file {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char file_name[64];
 unsigned char file_option;
 unsigned char reserv4[12];
};

SV_OK

Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_FILE_OPTION

Secondary return code; a value other than SV_NEW or SV_OVERWRITE was specified for file_option.

SV_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

SV_COPY_TRACE_IN_PROGRESS

Secondary return code; a previously issued COPY_TRACE_TO_FILE verb is still in progress.

SV_TRACE_FILE_EMPTY

Secondary return code; there is no data in the trace files.

SV_TRACE_NOT_STOPPED

Secondary return code; a trace was in progress when the verb was issued.

SV_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

SV_FILE_ALREADY_EXISTS

Primary return code; when the SV_NEW file option was used, the file name specified was the name of an existing file.

SV_INVALID_VERB

Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

SV_OUTPUT_DEVICE_FULL

Primary return code; there is insufficient space on the device where the output file resides. Retry the operation after freeing
additional disk space.

SV_UNEXPECTED_DOS_ERROR

Primary return code; one of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has
been invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

There are two API/link-service trace files. The files are used alternately; tracing switches from one file to the other when one file
is full (larger than 250K). When COPY_TRACE_TO_FILE is called, these trace files are concatenated and copied to a single file,
the name of which is specified as a parameter to the call.

API/link-service tracing is stopped before issuing the verb, and restarted after the copy is complete. The trace files are reset
when this verb is successfully completed.

DEFINE_TRACE
The DEFINE_TRACE verb enables or disables tracing for specified APIs and controls the amount of tracing.

The following structure describes the verb control block (VCB) used by the DEFINE_TRACE verb.

Syntax

Remarks

Members
opcode

Supplied parameter. The verb identifying the operation code, SV_DEFINE_TRACE.

opext

A reserved field.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3

struct define_trace {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned char dt_set;
 unsigned char appc;
 unsigned char reserv4;
 unsigned char srpi;
 unsigned char sdlc;
 unsigned char tkn_rng_dlc;
 unsigned char pcnet_dlc;
 unsigned char dft;
 unsigned char acdi;
 unsigned char reserv5;
 unsigned char ehllapi;
 unsigned char x25_api;
 unsigned char x25_dlc;
 unsigned char twinax;
 unsigned char reserv6;
 unsigned char lua_api;
 unsigned char etherand;
 unsigned char subsym;
 unsigned char reserv7[8];
 unsigned char reset_trc;
 unsigned short trunc;
 unsigned short strg_size;
 unsigned char reserv8;
 unsigned char phys_link[8];
 unsigned char reserv9[56];
};

A reserved field.

dt_set

Supplied parameter. Sets the trace state.

Use SV_ON to enable tracing for a particular API if the parameter pertaining to the API (such as appc or comm_serv)
is set to SV_CHANGE.

Use SV_OFF to disable tracing for a particular API if the parameter pertaining to the API is set to SV_CHANGE.

appc

Supplied parameter. Indicates whether tracing of APPC is desired.

Use SV_CHANGE to enable or disable tracing for APPC, depending on the dt_set parameter.

Use SV_IGNORE to leave tracing in its current state for APPC.

The allowed values turn bit 0 on or off; bits 1 through 7 are reserved.

reserv4

A reserved field.

srpi

Supplied parameter. Indicates whether tracing of SRPI is desired.

Use SV_CHANGE to enable or disable tracing for APPC, depending on the dt_set parameter.

Use SV_IGNORE to leave tracing in its current state for APPC.

sdlc

A reserved field.

tkn_rng_dlc

A reserved field.

pcnet_dlc

A reserved field.

dft

A reserved field.

acdi

A reserved field.

reserv5

A reserved field.

comm_serv

Supplied parameter. Indicates whether tracing of COMM_SERV_API is desired.

Use SV_CHANGE to enable or disable tracing for APPC, depending on the dt_set parameter.

Use SV_IGNORE to leave tracing in its current state for APPC.

ehllapi

A reserved field.

x25_api

A reserved field.

x25_dlc

A reserved field.

twinax

A reserved field.

reserv6

A reserved field.

lua_api

A reserved field.

etherand

A reserved field.

subsym

A reserved field.

reserv7

A reserved field.

reset_trc

Supplied parameter. Indicates whether the trace file pointer should be reset.

Use SV_NO to not reset the trace file pointer to the start of the trace file. Previous trace records are not overwritten.

Use SV_YES to reset the trace file pointer to the start of the trace file. Previous trace records are overwritten.

trunc

Supplied parameter. Specifies the maximum number of bytes for each trace record. Excess bytes are truncated. Set this value
to zero if you do not want truncation.

strg_size

A reserved field.

reserv8

A reserved field.

phys_link

A reserved field.

reserv9

A reserved field.

Return Codes
SV_OK

Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_RESET_TRACE

Secondary return code; the reset_trc parameter contained an invalid value.

SV_INVALID_SET

Secondary return code; the dt_set parameter contained an invalid value.

SV_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

SV_COPY_TRACE_IN_PROGRESS

Secondary return code; a previously issued COPY_TRACE_TO_FILE is still in progress. Traces cannot be active while using
DEFINE_TRACE.

SV_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB

Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR

Primary return code; one of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has
been invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

For information on how to run and use traces, see the appropriate manual for your product.

https://msdn.microsoft.com/en-us/library/aa745040(v=bts.10).aspx

GET_CP_CONVERT_TABLE
The GET_CP_CONVERT_TABLE verb creates and returns a 256-byte conversion table to translate character strings from a
source code page to a target code page.

The following structure describes the verb control block (VCB) used by the GET_CP_CONVERT_TABLE verb.

Syntax

Remarks

Members
opcode

Supplied parameter. The verb identifying the operation code, SV_GET_CP_CONVERT_TABLE.

opext

A reserved field.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

reserv3

A reserved field.

source_cp

Supplied parameter. Specifies the source code page from which characters are converted. The allowed code pages (decimal
values) are as follows:

ASCII 437, 850, 860, 863, 865

EBCDIC 037, 273, 277, 278, 280, 284, 285, 297, 500

User-defined code pages in the range from 65280 through 65535 are also allowed.

ASCII code pages are sometimes referred to as PC code pages; EBCDIC code pages are sometimes referred to as host code
pages.

target_cp

Supplied parameter. Specifies the target code page to which characters are converted. For allowed code pages, see the

struct get_cp_convert_table {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char reserv3[8];
 unsigned short source_cp;
 unsigned short target_cp;
 unsigned char FAR * conv_tbl_addr;
 unsigned char char_not_fnd;
 unsigned char substitute_char;
};

Supplied parameter. Specifies the target code page to which characters are converted. For allowed code pages, see the
preceding definition for source_cp.

conv_tbl_addr

Supplied parameter. Specifies the address of the buffer to contain the 256-byte conversion table. The buffer must be in a
writable segment and long enough to contain the table.

char_not_fnd

Supplied parameter. Specifies the action to take if a character in the source code page does not exist in the target code page:

Use SV_ROUND_TRIP to store a unique value in the conversion table for each source code page character.

Use SV_SUBSTITUTE to store a substitute character (specified by substitute_char) in the conversion table.

substitute_char

Supplied parameter. Specifies the character to store in the conversion table when a character from the source code page has
no equivalent in the target code page.

Return Codes
SV_OK

Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_CHAR_NOT_FOUND

Secondary return code; the char_not_fnd parameter contained an invalid value.

SV_INVALID_DATA_SEGMENT

Secondary return code; the 256-byte area specified for the conversion table extended beyond the segment boundary, or the
segment was not writable.

SV_INVALID_SOURCE_CODE_PAGE

Secondary return code; the code page specified by source_cp is not supported.

SV_INVALID_TARGET_CODE_PAGE

Secondary return code; the code page specified by target_cp is not supported.

SV_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB

Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR

Primary return code; one of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has

been invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

The type A character set consists of:

Uppercase letters.

Numerals 0 through 9.

Special characters $, #, @, and space.

This character set is supported by a system-supplied type A conversion table.

The first character of the source string must be an uppercase letter or the special character $, #, or @. Spaces are allowed only
in trailing positions. Lowercase ASCII letters are translated to uppercase EBCDIC letters when the direction is ASCII to EBCDIC.

The type AE character set consists of:

Uppercase letters.

Lowercase letters.

Numerals 0 through 9.

Special characters $, #, @, period, and space.

This character set is supported by a system-supplied type AE conversion table.

The first character of the source string can be any character in the character set except the space.

During conversion, embedded blanks (including blanks in the first position) are converted to 0x00. Although such a conversion
will complete, CONVERSION_ERROR is returned as the secondary return code, indicating that the CSV library has completed
an irreversible conversion on the supplied data.

For Windows 2000, a description of COMTBLG should point to the Windows 2000 registry under
\SnaBase\Parameters\Client. For the OS/2 operating system, the directory and file containing the table must be specified by
the environment variable COMTBLG. (If the file is not found, the system returns the SV_TABLE_ERROR parameter check.).

The SV_ROUND_TRIP value for char_not_fnd is useful only if you build a second conversion table to convert between the
same two code pages in the reverse direction. If you specify the SV_ROUND_TRIP value in building both conversion tables, any
character translated from one code page to the other and then back will be unchanged.

When using the SV_SUBSTITUTE value for char_not_fnd, converting the translated character string back to the original code
page will not necessarily re-create the original character string.

Use substitute_char only if char_not_fnd is set to SV_SUBSTITUTE.

The value stored in the conversion table is the ASCII value associated with the character. If the table is used for conversion from
ASCII to EBCDIC, the character that appears in the converted string is the character associated with the numeric EBCDIC value
rather than ASCII.

For example, if you supply the underscore (_) character (ASCII value F6) while creating an ASCII to EBCDIC conversion table, the
character that appears in the converted strings will be 6, the character associated with the value F6 in EBCDIC. To use the _
character as the substitute character in an ASCII to EBCDIC conversion table, you should supply the value E1 (the value
associated with the _ character in EBCDIC) rather than the actual character.

A code page is a table that associates specific ASCII or EBCDIC values with specific characters. If a character from the source
code page does not exist in the target code page, the translated (target) string differs from the original (source) string.

LOG_MESSAGE
For OS/2 only, the LOG_MESSAGE verb records a message in the error log file and optionally displays the message on the
users screen. This verb is included for compatibility with existing applications.

The following structure describes the verb control block (VCB) used by the LOG_MESSAGE verb.

Syntax

Remarks
Members
opcode

Supplied parameter. The verb identifying the operation code, SV_LOG_MESSAGE.

opext

A reserved field.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

msg_num

Supplied parameter. Specifies the number of the message in the message file specified by msg_file_name.

origntr_id

Supplied parameter. Specifies the name of the component issuing LOG_MESSAGE or an 8-byte, user-supplied string.

msg_file_name

Supplied parameter. Specifies the name of the file containing the message to be logged.

msg_act

Supplied parameter. Specifies the action to be taken when processing the message:

Use SV_INTRV to log the intervention with a severity level of 12 and display the message on the users screen. The user
must press a key to remove the message from the screen.

Use SV_NO_INTRV to log the intervention with a severity level of 12 but not display the message.

struct log_message {
 unsigned short opcode;
 unsigned char opext;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned short msg_num;
 unsigned char origntr_id[8];
 unsigned char msg_file_name[3];
 unsigned char msg_act;
 unsigned short msg_ins_len;
 unsigned char FAR * msg_ins_ptr;
};

msg_ins_len

Supplied parameter. Specifies the length of data to be inserted into the message. Set this parameter to zero if no data is to be
inserted.

msg_ins_ptr

Supplied parameter. Specifies the address of the data to be inserted into the message.

Use this parameter only if msg_ins_len is greater than zero.

Return Codes
SV_OK

Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

SV_INVALID_DATA_SEGMENT

Secondary return code; the data that was to be inserted into the message extended beyond the segment boundary.

SV_INVALID_MESSAGE_ACTION

Secondary return code; the msg_act parameter contained an invalid value.

SV_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB

Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR

Primary return code; one of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has
been invoked with SendMessage by using the InSendMessage Windows API function call.

Remarks

The value for msg_file_name must be three characters long. Pad with spaces if necessary. The .MSG extension is added
automatically.

The total length of msg_ins_len, including header information (40 bytes), message text, and inserted data, should not exceed
256 bytes. If the length is greater than 256 bytes, the communication system will attempt to log only the header information
and inserted text; the message text will be left out.

When you create the log message file, you can specify where in the message the additional data is to be inserted. Further
information is provided below.

The data for msg_ins_ptr consists of a series of up to nine null-terminated strings. (Because IBM OS/2 ES version 1.0 supports
only three data strings, you may want to limit the inserted text to three strings to ensure compatibility.)

Creating a Message File

If you want to create your own message file, you must use the utility MKMSGF.

The first three characters of the message number must match the three-character name of the log message file. These three
characters are declared at the top of the file as well.

The system finds the message file as follows:

If you use your own message file, the system assumes the file is in the same directory as your programs executable file.

If you use the default message file, COM.MSG, the system finds the file automatically, provided the SnaBase for Microsoft
Host Integration Server 2009 is loaded.

If you use the default message file without loading the previously-mentioned software, the system expects DPATH to
indicate the path to the message file. This applies only to the Windows version 3.x and OS/2 operating systems.

TRANSFER_MS_DATA
The TRANSFER_MS_DATA verb builds an SNA request unit containing Network Management Vector Transport (NMVT) data.
The verb can send the NMVT data to NetView for centralized problem diagnosis and resolution. The data is logged in the local
audit file.

The following structure describes the verb control block (VCB) used by the TRANSFER_MS_DATA verb.

Syntax

Members
opcode

Supplied parameter. The verb identifying the operation code, SV_TRANSFER_MS_DATA.

data_type

Supplied parameter. Specifies the type of data provided by this verb:

Use SV_NMVT to generate an NMVT (including the NS header, the major network management vector, and
subvectors).

Use SV_ALERT_SUBVECTORS to generate an RU containing data for an alert in the appropriate format, without the NS
header or major NMVT vector.

Use SV_PDSTATS_SUBVECTORS to generate an RU containing data for problem determination statistics in the
appropriate format, without the NS header or major NMVT vector.

Use SV_USER_DEFINED to generate user-defined data; this data is recorded in the error log but cannot be sent on the
systems services control point-physical unit (SSCP-PU) session on the connection configured for diagnostics.

reserv2

A reserved field.

primary_rc

Returned parameter. Specifies the primary return code set by APPC at the completion of the verb. The valid return codes vary
depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

secondary_rc

Returned parameter. Specifies the secondary return code set by APPC at the completion of the verb. The valid return codes
vary depending on the APPC verb issued. See Return Codes for valid error codes for this verb.

options

Supplied parameter. Specifies the desired options by turning individual bits on or off. (Bits 1, 2, and 3 are ignored if
data_type is set to SV_USER_DEFINED.) See the Remarks section.

reserv3

A reserved field.

struct transfer_ms_data {
 unsigned short opcode;
 unsigned char data_type;
 unsigned char reserv2;
 unsigned short primary_rc;
 unsigned long secondary_rc;
 unsigned char options;
 unsigned char reserv3;
 unsigned char origntr_id[8];
 unsigned short dlen;
 unsigned char FAR * dptr;
};

A reserved field.

origntr_id

Supplied parameter. Specifies the name of the component issuing TRANSFER_MS_DATA. This parameter is optional. Set it
to 0x00 if you want the system to ignore it.

dlen

Supplied parameter. Specifies the length of data to be supplied to this verb. The total length of the data (user-supplied data
and any added headers or subvectors) must fit into one RU. The maximum RU length is 512 bytes.

dptr

Supplied parameter. Specifies the address of the data to be sent.

Return Codes
SV_OK

Primary return code; the verb executed successfully.

SV_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

SV_DATA_EXCEEDS_RU_SIZE

Secondary return code; the data to be sent was too long. The length of the user-supplied data plus headers and added
subvectors must fit in a single RU that is not more than 512 bytes long.

SV_INVALID_DATA_SEGMENT

Secondary return code; the buffer pointed to by dptr was not a readable segment or extended beyond the segment
boundary.

SV_INVALID_DATA_TYPE

Secondary return code; the data_type parameter contained an invalid value.

SV_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

SV_SSCP_PU_SESSION_NOT_ACTIVE

Secondary return code; the NMVT was not sent; either the SSCP-PU session was not active, the node configured to receive
diagnostic information was not active, or no network management connection was configured.

SV_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

SV_INVALID_VERB

Primary return code; the opcode parameter did not match the operation code of any verb. No verb executed.

SV_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

SV_UNEXPECTED_DOS_ERROR

Primary return code; one of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows SendMessage
function call, rather than the more common Windows PostMessage function call. Verb processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has
been invoked with SendMessage by using the InSendMessage Windows API function call.

SV_CANCELLED

Primary return code; this code is returned for an asynchronous verb when it has been shut down by a WinCSVCleanup call.

SV_SERVER_RESOURCE_NOT_FOUND

Primary return code; no communication server was found that could provide the requested function.

SV_SERVER_RESOURCES_LOST

Primary return code; the communications server that was providing the function was lost due to a connection failure.

SV_SERVER_CONN_FAILURE

Secondary return code; the connection to the server was lost due to physical path problems; for example, the server may
have been powered off.

SV_THREAD_BLOCKING

Primary return code; this verb exceeds the maximum number of simultaneous synchronous verbs allowed.

Remarks

To specify options, turn bits on or off as follows:

Bit Description

0 TIME_STAMP_SUBVECTOR. Adds date/time subvector to data. Allowed values include SV_ADD and SV_NO_ADD.

1 PRODUCT_SET_ID_SUBVECTOR. Adds Product_Set_ID subvector to data. This allows network management services to ide
ntify the sender of an alert. Allowed values include SV_ADD and SV_NO_ADD.

2 SSCP_PU_SESSION. Sends the data on the SSCP-PU session on the connection configured for diagnostics if the session is
active. (The data is added to the error log regardless of whether it is sent on the session or whether SV_STATE_CHECK or S
V_COMM_SUBSYSTEM_NOT_LOADED is returned.) Allowed values include SV_SEND and SV_NO_SEND.

3 LOCAL_LOGGING. Logs local alerts that are retrieved from the error log and forwarded to the host. This option is valid onl
y when data_type SV_NMVT or data_type SV_ALERT_SUBVECTORS with option SV_SEND is specified. Allowed values in
clude SV_LOG and SV_NO_LOG.

4 t
hro
ug
h 7

Reserved

https://msdn.microsoft.com/en-us/library/aa705783(v=bts.10).aspx

CSV Extensions for the Windows Environment
This section describes API extensions to the Windows® Common Service Verb (CSV) API. Windows CSV allows multithreaded
Microsoft® Windows-based processes. Multithreading is the running of several processes in rapid sequence within a single
program. A process contains one or more threads of execution. All references to threads in this document refer to actual
threads in multithreaded Windows environments.

For each extension, this section provides a definition of the function, syntax, returns, and remarks for using the function.

This section contains:

WinAsyncCSV

WinCSVCleanup

WinCSVStartup

https://msdn.microsoft.com/en-us/library/aa704592(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705783(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705565(v=bts.10).aspx

WinAsyncCSV
The WinAsyncCSV function provides an asynchronous entry point for TRANSFER_MS_DATA only. If this function is used for
any other verb, the behavior will be synchronous. This function was used instead of the blocking version of the verb under
Microsoft Windows version 3.x. Windows version 3.x is no longer supported.

HANDLE WINAPI WinAsyncCSV(

Syntax

Parameters
hWnd

Handle of window to receive message.

lpVcb

Pointer to the verb control block.

Return Value

The return value specifies whether the asynchronous resolution request was successful. If the function was successful, the
return value is an asynchronous task handle. If the function was not successful, a zero is returned.

Remarks

When the asynchronous operation is complete, the applications window hWnd receives the message returned by
RegisterWindowMessage with "WinAsyncCSV" as the input string. The wParam argument contains the asynchronous task
handle returned by the original function call. The lParam argument contains the original VCB pointer and can be dereferenced
to determine the final return code.

If the function returns successfully, a "WinAsyncCSV" message will be posted to the application when the operation completes
or the conversation is canceled.

 HWND hWnd,
 long lpVcb
);

https://msdn.microsoft.com/en-us/library/aa754260(v=bts.10).aspx

WinCSVCleanup
The WinCSVCleanup function terminates and deregisters an application from a Windows® CSV implementation.

Syntax

Return Value

The return value specifies whether the deregistration was successful. If the value is nonzero, the application was successfully
deregistered. The application was not deregistered if a value of zero is returned.

Remarks

Use WinCSVCleanup to indicate deregistration of a Windows CSV application from a Windows CSV implementation. This
function can be used, for example, to free up resources allocated to the specific application.

BOOL WINAPI WinCSVCleanup(void);

WinCSVStartup
The WinCSVStartup function allows an application to specify the version of Windows CSV required and to retrieve details of
the specific Windows CSV implementation. This function must be called by an application to register itself with a Windows CSV
implementation before issuing any further Windows CSV calls.

Syntax

Parameters
wVersionRequired

Specifies the version of Windows CSV support required. The high-order byte specifies the minor version (revision) number;
the low-order byte specifies the major version number. The current version of the Windows CSV API is 1.0.

lpwcsvdata

A pointer to the CSV data structure. The CSVDATA structure is defined as follows:

where WCSVDESCRIPTION is defined to be 127 and the structure members are as follows:

wVersion

The version of Windows CSV supported. The high-order byte specifies the minor version (revision) number; the low-order byte
specifies the major version number.

szDescription

A description string identifying the vendor of the Windows CSV DLL.

This CVSDATA structure provides information about the underlying Windows CSV DLL implementation. The first wVersion
field has the same structure as the wVersionRequired parameter, and the szDescription field contains a string identifying the
vendor of the Windows CSV DLL. The description field is only meant to provide a display string for the application and should
not be used to programmatically distinguish between Windows CSV implementations.

Return Values

The return value specifies whether the application was registered successfully and whether the Windows CSV implementation
can support the specified version number. If the value is zero, it was registered successfully. Otherwise, the return value is one
of the following:

WCSVSYSNOTREADY

Indicates that the underlying network system is not ready for network communication.

WCSVVERNOTSUPPORTED

The version of Windows CSV support requested is not provided by this particular Windows CSV implementation.

WCSVINVALID

The Windows CSV version specified by the application is not supported by this DLL.

Remarks

To support future Windows CSV implementations and applications that may have functionality differences from Windows CSV
version 1.0, a negotiation takes place in WinCSVStartup. An application passes to WinCSVStartup the Windows CSV version
that it can use. If this version is lower than the lowest version supported by the Windows CSV DLL, the DLL cannot support the

int WINAPI WinCSVStartup(
WORD wVersionRequired,
LPWCSVDATA lpwcsvdata
);

typedef struct tagWCSVDATA {
 WORD wVersion;
 char szDescription[WCSVDESCRIPTION_LEN+1];
} CSVDATA, FAR * LPWCSVCDATA;

application and WinCSVStartup fails. If the version is not lower, however, the call succeeds and returns the highest version of
Windows CSV supported by the DLL. If this version is lower than the lowest version supported by the application, the
application either fails its initialization or attempts to find another Windows CSV DLL on the system.

This negotiation allows both a Windows CSV DLL and a Windows CSV application to support a range of Windows CSV
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinCSVStartup works in conjunction with different application and DLL versions.

Application versions DLL versions To WinCSVStartup From WinCSVStartup Result

1.0 1.0 1.0 1.0 Use 1.0

1.0, 2.0 1.0 2.0 1.0 Use 1.0

1.0 1.0, 2.0 1.0 2.0 Use 1.0

1.0 2.0, 3.0 1.0 WCSVINVALID Fail

2.0, 3.0 1.0 3.0 1.0 App Fails

1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

After making its last Windows CSV call, an application should call WinCSVCleanup.

Each Windows CSV implementation must make a WinCSVStartup call before issuing any other Windows CSV calls.
Consequently, this function can be used for initialization purposes.

https://msdn.microsoft.com/en-us/library/aa705783(v=bts.10).aspx

Common APPC Return Codes
This section describes the primary and, if applicable, secondary return codes for the Advanced Program-to-Program
Communications (APPC) verbs. The return codes are listed in hexadecimal order.

This section contains:

Primary APPC Return Codes

Secondary APPC Return Codes

https://msdn.microsoft.com/en-us/library/aa772032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704692(v=bts.10).aspx

Primary APPC Return Codes
0000
AP_OK

The verb executed successfully.

0001
AP_PARAMETER_CHECK

The verb did not execute because of a parameter error.

0002
AP_STATE_CHECK

The verb did not execute because it was issued in an invalid state.

0003
AP_ALLOCATION_ERROR

APPC failed to allocate a conversation. The conversation state is set to RESET.

This code can be returned through a verb issued after ALLOCATE or MC_ALLOCATE.

0005
AP_DEALLOC_ABEND (for a mapped conversation)

The conversation has been deallocated for one of the following reasons:

The partner transaction program (TP) issued MC_DEALLOCATE with dealloc_type set to AP_ABEND.

The partner TP encountered an ABEND, causing the partner logical unit (LU) to send an MC_DEALLOCATE request.

0006
AP_DEALLOC_ABEND_PROG (for a basic conversation)

The conversation has been deallocated for one of the following reasons:

The partner TP issued DEALLOCATE with dealloc_type set to AP_ABEND_PROG.

The partner TP encountered an ABEND, causing the partner LU to send a DEALLOCATE request.

0007
AP_DEALLOC_ABEND_SVC (for a basic conversation)

The conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set to
AP_ABEND_SVC.

0008
AP_DEALLOC_ABEND_TIMER (for a basic conversation)

The conversation has been deallocated because the partner TP issued DEALLOCATE with dealloc_type set to
AP_ABEND_TIMER.

0009
AP_DEALLOC_NORMAL

The partner TP has deallocated the conversation without requesting confirmation.

000C
AP_PROG_ERROR_NO_TRUNC

The partner TP has issued one of the following verbs while the conversation was in SEND state:

SEND_ERROR with err_type set to AP_PROG

https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx

MC_SEND_ERROR

Data was not truncated.

000F
AP_CONV_FAILURE_RETRY

The conversation was terminated because of a temporary error. Restart the TP to see if the problem occurs again. If it does,
the system administrator should examine the error log to determine the cause of the error.

0010
AP_CONV_FAILURE_NO_RETRY

The conversation was terminated because of a permanent condition, such as a session protocol error. The system
administrator should examine the system error log to determine the cause of the error. Do not retry the conversation until
the error has been corrected.

0011
AP_SVC_ERROR_NO_TRUNC

While in SEND state, the partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC. Data was not
truncated.

0012
AP_PROG_ERROR_TRUNC/AP_SVC_ERROR_TRUNC

In SEND state, after sending an incomplete logical record, the partner TP issued SEND_ERROR. The local TP may have
received the first part of the logical record.

0013
AP_SVC_ERROR_PURGING

The partner TP (or partner LU) issued SEND_ERROR with err_type set to AP_SVC while in RECEIVE, PENDING_POST,
CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state. Data sent to the partner TP may have been purged.

0014
AP_UNSUCCESSFUL

No data is immediately available from the partner TP.

0017
AP_CNOS_LOCAL_RACE_REJECT

APPC is currently processing a CNOS verb issued by a local LU.

0018
AP_CNOS_PARTNER_LU_REJECT

The partner LU rejected a CNOS request from the local LU.

0019
AP_CONVERSATION_TYPE_MIXED

The TP has issued both basic and mapped conversation verbs. Only one type can be issued in a single conversation.

0021
AP_CANCELED

The local TP issued one of the following verbs, which canceled RECEIVE_AND_POST or MC_RECEIVE_AND_POST:

DEALLOCATE with dealloc_type set to AP_ABEND_PROG, AP_ABEND_SVC, or AP_ABEND_TIMER

MC_DEALLOCATE with dealloc_type set to AP_ABEND

SEND_ERROR or MC_SEND_ERROR

TP_ENDED

https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705204(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744648(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772117(v=bts.10).aspx

Issuing one of these verbs causes the semaphore to be cleared.

F002
AP_TP_BUSY

The local TP has issued a call to APPC while APPC was processing another call for the same TP. This can occur if the local TP
has multiple threads, and more than one thread is issuing APPC calls using the same tp_id.

F003
AP_COMM_SUBSYSTEM_ABENDED

Indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the TP and the PU 2.1 node has been broken (a LAN error).

The SnaBase at the TP's computer encountered an ABEND.

The system administrator should examine the error log to determine the reason for the ABEND.

F004
AP_COMM_SUBSYSTEM_NOT_LOADED

A required component could not be loaded or has terminated while processing the verb. Thus, communication could not take
place. Contact the system administrator for corrective action.

F005
AP_CONV_BUSY

There can only be one outstanding conversation verb at a time on any conversation.

F006
AP_THREAD_BLOCKING

The calling thread is already in a blocking call.

F008
AP_INVALID_VERB_SEGMENT

The verb control block (VCB) extended beyond the end of the data segment.

F011
AP_UNEXPECTED_DOS_ERROR

The operating system returned an error to APPC while processing an APPC call from the local TP. The operating system
return code is returned through the secondary_rc. It appears in Intel byte-swapped order. If the problem persists, consult
the system administrator.

F015
AP_STACK_TOO_SMALL

The stack size of the application is too small to execute the verb. Increase the stack size of your application.

F020
AP_INVALID_KEY

The supplied key was incorrect.

Secondary APPC Return Codes
00000000
AP_CNOS_ACCEPTED

APPC accepts the session lines and responsibility as specified.

00000001
AP_BAD_TP_ID

The value of tp_id did not match a transaction program (TP) identifier assigned by APPC.

00000002
AP_BAD_CONV_ID

The value of conv_id did not match a conversation identifier assigned by APPC.

00000003
AP_BAD_LU_ALIAS

APPC cannot find the specified lu_alias among those defined.

000000C4
AP_RCV_IMMD_BAD_FILL (for a basic conversation)

The fill parameter was set to an invalid value.

00000004
AP_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent condition, such as a configuration error or session protocol
error. To determine the error, the system administrator should examine the error log file. Do not retry the allocation until the
error has been corrected.

00000005
AP_ALLOCATION_FAILURE_RETRY

The conversation could not be allocated because of a temporary condition, such as a link failure. The reason for the failure is
logged in the system error log. Retry the allocation.

00000006
AP_INVALID_DATA_SEGMENT

The program initiation parameters (PIP) data was longer than the allocated data segment, or the address of the PIP data
buffer was wrong.

00000007
AP_CNOS_NEGOTIATED

APPC accepts the session limits and responsibility as negotiable by the partner logical unit (LU). Values that can be
negotiated are:

plu_mode_session_limit

min_conwinners_source

min_conwinners_target

responsible

drain_target

000000D7
AP_BAD_RETURN_STATUS_WITH_DATA

The specified rtn_status value was not recognized by APPC.

00000011
AP_BAD_CONV_TYPE (for a basic conversation)

The value specified for conv_type was invalid.

00000012
AP_BAD_SYNC_LEVEL

The value specified for sync_level was invalid.

00000013
AP_BAD_SECURITY

The value specified for security was invalid.

00000014
AP_BAD_RETURN_CONTROL

The value specified for rtn_ctl was invalid.

00000016
AP_PIP_LEN_INCORRECT

The value of pip_dlen was greater than 32767.

00000017
AP_NO_USE_OF_SNASVCMG (for a mapped conversation)

SNASVCMG is not a valid value for mode_name.

00000018
AP_UNKNOWN_PARTNER_MODE

The value specified for mode_name was invalid.

00000031
AP_CONFIRM_ON_SYNC_LEVEL_NONE

The local TP attempted to use CONFIRM or MC_CONFIRM in a conversation with a synchronization level of AP_NONE. The
synchronization level, established by ALLOCATE or MC_ALLOCATE, must be AP_CONFIRM_SYNC_LEVEL.

00000032
AP_CONFIRM_BAD_STATE

The conversation was not in SEND state.

00000033
AP_CONFIRM_NOT_LL_BDY

The conversation for the local TP was in SEND state, and the local TP did not finish sending a logical record.

00000051
AP_DEALLOC_BAD_TYPE

The dealloc_type parameter was not set to a valid value.

00000052
AP_DEALLOC_FLUSH_BAD_STATE

The conversation was not in SEND state and the TP attempted to flush the send buffer. This attempt occurred because the
value of dealloc_type was AP_FLUSH or because the value of dealloc_type was AP_SYNC_LEVEL and the synchronization
level of the conversation was AP_NONE. In either case, the conversation must be in SEND state.

00000053
AP_DEALLOC_CONFIRM_BAD_STATE

The conversation was not in SEND state, and the TP attempted to flush the send buffer and send a confirmation request.

00000055
AP_DEALLOC_NOT_LL_BDY (for a basic conversation)

The conversation was in SEND state, and the TP did not finish sending a logical record. The dealloc_type parameter was set
to AP_SYNC_LEVEL or AP_FLUSH.

00000057
AP_DEALLOC_LOG_LL_WRONG

The LL field of the general data stream (GDS) error log variable did not match the actual length of the log data.

https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx

00000061
AP_FLUSH_NOT_SEND_STATE

The conversation was not in SEND state.

000000A1
AP_P_TO_R_INVALID_TYPE

The ptr_type parameter was not set to a valid value.

000000A2
AP_P_TO_R_NOT_LL_BDY

The local TP did not finish sending a logical record.

000000A3
AP_P_TO_R_NOT_SEND_STATE

The conversation was not in SEND state.

000000B1
AP_RCV_AND_WAIT_BAD_STATE

The conversation was not in RECEIVE or SEND state when the TP issued this verb.

000000B2
AP_RCV_AND_WAIT_NOT_LL_BDY (for a basic conversation)

The conversation was in SEND state; the TP began but did not finish sending a logical record.

000000B5
AP_RCV_AND_WAIT_BAD_FILL (for a basic conversation)

The fill parameter was set to an invalid value.

000000C1
AP_RCV_IMMD_BAD_STATE

The conversation was not in RECEIVE state.

000000D1
AP_RCV_AND_POST_BAD_STATE

The conversation was not in RECEIVE or SEND state when the TP issued this verb.

000000D2
AP_RCV_AND_POST_NOT_LL_BDY

The conversation was in SEND state; the TP began but did not finish sending a logical record.

000000D5
AP_RCV_AND_POST_BAD_FILL

The fill parameter was set to an invalid value.

000000D6
AP_INVALID_SEMAPHORE_HANDLE

The address of the RAM semaphore or system semaphore handle was invalid.

Note
APPC cannot trap all invalid semaphore handles. If the TP passes a bad RAM semaphore handle, a protection violation resu
lts.

000000D7
AP_BAD_RETURN_STATUS_WITH_DATA

The specified rtn_status value was not recognized by APPC.

000000E1
AP_R_T_S_BAD_STATE

The conversation is not in an allowed state when the TP issued this verb.

000000F1
AP_BAD_LL (for a basic conversation)

The logical record length field of a logical record contained an invalid value — 0x0000, 0x0001, 0x8000, or 0x8001. See
About Transaction Programs for information on logical records.

000000F2
AP_SEND_DATA_NOT_SEND_STATE

The local TP issued SEND_DATA or MC_SEND_DATA, but the conversation was not in SEND state.

000000F5
AP_SEND_DATA_CONFIRM_ON_SYNC_NONE

The type CONFIRM is not permitted for a conversation that was allocated with a sync_level of NONE.

000000F6
AP_SEND_DATA_NOT_LL_BDY (for a basic conversation)

The TP started but did not finish sending a logical record. This occurs only when type is one of the following:

AP_SEND_DATA_CONFIRM

AP_SEND_DATA_DEALLOC_FLUSH

AP_SEND_DATA_DEALLOC_SYNC_LEVEL

AP_SEND_DATA_P_TO_R_FLUSH

AP_SEND_DATA_P_TO_R_SYNC_LEVEL

00000102
AP_SEND_ERROR_LOG_LL_WRONG (for a basic conversation)

The LL field of the error log GDS variable did not match the actual length of the data.

00000103
AP_SEND_ERROR_BAD_TYPE (for a basic conversation)

The value of err_type was invalid.

00000105
AP_BAD_ERROR_DIRECTION

The specified err_dir was not recognized by APPC.

00000150
AP_CNOS_IMPLICIT_PARALLEL

APPC does not permit a program to change the session limit for a mode other than SNASVCMG mode for the implicit
partner template when the template specifies parallel sessions. (The term "template" is used because many of the actual
values are yet to be filled in.)

00000151
AP_CANT_RAISE_LIMITS

APPC does not permit setting session limits to a nonzero value unless the limits currently are zero.

00000152
AP_AUTOACT_EXCEEDS_SESSLIM

On the CNOS verb, the value for auto_activate is greater than the value for partner_lu_mode_session_limit.

00000153
AP_ALL_MODE_MUST_RESET

APPC does not permit a nonzero session limit when mode_name_select indicates ALL.

00000154
AP_BAD_SNASVCMG_LIMITS

Your program specified invalid settings for the partner_lu_mode_session_limit, min_conwinners_source, or

https://msdn.microsoft.com/en-us/library/aa771060(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx

min_conwinners_target parameters when mode_name was supplied.

00000155
AP_MIN_GT_TOTAL

The sum of min_conwinners_source and min_conwinners_target specifies a number greater than
partner_lu_mode_session_limit.

00000156
AP_MODE_CLOSED

The local LU cannot negotiate a nonzero session limit because the local maximum session limit at the partner LU is zero.

00000156
AP_CNOS_MODE_CLOSED

The local LU cannot negotiate a nonzero session limit because the local maximum session limit at the partner LU is zero.

00000157
AP_CNOS_MODE_NAME_REJECT

The partner LU does not recognize the specified mode name.

00000159
AP_RESET_SNA_DRAINS

The SNASVCMG mode does not support the drain parameter values.

0000015A
AP_SINGLE_NOT_SRC_RESP

For a single-session CNOS verb, APPC permits only the local (source) LU to be responsible for deactivating sessions.

0000015B
AP_BAD_PARTNER_LU_ALIAS

APPC did not recognize the supplied partner_lu_alias.

0000015C
AP_EXCEEDS_MAX_ALLOWED

Your program issued a CNOS verb, specifying a partner_lu_mode_session_limit number and set_negotiable (NO).

0000015D
AP_CHANGE_SRC_DRAINS

APPC does not permit mode_name_select (ONE) and drain_source (YES) when drain_source (NO) is currently in effect
for the specified mode.

0000015E
AP_LU_DETACHED

A command reset the definition of the local LU before the CNOS verb tried to specify the LU.

0000015F
AP_CNOS_COMMAND_RACE_REJECT

The local LU is currently processing a CNOS verb issued by the partner LU.

00000167
AP_SNASVCMG_RESET_NOT_ALLOWED

Your local program attempted to issue the CNOS verbs for the mode named SNASVCMG, specifying a session limit of zero.

000001B4
AP_DISPLAY_INFO_EXCEEDS_LENGTH

The returned DISPLAY information did not fit in the buffer.

000001B5
DISPLAY_INVALID_CONSTANT

The value supplied for NUM_SECTIONS or INIT_SEC_LEN is invalid.

https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705711(v=bts.10).aspx

00000506
AP_UNDEFINED_TP_NAME

In the configuration file for your application, APPC could not find an invokable TP name matching the value of tp_name.

00000509
AP_ALLOCATE_NOT_PENDING

APPC did not find an incoming allocate (from the invoking TP) to match the value of tp_name, supplied by
RECEIVE_ALLOCATE. RECEIVE_ALLOCATE waited for the incoming allocate and eventually timed out.

00000519
AP_CPSVCMG_MODE_NOT_ALLOWED

The mode named CPSVCMG cannot be specified as the mode_name on the deactivate session verb.

00000525
AP_INVALID_PROCESS

The process issuing RECEIVE_ALLOCATE was different from the one started by APPC.

080F6051
AP_SECURITY_NOT_VALID

The user identifier or password specified in the allocation request was not accepted by the partner LU.

084B6031
AP_TRANS_PGM_NOT_AVAIL_RETRY

The remote LU rejected the allocation request because it was unable to start the requested partner TP. The condition may be
temporary, such as a time-out. The reason for the error may be logged on the remote node. Retry the allocation.

084C0000
AP_TRANS_PGM_NOT_AVAIL_NO_RETRY

The remote LU rejected the allocation request because it was unable to start the requested partner TP. The condition is
permanent. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

10086021
AP_TP_NAME_NOT_RECOGNIZED

The partner LU does not recognize the TP name specified in the allocation request.

10086031
AP_PIP_NOT_ALLOWED

The allocation request specified PIP data, but either the partner TP does not require this data, or the partner LU does not
support it.

10086032
AP_PIP_NOT_SPECIFIED_CORRECTLY

The partner TP requires PIP data, but the allocation request specified either no PIP data or an incorrect number of
parameters.

10086034
AP_CONVERSATION_TYPE_MISMATCH

The partner LU or TP does not support the conversation type (basic or mapped) specified in the allocation request.

10086041
AP_SYNC_LEVEL_NOT_SUPPORTED

The partner TP does not support the sync_level (AP_NONE or AP_CONFIRM_SYNC_LEVEL) specified in the allocation
request, or the sync_level was not recognized.

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

Common CSV Return Codes
This section describes the primary and, if applicable, secondary return codes for the Microsoft® Windows® Common Service
Verb (CSV) API. The return codes are listed in hexadecimal order.

In This Section

Primary CSV Return Codes

Secondary CSV Return Codes

https://msdn.microsoft.com/en-us/library/aa745612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746163(v=bts.10).aspx

Primary CSV Return Codes
 

0000
SV_OK

The verb executed successfully.

0001
SV_PARAMETER_CHECK

The verb did not execute because of a parameter error.

0002
SV_STATE_CHECK

The verb did not execute because it was issued in an invalid state.

0021
SV_CANCELLED

This code is returned for an asynchronous verb when it has been shut down by a WinCSVCleanup call.

0030
SV_FILE_ALREADY_EXISTS

When the SV_NEW file option was used, the file name specified was the name of an existing file.

0031
SV_OUTPUT_DEVICE_FULL

There is insufficient space on the device where the output file resides. Retry the operation after freeing additional disk space.

F006
SV_THREAD_BLOCKING

This verb exceeds the maximum number of simultaneous synchronous verbs allowed.

F008
SV_INVALID_VERB_SEGMENT

The verb control block (VCB) extended beyond the end of the data segment.

F011
SV_UNEXPECTED_DOS_ERROR

One of the following conditions occurred:

The Microsoft® Windows® 2000 system encountered an error while processing the verb. The operating system return
code was returned through the secondary return code. If the problem persists, contact the system administrator for
corrective action.

A CSV was issued from a message loop that was invoked by another application issuing a Windows environment
SendMessage function call, rather than the more common Windows environment PostMessage function call. Verb
processing cannot take place.

A CSV was issued when SendMessage invoked your application. You can determine whether your application has
been invoked with SendMessage by using the InSendMessage Windows API function call.

F012
SV_COMM_SUBSYSTEM_NOT_LOADED

A required component could not be loaded or has terminated while processing the verb. Thus, communication could not take
place. Contact the system administrator for corrective action.

F024
SV_SERVER_RESOURCE_NOT_FOUND

https://msdn.microsoft.com/en-us/library/aa705783(v=bts.10).aspx

No communication server was found that could provide the requested function.

F026
SV_SERVER_RESOURCE_LOST

The communications server that was providing the function was lost due to a connection failure.

FFFF
SV_INVALID_VERB

The opcode parameter did not match the operation code of any verb. No verb executed.

Secondary CSV Return Codes
 

00000006
SV_INVALID_DATA_SEGMENT

The data buffer containing the source or target string did not fit in one segment, or the target segment was not a read/write
segment. This applies only to the Microsoft® Windows® and OS/2 systems.

00000301
SV_SSCP_PU_SESSION_NOT_ACTIVE

The Network Management Vector Transport (NMVT) was not sent; either the system services control point-physical unit
(SSCP-PU) session was not active, the node configured to receive diagnostic information was not active, or no network
management connection was configured.

00000302
SV_DATA_EXCEEDS_RU_SIZE

The data to be sent was too long. The length of the user-supplied data plus headers and added subvectors must fit in a single
request unit (RU) that is not more than 512 bytes long.

00000303
SV_INVALID_DATA_TYPE

The data_type parameter contained an invalid value.

00000401
SV_INVALID_DIRECTION

The direction parameter contained an invalid value.

00000402
SV_INVALID_CHARACTER_SET

The char_set parameter contained an invalid value.

00000404
SV_INVALID_FIRST_CHARACTER

The first character of a type A source string was invalid.

00000405
SV_TABLE_ERROR

One of the following occurred:

The file containing the user-written type G conversion table was not specified by the environment variable CSVTBLG.

The table was not in the correct format.

The file specified by the CSVTBLG variable was not found.

00000406
SV_CONVERSION_ERROR

One or more characters in the source string were not found in the conversion table. These characters were converted to nulls
(0x00). The verb still executed.

00000621
SV_INVALID_MESSAGE_ACTION

The msg_act parameter contained an invalid value.

00000624
SV_INVALID_SET

The dt_set parameter contained an invalid value.

00000629
SV_COPY_TRACE_IN_PROGRESS

A previously issued COPY_TRACE_TO_FILE is still in progress.

0000062A
SV_TRACE_NOT_STOPPED

A trace was in progress when the verb was issued.

0000062B
SV_INVALID_FILE_OPTION

A value other than SV_NEW or SV_OVERWRITE was specified for file_option.

0000062C
SV_TRACE_BUFFER_EMPTY

The trace storage buffer did not contain any data.

0000062F
SV_INVALID_RESET_TRACE

The reset_trc parameter contained an invalid value.

00000630
SV_INVALID_CHAR_NOT_FOUND

The char_not_fnd parameter contained an invalid value.

00000631
SV_INVALID_SOURCE_CODE_PAGE

The code page specified by source_cp is not supported.

00000632
SV_INVALID_TARGET_CODE_PAGE

The code page specified by target_cp is not supported.

030000AB
SV_SERVER_COMM_FAILURE

The connection to the server was lost due to physical path problems; for example, the server may have been powered off.

https://msdn.microsoft.com/en-us/library/aa745040(v=bts.10).aspx

CPI-C Programmer's Reference
This section of the Host Integration Server 2009 Developer's Guide provides information about the calls, extensions, and return
codes that make up the CPI-C.

For general information about programming for CPI-C, see the CPI-C Programmer's Guide section of the SDK.

For sample code that uses CPI-C, see CPI-C Samples.

In This Section

CPI-C Calls

Extensions for the Windows Environment

CPI-C Common Return Codes

https://msdn.microsoft.com/en-us/library/aa754719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771069(v=bts.10).aspx

CPI-C Calls
This section describes the Common Programming Interface for Communications (CPI-C) calls. The following information is
supplied for each call:

The pseudonym for the call and the actual C function name.

A definition of the call.

A list of the parameters used by the call and the data type for each parameter. The prototype of each function is declared
in the WINCPIC.H file.

A description of each input and output parameter. The parameter names are pseudonyms and the actual names for these
parameters are declared by the application program. The description includes the possible values of the parameter.

The conversation states in which the call can be issued.

The states to which the conversation can change upon return from the call. Conditions that do not cause a state change
are not noted. For example, parameter checks and state checks do not cause a state change.

Additional information describing the use of the call.

Data Types

The data types for the parameters supplied to and received from CPI-C are established as symbolic constants by #define
statements in the WINCPIC.H file. For example, CM_INT32 represents signed long int and CM_PTR represents far *. Using
symbolic constants improves the portability of CPI-C applications.

For ease of understanding, this reference presents the data types in absolute (not #defined) terms.

In writing applications, you should use the symbolic constants from the WINCPIC.H file.

Symbolic Constants

Most parameters supplied to and returned by CPI-C are 32-bit integers. To simplify coding, the values for these parameters are
represented by meaningful symbolic constants, which are established by #define statements in the WINCPIC.H header file. For
example, the value CM_MAPPED_CONVERSATION represents the integer 1. For the sake of readability, use only the symbolic
constants when writing programs.

Strings

All strings are in ASCII format when passed across the CPI-C interface.

Validity of output parameters

The parameters returned by CPI-C are valid only if the CPI-C call is executed successfully, as indicated by a return code of
CM_OK.

In This Section

Accept_Conversation

Allocate

Cancel_Conversation

Confirm

Confirmed

Convert_Incoming

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746109(v=bts.10).aspx

Convert_Outgoing

Deallocate

Delete_CPIC_Side_Information

Extract_Conversation_Security_Type

Extract_Conversation_Security_User_ID

Extract_Conversation_State

Extract_Conversation_Type

Extract_CPIC_Side_Information

Extract_Mode_Name

Extract_Partner_LU_Name

Extract_Sync_Level

Extract_TP_Name

Flush

Initialize_Conversation

Prepare_To_Receive

Receive

Request_To_Send

Send_Data

Send_Error

Set_Conversation_Security_Password

Set_Conversation_Security_Type

Set_Conversation_Security_User_ID

Set_Conversation_Type

Set_CPIC_Side_Information

Set_Deallocate_Type

Set_Error_Direction

Set_Fill

https://msdn.microsoft.com/en-us/library/aa705470(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771465(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745448(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745414(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746263(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705616(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745832(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705640(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771877(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745039(v=bts.10).aspx

Set_Log_Data

Set_Mode_Name

Set_Partner_LU_Name

Set_Prepare_To_Receive_Type

Set_Processing_Mode

Set_Receive_Type

Set_Return_Control

Set_Send_Type

Set_Sync_Level

Set_TP_Name

Specify_Local_TP_Name

Specify_Windows_Handle

Test_Request_To_Send_Received

Wait_For_Conversation

CPI-C Functions Not Supported

https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754400(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770979(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704690(v=bts.10).aspx

Accept_Conversation
The Accept_Conversation call (function name cmaccp) is issued by the invoked program to accept the incoming
conversation and set certain conversation characteristics. For a list of initial conversation characteristics, see
Initial Conversation Characteristics.

Syntax

Parameters
conversation_ID

Returned parameter. Specifies the identifier for the conversation. It is used by subsequent CPI-C calls and is returned if the
return code is either CM_OK or CM_OPERATION_INCOMPLETE. If the return code is CM_OPERATION_INCOMPLETE, the
conversation_ID parameter can be used by the application to wait for or cancel the conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; there is no incoming conversation (blocking mode only), or no local transaction program (TP) name has
been set up.

CM_OPERATION_INCOMPLETE

Primary return code; a nonblocking operation has been started on the conversation but is not complete. The program can
issue Wait_For_Conversation to wait for the operation to complete or Cancel_Conversation to cancel the operation and
conversation.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in RESET state when Accept_Conversation is issued.

If the call is successful, the conversation changes to RECEIVE state. If the call fails, the state remains unchanged.

Remarks

Upon successful execution of this call, CPI-C generates an 8-byte conversation identifier. This identifier is a required parameter
for all other CPI-C calls issued by the invoked program on this conversation.

Incoming conversations will be accepted according to the target TP name that they specify, which must match local TP names
that have been set up. Local TP names can be set up by implementation-dependent methods, or by the program calling
Specify_Local_TP_Name. In this way, a program can have more than one local TP name. The program can call Extract_TP_Name
to discover the name specified on the incoming conversation.

The operation is performed in nonblocking mode if the program has called Specify_Local_TP_Name previously; otherwise it
is performed in blocking mode.

CM_ENTRY Accept_Conversation(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa705478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771877(v=bts.10).aspx

Allocate
The Allocate call (function name cmallc) is issued by the invoking program to allocate a conversation with the partner
program, using the current conversation characteristics. CPI-C can also allocate a session between the local logical unit (LU)
and partner LU if one does not already exist.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the conversation identifier. The value of this parameter was returned by
Initialize_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; this value indicates that a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; a nonblocking operation has been started on the conversation but is not complete. The program can
issue Wait_For_Conversation to wait for the operation to complete or Cancel_Conversation to cancel the operation and
conversation.

CM_PARAMETER_ERROR

Primary return code; one of the following occurred:

The mode name derived from the side information or set by Set_Mode_Name is not valid.

The mode name is used by SNA service transaction programs (TPs); the invoking program does not have the authority
to use this mode name. An example is SNASVCMG.

The partner program derived from the side information is an SNA service TP; the local program does not have the
privilege required to allocate a conversation to an SNA service TP.

The partner program is a service TP, which participates in basic conversations, but the conversation is set to
CM_MAPPED_CONVERSATION.

The partner LU name derived from the side information or set by Set_Partner_LU_Name is not valid.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is not valid, or the address of a variable is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PRODUCT_SPECIFIC_ERROR

CM_ENTRY Allocate(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_UNSUCCESSFUL

Primary return code; the conversations return-control characteristic is set to CM_IMMEDIATE and the local LU did not have
an available contention-winner session.

The following return codes can be generated if the conversations return-control type is set to
CM_WHEN_SESSION_ALLOCATED.

CM_ALLOCATE_FAILURE_NO_RETRY

Primary return code; the conversation cannot be allocated because of a permanent condition, such as a configuration error
or session protocol error. To determine the error, the system administrator should examine the error log file. Do not retry the
allocation until the error has been corrected.

CM_ALLOCATE_FAILURE_RETRY

Primary return code; the conversation could not be allocated because of a temporary condition, such as a link failure. The
reason for the failure is logged in the system error log. Retry the allocation.

State Changes

The conversation must be in INITIALIZE state when Allocate is issued.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state

CM_OK SEND

CM_ALLOCATE_FAILURE_NO_RETRY RESET

CM_ALLOCATE_FAILURE_RETRY RESET

All others No change

Remarks

The type of conversation allocated is based on the conversation type characteristic: mapped or basic.

When the conversation has been allocated by this call, the following conversation characteristics cannot be changed:

Conversation type

Mode name

Partner LU name

Partner program name

Return control

Synchronization level

Conversation security

User identifier

Password

To send the allocation request immediately, the invoking program can issue Flush or Confirm immediately after Allocate.
Otherwise, the allocate request accumulates with other data in the local LUs send buffer until the buffer is full.

By issuing Confirm after Allocate, the invoking program can immediately determine whether the allocation was successful (if

https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx

the conversation synchronization level is set to CM_CONFIRM).

If the partner LU rejects the allocation request generated by Allocate, the error is returned to the invoking program on a
subsequent call.

Cancel_Conversation
The Cancel_Conversation call (function name cmcanc) cancels any outstanding operation on a conversation (an operation
returned with CM_OPERATION_INCOMPLETE) and the conversation itself.

Syntax

Parameters
conversation_ID

Returned parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in any state except RESET.

When the return code is CM_OK, the conversation state becomes RESET.

Remarks

Cancel_Conversation can be called while another operation is active for the specified conversation_ID. This allows an
application to end any CPI-C action, but will terminate the conversation. This call can be issued regardless of the current
application processing mode. Any outstanding operations will return with CM_DEALLOCATED_ABEND as the return code.

The conversation is terminated by a Deallocate with deallocate_type set to ABEND_SVC. No log_data is sent. The system may
be unable to do this immediately, but any delay is transparent to the program.

Note
If Cancel_Conversation is called while there are outstanding Specify_Windows_Handle asynchronous calls, these calls are c
anceled. The return codes are set to canceled, and a completion message is posted.

CM_ENTRY Cancel_Conversation(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

Confirm
The Confirm call (function name cmcfm) sends the contents of the send buffer of the local logical unit (LU) and a confirmation
request to the partner program and waits for confirmation. For Microsoft® Windows Server™ 2003 and Windows® 2000, run
a background thread for all CPI-C communications and preserve the foreground thread for user interface only.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

request_to_send_received

Returned parameter. Provides the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program issued Request_To_Send, which requests the local program to change the conversation to RECEIVE
state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program did not issue Request_To_Send. This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully. The partner program issued the Confirmed call.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The local program attempted to use Confirm in a conversation with a synchronization level of CM_NONE. The
synchronization level must be CM_CONFIRM.

CM_PROGRAM_STATE_CHECK

Primary return code; one of the following occurred:

CM_ENTRY Confirm(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

The conversation was not in SEND or SEND_PENDING state.

The basic conversation for the local program was in SEND state, and the local program did not finish sending a logical
record.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_CONVERSATION_TYPE_MISMATCH

Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner
program requires one or more PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID

Primary return code; the user identifier or password specified in the allocation request is not accepted by the partner LU.

CM_SYNC LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY

Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY

Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem
failure. Retry the conversation.

CM_DEALLOCATED_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND. If the conversation
for the remote program was in RECEIVE state when the call was issued, information sent by the local program and not
yet received by the remote program is purged.

The partner program terminated normally but did not deallocate the conversation before terminating.

CM_DEALLOCATED_ABEND_SVC

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by
the local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

State Changes

The conversation can be in SEND or SEND_PENDING state when Confirm is issued.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state

CM_OK No change

Call was issued in SEND state No change

Call was issued in SEND_PENDING state SEND

CM_PROGRAM_ERROR_PURGING RECEIVE

CM_SVC_ERROR_PURGING RECEIVE

CM_CONVERSATION_TYPE_MISMATCH RESET

CM_PIP_NOT_SPECIFIED_CORRECTLY RESET

CM_SECURITY_NOT_VALID RESET

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET

CM_TPN_NOT_RECOGNIZED RESET

CM_TP_NOT_AVAILABLE_NO_RETRY RESET

CM_TP_NOT_AVAILABLE_RETRY RESET

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

CM_RESOURCE_FAILURE_NO_RETRY RESET

CM_RESOURCE_FAILURE_RETRY RESET

CM_DEALLOCATED_ABEND RESET

CM_DEALLOCATED_ABEND_SVC RESET

CM_DEALLOCATED_ABEND_TIMER RESET

All others No change

Remarks

In response to Confirm, the partner program normally issues Confirmed to confirm that it has received the data without error.
(If the partner program encounters an error, it issues Send_Error or uses Deallocate to abnormally deallocate the conversation.)

The program can issue Confirm only if the conversations synchronization level is CM_CONFIRM.

Confirm waits for a response from the partner program. A response is generated by one of the following CPI-C calls in the
partner program:

Confirmed

Send_Error

5Deallocate with the conversations deallocate type set to CM_DEALLOCATE_ABEND

https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

Confirmed
The Confirmed call (function name cmcfmd) replies to a confirmation request from the partner program. It informs the
partner program that the local program has not detected an error in the received data. Because the program issuing the
confirmation request waits for a confirmation, Confirmed synchronizes the processing of the two programs.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation was not in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state when the
program issued this call.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in one of the following states when the program issues Confirmed:

CONFIRM

CONFIRM_SEND

CONFIRM_DEALLOCATE

The new state is determined by the old state—the state of the conversation when the local program issued Confirmed. The old
state is indicated by the status_received value of the preceding Receive call. The following table summarizes the possible state
changes when return_code is set to CM_OK.

Old state New state

CM_ENTRY Confirmed(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

CONFIRM RECEIVE

CONFIRM_SEND SEND

CONFIRM_DEALLOCATE RESET

Other return codes result in no state change.

Remarks

A confirmation request is issued by one of the following calls in the partner program:

Confirm.

Prepare_To_Receive if the prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM or to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversations synchronization level is set to CM_CONFIRM.

Deallocate if the deallocate type is set to CM_DEALLOCATE_CONFIRM or to CM_DEALLOCATE_SYNC_LEVEL and the
conversations synchronization level is set to CM_CONFIRM.

Send_Data under the following circumstances:

The send type is set to CM_SEND_AND_CONFIRM.

The send type is set to CM_SEND_AND_PREPARE_TO_RECEIVE and the prepare-to-receive type is set to
CM_PREPARE_TO_RECEIVE_CONFIRM.

The send type is set to CM_SEND_AND_PREPARE_TO_RECEIVE, the prepare-to-receive type is set to
CM_PREPARE_TO_RECEIVE_SYNC_LEVEL, and the synchronization level is set to CM_CONFIRM.

The send type is set to CM_SEND_AND_DEALLOCATE and the deallocate type is set to
CM_DEALLOCATE_CONFIRM.

The send type is set to CM_SEND_AND_DEALLOCATE, the deallocate type is set to
CM_DEALLOCATE_SYNC_LEVEL, and the synchronization level is set to CM_CONFIRM.

A confirmation request is received by the local program through the status_received parameter of Receive. The local program
can issue Confirmed only if the status_received parameter is set to one of the following values:

CM_CONFIRM_RECEIVED

CM_CONFIRM_SEND_RECEIVED

CM_CONFIRM_DEALLOC_RECEIVED

https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

Convert_Incoming
The Convert_Incoming call (function name cmcnvi) converts a string of EBCDIC characters into ASCII. Note that the return
conversion can be performed using Convert_Outgoing.

Syntax

Parameters
string

Supplied parameter. Specifies the EBCDIC string to be converted. The string may contain any of the following characters:

Uppercase A–Z

Lowercase a–z

Numbers 0–9

The period (.)

Space characters

The special characters < > + - () & * ; : , ' ? / _= ".

string_length characters of this string will be replaced by ASCII equivalents.

string_length

Supplied parameter. Specifies the number of characters to be converted (1–32767).

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully, and the string parameter now contains the converted ASCII string.

CM_OPERATION_NOT_ACCEPTED

Primary return code; the string_length parameter specified an invalid value.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state.

There is no state change.

Remarks

When data is being received in buffer format in a basic conversation, the data buffer may contain multiple logical records, each
consisting of a 2-byte length field (NN) followed by the data. The application must extract and convert each data string
separately (excluding the length field value). The applications must not attempt to convert the whole buffer in one operation,
because this will make the length field values invalid.

CM_ENTRY Convert_Incoming(
 unsigned char FAR *string,
 CM_INT32 FAR *string_length,
 CM_INT32 FAR *return_code
);

Convert_Outgoing
The Convert_Outgoing call (function name cmcnvo) converts a string of ASCII characters into EBCDIC. Note that the return
conversion can be performed using Convert_Incoming.

Syntax

Parameters
string

Supplied parameter. Specifies the ASCII string to be converted. The string may contain any of the following characters:

Uppercase A–Z

Lowercase a–z

Numbers 0–9

The period (.)

Space characters

The special characters < > + - () & * ; : , ' ? / _= ".

string_length characters of this string will be replaced by EBCDIC equivalents.

string_length

Supplied parameter. Specifies the number of characters to be converted (1–32767).

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully and the string parameter now contains the converted EBCDIC string.

CM_OPERATION_NOT_ACCEPTED

Primary return code; the string_length parameter specified an invalid value.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state.

There is no state change.

Remarks

When data is being received in buffer format in a basic conversation, the data buffer may contain multiple logical records, each
consisting of a two-byte length field (NN) followed by the data. The application must extract and convert each data string
separately (excluding the length field value). The applications must not attempt to convert the whole buffer in one operation,
because this will make the length field values invalid.

CM_ENTRY Convert_Outgoing(
 unsigned char FAR *string,
 CM_INT32 FAR *string_length,
 CM_INT32 FAR *return_code
);

Deallocate
The Deallocate call (function name cmdeal) deallocates a conversation between two programs.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully; the conversation is deallocated.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the following state errors can occur when the deallocate type indicates a normal deallocation
(CM_DEALLOCATE_SYNC_LEVEL, CM_DEALLOCATE_FLUSH, CM_DEALLOCATE_CONFIRM):

The conversation is not in SEND or SEND_PENDING state.

For a basic conversation, the conversation is in SEND state, but the program did not finish sending a logical record.

The following return codes can be returned when the deallocate_type is set to CM_DEALLOCATE_CONFIRM or to
CM_DEALLOCATE_SYNC_LEVEL and the conversations synchronization level is set to CM_CONFIRM.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_CONVERSATION_TYPE_MISMATCH

Primary return code; the partner logical unit (LU) or program does not support the conversation type (basic or mapped)
specified in the allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner
program requires one or more PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID

CM_ENTRY Deallocate(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY

Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY

Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem
failure. Retry the conversation.

CM_DEALLOCATED_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU
did so because of a remote program abnormal-ending condition. If the conversation for the remote program was in
RECEIVE state when the call was issued, information sent by the local program and not yet received by the remote
program is purged.

The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by
the local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

State Changes

Depending on the value of the conversations deallocate type parameter (set by Set_Deallocate_Type), the conversation can be
in one of the states indicated in the following table when the program issues Deallocate:

Deallocate type Allowed state

CM_DEALLOCATE_FLUSH SEND or SEND_PENDING

CM_DEALLOCATE_CONFIRM SEND or SEND_PENDING

CM_DEALLOCATE_SYNC_LEVEL SEND or SEND_PENDING

CM_DEALLOCATE_ABEND Any except RESET

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state

CM_OK RESET

CM_PROGRAM_ERROR_PURGING RECEIVE

CM_SVC_ERROR_PURGING RECEIVE

CM_CONVERSATION_TYPE_MISMATCH RESET

CM_PIP_NOT_SPECIFIED_CORRECTLY RESET

CM_SECURITY_NOT_VALID RESET

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET

CM_TPN_NOT_RECOGNIZED RESET

CM_TP_NOT_AVAILABLE_NO_RETRY RESET

CM_TP_NOT_AVAILABLE_RETRY RESET

CM_RESOURCE_FAILURE_NO_RETRY RESET

CM_RESOURCE_FAILURE_RETRY RESET

CM_DEALLOCATED_ABEND RESET

CM_DEALLOCATED_ABEND_SVC RESET

https://msdn.microsoft.com/en-us/library/aa753900(v=bts.10).aspx

CM_DEALLOCATED_ABEND_TIMER RESET

All others No change

Remarks

Before deallocating the conversation, this call performs the equivalent of either the Flush or Confirmed call, depending on the
current conversation synchronization level and deallocate type. The deallocate type is set by Set_Deallocate_Type.

The partner program receives the deallocation notification through one of the following parameters:

status_received is CM_CONFIRM_DEALLOC_RECEIVED

return_code is CM_DEALLOCATED_NORMAL

return_code is CM_DEALLOCATED_ABEND

After this call has successfully executed, the conversation_ID is no longer valid.

For a basic conversation, if the conversations deallocate type is set to CM_DEALLOCATE_ABEND and the log data length is
greater than zero, the local LU writes the log data (specified by Set_Log_Data) to the local error log and to the partner LU.

After Deallocate has been executed, the log data length is set to zero and the log data is set to null.

https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753900(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx

Delete_CPIC_Side_Information
The Delete_CPIC_Side_Information call (function name xcmdsi) deletes an entry from the side information table in memory.
The side information entry is identified through the symbolic destination name.

Syntax

Parameters
key_lock

Supplied parameter. This parameter is ignored.

sym_dest_name

Supplied parameter. Specifies the symbolic destination name of the entry to be deleted.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the sym_dest_name parameter specified a nonexistent side information entry.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The call is not associated with a conversation and can be in any state.

There is no state change.

Remarks

The side information entry is removed immediately from the side information table in memory.

While this call is being executed, any calls issued by other CPI-C applications that set or extract side information are suspended.
These calls include the following:

Set_CPIC_Side_Information

Extract_CPIC_Side_Information

Initialize_Conversation

CM_ENTRY Delete_CPIC_Side_Information(
 unsigned char FAR *key_lock,
 unsigned char FAR *sym_dest_name,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705616(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx

Extract_Conversation_Security_Type
The Extract_Conversation_Security_Type call (function name xcecst) returns the security type for a specified conversation.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

conversation_security_type

Returned parameter. Specifies the information the partner logical unit (LU) requires to validate access to the invoked
program. Possible values are:

CM_SECURITY_NONE

The invoked program uses no conversation security.

CM_SECURITY_PROGRAM

The invoked program uses conversation security and thus requires a user identifier and password.

CM_SECURITY_SAME

The invoked program, invoked with a valid user identifier and password, in turn invokes another program (as illustrated in
Communication Between TPs). For example, assume that program A invokes program B with a valid user identifier and
password, and program B in turn invokes program C. If program B specifies the value CM_SECURITY_SAME, CPI-C sends the
LU for program C, the user identifier from program A, and an already-verified indicator. This indicator tells program C not to
require the password (if program C is configured to accept an already-verified indicator).

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid, or the address of a variable is invalid.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Conversation_Security_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_security_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754408(v=bts.10).aspx

Extract_Conversation_Security_User_ID
The Extract_Conversation_Security_User_ID call (function name cmecsu) returns the user identifier being used in a
specified conversation.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

security_user_ID

Returned parameter. Specifies the user identifier that was used to establish the conversation.

security_user_ID_length

Returned parameter. Specifies the length of security_user_ID.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

The security_user_ID value is not padded with spaces. It is meaningful only up to security_user_ID_length.

CM_ENTRY Extract_Conversation_Security_User_ID(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *security_user_ID,
 CM_INT32 FAR *security_user_ID_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Extract_Conversation_State
The Extract_Conversation_State call (function name cmecs) returns the state of the specified conversation.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

conversation_state

Returned parameter. Specifies the conversation state. Possible values are:

CM_INITIALIZE_STATE

CM_SEND_STATE

CM_RECEIVE_STATE

CM_SEND_PENDING_STATE

CM_CONFIRM_STATE

CM_CONFIRM_SEND_STATE

CM_CONFIRM_DEALLOCATE_STATE

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Conversation_State(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_state,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Extract_Conversation_Type
The Extract_Conversation_Type call (function name cmect) returns the conversation type—mapped or basic—of the
specified conversation.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

conversation_type

Returned parameter. Specifies the conversation type. Possible values are:

CM_BASIC_CONVERSATION

CM_MAPPED_CONVERSATION

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Conversation_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Extract_CPIC_Side_Information
The Extract_CPIC_Side_Information call (function name xcmesi) returns the side information for an entry number or
symbolic destination name.

Syntax

Parameters
entry_number

Supplied parameter. Specifies the number (index) of the side information entry to be returned. The first entry is 1.

The program can look up the side information entry by the symbolic destination name instead. To accomplish this, set the
entry number to zero.

sym_dest_name

Supplied parameter. Specifies the symbolic destination name to search for.

If entry_number is set to a number greater than zero, this parameter is ignored.

side_info_entry

Returned parameter. Specifies the side information entry. For a detailed explanation of the side information entry, see
Set_CPIC_Side_Information.

Each field in the side information structure is left-aligned and padded with spaces on the right as necessary.

side_info_entry_length

Supplied parameter. Always 124.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The entry_number specified a number larger than the maximum number of entries in the side information table or a
number that is less than zero.

The sym_dest_name parameter is invalid and entry_number is set to zero.

The side_info_entry_length parameter is not set to 124.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

This call is not associated with a conversation and can be in any state.

CM_ENTRY Extract_CPIC_Side_Information(
 CM_INT32 FAR *entry_number,
 unsigned char FAR *sym_dest_name,
 SIDE_INFO FAR *side_info_entry,
 CM_INT32 FAR *side_info_entry_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx

There is no state change.

Remarks

The security password is never returned. If the security user identifier in the side information is not set, the security user
identifier field is returned as all spaces.

Extract_Mode_Name
The Extract_Mode_Name call (function name cmemn) returns the mode name and mode name length for a specified
conversation.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

mode_name

Returned parameter. Specifies the starting address of the mode name.

mode_name_length

Returned parameter. Specifies the length of the mode name.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Mode_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *mode_name,
 CM_INT32 FAR *mode_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Extract_Partner_LU_Name
The Extract_Partner_LU_Name call (function name cmepln) returns the partner LU name and partner LU name length for a
specified conversation. This can be an alias name of up to eight bytes or a fully qualified network name of up to 17 bytes.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

partner_LU_name

Returned parameter. Specifies the variable containing the partner LU name. (The program must supply a pointer to a suitable
variable.)

partner_LU_name_length

Returned parameter. Specifies the length of the partner LU name.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

An invokable CPI-C transaction program (TP) will only receive the fully qualified network name upon successful completion of
this function call. An invokable CPI-C TP is unable to retrieve the alias name using this call.

CM_ENTRY Extract_Partner_LU_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *partner_LU_name,
 CM_INT32 FAR *partner_LU_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Extract_Sync_Level
The Extract_Sync_Level call (function name cmesl) returns the synchronization level for a specified conversation.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

sync_level

Returned parameter. Indicates the synchronization level of the conversation. Possible values are:

CM_NONE

The programs will not perform confirmation processing.

CM_CONFIRM

The programs can perform confirmation processing.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Extract_Sync_Level(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *sync_level,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Extract_TP_Name
The Extract_TP_Name call (function name cmetpn) returns the TP_name characteristic.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

TP_name

Returned parameter. Specifies the variable containing the transaction program (TP) name.

TP_name_length

Returned parameter. Specifies the length of the TP name.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

For an invoking program, the TP_name characteristic is the value in the side information referenced in the sym_dest_name
parameter of the Initialize_Conversation call. For an invokable program, it is the name specified in the conversation startup
request (which will have been matched with a name specified locally or in a Specify_Local_TP_Name call), and will therefore be
the same as the TP_name characteristic of the partner program.

The name returned can be up to 64 bytes in length.

CM_ENTRY Extract_TP_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *TP_name,
 CM_INT32 FAR *TP_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx

Flush
The Flush call (function name cmflus) sends the contents of the send buffer of the local logical unit (LU) to the partner LU (and
program). If the send buffer is empty, no action takes place.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation was not in SEND or SEND_PENDING state when the program issued this call.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in SEND or SEND_PENDING state.

If the call completes successfully, (return_code is CM_OK), the conversation is in SEND state.

Other return codes result in no state change.

Remarks

Data processed by Send_Data accumulates in the local LUs send buffer until one of the following happens:

The local program issues the Flush call or other call that flushes the LUs send buffer. (Some send types, set by
Set_Send_Type, include flush functionality.)

The buffer is full.

The allocation request generated by Allocate and error information generated by Send_Error are also buffered.

CM_ENTRY Flush(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

Initialize_Conversation
The Initialize_Conversation call (function name cminit) is issued by the invoking program to obtain an 8-byte conversation
identifier and to set the initial values for the conversations characteristics.

Syntax

Parameters
conversation_ID

Returned parameter. Specifies the identifier for the conversation. It is used by subsequent CPI-C calls.

sym_dest_name

Supplied parameter. Specifies the symbolic destination name—the name associated with a side information entry loaded
from the configuration file or defined by Set_CPIC_Side_Information calls.

This parameter is an 8-byte ASCII character string. The allowed characters are as follows:

Uppercase letters

Numerals from 0 through 9

This parameter can also be set to eight spaces. In this case, the invoking program must issue the following calls before
issuing Allocate:

Set_Mode_Name

Set_Partner_LU_Name

Set_TP_Name

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by sym_dest_name does not match a symbolic destination name in the side
information table and is not a space.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation is in RESET state.

If the return_code is CM_OK, the conversation changes to INITIALIZE state. For other return codes, the conversation state
remains unchanged.

Remarks

CM_ENTRY Initialize_Conversation(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *sym_dest_name,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745363(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771457(v=bts.10).aspx

The initial values are CPI-C defaults or are derived from side information associated with the symbolic destination name. For
more information about initial values and side information, see Initial Conversation Characteristics and
Side Information for CPI-C Programs.

Initial values can be changed by the Set_ calls.

If the side information contains an invalid value or a Set_ call sets a conversation characteristic to an invalid value, the error is
returned on the Allocate call.

If a CPI-C application attempts to invoke more than one concurrent conversation, only a single local APPC logical unit (LU) is
used by all conversations. This prevents concurrent conversations across two or more dependent LU 6.2 LUs, causing
subsequent Initialize_Conversation (CMALLC) calls to wait for the first conversation to be deallocated.

If the CPI-C application needs to invoke more than one concurrent conversation, independent LU 6.2 must be used between
Host Integration Server and the remote system.

Upon successful execution of this call, CPI-C generates a conversation identifier. This identifier is a required parameter for all
other CPI-C calls issued for this conversation by the invoking program.

Under normal circumstances, a CPI-C application cannot invoke two concurrent conversations using two different local APPC
LUs. A registry key is available that when set forces CPI-C to issue a new TP_STARTED verb on every Initialize_Conversation
(cminit) call. This is necessary to force APPC resource location for each call. The registry key that must be defined to force this
behavior is the following:

\HKLM\CurrentControlSet\Services\SnaBase\Parameters\Client\GETNEWTPID

https://msdn.microsoft.com/en-us/library/aa705478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771265(v=bts.10).aspx

Prepare_To_Receive
The Prepare_To_Receive call (function name cmptr) changes the state of the conversation for the local program from SEND
to RECEIVE.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; one of the following occurred:

The conversation state is not SEND or SEND_PENDING.

For a basic conversation, the conversation is in SEND state. However, the program did not finish sending a logical
record.

These return codes can occur if the conversations prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM or if the
prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversations synchronization level is set to
CM_CONFIRM.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_CONVERSATION_TYPE_MISMATCH

Primary return code; the partner logical unit (LU) or program does not support the conversation type (basic or mapped)
specified in the allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner

CM_ENTRY Prepare_To_Receive(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

program requires one or more PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID

Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY

Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY

Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem
failure. Retry the conversation.

CM_DEALLOCATED_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU did
so because of a remote program abnormal-ending condition. If the conversation for the remote program was in
RECEIVE state when the call was issued, information sent by the local program and not yet received by the remote
program is purged.

The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by
the local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

State Changes

The conversation can be in SEND or SEND_PENDING state.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state

CM_OK RECEIVE

CM_PROGRAM_ERROR_PURGING RECEIVE

CM_SVC_ERROR_PURGING RECEIVE

CM_CONVERSATION_TYPE_MISMATCH RESET

CM_PIP_NOT_SPECIFIED_CORRECTLY RESET

CM_SECURITY_NOT_VALID RESET

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET

CM_TPN_NOT_RECOGNIZED RESET

CM_TP_NOT_AVAILABLE_NO_RETRY RESET

CM_TP_NOT_AVAILABLE_RETRY RESET

CM_DEALLOCATED_ABEND RESET

CM_RESOURCE_FAILURE_NO_RETRY RESET

CM_RESOURCE_FAILURE_RETRY RESET

CM_DEALLOCATED_ABEND_SVC RESET

CM_DEALLOCATED_ABEND_TIMER RESET

All others No change

Before changing the conversation state, this call performs the equivalent of one of the following:

The Flush call, sending the contents of the local LUs send buffer to the partner LU and program, if either of the following
conditions is true:

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx

The conversations prepare-to-receive type is set to CM_PREP_TO_RECEIVE_FLUSH.

The conversations prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversations
synchronization level is set to CM_NONE.

The Confirm call, sending the contents of the local LUs send buffer and a confirmation request to the partner program, if
either of the following conditions is true:

The conversations prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM.

The conversations prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the conversations
synchronization level is set to CM_CONFIRM.

The prepare-to-receive type is set by Set_Prepare_To_Receive_Type; the synchronization level is set by Set_Sync_Level.

The conversation cannot change to SEND or SEND_PENDING for the partner program until the partner program receives one
of the following values through the status_received parameter of the Receive call:

CM_SEND_RECEIVED

CM_CONFIRM_SEND_RECEIVED and replies with the Confirmed or Send_Error call

Remarks

After this call has successfully executed, the local program can receive data.

https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771731(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

Receive
The Receive call (function name cmrcv) receives any data currently available from the partner program. For Microsoft®
Windows Server™ 2003 and Windows® 2000, run a background thread for all CPI-C communications and preserve the
foreground thread for user interface only.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

buffer

Returned parameter. Specifies the address of the buffer to contain the data received by the local program.

The buffer contains data if the following conditions are true:

The data_received parameter is set to a value other than CM_NO_DATA_RECEIVED.

The return_code parameter is set to CM_OK or to CM_DEALLOCATED_NORMAL.

requested_length

Supplied parameter. Indicates the maximum number of bytes of data the local program is to receive. The range is from 0
through 32767.

data_received

Returned parameter. Indicates whether the program received data. Possible values are listed following the Parameters
section.

received_length

Returned parameter. Indicates the number of bytes of data the local program received on this Receive call. If return_code or
data_received indicates that the program received no data, this number is not relevant.

status_received

Returned parameter. Indicates changes in the status of the conversation. The following are possible values. These codes are
not relevant unless return_code is set to CM_OK. Possible values are listed following the Parameters section.

request_to_send_received

Returned parameter. Specifies the request-to-send-received indicator. Values are listed following the Parameters section.

return_code

The code returned from this call. Values are listed following the Parameters section.

Values returned in the data_received parameter

These codes are not relevant unless return_code is set to CM_OK or CM_DEALLOCATED_NORMAL.

CM_DATA_RECEIVED

CM_ENTRY Receive(
unsigned char FAR *conversation_ID,
unsigned char FAR *buffer,
CM_INT32 FAR *requested_length,
CM_INT32 FAR *data_received,
CM_INT32 FAR *received_length,
CM_INT32 FAR *status_received,
CM_INT32 FAR *request_to_send_received,
CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Can be returned for a basic conversation if the conversations fill characteristic is set to CM_FILL_BUFFER, indicating that the
program is receiving data independent of its logical format. The local program received data until requested_length or end of
data was reached.

The end of the data is indicated by either a change to another conversation state, based on the return_code, status_received,
and data_received parameters, or an error condition. If the conversations receive type is set to CM_RECEIVE_IMMEDIATE, the
data received can be less than requested_length if a smaller amount of data has arrived from the partner program.

CM_COMPLETE_DATA_RECEIVED

In a mapped conversation, indicates that the local program has received a complete data record or the last part of a data
record.

In a basic conversation with the fill characteristic set to CM_FILL_LL, this value indicates that the local program has received a
complete logical record or the end of a logical record.

CM_INCOMPLETE_DATA_RECEIVED

In a mapped conversation, indicates that the local program has received an incomplete data record. The requested_length
parameter specified a value less than the length of the data record (or less than the remainder of the data record if this is not
the first Receive to read the record). The amount of data received is equal to the requested_length parameter.

In a basic conversation with the fill characteristic set to CM_FILL_LL, this value indicates that the local program has received
an incomplete logical record. The amount of data received is equal to the requested_length parameter. (If the received data
was truncated, the length of the data will be less than requested_length.)

Upon receiving this value, the local program normally reissues Receive to receive the next part of the record.

CM_NO_DATA_RECEIVED

The program did not receive data.

Note that if the return_code parameter is set to CM_OK, status information may be available through the status_received
parameter.

Values returned in the status_received parameter
CM_NO_STATUS_RECEIVED

No conversation status change was received on this call.

CM_SEND_RECEIVED

Indicates, for the partner program, that the conversation has entered RECEIVE state. For the local program, the conversation
is now in SEND state if no data was received on this call, or SEND_PENDING state if data was received on this call.

Upon receiving this value, the local program normally uses Send_Data to begin sending data.

CM_CONFIRM_DEALLOC_RECEIVED

Indicates that the partner program issued Deallocate with confirmation requested. For the local program, the conversation is
now in CONFIRM_DEALLOCATE state.

Upon receiving this value, the local program normally issues the Confirmed call.

CM_CONFIRM_RECEIVED

Indicates that the partner program issued the Confirm call. For the local program, the conversation is in CONFIRM state.

Upon receiving this value, the local program normally issues the Confirmed call.

CM_CONFIRM_SEND_RECEIVED

Indicates, for the partner program, that the conversation has entered RECEIVE state and a request for confirmation has been
received by the local program. For the local program, the conversation is now in CONFIRM_SEND state.

The program normally responds by issuing the Confirmed call. Upon successful execution of the Confirmed call, the
conversation changes to SEND state for the local program.

Values returned in the request_to_send_received parameter
CM_REQ_TO_SEND_RECEIVED

The partner program issued the Request_To_Send call, which requests the local program to change the conversation to
RECEIVE state.

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program did not issue the Request_To_Send call. This value is not relevant if the return_code parameter is set
to CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

Values returned in the return_code parameter
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Windows® message and not call Wait_For_Conversation.

CM_UNSUCCESSFUL

Primary return code; the receive type is set to CM_RECEIVE_IMMEDIATE and no data is immediately available from the
partner program.

CM_DEALLOCATED_NORMAL

Primary return code; the conversation has been deallocated normally. The partner program issued Deallocate with the
conversations deallocate type set to CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_SYNC_LEVEL with the synchronization
level of the conversation specified as CM_NONE.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by requested_length is out of range (greater than 32767).

If the program receives this return code, the other returned parameters are not valid.

CM_PROGRAM_STATE_CHECK

Primary return code; one of the following occurred:

The receive type is set to CM_RECEIVE_AND_WAIT and the conversation state is not RECEIVE, SEND, or
SEND_PENDING.

The receive type is set to CM_RECEIVE_IMMEDIATE and the conversation state is not RECEIVE.

In a basic conversation, the conversation is in SEND state, the receive type is set to CM_RECEIVE_AND_WAIT, and the
program did not finish sending a logical record.

If the program receives this return code, the other returned parameters are not valid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_CONVERSATION_TYPE_MISMATCH

Primary return code; the partner logical unit (LU) or program does not support the conversation type (basic or mapped)
specified in the allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner
program requires one or more PIP data variables, which are not supported by CPI-C.

https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

CM_SECURITY_NOT_VALID

Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_NO_TRUNC

Primary return code; while in SEND state or in SEND_PENDING state with the error direction set to CM_SEND_ERROR, the
partner program issued Send_Error. Data was not truncated.

CM_PROGRAM_ERROR_PURGING

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY

Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY

Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem
failure. Retry the conversation.

CM_DEALLOCATED_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameterset to CM_DEALLOCATE_ABEND, or the remote LU did
so because of a remote program abnormal-ending condition. If the conversation for the remote program was in
RECEIVE state when the call was issued, information sent by the local program and not yet received by the remote
program is purged.

The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC

Primary return code; the conversation has been deallocated for one of the following reasons:

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by
the local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

CM_SVC_ERROR_NO_TRUNC

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

CM_PROGRAM_ERROR_TRUNC

Primary return code; in SEND state, before finishing sending a complete logical record, the partner program issued
Send_Error. The local program may have received the first part of the logical record through a Receive call.

CM_SVC_ERROR_TRUNC

Primary return code; while in RECEIVE or CONFIRM state, the partner program or partner LU issued Send_Error with the
type parameter set to SVC before it finished sending a complete logical record. The local program may have received the first
part of the logical record.

State Changes

The conversation can be in RECEIVE, SEND, or SEND_PENDING state.

If receive_type is set to CM_RECEIVE_IMMEDIATE, the conversation must be in RECEIVE state.

Issuing Receive while the conversation is in SEND or SEND_PENDING state causes the local LU to send the information in its
send buffer and a send indicator to the partner program. Based on data_received and status_received the conversation can
change to RECEIVE state for the local program.

The new conversation state is determined by:

The state the conversation is in when the program issues the call.

The return_code parameter.

The data_received and status_received parameters.

If no data is currently available and the receive type (set by Set_Receive_Type) is set to CM_RECEIVE_AND_WAIT, the local
program waits for data to arrive. If the receive type is set to CM_RECEIVE_IMMEDIATE, the local program does not wait.

The process for receiving data is as follows:

The local program issues a Receive call until it finishes receiving a complete unit of data. The local program may need to
issue Receive several times to receive a complete unit of data. The data_received parameter indicates whether the receipt
of data is finished.

The data received can be:

One data record transmitted in a mapped conversation.

One logical record transmitted in a basic conversation with the conversations fill characteristic set to CM_FILL_LL.

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770698(v=bts.10).aspx

A buffer of data received independent of its logical-record format in a basic conversation with the fill
characteristic set to CM_FILL_BUFFER.

When a complete unit of data has been received, the local program can manipulate it.

The local program determines the next action to take based on the control information received through status_received.
The local program may have to reissue Receive to receive the control information.

The conversation type is set by Set_Conversation_Type. The fill characteristic is set by Set_Fill.

The following table summarizes the state changes that can occur when Receive is issued with the conversation in RECEIVE
state and return_code is CM_OK.

data_received status_received New state

CM_DATA_RECEIVED CM_NO_STATUS_RECEIVED No change

CM_COMPLETE_DATA_ RECEIVED CM_NO_STATUS_RECEIVED No change

CM_INCOMPLETE_DATA_ RECEIVED CM_SEND_RECEIVED SEND_PENDING

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED SEND

If return_code is set to CM_UNSUCCESSFUL, meaning that the receive_type is set to CM_RECEIVE_IMMEDIATE and no data is
available, there is no state change.

The following table summarizes the state changes that can occur when Receive is issued with the conversation in SEND state
and return_code is CM_OK.

data_received status_received New state

CM_DATA_RECEIVED CM_NO_STATUS_RECEIVED RECEIVE

CM_COMPLETE_DATA_ RECEIVED CM_NO_STATUS_RECEIVED RECEIVE

CM_INCOMPLETE_DATA_ RECEIVED CM_SEND_RECEIVED SEND_PENDING

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED No change

The following table summarizes the state changes that can occur when Receive is issued with the conversation in
SEND_PENDING state and return_code is CM_OK.

data_received status_received New state

CM_DATA_RECEIVED CM_NO_STATUS_RECEIVED RECEIVE

CM_COMPLETE_DATA_ RECEIVED CM_NO_STATUS_RECEIVED RECEIVE

CM_INCOMPLETE_DATA_ RECEIVED CM_SEND_RECEIVED No change

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED SEND

The following topics summarize state changes that can occur when Receive is issued in any allowed state.

In This Section

Confirmation

Normal Deallocation

https://msdn.microsoft.com/en-us/library/aa770335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772113(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704992(v=bts.10).aspx

ABEND

Errors

https://msdn.microsoft.com/en-us/library/aa745371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744754(v=bts.10).aspx

Confirmation
The following table summarizes state changes that occur under the following conditions:

The return_code parameter is CM_OK.

The data_received parameter is set to CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED, or
CM_NO_DATA_RECEIVED.

The status_received parameter indicates a change to a CONFIRM state.

status_received New state

CM_CONFIRM_DEALLOC_RECEIVED CONFIRM_DEALLOCATE

CM_CONFIRM_SEND_RECEIVED CONFIRM_SEND

CM_CONFIRM_RECEIVED CONFIRM

Normal Deallocation
If return_code is set to CM_DEALLOCATED_NORMAL, the conversation changes to RESET state.

ABEND
The following ABEND conditions, indicated by return_code, cause the conversation to change to RESET state:

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_SVC_ERROR_TRUNC

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

Errors
The following table summarizes state changes that occur when a data transmission error is encountered.

return_code Old state New state

CM_PROGRAM_ERROR_PURGING RECEIVE No change

CM_PROGRAM_ERROR_NO_TRUNC RECEIVE No change

CM_SVC_ERROR_PURGING SEND RECEIVE

CM_SVC_ERROR_NO_TRUNC SEND_PENDING RECEIVE

If the partner program truncates a logical record, the local program receives notification of the truncation through return_code
on the next Receive call.

If a program issues Receive with requested_length set to zero, the call is executed as usual. However, data_received and
status_received are not set on the same Receive call. (One exception to this situation is the null record sent over a mapped
conversation, described in the next paragraph.)

In a mapped conversation in which data is available from the partner program, data_received is set to
CM_INCOMPLETE_DATA_RECEIVED. If a null record is available (send_length in the Send_Data call issued by the partner
program is set to zero), data_received is set to CM_COMPLETE_RECORD_RECEIVED with received_length set to zero.

In a basic conversation in which data is available and the fill characteristic is set to CM_FILL_LL, data_received is set to
CM_INCOMPLETE_DATA_RECEIVED. If the fill characteristic is set to CM_FILL_BUFFER, data_received is set to
CM_DATA_RECEIVED.

The logical unit (LU) does not automatically perform any conversion between EBCDIC and ASCII on the received string of data
before putting it in buffer. If necessary, the program can use the Common Service Verb (CSV) CONVERT to translate a string
from one character set to the other.

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx

Request_To_Send
The Request_To_Send call (function name cmrts) notifies the partner program that the local program wants to send data.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in the RECEIVE, SEND, SEND_PENDING, CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE state.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any of the following states: RECEIVE, SEND, SEND_PENDING, CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE.

There is no state change.

In response to this request, the partner program can change the conversation to RECEIVE state by issuing one of the following
calls:

Receive with receive type set to CM_RECEIVE_AND_WAIT

Prepare_To_Receive

Send_Data with send type set to CM_SEND_AND_PREP_TO_RECEIVE

The partner program can also ignore the request to send.

CM_ENTRY Request_To_Send(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx

The conversation state changes to SEND for the local program when the local program receives one of the following values
through the status_received parameter of a subsequent Receive call:

CM_SEND_RECEIVED

CM_CONFIRM_SEND_RECEIVED and the local program replies with a Confirmed call

Remarks

The request-to-send notification is received by the partner program through the request_to_send_received parameter of the
following calls:

Confirmed

Receive

Send_Data

Send_Error

Test_Request_To_Send_Received

Request-to-send notification is sent to the partner program immediately. CPI-C does not wait until the send buffer fills up or is
flushed. Consequently, the request-to-send notification can arrive out of sequence. For example, if the local program is in SEND
state and issues the Prepare_To_Receive call followed by the Request_To_Send call, the partner program, in RECEIVE state,
can receive the request-to-send notification before it receives the send notification. For this reason, request_to_send can be
reported to a program through the Receive call.

Upon receiving a request-to-send notification, the partner logical unit (LU) retains the notification until the partner issues a call
that returns request_to_send_received. The LU keeps only one request-to-send notification per conversation. Thus the local
program can issue more Request_To_Send calls than are explicitly handled by the partner transaction program (TP).

https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770979(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

Send_Data
The Send_Data call (function name cmsend) puts data in the send buffer of the local logical unit (LU) for transmission to the
partner program.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

buffer

Supplied parameter. Specifies the address of the buffer containing the data to be put in the local LUs send buffer.

send_length

Supplied parameter. Specifies the number of bytes of data to be put in the local LUs send buffer. The range is from 0 through
32767.

For a mapped conversation, if send_length is set to zero, a null data record is sent to the partner program.

For a basic conversation, if send_length is set to zero, no data is sent. The buffer parameter is not relevant. However, the
other parameters are processed.

request_to_send_received

Returned parameter. It is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program issued the Request_To_Send call, which requests the local program to change the conversation to
RECEIVE state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program did not issue the Request_To_Send call. This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PROGRAM_PARAMETER_CHECK

CM_ENTRY Send_Data(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *buffer,
 CM_INT32 FAR *send_length,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by send_length is out of range (greater than 32767).

This is a basic conversation and the first two bytes of buffer contain an invalid logical record length (0x0000, 0x0001,
0x8000, or 0x8001).

CM_PROGRAM_STATE_CHECK

Primary return code; one of the following occurred:

The conversation state is not SEND or SEND_PENDING.

The basic conversation is in SEND state and send_type is set to CM_SEND_AND_CONFIRM,
CM_SEND_AND_DEALLOCATE, or CM_SEND_AND_PREP_TO_RECEIVE. However, the data does not end on a logical
record boundary. This condition is allowed only when deallocate_type is set to CM_DEALLOCATE_ABEND and the
send_type is set to CM_SEND_AND_DEALLOCATE.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_CONVERSATION_TYPE_MISMATCH

Primary return code; the partner LU or program does not support the conversation type (basic or mapped) specified in the
allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner
program requires one or more PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID

Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY

Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem
failure. Retry the conversation.

CM_DEALLOCATED_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND, or the remote LU did
so because of a remote program abnormal-ending condition. If the conversation for the remote program was in
RECEIVE state when the call was issued, information sent by the local program and not yet received by the remote
program is purged.

The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by
the local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

State Changes

The conversation must be in SEND or SEND_PENDING state when the program issues this call.

The following table summarizes state changes that are possible when return_code is set to CM_OK.

send_type Old state New state

CM_BUFFER_DATA SEND No change

CM_BUFFER_DATA SEND_PENDING SEND

CM_SEND_AND_FLUSH SEND No change

CM_SEND_AND_FLUSH SEND_PENDING SEND

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx

CM_SEND_AND_CONFIRM SEND No change

CM_SEND_AND_CONFIRM SEND_PENDING SEND

CM_SEND_AND_PREP_TO_ RECEIVE Not available RECEIVE

CM_SEND_AND_DEALLOCATE Not available RESET

For a return_code value of CM_PROGRAM_ERROR_PURGING or CM_SVC_ERROR_PURGING, the conversation changes to
RECEIVE state. For other non-CM_OK values, the conversation changes to RESET state.

Remarks

The data collected in the local LUs send buffer is transmitted to the partner LU and partner program when one of the following
occurs:

The send buffer fills up.

The local program issues a Flush, Confirm, or Deallocate call or other call that flushes the LUs send buffer. (Some send
types, set by Set_Send_Type, include flush functionality.)

The data to be sent can be either:

A complete data record on a mapped conversation. A complete data record is a string of the length specified by the
send_length parameter.

A complete logical record or portion thereof on a basic conversation. A complete logical record is determined by the LL
value. (One logical record can end and a new one begin in the middle of the string of data to be sent.)

The LU does not automatically perform any conversion between ASCII and EBCDIC on the string of data to be sent. If necessary,
the program can use the Common Service Verb (CSV) CONVERT to translate a string from one character set to the other.

https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771834(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771509(v=bts.10).aspx

Send_Error
The Send_Error call (function name cmserr) notifies the partner program that the local program has encountered an
application-level error.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

request_to_send_received

Returned parameter. Specifies the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program issued Request_To_Send, which requests the local program to change the conversation to RECEIVE
state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program did not issue Request_To_Send. This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_STATE_CHECK.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes

The value of return_code varies depending on the conversation state when the call is issued.

SEND State

If the program issues the call with the conversation in SEND state, the following return codes are possible:

CM_OK

Primary return code; the call executed successfully.

CM_OPERATION_NOT_ACCEPTED

Primary return code; a previous operation on this conversation is incomplete.

CM_OPERATION_INCOMPLETE

Primary return code; the operation has not completed (processing mode is nonblocking only) and is still in progress. The
program can issue Wait_For_Conversation to await the completion of the operation, or Cancel_Conversation to cancel the
operation and conversation. If Specify_Windows_Handle has been called, the application should wait for notification by a
Microsoft® Windows® message and not call Wait_For_Conversation.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_CONVERSATION_TYPE_MISMATCH

Primary return code; the partner logical unit (LU) or program does not support the conversation type (basic or mapped)
specified in the allocation request.

CM_PIP_NOT_SPECIFIED_CORRECTLY

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner

CM_ENTRY Send_Error(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

Primary return code; the allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner
program requires one or more PIP data variables, which are not supported by CPI-C.

CM_SECURITY_NOT_VALID

Primary return code; the user identifier or password specified in the allocation request was not accepted by the partner LU.

CM_SYNC LEVEL_NOT_SUPPORTED_PGM

Primary return code; the partner program does not support the synchronization level specified in the allocation request.

CM_TPN_NOT_RECOGNIZED

Primary return code; the partner LU does not recognize the program name specified in the allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a permanent
condition. The reason for the error may be logged on the remote node. Do not retry the allocation until the error has been
corrected.

CM_TP_NOT_AVAILABLE_RETRY

Primary return code; the partner LU cannot start the program specified in the allocation request because of a temporary
condition. The reason for the error may be logged on the remote node. Retry the allocation.

CM_PROGRAM_ERROR_PURGING

Primary return code; one of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND_PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

CM_RESOURCE_FAILURE_NO_RETRY

Primary return code; one of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

CM_RESOURCE_FAILURE_RETRY

Primary return code; the conversation was terminated prematurely because of a temporary condition, such as modem
failure. Retry the conversation.

CM_DEALLOCATED_ABEND

Primary return code; the conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameterset to CM_DEALLOCATE_ABEND, or the remote LU has
done so because of a remote program abnormal-ending condition. If the conversation for the remote program was in
RECEIVE state when the call was issued, information sent by the local program and not yet received by the remote
program is purged.

The remote TP terminated normally but did not deallocate the conversation before terminating. Node services at the
remote LU deallocated the conversation on behalf of the remote TP.

CM_DEALLOCATED_ABEND_SVC

Primary return code; the conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER

Primary return code; the conversation has been deallocated because the partner program issued Deallocate with the type
parameter set to ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by
the local program, data sent by the local program and not yet received by the partner program is purged.

CM_SVC_ERROR_PURGING

Primary return code; while in SEND state, the partner program or partner LU issued Send_Error with the type parameter set
to SVC. Data sent to the partner program may have been purged.

RECEIVE State

If the call is issued in RECEIVE state, the following return codes are possible:

CM_OK

Primary return code; because incoming information is purged when the Send_Error call is issued in RECEIVE state, CM_OK is
generated instead of the following:

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_SVC_ERROR_NO_TRUNC

CM_SVC_ERROR_PURGING

CM_PROGRAM_ERROR_TRUNC

CM_SVC_ERROR_TRUNC (basic conversation only)

CM_PRODUCT_SPECIFIC_ERROR

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

For an explanation of these return codes, see CPI-C Common Return Codes.

CM_DEALLOCATED_NORMAL

Primary return code; because incoming information is purged when Send_Error is issued in RECEIVE state,
CM_DEALLOCATED_NORMAL is generated instead of the following:

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

https://msdn.microsoft.com/en-us/library/aa771069(v=bts.10).aspx

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

SEND_PENDING State

If the call is issued in SEND_PENDING state, the following return codes are possible:

CM_OK (Primary return code; the call executed successfully.)

CM_PRODUCT_SPECIFIC_ERROR

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_SVC_ERROR_PURGING

For an explanation of these return codes, see CPI-C Common Return Codes.

CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE State

If the call is issued in CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE state, the following return codes are possible:

CM_OK (Primary return code; the call executed successfully.)

CM_PRODUCT_SPECIFIC_ERROR

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

For an explanation of these return codes, see CPI-C Common Return Codes.

Other States

Issuing Send_Error with the conversation in RESET or INITIALIZE state is illegal. The following return codes are possible:

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation state is not SEND, RECEIVE, CONFIRM, CONFIRM_SEND, CONFIRM_DEALLOCATE, or
SEND_PENDING.

State Changes

https://msdn.microsoft.com/en-us/library/aa771069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771069(v=bts.10).aspx

The conversation can be in any state except INITIALIZE or RESET.

State changes, summarized in the following table, are based on the value of the return_code parameter.

return_code New state

CM_OK SEND

CM_CONVERSATION_TYPE_MISMATCH RESET

CM_PIP_NOT_SPECIFIED_CORRECTLY RESET

CM_SECURITY_NOT_VALID RESET

CM_SYNC_LEVEL_NOT_SUPPORTED_PGM RESET

CM_TPN_NOT_RECOGNIZED RESET

CM_TP_NOT_AVAILABLE_NO_RETRY RESET

CM_TP_NOT_AVAILABLE_RETRY RESET

CM_RESOURCE_FAILURE_RETRY RESET

CM_RESOURCE_FAILURE_NO_RETRY RESET

CM_DEALLOCATED_ABEND RESET

CM_DEALLOCATED_ABEND_PROG RESET

CM_DEALLOCATED_ABEND_SVC RESET

CM_DEALLOCATED_ABEND_TIMER RESET

CM_DEALLOCATED_NORMAL RESET

CM_PROGRAM_ERROR_PURGING RECEIVE

CM_SVC_ERROR_PURGING RECEIVE

All others No change

Upon successful execution of this call, the conversation is in SEND state for the local program and in RECEIVE state for the
partner program.

In a basic conversation, the local program can use Set_Log_Data to specify that error log data be sent to the partner LU and
added to the local error log. If the conversations log data length characteristic is greater than zero, the LU formats the data and
stores it in the send buffer.

After Send_Error is completed, the log data length is set to zero and the log data to null.

If the conversation is in RECEIVE state when the program issues Send_Error, incoming data is purged by CPI-C. This data
includes:

Data sent by Send_Data.

Confirmation requests.

Deallocation requests if the conversations deallocate type is set to CM_DEALLOCATE_CONFIRM or to

https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx

CM_DEALLOCATE_SYNC_LEVEL with the synchronization level set to CM_CONFIRM.

CPI-C does notpurge an incoming request-to-send indicator.

If the conversation is in SEND_PENDING state, the local program can issue Set_Error_Direction to specify whether the error
being reported resulted from the received data or from the processing of the local program after successfully receiving the
data.

Remarks

The local program can use Send_Error for such purposes as informing the partner program of an error encountered in
received data, rejecting a confirmation request, or truncating an incomplete logical record it is sending.

Send_Error flushes the local LUs send buffer and sends the partner program the contents of the send buffer followed by the
error notification.

The error notification is sent to the partner as one of the following return_code values:

CM_PROGRAM_ERROR_TRUNC

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

https://msdn.microsoft.com/en-us/library/aa745736(v=bts.10).aspx

Set_Conversation_Security_Password
The Set_Conversation_Security_Password call (function name cmscsp) is issued by the invoking program to specify the
password required to gain access to the invoked program.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

security_password

Supplied parameter. Specifies the password required to gain access to the partner program. This parameter is a character
string of up to eight ASCII characters and is case-sensitive. It must match the password for the user identifier configured for
the partner program.

The allowed characters are:

Uppercase and lowercase letters.

Numerals from 0 through 9.

Special characters, except the space.

If the CPI-C automatic logon feature is to be used, this parameter must be set to the MS$SAME string. For details, see the
Remarks section later in this topic.

security_password_length

Supplied parameter. Specifies the length of security_password. The range is from 0 through 8.

If the CPI-C automatic logon feature is to be used, this parameter must be set to 7. For details, see the Remarks section later
in this topic.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by security_password_length is out of range.

CM_PROGRAM_STATE_CHECK

Primary return code; one of the following occurred:

CM_ENTRY Set_Conversation_Security_Password(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *security_password,
 CM_INT32 FAR *security_password_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx

The conversation is not in INITIALIZE state.

The conversations security type is not set to CM_SECURITY_PROGRAM.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call has an effect on the conversation only if the conversation security type is CM_SECURITY_PROGRAM or
CM_SECURITY_SAME. It overrides the initial password from the side information specified by Initialize_Conversation. This call
cannot be issued after Allocate has been issued.

An invalid password is not detected until the allocation request, generated by Allocate, is sent to the partner logical unit (LU).
The error is returned to the invoking program on a subsequent call.

Automatic logon for CPI-C applications is supported by Host Integration Server 2009. This feature requires specific
configuration by the network administrator: The CPI-C application must be invoked on the LAN side from a client of SNA
Server. The client must be logged into a Microsoft Windows Server 2003 or Windows 2000 domain, but can be any platform
that supports Host Integration Server CPI-C APIs.

The client application is coded to use program level security, with a special hard-coded CPI-C user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA Server, the SNA Server looks up the host account
and password corresponding to the Windows Server 2003 or Windows 2000 account under which the client is logged in, and
substitutes the host account information into the APPC attach message it sends to the host.

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_Conversation_Security_Type
The Set_Conversation_Security_Type call (function name cmscst) is issued by the invoking program to specify the
information the partner logical unit (LU) requires to validate access to the invoked program.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

conversation_security_type

Supplied parameter. Specifies the information the partner LU requires to validate access to the invoked program. Based on
the conversation security established for the invoked program during configuration, use one of the following values:

CM_SECURITY_NONE

To indicate that the invoked program uses no conversation security.

CM_SECURITY_PROGRAM

To indicate that the invoked program uses conversation security and thus requires a user identifier and password.

CM_SECURITY_SAME

To indicate that the user ID is sent on the allocate request to node services in the partner LU. This setting is also used to
specify that the invoked program, invoked with a valid user identifier and password, in turn invokes another program (as
illustrated in Communication Between TPs). For example, assume that program A invokes program B with a valid user
identifier and password, and program B in turn invokes program C. If program B specifies the value CM_SECURITY_SAME,
CPI-C will send the LU for program C, the user identifier from program A, and an already-verified indicator. This indicator
tells program C not to require the password (if program C is configured to accept an already-verified indicator).

When CM_SECURITY_SAME is used, your application must always call Set_Conversation_Security_User_ID and
Set_Conversation_Security_Password to provide values for the security_user_ID and security_password parameters.
Depending on the properties negotiated between SNA Server and the peer LU, the Allocate function will send one of 3 kinds
of Attach (FMH-5) messages, in this order of precedence:

1. If the LUs have negotiated already verified security, the Attach sent by SNA Server will not include the contents of the
security_password parameter field specified by Set_Conversation_Security_Password.

2. If the LUs have negotiated persistent verification security, the Attach sent by SNA Server will include the
security_password parameter specified by Set_Conversation_Security_Password, but only when the Attach is the first
for the specified security_user_ID parameter set by Set_Conversation_Security_User_ID since the start of the LU-LU
session, and will omit the security_password parameter on all subsequent Attaches (issued by your application or any
other application using this LU-LU-mode triplet).

3. Your application cannot tell which mode of security has been negotiated between the LUs, nor can it tell whether the
Allocate function it is issuing is the first for that LU-LU-mode triplet. So your application must always call
Set_Conversation_Security_User_ID and Set_Conversation_Security_Password to set the security_user_ID and
security_password parameters when conversation_security_type is set to CM_SECURITY_SAME.

For more information on persistent verification and already verified security, see the SNA Formats Guide, section "FM
Header 5: Attach (LU 6.2)."

CM_ENTRY Set_Conversation_Security_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_security_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754413(v=bts.10).aspx

If the CPI-C automatic logon feature is to be used, this parameter must be set to CM_SECURITY_PROGRAM. For details, see
the Remarks section later in this topic.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID or conversation_security_type is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call overrides the initial security type from the side information specified by Initialize_Conversation. This call cannot be
issued after Allocate has been issued.

If the conversation security type is set to CM_SECURITY_NONE, the user identifier and password are ignored when the
conversation is allocated.

A conversation security type of CM_SECURITY_SAME is intended for use between nodes which have the same set of user IDs
and which accept user validation performed on one node as validating the user for all nodes. A password is not used in this
case except for the initial validation of the user ID.

Automatic logon for CPI-C applications is supported by Host Integration Server 2009. This feature requires specific
configuration by the network administrator. The CPI-C application must be invoked on the LAN side from a client of SNA
Server. The client must be logged into a Microsoft Windows Server 2003 or Windows 2000 domain, but can be any platform
that supports SNA Server CPI-C APIs.

The client application is coded to use program level security, with a special hard-coded CPI-C user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA Server, the SNA Server looks up the host account
and password corresponding to the Windows Server 2003 or Windows 2000 account under which the client is logged on, and
substitutes the host account information into the APPC attach message it sends to the host.

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_Conversation_Security_User_ID
The Set_Conversation_Security_User_ID call (function name cmscsu) is issued by the invoking program to specify the user
identifier required to gain access to the invoked program.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

security_user_ID

Supplied parameter. Specifies the user identifier required to gain access to the partner program. This parameter is a
character string of up to eight ASCII characters and is case-sensitive.

The allowed characters are:

Uppercase and lowercase letters.

Numerals from 0 through 9.

Special characters, except the space.

If the CPI-C automatic logon feature is to be used, this parameter must be set to the MS$SAME string. For details, see the
Remarks section later in this topic.

security_user_ID_length

Supplied parameter. Specifies the length of security_user_ID. The range is from 0 through 8.

If the CPI-C automatic logon feature is to be used, this parameter must be set to 7. For details, see the Remarks section later
in this topic.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by security_user_ID_length is out of range.

CM_PROGRAM_STATE_CHECK

Primary return code; one of the following occurred:

The conversation is not in INITIALIZE state.

CM_ENTRY Set_Conversation_Security_User_ID(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *security_user_ID,
 CM_INT32 FAR *security_user_ID_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx

The conversations security type is not set to CM_SECURITY_PROGRAM.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call has an effect on the conversation only if the conversation security type is CM_SECURITY_PROGRAM or
CM_SECURITY_SAME. It overrides the initial user identifier from the side information specified by Initialize_Conversation. This
call cannot be issued after Allocate has been issued.

An invalid user identifier is not detected until the allocation request, generated by Allocate, is sent to the partner logical unit
(LU). The error is returned to the invoking program on a subsequent call.

Automatic logon for CPI-C applications is supported by Host Integration Server 2009. This feature requires specific
configuration by the network administrator. The CPI-C application must be invoked on the LAN side from a client of SNA
Server. The client must be logged into a Microsoft Windows Server 2003 or Windows 2000 domain, but can be any platform
that supports SNA Server CPI-C APIs.

The client application is coded to use program level security, with a special hard-coded CPI-C user name MS$SAME and
password MS$SAME. When this session allocation flows from client to SNA Server, the SNA Server looks up the host account
and password corresponding to the Windows Server 2003 or Windows 2000 account under which the client is logged on, and
substitutes the host account information into the APPC attach message it sends to the host.

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_Conversation_Type
The Set_Conversation_Type call (function name cmsct) is issued by the invoking program to define a conversation as being
mapped or basic. This call overrides the default conversation type established by Initialize_Conversation. The default
conversation type is CM_MAPPED_CONVERSATION. This call cannot be issued after Allocate has been issued.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

conversation_type

Supplied parameter. Specifies the type of conversation to be allocated by Allocate. Possible values are:

CM_BASIC_CONVERSATION

CM_MAPPED_CONVERSATION

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID or conversation_type is invalid.

The conversation_type parameter specifies a mapped conversation, but the fill characteristic is set to CM_FILL_BUFFER,
which is incompatible with mapped conversations. Before changing the conversation type to mapped, you must issue
the Set_Fill call to change the fill type to CM_FILL_LL.

The conversation_type parameter specifies a mapped conversation. However, a previous Set_Log_Data call, allowed
only in basic conversations, is still in effect.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

CM_ENTRY Set_Conversation_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745039(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771742(v=bts.10).aspx

Set_CPIC_Side_Information
The Set_CPIC_Side_Information call (function name xcmssi) adds or replaces a side information entry in memory. A CPI-C
side information entry associates a set of conversation characteristics with a symbolic definition name. This call overrides
entries having the same symbolic destination name.

Syntax

Parameters
key_lock

Supplied parameter. This parameter is ignored.

side_info_entry

Supplied parameter. Specifies the contents of a side information entry. The following table describes the side_info_entry
structure, which defines the format of the side information entry.

Offset Description Type Length

0 sym_dest_name unsigned char 8 bytes

8 partner_LU_name unsigned char 17 bytes

25 reserved unsigned char 3 bytes

28 TP_name_type signed long int 32 bits

32 TP_name unsigned char 64 bytes

96 mode_name unsigned char 8 bytes

104 conversation_ security_type signed long int 32 bits

108 security_user_ID unsigned char 8 bytes

116 security_password unsigned char 8 bytes

The allowed characters for sym_dest_name are the uppercase letters (A through Z) and the numerals from 0 through 9.

Set_CPIC_Side_Information is the only CPI-C call that lets you specify an SNA service transaction program (TP) as the
partner program. The SNA convention for naming a service TP is up to four characters. The first character is a hexadecimal
byte between 0x00 and 0x3F. The remaining characters are translated from ASCII to EBCDIC.

For the allowed characters for the other fields, see the description of the corresponding Set_ call. For example, for the
mode_name field, see the description of the Set_Mode_Name call.

Each field in the structure must be left-aligned. Pad fields on the right with spaces as necessary.

side_info_entry_length

Supplied parameter. Specifies the length of side_info_entry. It is always 124.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

CM_ENTRY Set_CPIC_Side_Information(
 unsigned char FAR *key_lock,
 SIDE_INFO FAR *side_info_entry,
 CM_INT32 FAR *side_info_entry_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa753939(v=bts.10).aspx

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

A value specified in the side_info_entry structure is invalid.

The left character of the side_info_entry contains a space.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state.

There is no state change.

Remarks

Invalid string parameters in the side information (for example, specifying a nonexistent partner logical unit (LU)) are not
detected until Allocate is issued. The error is returned on a call following Allocate.

https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_Deallocate_Type
The Set_Deallocate_Type call (function name cmsdt) specifies how the conversation is to be deallocated.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

deallocate_type

Supplied parameter. Specifies how to perform the deallocation. Possible values are:

CM_DEALLOCATE_ABEND

Indicates that the conversation is to be deallocated abnormally and unconditionally. A program should specify
CM_DEALLOCATE_ABEND when it encounters an error preventing the successful completion of a transaction.

If the conversation is in SEND state, CPI-C sends the contents of the send buffer of the local logical unit (LU) to the partner
program before deallocating the conversation. If the conversation is in RECEIVE state, incoming data can be purged. For a
basic conversation in SEND state, logical record truncation can occur.

CM_DEALLOCATE_CONFIRM

Used to send the partner program the contents of the local LUs send buffer and a request to confirm the deallocation.

This request for deallocation confirmation is sent by Deallocate or by Send_Data with the send type set to
CM_SEND_AND_DEALLOCATE. The conversation is deallocated normally when the partner program issues Confirmed,
responding to the confirmation request.

CM_DEALLOCATE_FLUSH

Used to send the contents of the local LUs send buffer to the partner program before deallocating the conversation normally.

CM_DEALLOCATE_SYNC_LEVEL

Uses the conversations synchronization level to determine how to deallocate the conversation. A default synchronization
level is established by Initialize_Conversation and can be overridden by Set_Sync_Level.

If the synchronization level of the conversation is CM_NONE, the default, the contents of the local LUs send buffer are sent to
the partner program and the conversation is deallocated normally.

If the synchronization level of the conversation is CM_CONFIRM, the contents of the local LUs send buffer and a request to
confirm the deallocation are sent to the partner program. This request for deallocation confirmation is sent by Deallocate or
by Send_Data with the send type set to CM_SEND_AND_DEALLOCATE. The conversation is deallocated normally when the
partner program issues the Confirmed call, responding to the confirmation request.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

CM_ENTRY Set_Deallocate_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *deallocate_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx

The value specified by conversation_ID or deallocate_type is invalid.

The deallocate_type parameter specifies CM_DEALLOCATE_CONFIRM, but the conversations synchronization level is
set to CM_NONE.

The address of a variable is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

This call overrides the default deallocate type established by Initialize_Conversation or Accept_Conversation. The default
deallocate type is CM_DEALLOCATE_SYNC_LEVEL.

The deallocation instructions specified by this call take effect when Deallocate is issued or when the send type is set to
CM_SEND_AND_DEALLOCATE and Send_Data is issued.

You can set deallocate_type to CM_FLUSH if the synchronization level of the conversation is set to CM_NONE or
CM_CONFIRM.

The value CM_DEALLOCATE_FLUSH is functionally the same as CM_DEALLOCATE_SYNC_LEVEL with the conversations
synchronization level set to CM_NONE.

The value CM_DEALLOCATE_CONFIRM is functionally the same as CM_DEALLOCATE_SYNC_LEVEL with the conversations
synchronization level set to CM_CONFIRM.

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx

Set_Error_Direction
The Set_Error_Direction call (function name cmsed) specifies whether a program detected an error while receiving data or
while preparing to send data.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

error_direction

Supplied parameter. Specifies the direction in which data was flowing when the program encountered an error. Possible
values are:

CM_RECEIVE_ERROR

An error occurred in the data received from the partner program.

CM_SEND_ERROR

An error occurred while the local program prepared to send data to the partner program.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID or error_direction is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

This call overrides the default error direction established by Initialize_Conversation or Accept_Conversation. The default error
direction is CM_RECEIVE_ERROR.

Error direction is relevant only when a program issues Send_Error in SEND_PENDING state, immediately after issuing
Receiveand receiving data (data_received is a value other than CM_NO_DATA_RECEIVED) and a send indicator (status_received
is CM_SEND_RECEIVED).

When the conversation is in SEND_PENDING state, the program issues Send_Error if it detects errors in the received data or if
an error occurred while the local program prepared to send data. The program must supply the error direction information

CM_ENTRY Set_Error_Direction(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *error_direction,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

using Set_Error_Direction before issuing Send_Error because the logical unit (LU) cannot tell which kind of error occurred
(receive or send). The new error direction remains in effect until a subsequent Set_Error_Direction changes it.

When Send_Error is issued, the partner program receives one of the following return codes:

CM_PROGRAM_ERROR_PURGING if error_direction is set to CM_RECEIVE_ERROR

CM_PROGRAM_ERROR_NO_TRUNC if error_direction is set to CM_SEND_ERROR

Set_Fill
The Set_Fill call (function name cmsf) specifies whether programs will receive data in the form of logical records or as a
specified length of data. This call is allowed only in basic conversations.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

fill

Supplied parameter. Specifies the form in which programs will receive data. The following are possible choices:

CM_FILL_BUFFER

The local program receives data until the number of bytes specified by the requested_length parameter of the Receive call is
reached or until the end of the data. Data is received without regard for the logical-record format.

CM_FILL_LL

Data is received in logical-record format. The data received can be a complete logical record, a portion of a logical record
equal to the requested_length parameter of the Receive call, or the end of a logical record.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID or fill is invalid.

The current conversation is mapped.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

Set_Fill overrides the default fill established by Initialize_Conversation or Accept_Conversation. The default fill is CM_FILL_LL.

The fill value affects all subsequent Receive calls. It can be changed by reissuing the Set_Fill call.

CM_ENTRY Set_Fill(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *fill,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

Set_Log_Data
The Set_Log_Data call (function name cmsld) specifies a log message (log data) and its length to be sent to the partner logical
unit (LU). This call is allowed only in basic conversations. It overrides the default log data, which is null, and the default log data
length, which is zero.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

log_data

Supplied parameter. Specifies the starting address of the data to be sent to the partner LU. It can contain up to 512 ASCII
characters. The allowed characters are:

Uppercase and lowercase letters.

Numerals from 0 through 9.

Special characters.

The space.

log_data_length

Supplied parameter. Specifies the length of the log data. The range is from 0 through 512 bytes.

A length of 0 indicates that there is no log data, and the log_data parameter is ignored.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The conversation type is set to mapped.

The value specified by log_data_length is out of range (greater than 512 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_ENTRY Set_Log_Data(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *log_data,
 CM_INT32 FAR *log_data_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

The log data specified by Set_Log_Data is sent to the partner LU when the local program issues one of the following calls:

Send_Error

Deallocate with the conversations deallocate type set to CM_DEALLOCATE_ABEND

Send_Data with the conversations send type set to CM_SEND_AND_DEALLOCATE and the deallocate type set to
CM_DEALLOCATE_ABEND

After sending the log data to the partner LU, the local LU resets the log data to null and the log data length to zero.

CPI-C automatically converts the log data from ASCII to other encoding standards, such as EBCDIC, as required.

https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx

Set_Mode_Name
The Set_Mode_Name call (function name cmsmn) is issued by the invoking program to specify the mode name for a
conversation. This call overrides the system-defined mode name derived from the side information when the
Initialize_Conversation call was issued. This call cannot be issued after Allocatehas been issued. Issuing this call has no effect on
the side information itself.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

mode_name

Supplied parameter. Specifies the starting address of the mode name (the name of a set of networking characteristics
defined during configuration). The mode name can contain up to eight ASCII characters. The allowed characters are:

Uppercase letters.

Numerals from 0 through 9.

The value of mode_name must match the name of a mode associated with the partner logical unit (LU) during configuration.
The mode name cannot be SNASVCMG or CPSVCMG.

mode_name_length

Supplied parameter. Specifies the length of the mode name. The range is from 0 through 8 bytes.

If mode_name_length is set to zero, Set_Mode_Name is ignored.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by mode_name_length is out of range (greater than 8 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_ENTRY Set_Mode_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *mode_name,
 CM_INT32 FAR *mode_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

Specifying an invalid value for mode_name is not detected until Allocate is issued.

https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_Partner_LU_Name
The Set_Partner_LU_Name call (function name cmspln) is issued by the invoking program to specify the partner logical unit
(LU) name. This call overrides the partner LU name derived from the side information when the Initialize_Conversation call was
issued. This call cannot be issued after Allocate has been issued. Issuing this call has no effect on the side information itself.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

partner_LU_name

Supplied parameter. Specifies the starting address of the partner LU name. The mode name can contain up to 17 ASCII
characters. The allowed characters are:

Uppercase letters.

Numerals from 0 through 9.

The partner LU name can be either:

An alias consisting of one through eight characters.

A fully qualified network name consisting of from 2 through 17 characters. A period separates the network identifier
(which can be from zero through eight characters) from the network LU name (which can be from one through eight
characters). If the network identifier is zero characters long, the period is still required.

The partner LU name must match the name of a partner LU established during configuration.

partner_LU_name_length

Supplied parameter. Specifies the length of the partner LU name. The range is from 1 through 17.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by partner_LU_name_length is out of range (greater than 17 or less than 1).

CM_ENTRY Set_Partner_LU_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *partner_LU_name,
 CM_INT32 FAR *partner_LU_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

Specifying an invalid value for partner_LU_name is not detected until Allocate is issued.

https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_Prepare_To_Receive_Type
The Set_Prepare_To_Receive_Type call (function name cmsptr) specifies how the subsequent Prepare_To_Receive calls will
be executed. It overrides the default prepare-to-receive processing established by Initialize_Conversation or
Accept_Conversation. By default, the prepare-to-receive processing is based on the synchronization level of the conversation.

The prepare-to-receive type affects all subsequent Prepare_To_Receive calls. It can be changed by reissuing
Set_Prepare_To_Receive_Type.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

prepare_to_receive_type

Supplied parameter. Specifies how subsequent Prepare_To_Receive calls will be executed. Possible values are:

CM_PREP_TO_RECEIVE_CONFIRM

Used to send the partner program the contents of the send buffer of the logical unit (LU) and a confirmation request. Upon
receipt of confirmation, the conversation changes to RECEIVE state.

CM_PREP_TO_RECEIVE_FLUSH

Used to send the partner program the contents of the local LUs send buffer and changes the conversation to RECEIVE state.

CM_PREP_TO_RECEIVE_SYNC_LEVEL

Used by the conversations synchronization level to determine prepare-to-receive processing. A default synchronization level
is established by Initialize_Conversation and can be overridden by Set_Sync_Level.

If the synchronization level of the conversation is CM_NONE, the default, the contents of the local LUs send buffer are sent to
the partner program and the conversation changes to RECEIVE state. If the synchronization level of the conversation is
CM_CONFIRM, the contents of the local LUs send buffer and a request for confirmation are sent to the partner program. The
conversation changes to RECEIVE state when the partner program issues Confirmed, responding to the confirmation request.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by prepare_to_receive_type or conversation_ID is invalid.

The prepare_to_receive_type parameter is set to CM_PREP_TO_RECEIVE_CONFIRM, but the conversations
synchronization level is set to CM_NONE.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_ENTRY Set_Prepare_To_Receive_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *prepare_to_receive_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx

State Changes

The conversation can be in any state except RESET.

There is no state change.

Set_Processing_Mode
The Set_Processing_Mode call (function name cmspm) specifies for the conversation whether subsequent calls will be
returned when the operation they have requested is complete (blocking) or immediately after the operation is initiated
(nonblocking).

Note
A program is notified of the completion of nonblocking calls when it issues Wait_For_Conversation or through a Microsoft®
Windows® message sent to a WndProc identified by the hWnd in the Specify_Windows_Handle call.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

receive_type

Supplied parameter. Specifies whether subsequent calls on the conversation will be blocking or nonblocking. Possible values
are:

CM_BLOCKING

Subsequent calls will return only when the operation is complete.

CM_NON_BLOCKING

Subsequent calls will return immediately after the operation has been initiated.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the previous incomplete operation on the conversation has not yet completed.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID or processing_mode is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Set_Processing_Mode(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *receive_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

Set_Receive_Type
The Set_Receive_Type call (function name cmsrt) specifies how the program will receive data on subsequent Receive calls. It
overrides the default receive type established by the Initialize_Conversation or Accept_Conversation call. By default, the
program waits for data to arrive if it is not available when the Receive call is issued.

The receive type value affects all subsequent Receive calls. It can be changed by reissuing Set_Receive_Type.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

receive_type

Supplied parameter. Specifies how data is to be received by the program on the subsequent Receive calls. Possible values
are:

CM_RECEIVE_AND_WAIT

The local program receives any data currently available from the partner program. If no data is available, the local program
waits for data to arrive.

CM_RECEIVE_IMMEDIATE

The local program receives any data currently available from the partner program. If no data is available, the local program
does not wait.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID or receive_type is invalid, or the address of a variable is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation can be in any state except RESET.

There is no state change.

CM_ENTRY Set_Receive_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *receive_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx

Set_Return_Control
The Set_Return_Control call (function name cmsrc) is issued by the invoking program to specify when the local logical unit
(LU), acting on the session request from the local programs Allocate call, should return control to the local program.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

return_control

Supplied parameter. Specifies when the local LU, acting on the Allocate call, should return control to the local program. The
following are allowed values:

CM_IMMEDIATE

The LU allocates a contention-winner session, if one is immediately available, and returns control to the program.

CM_WHEN_SESSION_ALLOCATED

The LU does not return control to the program until it allocates a session or encounters errors. If a session is not available,
the program waits for one. (If the session limit is zero, the LU returns control immediately.)

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID or return_control is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Remarks

This call overrides the default return control established by Initialize_Conversation. By default, control is returned when the
session is allocated. This call cannot be issued after the Allocate call has been issued.

For further information about sessions, see Writing CPI-C Applications.

If the LU is unable to allocate a session, the notification is returned on the Allocate call.

CM_ENTRY Set_Return_Control(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *return_control,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744982(v=bts.10).aspx

Set_Send_Type
The Set_Send_Type call (function name cmsst) specifies how data will be sent by the next Send_Data call. It overrides the
default send type established by Initialize_Conversation or Accept_Conversation. The default send type is CM_BUFFER_DATA,
indicating that data only (and no control information) is to be sent.

The send_type value affects all subsequent Send_Data calls. It can be changed by reissuing Set_Send_Type.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

send_type

Supplied parameter. Specifies how data is sent by the next Send_Data call. Possible values are:

CM_BUFFER_DATA

The data pointed to by Send_Data is stored in a buffer until the buffer fills up or is flushed.

CM_SEND_AND_FLUSH

The data pointed to by Send_Data is to be sent immediately.

CM_SEND_AND_CONFIRM

The data is to be sent immediately with a request for confirmation.

CM_SEND_AND_PREP_TO_RECEIVE

The data is to be sent immediately along with notification to the partner program that the conversation state for the sending
program is changing to RECEIVE.

CM_SEND_AND_DEALLOCATE

The data is to be sent immediately along with deallocation notification.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID or send_type is invalid.

The send_type parameter is set to CM_SEND_AND_CONFIRM, but the conversations synchronization level is set to
CM_NONE.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

CM_ENTRY Set_Send_Type(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *send_type,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx

State Changes

The conversation can be in any state except RESET.

There is no state change.

Remarks

The send_type values that cause additional information to be sent with the data pointed to by Send_Data let you economize on
the number of calls issued. The following table summarizes Send_Data equivalences.

Send_Data with send_type set to this valu
e

Equates to Send_Data with send_type set to CM_BUFFER_DATA followed b
y

CM_SEND_AND_FLUSH Flush

CM_SEND_AND_CONFIRM Confirm

CM_SEND_AND_PREP_TO_RECEIVE Prepare_To_Receive

CM_SEND_AND_DEALLOCATE Deallocate

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754304(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

Set_Sync_Level
The Set_Sync_Level call (function name cmssl) is issued by the invoking program to specify the synchronization level of the
conversation. The synchronization level determines whether the programs synchronize their processing through the Confirm
and Confirmed calls.

This call overrides the synchronization level established by the Initialize_Conversation call. The default synchronization level is
CM_NONE, indicating no synchronization. This call cannot be issued after the Allocate call has been issued.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

sync_level

Supplied parameter. Specifies the synchronization level of the conversation. Possible values are:

CM_NONE

The programs will not perform confirmation processing.

CM_CONFIRM

The programs can perform confirmation processing.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID or sync_level is invalid.

The sync_level parameter specifies CM_NONE but one of the following has occurred: the send_type parameter is set to
CM_SEND_AND_CONFIRM, the prepare_to_receive_type parameter is set to CM_PREP_TO_RECEIVE_CONFIRM, or the
deallocate_type is set to CM_DEALLOCATE_CONFIRM.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

CM_ENTRY Set_Sync_Level(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *sync_level,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx

Set_TP_Name
The Set_TP_Name call (function name cmstpn) is issued by the invoking program to specify the partner (invokable) program
name. This call overrides the partner program name derived from the side information when the Initialize_Conversation call
was issued. This call cannot be issued after the Allocate call has been issued. Issuing this call has no effect on the side
information itself.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation.

TP_name

Supplied parameter. Specifies the starting address of the partner program name. The program name can contain up to 64
ASCII characters. The allowed characters are:

Uppercase and lowercase letters.

Numerals from 0 through 9.

Special characters, except the space.

You cannot use Set_TP_Name to specify the name of an SNA service transaction program (TP). You can, however, use
Set_CPIC_Side_Information to do this.

Double-byte character sets, such as Kanji, are not supported.

TP_name_length

Supplied parameter. Specifies the length of the partner program name. The range is from 1 through 64.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is not in INITIALIZE state.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The value specified by conversation_ID is invalid.

The value specified by TP_name_length is out of range (greater than 64 or less than 1).

The address of a variable is invalid.

CM_ENTRY Set_TP_Name(
 unsigned char FAR *conversation_ID,
 unsigned char FAR *TP_name,
 CM_INT32 FAR *TP_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704730(v=bts.10).aspx

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in INITIALIZE state.

There is no state change.

Specify_Local_TP_Name
The Specify_Local_TP_Name call (function name cmsltp) is issued by the program to indicate that it is able to accept
incoming conversations that are directed to the name given.

Syntax

Parameters
TP_name

Supplied parameter. Specifies the starting address of the local transaction program (TP) name. The program name can
contain up to 64 ASCII characters. The allowed characters are:

Uppercase and lowercase letters.

Numerals from 0 through 9.

Special characters, except the space.

You cannot use Specify_Local_TP_Name to specify the name of an SNA service TP.

Double-byte character sets, such as Kanji, are not supported.

TP_name_length

Supplied parameter. Specifies the length of the local program name. The range is from 1 through 64.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; one of the following occurred:

The TP_name supplied is invalid.

The value specified by TP_name_length is out of range (greater than 64 or less than 1).

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The call is not associated with a particular conversation, and no state restrictions apply.

There is no state change.

Remarks

A program can issue this call more than once to handle incoming conversations with more than one TP name. The program
can discover the actual name on the incoming conversation by calling Extract_TP_Name.

CM_ENTRY Specify_Local_TP_Name(
 unsigned char FAR *TP_name,
 CM_INT32 FAR *TP_name_length,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa771877(v=bts.10).aspx

Specify_Windows_Handle
The Specify_Windows_Handle call (function name xchwnd) sets the Microsoft® Windows® handle to which a message is
sent on completion of an operation in nonblocking mode.

Syntax

Parameters
hwndNotify

Supplied parameter. Specifies the Windows handle to be notified when the outstanding operation completes.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

The Windows handle is invalid.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The state change is dependent on the operation that completed and its return code.

Remarks

An application can set the processing mode by calling Set_Processing_Mode. If the Windows handle is set to NULL, or this call
is never issued, the application must call Wait_For_Conversation to be notified when the outstanding operation completes.

When an asynchronous operation is complete, the applications window hwndNotify receives the message returned by
RegisterWindowMessage with "WinAsyncCPIC" as the input string. The wParam value contains the
conversation_return_code from the operation that is completing. Its values will depend on which operation was originally
issued. The lParam argument contains the CM_PTR to the conversation_ID specified in the original function call.

CM_ENTRY Specify_Windows_Handle(
 HWND hwndNotify,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx

Test_Request_To_Send_Received
The Test_Request_To_Send_Received call (function name cmtrts) determines whether a request-to-send notification has
been received from the partner program.

Syntax

Parameters
conversation_ID

Supplied parameter. Specifies the identifier for the conversation. The value of this parameter was returned by
Initialize_Conversation or Accept_Conversation.

request_to_send_received

Returned parameter. The request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED

The partner program issued Request_To_Send, which requests the local program to change the conversation to RECEIVE
state.

CM_REQ_TO_SEND_NOT_RECEIVED

The partner program did not issue Request_To_Send. This value is not relevant if return_code contains a value other than
CM_OK.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_PROGRAM_PARAMETER_CHECK

Primary return code; the value specified by conversation_ID is invalid, or the address of a variable is invalid.

CM_PROGRAM_STATE_CHECK

Primary return code; the conversation is in a state other than SEND, RECEIVE, or SEND_PENDING.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error occurred and has been logged in the products error log.

State Changes

The conversation must be in SEND, RECEIVE, or SEND_PENDING state.

There is no state change.

CM_ENTRY Test_Request_To_Send_Received(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *request_to_send_received,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745530(v=bts.10).aspx

Wait_For_Conversation
The Wait_For_Conversation call (function name cmwait) waits for an operation to complete that has been initiated when the
processing_mode conversation characteristic was set to CM_NON_BLOCKING and CM_OPERATION_INCOMPLETE was
returned in the return_code parameter.

Syntax

Parameters
conversation_ID

Returned parameter. Specifies the identifier for the conversation on which the operation completed. The value of this
parameter was returned by Initialize_Conversation or Accept_Conversation.

conversation_return_code

Returned parameter. Specifies the return_code from the operation that is completing. Its values will depend on which
operation was originally issued.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

Primary return code; the call executed successfully.

CM_SYSTEM_EVENT

Primary return code; the wait completed not because the operation completed but because some system event occurred.

CM_PROGRAM_STATE_CHECK

Primary return code; the program has no incomplete operation outstanding.

CM_PRODUCT_SPECIFIC_ERROR

Primary return code; a product-specific error has occurred and has been logged in the products error log.

State Changes

The state change is dependent on the operation that completed and its return code.

Remarks

The program must have an incomplete operation outstanding on some conversation.

See Also
Reference
Set_Processing_Mode
Specify_Windows_Handle

CM_ENTRY Wait_For_Conversation(
 unsigned char FAR *conversation_ID,
 CM_INT32 FAR *conversation_return_code,
 CM_INT32 FAR *return_code
);

https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

CPI-C Functions Not Supported
The Microsoft® Windows® CPI-C implementation does not support the following CPI-C 1.2 functions.

CPI-C Function Function Name

Extract_Conversation_Context cmectx

Extract_Maximum_Buffer_Size cmembs

Extract_Secondary_Information cmesi

Extract_Send_Receive_Mode cmesrm

Extract_TP_ID xceti

Initialize_Conversation_For_TP xcinct

Initialize_For_Incoming cminic

Receive_Expedited cmrcvx

Release_Local_TP_Name cmrltp

Send_Expedited cmsndx

Set_Queue_Callback_Function cmsqcf

Set_Queue_Processing_Mode cmsqpm

Set_Send_Receive_Mode cmssrm

Start_TP xcstp

Wait_For_Completion cmwcmp

End_TP xcendt

Extensions for the Windows Environment
This section describes API extensions to Microsoft® Windows® Common Programming Interface for Communications (CPI-C)
that allow nonblocking or asynchronous verb completion. Asynchronous verbs return control to the program immediately,
without waiting for full execution, and must notify the application later when the verb has been completed. An application is
also notified in response to the completion of a Wait_For_Conversation call. In contrast, synchronous verbs block, that is, the
function call does not return until the call has completed.

Under Microsoft® Windows Server™ 2003 and Windows 2000, two methods are available for handling asynchronous verb
completion:

Message posting using window handles.

Waiting on Win32® events.

The first method uses messages posted to a window handle to notify an application of verb completion. There is one such
window for each CPI-C application. Each CPI-C conversation can have one asynchronous verb outstanding at any time. When a
verb completes, the posting to the window takes as parameters the CPI-C conversation identifier of the verb that has
completed, and the return code of the verb.

Note
The extensions using window handles and message posting described in this section were designed for all implementations
and versions of Microsoft Windows. They are now supported only for Windows Server2003 and Windows2000.

A second method using Win32 events for notification is supported on Microsoft® Host Integration Server. The extensions
using Win32 events described in this section (WinCPICSetEvent and WinCPICExtractEvent)operate only on Windows
Server 2003 and Windows 2000 and offer the optimum application performance in the 32-bit operating environment. If an
event has been registered with the conversation, an application can call the Win32 WaitForSingleObject or
WaitForMultipleObjects function to wait to be notified of the completion of the verb.

Windows CPI-C allows multithreaded Windows-based processes. Multithreading is the running of several processes in rapid
sequence within a single program. A process contains one or more threads of execution.

The extension descriptions in this section provide a definition of the function, syntax, return values, and remarks for using these
Windows extensions in CPI-C programs.

In This Section

WinCPICCleanup

WinCPICExtractEvent

WinCPICIsBlocking

WinCPICSetBlockingHook

WinCPICSetEvent

WinCPICStartup

WinCPICUnhookBlockingHook

https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770796(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746181(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744901(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770796(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744344(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745540(v=bts.10).aspx

WinCPICCleanup
The WinCPICCleanup function terminates and deregisters an application from a Microsoft® Windows® Common
Programming Interface for Communications (CPI-C) implementation.

Syntax

Return Value

The return value specifies whether the deregistration was successful. If the value is not zero, the application was successfully
deregistered. The application was not deregistered if a value of zero is returned.

Remarks

Use WinCPICCleanup to indicate deregistration of a Windows CPI-C application from a Windows CPI-C implementation.

 BOOL WINAPI WinCPICCleanup(void);

WinCPICExtractEvent
The WinCPICExtractEvent function provides a method for an application to determine the event handle being used for a
Microsoft® Windows® Common Programming Interface for Communications (CPI-C) conversation.

Syntax

Parameters
conversation_ID

Specifies the identifier for the conversation for which this event is used. This parameter is returned by the initial
Accept_Conversation call.

event_handle

Returned parameter. The handle of the event being used by this conversation. If no handle has been registered, this
parameter returns as a NULL.

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

The function executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One or more of the parameters passed to this function are invalid.

Remarks

When a verb is issued on a nonblocking conversation, it returns CM_OPERATION_INCOMPLETE if it is going to complete
asynchronously. If an event has been registered with the conversation, the application can call WaitForSingleObject or
WaitForMultipleObjects to be notified of the completion of the verb. WinCPICExtractEvent allows a CPI-C applicationto
determine this event handle. When the verb has completed, the application must call Wait_For_Conversationto determine the
return code for the asynchronous verb. The Cancel_Conversationfunction can be called to cancel an operation and
conversation.

If no event has been registered, the asynchronous verb completes as it does at present, which is by posting a message to the
window that the application has registered with the CPI-C library.

 VOID WINAPI WinCPICExtractEvent(
 unsigned char FAR*conversation_ID,HANDLE FAR*event_handle, CM_INT32 FAR*return_code)
;

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx

WinCPICIsBlocking
The WinCPICIsBlocking function determines if a task is executing while waiting for a previous blocking call to finish.

Syntax

Return Value

The return value specifies the outcome of the function. If the value is not zero, there is an outstanding blocking call awaiting
completion. A value of zero indicates the absence of an outstanding blocking call.

Remarks

This call does not infer any information about a particular conversation; it is only intended to provide help to an application
written to use the CM_BLOCKING characteristic of Set_Processing_Mode. WinCPICIsBlocking serves the same purpose as
InSendMessage in the Microsoft® Windows® API. Legacy applications targeted at Windows version 3.x that support multiple
conversations must specify CM_NONBLOCKING in Set_Processing_Mode so they can support multiple outstanding
operations simultaneously. Applications are still limited to one outstanding operation per conversation in all environments.

Although a call issued on a blocking function appears to an application as though it blocks, the Windows CPI-C dynamic-link
library (DLL) has to relinquish the processor to allow other applications to run. This means that it is possible for the application
that issued the blocking call to be re-entered, depending on the messages it receives. In this instance, WinCPICIsBlocking can
be used to determine whether the application task currently has been re-entered while waiting for an outstanding blocking call
to finish. Note that Windows CPI-C prohibits more than one outstanding blocking call per thread.

See Also
Reference
Specify_Windows_Handle
WinCPICSetBlockingHook
WinCPICUnhookBlockingHook

 BOOL WINAPI WinCPICIsBlocking(void);

https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745540(v=bts.10).aspx

WinCPICSetBlockingHook
The WinCPICSetBlockingHook function allows a Microsoft® Windows® Common Programming Interface for
Communications (CPI-C) implementation to block CPI-C function calls by means of a new function. This legacy call was used by
Microsoft® Windows® version 3.x applications to make blocking calls without blocking the rest of the system. By default in
the Microsoft® Windows Server™ 2003 or Windows 2000 system, blocking calls suspend the calling applications thread until
the request is finished.

Parameters
lpBlockFunc

Specifies the procedure instance address of the blocking function to be installed.

Return Values

The return value points to the procedure instance of the previously installed blocking function. The application or library that
calls WinCPICSetBlockingHook should save this return value so that it can be restored if needed. (If nesting is not important,
the application can simply discard the value returned by WinCPICSetBlockingHook and eventually use
WinCPICUnhookBlockingHook to restore the default mechanism.)

Remarks

A Windows CPI-C implementation has a default mechanism by which blocking CPI-C functions are implemented. This function
gives the application the ability to execute its own function at blocking time in place of the default function.

The default blocking function is equivalent to:

The WinCPICSetBlockingHook function is provided to support applications that require more complex message processing,
for example, those employing the multiple document interface (MDI) model or applications with Menu accelerators
(TranslateAccelerator).

Blocking functions must return FALSE in response to a WM_QUIT message so Windows CPI-C can return control to the
application to process the message and terminate gracefully. Otherwise, the function should return TRUE.

See Also
Reference
Set_Processing_Mode
Specify_Windows_Handle

BOOL DefaultBlockingHook (void) {
 MSG msg;
 /* get the next message if any */
 if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {
 if (msg.message = = WM_QUIT)
 return FALSE; // let app process WM_QUIT
 PeekMessage (&msg,0,0,PM_REMOVE) ;
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 /* TRUE if no WM_QUIT received */
 return TRUE;
}

https://msdn.microsoft.com/en-us/library/aa745540(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

WinCPICSetEvent
The WinCPICSetEvent function associates an event handle with a verb completion.

Syntax

Parameters
conversation_ID

Specifies the identifier for the conversation for which this event is used. This parameter is returned by the initial
Accept_Conversation call.

event_handle

The handle of the event that is to be cleared when an asynchronous verb on the conversation completes. This parameter can
replace an already defined event or remove an already defined event (by having NULL as the parameter).

return_code

The code returned from this call. The valid return codes are listed later in this topic.

Return Codes
CM_OK

The function executed successfully.

CM_PROGRAM_PARAMETER_CHECK

One or more of the parameters passed to this function are invalid.

CM_OPERATION_NOT_ACCEPTED

This value indicates that a previous operation on this conversation is incomplete and the WinCPICSetEvent call was not
accepted.

Remarks

When a verb is issued on a nonblocking conversation, it returns CM_OPERATION_INCOMPLETE if it is going to complete
asynchronously. If an event has been registered with the conversation, the application can call WaitForSingleObject or
WaitForMultipleObjects to be notified of the completion of the verb. When the verb has completed, the application must call
Wait_For_Conversationto determine the return code for the asynchronous verb.

It is the responsibility of the application to reset the event, as it is with other APIs.

See Also
Reference
Cancel_Conversation

 VOID WINAPI WinCPICSetEvent(
 unsigned char FAR* conversation_ID,HANDLE FAR* event_handle,
 CM_INT32 FAR*return_code);

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx

WinCPICStartup
The WinCPICStartup function allows an application to specify the version of Microsoft Windows Common Programming
Interface for Communications (CPI-C) required and to retrieve details of the specific Windows CPI-C implementation. This
function must be called by an application to register itself with a Windows CPI-C implementation before issuing any further
Windows CPI-C calls.

Syntax

Parameters
wVersionRequired

Specifies the version of Windows CPI-C support required. The high-order byte specifies the minor version (revision) number.
The low-order byte specifies the major version number.

lpwcpicdata

A pointer to the CPI-C data structure. The CPICDATA structure is defined as follows:

WCPIDESCRIPTION is defined to be 127 and the structure members are as follows:

wVersion

The version of Windows CPI-C supported. The high-order byte specifies the minor version (revision) number. The low-order
byte specifies the major version number.

szDescription

The description string describing the CPI-C version supported.

Return Value

The return value specifies whether the application was registered successfully and whether the Windows CPI-C
implementation can support the specified version number. If the value is zero, it was registered successfully. Otherwise, the
return value is one of the following:

WCPICSYSNOTRERADY

The underlying network system is not ready for network communication.

WCPICVERNOTSUPPORTED

The version of Windows CPI-C support requested is not provided by this particular Windows CPI-C implementation.

WCPICINVALID

The Windows CPI-C version specified by the application is not supported by this dynamic-link library (DLL).

Remarks

To support future Windows CPI-C implementations and applications that may have functionality differences from Windows
CPI-C version 1.0, a negotiation takes place in WinCPICStartup. An application passes to WinCPICStartup the Windows CPI-
C version that it can use. If this version is lower than the lowest version supported by the Windows CPI-C DLL, the DLL cannot
support the application and the WinCPICStartup call fails. If the version is not lower, however, the call succeeds and returns
the highest version of Windows CPI-C supported by the DLL. If this version is lower than the lowest version supported by the
application, the application either fails its initialization or attempts to find another Windows CPI-C DLL on the system.

 INT WINAPI WinCPICStartup(
 WORDwVersionRequired,
 LPWCPICDATAlpwcpicdata);

typedef struct {
....WORD wVersion;
 char szDescription[WCPICDESCRIPTION_LEN+1];
} CPICDATA, FAR * LPWCPICDATA;

This negotiation allows both a Windows CPI-C DLL and a Windows CPI-C application to support a range of Windows CPI-C
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinCPICStartup works in conjunction with different application and DLL versions.

Application versions DLL versions To WinCPICStartup From WinCPICStartup Result

1.0 1.0 1.0 1.0 Use 1.0

1.0, 2.0 1.0 2.0 1.0 Use 1.0

1.0 1.0, 2.0 1.0 2.0 Use 1.0

1.0 2.0, 3.0 1.0 WCPICINVALID Fail

2.0, 3.0 1.0 3.0 1.0 App Fails

1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

Details of the actual Windows CPI-C implementation are described in the WHLLDATA structure defined as follows:

Having made its last Windows CPI-C call, an application should call the WinCPICCleanuproutine.

Each Windows CPI-C implementation must make a WinCPICStartup call before issuing any other Windows CPI-C calls.

typedef struct tagWCPICDATA { WORD wVersion;
 char szDescription[WHLLDESCRIPTION_LEN+1];
 } WCPICDATA, FAR *LPWCPICDATA;

https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx

WinCPICUnhookBlockingHook
The WinCPICUnhookBlockingHook function removes any previous blocking hook that has been installed and reinstalls the
default blocking mechanism.

Syntax

Return Value

The return value specifies the outcome of the function. It is not zero if the default mechanism is successfully reinstalled. The
value is zero if the mechanism did not reinstall.

See Also
Reference
WinCPICSetBlockingHook

 BOOL WINAPI WinCPICUnhookBlockingHook(void);

https://msdn.microsoft.com/en-us/library/aa704822(v=bts.10).aspx

CPI-C Common Return Codes
This section describes the return codes for Common Programming Interface for Communications (CPI-C) calls. The return
codes are listed in integer order.

Call-specific return codes are described for the individual calls in CPI-C Calls.

0
CM_OK

The call executed successfully.

1
CM_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent condition, such as a configuration error or session protocol
error. To determine the error, the system administrator should examine the error log file. Do not retry the allocation until the
error has been corrected.

2
CM_ALLOCATION_FAILURE_RETRY

The conversation could not be allocated because of a temporary condition, such as a link failure. The reason for the failure is
logged in the system error log. Retry the allocation.

3
CM_CONVERSATION_TYPE_MISMATCH

The partner LU or program does not support the conversation type (basic or mapped) specified in the allocation request.

5
CM_PIP_NOT_SPECIFIED_CORRECTLY

The allocation request was rejected by a non-CPI-C LU 6.2 transaction program (TP). The partner program requires one or
more PIP data variables, which are not supported by CPI-C.

6
CM_SECURITY_NOT_VALID

The user identifier or password specified in the allocation request was not accepted by the partner logical unit (LU).

8
CM_SYNC_LVL_NOT_SUPPORTED_PGM

The partner program does not support the synchronization level specified in the allocation request.

9
CM_TPN_NOT_RECOGNIZED

The partner LU does not recognize the program name specified in the allocation request.

10
CM_TP_NOT_AVAILABLE_NO_RETRY

The partner LU cannot start the program specified in the allocation request because of a permanent condition. The reason for
the error may be logged on the remote node. Do not retry the allocation until the error has been corrected.

11
CM_TP_NOT_AVAILABLE_RETRY

The partner LU cannot start the program specified in the allocation request because of a temporary condition. The reason for
the error may be logged on the remote node. Retry the allocation.

17
CM_DEALLOCATED_ABEND

The conversation has been deallocated for one of the following reasons:

The remote program issued Deallocate with the type parameter set to CM_DEALLOCATE_ABEND. If the conversation
for the remote program was in RECEIVE state when the call was issued, information sent by the local program and not

https://msdn.microsoft.com/en-us/library/aa744726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx

yet received by the remote program is purged.

The partner program terminated normally but did not deallocate the conversation before terminating.

18
CM_DEALLOCATED_NORMAL

This return code does not indicate an error.

The partner program issued the Deallocate call with deallocate_type set to one of the following:

CM_DEALLOCATE_FLUSH.

CM_DEALLOCATE_SYNC_LEVEL with the synchronization level of the conversation specified as CM_NONE.

19
CM_PARAMETER_ERROR

The local program specified an invalid argument in one of its parameters.

20
CM_PRODUCT_SPECIFIC_ERROR

A product-specific error occurred and has been logged in the products error log.

21
CM_PROGRAM_ERROR_NO_TRUNC

While in SEND state or in SEND-PENDING state with the error direction set to CM_SEND_ERROR, the partner program
issued Send_Error. Data was not truncated.

22
CM_PROGRAM_ERROR_PURGING

One of the following occurred:

While in RECEIVE or CONFIRM state, the partner program issued Send_Error. Data sent but not yet received is purged.

While in SEND-PENDING state with the error direction set to CM_RECEIVE_ERROR, the partner program issued
Send_Error. Data was not purged.

23
CM_PROGRAM_ERROR_TRUNC (for a basic conversation)

In SEND state, before finishing sending a complete logical record, the partner program issued Send_Error. The local program
may have received the first part of the logical record through a Receive call.

24
CM_PROGRAM_PARAMETER_CHECK

A parameter or the address of a variable is invalid. For details, see individual calls in CPI-C Calls.

25
CM_PROGRAM_STATE_CHECK

The call was not issued in an allowed conversation state. For details, see individual calls in CPI-C Calls.

26
CM_RESOURCE_FAILURE_NO_RETRY

One of the following occurred:

The conversation was terminated prematurely because of a permanent condition. Do not retry until the error has been
corrected.

The partner program did not deallocate the conversation before terminating normally.

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744726(v=bts.10).aspx

27
CM_RESOURCE_FAILURE_RETRY

The conversation was terminated prematurely because of a temporary condition, such as modem failure. Retry the
conversation.

28
CM_UNSUCCESSFUL

The verb issued by the local program was not executed successfully.

30
CM_DEALLOCATED_ABEND_SVC

The conversation has been deallocated for one of the following reasons:

The partner program issued Deallocate with the type parameter set to ABEND_SVC.

The partner program did not deallocate the conversation before terminating.

If the conversation is in RECEIVE state for the partner program when this call is issued by the local program, data sent by the
local program and not yet received by the partner program is purged.

31
CM_DEALLOCATED_ABEND_TIMER

The conversation has been deallocated because the partner program issued Deallocate with the type parameter set to
ABEND_TIMER. If the conversation is in RECEIVE state for the partner program when this call is issued by the local program,
data sent by the local program and not yet received by the partner program is purged.

32
CM_SVC_ERROR_NO_TRUNC (for a basic conversation)

While in SEND state, the partner program or partner LU issued Send_Error with the typeparameter set to SVC. Data was not
truncated.

33
CM_SVC_ERROR_PURGING

While in SEND state, the partner program or partner LU issued Send_Error with the type parameter set to SVC. Data sent to
the partner program may have been purged.

34
CM_SVC_ERROR_TRUNC (for a basic conversation)

While in RECEIVE or CONFIRM state, the partner program or partner LU issued Send_Error with the type parameter set to
SVC before it finished sending a complete logical record. The local program may have received the first part of the logical
record.

35
CM_OPERATION_INCOMPLETE

The operation has not completed and is still in progress. The program can issue Wait_For_Conversation to await the
completion of the operation, or Cancel_Conversation to cancel the operation and conversation. If Specify_Windows_Handle
has been called, the application should wait for notification by a windows message and not call Wait_For_Conversation.

36
CM_SYSTEM_EVENT

This error code is not used by Host Integration Server 2009.

37
CM_OPERATION_NOT_ACCEPTED

A previous operation on this conversation is incomplete.

https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx

LUA Programmer's Reference
This section of the Host Integration Server 2009 Developer's Guide lists the verbs, extensions, control blocks, and return codes
that describe the logical unit application (LUA) programming interface.

For general information about programming for LUA, see LUA Programmer's Guide.

For sample code that uses LUA, see LUA Samples.

In This Section

LUA RUI Verbs

LUA SLI Verbs

LUA Extensions for the Windows Environment

SNA Services Enhancement to the Windows LUA Environment

LUA Verb Control Blocks

LUA Common Return Codes

https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705754(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746095(v=bts.10).aspx

LUA RUI Verbs
This section describes the Microsoft® Windows® logical unit application (LUA) Request Unit Interface (RUI) verbs. It provides
the following information for each RUI verb:

Details of the LUA verb control block (VCB) structure.

A description of the verb and its purpose.

Parameters (VCB structure members) supplied to and returned by LUA. The description of each parameter includes
information about the valid values for that parameter.

Interaction with other verbs.

The verb descriptions in this section include parameter values specific to each verb. For a complete description of the VCB
structure for both RUI and Session Level Interface (SLI) verbs, see LUA Verb Control Blocks.

This section contains:

RUI_BID

RUI_INIT

RUI_PURGE

RUI_READ

RUI_TERM

RUI_WRITE

https://msdn.microsoft.com/en-us/library/aa744355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx

RUI_BID
The RUI_BID verb notifies the Request Unit Interface (RUI) application that a message is waiting to be read using RUI_READ.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by RUI_BID:

The second syntax union describes the LUA_SPECIFIC member of the verb control block (VCB) used by RUI_BID. Other union
members are omitted for clarity:

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for RUI verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the logical unit application (LUA) VCB. It must contain the length of the
verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_BID.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};
union LUA_SPECIFIC {
 unsigned char lua_peek_data[12];
};

https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_BID only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Not used by RUI in Microsoft® Host Integration Server and should be set to zero.

lua_cobol_offset

Not used by LUA in Host Integration Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by RUI_BID and should be set to zero.

lua_data_length

Returned parameter. Specifies the length of data returned in lua_peek_data for RUI_BID.

lua_data_ptr

This parameter is not used and should be set to zero.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows® 2000 Server if asynchronous notification
is to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are set for
write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions. Its subparameters are as follows:

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type

Returned parameter. Specifies the type of SNA message indicated to RUI_BID. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The Session Level Interface (SLI) receives and responds to the BIND, CRV, and STSN requests through the LUA interface
extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Reserved and should be set to zero.

lua_peek_data

The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BIDverbs. Returned parameter. Contains up to 12 bytes
of the data waiting to be read.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_CANCELED

Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; RUI_TERM was issued while this verb was pending.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BID_ALREADY_ENABLED

Secondary return code; RUI_BID was rejected because a previous RUI_BID was already outstanding. Only one RUI_BID can
be outstanding at any one time.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows Server 2003 or Windows 2000 system using events as the asynchronous posting
method, the Windows LUA VCB does not contain a valid event handle.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record, or a parameter not used by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on this verb.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_INVALID_PROCESS

Secondary return code; the process that issued this verb was not the same process that issued RUI_INIT for this session.
Only the process that started a session can issue verbs on that session.

LUA_NEGATIVE_RSP

Primary return code; LUA detected an error in the data received from the host. Instead of passing the received message to
the application on RUI_READ, LUA discards the message (and the rest of the chain if it is in a chain), and sends a negative
response to the host.

LUA informs the application on a subsequent RUI_READ or RUI_BID that a negative response was sent.

The secondary return code contains the sense code sent to the host on the negative response. For information about
interpreting the sense code values that can be returned, see SNA Considerations Using LUA.

A zero secondary return code indicates that, following a previous RUI_WRITE of a negative response to a message in the
middle of a chain, LUA has now received and discarded all messages from this chain.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN
error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_SESSION_FAILURE

Primary return code; a required Host Integration Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session has failed because of a problem with the link service or with the host
LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746197(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_BID is used by applications that require notification that a message is waiting to be read. This allows the application to
determine how it will handle the message before issuing RUI_READ.

When a message is available, RUI_BID returns with details of the message flow on which it was received, the message type, the
TH and RH of the message, and up to 12 bytes of message data.

The main difference between RUI_BID and RUI_READ is that RUI_BID allows the application to check the data without
removing it from the incoming message queue, so it can be left and accessed later. RUI_READ removes the message from the
queue, so when the application reads the data it must also process it.

Note the following when using RUI_BID:

RUI_INIT must complete successfully before this verb is issued.

Only one RUI_BID can be outstanding at any one time.

After RUI_BID has completed successfully, it can be reissued by setting lua_flag1.bid_enable on a subsequent
RUI_READ. If the verb is reissued in this way, the application must not free or modify the storage associated with the
RUI_BID record.

If a message arrives from the host when RUI_READ and RUI_BID are both outstanding, RUI_READ completes and
RUI_BID is left in progress.

Each message that arrives is bid only once. After RUI_BID indicates that data is waiting on a particular session flow, the
application issues RUI_READ to receive the data. Any subsequent RUI_BID does not report data arriving on that session flow
until the message that was bid has been accepted by issuing RUI_READ.

In general, the lua_data_length parameter returned on this verb indicates only the length of data in lua_peek_data, not the
total length of data on the waiting message (except when a value of less than 12 is returned). The application should ensure
that the data length on RUI_READ that accepts the data is sufficient to contain the message.

See Also
Reference
RUI_INIT
RUI_READ
RUI_TERM
RUI_WRITE
SLI_OPEN

https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

RUI_INIT
The RUI_INIT verb transfers control of the specified logical unit (LU) to the Microsoft® Windows® logical unit application
(LUA) application. RUI_INIT establishes a session between the system services control point (SSCP) and the specified LU.

Note
For 3270 emulator users, a Microsoft Host Integration Server extension has been added that enables you to use 3270 LUs rat
her than the LUA LUs. For more information, see Remarks in this topic.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by RUI_INIT.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_INIT.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_INIT requires this parameter.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Not used by RUI in Host Integration Server and should be set to zero.

lua_cobol_offset

Not used by LUA in Host Integration Server and should be zero.

lua_sid

Returned parameter. Specifies the session identifier.

lua_max_length

Not used by RUI_INIT and should be set to zero.

lua_data_length

Not used by RUI_INIT and should be set to zero.

lua_data_ptr

Not used by RUI_INIT and should be set to zero.

lua_post_handle

Supplied parameter. Used under Microsoft® Windows Server™ 2003 or Windows® 2000 Server if asynchronous
notification is to be accomplished by events. This variable contains the handle of the event to be signaled or a window
handle.

lua_th

Not used by RUI_INIT and should be set to zero.

lua_rh

Not used by RUI_INIT and should be set to zero.

lua_flag1

Not used by RUI_INIT and should be set to zero.

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. This is a returned parameter for RUI_INIT. Possible
values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The Session Level Interface (SLI) receives and responds to the BIND, CRV, and STSN requests through the LUA interface
extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

RUI_INIT always completes asynchronously unless it returns an error such as LUA_PARAMETER_CHECK).

lua_resv56

Supplied parameter. A reserved field used by RUI_INIT and SLI_OPEN. All other reserved fields in the array must be left
blank. For more information, see the discussion of these Host Integration Server extensions in the Remarks section.

lua_resv56[1]

Supplied parameter. Indicates whether an RUI application can access LUs configured as 3270 LUs, in addition to LUA LUs. If
this parameter is nonzero, 3270 LUs can be accessed.

lua_resv56[2]

Supplied parameter. Indicates whether the RUI library will release the LU when the LU-SSCP session or connection goes
away. If this parameter is nonzero, the LU will not be released.

lua_resv56[3]

Supplied parameter. Indicates whether incomplete reads are supported. If this parameter is set to a nonzero value,
incomplete or truncated reads are supported. For more details, see the remarks for RUI_READ.

lua_resv56[4]

Supplied parameter. Indicates whether the RUI library will allow the application to keep hold of the LU if it is recycled at the
host. If this parameter is nonzero, the application can keep hold of the LU.

lua_encr_decr_option

Field for cryptography options. On RUI_INIT, only the following are supported:

lua_encr_decr_option = 0

lua_encr_decr_option = 128

Values from 1 through 127 are not supported.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_CANCELED

Primary return code; the verb did not complete successfully because it was canceled by another verb.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

LUA_TERMINATED

Secondary return code; RUI_TERM was issued before RUI_INIT completed.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; the lua_luname parameter did not match any LUA LU name or LU pool name in the configuration
file.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows Server 2003 or Windows 2000 system using events as the asynchronous posting
method, the Windows LUA VCB does not contain a valid event handle.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record, or a parameter not used by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_DUPLICATE_RUI_INIT

Secondary return code; the lua_luname parameter specified an LU name or LU pool name already in use by this application
(or for which this application already has RUI_INIT in progress).

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_COMMAND_COUNT_ERROR

Secondary return code, which indicates one of the following errors occurred:

The verb could not be issued because the application had already reached its maximum number of active sessions. On
Windows Server 2003 or Windows 2000, an application can have as many as 15,000 sessions active at any time.

The verb specified the name of an LU pool or the name of an LU in a pool, but all the LUs in the pool are in use.

LUA_ENCR_DECR_LOAD_ERROR

Secondary return code; the verb specified a value for lua_encr_decr_option other than 0 or 128.

LUA_INVALID_PROCESS

Secondary return code; the LU specified by lua_luname is in use by another process.

LUA_LINK_NOT_STARTED

Secondary return code; the connection to the host has not been started; none of the link services it could use are active.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN
error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_SESSION_FAILURE

Primary return code; a required Host Integration Server component has terminated.

https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

This verb must be the first LUA verb issued for the session. Until this verb has completed successfully, the only other LUA verb
that can be issued for this session is RUI_TERM (which terminates a pending RUI_INIT).

All other verbs issued on this session must identify the session using one of the following parameters from this verb:

The session identifier, returned to the application in lua_sid.

The LU name or LU pool name, supplied by the application in the lua_luname parameter.

RUI_INIT completes after an ACTLU message is received from the host. If necessary, the verb waits indefinitely. If an ACTLU
has already been received prior to RUI_INIT, LUA sends a NOTIFY to the host to inform it that the LU is ready for use.

Neither ACTLU nor NOTIFY is visible to the LUA application.

After RUI_INIT has completed successfully, this session uses the LU for which the session was started. No other LUA session
(from this or any other application) can use the LU until RUI_TERM is issued, or until an LUA_SESSION_FAILURE primary
return code is received.

Using 3270 LUs

To provide 3270 emulator users the ability to use the Emulator Interface Specification (EIS) configuration call with the RUI API,
a Host Integration Server extension has been added to the RUI. This extension allows you to use 3270 LUs rather than LUA LUs.
If an application sets lua_resv56[1] to a nonzero value on the RUI_INIT call, 3270 LUs can be used.

Do Not Release the LU

If an application sets lua_resv56[2] to a nonzero value on the RUI_INIT call, the RUI library will not release the LU when the
LU-SSCP session or connection goes away. When this Host Integration Server extension is enabled, the application does not
have to issue a new RUI_INIT after a session failure or connection failure. When the LU-SSCP session comes back up (the
application can use WinRUIGetLastInitStatus to detect this), the application can start using it again.

Support Chunking on this Session

If an application sets lua_resv56[3] to a nonzero value on the RUI_INIT session establishment, this enables a Host Integration
Server extension that can change the behavior of RUI_READ. The default behavior for an RUI_READ call is to truncate data
(discarding any data remaining) if the application's data buffer is not large enough to receive all of the data in the RU,
returning an error code. When lua_resv56[3] is set to a nonzero value on the RUI_INIT call, an RUI_READ issued where the
application's data buffer is not large enough will not result in the RU data being discarded. The RUI_READ verb will return
success (LUA_OK) for the primary return code and LUA_DATA_INCOMPLETE for the secondary return code. Subsequent
RUI_READ requests can then be issued to retrieve the data that exceeded the application's data buffer.

Ignore DACTLUs

If an application sets lua_resv56[4] to a nonzero value on the RUI_INIT session establishment, this enables a Host Integration
Server extension, and the RUI library will allow the application to keep hold of the LU if it is recycled at the host (that is,

https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx

deactivated and reactivated).

Note
All other reserved fields must be left blank.

For more information, see the description of the sepdcrec function in the section of the Software Development Kit (SDK) Help
on the 3270 Emulator Interface Specification.

Encryption

Session-level cryptography is implemented through Cryptography Verification (CRV) requests. RUI applications must perform
all necessary processing of these requests. For all interfaces other than RUI, CRV requests are rejected with a negative response
by Host Integration Server.

For RUI_INIT, the following options are supported:

lua_encr_decr_option = 0

lua_encr_decr_option = 128

Values from 1 through 127 (ACSRENCR and ACSROECR routines) are not supported.

The sending application is responsible for padding data to a multiple of eight bytes and for setting the padded data indicator
bit in the RH as well as for encryption. The receiving application is responsible for removing the padding after decryption.

See Also
Reference
RUI_INIT
RUI_TERM
SLI_OPEN

https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

RUI_PURGE
The RUI_PURGE verb cancels a previous RUI_READ.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by RUI_PURGE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the logical unit application (LUA) VCB. It must contain the length of the
verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_PURGE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_PURGE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

lua_extension_list_offset

Not used by RUI in Microsoft® Host Integration Server and should be set to zero.

lua_cobol_offset

Not used by LUA in Host Integration Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by RUI_PURGE and should be set to zero.

lua_data_length

Not used by RUI_PURGE and should be set to zero.

lua_data_ptr

Points to the location of the RUI_READ verbs VCB that is to be canceled.

lua_post_handle

Supplied parameter. Used under Microsoft® Windows Server™ 2003 or Windows® 2000 Server if asynchronous
notification is to be accomplished by events. This variable contains the handle of the event to be signaled or a window
handle.

lua_th

Not used by RUI_PURGE and should be set to zero.

lua_rh

Not used by RUI_PURGE and should be set to zero.

lua_flag1

Not used by RUI_PURGE and should be set to zero.

lua_message_type

Not used by RUI_PURGE and should be set to zero.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Reserved and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_CANCELED

Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; RUI_TERM was issued while RUI_PURGE was pending.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter was set to null.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows Server 2003 or Windows 2000 system using events as the asynchronous posting
method, the Windows LUA VCB does not contain a valid event handle.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record, or a parameter not used by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on this verb.

LUA_UNSUCCESSFUL

Primary return code; the verb supplied was valid, but the verb did not complete successfully.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this
session. Only the process that started a session can issue verbs on that session.

LUA_NO_READ_TO_PURGE

Secondary return code; either lua_data_ptr did not contain a pointer to an RUI_READ VCB, or RUI_READ completed before
RUI_PURGE was issued.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node was broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_SESSION_FAILURE

Primary return code; a required Host Integration Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_READ can wait indefinitely if it is sent without using the lua_flag1.nowait (immediate return) option and no data is
available on the specified flow. RUI_PURGE forces the waiting verb to return (with the primary return code LUA_CANCELED).

This verb is used only when RUI_READ has been issued and is pending completion. (The primary return code is
LUA_IN_PROGRESS.)

See Also
Reference
RUI_INIT
RUI_READ
RUI_TERM
RUI_WRITE
SLI_OPEN
SLI_PURGE
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

RUI_READ
The RUI_READ verb receives responses, SNA commands, and data into a Microsoft® Windows® logical unit application (LUA)
applications buffer.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by RUI_READ.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_READ.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_READ only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

lua_extension_list_offset

Not used by RUI in Host Integration Server and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Specifies the length of received buffer for RUI_READ and SLI_RECEIVE. Not used by other RUI and SLI verbs and should be
set to zero.

lua_data_length

Returned parameter. Specifies the length of data returned in lua_peek_data for the RUI_BID verb.

lua_data_ptr

Pointer to the application-supplied buffer that is to receive the data from an RUI_READ verb. Both SNA commands and data
are placed in this buffer, and they can be in an EBCDIC format.

When RUI_READ is issued, this parameter points to the location to receive the data from the host.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters
are set for write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions. Its subparameters are as follows:

lua_rh.rri

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set lua_flag1.nowait to 1 to indicate that you want RUI_READ to return immediately whether or not data is available to be
read, or set it to zero if you want the verb to wait for data before returning.

Set lua_flag1.bid_enable to 1 to re-enable the most recent RUI_BID (equivalent to issuing RUI_BID again with exactly the
same parameters as before), or set it to zero if you do not want to re-enable RUI_BID.

Re-enabling the previous RUI_BID reuses the VCB originally allocated for it, so this VCB must not have been freed or
modified.

Set one or more of the following flags to 1 to indicate from which message flow to read data:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available is returned. The order of priorities (highest first) is: SSCP
expedited, LU expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2 group is set to indicate from which
flow the data was read.

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. Returned parameter. Specifies the type of SNA
message indicated to RUI_READ. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Reserved and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_DATA_INCOMPLETE

Secondary return code; RUI_READ was not able to return all of the data received because the application's data buffer
(indicated by lua_max_length) was not large enough. Subsequent RUI_READ requests can be issued to retrieve the
remaining RUI data.

This is not the default behavior for RUI_READ and is only enabled when lua_resv56[3] is set to a nonzero value in the verb
control block when calling RUI_INIT during session establishment. For more details, see Remarks.

LUA_CANCELED

Primary return code; the verb did not complete successfully because it was canceled by another verb or by an internal error.

LUA_PURGED

Secondary return code; RUI_READ has been canceled by RUI_PURGE.

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx

LUA_TERMINATED

Secondary return code; RUI_TERM was issued while RUI_READ was pending.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter contained an invalid value.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BID_ALREADY_ENABLED

Secondary return code; lua_flag1.bid_enable was set to re-enable RUI_BID but the previous RUI_BID was still in progress.

LUA_DUPLICATE_READ_FLOW

Secondary return code; the flow flags in the lua_flag1 group specified one or more session flows for which RUI_READ was
already outstanding. Only one RUI_READ at a time can be waiting on each session flow.

LUA_INVALID_FLOW

Secondary return code; none of the lua_flag1 flow flags was set. At least one of these flags must be set to 1, to indicate from
which flow or flows to read.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows Server 2003 or Windows 2000 system using events as the asynchronous posting
method, the Windows LUA VCB does not contain a valid event handle.

LUA_NO_PREVIOUS_BID_ENABLED

Secondary return code; lua_flag1.bid_enable was set to re-enable RUI_BID, but there was no previous RUI_BID that could
be enabled. (For more information, see Remarks.)

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record or a parameter not used by this verb was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on RUI_READ.

LUA_NEGATIVE_RSP

Primary return code; indicates one of the following two cases, which can be distinguished by the secondary return code:

LUA detected an error in the data received from the host. Instead of passing the received message to the application on
RUI_READ, LUA discards the message (and the rest of the chain if it is in a chain), and sends a negative response to the
host. LUA informs the application on a subsequent RUI_READ or RUI_BID that a negative response was sent.

The LUA application previously sent a negative response to a message in the middle of a chain. LUA has purged
subsequent messages in this chain, and is now reporting to the application that all messages from the chain have been
received and purged.

LUA_SEC_RC

Secondary return code; this parameter is a nonzero secondary return code containing the sense code sent to the host on the
negative response. This indicates that LUA detected an error in the host data and sent a negative response to the host. For
information about interpreting the sense code values that may be returned, see SNA Considerations Using LUA.

https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746197(v=bts.10).aspx

A secondary return code of zero indicates that, following a previous RUI_WRITE of a negative response to a message in the
middle of a chain, LUA has now received and discarded all messages from this chain.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_DATA_TRUNCATED

Secondary return code; the lua_data_length parameter was smaller than the actual length of data received on the message.
Only lua_data_length bytes of data were returned to the verb; the remaining data was discarded. Additional parameters are
also returned if this secondary return code is obtained.

LUA_NO_DATA

Secondary return code; lua_flag1.nowait was set to indicate immediate return without waiting for data, and no data was
currently available on the specified session flow or flows.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this session.
Only the process that started a session can issue verbs on that session.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node was broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_SESSION_FAILURE

Primary return code; a required Host Integration Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_INIT must have completed successfully before RUI_READ is issued.

While an existing RUI_READ is pending, you can issue another RUI_READ only if it specifies a different session flow or flows
from pending RUI_READ verbs. You cannot have more than one RUI_READ outstanding for the same session flow.

You can specify a particular message flow (LU normal, LU expedited, SSCP normal, or SSCP expedited) from which to read

https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

data, or you can specify more than one message flow. You can have multiple RUI_READ verbs outstanding, provided that no
two of them specify the same flow.

Data is received by the application on one of four session flows. The four session flows, from highest to lowest priority are:

SSCP expedited

LU expedited

SSCP normal

LU normal

The data flow type that RUI_READ is to process is specified in the lua_flag1 parameter. The application can also specify
whether it wants to look at more than one type of data flow. When multiple flow bits are set, the highest priority is received
first. When RUI_READ completes processing, lua_flag2 indicates the specific type of flow for which data has been received by
the Windows LUA application.

If RUI_BID successfully completes before an RUI_READ is issued, the Windows LUA interface can be instructed to reuse the last
RUI_BID verbs VCB. To do this, issue the RUI_READ with lua_flag1.bid_enable set.

The lua_flag1.bid_enable parameter can be used only if the following are true:

RUI_BID has already been issued successfully and has completed.

The storage allocated for RUI_BID has not been freed or modified.

No other RUI_BID is pending.

When using lua_flag1.bid_enable, the RUI_BID storage must not be freed because the last RUI_BID verbs VCB is used. Also,
when using lua_flag1.bid_enable, the successful completion of RUI_BID will be posted.

If RUI_READ is issued with lua_flag1.nowait when no data is available to receive, LUA_NO_DATA will be the secondary return
code set by the Windows LUA interface.

If the data received is longer than lua_max_length, it is truncated. Only lua_max_length bytes of data are returned. The
primary return code LUA_UNSUCCESSFUL and the secondary return code LUA_DATA_TRUNCATED are also returned. The RUI
library returns as much data as possible to the application's data buffer, but the remaining data in the RUI is discarded and
cannot be extracted on subsequent RUI_READ requests. This forces the RUI application to allocate an RUI_READ data buffer
large enough to handle the full RU size.

This default behavior can be changed by setting the value of lua_resv56[3] to a nonzero value in the verb control block when
calling RUI_INIT during session establishment. In this case, if the data received is longer than lua_max_length, an RUI_READ
request will return a primary return code of LUA_OK and a secondary return code of LUA_DATA_INCOMPLETE. An RUI
application can then issue new RUI_READ calls and receive the remainder of the data.

This enhancement has not been adopted as part of the Microsoft Windows Open Services Architecture (WOSA) LUA API
standard and differs from the implementation of RUI by IBM.

After a message has been read using RUI_READ, it is removed from the incoming message queue and cannot be accessed
again. (RUI_BID can be used as a nondestructive read. The application can use it to check the type of data available, but the data
remains on the incoming queue and does not need to be used immediately.)

Pacing can be used on the primary-to-secondary half-session (specified in the host configuration), to protect the LUA
application from being flooded with messages. If the LUA application is slow to read messages, Host Integration Server delays
the sending of pacing responses to the host to slow it down.

See Also
Reference
RUI_BID
RUI_INIT
RUI_TERM
RUI_WRITE
SLI_OPEN

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

SLI_PURGE
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

RUI_TERM
The RUI_TERM verb ends both the logical unit (LU) session and the system services control point (SSCP) session for a given
LUA LU.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by RUI_TERM.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the logical unit application (LUA) VCB. It must contain the length of the
verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_TERM.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_TERM only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

lua_extension_list_offset

Not used by RUI in Microsoft® Host Integration Server and should be set to zero.

lua_cobol_offset

Not used by LUA in Host Integration Server and should be set to zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Not used by RUI_TERM and should be set to zero.

lua_data_length

Not used by RUI_TERM and should be set to zero.

lua_data_ptr

Not used by RUI_TERM and should be set to zero.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows® 2000 Server if asynchronous notification
is to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Not used by RUI_TERM and should be set to zero.

lua_rh

Not used by RUI_TERM and should be set to zero.

lua_flag1

Not used by RUI_TERM and should be set to zero.

lua_message_type

Not used by RUI_TERM and should be set to zero.

lua_flag2

Not used by RUI_TERM and should be set to zero.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Reserved and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows Server 2003 or Windows 2000 system using events as the asynchronous posting
method, the Windows LUA VCB does not contain a valid event handle.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record or a parameter not used by this verb was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on RUI_TERM.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_COMMAND_COUNT_ERROR

Secondary return code; RUI_TERM was already pending when the verb was issued.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this
session. Only the process that started a session can issue verbs on that session.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node was broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_SESSION_FAILURE

Primary return code; a required Host Integration Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session failed because of a problem with the link service or with the host LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

This verb can be issued at any time after RUI_INIT has been issued (whether or not it has completed). If any other LUA verb is
pending when RUI_TERM is issued, no further processing on the pending verb takes place, and it returns with a primary return

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

code of LUA_CANCELED.

After this verb has completed, no other LUA verb can be issued for this session.

See Also
Reference
RUI_INIT
SLI_OPEN

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

RUI_WRITE
The RUI_WRITE verb sends an SNA request or response unit from the logical unit application (LUA) application to the host
over either the LU session or the system services control point (SSCP) session, and sends responses, SNA commands, and data
from a Microsoft® Windows® LUA application to the host LU.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by RUI_WRITE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_RUI_WRITE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

RUI_WRITE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

lua_extension_list_offset

Not used by RUI in Microsoft® Host Integration Server and should be set to zero.

lua_cobol_offset

Not used by LUA in Host Integration Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Not used by RUI_WRITE and should be set to zero.

lua_data_length

Returned parameter. Specifies the length of data returned in lua_peek_data for the RUI_BID verb.

lua_data_ptr

Points to the buffer containing the data to be sent to the host by RUI_WRITE.

Both SNA commands and data are placed in this buffer, and they can be in an EBCDIC format.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters
are set for write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. For the RH for
RUI_WRITE, all fields except the queued-response indicator (lua_rh.qri) and pacing indicator (lua_rh.pi) are used. Its
subparameters are as follows:

lua_rh.rri

Request-response indicator, one bit.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set one of the following flags to 1 to indicate on which message flow the data is to be sent:

lua_flag1.sscp_exp

lua_flag1.sscp_norm

lua_flag1.lu_exp

lua_flag1.lu_norm

lua_message_type

Not used by RUI_WRITE and should be set to zero.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Reserved and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_CANCELED

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

Primary return code; the verb did not complete successfully because it was canceled by another verb.

LUA_TERMINATED

Secondary return code; the verb was canceled because RUI_TERM was issued for this session.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter contained an invalid value.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_DUPLICATE_WRITE_FLOW

Secondary return code; RUI_WRITE was already outstanding for the session flow specified on this verb (the session flow is
specified by setting one of the lua_flag1 flow flags to 1). Only one RUI_WRITE at a time can be outstanding on each session
flow.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1.sscp_exp flow flag was set, indicating that the message should be sent on the SSCP
expedited flow. LUA does not allow applications to send data on this flow.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Windows Server 2003 or Windows 2000 system using events as the asynchronous posting
method, the Windows LUA VCB does not contain a valid event handle.

LUA_MULTIPLE_WRITE_FLOWS

Secondary return code; more than one of the lua_flag1 flow flags was set to 1. One and only one of these flags must be set
to 1, to indicate which session flow the data is to be sent on.

LUA_REQUIRED_FIELD_MISSING

Secondary return code; indicates one of the following cases:

None of the lua_flag1 flow flags was set. One and only one of these flags must be set to 1.

RUI_WRITE was used to send a response, and the response required more data than was supplied.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved field in the verb record or a parameter not used by this verb was set to a nonzero value.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_MODE_INCONSISTENCY

Secondary return code; the SNA message sent on RUI_WRITE was not valid at this time. This is caused by trying to send data
on the LU session before the session is bound. Check the sequence of SNA messages sent.

LUA_NO_RUI_SESSION

Secondary return code; RUI_INIT has not yet completed successfully for the LU name specified on this verb.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_FUNCTION_NOT_SUPPORTED

https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Secondary return code; indicates one of the following cases:

The lua_rh.fi bit (format indicator) was set to 1, but the first byte of the supplied RU was not a recognized request
code.

The lua_rh.ruc parameter (RU category) specified the network control (NC) category; LUA does not allow applications
to send requests in this category.

LUA_INVALID_PROCESS

Secondary return code; the OS/2 process that issued this verb was not the same process that issued RUI_INIT for this
session. Only the process that started a session can issue verbs on that session.

LUA_INVALID_SESSION_PARAMETERS

Secondary return code; the application used RUI_WRITE to send a positive response to a BIND message received from the
host. However, Host Integration Server cannot accept the BIND parameters as specified, and has sent a negative response to
the host. For more information about the BIND profiles accepted by Host Integration Server, see
SNA Considerations Using LUA.

LUA_RSP_CORRELATION_ERROR

Secondary return code; when using RUI_WRITE to send a response, lua_th.snf (which indicates the sequence number of the
received message being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR

Secondary return code; the lua_data_length parameter contained an invalid value. When sending data on the LU normal
flow, the maximum length is as specified in the BIND received from the host; for all other flows the maximum length is 256
bytes.

Note
Any other secondary return code is an SNA sense code indicating that the supplied SNA data was invalid or could not be se
nt. For information about interpreting the SNA sense codes that can be returned, see SNA Considerations Using LUA.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node was broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_SESSION_FAILURE

Primary return code; a required Host Integration Server component has terminated.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; indicates that the LUA session has failed because of a problem with the link service or with the host
LU.

LUA_RUI_LOGIC_ERROR

Secondary return code; an internal error was detected within LUA. This error should not occur during normal operation.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

https://msdn.microsoft.com/en-us/library/aa746197(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746197(v=bts.10).aspx

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or has terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

Remarks

RUI_INIT must be issued successfully before this verb is issued.

When sending an SNA request, all applicable values in the lua_rh must be set. Chaining and bracketing are the responsibility
of the application.

When sending a response, the type of response determines the RUI_WRITE information required. For all responses, you must:

Set the selected lua_rh.rri flag to 1.

Provide the sequence number in lua_th.snf for the request to which you are responding.

For multi-chain message responses, the sequence number of the last received chain element must be used. For a response to a
multichain message ending with a CANCEL command, the CANCEL command sequence number is used.

For positive responses that only require the request code, set lua_rh.ri to zero (indicating that the response is positive) and
lua_data_length to zero (indicating that no data is provided). The request code is filled in by the RUI, using the sequence
number provided.

For negative responses, set lua_rh.ri to 1, lua_data_ptr to the SNA sense code address, and lua_data_length to the SNA
sense code length (four bytes). The sequence number is used by the RUI to fill in the request code.

For positive responses to the BIND and STSN commands that require data in the responses, set lua_data_ptr to point to the
response and set lua_data_length to the length of the data provided in lua_data_ptr.

While an existing RUI_WRITE is pending, you can issue a second RUI_WRITE only if it specifies a different session flow from
the pending RUI_WRITE. You cannot have more than one RUI_WRITE outstanding for the same session flow.

RUI_WRITE can be issued on the SSCP normal flow at any time after a successful RUI_INIT. RUI_WRITE verbs on the LU
expedited or LU normal flows are permitted only after a BIND has been received, and must abide by the protocols specified on
the BIND.

The successful completion of RUI_WRITE indicates that the message was queued successfully to the data link. It does not
necessarily indicate that the message was sent successfully, or that the host accepted it.

Pacing can be used on the secondary-to-primary half-session (specified on the BIND) to prevent the LUA application from
sending more data than the local or remote LU can handle. If this is the case, an RUI_WRITE on the LU normal flow may be
delayed by LUA and may take some time to complete.

See Also
Reference
RUI_INIT
RUI_READ
RUI_TERM
SLI_OPEN
SLI_PURGE
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

LUA SLI Verbs
This section describes the Microsoft® Windows® logical unit application (LUA) Session Level Interface (SLI) verbs. It provides
the following information for each SLI verb:

Details of the LUA verb control block (VCB) structure.

A description of the verb and its purpose.

Parameters (VCB structure members) supplied to and returned by LUA. The description of each parameter includes
information about the valid values for that parameter.

Interaction with other verbs.

Cryptography is not defined as part of the Windows LUA standard.

The verb descriptions in this section include parameter values specific to each verb. For a complete description of the VCB
structure for both Request Unit Interface (RUI) and SLI verbs, see LUA Verb Control Blocks.

In This Section

SLI_BID

SLI_CLOSE

SLI_OPEN

SLI_PURGE

SLI_RECEIVE

SLI_RECEIVE_EX

SLI_SEND

SLI_SEND_EX

SLI_BIND_ROUTINE

SLI_STSN_ROUTINE

https://msdn.microsoft.com/en-us/library/aa744355(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744933(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771941(v=bts.10).aspx

SLI_BID
The SLI_BID verb notifies the Session Level Interface (SLI) application that a message is waiting to be read using SLI_RECEIVE.
SLI_BID also provides the current status of the session to the Windows logical unit application (LUA) application.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_BID.

The second syntax union describes the LUA_SPECIFIC member of the VCB used by SLI_BID. Other union members are omitted
for clarity.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for SLI verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_BID.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};
union LUA_SPECIFIC {
 unsigned char lua_peek_data[12];
};

https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_BID only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Not used by SLI_BID and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_BID and should be set to zero.

lua_data_length

Returned parameter. Specifies the length of data returned in lua_peek_data.

lua_data_ptr

Pointer to the application-supplied buffer that contains the data to be sent for SLI_SEND and RUI_WRITE or that will receive
data for SLI_RECEIVE and RUI_READ. Not used by other RUI and SLI verbs and should be set to zero.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are
returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. Its subparameters are
as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

Request/response unit (RU) category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

System services control point (SSCP) expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type

Returned parameter. Specifies the type of SNA message indicated to SLI_BID. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that SLI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Not used by SLI_BID and should be set to zero.

lua_peek_data

The union member of LUA_SPECIFIC used by the RUI_BIDand SLI_BID verbs. Returned parameter. Contains up to 12 bytes
of the data waiting to be read.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname name was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with the value of lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_SLI_BID_PENDING

Secondary return code; an SLI verb was still active when another SLI_BID was issued. Only one SLI_BID can be active at a

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

time.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_RECEIVER_IN_TRANSMIT_MODE

Secondary return code; either resources needed to handle normal flow data were not available or the state of the half-duplex
contention was not received when a normal-flow request was received. The result is a race condition. This SNA sense code is
also an exception request sense code.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_CHAINING_ERROR

Secondary return code; the sequence of the chain indicator settings is in error. An invalid request header or request unit for
the receivers current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receivers current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receivers current session control or data flow control state was found. Delivery
to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a data flow control (DFC) or function management data (FMD) request was received from a half-
session that sent either a SHUTC command or QC command, and the DFC or FMD request has not responded to a RELQ
command. An invalid request header or request unit for the receivers current session control or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data
flow control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request
unit for the received current session control or data flow control state was found. Delivery to the half-session component
was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_RSP_PROTOCOL_ERROR

Secondary return code; a violation of the response protocol was found in the response received from the primary half-
session.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a "NO RESPONSE" The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was

prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation.
The BIND options chosen previously or the architectural rules were violated by the request header parameter values.
Delivery to the half-session component was prevented. The errors are not dependent on the current session state. The
senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to
the half-session component was prevented. The errors are not dependent on the current session state. The senders failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_RU_CATEGORY

Secondary return code; the request unit category indicator was incorrectly specified. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The
errors are not dependent on the current session state. The senders failure to enforce session rules may have caused the
errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the sense-data-included indicator (SDI) and the response-type-indicator (RTI) were not specified
correctly on a response. The BIND options chosen previously or the architectural rules were violated by the request header
parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the current
session state. The senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the definite response 1 indicator (DR1I), the definite response 2 indicator (DR2I), and the exception
response indicator (ERI) were specified incorrectly. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator (QRI) was incorrectly specified. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the enciphered data indicator (EDI) was incorrectly specified. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was

prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the padded data indicator (PDI) was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid, but the verb did not complete successfully.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server when an LUA verb was issued.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while attempting to stop the session. This LU is unavailable for any LUA
requests until an activate logical unit (ACTLU) is received from the host.

LUA_RECEIVE_CORRELATION_TABLE_FULL

Secondary return code; the session receive correlation table for the flow requested reached its capacity.

LUA_NEGATIVE_RESPONSE

Primary return code; either LUA sent a negative response to a message received from the primary logical unit (PLU) because
an error was found in the message, or the application responded negatively to a chain for which the end-of-chain has
arrived.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; the LUA does not support the requested function. A control character, an RU parameter, or a
formatted request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receivers current session control or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-
session component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of the session control (SC) protocol occurred. A request (that is permitted only after an SC
request and a positive response to that request have been successfully exchanged) was received before the required
exchange. Byte 4 of the sense data contains the request code. No user data exists for this sense code. An invalid header
request or request unit for the received current session control or data flow control state was found. Delivery to the half-
session component was prevented.

LUA_INVALID_SC_OR_NC_RH

Secondary return code; the RH of an SC or NC request was invalid.

LUA_PACING_NOT_SUPPORTED

Secondary return code; the request contained a pacing indicator when support of pacing for this session does not exist for

the receiving half-session or boundary function half-session. The BIND options chosen previously or the architectural rules
were violated by lua_rh values. Delivery to the half-session component was prevented. The errors are not dependent on the
current session state. The senders failure to enforce session rules may have caused the errors.

LUA_NAU_INOPERATIVE

Secondary return code; the network addressable unit (NAU) is not able to process responses or requests. Delivery to the
receiver could not take place for one of the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session, that usually means there is no longer a valid path to the session partner.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_STATUS

Primary return code; the secondary return code contains SLI status information for the application.

LUA_READY

Secondary return code; following a NOT_READY status, this status is issued to notify you that the SLI is ready to process
commands.

LUA_NOT_READY

Secondary return code; an SNA UNBIND type 0x02 command was received, which means a new BIND is coming.

If the UNBIND type 0x02 is received after the beginning SLI_OPEN is complete, the session is suspended until a BIND,
optional CRV and STSN, and SDT flows are received. These routines are re-entrant because they have to be called again. The
session resumes after the SLI processes the SDT command.

If the UNBIND type 0x02 is received while SLI_OPEN is still processing, the primary return code is session-failure, not status.
Or, the receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INIT_COMPLETE

Secondary return code; the LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue
SLI_OPEN with the lua_open_type_prim_sscp parameter receive this status on SLI_RECEIVE or SLI_BID.

LUA_SESSION_END_REQUESTED

Secondary return code; the LUA interface received an SNA shutdown command (SHUTD) from the host, which means the
host is ready to shut down the session.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_BID does the following:

Notifies a Windows LUA application that a message is waiting to be read.

Provides the current session status.

Provides a preview of the next message that will be read by SLI_RECEIVE.

This preview contains a maximum of 12 bytes of information (peek data) that enables the Windows LUA application to
define its processing strategy for the data.

To use SLI_BID within a Windows LUA application, issue SLI_BID. When the verb completes, it can be reactivated in the
following two ways:

Reissue SLI_BID.

Issue SLI_RECEIVE with lua_flag1_bid_enable set to 1. This issues an SLI_BID that uses the most recently accepted address
for the VCB and establishes the active bid.

Each session can have only one SLI_BID at a time.

If multiple messages are available when a Windows LUA application issues SLI_BID, the data flow with the highest priority is
returned. The order in which the data can be returned is as follows:

SSCP expedited

LU expedited

SSCP normal

LU normal

If SLI_RECEIVE has flags set to read more than one type of message flow, the data returned by SLI_BID might be for a flow
different than the one for which you actually receive data through SLI_RECEIVE. This situation occurs when higher priority
data arrives from the host after SLI_BID completes processing, but before SLI_RECEIVE is issued.

To ensure that SLI_RECEIVE reads the data, the SLI_BID returned specifies the flow that matches lua_flag2 returned by the
completed SLI_BID.

Session Status Return Values

If LUA_STATUS is the primary return code, the secondary return code can be LUA_READY, LUA_NOT_READY,
LUA_SESSION_END_REQUESTED, or LUA_INIT_COMPLETE. In addition, if LUA_STATUS is the primary return code, the
following parameters are used:

lua_sec_rc

https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

lua_sid

LUA_READY is returned after LUA_NOT_READY status, and indicates that the SLI is again ready to perform all commands.

LUA_NOT_READY indicates that the SLI session is suspended because the SLI has received either an SNA CLEAR command or
an SNA UNBIND command with an 0x02 UNBIND type (UNBIND with BIND forthcoming). Depending on what caused the
suspension, the session can be reactivated as follows:

When the suspension is caused by an SNA CLEAR, receiving an SNA SDT reactivates the session.

When an SNA UNBIND type BIND forthcoming causes suspension of the session and the SLI_OPEN that opened the
session is completed, the session is suspended until the SLI receives a BIND and SDT command. The session can also
optionally receive an STSN command. As a result, user-supplied routines issued with the initial SLI_OPEN must be re-
entered because they will be recalled.

The application can send SSCP data after a CLEAR or UNBIND type BIND forthcoming arrives and before the NOT READY
status is read. The application can send and receive SSCP data after reading a NOT READY.

When an SNA UNBIND type BIND forthcoming arrives before completion of the SLI_OPEN that opened the session,
LUA_SESSION_FAILURE (not LUA_STATUS) is the primary return code.

LUA_SESSION_END_REQUESTED indicates that the application received an SNA SHUTD from the host. The Windows LUA
application should issue SLI_CLOSE to close the session when convenient.

LUA_INIT_COMPLETE is returned only when lua_init_type for SLI_OPEN is LUA_INIT_TYPE_PRIM_SSCP. The status means that
SLI_OPEN has been processed sufficiently to allow SSCP data to now be sent or received.

Exception Requests

If a host application request unit is converted into an EXR, sense data will be returned. When an SLI_BID completes with the
returned verb parameters set as shown, an EXR conversion occurs.

Member Set to

lua_prim_rc OK (0x0000)

lua_sec_rc OK (0x00000000)

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (includes sense data)

Of the seven bytes of data in lua_peek_data, bytes 0 through 3 define the error detected. The following table indicates
possible sense data and the values of bytes 0 through 3.

Sense data Value of bytes 0–3

LUA_MODE_INCONSISTENCY 0x08090000

LUA_BRACKET_RACE_ERROR 0x080B0000

LUA_BB_REJECT_NO_RTR 0x08130000

LUA_RECEIVER_IN_TRANSMIT_MODE 0x081B0000

LUA_CRYPTOGRAPHY_FUNCTION_INOP 0x08480000

LUA_SYNC_EVENT_RESPONSE 0x10010000

LUA_RU_DATA_ERROR 0x10020000

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

LUA_RU_LENGTH_ERROR 0x10020000

LUA_INCORRECT_SEQUENCE_NUMBER 0x20010000

The information returned to bytes 3 through 6 in lua_peek_data is determined by the first 3 bytes of the initial request unit
that caused the error.

See Also
Reference
RUI_INIT
SLI_CLOSE
SLI_OPEN
SLI_RECEIVE

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

SLI_CLOSE
The SLI_CLOSE verb ends a session opened with SLI_OPEN. The LU-LU and LU-SSCP resources are released.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_CLOSE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the logical unit application (LUA) VCB. It must contain the length of the
verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_CLOSE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_CLOSE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;

};

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

lua_extension_list_offset

Not used by SLI_CLOSE and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_CLOSE and should be set to zero.

lua_data_length

Not used by SLI_CLOSE and should be set to zero.

lua_data_ptr

Not used by SLI_CLOSE and should be set to zero.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows® 2000 Server if asynchronous notification
is to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Not used by SLI_CLOSE and should be set to zero.

lua_rh

Not used by SLI_CLOSE and should be set to zero.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit. A supplied parameter used by SLI_CLOSE to specify whether the session is to be closed
immediately (ON) or closed normally (OFF). For verbs other than SLI_CLOSE, this flag must be off.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

System services control point (SSCP) expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type

Not used by SLI_CLOSE and should be set to zero.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

lua_flag2

Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Not used by SLI_CLOSE and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_CLOSE_PENDING

Secondary return code; one of the following has occurred:

A CLOSE_ABEND was still pending when another CLOSE_ABEND was issued. You can issue a CLOSE_ABEND if a
CLOSE_NORMAL is pending.

Either a CLOSE_ABEND or a CLOSE_NORMAL was still pending when a CLOSE_NORMAL was issued.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server when an LUA verb was issued.

LUA_UNEXPECTED_SNA_SEQUENCE

Secondary return code; unexpected data or commands were received from the host while SLI_OPEN was processing.

LUA_NEGATIVE_RSP_CHASE

Secondary return code; a negative response to an SNA CHASE command from the host was received by the LUA interface
while SLI_CLOSE was being processed. SLI_CLOSE continued processing to stop the session.

LUA_NEGATIVE_RSP_SHUTC

Secondary return code; a negative response to an SNA SHUTC command from the host was received by the SLI while
SLI_CLOSE was still being processed. SLI_CLOSE continued processing to stop the session.

LUA_NEGATIVE_RSP_SHUTD

Secondary return code; a negative response to an SNA RSHUTD command from the host was received by the LUA interface
while SLI_CLOSE was still being processed. SLI_CLOSE continued processing to stop the session.

LUA_RECEIVED_UNBIND

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN
error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

There are two types of SLI_CLOSE: normal and ABEND. For a normal close, lua_flag1.close_abend is set to zero. The
sequence for a normal close can be initiated either as primary (host-initiated) or secondary (requested by a Windows LUA
application). During a primary normal close, the Windows LUA interface:

Reads the SHUTD command and posts the SESSION_END_REQUESTED status to the application.

Writes the CHASE command (if necessary).

Reads and processes the CHASE command response (if necessary).

Writes the shutdown complete (SHUTC) command.

Reads and processes the SHUTC command response.

Reads and processes the CLEAR command (if necessary).

Writes the CLEAR command response (if necessary).

Reads and processes the UNBIND command.

Writes the UNBIND command response.

Stops the session.

During a secondary normal close, the Windows LUA interface:

Writes the RSHUTD command.

Reads and processes the RSHUTD command response.

Reads and processes the CLEAR command (if necessary).

Writes the CLEAR command response (if necessary).

Reads and processes the UNBIND command.

Writes the UNBIND command response.

Stops the session.

For an ABEND close, lua_flag1.close_abend is set to 1, which directs the Windows LUA interface to close the session
immediately. After SLI_CLOSE starts processing, the LU-LU connection is terminated and the SSCP is informed that the LU is
not capable of sustaining a session.

See Also
Reference
SLI_OPEN

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

SLI_OPEN
The SLI_OPEN verb transfers control of the specified logical unit (LU) to the Microsoft® Windows® logical unit application
(LUA) application. SLI_OPEN establishes a session between the system services control point (SSCP) and the specified LU, as
well as an LU-LU session.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_OPEN.

The second syntax union describes the LUA_SPECIFIC member of the VCB used by SLI_OPEN. Other union members are
omitted for clarity.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

union LUA_SPECIFIC {
 struct union SLI_OPEN open;
};

The SLI_OPEN structure contains the following nested structures and members:
struct LUA_EXT_ENTRY {
 unsigned char lua_routine_type;
 unsigned char lua_module_name[9];
 unsigned char lua_procedure_name[33];
} ;

struct SLI_OPEN {
 unsigned char lua_init_type;
 unsigned char lua_resv65;
 unsigned short lua_wait;
 struct LUA_EXT_ENTRY lua_open_extension[3];
 unsigned char lua_ending_delim;
} ;

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_OPEN.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_OPEN requires this parameter.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Supplied parameter. Specifies the offset from the start of the VCB to the extension list of user-supplied dynamic-link libraries
(DLLs). The value must be the beginning of a word boundary unless there is no extension list. In this case, the value must be
set to zero.

If this option is not used by SLI_OPEN, this member should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server and should be zero.

lua_sid

Returned parameter. Specifies the session identifier.

lua_max_length

Not used by SLI_OPEN and should be set to zero.

lua_data_length

Supplied parameter. Specifies the actual length of the data being sent.

lua_data_ptr

Pointer to the application-supplied buffer that contains the data to be sent for SLI_OPEN.

Both SNA commands and data are placed in this buffer, and they can be in an Extended Binary Coded Decimal Interchange
Code (EBCDIC) format.

When SLI_OPEN is issued, this parameter can be one of the following:

The LOGON message for the SSCP normal flow when the initialization type is secondary with an unformatted LOGON
message.

The request/response unit (RU) for INITSELF. When the initialization type is secondary with INITSELF, the necessary
data for the application is provided.

For all other open types, this field should be set to zero.

This information is provided by the Windows LUA application.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is

to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Not used by SLI_OPEN and should be set to zero.

lua_rh

Not used by SLI_OPEN and should be set to zero.

lua_flag1

Not used by SLI_OPEN and should be set to zero.

lua_message_type

Not used by SLI_OPEN and should be set to zero.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56

Supplied parameter. Reserved field used by SLI_OPEN and RUI_INIT. For more information, see the Remarks section.

lua_resv56[1]

Supplied parameter. This parameter must be set to zero.

lua_resv56[2]

Supplied parameter. Indicates whether an SLI application can access LUs configured as 3270 LUs, in addition to LUA LUs. If
this parameter is set to 1, 3270 LUs can be accessed.

lua_resv56[3]

Supplied parameter. Indicates whether incomplete reads are supported. If this parameter is set to 1, incomplete or truncated
reads are supported. For more details, see the remarks for RUI_READ.

lua_encr_decr_option

Not used by SLI_OPEN and should be set to zero.

open

The union member of LUA_SPECIFIC used by SLI_OPEN. A supplied set of parameters contained in an SLI_OPEN structure
required with SLI_OPEN.

open.lua_init_type

Supplied parameter. Defines how the LU-LU session is initialized by the Windows LUA interface.

Valid values are as follows:

LUA_INIT_TYPE_SEC_IS

LUA_INIT_TYPE_SEC_LOG

LUA_INIT_TYPE_PRIM

LUA_INIT_TYPE_PRIM_SSCP

open.lua_resv65

Reserved field.

open.lua_wait

Supplied parameter. Represents a secondary retry wait time indicating the number of seconds the Windows LUA interface is
to wait before retrying the transmission of the INITSELF or the LOGON message after the host sends any one of these
messages:

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

A negative response and the secondary return code is one of the following:

RESOURCE_NOT_AVAILABLE (0x08010000)SESSION_LIMIT_EXCEEDED (0x08050000)
SESSION_SERVICE_PATH_ERROR (0x087D0000)

Note that SLI_OPEN terminates with an error if lua_wait is set to zero and one of the preceding occurs.

A network services procedure error (NSPE) message.

A NOTIFY command, which indicates a procedure error.

open.lua_open_extension

Supplied parameter. Contains a list of application-supplied extension DLLs to process the BIND, STSN, and CRV commands.

open.open_extension.lua_routine_type

The extension routine type. Legal values are:

LUA_ROUTINE_TYPE_BIND

LUA_ROUTINE_TYPE_CRV

LUA_ROUTINE_TYPE_END (indicates end of extension list)

LUA_ROUTINE_TYPE_STSN

open.open_extension.lua_module_name

Supplied parameter. Provides the ASCII module name for the user-supplied extension DLL. The module name can be up to
eight characters long, with the remaining bytes set to 0x00.

open.open_extension.lua_procedure_name

Supplied parameter. Provides the procedure name in ASCII for the user-supplied extension DLL. The procedure name can be
up to 32 characters long, with the remaining bytes set to 0x00.

open.lua_ending_delim

The extension list delimiter.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname name was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.

https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.

The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_INVALID_OPEN_INIT_TYPE

Secondary return code; the value in the lua_init_type contained in SLI_OPEN is invalid.

LUA_INVALID_OPEN_DATA

Secondary return code; the lua_init_type for the SLI_OPEN issued is set to LUA_INIT_TYPE_SEC_IS when the buffer for data
does not have a valid INITSELF command.

LUA_INVALID_OPEN_ROUTINE_TYPE

Secondary return code; the lua_open_routine_type for the SLI_OPEN list of extension routines is invalid.

LUA_DATA_LENGTH_ERROR

Secondary return code; the application did not provide user-supplied data required by the verb issued. Note that when
SLI_SEND is issued for an SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with
secondary initialization, data is required.

LUA_INVALID_SLI_ENCR_OPTION

Secondary return code; the lua_encr_decr_option parameter was set to 128 in SLI_OPEN, which is not supported for the
encryption/decryption processing option.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server or SNA Server when an LUA verb was
issued.

LUA_UNEXPECTED_SNA_SEQUENCE

Secondary return code; unexpected data or commands were received from the host while SLI_OPEN was processing.

LUA_NEG_RSP_FROM_BIND_ROUTINE

Secondary return code; the user-supplied SLI_BIND routine responded negatively to the BIND. SLI_OPEN ended
unsuccessfully.

LUA_NEG_RSP_FROM_STSN_ROUTINE

Secondary return code; the user-supplied SLI STSN routine responded negatively to the STSN. SLI_OPEN ended
unsuccessfully.

LUA_PROCEDURE_ERROR

Secondary return code; a host procedure error is indicated by the receipt of an NSPE or NOTIFY message. The return code is
posted to SLI_OPEN when the retry option is not used. To use the reset option, set lua_wait to a value other than zero. The
LOGON or INITSELF command will be retried until the host is ready or until you issue SLI_CLOSE.

LUA_RECEIVED_UNBIND

https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_RESOURCE_NOT_AVAILABLE

Secondary return code; the logical unit, physical unit, link, or link station specified in the request unit is unavailable. This
return code is posted to SLI_OPEN when a resource is unavailable unless you use the retry option.

To use the retry option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the
host is ready or until you issue SLI_CLOSE.

LUA_SESSION_LIMIT_EXCEEDED

Secondary return code; the session requested was not activated because an NAU is at its session limit. This SNA sense code
applies to the following requests: BID, CINIT, INIT, and ACTDRM.

The code will be posted to SLI_OPEN when an NAU is at its limit, unless you use the RETRY option.

To use the reset option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the
host is ready or until you issue SLI_CLOSE.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_NEGOTIABLE_BIND_ERROR

Secondary return code; a negotiable BIND was received, which is only allowed by the SLI when a user-supplied SLI_BIND
routine is provided with SLI_OPEN.

LUA_BIND_FM_PROFILE_ERROR

Secondary return code; only file management header profiles 3 and 4 are supported by the LUA interface. A file management
profile other than 3 or 4 was found on the BIND.

LUA_BIND_TS_PROFILE_ERROR

Secondary return code; only Transmission Service (TS) profiles 3 and 4 are supported by the LUA interface. A TS profile other
than 3 or 4 was found on the BIND.

LUA_BIND_LU_TYPE_ERROR

Secondary return code; only LU 0, LU 1, LU 2, and LU 3 are supported by LUA. An LU other than 0, 1, 2, or 3 was found.

LUA_SSCP_LU_SESSION_NOT_ACTIVE

Secondary return code; the required SSCP-LU is inactive. Specific sense code information is in bytes 2 and 3. Valid settings
are 0x0000, 0x0001, 0x0002, 0x0003, and 0x0004.

LUA_SESSION_SERVICES_PATH_ERROR

Secondary return code; a request for session services cannot be rerouted to an SSCP-SSCP session path. Specific sense code
information in bytes 2 and 3 gives more information about why the request cannot be rerouted.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_SESSION_ALREADY_OPEN

Secondary return code; a session is already open for the LU name specified in SLI_OPEN.

LUA_INVALID_PROCESS

https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

Secondary return code; the session for which an LUA verb was issued is unavailable because another process owns the
session.

LUA_LINK_NOT_STARTED

Secondary return code; the LUA was not able to activate the data link during initialization of the session.

LUA_INVALID_ADAPTER

Secondary return code; the configuration for the data link control (DLC) is in error, or the configuration file is corrupted.

LUA_ENCR_DECR_LOAD_ERROR

Secondary return code; an unexpected return code was received from the OS/2 DosLoadModule function while attempting
to load the user-provided encryption or decryption dynamic link module.

LUA_ENCR_DECR_PROC_ERROR

Secondary return code; an unexpected return code was received from the OS/2 DosGetProcAddr function while attempting
to get the procedure address within the user-provided encryption or decryption dynamic link module.

LUA_NEG_NOTIFY_RSP

Secondary return code; the SSCP responded negatively to a NOTIFY request issued indicating that the secondary LU was
capable of a session. The half-session component that received the request understood and supported the request but could
not execute it.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the SLI was attempting to stop the session. This LU is unavailable for
any LUA requests until an activate logical unit (ACTLU) is received from the host.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process was canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN
error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your

application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

For each SLI_OPEN, the Windows LUA interface:

Starts the communication session.

Reads and verifies a BIND command from the host, and passes it to the application if a BIND extension routine is
supplied.

Writes a BIND response.

Reads and processes the STSN command and passes it to the application if a BIND extension is supplied (if necessary).

Writes the STSN response (if necessary).

Reads the CRV command (if necessary).

Writes the CRV response (if necessary).

Reads and processes the SDT command.

Writes the SDT response.

The Windows LUA interface does the following additional functions for sessions that issue SLI_OPEN with the open type set to
LUA_INIT_TYPE_SEC_IS or LUA_INIT_TYPE_SEC_LOG:

Writes an INITSELF or an unformatted LOGON message.

Reads and processes an INITSELF response or LOGON message response.

All SNA message traffic is administered by SLI_OPEN through the SDT command response.

To choose a certain LU configured for Windows LUA, the application sets lua_luname to the LU name in ASCII, padded with
trailing spaces if necessary.

When SLI_OPEN is posted with LUA_OK in the lua_prim_rc parameter, SLI_OPEN successfully completed and the LU-LU data-
flow session was established. The application can now issue SLI_BID, SLI_CLOSE, SLI_PURGE, SLI_RECEIVE, and SLI_SEND.

When SLI_OPEN is posted with a primary return code other than LUA_OK or LUA_IN_PROGRESS, the command did not
successfully establish a session.

When using SLI_OPEN, a Windows LUA application must provide a session initialization type. Valid types are:

Secondary with INITSELF

Secondary with an Unformatted LOGON Message

Primary Waiting for a BIND Command

Primary with SSCP Access

Secondary with INITSELF

Secondary with an Unformatted LOGON Message

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745703(v=bts.10).aspx

Primary Waiting for a BIND Command

Primary with SSCP Access

BIND, CRV, and STSN Routines

BIND Example

Recovering from SESSION_FAILURE

Ending a Pending SLI_OPEN

See Also
Reference
RUI_INIT
SLI_OPEN
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa771478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771102(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771946(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754478(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770544(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

Secondary with INITSELF
 

To initialize a session by having the secondary issue an INITSELF command, set open.lua_init_type to LUA_INIT_TYPE_SEC_IS.
When this type of session initialization is chosen, the application has to format and provide the INITSELF command. The
address of the INITSELF command is specified by lua_data_ptr. The actual length of the INITSELF command is specified by
lua_data_length.

Secondary with an Unformatted LOGON Message
 

To initialize a session by having the secondary issue an unformatted LOGON message, set open.lua_init_type to
LUA_INIT_TYPE_SEC_LOG. The length of the users EBCDIC LOGON message is then specified in lua_data_length. The address
of the users EBCDIC LOGON message length is specified by lua_data_ptr.

Primary Waiting for a BIND Command
 

To initialize a session by having the secondary wait for the primary to issue a BIND and SDT, set open.lua_init_type to
LUA_INIT_TYPE_PRIM. Until the host begins a session with the Windows logical unit application (LUA) application using the
BIND command followed by an SDT command, the SLI_OPEN issued stays IN_PROGRESS.

Primary with SSCP Access
 

To initialize a session by having the Session Level Interface (SLI) wait for a BIND and SDT but allow system services control
point (SSCP) access, set open.lua_init_type to LUA_INIT_TYPE_PRIM_SSCP. Rather than sending commands to the host to
begin a session, the SLI enables the Windows logical unit application (LUA) application to issue SLI_SEND and SLI_RECEIVE for
the SSCP normal flow only. This allows the INITSELF commands or LOGON messages and responses to be transmitted
between the Windows LUA application and the host. The application can have more than one INITSELF and LOGON message.
For this type of session only, other SLI verbs can be issued before SLI_OPEN completes. When issuing SLI_SEND, an
application should not specify any flow flag unless the application is sending a response, as specified in the
lua_message_type parameter of SLI_OPEN. To obtain the INIT_COMPLETE status, the application must first issue SLI_OPEN,
and then issue either SLI_BID or SLI_RECEIVE. The INIT_COMPLETE status notifies the application that the SLI_SEND and
SLI_RECEIVE verbs for SSCP normal flow data can be issued.

https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx

BIND, CRV, and STSN Routines
For BIND and STSN routines supplied by the application, the names of dynamic-link libraries (DLLs) and the entry points for
procedures are passed in the SLI_OPEN verbs verb control block (VCB). During SLI_OPEN, the BIND and STSN routines are
called if the appropriate SNA request is received. When a BIND routine is not supplied by the application, the Session Level
Interface (SLI) performs a minimal check of the BIND commands and responds as necessary. If no STSN routine is supplied and
an STSN request arrives, a positive response is issued by the SLI. If a CRV request arrives, a negative response is issued by the
SLI.

Names for BIND and STSN routines are provided as extensions of the SLI_OPEN verbs VCB. The lua_extension_list_offset
parameter provides the offset from the start of the VCB to the first name in the extension list.

The function prototype for a user-defined BIND or STSN routine on Microsoft Windows Server 2003 or Windows 2000 is as
follows:

Syntax

Remarks

The lpVcb parameter is a pointer to a logical unit application (LUA) VCB.

 lpVcb

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

BIND Example
The following example illustrates checking the incoming BIND image using these features of SLI_OPEN.

Note that for Microsoft Visual C++ 4.0 or later, and for Microsoft Windows Server 2003 or Windows 2000, the function
prototype should be:

On Windows Server 2003 or Windows 2000, the WINAPI macro equates to _STDCall.

The BIND routine has access to the logical unit application (LUA) verb control block (VCB) passed to it. The BIND routine should
validate the BIND and indicate the appropriate Session Level Interface (SLI) primary and secondary return code in the LUA verb
record. Also, the routine may indicate the primary and secondary request/response unit (RU) sizes supported by the SLI
program by setting bytes 10 and 11 in the common.lua_data_ptr field (where the BIND command is indicated).

The following are the Visual C++ compiler options for the module containing the callback:

The following is the code generated for the callback:

The following is the code generated by SLI to call this callback:

The following is the client internal trace showing WINSLI detecting the user provided bind validation callback:

lua_vcb.specific.open.lua_open_extension[0].lua_routine_type =
 LUA_ROUTINE_TYPE_BIND;
strcpy(lua_vcb.specific.open.lua_open_extension[0].lua_module_name,
 "WINSLI32");
strcpy(lua_vcb.specific.open.lua_open_extension[0].lua_procedure_name,
 "BindValidation");
lua_vcb.specific.open.lua_open_extension[1].lua_routine_type =
 LUA_ROUTINE_TYPE_END;

VOID WINAPI BindValidation (LUA_VERB_RECORD FAR * pVerb);

 /FA -c -Zle -W3 -WX -Ge -Gy -Gz -Ox -Zd
 -DCONDITION_HANDLING -DSTD_CALL
 -Di386=1 -D_X86_ -DNT_UP -DWIN32 -DDEVL
 -D_DLL -D_MT -DWIN32_SUPPORT

PUBLIC _BindValidation@4
; COMDAT _BindValidation@4
_TEXT SEGMENT
 _pVerb$ = 8
 _BindValidation@4 PROC NEAR ; COMDAT

 // pVerb->common.lua_prim_rc = LUA_STATE_CHECK;
 mov eax, DWORD PTR _pVerb$[esp-4]
 mov WORD PTR [eax+4], 512 ; 00000200H
 ret 4
_BindValidation@4 ENDP
_TEXT ENDS

 // (*aSCB->bind_rtn)(sliVCB);
 push ebp
 call DWORD PTR [ebx+188]
 // note there is no ADD ESP,4 following the call

|00000157.000000f7 OUDMD Opening User DLL Modules

The following is client internal trace showing the bind validation callback:

The following is an API trace to show the bind validation error:

|00000157.000000f7 OUDMD Opening a Bind Routine
|00000157.000000f7 OUDMD Opening DLL = WINSLI32
|00000157.000000f7 OUDMD Loading Routine = BindValidation

|00000157.0000015c CLUAD Calling BIND Routine
|00000157.0000015c CLUAD Return from BIND routine, prc=512
|00000157.0000015c CLUAD Returned With Error From Routine
|00000157.0000015c FrRUI Freeing RUI vcb = 0x14E424
|00000157.0000015c BINDP USER BIND ROUTINE FAILED

000015c SLI -- 11:11:52.28
000015c SLI SLI_OPEN post
000015c SLI SESSION_FAILURE - NEG_RSP_FROM_BIND_ROUTINE
000015c SLI ---- Verb Parameter Block at address 00405150 ----
000015c SLI 52004900 000F0000 00000039 01000000
 <R.I........9....>
000015c SLI 00000000 4C553220 20202020 48000000
 <....LU2 H...>
000015c SLI 88E01400 00000400 C0904000 F4000000
 <h.........@.4...>
000015c SLI 00000000 00000000 00000040 00000000
 <...........@....>
000015c SLI 00000000 02000000 0157494E 534C4933
 <.........WINSLI3>
000015c SLI 32004269 6E645661 6C696461 74696F6E
 <2.BindValidation>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 00000000 00000000
 <................>
000015c SLI 00000000 00000000 0000
 <.......... >
000015c SLI ---- Data at address 004090C0 ----
000015c SLI 86998584
 <fred >

Recovering from SESSION_FAILURE
 

If the SLI_OPEN completes with the primary return code of SESSION_FAILURE, the Windows logical unit application (LUA)
interface enables you to reissue SLI_OPEN without issuing SLI_CLOSE.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

Ending a Pending SLI_OPEN
 

To end a pending SLI_OPEN, issue SLI_CLOSE with lua_flag2.close_abend set to ON.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

SLI_PURGE
The SLI_PURGE verb cancels SLI_RECEIVE verbs issued with a wait condition.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_PURGE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the logical unit application (LUA) VCB. It must contain the length of the
verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_PURGE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_PURGE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

lua_extension_list_offset

Not used by SLI_PURGE and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server or SNA Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_PURGE and should be set to zero.

lua_data_length

Not used by SLI_PURGE and should be set to zero.

lua_data_ptr

When SLI_PURGE is issued, this parameter points to the location of the SLI_RECEIVE verbs VCB that is to be canceled.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows® 2000 Server if asynchronous notification
is to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Not used by SLI_PURGE and should be set to zero.

lua_rh

Not used by SLI_PURGE and should be set to zero.

lua_flag1

Not used by SLI_PURGE and should be set to zero.

lua_message_type

Not used by SLI_PURGE and should be set to zero.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Not used by SLI_PURGE and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for the Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_NO_RECEIVE_TO_PURGE

Secondary return code; no SLI_RECEIVE was outstanding when you issued SLI_PURGE. One of two situations caused the
problem:

SLI_RECEIVE completed before SLI_PURGE finished processing. You can change the application to take care of this
problem because it is not an error condition.

The lua_data_ptr parameter does not correctly point to the SLI_RECEIVE you want to purge.

LUA_SLI_PURGE_PENDING

Secondary return code; an SLI_PURGE was still active when another SLI_PURGE was issued. Only one SLI_PURGE can be
active at a time.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server or SNA Server when an LUA verb was
issued.

https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

LUA_NOT_READY

Secondary return code; one of the following caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, which indicates a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after
the SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the
primary return code is SESSION_FAILURE, not LUA_STATUS.

The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INVALID_PROCESS

Secondary return code; the session for which a Request Unit Interface (RUI) verb was issued is unavailable because another
OS/2 process owns the session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the RUI was attempting to stop the session. This LU is unavailable for
any LUA requests until an activate logical unit (ACTLU) is received from the host.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process was canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN
error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

SLI_PURGE cancels SLI_RECEIVE commands with a wait condition.

Typically, SLI_PURGE is issued if SLI_RECEIVE takes too long to complete. To cancel an SLI_RECEIVE, lua_data_ptr has to point to
the SLI_RECEIVE VCB to cancel. The primary return code of the SLI_RECEIVE will be set to LUA_CANCELED when SLI_PURGE
succeeds in canceling SLI_RECEIVE.

See Also
Reference
RUI_INIT
SLI_OPEN
SLI_PURGE
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

SLI_RECEIVE
The SLI_RECEIVE verb receives responses, SNA commands, and data into a Microsoft® Windows® logical unit application
(LUA) applications buffer. SLI_RECEIVE also provides the current status of the session to the Windows LUA application.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_RECEIVE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_RECEIVE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_RECEIVE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

lua_extension_list_offset

Not used by SLI_RECEIVE and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server or SNA Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Specifies the length of received buffer for RUI_READand SLI_RECEIVE.

lua_data_length

Returned parameter. Specifies the length of data returned in the receive buffer.

lua_data_ptr

Pointer to the application-supplied buffer that is to receive the data from an SLI_RECEIVE verb. Both SNA commands and
data are placed in this buffer, and they can be in an Extended Binary Coded Decimal Interchange Code (EBCDIC) format.

When SLI_RECEIVE is issued, this parameter points to the location to receive the data from the host.

lua_post_handle

Supplied parameter. Used under Microsoft® Windows Server™ 2003 or Windows 2000 Server if asynchronous notification
is to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are
returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x0 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. Its subparameters are
as follows:

lua_rh.rri

Request-response indicator, one bit.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx

lua_rh.ruc

Request/response unit (RU) category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is
used by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. Its subparameters are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

System services control point (SSCP) expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set lua_flag1.bid_enable to 1 to re-enable the most recent SLI_BID (equivalent to issuing SLI_BID again with exactly the
same parameters as before), or set it to zero if you do not want to re-enable SLI_BID. Note that re-enabling the previous
SLI_BID reuses the VCB originally allocated for it, so this VCB must not have been freed or modified.

Set lua_flag1.nowait to 1 to indicate that you want SLI_RECEIVE to return immediately whether or not data is available to be
read, or set it to zero if you want the verb to wait for data before returning.

Set one or more of the following flags to 1 to indicate from which message flow to read data:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available is returned. The order of priorities (highest first) is: SSCP
expedited, LU expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2 group is set to indicate from which
flow the data was read.

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. Returned parameter. Specifies the type of SNA
message indicated to SLI_RECEIVE. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Returned by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID,
SLI_RECEIVE, and SLI_SEND. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Not used by SLI_RECEIVE and should be set to zero.

lua_encr_decr_option

Not used by SLI_RECEIVE and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_BID_VERB_SEGMENT_ERROR

Secondary return code; the buffer with the SLI_BID VCB was released before the SLI_RECEIVE with lua_flag1.bid_enable
set to 1 was issued.

LUA_NO_PREVIOUS_BID_ENABLED

Secondary return code; SLI_BID was not issued prior to issuing SLI_RECEIVE with lua_flag1.bid_enable.

LUA_BID_ALREADY_ENABLED

Secondary return code; SLI_RECEIVE was issued with lua_flag1.bid_enable when SLI_BID was already active.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND to send an SNA response, set only one lua_flag1 flow flag.

When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_RECEIVE_ON_FLOW_PENDING

Secondary return code; an SLI_RECEIVE was still outstanding when this application issued another SLI_RECEIVE for an SNA
flow.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RUI_WRITE_FAILURE

Secondary return code; an unexpected error was posted to the SLI by RUI_WRITE.

LUA_RECEIVED_UNBIND

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_RECEIVER_IN_TRANSMIT_MODE

Secondary return code; either resources needed to handle normal flow data were not available or the state of the half-duplex
contention was not received when a normal-flow request was received. The result is a race condition. This SNA sense code is

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

also an exception request sense code.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_CHAINING_ERROR

Secondary return code; the sequence of the chain indicator settings is in error. An invalid request header or request unit for
the receivers current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receivers current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receivers current session control or data flow control state was found. Delivery
to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a data flow control (DFC) or function management data (FMD) request was received from a half-
session that sent either a SHUTC command or QC command, and the DFC or FMD request has not responded to a RELQ
command. An invalid request header or request unit for the receivers current session control or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data
flow control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request
unit for the received current session control or data flow control state was found. Delivery to the half-session component
was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_RSP_PROTOCOL_ERROR

Secondary return code; a violation of the response protocol was found in the response received from the primary half-
session.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was

prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a NO RESPONSE. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation.
The BIND options chosen previously or the architectural rules were violated by the request header parameter values.
Delivery to the half-session component was prevented. The errors are not dependent on the current session state. The
senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to

the half-session component was prevented. The errors are not dependent on the current session state. The senders failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_RU_CATEGORY

Secondary return code; the request unit category indicator was incorrectly specified. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The
errors are not dependent on the current session state. The senders failure to enforce session rules may have caused the
errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_DATA_TRUNCATED

Secondary return code; the data was truncated because the data received was longer than the buffer length specified in
lua_max_length.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.

The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.

The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

LUA_NO_DATA

Secondary return code; no data was available to read when SLI_RECEIVE containing a no wait parameter was issued.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server or SNA Server when an LUA verb was
issued.

LUA_NOT_READY

Secondary return code; one of the following has caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, which indicates a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after
the SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the
primary return code is LUA_SESSION_FAILURE, not LUA_STATUS.

The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for
any LUA requests until an activate logical unit (ACTLU) is received from the host.

LUA_RECEIVE_CORRELATION_TABLE_FULL

Secondary return code; the session receive correlation table for the flow requested reached its capacity.

LUA_NEGATIVE_RESPONSE

Primary return code; either the LUA sent a negative response to a message received from the primary logical unit (PLU)
because an error was found in the message, or the application responded negatively to a chain for which the end-of-chain
has arrived.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; the LUA does not support the requested function. A control character, an RU parameter, or a
formatted request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receivers current session control or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-
session component was prevented.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a
positive response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of
the sense data contains the request code. No user data exists for this sense code. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_INVALID_SC_OR_NC_RH

Secondary return code; the RH of an SC or NC request was invalid.

LUA_PACING_NOT_SUPPORTED

Secondary return code; the request contained a pacing indicator when support of pacing for this session does not exist for
the receiving half-session or boundary function half-session. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_NAU_INOPERATIVE

Secondary return code; the network addressable unit is not able to process responses or requests. Delivery to the receiver
could not take place for one of the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session, it usually means there is no longer a valid path to the session partner.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_PURGED

Secondary return code; SLI_PURGE was issued and canceled SLI_RECEIVE.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_CANCEL_COMMAND_RECEIVED

Secondary return code; the host sent an SNA CANCEL command to cancel the data chain currently being received by
SLI_RECEIVE.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_STATUS

Primary return code; the secondary return code contains SLI status information for the application.

LUA_READY

Secondary return code; following a NOT READY status, this status is issued to notify you that the SLI is ready to process
commands.

LUA_NOT_READY

Secondary return code; the SLI session is temporarily suspended for the following reason:

An SNA UNBIND type 0x02 command was received, which means a new BIND is coming. If the UNBIND type 0x02 is

https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and
SDT flows are received. These routines are re-entrant because they have to be called again. The session resumes after
the SLI processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the
primary return code is session-failure, not status.

The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INIT_COMPLETE

Secondary return code; the LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue
SLI_OPEN with lua_open_type_prim_sscp receive this status on SLI_RECEIVE or SLI_BID.

LUA_SESSION_END_REQUESTED

Secondary return code; the LUA interface received an SNA SHUTD from the host, which means the host is ready to shut
down the session.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN
error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_RECEIVE receives responses, SNA commands, and request unit data from the host. SLI_RECEIVE also provides the status
of the session to the Windows LUA application. An SLI_OPEN request must complete before SLI_RECEIVE can be issued.
However, if SLI_OPEN is issued with lua_init_type set to LUA_INIT_TYPE_PRIM_SSCP, an SLI_RECEIVE over the SSCP normal
flow can be issued as soon as SLI_OPEN returns an IN_PROGRESS.

Data is received by the application in one of four session flows. The four session flows, from highest to lowest priority are:

SSCP expedited

LU expedited

SSCP normal

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

LU normal

The data flow type that SLI_RECEIVE will process is specified in lua_flag1. The application can also specify whether it wants to
look at more than one type of data flow. When multiple flow bits are set, the highest priority is received first. When
SLI_RECEIVE completes processing, lua_flag2 indicates the specific type of flow for which data has been received by the
Windows LUA application.

If SLI_BID successfully completes before SLI_RECEIVE is issued, the Windows LUA interface can be instructed to reuse the last
SLI_BID verbs VCB. To do this, issue SLI_RECEIVE with lua_flag1.bid_enable set to 1.

When using lua_flag1.bid_enable, the SLI_BID storage must not be freed because the last SLI_BID verbs VCB is used. Also, when
using lua_flag1.bid_enable, the successful completion of SLI_BID will be posted.

If SLI_RECEIVE is issued with lua_flag1.nowait when no data is available to receive, LUA_NO_DATA will be the secondary return
code set by the Windows LUA interface.

Session Status Return Values

If LUA_STATUS is the primary return code, the secondary return code can be one of the following:

LUA_READY

LUA_NOT_READY

LUA_SESSION_END_REQUESTED

LUA_INIT_COMPLETE

In addition, if LUA_STATUS is the primary return code, the following parameters are used:

lua_sec_rc

lua_sid

LUA_READY is returned after an LUA_NOT_READY status and indicates that the SLI is again ready to perform all commands.

LUA_NOT_READY indicates that the SLI session is suspended because the SLI has received either an SNA CLEAR command or
an SNA UNBIND command with an 0x02 UNBIND type (UNBIND with BIND forthcoming). Depending on what caused the
suspension, the session can be reactivated as follows:

When the suspension is caused by an SNA CLEAR, receiving an SNA SDT reactivates the session.

When an SNA UNBIND type BIND forthcoming causes suspension of the session and the SLI_OPEN that opened the
session is completed, the session is suspended until the SLI receives a BIND and SDT command. The session can also
optionally receive an STSN command. As a result, user-supplied routines issued with the initial SLI_OPEN must be re-
entered because they will be recalled.

The application can send SSCP data after a CLEAR or UNBIND type BIND forthcoming arrives and before the NOT_READY
status is read. The application can send and receive SSCP data after reading a NOT_READY.

When an SNA UNBIND type BIND forthcoming arrives before completion of the SLI_OPEN that opened the session,
LUA_SESSION_FAILURE (not LUA_STATUS) is the primary return code.

LUA_SESSION_END_REQUESTED indicates that the application received an SNA SHUTD from the host. The Windows LUA
application should issue SLI_CLOSE to close the session when convenient.

LUA_INIT_COMPLETE is returned only when lua_init_type for SLI_OPEN is LUA_INIT_TYPE_PRIM_SSCP. The status means that
the SLI_OPEN has been processed sufficiently to allow SSCP data to now be sent or received.

Exception Requests

If a host application request unit is converted into an EXR, sense data will be returned. When SLI_BID completes with the
returned verb parameters set as shown, an EXR conversion occurs.

Member Set to

lua_prim_rc OK (0x0000)

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx

lua_sec_rc OK (0x00000000)

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (includes sense data)

Of the seven bytes of data in lua_peek_data, bytes 0 through 3 define the error detected. The following table indicates
possible sense data and the values of bytes 0 through 3.

Sense data Value of bytes 0–3

LUA_MODE_INCONSISTENCY 0x08090000

LUA_BRACKET_RACE_ERROR 0x080B0000

LUA_BB_REJECT_NO_RTR 0x08130000

LUA_RECEIVER_IN_TRANSMIT_MODE 0x081B0000

LUA_CRYPTOGRAPHY_FUNCTION_INOP 0x08480000

LUA_SYNC_EVENT_RESPONSE 0x10010000

LUA_RU_DATA_ERROR 0x10020000

LUA_RU_LENGTH_ERROR 0x10020000

LUA_INCORRECT_SEQUENCE_NUMBER 0x20010000

The information returned to bytes 3 through 6 in lua_peek_data is determined by the first three bytes of the initial request
unit that caused the error.

See Also
Reference
RUI_INIT
RUI_PURGE
RUI_READ
RUI_WRITE
SLI_BID
SLI_CLOSE
SLI_OPEN
SLI_PURGE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

SLI_RECEIVE_EX
The SLI_RECEIVE_EX verb receives responses, SNA commands, and data into a Microsoft® Windows® logical unit application
(LUA) applications buffer. SLI_RECEIVE_EX also provides the current status of the session to the Windows LUA application.

The SLI_RECEIVE_EX verb also supports inbound chaining. The maximum length of data that can be received by a single verb is
4,294,967,295 bytes. This is compared to a maximum of 65,535 bytes that can be received by the SLI_RECEIVE verb.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_RECEIVE_EX.

The second syntax union describes the LUA_SPECIFIC member of the VCB used by SLI_RECEIVE_EX. Other union members
are omitted for clarity.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_RECEIVE_EX.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};
union LUA_SPECIFIC {
 struct SLI_RECEIVE_EX_SPECIFIC {
 unsigned long lua_data_length_ex;
 unsigned long lua_max_length_ex;
 };
};

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_RECEIVE_EX only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Not used by SLI_RECEIVE_EX and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

This supplied parameter is reserved and must be set to zero.

The maximum length of data returned in a receive buffer must be set in the lua_max_length_ex parameter.

lua_data_length

This parameter is reserved and must be set to zero.

The length of data returned in the receive buffer is set in the lua_data_length_ex parameter.

lua_data_ptr

Pointer to the application-supplied buffer that is to receive the data from an SLI_RECEIVE_EX verb. Both SNA commands
and data are placed in this buffer, and they can be in an Extended Binary Coded Decimal Interchange Code (EBCDIC) format.

When SLI_RECEIVE_EX is issued, this parameter points to the location to receive the data from the host.

lua_post_handle

Supplied parameter. Used under Microsoft® Windows Server™ 2003 or Windows 2000 Server if asynchronous notification
is to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are
returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. Its subparameters are
as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is
used by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE_EX, and SLI_SEND_EX. Its subparameters are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

System services control point (SSCP) expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set lua_flag1.bid_enable to 1 to re-enable the most recent SLI_BID (equivalent to issuing SLI_BID again with exactly the
same parameters as before), or set it to zero if you do not want to re-enable SLI_BID. Note that re-enabling the previous
SLI_BID reuses the VCB originally allocated for it, so this VCB must not have been freed or modified.

Set lua_flag1.nowait to 1 to indicate that you want SLI_RECEIVE_EX to return immediately whether or not data is available to
be read, or set it to zero if you want the verb to wait for data before returning.

Set one or more of the following flags to 1 to indicate from which message flow to read data:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available is returned. The order of priorities (highest first) is: SSCP
expedited, LU expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2 group is set to indicate from which
flow the data was read.

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. Returned parameter. Specifies the type of SNA
message indicated to SLI_RECEIVE_EX. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Returned by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID,
SLI_RECEIVE, and SLI_SEND_EX. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Not used by SLI_RECEIVE and should be set to zero.

lua_encr_decr_option

Not used by SLI_RECEIVE and should be set to zero.

lua_max_length_ex

Specifies the length of received buffer for SLI_RECEIVE_EX.

lua_data_length_ex

The union member of LUA_SPECIFIC used by SLI_RECEIVE_EX. Returned parameter. Specifies the length of data returned in
the receive buffer.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745443(v=bts.10).aspx

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_BID_VERB_SEGMENT_ERROR

Secondary return code; the buffer with the SLI_BID VCB was released before the SLI_RECEIVE_EX with
lua_flag1.bid_enable set to 1 was issued.

LUA_NO_PREVIOUS_BID_ENABLED

Secondary return code; SLI_BID was not issued prior to issuing SLI_RECEIVE_EX with lua_flag1.bid_enable.

LUA_BID_ALREADY_ENABLED

Secondary return code; SLI_RECEIVE_EX was issued with lua_flag1.bid_enable when SLI_BID was already active.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND_EX_sna_SLI_SEND_EX_lua to send an SNA response, set only one lua_flag1 flow flag.

When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_RECEIVE_ON_FLOW_PENDING

Secondary return code; an SLI_RECEIVE_EX was still outstanding when this application issued another SLI_RECEIVE_EX for
an SNA flow.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RUI_WRITE_FAILURE

Secondary return code; an unexpected error was posted to the SLI by RUI_WRITE.

LUA_RECEIVED_UNBIND

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_RECEIVER_IN_TRANSMIT_MODE

Secondary return code; either resources needed to handle normal flow data were not available or the state of the half-duplex
contention was not received when a normal-flow request was received. The result is a race condition. This SNA sense code is
also an exception request sense code.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, a request/response unit (RU)
parameter, or a formatted request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_CHAINING_ERROR

Secondary return code; the sequence of the chain indicator settings is in error. An invalid request header or request unit for
the receivers current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receivers current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receivers current session control or data flow control state was found. Delivery
to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a data flow control (DFC) or function management data (FMD) request was received from a half-
session that sent either a SHUTC command or QC command, and the DFC or FMD request has not responded to a RELQ
command. An invalid request header or request unit for the receivers current session control or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data
flow control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request
unit for the received current session control or data flow control state was found. Delivery to the half-session component
was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_RSP_PROTOCOL_ERROR

Secondary return code; a violation of the response protocol was found in the response received from the primary half-
session.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a NO RESPONSE. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was

prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation.
The BIND options chosen previously or the architectural rules were violated by the request header parameter values.
Delivery to the half-session component was prevented. The errors are not dependent on the current session state. The
senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to
the half-session component was prevented. The errors are not dependent on the current session state. The senders failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_RU_CATEGORY

Secondary return code; the request unit category indicator was incorrectly specified. The BIND options chosen previously or
the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The
errors are not dependent on the current session state. The senders failure to enforce session rules may have caused the
errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_UNSUCCESSFUL

Primary return code; the verb record supplied was valid but the verb did not complete successfully.

LUA_DATA_TRUNCATED

Secondary return code; the data was truncated because the data received was longer than the buffer length specified in
lua_max_length_ex.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE_EX or SLI_SEND_EX is not a read/write data segment as required.

The supplied data segment for SLI_RECEIVE_EX is not as long as that provided in lua_max_length_ex.

The supplied data segment for SLI_SEND_EX is not as long as that provided in lua_data_length_ex.

LUA_NO_DATA

Secondary return code; no data was available to read when SLI_RECEIVE_EX containing a no wait parameter was issued.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server or SNA Server when an LUA verb was
issued.

LUA_NOT_READY

Secondary return code; one of the following has caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, which indicates a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and SDT
flows are received. These routines are re-entrant because they have to be called again. The session resumes after the SLI
processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary return
code is LUA_SESSION_FAILURE, not LUA_STATUS.

The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for
any LUA requests until an activate logical unit (ACTLU) is received from the host.

LUA_RECEIVE_CORRELATION_TABLE_FULL

Secondary return code; the session receive correlation table for the flow requested reached its capacity.

LUA_NEGATIVE_RESPONSE

Primary return code; either the LUA sent a negative response to a message received from the primary logical unit (PLU)
because an error was found in the message, or the application responded negatively to a chain for which the end-of-chain
has arrived.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_FUNCTION_NOT_SUPPORTED

https://msdn.microsoft.com/en-us/library/aa745443(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

Secondary return code; the LUA does not support the requested function. A control character, an RU parameter, or a
formatted request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow DFC or FMD
request. An invalid request header or request unit for the receivers current session control or data flow control state was
found. Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-
session component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a
positive response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of
the sense data contains the request code. No user data exists for this sense code. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_INVALID_SC_OR_NC_RH

Secondary return code; the RH of an SC or NC request was invalid.

LUA_PACING_NOT_SUPPORTED

Secondary return code; the request contained a pacing indicator when support of pacing for this session does not exist for
the receiving half-session or boundary function half-session. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_NAU_INOPERATIVE

Secondary return code; the network addressable unit is not able to process responses or requests. Delivery to the receiver
could not take place for one of the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session, it usually means there is no longer a valid path to the session partner.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_PURGED

Secondary return code; SLI_PURGE was issued and canceled SLI_RECEIVE.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_CANCEL_COMMAND_RECEIVED

Secondary return code; the host sent an SNA CANCEL command to cancel the data chain currently being received by
SLI_RECEIVE_EX.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_STATUS

https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx

Primary return code; the secondary return code contains SLI status information for the application.

LUA_READY

Secondary return code; following a NOT READY status, this status is issued to notify you that the SLI is ready to process
commands.

LUA_NOT_READY

Secondary return code; the SLI session is temporarily suspended for the following reason:

An SNA UNBIND type 0x02 command was received, which means a new BIND is coming. If the UNBIND type 0x02 is
received after the beginning SLI_OPEN is complete, the session is suspended until a BIND, optional CRV and STSN, and SDT
flows are received. These routines are re-entrant because they have to be called again. The session resumes after the SLI
processes the SDT command. If the UNBIND type 0x02 is received while the SLI_OPEN is still processing, the primary return
code is session-failure, not status.

The receipt of an SNA CLEAR caused the suspension. Receipt of an SNA SDT will cause the session to resume.

LUA_INIT_COMPLETE

Secondary return code; the LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue
SLI_OPEN with lua_open_type_prim_sscp receive this status on SLI_RECEIVE or SLI_BID.

LUA_SESSION_END_REQUESTED

Secondary return code; the LUA interface received an SNA SHUTD from the host, which means the host is ready to shut
down the session.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_RECEIVE_EX receives responses, SNA commands, and request unit data from the host. SLI_RECEIVE_EX also provides the
status of the session to the Windows LUA application.

The difference between SLI_RECEIVE_EX and SLI_RECEIVE is that the SLI_RECEIVE_EX verb supports inbound chaining and can
receive up to 4,295 kilobytes (KB) in a single verb request. In contrast, SLI_RECEIVE is limited to receiving up to 64 KB in a verb
request.

An SLI_OPEN request must complete before SLI_RECEIVE_EX can be issued. However, if SLI_OPEN is issued with lua_init_type
set to LUA_INIT_TYPE_PRIM_SSCP, an SLI_RECEIVE_EX over the SSCP normal flow can be issued as soon as SLI_OPEN returns
an IN_PROGRESS.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

Data is received by the application in one of four session flows. The four session flows, from highest to lowest priority are:

SSCP expedited

LU expedited

SSCP normal

LU normal

The data flow type that SLI_RECEIVE_EX will process is specified in lua_flag1. The application can also specify whether it
wants to look at more than one type of data flow. When multiple flow bits are set, the highest priority is received first. When
SLI_RECEIVE_EX completes processing, lua_flag2 indicates the specific type of flow for which data has been received by the
Windows LUA application.

If SLI_BID successfully completes before SLI_RECEIVE is issued, the Windows LUA interface can be instructed to reuse the last
SLI_BID verbs VCB. To do this, issue SLI_RECEIVE_EX with lua_flag1.bid_enable set to 1.

When using lua_flag1.bid_enable, the SLI_BID storage must not be freed because the last SLI_BID verbs VCB is used. Also, when
using lua_flag1.bid_enable, the successful completion of SLI_BID will be posted.

If SLI_RECEIVE_EX is issued with lua_flag1.nowait when no data is available to receive, LUA_NO_DATA will be the secondary
return code set by the Windows LUA interface.

Session Status Return Values

If LUA_STATUS is the primary return code, the secondary return code can be one of the following:

LUA_READY

LUA_NOT_READY

LUA_SESSION_END_REQUESTED

LUA_INIT_COMPLETE

In addition, if LUA_STATUS is the primary return code, the following parameters are used:

lua_sec_rc

lua_sid

LUA_READY is returned after an LUA_NOT_READY status and indicates that the SLI is again ready to perform all commands.

LUA_NOT_READY indicates that the SLI session is suspended because the SLI has received either an SNA CLEAR command or
an SNA UNBIND command with an 0x02 UNBIND type (UNBIND with BIND forthcoming). Depending on what caused the
suspension, the session can be reactivated as follows:

When the suspension is caused by an SNA CLEAR, receiving an SNA SDT reactivates the session.

When an SNA UNBIND type BIND forthcoming causes suspension of the session and the SLI_OPEN that opened the
session is completed, the session is suspended until the SLI receives a BIND and SDT command. The session can also
optionally receive an STSN command. As a result, user-supplied routines issued with the initial SLI_OPEN must be re-
entered because they will be recalled.

The application can send SSCP data after a CLEAR or UNBIND type BIND forthcoming arrives and before the NOT_READY
status is read. The application can send and receive SSCP data after reading a NOT_READY.

When an SNA UNBIND type BIND forthcoming arrives before completion of the SLI_OPEN that opened the session,
LUA_SESSION_FAILURE (not LUA_STATUS) is the primary return code.

LUA_SESSION_END_REQUESTED indicates that the application received an SNA SHUTD from the host. The Windows LUA
application should issue SLI_CLOSE to close the session when convenient.

LUA_INIT_COMPLETE is returned only when lua_init_type for SLI_OPEN is LUA_INIT_TYPE_PRIM_SSCP. The status means that
the SLI_OPEN has been processed sufficiently to allow SSCP data to now be sent or received.

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

Exception Requests

If a host application request unit is converted into an EXR, sense data will be returned. When SLI_BID completes with the
returned verb parameters set as shown, an EXR conversion occurs.

Member Set to

lua_prim_rc OK (0x0000)

lua_sec_rc OK (0x00000000)

lua_rh.rri bit off (request unit)

lua_rh.sdi bit on (includes sense data)

Of the seven bytes of data in lua_peek_data, bytes 0 through 3 define the error detected. The following table indicates
possible sense data and the values of bytes 0 through 3.

Sense data Value of bytes 0–3

LUA_MODE_INCONSISTENCY 0x08090000

LUA_BRACKET_RACE_ERROR 0x080B0000

LUA_BB_REJECT_NO_RTR 0x08130000

LUA_RECEIVER_IN_TRANSMIT_MODE 0x081B0000

LUA_CRYPTOGRAPHY_FUNCTION_INOP 0x08480000

LUA_SYNC_EVENT_RESPONSE 0x10010000

LUA_RU_DATA_ERROR 0x10020000

LUA_RU_LENGTH_ERROR 0x10020000

LUA_INCORRECT_SEQUENCE_NUMBER 0x20010000

The information returned to bytes 3 through 6 in lua_peek_data is determined by the first three bytes of the initial request
unit that caused the error.

See Also
Reference
RUI_INIT
RUI_PURGE
RUI_READ
RUI_WRITE
SLI_BID
SLI_CLOSE
SLI_OPEN
SLI_PURGE
SLI_SEND_EX

https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745443(v=bts.10).aspx

SLI_SEND
The SLI_SEND verb sends responses, SNA commands, and data from a Microsoft® Windows® logical unit application (LUA)
application to a host logical unit (LU).

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_SEND.

The second syntax union below describes the LUA_SPECIFIC member of the VCB used by SLI_SEND. Other union members
are omitted for clarity.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_SEND.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};
union LUA_SPECIFIC {
 unsigned char lua_sequence_number[2];
};

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_SEND only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Not used by SLI_SEND and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server or SNA Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_SEND and should be set to zero.

lua_data_length

Supplied parameter. Specifies the length of data being sent.

lua_data_ptr

Pointer to the application-supplied buffer that contains the data to be sent to the host by SLI_SEND.

Both SNA commands and data are placed in this buffer, and they can be in an Extended Binary Coded Decimal Interchange
Code (EBCDIC) format.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are set for
write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Supplied parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for RUI_WRITE
and SLI_SEND, and returned by RUI_READ and RUI_BID. For the RH for SLI_SEND, all fields except the queued-response
indicator (lua_rh.qri) and pacing indicator (lua_rh.pi) are used.

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits.

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

System services control point (SSCP) expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set one of the following flags to 1 to indicate on which message flow the data is to be sent:

lua_flag1.sscp_exp

lua_flag1.sscp_norm

lua_flag1.lu_exp

lua_flag1.lu_norm

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. This is a supplied parameter for SLI_SEND.

Possible values are as follows:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Not used by SLI_SEND and should be set to zero.

lua_sequence_number

The union member of LUA_SPECIFIC used by SLI_SEND. Returned parameter. Contains the sequence number for either the
first in the chain request unit or the only segment in the chain request unit. Note that this parameter is not byte-reversed.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

When issuing SLI_SEND to send an SNA response, set only one lua_flag1 flow flag.

When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_REQUIRED_FIELD_MISSING

Secondary return code; the verb that was issued either did not include a data pointer (if the data count was not zero) or did
not include an lua_flag1 flow flag.

LUA_INVALID_MESSAGE_TYPE

Secondary return code; the lua_message_type parameter is not recognized by the LUA interface.

LUA_DATA_LENGTH_ERROR

Secondary return code; the application did not provide user-supplied data required by the verb issued. Note that when
SLI_SEND is issued for an SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with
secondary initialization, data is required.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_MAX_NUMBER_OF_SENDS

Secondary return code; the application issued a third SLI_SEND before one completed.

LUA_SEND_ON_FLOW_PENDING

Secondary return code; an SLI_SEND was still outstanding when the application issued another SLI_SEND for an SNA flow.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.

The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.

The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

Secondary return code; LUA was not active within Microsoft Host Integration Server or SNA Server when an LUA verb was
issued.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for
any LUA requests until an activate logical unit (ACTLU) is received from the host.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_INSUFFICIENT_RESOURCES

Secondary return code; a temporary condition of insufficient resources caused the request receiver to be unable to perform.
The request sent to the half-session component was not executed, even though it was understood and supported.

LUA_SEND_CORRELATION_TABLE_FULL

Secondary return code; the session send correlation table for the flow requested reached its capacity.

LUA_RU_LENGTH_ERROR

Secondary return code; the request/response unit (RU) request was an incorrect length (either too short or too long). The
request unit was not interpreted or processed even though it was delivered to the half-session component. The half-session
capabilities do not match. This SNA sense code is also an exception request sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_HDX_BRACKET_STATE_ERROR

Secondary return code; the existing state error prevented the current request from being sent. The determination was made
by a protocol computer.

LUA_RESPONSE_ALREADY_SENT

Secondary return code; a response for the chain was already sent so that the current request was not sent. The determination
was made by a protocol computer.

LUA_EXR_SENSE_INCORRECT

Secondary return code; the application responded negatively to an exception request. The sense code was unacceptable.

LUA_RESPONSE_OUT_OF_ORDER

Secondary return code; the current response was not for the oldest request. The determination was made by a protocol
computer.

LUA_CHAIN_RESPONSE_REQUIRED

Secondary return code; a CHASE response was still outstanding when a more recent request was attempted. The
determination was made by a protocol computer.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receivers current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receivers current session control or data flow control state was found. Delivery
to the half-session component was prevented.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow data flow
control (DFC) or function management data (FMD) request. An invalid request header or request unit for the receivers
current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC
command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit
for the receivers current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-
session component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data
flow control state was found. Delivery to the half-session component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a
positive response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of
the sense data contains the request code. No user data exists for this sense code. An invalid header request or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request
unit for the received current session control or data flow control state was found. Delivery to the half-session component
was prevented.

LUA_RSP_BEFORE_SENDING_REQ

Secondary return code; a previously received request has not been responded to yet and an attempt was made in half-duplex
send/receive mode to send a normal flow request. An invalid header request or request unit for the received current session
control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a "no response." The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation.
The BIND options chosen previously or the architectural rules were violated by the request header parameter values.
Delivery to the half-session component was prevented. The errors are not dependent on the current session state. The
senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to
the half-session component was prevented. The errors are not dependent on the current session state. The senders failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The
errors are not dependent on the current session state. The senders failure to enforce session rules may have caused the
errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_NO_SESSION

Secondary return code; a request to activate a session is required because no active half-session in the receiving end node
for the origination-destination pair exists, or no active boundary function half-session component for the origination-
destination pair in a node that supplies the boundary function exists. Delivery of the request could not take place for one of
the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session, that usually indicates there is no longer a valid path to the session partner.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_SEND sends responses, SNA commands, and data from the Windows LUA application to a host LU. A session must already
be open to issue SLI_SEND for a particular LU-LU session flow. To send data on the SSCP normal flow prior to the completion
of SLI_OPEN, the session must have been initialized as primary with SSCP access. In addition, the session status must be
INIT_COMPLETE.

The settings for lua_message_type determine the type of processing that will be done by SLI_SEND. The following table
indicates the parameters to set based on the value of lua_message_type.

SLI_SEND para
meter

LU_DATA SSCP_DATA BID BIS
RTR

CHASE QC LUSTAT_LU LUSTAT_SS
CP

QEC RELQ SBI SI
GNAL

RQ
R

RSP

lua_data _leng
th

Req. 0 0 Req. 0 0 Req. (0 if no
data)

lua_data _ptr Req. (0 if no data) 0 0 Req. 0 0 Req. (0 if no
data)

lua_flag1 flow
flags

0 0 0 0 0 0 Req. (set one
)

lua_rh FI DRL1 DRL2 RI BBI EBI C
DI CSI EDI

SDI QRI SDI QRI EBI
CDI

SDI QRI DRL1 DRL2 RI B
BI EBI CDI

SDI 0 RRI RI

lua_th 0 0 0 0 0 0 SNF

The location provided in lua_data_ptr and the length provided in lua_data_length determine the data that the SLI sends. The
data will be chained by the SLI verbs if necessary.

When sending a response, the type of response determines the SLI_SEND information required. For all responses, you must:

Set the selected lua_flag1 flow flag.

Provide the sequence number in lua_th.snf for the request to which you are responding.

Set lua_message_type to LUA_MESSAGE_TYPE_RSP.

For multichain message responses, the sequence number of the last received chain element must be used. For a response to a
multichain message ending with a CANCEL command, the CANCEL command sequence number is used.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

For positive responses that only require the request code, set lua_rh.ri to zero (indicating that the response is positive) and
lua_data_length to zero (indicating no data is provided). The request code is filled in by the SLI, using the sequence number
provided.

For negative responses in which lua_rh.ri is set to 1, set the lua_data_ptr to the SNA sense code address and the
lua_data_length to the SNA sense code length (four bytes). The sequence number is used by the SLI to fill in the request code.

See Also
Reference
RUI_INIT
RUI_READ
RUI_WRITE
SLI_BID
SLI_CLOSE
SLI_OPEN
SLI_RECEIVE

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx

SLI_SEND_EX
The SLI_SEND_EX verb sends responses, SNA commands, and data from a Microsoft® Windows® logical unit application
(LUA) application to a host logical unit (LU).

The SLI_SEND_EX verb also supports inbound chaining. The maximum length of data that can be sent by a single verb is
4,294,967,295 bytes. This is compared to a maximum of 65,535 bytes that can be sent by the SLI_SEND verb.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_SEND_EX.

The second syntax union below describes the LUA_SPECIFIC member of the VCB used by SLI_SEND_EX. Other union
members are omitted for clarity.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_SEND_EX.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};
union LUA_SPECIFIC {
 struct SLI_SEND_EX_SPECIFIC {
 unsigned char lua_sequence_number[2];
 unsigned long lua_data_length_ex;
 };
};

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_SEND only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Not used by SLI_SEND_EX and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server or SNA Server and should be set to zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_SEND_EX and should be set to zero.

lua_data_length

This parameter is reserved and must be set to zero.

The length of data to be sent is set in the lua_data_length_ex parameter.

lua_data_ptr

Pointer to the application-supplied buffer that contains the data to be sent to the host by SLI_SEND_EX.

Both SNA commands and data are placed in this buffer, and they can be in an Extended Binary Coded Decimal Interchange
Code (EBCDIC) format.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are set for
write functions and returned for read and bid functions. Its subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Supplied parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for RUI_WRITE
and SLI_SEND, and returned by RUI_READ and RUI_BID. For the RH for SLI_SEND_EX, all fields except the queued-response
indicator (lua_rh.qri) and pacing indicator (lua_rh.pi) are used.

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

Request/response unit (RU) category, two bits.

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. Its subparameters
are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

System services control point (SSCP) expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

lua_flag1.lu_norm

LU normal flow, one bit.

Set one of the following flags to 1 to indicate on which message flow the data is to be sent:

lua_flag1.sscp_exp

lua_flag1.sscp_norm

lua_flag1.lu_exp

lua_flag1.lu_norm

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. This is a supplied parameter for SLI_SEND_EX.

Possible values are as follows:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

The SLI receives and responds to the BIND and STSN requests through the LUA interface extension routines.

LU-DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

Not used by SLI_SEND_EX and should be set to zero.

lua_sequence_number

The union member of LUA_SPECIFIC used by SLI_SEND_EX. Returned parameter. Contains the sequence number for either
the first in the chain request unit or the only segment in the chain request unit. Note that this parameter is not byte-reversed.

lua_data_length_ex

The union member of LUA_SPECIFIC used by SLI_SEND_EX. Supplied parameter. Specifies the length of data being sent.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_PARAMETER_CHECK

Primary return code; the verb did not execute because of a parameter error.

LUA_INVALID_LUNAME

Secondary return code; an invalid lua_luname was specified.

LUA_BAD_SESSION_ID

Secondary return code; an invalid value for lua_sid was specified in the VCB.

LUA_BAD_DATA_PTR

Secondary return code; the lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write
segment and supplied data is required.

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

LUA_RESERVED_FIELD_NOT_ZERO

Secondary return code; a reserved parameter for the verb just issued is not set to zero.

LUA_INVALID_POST_HANDLE

Secondary return code; for a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous
posting method, the Windows LUA VCB does not contain a valid event handle.

LUA_INVALID_FLOW

Secondary return code; the lua_flag1 flow flags were set incorrectly when a verb was issued:

When issuing SLI_SEND_EX to send an SNA response, set only one lua_flag1 flow flag.

When issuing SLI_RECEIVE_EX, set at least one lua_flag1 flow flag.

LUA_VERB_LENGTH_INVALID

Secondary return code; an LUA verb was issued with a value for lua_verb_length unexpected by LUA.

LUA_REQUIRED_FIELD_MISSING

Secondary return code; the verb that was issued either did not include a data pointer (if the data count was not zero) or did
not include an lua_flag1 flow flag.

LUA_INVALID_MESSAGE_TYPE

Secondary return code; the lua_message_type parameter is not recognized by the LUA interface.

LUA_DATA_LENGTH_ERROR

Secondary return code; the application did not provide user-supplied data required by the verb issued. Note that when
SLI_SEND_EX is issued for an SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued
with secondary initialization, data is required.

LUA_STATE_CHECK

Primary return code; the verb did not execute because it was issued in an invalid state.

LUA_NO_SLI_SESSION

Secondary return code; a session was not open or was down due to an SLI_CLOSE or session failure when a command was
issued.

LUA_MAX_NUMBER_OF_SENDS

Secondary return code; the application issued a third SLI_SEND or an SLI_SEND_EX before one completed.

LUA_SEND_ON_FLOW_PENDING

Secondary return code; an SLI_SEND or an SLI_SEND_EX was still outstanding when the application issued another
SLI_SEND_EX for an SNA flow.

LUA_SESSION_FAILURE

Primary return code; an error condition, specified in the secondary return code, caused the session to fail.

LUA_RECEIVED_UNBIND

Secondary return code; the primary logical unit (PLU) sent an SNA UNBIND command to the LUA interface when a session
was active. As a result, the session was stopped.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_NO_RUI_SESSION

Secondary return code; no session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was
issued before the session was initialized.

LUA_LU_COMPONENT_DISCONNECTED

Secondary return code; an LU component is unavailable because it is not connected properly. Make sure that the power is on.

https://msdn.microsoft.com/en-us/library/aa744933(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

LUA_DATA_SEGMENT_LENGTH_ERROR

Secondary return code; one of the following has occurred:

The supplied data segment for SLI_RECEIVE_EX or SLI_SEND_EX is not a read/write data segment as required.

The supplied data segment for SLI_RECEIVE_EX is not as long as that provided in lua_max_length_ex.

The supplied data segment for SLI_SEND_EX is not as long as that provided in lua_data_length_ex.

LUA_VERB_RECORD_SPANS_SEGMENTS

Secondary return code; the LUA VCB length parameter plus the segment offset is beyond the segment end.

LUA_NOT_ACTIVE

Secondary return code; LUA was not active within Microsoft Host Integration Server or SNA Server when an LUA verb was
issued.

LUA_SLI_LOGIC_ERROR

Secondary return code; the LUA interface found an internal error in logic.

LUA_INVALID_PROCESS

Secondary return code; the session for which an LUA verb was issued is unavailable because another OS/2 process owns the
session.

LUA_LU_INOPERATIVE

Secondary return code; a severe error occurred while the LUA was attempting to stop the session. This LU is unavailable for
any LUA requests until an activate logical unit (ACTLU) is received from the host.

LUA_MODE_INCONSISTENCY

Secondary return code; performing this function is not allowed by the current status. The request sent to the half-session
component was not executed even though it was understood and supported. This SNA sense code is also an exception
request sense code.

LUA_INSUFFICIENT_RESOURCES

Secondary return code; a temporary condition of insufficient resources caused the request receiver to be unable to perform.
The request sent to the half-session component was not executed, even though it was understood and supported.

LUA_SEND_CORRELATION_TABLE_FULL

Secondary return code; the session send correlation table for the flow requested reached its capacity.

LUA_RU_LENGTH_ERROR

Secondary return code; the RU request was an incorrect length (either too short or too long). The request unit was not
interpreted or processed even though it was delivered to the half-session component. The half-session capabilities do not
match. This SNA sense code is also an exception request sense code.

LUA_FUNCTION_NOT_SUPPORTED

Secondary return code; LUA does not support the requested function. A control character, an RU parameter, or a formatted
request code may have specified the function. Specific sense code information is in bytes 2 and 3.

LUA_HDX_BRACKET_STATE_ERROR

Secondary return code; the existing state error prevented the current request from being sent. The determination was made
by a protocol computer.

LUA_RESPONSE_ALREADY_SENT

Secondary return code; a response for the chain was already sent so that the current request was not sent. The determination
was made by a protocol computer.

LUA_EXR_SENSE_INCORRECT

Secondary return code; the application responded negatively to an exception request. The sense code was unacceptable.

LUA_RESPONSE_OUT_OF_ORDER

Secondary return code; the current response was not for the oldest request. The determination was made by a protocol

https://msdn.microsoft.com/en-us/library/aa744933(v=bts.10).aspx

computer.

LUA_CHAIN_RESPONSE_REQUIRED

Secondary return code; a CHASE response was still outstanding when a more recent request was attempted. The
determination was made by a protocol computer.

LUA_BRACKET

Secondary return code; the sender failed to enforce the session bracket rules. Note that contention and race conditions are
exempt from this error. An invalid request header or request unit for the receivers current session control or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_DIRECTION

Secondary return code; while the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An
invalid request header or request unit for the receivers current session control or data flow control state was found. Delivery
to the half-session component was prevented.

LUA_DATA_TRAFFIC_RESET

Secondary return code; a half-session of an active session but with inactive data traffic received a normal flow data flow
control (DFC) or function management data (FMD) request. An invalid request header or request unit for the receivers
current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_DATA_TRAFFIC_QUIESCED

Secondary return code; a DFC or FMD request was received from a half-session that sent either a SHUTC command or QC
command, and the DFC or FMD request has not responded to a RELQ command. An invalid request header or request unit
for the receivers current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_DATA_TRAFFIC_NOT_RESET

Secondary return code; while the data traffic state was not reset, the session control request was received. An invalid request
header or request unit for the received current session control or data flow control state was found. Delivery to the half-
session component was prevented.

LUA_NO_BEGIN_BRACKET

Secondary return code; the receiver has already sent a positive response to a BIS command when a BID or an FMD request
specifying BBI=BB was received. An invalid request header or request unit for the received current session control or data
flow control state was found. Delivery to the half-session component was prevented.

LUA_SC_PROTOCOL_VIOLATION

Secondary return code; a violation of SC protocol occurred. A request (that is permitted only after an SC request and a
positive response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of
the sense data contains the request code. No user data exists for this sense code. An invalid header request or data flow
control state was found. Delivery to the half-session component was prevented.

LUA_IMMEDIATE_REQUEST_MODE_ERROR

Secondary return code; the request violated the immediate request mode protocol. An invalid header request or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

LUA_QUEUED_RESPONSE_ERROR

Secondary return code; the request violated the queued response protocol. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_ERP_SYNC_EVENT_ERROR

Secondary return code; a violation of the ERP synchronous event protocol occurred. An invalid header request or request
unit for the received current session control or data flow control state was found. Delivery to the half-session component
was prevented.

LUA_RSP_BEFORE_SENDING_REQ

Secondary return code; a previously received request has not been responded to yet and an attempt was made in half-duplex
send/receive mode to send a normal flow request. An invalid header request or request unit for the received current session

control or data flow control state was found. Delivery to the half-session component was prevented.

LUA_RSP_CORRELATION_ERROR

Secondary return code; a response was sent that does not correspond to a previously received request or a response was
received that does not correspond to a previously sent request.

LUA_BB_NOT_ALLOWED

Secondary return code; the begin bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EB_NOT ALLOWED

Secondary return code; the end bracket indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_EXCEPTION_RSP_NOT_ALLOWED

Secondary return code; when an exception response was not allowed, one was requested. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

LUA_DEFINITE_RSP_NOT_ALLOWED

Secondary return code; when a definite response was not allowed, one was requested. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_ALLOWED

Secondary return code; the change-direction indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_NO_RESPONSE_NOT_ALLOWED

Secondary return code; a request other than an EXR contained a "no response." The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CHAINING_NOT_SUPPORTED

Secondary return code; the chaining indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_BRACKETS_NOT_SUPPORTED

Secondary return code; the bracket indicators were incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_CD_NOT_SUPPORTED

Secondary return code; the change-direction indicator was set, but LUA does not support change-direction for this situation.
The BIND options chosen previously or the architectural rules were violated by the request header parameter values.
Delivery to the half-session component was prevented. The errors are not dependent on the current session state. The
senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_FI

Secondary return code; the format indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_ALTERNATE_CODE_NOT_SUPPORTED

Secondary return code; the code selection indicator was set, but LUA does not support code selection for this session. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to
the half-session component was prevented. The errors are not dependent on the current session state. The senders failure to
enforce session rules may have caused the errors.

LUA_INCORRECT_REQUEST_CODE

Secondary return code; the request code was incorrectly specified. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The
errors are not dependent on the current session state. The senders failure to enforce session rules may have caused the
errors.

LUA_INCORRECT_SPEC_OF_SDI_RTI

Secondary return code; the SDI and the RTI were not specified correctly on a response. The BIND options chosen previously
or the architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_DR1I_DR2I_ERI

Secondary return code; the DR1I, the DR2I, and the ERI were specified incorrectly. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_QRI

Secondary return code; the queued response indicator was incorrectly specified. The BIND options chosen previously or the
architectural rules were violated by the request header parameter values. Delivery to the half-session component was
prevented. The errors are not dependent on the current session state. The senders failure to enforce session rules may have
caused the errors.

LUA_INCORRECT_USE_OF_EDI

Secondary return code; the EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_INCORRECT_USE_OF_PDI

Secondary return code; the PDI was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

LUA_NO_SESSION

Secondary return code; a request to activate a session is required because no active half-session in the receiving end node
for the origination-destination pair exists, or no active boundary function half-session component for the origination-
destination pair in a node that supplies the boundary function exists. Delivery of the request could not take place for one of
the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session, that usually indicates there is no longer a valid path to the session partner.

LUA_CANCELED

Primary return code; the secondary return code gives the reason for canceling the command.

LUA_TERMINATED

Secondary return code; the session was terminated when a verb was pending. The verb process has been canceled.

LUA_IN_PROGRESS

Primary return code; an asynchronous command was received but is not completed.

LUA_COMM_SUBSYSTEM_ABENDED

Primary return code; indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node has been broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

LUA_COMM_SUBSYSTEM_NOT_LOADED

Primary return code; a required component could not be loaded or terminated while processing the verb. Thus,
communication could not take place. Contact the system administrator for corrective action.

LUA_INVALID_VERB_SEGMENT

Primary return code; the VCB extended beyond the end of the data segment.

LUA_UNEXPECTED_DOS_ERROR

Primary return code; after issuing an operating system call, an unexpected operating system return code was received and is
specified in the secondary return code.

LUA_STACK_TOO_SMALL

Primary return code; the stack size of the application is too small to execute the verb. Increase the stack size of your
application.

LUA_INVALID_VERB

Primary return code; either the verb code or the operation code, or both, is invalid. The verb did not execute.

Remarks

SLI_SEND_EX sends responses, SNA commands, and data from the Windows LUA application to a host LU.

The difference between SLI_SEND_EX and SLI_SEND is that the SLI_SEND_EX verb supports inbound chaining and can send up
to a maximum of 4,295 kilobytes (KB) in a single verb request. In contrast, SLI_SEND is limited to sending up to 64 KB in a verb
request. A single SLI_SEND_EX or SLI_SEND verb defines a chain. A single SLI_RECEIVE_EX or SLI_RECEIVE verb receives a
whole chain.

A session must already be open to issue SLI_SEND_EX for a particular LU-LU session flow. To send data on the SSCP normal
flow prior to the completion of SLI_OPEN, the session must have been initialized as primary with SSCP access. In addition, the
session status must be INIT_COMPLETE.

The settings for lua_message_type determine the type of processing that will be done by SLI_SEND_EX. The following table
indicates the parameters to set based on the value of lua_message_type.

SLI_SEND_EX par
ameter

LU_DATA SSCP_DATA BID BIS
RTR

CHASE QC LUSTAT_LU LUSTAT_S
SCP

QEC RELQ SBI S
IGNAL

RQ
R

RSP

lua_data _length Req. 0 0 Req. 0 0 Req. (0 if no
data)

lua_data _ptr Req. (0 if no data) 0 0 Req. 0 0 Req. (0 if no
data)

lua_flag1 flow fl
ags

0 0 0 0 0 0 Req. (set one
)

lua_rh FI DRL1 DRL2 RI BBI EBI C
DI CSI EDI

SDI QRI SDI QRI EB
I CDI

SDI QRI DRL1 DRL2 RI B
BI EBI CDI

SDI 0 RRI RI

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

lua_th 0 0 0 0 0 0 SNF

The location provided in lua_data_ptr and the length provided in lua_data_length_ex determine the data that the SLI sends.
The data will be chained by the SLI verbs if necessary.

When sending a response, the type of response determines the SLI_SEND_EX information required. For all responses, you
must:

Set the selected lua_flag1 flow flag.

Provide the sequence number in lua_th.snf for the request to which you are responding.

Set lua_message_type to LUA_MESSAGE_TYPE_RSP.

For multichain message responses, the sequence number of the last received chain element must be used. For a response to a
multichain message ending with a CANCEL command, the CANCEL command sequence number is used.

For positive responses that only require the request code, set lua_rh.ri to zero (indicating that the response is positive) and
lua_data_length to zero (indicating no data is provided). The request code is filled in by the SLI, using the sequence number
provided.

For negative responses in which lua_rh.ri is set to 1, set the lua_data_ptr to the SNA sense code address and the
lua_data_length to the SNA sense code length (four bytes). The sequence number is used by the SLI to fill in the request code.

See Also
Reference
RUI_INIT
RUI_READ
RUI_WRITE
SLI_BID
SLI_CLOSE
SLI_OPEN
SLI_RECEIVE_EX

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744933(v=bts.10).aspx

SLI_BIND_ROUTINE
The SLI_BIND_ROUTINE verb notifies the Microsoft® Windows® logical unit application (LUA) application that a BIND
request has come from the host and allows the user-supplied routine to examine the request and formulate a response.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_BIND_ROUTINE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_BIND_ROUTINE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_BIND_ROUTINE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

lua_extension_list_offset

Not used by SLI_BIND_ROUTINE and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server or SNA Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_BIND_ROUTINE and should be set to zero.

lua_data_length

Returned parameter. Specifies the length of the BIND request/response unit (RU) data returned in the data buffer.

lua_data_ptr

For the SLI_BIND_ROUTINE this parameter contains the address of the BIND RU.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Supplied parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are
returned for read and bid functions.

lua_rh

Supplied parameter. Contains the SNA request/response header (RH) of the message sent or received.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application.

lua_message_type

Supplied parameter. Specifies the type of SNA data or command sent to the host.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

lua_encr_decr_option

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Not used by SLI_BIND_ROUTINE and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_NEGATIVE_RSP

Primary return code; either the LUA sent a negative response to a message received from the primary logical unit (PLU)
because an error was found in the message, or the application responded negatively to a chain for which the end-of-chain
has arrived.

Remarks

SLI_BIND_ROUTINE provides a mechanism for the Windows LUA application to examine BIND requests that are received
from the host. The Windows LUA uses a user-supplied dynamic-link library (DLL) to notify the Windows LUA application that a
BIND request has been received. The user-supplied DLL routine then examines the contents of the BIND and formulates a
response for the request.

The DLL name for the routine is provided as extensions of the SLI_OPEN verbs VCB. The lua_extension_list_offset parameter
provides the offset from the start of the VCB to the first name in the extension list.

The Windows LUA interface assigns storage space where the VCB is structured. The VCB of SLI_BIND_ROUTINE contains lua_th
and lua_rh. The address of the BIND RU is specified in lua_data_ptr and the length of the RU is specified in lua_data_length.

When SLI_BIND_ROUTINE returns to the Windows LUA, processing of SLI_BIND_ROUTINE is completed. The BIND response
should overwrite the BIND RU. When the BIND is accepted, the primary return code should be set to LUA_OK. If the BIND is
rejected, the primary return code should be set to LUA_NEGATIVE_RSP and the BIND buffer contains the negative sense code.
The lua_data_ptr parameter should not be modified.

If a negative response is returned from SLI_BIND_ROUTINE, SLI_OPEN is canceled. The lua_prim_rc of the SLI_OPEN is set to
LUA_SESSION_FAILURE, and the lua_sec_rc is set to LUA_NEG_RSP_FROM_BIND_ROUTINE.

See Also
Reference
RUI_INIT
RUI_PURGE
RUI_READ
RUI_WRITE
SLI_OPEN
SLI_PURGE
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

SLI_STSN_ROUTINE
The SLI_STSN_ROUTINE verb notifies the Microsoft® Windows® logical unit application (LUA) application that an STSN
command has come from the host and allows the user-supplied routine to examine the request and formulate a response.

The following structure describes the LUA_COMMON member of the verb control block (VCB) used by SLI_STSN_ROUTINE.

Syntax

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_SLI for Session Level Interface (SLI) verbs.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued,
LUA_OPCODE_SLI_STSN_ROUTINE.

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_STSN_ROUTINE only requires this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
};

lua_extension_list_offset

Not used by SLI_STSN_ROUTINE and should be set to zero.

lua_cobol_offset

Not used by LUA in Microsoft® Host Integration Server or SNA Server and should be zero.

lua_sid

Supplied parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use this
parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify sessions,
set the lua_sid parameter to zero.

lua_max_length

Not used by SLI_STSN_ROUTINE and should be set to zero.

lua_data_length

Returned parameter. Specifies the length of the STSN request/response unit (RU) data returned in the data buffer.

lua_data_ptr

For the SLI_STSN_ROUTINE this parameter contains the address of the STSN RU.

lua_post_handle

Supplied parameter. Used under Microsoft Windows Server™ 2003 or Windows 2000 Server if asynchronous notification is
to be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

For all other environments, this parameter is reserved and should be set to zero.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message received. Various subparameters are
returned for read and bid functions.

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application.

lua_message_type

Supplied parameter. Specifies the type of SNA data or command sent to the host.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates system services control point (SSCP) expedited flow if set to 1.

lua_flag2.sscp_norm

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

Reserved and should be set to zero.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

lua_encr_decr_option

Not used by SLI_STSN_ROUTINE and should be set to zero.

Return Codes
LUA_OK

Primary return code; the verb executed successfully.

LUA_SEC_OK

Secondary return code; no additional information exists for LUA_OK.

LUA_NEGATIVE_RSP

Primary return code; either the LUA sent a negative response to a message received from the primary logical unit (PLU)
because an error was found in the message, or the application responded negatively to a chain for which the end-of-chain
has arrived.

Remarks

SLI_STSN_ROUTINE provides a mechanism for the Windows LUA application to examine and respond to STSN commands.
The Windows LUA notifies the Windows LUA application that an STSN command has been received from the host. This is done
through a user-supplied dynamic-link library (DLL). The users DLL examines the STSN request and formulates a response to
the request.

The DLL name for the routine is provided as extensions of the SLI_OPEN verbs VCB. The lua_extension_list_offset parameter
provides the offset from the start of the VCB to the first name in the extension list.

The Windows LUA interface assigns storage space where the VCB is structured. The VCB of the SLI_STSN_ROUTINE contains
lua_th and lua_rh. The address of the STSN RU is specified in lua_data_ptr and the length of the RU is specified in
lua_data_length.

When SLI_STSN_ROUTINE returns to the Windows LUA, processing of the SLI_STSN_ROUTINE is completed. The STSN
response should overwrite the STSN RU. When the STSN is accepted, the primary return code should be set to LUA_OK. If the
STSN is rejected, the primary return code should be set to LUA_NEGATIVE_RSP and the STSN buffer contains the negative
sense code. The lua_data_ptr parameter should not be modified.

If a negative response is returned from SLI_STSN_ROUTINE, SLI_OPEN is canceled. The lua_prim_rc of the SLI_OPEN is set to
LUA_SESSION_FAILURE, and the lua_sec_rc is set to LUA_NEG_RSP_FROM_STSN_ROUTINE.

See Also
Reference
RUI_INIT
RUI_PURGE
RUI_READ
RUI_WRITE
SLI_OPEN
SLI_PURGE
SLI_RECEIVE
SLI_SEND

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

LUA Extensions for the Windows Environment
The extensions described in this section are designed for Microsoft® Windows®. They provide support for programming
compatibility and optimum application performance in 32-bit operating environments. These extensions are supported on
Microsoft Windows Server™ 2003, Windows XP Professional, and Windows 2000 Server.

The Windows logical unit application (LUA) programming interface enables multithreaded Windows-based processes. A
process contains one or more threads of execution. For each extension, this section provides a definition of the function with
syntax, return codes, and remarks for using the extension.

These functions can be grouped into two categories depending on whether Request Unit Interface (RUI) or Session Level
Interface (SLI) verbs are used.

In This Section

RUI

SLI

WinRUI

WinRUICleanup

WinRUIGetLastInitStatus

WinRUIStartup

WinSLI

WinSLICleanup

WinSLIStartup

https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770751(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx

RUI
The RUI function provides event notification for all Request Unit Interface (RUI) verbs.

Syntax

Parameters
lpVCB

Pointer to the logical unit application (LUA) verb control block (VCB), LUA_VERB_RECORD.

Return Value

The code returned in lua_prim_rc indicates whether asynchronous notification will occur. If the field is set to
LUA_IN_PROGRESS, asynchronous notification will occur through event signaling. If the flag is not LUA_IN_PROGRESS, the
request completed synchronously. Examine the primary return code and secondary return code for any errors.

Remarks

The application must provide a handle to an event in the lua_post_handle parameter of the VCB. The event must be in the
not-signaled state.

When the asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of
the event, examine the primary return code and secondary return code for any error conditions.

See Also
Reference
WinRUI

 void WINAPI RUI(
 LUA_VERB_RECORD FAR *lpVCB);

https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx

SLI
The SLI function provides event notification for all Session Level Interface (SLI) verbs.

Syntax

Parameters
lpVCB

Pointer to the logical unit application (LUA) verb control block (VCB), LUA_VERB_RECORD.

Return Value

The code returned in lua_prim_rc indicates whether asynchronous notification will occur. If the field is set to
LUA_IN_PROGRESS, asynchronous notification will occur through event signaling. If the flag is not LUA_IN_PROGRESS, the
request completed synchronously. Examine the primary return code and secondary return code for any errors.

Remarks

The application must provide a handle to an event in the lua_post_handle parameter of the VCB. The event must be in the
not-signaled state.

When the asynchronous operation is complete, the application is notified through the signaling of the event. Upon signaling of
the event, examine the primary return code and secondary return code for any error conditions.

See Also
Reference
WinSLI

 void WINAPI SLI(
 LUA_VERB_RECORD FAR *lpVCB);

https://msdn.microsoft.com/en-us/library/aa704689(v=bts.10).aspx

WinRUI
The WinRUI function provides asynchronous message notification for all Microsoft® Windows®-based Request Unit Interface
(RUI) verbs.

Syntax

Parameters
hWnd

Handle of window to receive message.

lpVCB

Pointer to the logical unit application (LUA) verb control block (VCB), LUA_VERB_RECORD.

Return Value

The function returns a value indicating whether the request was accepted by the Windows-based RUI for processing. A
returned value of zero indicates that the request was accepted and will be processed. A value other than zero indicates an error.
Possible error codes are as follows:

WLUAINVALIDHANDLE

The window handle provided is invalid.

WLUASTARTUPNOTCALLED

The application has not initiated a session using WinRUIStartup.

The value returned in lua_flag2.async indicates whether asynchronous notification will occur. If the flag is set (nonzero),
asynchronous notification will occur through a message posted to the applications message queue. If the flag is not set, the
request completed synchronously. Examine the primary return code and secondary return code for any error conditions.

Remarks

When the asynchronous operation is complete, the applications window hWnd receives the message returned by
RegisterWindowMessage with "WinRUI" as the input string. The lParam argument contains the address of the VCB being
posted as complete. The wParam argument is undefined.

Note
It is possible for the request to be accepted for processing (the function call returns zero) but rejected later with a primary ret
urn code and secondary return code set in the VCB. Examine the primary return code and secondary return code for any erro
r conditions.

If the application calls WinRUI without first initializing the session using WinRUIStartup, an error is returned.

See Also
Reference
RUI
WinRUIStartup

int WINAPI WinRUI(
HWND hWnd,
LUA_VERB_RECORD FAR *lpVCB
);

https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx

WinRUICleanup
The WinRUICleanup function terminates and deregisters an application using Request Unit Interface (RUI) verbs from a
Microsoft® Windows® logical unit application (LUA) implementation.

Syntax

Return Value

The return code specifies whether the deregistration was successful. If the value is not zero, the application was successfully
deregistered. If the value is zero, the application was not deregistered.

Remarks

Use WinRUICleanup to indicate deregistration of a Windows LUA application from a Windows LUA implementation. This
function can be used, for example, to free up resources allocated to the specific application.

If WinRUICleanup is called while LUs are in session (RUI_TERM not issued), the cleanup code should issue an RUI_TERM
close type ABEND for the application for all open sessions.

See Also
Reference
RUI_TERM
WinRUIStartup

 BOOL WINAPI WinRUICleanup(void);

https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770482(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx

WinRUIGetLastInitStatus
The WinRUIGetLastInitStatus function enables an application to determine the status of an RUI_INIT, so that the application
can evaluate whether the RUI_INIT should be timed out. This extension can be used to initiate status reporting, terminate
status reporting, or find the current status. For details, see the Remarks section.

Syntax

Parameters
dwSid

Specifies the RUI session identifier of the session for which status will be determined. If dwSid is zero, hStatusHandle is used
to report status on all sessions. Note that the lua_sid parameter in the RUI_INIT verb control block (VCB) is valid as soon as
the call to RUI or WinRUI for the RUI_INIT returns.

hStatusHandle

Specifies a handle used for signaling the application that the status for the session (specified by dwSid) has changed. Can be
a window handle, an event handle, or NULL; dwNotifyType must be set accordingly:

If hStatusHandle is a window handle, status is sent to the application through a window message. The message is obtained
from RegisterWindowMessage using the string "WinRUI". The parameter wParam contains the session status. (For more
information, see Return Codes.) Depending on the value of dwNotifyType, lParam contains either the RUI session identifier
of the session, or the value of lua_correlator from the RUI_INIT verb.

If hStatusHandle is an event handle, when the status for the session specified by dwSid changes, the event is put into the
signaled state. The application must then make a further call to WinRUIGetLastInitStatus to find out the new status. Note
that the event should not be the same as one used for signaling completion of any RUI verb.

If hStatusHandle is NULL, the status of the session specified by dwSid is returned in the return code. In this case, dwSid must
not be zero unless bClearPrevious is TRUE. If hStatusHandle is NULL, dwNotifyType is ignored.

dwNotifyType

Specifies the type of indication required. This determines the contents of the lParam of the window message, and how
WinRUIGetLastInitStatus interprets hStatusHandle. Allowed values are:

WLUA_NTFY_EVENT

The hStatusHandle parameter contains an event handle.

WLUA_NTFY_MSG_CORRELATOR

The hStatusHandle parameter contains a window handle, and the lParam of the returned window message should contain
the value of the lua_correlator field on the RUI_INIT.

WLUA_NTFY_MSG_SID

The hStatusHandle parameter contains a window handle, and the lParam of the returned window message should contain
the LUA session identifier.

bClearPrevious

If TRUE, status messages are no longer sent for the session identified by dwSid. If dwSid is zero, status messages are no
longer sent for any session. If bClearPrevious is TRUE, hStatusHandle and dwNotifyType are ignored.

Return Value
WLUASYSNOTREADY

SNABASE is not running.

 int WINAPI WinRUIGetLastInitStatus(
 DWORD dwSid,
 HANDLE hStatusHandle,
 DWORD dwNotifyType,
 BOOL bClearPrevious);

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

WLUANTFYINVALID

The dwNotifyType parameter is invalid.

WLUAINVALIDHANDLE

The hStatusHandle parameter does not contain a valid handle.

WLUASTARTUPNOTCALLED

WinRUIStartup has not been called.

WLUALINKINACTIVE

The link to the host is not yet active.

WLUALINKACTIVATING

The link to the host is being activated.

WLUAPUINACTIVE

The link to the host is active, but no ACTPU has yet been received.

WLUAPUACTIVE

An ACTPU has been received.

WLUAPUREACTIVATED

The physical unit (PU) has been reactivated.

WLUALUINACTIVE

The link to the host is active, and an ACTPU has been received, but no ACTLU has been received.

WLUALUACTIVE

The LU is active.

WLUALUREACTIVATED

The LU has been reactivated.

WLUAUNKNOWN

The session is in an unknown status. (This is an internal error.)

WLUAGETLU

The session is waiting for an Open(SSCP) response from the node.

WLUASIDINVALID

The security ID (SID) specified does not match any known by the RUI.

WLUASIDZERO

The hStatusHandle parameter is NULL and bClearPrevious is FALSE, but dwSid is zero.

WLUAGLOBALHANDLER

The dwSid parameter is zero, and messages from all sessions will be notified. (This is a normal return code, not an error.)

Remarks

This extension is intended to be used with either a window handle or an event handle to enable asynchronous notification of
status changes. It can also be used alone to find the current status of a session.

With a window handle

There are two ways to use this extension with a window handle:

—or—

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_CORRELATOR,FALSE);

https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771980(v=bts.10).aspx

With this implementation, changes in status are reported by a window message sent to the window handle specified. If
WLUA_NTFY_MSG_CORRELATOR is specified, the lParam field in the window message contains the lua_correlator field for
the session. If WLUA_NTFY_MSG_SID is specified, the lParam field in the window message contains the LUA session identifier
for the session.

When the extension has been used with a window handle, use the following to cancel status reporting:

For this implementation, note that if Sid is nonzero, status is only reported for that session. If Sid is zero, status is reported for
all sessions.

With an event handle

To use this extension with an event handle, implement it as follows:

The event whose handle is given will be signaled when a change in state occurs. Because no information is returned when an
event is signaled, a further call must be issued to find out the status.

Note that in this case, a Sid must be specified.

When the extension has been used with an event handle, use the following to cancel the reporting of status:

Query current status

To use this extension to query the current status of a session, it is not necessary to use an event or window handle. Instead, use
the following:

See Also
Reference
RUI
RUI_INIT
WinRUI
WinRUIStartup

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NTFY_MSG_SID,FALSE);

WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

WinRUIGetLastInitStatus(Sid,Handle,WLUA_NOTIFY_EVENT,FALSE);

Status = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

WinRUIGetLastInitStatus(Sid,NULL,0,TRUE);

Status = WinRUIGetLastInitStatus(Sid,NULL,0,0,FALSE);

https://msdn.microsoft.com/en-us/library/aa771030(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771235(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705175(v=bts.10).aspx

WinRUIStartup
The WinRUIStartup function enables an application using Request Unit Interface (RUI) verbs to specify the version of
Windows logical unit application (LUA) required and to retrieve details of the specific Microsoft Windows LUA implementation.
This function must be called by an application to register itself with a Windows LUA implementation before issuing any further
Windows LUA calls.

Syntax

Parameters
wVersionRequired

Specifies the version of Windows LUA support required. The high-order byte specifies the minor version (revision) number.
The low-order byte specifies the major version number.

lpLuaData

Pointer to the LUADATA structure containing the returned version number information.

Return Value

The return code specifies whether the application was registered successfully and whether the Windows LUA implementation
can support the specified version number. If the value is zero, it was registered successfully and the specified version can be
supported. Otherwise, the return code is one of the following:

WLUASYSNOTREADY

The underlying network system is not ready for network communication.

WLUAVERNOTSUPPORTED

The version of Windows LUA support requested is not provided by this particular Windows LUA implementation.

WLUAINVALID

The Windows LUA version specified by the application is not supported by this dynamic-link library (DLL).

WLUAFAILURE

A failure occurred while the Windows LUA DLL was initializing. This usually occurs because an operating system call failed.

WLUAINITREJECT

WinRUIStartup was called multiple times.

Remarks

To support future Windows LUA implementations and applications that may have functionality differences, a negotiation takes
place in WinRUIStartup. An application passes to WinRUIStartup the Windows LUA version that it can use. If this version is
lower than the lowest version supported by the Windows LUA DLL, the DLL cannot support the application and
WinRUIStartup fails. If the version is not lower, however, the call succeeds and returns the highest version of Windows LUA
supported by the DLL. If this version is lower than the lowest version supported by the application, the application either fails
its initialization or attempts to find another Windows LUA DLL on the system.

This negotiation allows both a Windows LUA DLL and a Windows LUA application to support a range of Windows LUA
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinRUIStartup works in conjunction with different application and DLL versions.

LUA App versions LUA DLL versions To WinRUIStartup From WinRUIStartup Result

1.0 1.0 1.0 1.0 Use 1.0

 int WINAPI WinRUIStartup(
 WORD wVersionRequired,
 LUADATA FAR *lpLuaData);

1.0, 2.0 1.0 2.0 1.0 Use 1.0

1.0 1.0, 2.0 1.0 2.0 Use 1.0

1.0 2.0, 3.0 1.0 WLUAINVALID Fail

2.0, 3.0 1.0 3.0 1.0 App fails

1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

Note
The application that uses RUI verbs must call WinRUIStartup prior to issuing any other LUA commands. However, WinRUIS
tartup needs to be called only once per application. If it is called multiple times, the subsequent calls will be rejected.

Details of the actual LUA implementation are described in the WLUADATA structure, defined as follows:

Having made its last Windows LUA call, an application should call the WinRUICleanup routine.

Each LUA application that uses RUI verbs must make a WinRUIStartup call before issuing any other LUA calls.

See Also
Reference
WinRUICleanup

typedef struct { WORD wVersion;
 char szDescription[WLUADESCRIPTION_LEN+1];
 } LUADATA;

https://msdn.microsoft.com/en-us/library/aa770751(v=bts.10).aspx

WinSLI
The WinSLI function provides asynchronous message notification for all Microsoft® Windows®-based Session Level Interface
(SLI) verbs.

Syntax

Parameters
hWnd

Handle of window to receive message.

lpVCB

Pointer to the logical unit application (LUA) verb control block (VCB), LUA_VERB_RECORD.

Return Value

The function returns a value indicating whether the request was accepted by the Windows-based SLI for processing. A returned
value of zero indicates that the request was accepted and will be processed. A value other than zero indicates an error. Possible
error codes are as follows:

WLUAINVALIDHANDLE

The window handle provided is invalid.

WLUASTARTUPNOTCALLED

The application has not initiated a session using WinSLIStartup.

The value returned in lua_flag2.async indicates whether asynchronous notification will occur. If the flag is set (nonzero),
asynchronous notification will occur through a message posted to the applications message queue. If the flag is not set, the
request completed synchronously. Examine the primary return code and secondary return code for any error conditions.

Remarks

When the asynchronous operation is complete, the applications window hWnd receives the message returned by
RegisterWindowMessage with "WinSLI" as the input string. The lParam argument contains the address of the VCB being
posted as complete. The wParam argument is undefined.

Note
It is possible for the request to be accepted for processing (the function call returns zero) but rejected later with a primary ret
urn code and secondary return code set in the VCB. Examine the primary return code and secondary return code for any erro
r conditions.

If the application calls WinSLI without first initializing the session using WinSLIStartup, an error is returned.

See Also
Reference
SLI
WinSLIStartup

 int WINAPI WinSLI(
 HWND hWnd,
 LUA_VERB_RECORD FAR *lpVCB);

https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx

WinSLICleanup
The WinSLICleanup function terminates and deregisters an application using Session Level Interface (SLI) verbs from a
Microsoft® Windows® logical unit application (LUA) implementation.

Syntax

Return Value

The return code specifies whether the deregistration was successful. If the value is not zero, the application was successfully
deregistered. If the value is zero, the application was not deregistered.

Remarks

Use WinSLICleanup to indicate deregistration of a Windows LUA application from a Windows LUA implementation. This
function can be used, for example, to free up resources allocated to the specific application.

If WinSLICleanup is called while LUs are in session (SLI_CLOSE not issued), the cleanup code should issue an SLI_CLOSE close
type ABEND for the application for all open sessions.

See Also
Reference
SLI_CLOSE
WinSLIStartup

 BOOL WINAPI WinSLICleanup(void);

https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745184(v=bts.10).aspx

WinSLIStartup
The WinSLIStartup function allows an application using the Session Level Interface (SLI) verbs to specify the version of
Microsoft Windows logical unit application (LUA) required and to retrieve details of the specific Windows LUA implementation.
This function must be called by an application to register itself with a Windows LUA implementation before issuing any further
Windows LUA calls.

Syntax

Parameters
wVersionRequired

Specifies the version of Windows LUA support required. The high-order byte specifies the minor version (revision) number.
The low-order byte specifies the major version number.

lpLuaData

Pointer to the LUADATA structure containing the returned version number information.

Return Value

The return code specifies whether the application was registered successfully and whether the Windows LUA implementation
can support the specified version number. If the value is zero, it was registered successfully and the specified version can be
supported. Otherwise, the return code is one of the following:

WLUASYSNOTREADY

The underlying network system is not ready for network communication.

WLUAVERNOTSUPPORTED

The version of Windows LUA support requested is not provided by this particular Windows LUA implementation.

WLUAINVALID

The Windows LUA version specified by the application is not supported by this dynamic-link library (DLL).

WLUAFAILURE

A failure occurred while the Windows LUA DLL was initializing. This usually occurs because an operating system call failed.

WLUAINITREJECT

WinSLIStartup was called multiple times.

Remarks

To support future Windows LUA implementations and applications that may have functionality differences, a negotiation takes
place in WinSLIStartup. An application passes to WinSLIStartup the Windows LUA version that it can use. If this version is
lower than the lowest version supported by the Windows LUA DLL, the DLL cannot support the application and
WinSLIStartup fails. If the version is not lower, however, the call succeeds and returns the highest version of Windows LUA
supported by the DLL. If this version is lower than the lowest version supported by the application, the application either fails
its initialization or attempts to find another Windows LUA DLL on the system.

This negotiation allows both a Windows LUA DLL and a Windows LUA application to support a range of Windows LUA
versions. An application can successfully use a DLL if there is any overlap in the versions. The following table illustrates how
WinSLIStartup works in conjunction with different application and DLL versions.

App versions LUA DLL versions To WinSLIStartup From WinSLIStartup Result

1.0 1.0 1.0 1.0 Use 1.0

int WINAPI WinSLIStartup(
WORD wVersionRequired,
LUADATA FAR *lpLuaData
);

1.0, 2.0 1.0 2.0 1.0 Use 1.0

1.0 1.0, 2.0 1.0 2.0 Use 1.0

1.0 2.0, 3.0 1.0 WLUAINVALID Fail

2.0, 3.0 1.0 3.0 1.0 App fails

1.0, 2.0, 3.0 1.0, 2.0, 3.0 3.0 3.0 Use 3.0

Note
The application that uses SLI verbs must call WinSLIStartup prior to issuing any other LUA commands. However, WinSLISt
artup needs to be called only once per application. If it is called multiple times, the subsequent calls will be rejected.

Details of the actual LUA implementation are described in the WLUADATA structure, defined as follows:

Having made its last Windows LUA call, an application should call the WinSLICleanup routine.

Each LUA application that uses SLI verbs must make a WinSLIStartup call before issuing any other LUA calls.

See Also
Reference
WinSLICleanup

typedef struct { WORD wVersion;
 char szDescription[WLUADESCRIPTION_LEN+1];
 } LUADATA;

https://msdn.microsoft.com/en-us/library/aa745653(v=bts.10).aspx

SNA Services Enhancement to the Windows LUA Environment
This section describes the Microsoft® Host Integration Server extension to Microsoft Windows® logical unit application (LUA)
that converts primary and secondary return codes in the verb control block (VCB) to a printable string.

This section contains:

GetLuaReturnCode

https://msdn.microsoft.com/en-us/library/aa745212(v=bts.10).aspx

GetLuaReturnCode
The GetLuaReturnCode function converts the primary and secondary return codes in the verb control block (VCB) to a
printable string. This function provides a standard set of error strings for use by logical unit application (LUA) applications.

Syntax

Parameters
vpb

Supplied parameter. Specifies the address of the verb control block.

buffer_length

Supplied parameter. Specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256.

buffer_addr

Supplied/returned parameter. Specifies the address of the buffer that will hold the formatted, null-terminated string.

Remarks

Return Codes
0x20000001

The parameters are invalid; the function could not read from the specified verb control block or could not write to the
specified buffer.

0x20000002

The specified buffer is too small.

0x20000003

The LUA string library LUAST32.DLL could not be loaded.

Remarks

The descriptive error string returned in buffer_addr does not terminate with a newline character (\n).

The descriptive error strings are contained in LUAST32.DLL and can be customized for different languages.

 int WINAPI GetLuaReturnCode(
 struct LUA_COMMON FAR *vpb,
 UINT buffer_length,
 unsigned char FAR *buffer_addr);

LUA Verb Control Blocks
When an application issues a Microsoft® Windows® logical unit application (LUA) verb, the verb is coded within the
application as a precisely defined verb control block (VCB). The total length of this VCB is variable and is defined by
lua_verb_length.

This section defines the structure of individual Windows LUA VCBs.

This section contains:

Common Structure of LUA VCBs

Values for lua_message_type

Command-Specific Structure of LUA VCBs

https://msdn.microsoft.com/en-us/library/aa771958(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705808(v=bts.10).aspx

Common Structure of LUA VCBs
The following data structure shows the parameters that are common to all Microsoft® Windows® logical unit application
(LUA) verbs.

Syntax

Remarks

Members
lua_verb

Supplied parameter. Contains the verb code, LUA_VERB_RUI for Request Unit Interface (RUI) verbs or LUA_VERB_SLI for SLI
verbs. For both of these macros the value is 0x5200.

lua_verb_length

Supplied parameter. Specifies the length in bytes of the LUA VCB. It must contain the length of the verb record being issued.

lua_prim_rc

Primary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb issued.

lua_sec_rc

Secondary return code set by LUA at the completion of the verb. The valid return codes vary depending on the LUA verb
issued.

lua_opcode

Supplied parameter. Contains the LUA command code (verb operation code) for the verb to be issued, for example,
LUA_OPCODE_RUI_BID for the RUI_BID verb. Valid values are as follows:

LUA_OPCODE_SLI_OPEN

LUA_OPCODE_SLI_CLOSE

LUA_OPCODE_SLI_RECEIVE

LUA_OPCODE_SLI_SEND

LUA_OPCODE_SLI_PURGE

LUA_OPCODE_SLI_BID

struct LUA_COMMON {
 unsigned short lua_verb;
 unsigned short lua_verb_length;
 unsigned short lua_prim_rc;
 unsigned long lua_sec_rc;
 unsigned short lua_opcode;
 unsigned long lua_correlator;
 unsigned char lua_luname[8];
 unsigned short lua_extension_list_offset;
 unsigned short lua_cobol_offset;
 unsigned long lua_sid;
 unsigned short lua_max_length;
 unsigned short lua_data_length;
 char FAR * lua_data_ptr;
 unsigned long lua_post_handle;
 struct LUA_TH lua_th;
 struct LUA_RH lua_rh;
 struct LUA_FLAG1 lua_flag1;
 unsigned char lua_message_type;
 struct LUA_FLAG2 lua_flag2;
 unsigned char lua_resv56[7];
 unsigned char lua_encr_decr_option;
} LUA_COMMON;

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx

LUA_OPCODE_SLI_BIND_ROUTINE

LUA_OPCODE_SLI_STSN_ROUTINE

LUA_OPCODE_SLI_CRV_ROUTINE

LUA_OPCODE_RUI_INIT

LUA_OPCODE_RUI_TERM

LUA_OPCODE_RUI_READ

LUA_OPCODE_RUI_WRITE

LUA_OPCODE_RUI_PURGE

LUA_OPCODE_RUI_BID

lua_correlator

Supplied parameter. Contains a user-supplied value that links the verb with other user-supplied information. LUA does not
use or change this information. This parameter is optional.

lua_luname

Supplied parameter. Specifies the ASCII name of the local LU used by the Windows LUA session.

SLI_OPEN and RUI_INIT require this parameter. Other Windows LUA verbs only require this parameter if lua_sid is zero.

This parameter is eight bytes long, padded on the right with spaces (0x20) if the name is shorter than eight characters.

lua_extension_list_offset

Specifies the offset from the start of the VCB to the extension list of user-supplied dynamic-link libraries (DLLs). This
parameter is not used by RUI in Microsoft® Host Integration Server and should be set to zero. The value must be the
beginning of a word boundary unless there is no extension list.

lua_cobol_offset

Offset of the COBOL extension. Not used by LUA in Host Integration Server and should be zero.

lua_sid

Supplied and returned parameter. Specifies the session identifier and is returned by SLI_OPEN and RUI_INIT. Other verbs use
this parameter to identify the session used for the command. If other verbs use the lua_luname parameter to identify
sessions, set the lua_sid parameter to zero.

lua_max_length

Specifies the length of received buffer for RUI_READand SLI_RECEIVE. For other RUI and SLI verbs, it is not used and should
be set to zero.

lua_data_length

Specifies the length of the data being sent or received. It specifies the length of data returned in lua_peek_data for the
RUI_BID verb.

lua_data_ptr

Pointer to an application-supplied buffer.

When SLI_RECEIVE or RUI_READ is issued, this parameter points to the location to receive the data from the host.

When SLI_SEND or RUI_WRITE is issued, this parameter points to the location of the application's data to be sent to the host.

When SLI_PURGE or RUI_PURGE is issued, this parameter points to the location of the SLI_RECEIVE or RUI_READ verb's
VCB that is to be canceled.

When SLI_OPEN is issued, this parameter can be one of the following:

The logon message for the SSCP normal flow when the initialization type is secondary with an unformatted logon
message.

The request/response unit (RU) for INITSELF. When the initialization type is secondary with INITSELF, the necessary
data for the application is provided.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754770(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

For all other open types, this field should be set to zero.

For other RUI and Session Level Interface (SLI) verbs, this parameter is not used and should be set to zero. Both SNA
commands and data are placed in this buffer, and they can be in an EBCDIC format.

This information is provided by the Windows LUA application.

lua_post_handle

Supplied parameter. Used under Microsoft Windows® 2000 and Windows Server™ 2003 if asynchronous notification is to
be accomplished by events. This variable contains the handle of the event to be signaled or a window handle.

lua_th

Returned parameter. Contains the SNA transmission header (TH) of the message sent or received. Various subparameters
are set for write functions and returned for read and bid functions. The subparameters are as follows:

lua_th.flags_fid

Format identification type 2, four bits.

lua_th.flags_mpf

Segmenting mapping field, two bits. Defines the type of data segment. The following values are valid:

0x00 Middle segment0x04 Last segment0x08 First segment0x0C Only segment

lua_th.flags_odai

Originating address field–destination address field (OAF–DAF) assignor indicator, one bit.

lua_th.flags_efi

Expedited flow indicator, one bit.

lua_th.daf

Destination address field (DAF), an unsigned char.

lua_th.oaf

Originating address field (OAF), an unsigned char.

lua_th.snf

Sequence number field, an unsigned char[2].

lua_rh

Returned parameter. Contains the SNA request/response header (RH) of the message sent or received. It is set for the write
function and returned by the read and bid functions. Its sub parameters are as follows:

lua_rh.rri

Request-response indicator, one bit.

lua_rh.ruc

RU category, two bits. The following values are valid:

LUA_RH_FMD (0x00) FM data segmentLUA_RH_NC (0x20) Network controlLUA_RH_DFC (0x40) Data flow
controlLUA_RH_SC (0x60) Session control

lua_rh.fi

Format indicator, one bit.

lua_rh.sdi

Sense data included indicator, one bit.

lua_rh.bci

Begin chain indicator, one bit.

lua_rh.eci

End chain indicator, one bit.

lua_rh.dr1i

Definite response 1 indicator, one bit.

lua_rh.dr2i

Definite response 2 indicator, one bit.

lua_rh.ri

Exception response indicator (for a request), or response type indicator (for a response), one bit.

lua_rh.qri

Queued response indicator, one bit.

lua_rh.pi

Pacing indicator, one bit.

lua_rh.bbi

Begin bracket indicator, one bit.

lua_rh.ebi

End bracket indicator, one bit.

lua_rh.cdi

Change direction indicator, one bit.

lua_rh.csi

Code selection indicator, one bit.

lua_rh.edi

Enciphered data indicator, one bit.

lua_rh.pdi

Padded data indicator, one bit.

lua_flag1

Supplied parameter. Contains a data structure containing flags for messages supplied by the application. This parameter is
used by RUI_BID, RUI_READ, RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not
used and should be set to zero. Its subparameters are as follows:

lua_flag1.bid_enable

Bid enable indicator, one bit.

lua_flag1.close_abend

Close immediate indicator, one bit.

lua_flag1.nowait

No wait for data flag, one bit.

lua_flag1.sscp_exp

SSCP expedited flow, one bit.

lua_flag1.sscp_norm

SSCP normal flow, one bit.

lua_flag1.lu_exp

LU expedited flow, one bit.

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

lua_flag1.lu_norm

LU normal flow, one bit.

lua_message_type

Specifies the type of the inbound or outbound SNA commands and data. This is a returned parameter for RUI_INIT and
SLI_OPEN and a supplied parameter for SLI_SEND. For other LUA verbs this variable is not used and should be set to zero.

Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RQR

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

LU_DATA, LUSTAT_LU, LUSTAT_SSCP, and SSCP_DATA are not SNA commands.

lua_flag2

Returned parameter. Contains flags for messages returned by LUA. This parameter is returned by RUI_BID, RUI_READ,
RUI_WRITE, SLI_BID, SLI_RECEIVE, and SLI_SEND. For other LUA verbs this parameter is not used and should be set to zero.
Its subparameters are as follows:

lua_flag2.bid_enable

Indicates that RUI_BID was successfully re-enabled if set to 1.

lua_flag2.async

Indicates that the LUA interface verb completed asynchronously if set to 1.

lua_flag2.sscp_exp

Indicates SSCP expedited flow if set to 1.

lua_flag2.sscp_norm

https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705407(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705562(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705575(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx

Indicates SSCP normal flow if set to 1.

lua_flag2.lu_exp

Indicates LU expedited flow if set to 1.

lua_flag2.lu_norm

Indicates LU normal flow if set to 1.

lua_resv56

This supplied parameter is a reserved field used by SLI_OPEN and RUI_INIT. For all other LUA verbs, this parameter is
reserved and should be set to zero.

lua_encr_decr_option

This parameter is a field for cryptography options. On RUI_INIT, only the following are supported:

lua_encr_decr_option = 0

lua_encr_decr_option = 128

For all other LUA verbs, this parameter is reserved and should be set to zero.

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705154(v=bts.10).aspx

Values for lua_message_type
The following table describes the possible values for lua_message_type.

Message type SNA data SLI_SEND SLI_BID SLI_RECEIVE RUI_BID RUI_READ
0xC8 BID X X X

0x31 BIND Extension* X

0x70 BIS X X X

0x83 CANCEL X X X

0x84 CHASE X X X

0xA1 CLEAR X

0xD0 CRV X

0x01 LU_DATA** X X X

0x04 LUSTAT_LU** X X X

0x14 LUSTAT_SSCP** X X X

0x81 QC X X X

0x80 QEC X X X

0x82 RELQ X X X

0xA3 RQR X X

0x02 RSP X X

0x05 RTR X X X

0x71 SBI X X X

0xC0 SHUTD X

0xC9 SIGNAL X X X

0xA0 SDT X

0x11 SSCP_DATA** X X X

0xA2 STSN Extension* X

0x32 UNBIND X

*The SLI receives and responds to the BIND, CRV, and STSN requests through the LUA interface extension routines.

**Not an SNA command.

Command-Specific Structure of LUA VCBs
The following union shows the specific data structure that is included for functions that use the LUA_SPECIFIC part of a verb
control block. The only logical unit application (LUA) verbs that use this union are RUI_BID,SLI_BID,SLI_OPEN, and SLI_SEND.

Syntax

Remarks

Members
open

The union member of LUA_SPECIFIC used by the SLI_OPEN verb.

lua_sequence_number

The union member of LUA_SPECIFIC used by the SLI_SEND verb. Returned parameter. Sequence number of the RU to the
host. It contains the sequence number for either the first in the chain request unit or the only segment in the chain request
unit. Note that this parameter is not byte-reversed.

lua_peek_data

The union member of LUA_SPECIFIC used by the RUI_BID and SLI_BID verbs. Returned parameter. Contains up to 12 bytes
of the data waiting to be read. It is a preview (up to 12 bytes) of the request/response unit (RU) data waiting to be read. The
lua_data_length parameter contains the exact length of the data peeked at.

The following topic describes command-specific parameters for SLI_OPEN.

This section contains:

SLI_OPEN VCB Structure

union LUA_SPECIFIC {
 struct SLI_OPEN open;
 unsigned char lua_sequence_number[2];
 unsigned char lua_peek_data[12];
} LUA_SPECIFIC;

https://msdn.microsoft.com/en-us/library/aa770923(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771487(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705196(v=bts.10).aspx

SLI_OPEN VCB Structure
The following structure shows the SLI_OPEN fields of the LUA SPECIFIC union member for the SLI_OPEN verb.

Syntax

Remarks

Members
lua_init_type

Type of session initiation, which determines how the LU-LU session is initialized by the Windows LUA interface. The
following values are valid:

lua_init_type_sec_is

Secondary-initiated and sends the INITSELF command supplied in the OPEN data buffer.

lua_init_type_sec_log

Secondary-initiated with an unformatted LOGON message in the OPEN data buffer.

lua_init_type_prim

Primary-initiated and waits on the BIND command.

lua_init_type_prim_sscp

Primary-initiated with SSCP access.

lua_resv65

Reserved field.

lua_wait

Secondary retry wait time. Specifies how many seconds the Windows LUA interface is to wait before retransmitting the
INITSELF or the LOGON message after receiving one of the following:

A NOTIFY command (indicating a procedure error)

A network services procedure error message

A negative response with one of the following secondary return codes:

RESOURCE_NOT_AVAILABLE SESSION_LIMIT_EXCEEDED SESSION_SERVICE_PATH_ERROR

lua_open_extension

Supplied parameter. Specifies any user-supplied dynamic-link libraries (DLLs) used to process specific LUA messages.

lua_ending_delim

Extension list delimiter.

struct SLI_OPEN {
 unsigned char lua_init_type;
 unsigned char lua_resv65;
 unsigned short lua_wait;
 struct LUA_EXT_ENTRY lua_open_extension[3];
 unsigned char lua_ending_delim;
} SLI_OPEN;

https://msdn.microsoft.com/en-us/library/aa705692(v=bts.10).aspx

LUA Common Return Codes
This section describes the primary and, if applicable, secondary return codes that are common to the logical unit application
(LUA) verbs. The return codes are listed in hexadecimal order.

Verb-specific return codes are described for the individual verbs in LUA RUI Verbs and LUA SLI Verbs.

This section contains:

LUA Primary Return Codes

LUA Secondary Return Codes

https://msdn.microsoft.com/en-us/library/aa704959(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704706(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705789(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705604(v=bts.10).aspx

LUA Primary Return Codes
 

0x0000
LUA_OK

The verb executed successfully.

0x0001
LUA_PARAMETER_CHECK

The verb did not execute because of a parameter error.

0x0002
LUA_STATE_CHECK

The verb did not execute because it was issued in an invalid state.

0x000F
LUA_SESSION_FAILURE

A required Microsoft® Host Integration Server component (such as the local node) has terminated.

0x0014
LUA_UNSUCCESSFUL

The verb record supplied was valid, but the verb did not complete successfully.

0x0018
LUA_NEGATIVE_RESPONSE

Either the logical unit application (LUA) sent a negative response to a message received from the primary logical unit (PLU)
because an error was found in the message, or the application responded negatively to a chain for which the end-of-chain
has arrived.

0x0021
LUA_CANCELED

The secondary return code gives the reason for canceling the command.

0x0030
LUA_IN_PROGRESS

An asynchronous command was received but is not completed.

0x0040
LUA_STATUS

The secondary return code contains Session Level Interface (SLI) status information for the application.

0xF003
LUA_COMM_SUBSYSTEM_ABENDED

Indicates one of the following conditions:

The node used by this conversation encountered an ABEND.

The connection between the transaction program (TP) and the physical unit (PU) 2.1 node was broken (a LAN error).

The SnaBase at the TPs computer encountered an ABEND.

0xF004
LUA_COMM_SUBSYSTEM_NOT_LOADED

A required component could not be loaded or terminated while processing the verb. Thus, communication could not take
place. Contact the system administrator for corrective action.

0xF008

LUA_INVALID_VERB_SEGMENT

The verb control block (VCB) extended beyond the end of the data segment.

0xF011
LUA_UNEXPECTED_DOS_ERROR

After issuing an operating system call, an unexpected operating system return code was received and is specified in the
secondary return code.

0xF015
LUA_STACK_TOO_SMALL

The stack size of the application is too small to execute the verb. Increase the stack size of your application.

0xFFFF
LUA_INVALID_VERB

Either the verb code or the operation code, or both, is invalid. The verb did not execute.

LUA Secondary Return Codes
 

0x00000000
LUA_SEC_RC_OK

No additional information exists for LUA_OK.

0x00000001
LUA_INVALID_LUNAME

An invalid lua_luname name was specified.

0x00000002
LUA_BAD_SESSION_ID

An invalid value for lua_sid was specified in the verb control block (VCB).

0x00000003
LUA_DATA_TRUNCATED

The data was truncated because the data received was longer than the buffer length specified in lua_max_length.

0x00000004
LUA_BAD_DATA_PTR

The lua_data_ptr parameter either does not contain a valid pointer or does not point to a read/write segment, and supplied
data is required.

0x00000005
LUA_DATA_LENGTH_ERROR

One of the following occurred:

The supplied data segment for SLI_RECEIVE or SLI_SEND is not a read/write data segment as required.

The supplied data segment for SLI_RECEIVE is not as long as that provided in lua_max_length.

The supplied data segment for SLI_SEND is not as long as that provided in lua_data_length.

0x00000006
LUA_RESERVED_FIELD_NOT_ZERO

A reserved parameter for the verb just issued is not set to zero.

0x00000007
LUA_INVALID_POST_HANDLE

For a Microsoft Windows Server 2003 or Windows 2000 system using events as the asynchronous posting method, the
Windows-based logical unit application (LUA) VCB does not contain a valid event handle.

0x0000000C
LUA_PURGED

SLI_PURGE was issued and canceled SLI_RECEIVE.

0x0000000F
LUA_BID_VERB_ERROR

The buffer with the SLI_BID VCB was released before the SLI_RECEIVE with lua_flag1.bid_enable set to 1 was issued.

0x00000010
LUA_NO_PREVIOUS_BID_ENABLED

SLI_BID was not issued prior to issuing SLI_RECEIVE with bid_enable.

0x00000011
LUA_NO_DATA

No data was available to read when SLI_RECEIVE containing a no-wait parameter was issued.

0x00000012
LUA_BID_ALREADY_ENABLED

SLI_RECEIVE was issued with bid_enable when SLI_BID was already active.

0x00000013
LUA_VERB_RECORD_SPANS_SEGMENTS

The LUA VCB length parameter plus the segment offset is beyond the segment end.

0x00000014
LUA_INVALID_FLOW

The lua_flag1 flow flags were set incorrectly when a verb was issued as follows:

When issuing SLI_SEND to send an SNA response, set only one lua_flag1 flow flag.

When issuing SLI_RECEIVE, set at least one lua_flag1 flow flag.

0x00000015
LUA_NOT_ACTIVE

LUA was not active within Microsoft Host Integration Server when an LUA verb was issued.

0x00000016
LUA_VERB_LENGTH_INVALID

An LUA verb was issued with the value of lua_verb_length unexpected by the LUA.

0x00000019
LUA_REQUIRED_FIELD_MISSING

The verb that was issued either did not include a data pointer (if the data count was not zero) or did not include an lua_flag1
flow flag.

0x00000030
LUA_READY

Following a NOT_READY status, this status is issued to notify you that the Session Level Interface (SLI) is ready to process
commands.

0x00000031
LUA_NOT_READY

One of the following caused the SLI session to be temporarily suspended:

An SNA UNBIND type 0x02 command was received, indicating a new BIND is coming.

If the UNBIND type 0x02 is received after the beginning SLI_OPEN is complete, the session is suspended until a BIND,
optional CRV and STSN, and SDT flows are received. These routines are re-entrant because they must be called again.
The session resumes after the SLI processes the SDT command. If the UNBIND type 0x02 is received while SLI_OPEN is
still processing, the primary return code is session-failure, not status.

The receipt of an SNA CLEAR caused the suspension.

Receipt of an SNA SDT will cause the session to resume.

0x00000032
LUA_INIT_COMPLETE

The LUA interface initialized the session while SLI_OPEN was processing. LUA applications that issue SLI_OPEN with
lua_open_type_prim_sscp receive this status on SLI_RECEIVE or SLI_BID.

0x00000033
LUA_SESSION_END_REQUESTED

The LUA interface received an SNA shutdown command (SHUTD) from the host, indicating the host is ready to shut down
the session.

0x00000034
LUA_NO_SLI_SESSION

A session was not open or was down due to an SLI_CLOSE or session failure when a command was issued.

0x00000035
LUA_SESSION_ALREADY_OPEN

A session is already open for the logical unit (LU) name specified in SLI_OPEN.

0x00000036
LUA_INVALID_OPEN_INIT_TYPE

The value in the lua_init_type contained in SLI_OPEN is invalid.

0x00000037
LUA_INVALID_OPEN_DATA

The lua_init_type for the SLI_OPEN issued is set to LUA_INIT_TYPE_SEC_IS when the buffer for data does not have a valid
INITSELF command.

0x00000038
LUA_UNEXPECTED_SNA_SEQUENCE

Unexpected data or commands were received from the host while SLI_OPEN was processing.

0x00000039
LUA_NEG_RSP_FROM_BIND_ROUTINE

The user-supplied SLI_BIND routine responded negatively to the BIND. SLI_OPEN ended unsuccessfully.

0x0000003B
LUA_NEG_RSP_FROM_STSN_ROUTINE

The user-supplied SLI STSN routine responded negatively to the STSN. SLI_OPEN ended unsuccessfully.

0x0000003E
LUA_INVALID_OPEN_ROUTINE_TYPE

The lua_open_routine_type for the SLI_OPEN list of extension routines is invalid.

0x0000003F
LUA_MAX_NUMBER_OF_SENDS

The application issued a third SLI_SEND before one completed.

0x00000040
LUA_SEND_ON_FLOW_PENDING

An SLI_SEND was still outstanding when the application issued another SLI_SEND for an SNA flow.

0x00000041
LUA_INVALID_MESSAGE_TYPE

The lua_message_type parameter is not recognized by the LUA interface.

0x00000042
LUA_RECEIVE_ON_FLOW_PENDING

An SLI_RECEIVE was still outstanding when this application issued another SLI_RECEIVE for an SNA flow.

0x00000043
LUA_DATA_LENGTH_ERROR

The application did not provide user-supplied data required by the verb issued. Note that when SLI_SEND is issued for an
SNA LUSTAT command, status (in four bytes) is required, and that when SLI_OPEN is issued with secondary initialization,
data is required.

0x00000044
LUA_CLOSE_PENDING

One of the following occurred:

A CLOSE_ABEND was still pending when another CLOSE_ABEND was issued. You can issue a CLOSE_ABEND if a
CLOSE_NORMAL is pending.

Either a CLOSE_ABEND or a CLOSE_NORMAL was still pending when a CLOSE_NORMAL was issued.

0x00000046
LUA_NEGATIVE_RSP_CHASE

A negative response to an SNA CHASE command from the host was received by the LUA interface while SLI_CLOSE was
being processed. SLI_CLOSE continued processing to stop the session.

0x00000047
LUA_NEGATIVE_RSP_SHUTC

A negative response to an SNA SHUTC command from the host was received by the SLI while SLI_CLOSE was still being
processed. SLI_CLOSE continued processing to stop the session.

0x00000048
LUA_NEGATIVE_RSP_RSHUTD

A negative response to an SNA RSHUTD command from the host was received by the LUA interface while SLI_CLOSE was
being processed. SLI_CLOSE continued processing to stop the session.

0x0000004A
LUA_NO_RECEIVE_TO_PURGE

No SLI_RECEIVE was outstanding when you issued SLI_PURGE. One of two situations caused the problem:

SLI_RECEIVE completed before SLI_PURGE finished processing.

You can change the application to take care of this problem because it is not an error condition.

The lua_data_ptr parameter does not correctly point to the SLI_RECEIVE you want to purge.

0x0000004D
LUA_CANCEL_COMMAND_RECEIVED

The host sent an SNA CANCEL command to cancel the data chain currently being received by SLI_RECEIVE.

0x0000004E
LUA_RUI_WRITE_FAILURE

An unexpected error was posted to the SLI by RUI_WRITE.

0x00000051
LUA_SLI_BID_PENDING

An SLI verb was still active when another SLI_BID was issued. Only one SLI_BID can be active at a time.

0x00000052
LUA_SLI_PURGE_PENDING

An SLI_PURGE was still active when another SLI_PURGE was issued. Only one SLI_PURGE can be active at a time.

0x00000053
LUA_PROCEDURE_ERROR

A host procedure error is indicated by the receipt of an NSPE or NOTIFY message. The return code is posted to SLI_OPEN
when the retry option is not used. To use the reset option, set lua_wait to a value other than zero. The LOGON or INITSELF
command will be retried until the host is ready or until you issue SLI_CLOSE.

0x00000054
LUA_INVALID_SLI_ENCR_OPTION

The lua_encr_decr_option parameter was set to 128 in SLI_OPEN, which is not supported for the encryption/decryption
processing option.

0x00000055
LUA_RECEIVED_UNBIND

The primary LU sent an SNA UNBIND command to the LUA interface when a session was active. As a result, the session was
stopped.

0x0000007F
LUA_SLI_LOGIC_ERROR

The LUA interface found an internal error in logic.

0x00000080
LUA_TERMINATED

The session was terminated when a verb was pending. The verb process has been canceled.

0x00000081
LUA_NO_RUI_SESSION

No session has been initialized for the LUA verb issued, or some verb other than SLI_OPEN was issued before the session
was initialized.

0x00000083
LUA_INVALID_PROCESS

The session for which a Request Unit Interface (RUI) verb was issued is unavailable because another process owns the
session.

0x0000008C
LUA_LINK_NOT_STARTED

The LUA was not able to activate the data link during initialization of the session.

0x0000008D
LUA_INVALID_ADAPTER

The configuration for the data link control (DLC) is in error, or the configuration file is corrupted.

0x0000008E
LUA_ENCR_DECR_LOAD_ERROR

An unexpected return code was received from the OS/2 DosLoadModule function while attempting to load the user-
provided encryption or decryption dynamic link module.

0x0000008F
LUA_ENCR_DECR_LOAD_ERROR

An unexpected return code was received from the OS/2 DosGetProcAddr function while attempting to get the procedure
address within the user-provided encryption or decryption dynamic link module.

0x000000BE
LUA_NEG_NOTIFY_RSP

The system services control point (SSCP) responded negatively to a NOTIFY request issued indicating that the secondary LU
was capable of a session. The half-session component that received the request understood and supported the request but
could not execute it.

0x000000FF
LUA_LU_INOPERATIVE

A severe error occurred while the RUI was attempting to stop the session. This LU is unavailable for any LUA requests until
an ACTLU is received from the host.

0x08010000
LUA_RESOURCE_NOT_AVAILABLE

The logical unit, physical unit, link, or link station specified in the request unit is unavailable. This return code is posted to
SLI_OPEN when a resource is unavailable unless you use the retry option.

To use the retry option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the
host is ready or until you issue SLI_CLOSE.

0x08050000

LUA_SESSION_LIMIT_EXCEEDED

The session requested was not activated because a network addressable unit (NAU) is at its session limit.

This SNA sense code applies to the following requests: BID, CINIT, INIT, and ACTDRM. The code will be posted to SLI_OPEN
when an NAU is at its limit, unless you use the retry option.

To use the retry option, set lua_wait to a value other than zero. The LOGON or INITSELF command will be retried until the
host is ready or until you issue SLI_CLOSE.

0x08090000
LUA_MODE_INCONSISTENCY

Performing this function is not allowed by the current status. The request sent to the half-session component was not
executed even though it was understood and supported. This SNA sense code is also an exception request sense code.

0x08120000
LUA_INSUFFICIENT_RESOURCES

A temporary condition of insufficient resources caused the request receiver to be unable to perform. The request sent to the
half-session component was not executed, even though it was understood and supported.

0x081B0000
LUA_RECEIVER_IN_TRANSMIT_MODE

Either resources needed to handle normal flow data were not available or the state of the half-duplex contention was not
received when a normal-flow request was received. The result is a race condition. This SNA sense code is also an exception
request sense code.

0x08310000
LUA_LU_COMPONENT_DISCONNECTED

An LU component is unavailable because it is not connected properly. Make sure that the power is on.

0x08350001
LUA_NEGOTIABLE_BIND_ERROR

A negotiable BIND was received, which is only allowed by the SLI when a user-supplied SLI_BIND routine is provided with
SLI_OPEN.

0x08350002
LUA_BIND_FM_PROFILE_ERROR

Only file management header profiles 3 and 4 are supported by the LUA interface. A file management profile other than 3 or
4 was found on the BIND.

0x08350003
LUA_BIND_TS_PROFILE_ERROR

Only Transmission Service (TS) profiles 3 and 4 are supported by the LUA interface. A TS profile other than 3 or 4 was found
on the BIND.

0x0835000E
LUA_BIND_LU_TYPE_ERROR

Only LU 0, LU 1, LU 2, and LU 3 are supported by LUA. An LU other than 0, 1, 2, or 3 was found.

0x08570000
LUA_SSCP_LU_SESSION_NOT_ACTIVE

The required SSCP-LU is inactive. Specific sense code information is in bytes 2 and 3. Valid settings are 0x0000, 0x0001,
0x0002, 0x0003, and 0x0004.

0x08780001
LUA_RECEIVE_CORRELATION_TABLE_FULL

The session receive correlation table for the flow requested reached its capacity.

0x08780002
LUA_SEND_CORR_TABLE_FULL

The session send correlation table for the flow requested reached its capacity.

0x087D0000
LUA_SESSION_SERVICE_PATH_ERROR

A request for session services cannot be rerouted to an SSCP-SSCP session path. Specific sense code information in bytes 2
and 3 gives more information about why the request cannot be rerouted.

0x10020000
LUA_RU_LENGTH_ERROR

The request/response unit (RU) request was an incorrect length (either too short or too long). The RU was not interpreted or
processed even though it was delivered to the half-session component. The half-session capabilities do not match. This SNA
sense code is also an exception request sense code.

0x10030000
LUA_FUNCTION_NOT_SUPPORTED

The LUA does not support the requested function. A control character, an RU parameter, or a formatted request code may
have specified the function. Specific sense code information is in bytes 2 and 3.

0x10050121
LUA_HDX_BRACKET_STATE_ERROR

The existing state error prevented the current request from being sent. The determination was made by a protocol computer.

0x10050122
LUA_RESPONSE_ALREADY_SENT

A response for the chain was already sent so that the current request was not sent. The determination was made by a
protocol computer.

0x10050123
LUA_EXR_SENSE_INCORRECT

The application responded negatively to an exception request. The sense code was unacceptable.

0x10050124
LUA_RESPONSE_OUT_OF_ORDER

The current response was not for the oldest request. The determination was made by a protocol computer.

0x10050125
LUA_CHASE_RESPONSE_REQUIRED

A CHASE response was still outstanding when a more recent request was attempted. The determination was made by a
protocol computer.

0x20020000
LUA_CHAINING_ERROR

The sequence of the chain indicator settings is in error. An invalid request header or request unit for the receivers current
session control or data flow control state was found. Delivery to the half-session component was prevented.

0x20030000
LUA_BRACKET

The sender failed to enforce the session bracket rules. Note that contention and race conditions are exempt from this error.
An invalid request header or request unit for the receivers current session control or data flow control state was found.
Delivery to the half-session component was prevented.

0x20040000
LUA_DIRECTION

While the half-duplex flip-flop state was NOT_RECEIVE, a request for normal flow was received. An invalid request header or
request unit for the receivers current session control or data flow control state was found. Delivery to the half-session
component was prevented.

0x20050000
LUA_DATA_TRAFFIC_RESET

A half-session of an active session with inactive data traffic received a normal flow DFC or FMD request. An invalid request
header or request unit for the receivers current session control or data flow control state was found. Delivery to the half-
session component was prevented.

0x20060000
LUA_DATA_TRAFFIC_QUIESCED

A data flow control (DFC) or function management data (FMD) request was received from a half-session that sent either a
SHUTC command or QC command, and the DFC or FMD request has not responded to a RELQ command. An invalid request
header or request unit for the receivers current session control or data flow control state was found. Delivery to the half-
session component was prevented.

0x20070000
LUA_DATA_TRAFFIC_NOT_RESET

While the data traffic state was not reset, the session control request was received. An invalid request header or request unit
for the received current session control or data flow control state was found. Delivery to the half-session component was
prevented.

0x20080000
LUA_NO_BEGIN_BRACKET

The receiver has already sent a positive response to a Bracket Initiation Stopped (BIS) command when a BID or an FMD
request specifying BBI=BB was received. An invalid request header or request unit for the received current session control or
data flow control state was found. Delivery to the half-session component was prevented.

0x20090000
LUA_SC_PROTOCOL_VIOLATION

A violation of the session control (SC) protocol occurred. A request (that is permitted only after an SC request and a positive
response to that request have been successfully exchanged) was received before the required exchange. Byte 4 of the sense
data contains the request code. No user data exists for this sense code. An invalid header request or request unit for the
received current session control or data flow control state was found. Delivery to the half-session component was prevented.

0x200A0000
LUA_IMMEDIATE_REQUEST_MODE_ERROR

The request violated the immediate request mode protocol. An invalid header request or request unit for the received current
session control or data flow control state was found. Delivery to the half-session component was prevented.

0x200B0000
LUA_QUEUED_RESPONSE_ERROR

The request violated the queued response protocol. An invalid header request or request unit for the received current session
control or data flow control state was found. Delivery to the half-session component was prevented.

0x200C0000
LUA_ERP_SYNC_EVENT_ERROR

A violation of the ERP synchronous event protocol occurred. An invalid header request or request unit for the received
current session control or data flow control state was found. Delivery to the half-session component was prevented.

0x200D0000
LUA_RSP_BEFORE_SENDING_REQ

A previously received request has not yet been responded to and an attempt was made in half-duplex send/receive mode to
send a normal flow request. An invalid header request or request unit for the received current session control or data flow
control state was found. Delivery to the half-session component was prevented.

0x200E0000
LUA_RSP_CORRELATION_ERROR

A response was sent that does not correspond to a previously received request or a response was received that does not
correspond to a request sent previously.

0x200F0000
LUA_RSP_PROTOCOL_ERROR

A violation of the response protocol was found in the response received from the primary half-session.

0x40010000
LUA_INVALID_SC_OR_NC_RH

The request/response header (RH) of a session control (SC) or network control (NC) request was invalid.

0x40030000
LUA_BB_NOT_ALLOWED

The begin bracket indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40040000
LUA_EB_NOT_ALLOWED

The end bracket indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40060000
LUA_EXCEPTION_RSP_NOT_ALLOWED

When an exception response was not allowed, one was requested. The BIND options chosen previously or the architectural
rules were violated by the request header parameter values. Delivery to the half-session component was prevented. The
errors are not dependent on the current session state. The senders failure to enforce session rules may have caused the
errors.

0x40070000
LUA_DEFINITE_RSP_NOT_ALLOWED

When a definite response was not allowed, one was requested. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40080000
LUA_PACING_NOT_SUPPORTED

The request contained a pacing indicator when support of pacing for this session does not exist for the receiving half-session
or boundary function half-session. The BIND options chosen previously or the architectural rules were violated by the
request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on
the current session state. The senders failure to enforce session rules may have caused the errors.

0x40090000
LUA_CD_NOT_ALLOWED

The change-direction indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x400A0000
LUA_NO_RESPONSE_NOT_ALLOWED

A request other than an EXR contained a NO RESPONSE. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x400B0000
LUA_CHAINING_NOT_SUPPORTED

The chaining indicators were incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x400C0000
LUA_BRACKETS_NOT_SUPPORTED

The bracket indicators were incorrectly specified. The BIND options chosen previously or the architectural rules were violated
by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x400D0000
LUA_CD_NOT_SUPPORTED

The change-direction indicator was set, but LUA does not support change-direction for this situation. The BIND options
chosen previously or the architectural rules were violated by the request header parameter values. Delivery to the half-

session component was prevented. The errors are not dependent on the current session state. The senders failure to enforce
session rules may have caused the errors.

0x400F0000
LUA_INCORRECT_USE_OF_FI

The format indicator was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by
the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent
on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40100000
LUA_ALTERNATE_CODE_NOT_SUPPORTED

The code selection indicator was set, but LUA does not support code selection for this session. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

0x40110000
LUA_INCORRECT_RU_CATEGORY

The request unit category indicator was incorrectly specified. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40120000
LUA_INCORRECT_REQUEST_CODE

The request code was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by
the request header parameter values. Delivery to the half-session component was prevented. The errors are not dependent
on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40130000
LUA_INCORRECT_SPEC_OF_SDI_RTI

The sense-data-included indicator (SDI) and the response-type indicator (RTI) were not specified correctly on a response. The
BIND options chosen previously or the architectural rules were violated by the request header parameter values. Delivery to
the half-session component was prevented. The errors are not dependent on the current session state. The senders failure to
enforce session rules may have caused the errors.

0x40140000
LUA_INCORRECT_DR1I_DR2I_ERI

The DR1I, the DR2I, and the exception response indicator (ERI) were specified incorrectly. The BIND options chosen
previously or the architectural rules were violated by the request header parameter values. Delivery to the half-session
component was prevented. The errors are not dependent on the current session state. The senders failure to enforce session
rules may have caused the errors.

0x40150000
LUA_INCORRECT_USE_OF QRI

The queued response indicator (QRI) was incorrectly specified. The BIND options chosen previously or the architectural rules
were violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are
not dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x40160000
LUA_INCORRECT_USE_OF_EDI

The EDI was incorrectly specified. The BIND options chosen previously or the architectural rules were violated by the request
header parameter values. Delivery to the half-session component was prevented. The errors are not dependent on the
current session state. The senders failure to enforce session rules may have caused the errors.

0x40170000
LUA_INCORRECT_USE_OF_PDI

The padded data indicator (PDI) was incorrectly specified. The BIND options chosen previously or the architectural rules were
violated by the request header parameter values. Delivery to the half-session component was prevented. The errors are not
dependent on the current session state. The senders failure to enforce session rules may have caused the errors.

0x80030000

LUA_NAU_INOPERATIVE

The network addressable unit (NAU) is not able to process responses or requests. Delivery to the receiver could not take
place for one of the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session that usually means there is no longer a valid path to the session partner.

0x80050000
LUA_NO_SESSION

A request to activate a session is required because no active half-session in the receiving end node for the origination-
destination pair exists, or no active boundary function half-session component for the origination-destination pair in a node
that supplies the boundary function exists. Delivery of the request could not take place for one of the following reasons:

A path information unit error

A path outage

An invalid sequence of requests for activation

If a path error is received during an active session that usually indicates there is no longer a valid path to the session partner.

3270 Emulation Programmer's Reference
This section contains reference material for the 3270 Emulator.

For general information about programming for the 3270 Emulator, see the 3270 Emulation Programmer's Guide section of
the SDK.

In This Section

DL-BASE/DMOD Entry Points

FMI Message Formats

FMI Extension for the Windows Environment

https://msdn.microsoft.com/en-us/library/aa754776(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771375(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744732(v=bts.10).aspx

DL-BASE/DMOD Entry Points
This section provides definitions for the entry points to the DL-BASE and the Dynamic Access Module (DMOD).

In This Section

CMDGoTSR

CMDSemClear

CMDSemRequest

CMDSemSet

CMDSemWait

CMDStartFG

CMDStopFG

RegisterSwitchProc

routproc

sbpibegt

sbpiberl

sbpuinit

sbpurcvx

sbpusend

sbputerm

sepdbubl

sepdburl

sepdchnk

sepdcrec

sepdgetinfo

sepdrout

sepwrout

https://msdn.microsoft.com/en-us/library/aa705603(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771948(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754282(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746229(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770549(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745361(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705219(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754032(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754468(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746114(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704612(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705163(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754382(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770806(v=bts.10).aspx

CMDGoTSR
The CMDGoTSR function initiates a background thread for the emulator, and then executes an MS-DOS® terminate-and-stay-
resident (TSR) interrupt.

MS-DOS

Syntax

Parameters
entryPoint

Pointer to the function where the background thread will start execution.

stack

Pointer to the stack of the background thread.

topOfRam

Top of RAM; all memory above this address will be released by the Network Access Program (NAP) for LAN Manager or the
NAP for NetWare (LMBASE and NWBASE, respectively).

Remarks

An emulator should complete its initialization, and then execute this call to go resident. A thread of execution will be created at
the entry point specified.

This call will never return control to the calling program.

SHORT APIENTRY CMDGoTSR(
ULONG
 entryPoint,
 UCHAR FAR
 *stack,
 UCHAR FAR
 *topOfRam
);

CMDSemClear
The CMDSemClear function clears a RAM semaphore.

MS-DOS

Syntax

Parameters
ramSem

Address of the semaphore.

USHORT FAR CMDSemClear(
ULONG FAR *ramSem
);

CMDSemRequest
The CMDSemRequest function requests a RAM semaphore.

Syntax

Parameters
ramSem

Address of the semaphore.

timeOut

Length of time in milliseconds to wait before returning.

Return Value
0

OK.

ERROR_SEM_TIMEOUT

Time-out expired before semaphore operation completed.

ERROR_SEM_OWNED

This thread or another thread owns the semaphore, and the calling thread specified zero time-out.

USHORT FAR CMDSemRequest(
ULONG FAR
*ramSem,
ULONG timeOut
);

CMDSemSet
The CMDSemSet function sets a RAM semaphore.

Syntax

Parameters
ramSem

Address of the semaphore.

USHORT FAR CMDSemSet(
ULONG FAR *ramSem
);

CMDSemWait
The CMDSemWait function waits until a RAM semaphore is cleared.

Syntax

Parameters
ramSem

Address of the semaphore.

timeOut

Length of time in milliseconds to wait before returning.

Return Value
0

OK.

ERROR_SEM_TIMEOUT

Time-out expired before semaphore operation completed.

ERROR_SEM_OWNED

This thread or another thread owns the semaphore, and the calling thread specified zero time-out.

USHORT FAR CMDSemWait(
ULONG FAR *ramSem,
ULONG timeOut
);

CMDStartFG
The CMDStartFG function requests that scheduling of the foreground thread be resumed.

Syntax

Return Value
0

The foreground thread was successfully resumed.

nonzero

The foreground thread could not be resumed.

Remarks

The emulator should issue this call after restoring the screen contents when returning to background operation.

USHORT FAR CMDStartFG();

CMDStopFG
The CMDStopFG function requests that the foreground thread be suspended.

Syntax

Parameters
timeOut

Maximum time to wait for the foreground thread to return before stopping it.

Return Value
0

The foreground thread was successfully stopped.

nonzero

The foreground thread was stopped within MS-DOS.

Remarks

The emulator should issue this call when it wishes to enter the foreground. If the return value is nonzero, the foreground
thread has been stopped within MS-DOS and it is not safe for the emulator to come to the foreground. Under these
circumstances, the emulator should restart the foreground thread by calling CMDStartFG.

If the call was successful, the emulator should save the contents of the screen before writing to it. When returning to
background operation, the emulator must restore the screen and call CMDStartFG to allow the previous foreground
application to continue.

USHORT FAR CMDStopFG(
USHORT timeOut
);

https://msdn.microsoft.com/en-us/library/aa770549(v=bts.10).aspx

RegisterSwitchProc
The RegisterSwitchProc function registers an application procedure that will be called whenever the 3270 emulator is about
to be switched in or out of memory by the MS-DOS version 5, MS-DOS version 6, or Windows 3.x task-switching code.

MS-DOS

Syntax

Parameters
inOut

Zero if emulator is about to be switched out of memory, 1 if emulator is about to be switched back into memory.

switchProc

A far pointer to the function where task activity will be notified. The function is defined as follows:

USHORT FAR RegisterSwitchProc(
ULONG switchProc
);

VOID FAR PASCAL SwitchProc(
USHORT inOut
);

routproc
The routproc function is a sample routing procedure. It must be supplied as part of the application. It is called by the Dynamic
Access Module (DMOD) with a message that may or may not be for this application The DMOD calls routing procedures in
turn until one accepts the message.

Syntax

Parameters
msgptr

Pointer to the message passed by the DMOD to the routing procedure.

locl

Locality from which message was received (if retstat indicates message returned), or locality to which path was lost (if retstat
indicates path error).

retstat

Reason for call:

CEDINMSG (1)—message returned.

CEDINLLN (2)—path error (see Remarks below).

Return Value
TRUE

The routing procedure has accepted the message.

FALSE

The message is not for this routing procedure.

Remarks

The routing procedure should first call sbpurcvx, which handles any Open response messages, as follows:

sbpurcvx(&msgptr, locl, retstat)

A return code of TRUE from sbpurcvx indicates that sbpurcvx has accepted the message; an Open error response has been
received for this application, and resource location is continuing. The routing procedure should not process the message any
further and should return TRUE to prevent the DMOD from calling further routing procedures.

A return code of FALSE from sbpurcvx indicates that the routing procedure should:

If the message is for this application, take responsibility for the message and return TRUE to prevent the DMOD from
calling further routing procedures.

If the message is not for this application, return FALSE so that the DMOD tries further routing procedures.

If a path error is returned, msgptr will not point to a valid message, and no more function management interface (FMI)
messages will be returned for the locality value indicated. The application is responsible for ending all sessions using this
locality. The routing procedure must return FALSE. This ensures that the lost locality is reported to all other routing procedures.

If the message is for this application, the routing procedure can either process the message immediately or put the message on
an application queue, and then post the application using a semaphore. For more information, see Receiving Messages.

DWORD routproc(
BUFHDR *msgptr,
USHORT locl,
USHORT retstat
);

https://msdn.microsoft.com/en-us/library/aa753924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770816(v=bts.10).aspx

sbpibegt
The application calls the sbpibegt function to get a buffer element to append to an existing buffer.

Syntax

Parameters
eltptr

Pointer to a pointer to an element. On return, this points to a pointer to the element obtained, or to NULL if an element was
not obtained (an internal error).

Remarks

This function should only be used to get extra elements for an existing buffer. The sepdbubl function should be used to get a
new buffer.

The new element should be added to the chain of elements from the existing buffer header and the count of the number of
elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is longer than the incoming
message.

VOID sbpibegt(
PTRBFELT *eltptr
);

https://msdn.microsoft.com/en-us/library/aa744668(v=bts.10).aspx

sbpiberl
The application calls the sbpiberl function to release a buffer element from an existing buffer.

Syntax

Parameters
eltptr

Pointer to a pointer to the element to be released.

Remarks

This function should only be used to release surplus elements from a buffer. The sepdburl function should be called to release
the entire buffer.

The released element should first be removed from the element chain and the count of the number of elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is shorter than the incoming
message.

VOID sbpiberl(
PTRBFELT *eltptr
);

https://msdn.microsoft.com/en-us/library/aa704612(v=bts.10).aspx

sbpuinit
The sbpuinit function initializes the DL-BASE.

Syntax

Parameters
sema4ptr

Semaphore, created by Dynamic Access Module (DMOD), cleared by DMOD when a message is available. For MS-DOS, the
application should supply the address of a 4-byte (long) integer. This address is for internal use by Microsoft Host Integration
Server 2009—the application should not subsequently attempt to reference the address.

proctype

Type of process: CLIENT–2.

servtype

Type of service/client: CES3270–2.

uname

Pointer to a character buffer of length at least 21 characters; the LAN Manager user name, or other identifying name
appropriate to the network operating system, is returned to the application in this buffer. The application does not need to
use this parameter, but can use it for display or logging.

Return Value
NO_ERROR

Initialization successful.

Any other return value indicates that the initialization failed. This is usually an operating system return code. The following
values are also used:

DMLTABF (555)

L table is full.

DMMNWGI (562)

Failed to get network operating system information.

DMDSTFL (563)

Service table is full.

DMMPIPF (567)

Failed to make a named pipe.

DMCOMNM (582)

No name registered for this application.

DMCOMDUP (596)

A service is already running with the same name.

DMNOTLOG (598)

User is not logged on to network operating system.

DMCFGOPN (616)

USHORT sbpuinit(
HANDLE *sema4ptr,
USHORT proctype,
USHORT servtype,
UCHAR *uname
);

Failed to open configuration file.

DMCFGREAD (618)

Failed to read from configuration file.

DMNONAP (625)

The Network Access Program (NAP) is not started.

DMMAXAPP (953)

Windows only: Maximum number of concurrent applications exceeded.

Remarks

The sbpuinit entry point should always be called before any other DL-BASE or DMOD entry points except SNAGetVersion. For
new emulators, sepdcrec should be called after sbpuinit. (Because of the order of calls used in older emulators, a call to
sepdcrec before sbpuinit is still supported, but this order is not recommended.)

https://msdn.microsoft.com/en-us/library/aa746128(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771260(v=bts.10).aspx

sbpurcvx
The sbpurcvx function processes Open responses from a routing procedure. An application can define a routing procedure
that is called by the Dynamic Access Module (DMOD) when a message is received. This routing procedure should first call
sbpurcvx to handle any Open response messages received. This ensures that Open responses intended for the Resource
Locator are handled correctly.

Syntax

Parameters
msgptr

Pointer to the message returned by the DMOD to the routing procedure.

locl

Locality from which message was received (if retstat indicates message returned), or locality to which path was lost (if retstat
indicates path error).

retstat

Reason for call:

CEDINMSG (1—message returned.

CEDINLLN (2)—path error.

Return Value
TRUE

The Resource Locator has accepted the message; the application should not process it any further.

FALSE

The message should be processed by the application.

Remarks

This function is called by a routing procedure that is called by the DMOD. It is not called directly by the application.

The parameters for sbpurcvx should be taken from the parameters for routproc. Note, however, that the first parameter to
sbpurcvx is a pointer to a pointer to a buffer header (that is, a pointer to the corresponding parameter for the routing
procedure, not the parameter itself).

USHORT sbpurcvx(
BUFHDR * *msgptr,
INTEGER locl,
INTEGER retstat
);

https://msdn.microsoft.com/en-us/library/aa754032(v=bts.10).aspx

sbpusend
The sbpusend function sends a message from an application to a partner on an LPI connection.

Syntax

Parameters
msgptr

Pointer to the message to be sent.

Remarks

The message buffer is released after transmission by the Dynamic Access Module (DMOD). It cannot be accessed by the
application again.

For an Open request message, the destl parameter can be zero. In this case, the Resource Locator will attempt to find a
suitable destination for the Open message.

VOID sbpusend(
PTRBFHDR msgptr
);

sbputerm
The sbputerm function must be called when the application terminates. It frees the DL-BASE and Dynamic Access Module
(DMOD) resources used by the application.

For Win32®, do not call sbputerm from an entry point in a detached DLL process because it may cause a deadlock inside the
SNADMOD.DLL.

Syntax

VOID sbputerm(
void
);

sepdbubl
The application calls the sepdbubl function to get a buffer with a requested number of elements.

Syntax

Parameters
noelts

Number of elements required.

Return Value

A pointer to the buffer obtained. NULL if a buffer could not be obtained.

Remarks

Each element has a size of 268—the constant SNANBEDA in the header file FMI.H.

The returned buffer consists of a header and the required number of elements. The header points to the first element, which
points to the next element, and so on to make an element chain.

It is possible to add an element to an existing buffer by calling sbpibegt to get the extra element. The new element should be
added to the element chain of the buffer, and the "number of elements" count should be updated.

The application must release any buffers that are not transmitted.

PTRBFHDR sepdbubl(
USHORT noelts
);

https://msdn.microsoft.com/en-us/library/aa754048(v=bts.10).aspx

sepdburl
The application calls the sepdburl function to release a buffer.

Syntax

Parameters
msgptr

Pointer to the buffer to be released.

Remarks

It is important that buffers are released after use. This is done automatically when a message is transmitted. For messages
received, it is the responsibility of the application to either release or reuse the buffer.

This function releases both the buffer header and any associated buffer elements. It is possible to release single elements from
a buffer by using the function sbpiberl.

VOID sepdburl(
PTRBFHDR msgptr
);

https://msdn.microsoft.com/en-us/library/aa754468(v=bts.10).aspx

sepdchnk
The sepdchnk function gets the function management interface (FMI) chunk size. The application calls this function to obtain
the chunk size that should be used on the FMI. For more information on FMI chunking, see Pacing and Chunking.

Syntax

Parameters
pipesizeptr

Size in bytes of the pipe between the application and the local node.

chunksizeptr

Dynamic Access Module (DMOD) chunk size in bytes.

Remarks

The application does not need to use the pipe size returned by this call. (It is included on this call because the local node uses
the same call to obtain both the pipe size and the chunk size.)

VOID sepdchnk(
USHORT *pipesizeptr,
USHORT *chunksizeptr
);

https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx

sepdcrec
The sepdcrec function gets configuration information. The application calls this function to obtain the 3270 configuration
information for the name with which the user logged on to the network operating system. The call also registers this user
name in the service table.

Syntax

Parameters
pBuffer

Pointer to a buffer supplied by the application, in which configuration information is returned.

length

Size of the supplied buffer.

numbytes

Used by Host Integration Server 2009 to return the number of bytes of information returned in the buffer.

Return Value
NO_ERROR (0)

OK.

NOCSSRVR (1)

No configuration file server available.

NODGNREC (2)

No diagnostics record found in configuration file.

NOUSRREC (3)

No user record found in configuration file for this user.

BUF2SMAL (4)

Supplied buffer was too small.

NONOS (5)

Network operating system is not started.

NOTLOGON (6)

User is not logged on to the network operating system.

READERR (7)

Failed to read from configuration file.

NONAP (8)

The Network Access Program (NAP) is not started.

MAXAPP (9)

Windows only: Maximum number of concurrent applications exceeded.

ERROR_SERVER (14)

Error on the server end of the remote procedure call (RPC).

USHORT sepdcrec(
UCHAR *pBuffer,
USHORT length,
USHORT *numbytes
);

ERROR_LOCAL_FAILURE (15)

Error on the local end of the RPC.

Remarks

The sbpuinit function should always be called before any other DL-BASE or Dynamic Access Module (DMOD) entry points
except SNAGetVersion. For new emulators, sepdcrec should be called after sbpuinit. (Because of the order of calls used in
older emulators, a call to sepdcrec before sbpuinit is still supported, but this order is not recommended.)

On successful return, the buffer contains pointers to the appropriate 3270 user record and the diagnostics record, followed by
the records themselves. It is formatted as follows:

(UserRecord—variable length)

(DiagRecord)

The two records should be accessed using the supplied pointers.

See Configuration Information for details of the format of these records and of how the application uses the configuration file
information.

If there is no 3270 user record for this user in the configuration file, or if no diagnostics record is found in the configuration file
(an internal error), the application should terminate and not allow the user to use 3270 emulation. The Host Integration Server
error log messages COM0438 and COM0437 can be used to report these failures.

If the supplied buffer is too small for the returned information, the contents of the buffer are undefined and should not be
examined, but the numbytes parameter will contain the total number of bytes of information available (that is, the size of the
two pointers plus the two configuration records). The application should retry with a buffer of at least this size.

TECWRKUS *pUserRecord,
TEDIAGNS *pDiagRecord
);

https://msdn.microsoft.com/en-us/library/aa744681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746128(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745652(v=bts.10).aspx

sepdgetinfo
The sepdgetinfo function returns a structure containing the version number of Host Integration Server 2009, the path of the
current configuration file, and the network operating system over which Host Integration Server is running.

Syntax

Parameters
pCSInfo

Pointer to a buffer supplied by the application, containing a cs_info data structure in which system information is returned.
The application must set the length member in this data structure (for more information, see Remarks later in this topic); the
other members should be set to nulls or blanks.

The cs_info structure

The returned cs_info structure and its members are as follows:

Members
length

Length of the data structure supplied by the application.

major_ver

Major version number:

1 for Host Integration Server 1.1 (Connection Server 1.1) 2 for Host Integration Server 2.0 (Connection Server 2.0)

minor_ver

Minor version number (decimal):

10 for Connection Server 1.1 (indicates 1.10)00 for Connection Server 2.0 (indicates 2.00)

config_share[80]

Path of the running configuration file: \\server\share\ (null terminated).

nos

Network operating system in use

1: LAN Manager / LAN Server2: NetWare

Return Value
NO_ERROR (0)

OK.

NOCSSRVR (1)

No configuration file server available.

BADLNGTH (2)

Supplied buffer was too small.

USHORT sepdgetinfo(
struct cs_info *pCSInfo
);

struct cs_info {
 unsigned short length;
 unsigned char major_ver;
 unsigned char minor_ver;
 unsigned char config_share[80];
 unsigned short nos;
 } cs_info;

Remarks

The application must set the length member to the length of the cs_info structure (86 bytes in the current version). Any other
value will be rejected. This parameter is used to ensure compatibility with future versions; an application supplying this length
will always obtain the information shown here, but in future versions it may be possible to specify larger values and obtain
further information.

On successful return, the data structure cs_info contains the version number of Host Integration Server 2009, the path of the
current configuration file, and the network operating system over which Host Integration Server is running.

Do not use the configuration file path returned by sepdgetinfo because NetWare clients will not be able to access this path.

If there is no configuration file server available, only the version number fields are valid; the other fields should not be checked.

sepdrout
The sepdrout function for Win32® allows an application to perform its own routing of received messages by setting up a
procedure that is called by the Dynamic Access Module (DMOD) when a message is received.

Syntax

Parameters
proc_addr

The routing procedure.

Return Value
NO_ERROR (0)

Successful.

Anything else

Unsuccessful.

Remarks

This facility is only available to clients, as defined in the call to sbpuinit.

An application can have up to four routing procedures. Note that the Advanced Program-to-Program Communications (APPC)
and Common Service Verb (CSV) libraries each use a routing procedure. When the DMOD receives a message, each routing
procedure is called, until one accepts the message.

For an example of a routing procedure, see routproc.

DWORD sepdrout(
DWORD (*proc_addr,)
(BUFHDR *, USHORT, USHORT
);

DWORD sepdrout(
 DWORD *proc_addr,
 (BUFHDR *, USHORT, USHORT
);

https://msdn.microsoft.com/en-us/library/aa744681(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754032(v=bts.10).aspx

sepwrout
The sepwrout function is the Windows version of sepdrout. It has the same parameters and is used in exactly the same way.

https://msdn.microsoft.com/en-us/library/aa754382(v=bts.10).aspx

FMI Message Formats
This section describes the message formats for the function management interface (FMI). The message formats are presented
in a language-independent notation. Details of the message format notation and key assumptions about the contents of the
message formats are as follows:

Reserved indicates that the field is set to zero (for a numeric field) or all nulls (for names) by the sender of the message.

Undefined indicates that the value of the field is indeterminate. The field is not set by the sender and should not be
examined by the receiver of the message.

Fields that occupy two bytes, such as opresid in the Open(PLU) Request, are represented with the most arithmetically
significant byte in the lowest byte address, irrespective of the normal orientation used by the processor on which the
software executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest byte address. However, the following
fields are exceptions:

The srci and desti fields in buffer headers are stored in the local format of the application that assigns them,
because only the assigning application needs to interpret these values.

The startd and endd fields in elements are always stored in low-byte, high-byte orientation (the normal
orientation of an Intel processor).

Messages are composed of buffers consisting of a buffer header and zero or more buffer elements. For more
information about buffer formats, see Messages.

Applications must assign unique index (I) values for every active LPI connection within the node. In particular, the
Open(SSCP) Request must be different from the source index it sends in response to the Open(PLU). Additionally, zero
should not be used as an I value. An I value of zero means that the sender of the message is inviting the recipient of the
message to assign an I value.

The startd field in each element gives the offset of the first byte of data in the element after the trpad field.

For non-logical unit application (LUA) applications, startd will either be 1 (data starts in the byte after the trpad field), 10
(nine bytes of padding are included between the trpad field and the start of the data), or 13 (12 bytes of padding are
included between the trpad field and the start of the data).

For LUA applications, startd is 4 (three bytes of padding between the trpad field and the start of the data) in the first
element of a message and 13 (12 bytes of padding) in subsequent elements.

The local node uses extra bytes for additional header information. This avoids having to copy data into a new buffer
when adding this information.

Because startd indicates the index into dataru starting from 1, not 0, the first byte of valid data is always at
dataru[startd–1].

If startd is greater than endd, there is no valid data in the message.

All fields within dataru are of type CHAR, except where the remarks indicate otherwise.

Note that where a buffer element has a startd of 1, 10, or 13, this only applies to the initial element in the chain of
elements, and subsequent elements in the chain have a startd of 1. Messages with two distinct linked element chains in
the message formats (for example Open(PLU) Request and Open(PLU) OK Response) have the startd field in the
elements at the start of the chains as the value (1, 10, or 13) given in the message format, and the startd fields in all
other elements as 1.

In This Section

https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744710(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx

Open(SSCP)

Open(SSCP) Request

Open(SSCP) Response

Open(PLU)

Open(PLU) Request

Open(PLU) OK Response

Open(PLU) Error Response

Open(PLU) OK Confirm

Open(PLU) Error Confirm

Close(SSCP)

Close(SSCP) Request

Close(SSCP) Response

Close(PLU)

Close(PLU) Request

Close(PLU) Response

Data

Status-Acknowledge

Status-Acknowledge(Ack)

Status-Acknowledge(Nack-1)

Status-Acknowledge(Nack-2)

Status-Acknowledge(ACKLUA)

Status-Control

Status-Control(...) Request

Status-Control(...) Acknowledge

Status-Control(...) Negative-Acknowledge-1

Status-Control(...) Negative-Acknowledge-2

Status-Control(...) ACKLUA

Status-Error

https://msdn.microsoft.com/en-us/library/aa771980(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704965(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705713(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705779(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745399(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744315(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753949(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754102(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745651(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746066(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744336(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745721(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705002(v=bts.10).aspx

Status-Resource

Status-RTM

Status-Session

https://msdn.microsoft.com/en-us/library/aa705160(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704996(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx

Open(SSCP)
 

The Open(SSCP) message is used by the application to open the system services control point (SSCP) connection. The Open
request is sent by the application to the node, and the Open response comes from the node to the application.

Open(SSCP) Request
The Open(SSCP) Request message flows from the application to the node. It is used with a system services control point
(SSCP) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdrept

Pointer to first buffer element.

numelts

Number of buffer elements (0x02).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner. (For more information, see Remarks.)

srci

struct Open(SSCP) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdrept;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
 CHAR ophdr.opnpad1;
};
struct Open(SSCP) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};
struct Open(SSCP) Request {
 PTRBFELT hdreptr->elteptr->elteptr;
 INTEGER hdreptr->elteptr->startd;
 INTEGER hdreptr->elteptr->endd;
 CHAR hdreptr->elteptr->trpad;
 CHAR[268] hdreptr->elteptr->dataru;
};

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

ophdr.openqual

Open qualifier REQU (0x01).

ophdr.opentype

Open type SSCPSEC (0x01).

ophdr.appltype

Application program interface type.

Function management interface (FMI) without chunking (0x02).

FMI with chunking (0x82). (For more information, see Remarks.)

ophdr.opluno

Logical Unit number. (For more information, see Remarks.)

ophdr.opresid

Resource identifier.

ophdr.icreditr

Reserved.

ophdr.icredits

Reserved.

ophdr.opninfo1

Reserved.

ophdr.opnpad1

Open force type. (For more information, see Remarks.)

OPEN_TEST (0x00)

OPEN_FORCE (0x01)

Element 1

hdreptr–>elteptr

Pointer to next buffer element.

hdreptr–>startd

Start of data in this buffer element (1).

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved (1 byte).

hdreptr–>dataru

Data request/response unit (RU), as follows:

dataru[0–9]

Source name. Should be filled with blanks.

dataru[10–19]

Destination name. Set to the logical unit (LU) with which you want to communicate.

dataru[20]

Sense 4003 flag.

dataru[21]

Sense 4004 flag.

dataru[22]

Sense 4006 flag.

dataru[23]

Sense 4007 flag.

dataru[24]

Sense 4009 flag.

dataru[25]

Sense 400A flag.

dataru[26]

Sense 400B flag.

dataru[27]

Sense 400C flag.

dataru[28]

Sense 400D flag.

dataru[29]

Sense 400F flag.

dataru[30]

Sense 4011 flag.

dataru[31]

Sense 4012 flag.

dataru[32]

Sense 4014 flag.

dataru[33]

High priority indicator.

HIGH (0x01)

LOW (0x02)

dataru[34]

Logical unit application (LUA) supported indicator.

Supported (0x01)

Not supported (0x00)

dataru[35–36]

Chunk size obtained from Dynamic Access Module (DMOD). (For more information, see Remarks.)

dataru[37]

Segment delivery option.

Do not deliver request/response unit (RU) segments (0x00)

Deliver RU segments (0x01)

dataru[38]

High-level language application programming interface (HLLAPI) session identifier. (For more information, see Remarks.)

Element 2

hdreptr–>elteptr–>elteptr

Pointer to next buffer element (NIL).

hdreptr–>elteptr–>startd

Start of data in this buffer element (1).

hdreptr–>elteptr–>endd

End of data in this buffer element.

hdreptr–>elteptr–>trpad

Reserved.

hdreptr–>elteptr–>dataru

Data RU, as follows:

dataru[0]

ASCII string identifying the 3270 emulator. (For more information, see Remarks.)

Remarks

The Open(SSCP) Request message consists of a buffer header and two buffer elements.

The source L value, the destination Locality Partner Index (LPI) values, and the source name are reserved.

For a 3270 emulator, the source P value must be set to S3PROD (0x12), which identifies the application as a 3270
emulator. The destination name should be set to the LU name or pool name taken from the 3270 user record (right-filled
with ASCII spaces if fewer than 10 characters).

An LUA application uses the source P value LUAPROD (0x1D). This is independent of the value of the LUA supported
indicator, which selects the LUA variant of the FMI.

The SNS4003 to SNS4014 fields, together with the high priority indicator, are referred to in the text as the SSCP
connection information control block (CICB). (For more information, see Opening the SSCP Connection.) A value of 0x00
indicates that the data flow control (DFC) receive check corresponding to the sense code is not supported for this LU. A
value of 0x01 indicates that it is supported. Note that the corresponding send checks are always performed regardless of
these values.

The LU number is only used internally in the local node on the Open(SSCP) Request. It is generated from the
destination name in the first element.

The open force type field is used when locating resources across more than one server and for automatic activation of
connections when the application wishes to use an LU for which the connection is inactive. The application does not need
to set this flag. It is used by the DL-BASE. For details, see Opening the SSCP Connection.

The application program interface type field defines whether RU chunking is used from the local node to the application.
This may be necessary if large RUs are being used. For more information about FMI chunking, see Pacing and Chunking.

The chunk size field (at dataru[35]) is an integer value.

https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx

The segment delivery option specifies whether the local node should deliver segments of RUs to the application as soon
as they are received or should assemble whole RUs before delivering them to the application. Segment delivery allows
the application to update the user's screen as soon as data is received, known as window shading, which can result in a
faster perceived response. For more information, see Segment Delivery. This option is required only when chunking is
being used. It is included on this message so that the local node can calculate the initial chunk credit values on the
corresponding primary logical unit (PLU) connection. The option must still be set on the Open(PLU) Response. The
setting specified on that message will override the one specified here if there is a conflict. If this happens, the initial credit
values may not be suitable.

The LUA supported indicator specifies whether the application uses the LUA variant of the FMI.

If the element is shorter than (s+34) bytes, Microsoft® Host Integration Server assumes no LUA and no chunking. This
ensures backward compatibility with previous versions of the local node software in which these options were not
available.

The HLLAPI session identifier is a single ASCII character that identifies the 3270 display session to which the
Open(SSCP) applies. HLLAPI uses this to identify a particular 3270 presentation space to which an HLLAPI function
refers. It is also referred to by 3270 as the session's short name, or by HLLAPI as the presentation space identifier (PS
identifier). If the 3270 emulator does not support session identifiers, this field should be set to zero.

The second element contains an ASCII string that you can use to identify the type of 3270 emulator. This string will be
logged in the audit log file by the client's DL-BASE and can also be seen in traces. The startd and endd fields must be set
up to define the limits of this string.

https://msdn.microsoft.com/en-us/library/aa770682(v=bts.10).aspx

Open(SSCP) Response
The Open(SSCP) Response message flows from the node to the application. It is used with an system services control point
(SSCP) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to first buffer element.

numelts

Number of buffer elements (0x01).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

struct Open(SSCP) Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.operr1;
 INTEGER ophdr.operr2;
};
struct Open(SSCP) Response {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[256] dataru;
};

desti

Destination index.

ophdr.openqual

Open qualifier.

RSPOK (0x02) RSPERR (0x03)

ophdr.opentype

Open type SSCPSEC (0x01).

ophdr.appltype

Application program interface type.

0x02 (function management interface (FMI) application)

ophdr.opluno

Logical unit number.

ophdr.opresid

Resource identifier.

ophdr.operr1

Error code 1.

ophdr.operr2

Error code 2.

Element 1

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element (1).

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved (1 byte).

hdreptr–>dataru

Data RU, as follows:

dataru[0–9]

Source name.

dataru[10–19]

Destination name.

dataru[20–27]

Name of the local node that accepted the Open.

dataru[28–35]

Name of the connection used by the logical unit (LU).

dataru[36–37]

The internal identifier of the local node for the connection. (For more information, see Remarks.)

dataru[38]

The type of link service used by the connection, as shown in the following table.

Link service Connection

CESLINK (03) - SDLC

CESX25 (04) - X.25

CESTR (11) - Token Ring

CESTCPIP (30) - TCP/IP

CESRELAY (31) - Frame Relay

CESCHANL (32) - Channel

CESISDN (33) – ISDN

CESETHER (34) - Ethernet 802.2

Remarks

The Open(SSCP) Response message consists of a buffer header and a single buffer element.

If the open qualifier is RSPERR, the error code is valid and the Locality Partner Index (LPIs) and names are undefined. (For
more information, see Error and Sense Codes.)

The LU number indicates the LU selected by the local node from the configuration data. (For more information, see
Opening the SSCP Connection.)

When the Open(SSCP) is for an LU group, the source name contains the name of the selected LU.

The connection identifier is an integer value. It uniquely identifies a particular connection on this local node. All sessions
using the same connection will return the same identifier. This value is typically used when a link error is received on one
session to determine which other sessions will be affected.

https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771427(v=bts.10).aspx

Open(PLU)
 

The Open(PLU) message is used by the local node to open the primary logical unit (PLU) connection with the application on
receipt of a BIND command from the host.

Open(PLU) Request
The Open(PLU) Request message flows from the node to the application. It is used with a primary logical unit (PLU)
connection.

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to first buffer element.

numelts

Number of buffer elements (0x02).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

struct Open(PLU) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
};
struct Open(PLU) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};
struct Open(PLU) Request {
 PTRBFELT hdreptr->elteptr->elteptr;
 INTEGER hdreptr->elteptr->startd;
 INTEGER hdreptr->elteptr->endd;
 CHAR hdreptr->elteptr->trpad;
 CHAR[] hdreptr->elteptr->dataru;
};

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

ophdr.openqual

Open qualifier REQU (0x01).

ophdr.opentype

Open type LUSEC (0x02).

ophdr.appltype

Application program interface type.

0x02 (FMI application)

ophdr.opluno

Logical unit number.

ophdr.opresid

Resource identifier.

ophdr.icreditr

Initial credit for flow from application to local node: zero (no flow control).

ophdr.icredits

Recommended initial credit for flow from local node to application: Pacing window + 1.

ophdr.opninfo1

Negotiable bind indicator.

Bind is not negotiable (0x00)

Bind is negotiable (0x01)

Element 1

hdreptr–>elteptr

Pointer to buffer element.

hdreptr–>startd

Start of data in this buffer element (1).

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU, as follows:

dataru[0–9]

Source name.

dataru[10–19]

Destination name.

dataru[20]

Secondary pacing send window.

dataru[21]

Secondary pacing receive window.

dataru[22–23]

Secondary send maximum request/response unit (RU) size. (For more information, see Remarks.)

dataru[24–25]

Primary send maximum RU size. (For more information, see Remarks.)

dataru[26]

Secondary send chunk size (in units of elements).

dataru[27]

Primary send chunk size (in units of elements).

Element 2

hdreptr–>elteptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>elteptr–>startd

Start of data in this buffer element (13).

hdreptr–>elteptr–>endd

End of data in this buffer element.

hdreptr–>elteptr–>trpad

Reserved.

hdreptr–>elteptr–>dataru

Data RU, as follows:

dataru[13]

The BIND RU received from the host.

Remarks

The Open(PLU) Request message consists of a buffer header, an initial element containing the source and destination
names, RU sizes, and so on, followed by a second element containing the BIND RU received from the host.

The source Locality Partner Index (LPI) and the L and P parts of the destination LPI are valid, but the I part of the
destination LPI is reserved.

The two send maximum RU size fields (in dataru[22–25]) are both integer values.

The BIND RU can be up to 256 bytes in length.

If the application is using the logical unit application (LUA) variant of the function management interface (FMI), the BIND
RU is preceded by its transmission header (TH) and response header (RH). The startd field of the second element points
to the TH. (For more information about FMI, see FMI Concepts.)

The LU number matches that allocated to the named application on the Open(SSCP) Response.

The resource identifier matches the value used by the application on the Open(SSCP) Request.

If chunking was specified on the Open(SSCP) Request, the icredits (initial credit from local node to application) field

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772070(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753895(v=bts.10).aspx

specifies the number of chunks, rather than RUs, that can be transmitted. The two send chunk size parameters are
specified in units of elements. (Each element contains up to 256 bytes of RU data.) A value of zero indicates that the
chunk size is not the limiting factor in determining the size of messages. The limiting factor is the RU size or the segment
size, so chunking is not required. In this case, credit will still be used, with the unit of credit being a message.

The icreditr (initial credit from application to local node) field is not used and must be set to zero.

Open(PLU) OResponse
The Open(PLU) OK Response message flows from the application to the node. It is used with a primary logical unit (PLU)
connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to first buffer element.

numelts

Number of buffer elements (0x02).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner.

srci

struct Open(PLU) OK Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
};
struct Open(PLU) OK Response {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};
struct Open(PLU) OK Response {
 PTRBFELT hdreptr->elteptr->elteptr;
 INTEGER hdreptr->elteptr->startd;
 INTEGER hdreptr->elteptr->endd;
 CHAR hdreptr->elteptr->trpad;
 CHAR[268] hdreptr->elteptr->dataru;
};

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

ophdr.openqual

Open qualifier RSPOK (0x02).

ophdr.opentype

Open type LUSEC (0x02).

ophdr.appltype

Application program interface type.

0x02 (FMI application)

ophdr.opluno

Logical unit number.

ophdr.opresid

Resource identifier.

ophdr.icreditr

Initial credit for flow from application to local node: zero.

ophdr.icredits

Initial credit for flow from local node to application; only valid if APPLPAC = 0x01.

ophdr.opninfo1

Negotiable bind indicator.

Bind is not negotiable (0x00)

Bind is negotiable (0x01)

Element 1

hdreptr–>elteptr

Pointer to buffer element.

hdreptr–>startd

Start of data in this buffer element (1).

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU, as follows:

dataru[0–9]

Source name.

dataru[10–19]

Destination name.

dataru[20]

Segment delivery option.

Do not deliver request/response unit (RU) segments (0x00)

Deliver RU segments (0x01)

dataru[21]

Application pacing option.

No application pacing (0x00)

Application pacing (0x01)

dataru[22]

Application cancel option: Cancel is generated by:

local node (0x00)

application (0x01)

dataru[23]

Application transaction numbers option: transaction numbers are:

not supported by application (0x00)

supported by application (0x01)

dataru[24]

BIND table index

BIND_TABLE_INDEX_PRT (1) (printer session)

BIND_TABLE_INDEX_CRT (2) (display session)

Element 2

hdreptr–>elteptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>elteptr–>startd

Start of data in this buffer element (13).

hdreptr–>elteptr–>endd

End of data in this buffer element.

hdreptr–>elteptr–>trpad

Reserved.

hdreptr–>elteptr–>dataru

Data RU, as follows:

dataru[13]

The BIND RU.

Remarks

The Open(PLU) OK Response message consists of a buffer header, an initial element containing the source and
destination names and connection information control block (CICB), followed by elements containing the BIND RU
received from the host.

The application should reflect the source and destination Locality Partner Index (LPIs) and the source and destination
names from the Open(PLU) Request and must supply the I part of the source LPI.

https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx

The fields from segment delivery option to bind table index (in the first element) are referred to in the text as the PLU
CICB. For more information about the contents of the CICB, see Opening the PLU Connection.

The BIND RU can be up to 256 bytes in length.

For LUA, the BIND RU is not preceded by its transmission header (TH) and response header (RH). This is in contrast with
the Open(PLU) Request, where the TH and RH are included.

As in the Open(PLU) Request, the icredits value is in units of chunks if chunking is being used.

https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770550(v=bts.10).aspx

Open(PLU) Error Response
The Open(PLU) Error Response message flows from the application to the node. It is used with a primary logical unit (PLU)
connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to first buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

ophdr.openqual

struct Open(PLU) Error Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.operr1;
 INTEGER ophdr.operr2;
};

Open qualifier RSPERR (0x03).

ophdr.opentype

Open type LUSEC (0x02).

ophdr.appltype

Application program interface type.

0x02 (FMI application)

ophdr.opluno

Logical unit number.

ophdr.opresid

Resource identifier.

ophdr.operr1

Error code 1.

ophdr.operr2

Error code 2.

Remarks

The Open(PLU) Error Response message consists of a buffer header only.

The application should reflect the source and destination Locality Partner Index (LPIs).

Open(PLU) OConfirm
The Open(PLU) OK Confirm message flows from the node to the application. It is used with a primary logical unit (PLU)
connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to first buffer element.

numelts

Number of buffer elements (0x01).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

struct Open(PLU) OK Confirm {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER dsti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.icreditr;
 INTEGER ophdr.icredits;
 CHAR ophdr.opninfo1;
};
struct Open(PLU) OK Confirm {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

Destination partner.

dsti

Destination index.

ophdr.openqual

Open qualifier CONFOK (0x04).

ophdr.opentype

Open type LUSEC (0x02).

ophdr.appltype

Application program interface type.

0x02 (FMI application)

ophdr.opluno

Logical unit number.

ophdr.opresid

Resource identifier.

ophdr.icreditr

Reserved.

ophdr.icredits

Reserved.

ophdr.opninfo1

PLU address.

Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element (1).

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data request/response unit (RU), as follows:

dataru[0]

Function management (FM) profile.

dataru[1]

Transmission Service profile (TS profile).

dataru[2]

Primary chaining use.

dataru[3]

Primary request control mode.

dataru[4]

Primary chain response protocol.

dataru[5]

Primary two-phase commit.

dataru[6]

Primary compression indicator.

dataru[7]

Primary send end bracket (EB) indicator.

dataru[8]

Secondary chaining use.

dataru[9]

Secondary request control mode.

dataru[10]

Secondary chain response protocol.

dataru[11]

Secondary two-phase commit.

dataru[12]

Secondary compression indicator.

dataru[13]

Secondary send EB indicator.

dataru[14]

Function Management Header (FMH) usage.

dataru[15]

Bracket usage.

Brackets not used (0x00)

Brackets used (0x01)

dataru[16]

Bracket reset state.

Bracket reset state between-brackets (BETB) (0x01)

Bracket reset state in-bracket (INB) (0x02)

dataru[17]

Bracket termination rule.

dataru[18]

Alternate code set indicator.

dataru[19]

Sequence number availability.

dataru[20]

Normal-flow send/receive mode.

dataru[21]

Half-duplex flip-flop reset.

dataru[22]

Secondary pacing send window.

dataru[23]

Secondary pacing receive window.

dataru[24–25]

Secondary send maximum RU size (INTEGER value).

dataru[26–27]

Primary send maximum RU size (INTEGER value).

dataru[28]

LU-LU session type.

dataru[29]

PLU name size.

dataru[30–37]

PLU name (Extended Binary Coded Decimal Interchange Code or EBCDIC).

dataru[38]

Session type 1: PS Function Management Header (FMH) type.

dataru[39]

PS data stream profile.

dataru[40]

Number of outstanding destinations.

dataru[41]

Compacted data indicator.

dataru[42]

Peripheral Data Interchange Record (PDIR) allowed indicator.

dataru[43]

Session type 2 or 3: query support.

dataru[44]

Dynamic screen size.

dataru[45]

Basic row size.

dataru[46]

Basic column size.

dataru[47]

Alternate row size.

dataru[48]

Alternate column size.

Remarks

The Open(PLU) OK Confirm message consists of a buffer header and one element.

The message does not carry source and destination names. Both LPIs are valid.

The contents of dataru are referred to in the text as the PLU bind information control block (BICB). The BICB is only valid

for an open-qualifier of CONFOK. For further information about the contents of the BICB, see
Opening the PLU Connection.

https://msdn.microsoft.com/en-us/library/aa770951(v=bts.10).aspx

Open(PLU) Error Confirm
The Open(PLU) Error Confirm message flows from the node to the application. It is used with a primary logical unit (PLU)
connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to first buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type OPENMSG (0x01).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

ophdr.openqual

struct Open(PLU) Error Confirm {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR ophdr.openqual;
 CHAR ophdr.opentype;
 CHAR ophdr.appltype;
 CHAR ophdr.opluno;
 INTEGER ophdr.opresid;
 INTEGER ophdr.operr1;
 INTEGER ophdr.operr2;
};

Open qualifier CONFERR (0x05).

ophdr.opentype

Open type LUSEC (0x02).

ophdr.appltype

Application program interface type.

0x02 (function management interface (FMI) application)

ophdr.opluno

Logical unit number.

ophdr.opresid

Resource identifier.

ophdr.operr1

Error code 1.

ophdr.operr2

Error code 2.

Remarks

The Open(PLU) Error Confirm message consists of a buffer header only.

The error codes are valid. (For more information, see Error and Sense Codes.) An Open(PLU) Error Confirm closes the
connection.

https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx

Close(SSCP)
 

The Close(SSCP) message closes an open system services control point (SSCP) connection.

Close(SSCP) Request
The Close(SSCP) Request message flows from the application to the node. It is used with a system services control point
(SSCP) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type CLOSEMSG (0x02).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

clhdr.closqual

Close qualifier REQU (0x01).

clhdr.clstype

Close subtype SSCPSEC (0x01).

Remarks

struct Close(SSCP) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
};

The Close(SSCP) Request message consists of a buffer header only. There is no buffer element.

Close(SSCP) Response
The Close(SSCP) Response message flows from the node to the application. It is used with a system services control point
(SSCP) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type CLOSEMSG (0x02).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

clhdr.closqual

Close qualifier RSPOK (0x02).

clhdr.clstype

Close subtype SSCPSEC (0x01).

Remarks

struct Close(SSCP) Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
};

The Close(SSCP) Response message consists of a buffer header only. There is no buffer element.

The Close(SSCP) protocol is unconditional. It is not possible for the local node to keep the SSCP connection open after
the application sends Close(SSCP).

Close(PLU)
 

The Close(PLU) message closes an open primary logical unit (PLU) connection.

Close(PLU) Request
The Close(PLU) Request message flows from the node to the application and from the application to the node. It is used with
a primary logical unit (PLU) connection.

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL if not using LUA).

numelts

Number of buffer elements (0x00 if not using LUA).

msgtype

Message type CLOSEMSG (0x02).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

struct Close (PLU) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
 CHAR clhdr.clsctl;
 CHAR clhdr.clspad1;
 INTEGER clhdr.clspad2;
 INTEGER clhdr.clserr1;
};
struct Close (PLU) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

Destination index.

clhdr.closqual

Close qualifier REQU (0x01).

clhdr.clstype

Close subtype LUSEC (0x02).

clhdr.clsctl

Close control

CLNORMAL (0x01) normal

CLBIND (0x02) bind forthcoming

CLCFAERR (0x03) CFA error

CLPUINAC (0x04) PU inactive

CLLUINAC (0x05) LU inactive

CLLNKERR (0x06) link error

CLBFSHRT (0x07) node buffer shortage

CLRCVCHK (0x08) DFC receive check

CLSLUTRM (0x09) SLU termination

clhdr.clspad1

Reserved.

clhdr.clspad2

Reserved.

clhdr.clserr1

Error code (only valid for close control = link error).

LUA only (see Remarks): Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element (13).

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

The UNBIND request/response unit (RU) received from the host, with its transmission header (TH) and response header
(RH).

Remarks

If the application is using the LUA variant of the function management interface (FMI), and the Close(PLU) Request was
generated by receipt of an UNBIND from the host, the element is included, and startd points to the TH of the UNBIND
message. (For more information about FMI, see FMI Concepts.)

In all other cases (for example, if the Close(PLU) Request was generated by the local node as a result of a link outage),
the message consists of a buffer header only. There is no buffer element.

The close control field is only valid on messages from the local node to the application.

If the close control field specifies link error, the error code field gives the link outage code.

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

Close(PLU) Response
The Close(PLU) Response message flows from the node to the application and from the application to the node. It is used
with a primary logical unit (PLU) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type CLOSEMSG (0x02).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

clhdr.closqual

Close qualifier RSPOK (0x02).

clhdr.clstype

Close subtype LUSEC (0x02).

struct Close(PLU) Response {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR clhdr.closqual;
 CHAR clhdr.clstype;
};

Remarks

The Close(PLU) Response message consists of a buffer header only. There is no buffer element.

The Close(PLU) protocol is unconditional. It is not possible for the recipient of a Close(PLU) Request (either the local
node or an application) to keep the PLU connection open. The only valid response is Close(PLU) Response with the
close qualifier as RSPOK.

https://msdn.microsoft.com/en-us/library/aa704590(v=bts.10).aspx

Data
Data messages carry both inbound and outbound data between the application and the local node on all connections. For a
detailed description of outbound and inbound data flows, see Data Flow.

The Data message flows from the node to the application and from the application to the node. It is used with both the system
services control point (SSCP) and the primary logical unit (PLU) connections.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element.

numelts

Number of buffer elements.

msgtype

Message type DATAFMI (0x20).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

struct Data {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR dfhdr.fhackrqd;
 CHAR dfhdr.fhpad1;
 INTEGER dfhdr.fhmsgkey;
 CHAR dfhdr.fhflags1;
 CHAR dfhdr.fhflags2;
 INTEGER dfhdr.fhpad2;
 INTEGER dfhdr.fhpad3;
 INTEGER dfhdr.fhseqno;
};
struct Data {
 PTRBFELT hdreptr->elteptr
 INTEGER hdreptr->startd
 INTEGER hdreptr->endd
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx

destp

Destination partner.

desti

Destination index.

dfhdr.fhackrqd

Acknowledgment required indicator.

NOACKREQ (0x00) ACKREQ (0x01)

dfhdr.fhpad1

Reserved.

dfhdr.fhmsgkey

Message key.

dfhdr.fhflags1

Application flag 1.

dfhdr.fhflags2

Application flag 2.

dfhdr.fhpad2

Reserved.

dfhdr.fhpad3

Reserved.

dfhdr.fhseqno

Sequence number.

Element

hdreptr–>elteptr

Pointer to buffer element.

hdreptr–>startd

Start of data in this buffer element:

Non-logical unit application (LUA): 13, or 10 for second and subsequent segments of outbound segmented request/response
units (RUs). LUA, inbound data: 4 in first element, 13 in subsequent elements.

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU.

Remarks

The use of the acknowledgment required indicator in both inbound and outbound data acknowledgment protocols is
described in Data Flow.

The use of the application flag fields is described in Application Flags (For more information, see the note that follows for
LUA.)

The sequence number is undefined for inbound data but contains the corresponding SNA sequence number for

https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754662(v=bts.10).aspx

outbound data.

If the application is using the LUA variant of the function management interface (FMI), the transmission header (TH) and
(if appropriate) response header (RH) are included in the data, and the startd field points to the TH. The fhmsgkey,
fhflags1, fhflags2, and fhseqno fields are undefined and should not be used. The corresponding data from the element
should be used instead. (For more information about FMI, see FMI Concepts.)

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

Status-Acknowledge
Status-Acknowledge messages flow between the application and the local node as part of the outbound and inbound data
acknowledgment protocols. For a detailed description of outbound and inbound acknowledgment protocols, see Data Flow.

Note
The format of this message is slightly different for messages from the application to the local node on the primary logical uni
t (PLU) connection, as is explained in the following topic Status-Acknowledge(Ack)

https://msdn.microsoft.com/en-us/library/aa705537(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745617(v=bts.10).aspx

Status-Acknowledge(Ack)
The Status-Acknowledge(Ack) message flows from the node to the application and from the application to the node, and is
used with both system services control point (SSCP) and primary logical unit (PLU) connections.

The following structure shows the message format for all SSCP messages and for PLU messages flowing from the node to the
application.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL if not using LUA).

numelts

Number of buffer elements (0x00 if not using LUA).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

struct Status-Acknowledge(Ack) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
 INTEGER sfhdr.stackhdr.akseqno;
};
struct Status-Acknowledge(Ack) {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

destp

Destination partner.

desti

Destination index.

sfhdr.stackhdr.akstat

Status type ACK (0x01).

sfhdr.stackhdr.akqual

Acknowledgment type ACKPOS (0x02).

sfhdr.stackhdr.akmsgkey

Message key.

sfhdr.stackhdr.akflags1

Application flag 1.

sfhdr.stackhdr.akflags2

Application flag 2.

sfhdr.stackhdr.aknumb1

Undefined.

sfhdr.stackhdr.aknumb2

Reserved.

sfhdr.stackhdr.akseqno

SNA sequence number.

LUA only (see Remarks): Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented request/response units (RUs)

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU.

The message format for PLU messages flowing from the application to the node is identical to the preceding format, except
that the application flag 1 and application flag 2 fields are not used. They are replaced by the following INTEGER field:

sfhdr.stackhdr.akmsgtim

Last host response time

0xFFFF - no response time measured 0xnnnn - last response time measured, in units of 0.1 second

INTEG
ER

sfhdr.stackhdr.akm
sgtim

Last host response time 0xFFFF - no response time measured 0xnnnn - last response time measu
red, in units of 0.1 second

Remarks

The message key and application flags reflect the message key and application flags of the data message to which this is
an acknowledgment. (For more information, see the note about LUA that follows.)

For outbound Status-Acknowledge(Ack) messages from the local node to the application, the SNA sequence number
gives the sequence number of the inbound data message to which this is an acknowledgment. (For more information,
see the note about LUA that follows.) It is normally used only by Transmission Service profile (TS profile) 4 applications.

For inbound Status-Acknowledge(Ack) messages from the application to the local node, the SNA sequence number
reflects the sequence number of the outbound data message to which this is an acknowledgment.

If the host specified that response time statistics are to be maintained, the application is responsible for measuring and
reporting response times to the local node, using the akmsgtim field of this message. (For details, see RTM Parameters
and Response Time Monitor Data.)

If the application is using the LUA variant of the function management interface (FMI), the transmission header (TH) and
(if appropriate) response header (RH) are included in the data, and the startd field points to the TH. The akmsgkey,
akflags1, and akflags2 fields are undefined and should not be used. The corresponding data from the element should
be used instead. The akseqno field is similarly undefined on messages from the local node to the application. It must be
set on messages from the application to the local node. The akseqno field is used to hold the sequence number of the
request being acknowledged. (For more information about FMI, see FMI Concepts.)

If the application is not using the LUA variant of the FMI, the message consists of a buffer header only. There is no buffer
element.

https://msdn.microsoft.com/en-us/library/aa746076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

Status-Acknowledge(Nack-1)
The Status-Acknowledge(Nack-1) message flows from the node to the application and from the application to the node. It is
used with both system services control point (SSCP) and primary logical unit (PLU) connections.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL if not using LUA).

numelts

Number of buffer elements (0x00 if not using LUA).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

struct Status-Acknowledge(Nack-1) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
 INTEGER sfhdr.stackhdr.akseqno;
};
struct Status-Acknowledge(Nack-1) {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

destp

Destination partner.

desti

Destination index.

sfhdr.stackhdr.akstat

Status type ACK (0x01).

sfhdr.stackhdr.akqual

Acknowledgment type ACKNEG1 (0x03).

sfhdr.stackhdr.akmsgkey

Message key.

sfhdr.stackhdr.akflags1

Application flag 1.

sfhdr.stackhdr.akflags2

Application flag 2.

sfhdr.stackhdr.aknumb1

Sense data 1.

sfhdr.stackhdr.aknumb2

Sense data 2.

sfhdr.stackhdr.akseqno

SNA sequence number.

LUA only (see Remarks): Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented request/response units (RUs)

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU.

Remarks

The message key and application flags reflect the message key and application flags of the data message to which this is
a negative acknowledgment. (For more information, see the note about LUA that follows.)

For Status-Acknowledge(Nack-1) messages from the local node to the application, the sense data reflects the sense
data in the SNA negative response.

For Status-Acknowledge(Nack-1) messages from the application to the local node, the sense data fields are those
intended for the SNA negative response to the host.

For outbound Status-Acknowledge(Nack-1) messages from the local node to the application, the SNA sequence
number gives the sequence number of the inbound data message to which this is a negative acknowledgment. (For more
information, see the note about LUA that follows.)

For inbound Status-Acknowledge(Nack-1) messages from the application to the local node, the SNA sequence
number reflects the sequence number of the outbound data message to which this is a negative acknowledgment.

If the application is using the LUA variant of the function management interface (FMI), the transmission header (TH) and
(if appropriate) response header (RH) are included in the data, and the startd field points to the TH. The akmsgkey,
akflags1, and akflags2 fields are undefined and should not be used. The corresponding data from the element should
be used instead. The akseqno field is similarly undefined on messages from the local node to the application. It must be
set on messages from the application to the local node. (For more information about FMI, see FMI Concepts.)

If the application is not using the LUA variant of the FMI, the message consists of a buffer header only. There is no buffer
element.

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

Status-Acknowledge(Nack-2)
The Status-Acknowledge(Nack-2) message flows from the node to the application. It is used with both system services
control point (SSCP) and primary logical unit (PLU) connections.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

sfhdr.stackhdr.akstat

struct Status-Acknowledge(Nack-2) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
};

Status type ACK (0x01).

sfhdr.stackhdr.akqual

Acknowledgment type ACKNEG2 (0x04).

sfhdr.stackhdr.akmsgkey

Message key.

sfhdr.stackhdr.akflags1

Reserved.

sfhdr.stackhdr.akflags2

Critical failure indicator.

Noncritical failure (0x00) Critical failure (0x01)

sfhdr.stackhdr.aknumb1

Error code 1.

sfhdr.stackhdr.aknumb2

Error code 2.

Remarks

The Status-Acknowledge(Nack-2) message consists of a buffer header only. There is no buffer element.

The message key refers to the message key in the inbound data message to which this is a negative acknowledgment.

For more information about error codes, see Error and Sense Codes.

https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx

Status-Acknowledge(ACKLUA)
The Status-Acknowledge(ACKLUA) message is for logical unit application (LUA) applications only. It flows from the node to
the application, and is used with both the system services control point (SSCP) and primary logical unit (PLU) connections.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

sfhdr.stackhdr.akstat

Status type ACK (0x01).

struct Status-Acknowledge(ACKLUA) {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stackhdr.akstat;
 CHAR sfhdr.stackhdr.akqual;
 INTEGER sfhdr.stackhdr.akmsgkey;
 CHAR sfhdr.stackhdr.akflags1;
 CHAR sfhdr.stackhdr.akflags2;
 INTEGER sfhdr.stackhdr.aknumb1;
 INTEGER sfhdr.stackhdr.aknumb2;
 INTEGER sfhdr.stackhdr.akseqno;
};

Status type ACK (0x01).

sfhdr.stackhdr.akqual

Acknowledgment type.

sfhdr.stackhdr.akmsgkey

Message key.

sfhdr.stackhdr.akflags1

Application flag 1.

sfhdr.stackhdr.akflags2

Application flag 2.

sfhdr.stackhdr.aknumb1

Number of replies.

sfhdr.stackhdr.aknumb2

Reserved.

sfhdr.stackhdr.akseqno

SNA sequence number.

Remarks

The message key and application flags are undefined and should not be checked.

The SNA sequence number gives the sequence number of the inbound data message to which this is an
acknowledgment.

Status-Control
 

For details about Status-Control message usage and for a summary of control type codes, see Status-Control Message.

https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Control(...) Request
The Status-Control(...) Request message flows from the node to the application and from the application to the node. It is
used with a primary logical unit (PLU) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL if not using LUA).

numelts

Number of buffer elements (0x00 if not using LUA).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

struct Status-Control(...) Request {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype;
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};
struct Status-Control(...) Request {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

Destination partner.

desti

Destination index.

sfhdr.stctlhdr.ctlstat

Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual

Control qualifier (0x01).

sfhdr.stctlhdr.ctltype

Control type.

sfhdr.stctlhdr.ctlack

Acknowledgment required indicator.

No acknowledgment required (0x00) Acknowledgment required (0x01)

sfhdr.stctlhdr.ctlflag1

Application flag 1.

sfhdr.stctlhdr.ctlflag2

Application flag 2. (For more information, see STSN.)

sfhdr.stctlhdr.ctlnumb1

Code 1.

sfhdr.stctlhdr.ctlnumb2

Code 2.

sfhdr.stctlhdr.ctlmsgk

Message key.

LUA only (see Remarks): Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented request/response units (RUs)

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU.

Remarks

If the application is using the LUA variant of the function management interface (FMI), the transmission header (TH),
response header (RH), and RU are included in the data element, and the startd field points to the TH. The ctlflag1 and
ctlflag2 bytes are not defined and should not be used. The appropriate values from the data should be used instead. (For
more information about FMI, see FMI Concepts.)

If the application is not using the LUA variant of the function management interface (FMI), the message consists of a

https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

buffer header only. There is no buffer element.

For a summary of Status-Control control type codes, see the table in Status-Control Message

The code 1 and code 2 fields apply only for Status-Control LUSTAT, SIGNAL, and STSN messages.

The application flag byte 2 is used for the Status-Control STSN control byte. (For more information, see Recovery.)

https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771693(v=bts.10).aspx

Status-Control(...) Acknowledge
The Status-Control(...) Acknowledge message flows from the node to the application and from the application to the node.
It is used with a primary logical unit (PLU) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL if not using LUA).

numelts

Number of buffer elements (0x00 if not using LUA).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

struct Status-Control(...) Acknowledge {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype;
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};
struct Status-Control(...) Acknowledge {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

Destination partner.

desti

Destination index.

sfhdr.stctlhdr.ctlstat

Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual

Control qualifier ACKPOS (0x02).

sfhdr.stctlhdr.ctltype

Control type.

sfhdr.stctlhdr.ctlack

Reserved.

sfhdr.stctlhdr.ctlflag1

Application flag 1.

sfhdr.stctlhdr.ctlflag2

Application flag 2. (For more information, see STSN.)

sfhdr.stctlhdr.ctlnumb1

Code 1.

sfhdr.stctlhdr.ctlnumb2

Code 2.

sfhdr.stctlhdr.ctlmsgk

Message key.

LUA only (see Remarks): Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented request/response units (RUs)

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU.

Remarks

If the application is using the LUA variant of the function management interface (FMI), the transmission header (TH),
response header (RH), and RU are included in the data element, and the startd field points to the TH. The ctlflag1 and
ctlflag2 bytes are not defined and should not be used. The appropriate values from the data should be used instead. (For
more information about FMI, see FMI Concepts.)

If the application is not using the LUA variant of the FMI, the message consists of a buffer header only. There is no buffer
element.

https://msdn.microsoft.com/en-us/library/aa705669(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

For a summary of Status-Control control type codes, see the table in Status-Control Message.

The code 1 and code 2 fields apply only for Status-Control(STSN) Acknowledge messages, where they are the
application's secondary-to-primary and primary-to-secondary sequence numbers respectively.

For messages from the application to the local node, the message key field must match the message key in the
corresponding Status-Control Request.

https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Control(...) Negative-Acknowledge-1
The Status-Control(...) Negative-Acknowledge-1 message flows from the node to the application and from the application
to the node. It is used with a primary logical unit (PLU) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL if not using LUA).

numelts

Number of buffer elements (0x00 if not using LUA).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

struct Status-Control(...) Negative-Acknowledge-1 {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};
struct Status-Control(...) Negative-Acknowledge-1 {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

Destination partner.

desti

Destination index.

sfhdr.stctlhdr.ctlstat

Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual

Control qualifier ACKNEG1 (0x03).

sfhdr.stctlhdr.ctltype

Control type.

sfhdr.stctlhdr.ctlack

Reserved.

sfhdr.stctlhdr.ctlflag1

Application flag 1.

sfhdr.stctlhdr.ctlflag2

Application flag 2.

sfhdr.stctlhdr.ctlnumb1

Sense code 1.

sfhdr.stctlhdr.ctlnumb2

Sense code 2.

sfhdr.stctlhdr.ctlmsgk

Message key.

LUA only (see Remarks): Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this buffer element.

13 or 10 for second and subsequent segments of outbound segmented request/response units (RUs)

hdreptr–>endd

End of data in this buffer element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU.

Remarks

If the application is using the LUA variant of the function management interface (FMI), the transmission header (TH),
response header (RH), and RU are included in the data element, and the startd field points to the TH. The ctlflag1 and
ctlflag2 bytes are not defined and should not be used. The appropriate values from the data should be used instead. (For
more information about FMI, see FMI Concepts.)

If the application is not using the LUA variant of the FMI, the message consists of a buffer header only. There is no buffer
element.

https://msdn.microsoft.com/en-us/library/aa744723(v=bts.10).aspx

For messages from the application to the local node, the message key field must match the message key in the
corresponding Status-Control request.

For a summary of Status-Control control type codes, see the table in Status-Control Message.

https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Control(...) Negative-Acknowledge-2
The Status-Control(...) Negative-Acknowledge-2 message flows from the node to the application. It is used with a primary
logical unit (PLU) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

struct Status-Control(...) Negative-Acknowledge-2 {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

sfhdr.stctlhdr.ctlstat

Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual

Control qualifier ACKNEG2 (0x04).

sfhdr.stctlhdr.ctltype

Control type.

sfhdr.stctlhdr.ctlack

Reserved.

sfhdr.stctlhdr.ctlflag1

Reserved.

sfhdr.stctlhdr.ctlflag2

Reserved.

sfhdr.stctlhdr.ctlnumb1

Error code 1.

sfhdr.stctlhdr.ctlnumb2

Error code 2.

sfhdr.stctlhdr.ctlmsgk

Message key.

Remarks

The Status-Control() Negative-Acknowledge-2 message consists of a buffer header only. There is no buffer element.

The message key field matches the message key in the corresponding Status-Control request.

For a summary of Status-Control control type codes, see the table in Status-Control Message.

For a list of error codes, see Error and Sense Codes.

https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx

Status-Control(...) ACKLUA
The Status-Control(...) ACKLUA message is for logical unit application (LUA) applications only. It flows from the node to the
application, and is used with a primary logical unit (PLU) connection.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

struct Status-Control(...) ACKLUA {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stctlhdr.ctlstat;
 CHAR sfhdr.stctlhdr.ctlqual;
 CHAR sfhdr.stctlhdr.ctltype
 CHAR sfhdr.stctlhdr.ctlack;
 CHAR sfhdr.stctlhdr.ctlflag1;
 CHAR sfhdr.stctlhdr.ctlflag2;
 INTEGER sfhdr.stctlhdr.ctlnumb1;
 INTEGER sfhdr.stctlhdr.ctlnumb2;
 INTEGER sfhdr.stctlhdr.ctlmsgk;
};

sfhdr.stctlhdr.ctlstat

Status type STCNTRL (0x02).

sfhdr.stctlhdr.ctlqual

Control qualifier ACKLUA (0x05).

sfhdr.stctlhdr.ctltype

Control type.

sfhdr.stctlhdr.ctlack

Reserved.

sfhdr.stctlhdr.ctlflag1

Application flag 1.

sfhdr.stctlhdr.ctlflag2

Application flag 2.

sfhdr.stctlhdr.ctlnumb1

Code 1.

sfhdr.stctlhdr.ctlnumb2

Code 2.

sfhdr.stctlhdr.ctlmsgk

Message key used for the SNA sequence number. (For more information, see Remarks.)

Remarks

The Status-Control() ACKLUA message consists of a buffer header only. There is no buffer element.

The application flags and the code 1 and code 2 fields are undefined and should not be used.

The message key field gives the sequence number from the transmission header of the inbound data message to which
this is an acknowledgment.

For a summary of Status-Control control type codes, see the table in Status-Control Message.

https://msdn.microsoft.com/en-us/library/aa704975(v=bts.10).aspx

Status-Error
The Status-Error message is used to report request reject and response header (RH) usage error conditions in outbound SNA
request/response units (RUs) to the application. It flows from the node to the application and is used with both system services
control point (SSCP) and primary logical unit (PLU) connections.

For more information, see Status-Error Message.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

struct Status-Error {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.sterrhdr.errstat;
 CHAR sfhdr.sterrhdr.errpad1;
 CHAR sfhdr.sterrhdr.errpad2;
 CHAR sfhdr.sterrhdr.errpad3;
 CHAR sfhdr.sterrhdr.errcode1;
 CHAR sfhdr.sterrhdr.errcode2;
};

https://msdn.microsoft.com/en-us/library/aa745688(v=bts.10).aspx

sfhdr.sterrhdr.errstat

Status type STERROR (0x03).

sfhdr.sterrhdr.errpad1

Reserved.

sfhdr.sterrhdr.errpad2

Reserved.

sfhdr.sterrhdr.errpad3

Reserved.

sfhdr.sterrhdr.errcode1

Error code 1.

sfhdr.sterrhdr.errcode2

Error code 2.

Remarks

The Status-Error message consists of a buffer header only. There is no buffer element.

The error codes are listed in Error and Sense Codes.

https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx

Status-Resource
The Status-Resource message is used to provide a simple flow control mechanism between the local node and the application
to prevent the application from exhausting its resources. It flows from the application to the node, and is used with a primary
logical unit (PLU) connection.

It is only used on the PLU connection where the application specifies in the PLU connection information control block (CICB)
that pacing requires application participation. For further details, see Pacing and Chunking.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

sfhdr.streshdr.resstat

Status type STRESRCE (0x04).

struct Status-Resource {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.streshdr.resstat;
 CHAR sfhdr.streshdr.respad;
 CHAR sfhdr.streshdr.rescred;
};

https://msdn.microsoft.com/en-us/library/aa745606(v=bts.10).aspx

sfhdr.streshdr.respad

Reserved.

sfhdr.streshdr.rescred

Application credit.

Remarks

The Status-Resource message consists of a buffer header only. There is no buffer element.

The rescred (application credit) field indicates that the application can receive further credit request/response units (RUs)
of the maximum RU size, or further credit chunks if chunking is being used.

Status-RTM
The Status-RTM message provides the application with information about the Response Time Monitor (RTM) measurement
parameters used by the host. This allows the application to match its local display of RTM statistics, if it provides such a display,
with the statistics used by the host. It flows from the node to the application and is used with an system services control point
(SSCP) connection.

For further details, see Response Time Monitor Data.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element.

numelts

Number of buffer elements.

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

struct Status-RTM {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.strtmhdr.rtmstat;
 CHAR sfhdr.strtmhdr.strbndry;
 CHAR sfhdr.strtmhdr.strcount;
 CHAR sfhdr.strtmhdr.strtmdef;
 CHAR sfhdr.strtmhdr.strtmact;
 CHAR sfhdr.strtmhdr.strtmdsp;
};
struct Status-RTM {
 PTRBFELT hdreptr->elteptr;
 INTEGER hdreptr->startd;
 INTEGER hdreptr->endd;
 CHAR hdreptr->trpad;
 CHAR[268] hdreptr->dataru;
};

https://msdn.microsoft.com/en-us/library/aa771135(v=bts.10).aspx

destp

Destination partner.

desti

Destination index.

sfhdr.strtmhdr.rtmstat

Status type STRTM (0x06).

sfhdr.strtmhdr.strbndry

RTM boundaries.

0x00 - No RTM boundaries follow in element. 0x01 - RTM boundaries follow in element.

sfhdr.strtmhdr.strcount

RTM counters.

0x00 - No RTM counters follow in element. 0x01 - RTM counters follow in element.

sfhdr.strtmhdr.strtmdef

RTM definition.

0x00 - No change: use last received definition. 0x01 - Timers run until first data is written to screen. 0x02 - Timers run until
keyboard is unlocked. 0x03 - Timers run until application can send (change direction (CD) or end bracket (EB) received).

sfhdr.strtmhdr.strtmact

RTM measurement.

0x00 - not active 0x01 - active

sfhdr.strtmhdr.strtmdsp

Local RTM display.

0x00 - disabled 0x01 - enabled

Element

hdreptr–>elteptr

Pointer to buffer element (NIL).

hdreptr–>startd

Start of data in this element.

hdreptr–>endd

End of data in this element.

hdreptr–>trpad

Reserved.

hdreptr–>dataru

Data RU, as follows:

dataru[0–1]

Number of boundaries in element

0x0000 - no boundaries included

m - number of boundaries included

dataru[2–3]

Number of counters in element

0x0000 - no counters included

n - number of counters included

dataru[4–(2m+3)]

m boundary values.

dataru[(2m+4)–(2m+2n+3)]

ncounter values.

dataru[(2m+2n+4)

RTM total time.

Remarks

A Status-RTM message is sent after the Open(SSCP) OK Response to give the initial RTM parameters. It is sent again
when the RTM counters are reset (either on request from the host or when the local node sends unsolicited RTM data to
the host), or when the host changes any of the RTM parameters.

The message is sent only for applications that use LUs with type video display unit (VDU) or logical units (LUs) in a VDU
pool, because the RTM feature applies only to 3270 display sessions.

All the values in the data RU are integer values.

The RTM counter values in this message can be nonzero at startup, because RTM statistics are maintained for a specific
LU and not for a specific application's use of that LU. If zero counter values are included, this indicates that the counters
are to be reset.

The RTM total time field is present only if the number of counters in the element is nonzero.

Status-Session
The Status-Session message provides the application with information about changes in the state of a session between the
local node and the host. It flows from the node to the application and is used with both system services control point (SSCP)
and primary logical unit (PLU) connections.

For further details, see Status-Session Message.

Syntax

Members
nxtqptr

Pointer to next buffer header.

hdreptr

Pointer to buffer element (NIL).

numelts

Number of buffer elements (0x00).

msgtype

Message type STATFMI (0x21).

srcl

Source locality.

srcp

Source partner.

srci

Source index.

destl

Destination locality.

destp

Destination partner.

desti

Destination index.

sfhdr.stseshdr.sesstat

Status type STSESSN (0x05).

struct Status-Session {
 PTRBFHDR nxtqptr;
 PTRBFELT hdreptr;
 CHAR numelts;
 CHAR msgtype;
 CHAR srcl;
 CHAR srcp;
 INTEGER srci;
 CHAR destl;
 CHAR destp;
 INTEGER desti;
 CHAR sfhdr.stseshdr.sesstat;
 CHAR sfhdr.stseshdr.sesspad;
 CHAR sfhdr.steeshdr.sesscode;
 CHAR sfhdr.stseshdr.sessqual;
};

https://msdn.microsoft.com/en-us/library/aa754726(v=bts.10).aspx

sfhdr.stseshdr.sesspad

Reserved.

sfhdr.steeshdr.sesscode

Session code.

sfhdr.stseshdr.sessqual

Session code qualifier.

Remarks

The Status-Session message consists of a buffer header only. There is no buffer element.

The session codes are listed in Status-Session Codes.

https://msdn.microsoft.com/en-us/library/aa771508(v=bts.10).aspx

FMI Extension for the Windows Environment
This section describes the application programming interface (API) extension to the Microsoft® Windows® 3270 Emulator
Interface that converts link status and error codes to a printable string.

Following is a definition of the function, syntax, returns, and remarks for using the extension. For more information, see
FMI Status, Error, and Sense Codes.

This section contains:

GetFmiReturnCode

https://msdn.microsoft.com/en-us/library/aa753941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745374(v=bts.10).aspx

GetFmiReturnCode
The GetFmiReturnCode function converts link status and error codes to a printable string. This function provides a standard
set of error strings for use by Function Management Interface (FMI) applications.

Syntax

Parameters
errcode1

Supplied parameter; see Remarks.

errcode2

Supplied parameter; see Remarks.

buffer_length

Supplied parameter; specifies the length of the buffer pointed to by buffer_addr. The recommended length is 256 characters.

buffer_addr

Supplied/returned parameter; specifies the address of the buffer that will hold the formatted, null-terminated string.

Return Values
0x20000001

The parameters are invalid; the function could not read the specified error codes or could not write to the specified buffer.

0x20000002

The specified buffer is too small.

Remarks

The errcode1 and errcode2 parameters are set according to the way that GetFmiReturnCode is used, as shown in the
following table.

Codes to be translated Value fo
r errcode
1

Value fo
r errcode
2

The errcode1 and errcode2 values specified in Error and Sense Codes includes messages forOpen(SSCP)
Response, Open(PLU) Confirm, Status-Acknowledge(Nack-2), Status-Control(...) Nack2, Status-Err
or, and Appl-Data messages with the system detected error indicator (SDI) set

Unchang
ed from
message

Unchang
ed from
message

The status and qualifier codes returned from a Status-Session message status*25
6 + quali
fier

0xFFFF

The return code from WinLUAGetLastInitStatus The retur
n code

0xFFFF

int WINAPI GetFmiReturnCode (
 UINT errcode1,
 UINT errcode2,
 UINT buffer_length,
 unsigned char FAR *buffer_addr
);

https://msdn.microsoft.com/en-us/library/aa745733(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753870(v=bts.10).aspx

SNA Internationalization Programmer's Reference
This section describes the features available in Host Integration Server 2009 for programming support for international
languages and different national language character sets.

The SNANLS API uses the language support features provided with Microsoft Windows Server 2003, Windows XP, and
Windows 2000. SNANLS supports European languages that use single-byte encoding, as well as East Asian languages that use
double-byte or Unicode encoding.

For general information about programming for SNA internationalization, see SNA Internationalization Programmer's Guide.

In This Section

SNANLS Code Page Support

SNANLS API Functions

TrnsDT API

Host Integration Server Components and NLS Support

https://msdn.microsoft.com/en-us/library/aa704726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771055(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705607(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770490(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770458(v=bts.10).aspx

SNANLS Code Page Support
The SNA National Language Support (SNANLS) API provides functions for converting single-byte character stream (SBCS)
EBCDIC-to-Unicode-to-ANSI and SBCS ANSI-to-Unicode-to-EBCDIC by leveraging the Win32 National Language Support
(NLS) API. The Win32 NLS API uses resource files containing NLS conversion tables that are installed on the target computer
when Windows is installed or installed by the Setup program for Host Integration Server 2009 (the Setup program also adds
the required registry entries). The SNANLS DLL is supplied with Host Integration Server.

SNANLS supports conversions for the following groups of code pages:

ANSI code pages

ANSI/OEM code pages

EBCDIC code pages

OEM PC code pages

Open Systems code pages

ISO code pages

In This Section

ANSI Code Page Support Using SNANLS

ANSI/OEM Code Page Support Using SNANLS

EBCDIC Code Page Support Using SNANLS

ISO Code Page Support Using SNANLS

OEM PC Code Page Support Using SNANLS

SNANLS Dependencies

https://msdn.microsoft.com/en-us/library/aa754735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705192(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771842(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771432(v=bts.10).aspx

ANSI Code Page Support Using SNANLS
The following table shows the ANSI code pages and character code set identifiers (CCSIDs) supported by SNA National
Language Support (SNANLS) in Host Integration Server 2009.

SNANLS display name NLS code page HOST CCSID Type NLS file name

ANSI - Arabic 1256 1256 SBCS c_1256.nls

ANSI - Baltic 1257 1257 SBCS c_1257.nls

ANSI - Cyrillic 1251 1251 SBCS c_1251.nls

ANSI - Central Europe 1250 1250 SBCS c_1250.nls

ANSI - Greek 1253 1253 SBCS c_1253.nls

ANSI - Hebrew 1255 1255 SBCS c_1258.nls

ANSI - Latin I 1252 1252 SBCS c_1252.nls

ANSI - Turkish 1254 1254 SBCS c_1254.nls

Note
All of these ANSI code pages support the euro.

ANSI/OEM Code Page Support Using SNANLS
The following table shows the ANSI/OEM code pages and character code set identifiers (CCSIDs) supported by SNA National
Language Support (SNANLS) in Host Integration Server 2009.

SNANLS display name NLS code page Host CCSID Type NLS file name Comments

ANSI/OEM - Japanese Shift-JIS 932 932 SBCS c_932.nls Japanese JIS-8 Bit + Shift-JIS

ANSI/OEM - Korean 949 949 DBCS c_949.nls Korean Hangul (Extended Wansung)

ANSI/OEM - Simplified Chinese GBK 936 936 DBCS c_936.nls Simplified Chinese GBK

ANSI/OEM - Thai 874 874 SBCS c_874.nls Thai

ANSI/OEM - Traditional Chinese Big5 950 950 DBCS c_950.nls Traditional Chinese Big5

ANSI/OEM - Viet Nam 1258 1258 SBCS c_1258.nls Viet Nam

Note
None of these code pages support the euro.

EBCDIC Code Page Support Using SNANLS
The following table shows the EBCDIC code pages and character code set identifiers (CCSIDs) supported by SNA National
Language Support (SNANLS) in Host Integration Server 2009.

SNANLS Display Name NLS Code Page Host CCSID euro Supported by SNANLS

EBCDIC - Arabic 20420 420 partial (See Note)

EBCDIC - Cyrillic (Russian) 20880 880 yes

EBCDIC - Cyrillic (Serbian, Bulgarian) 21025 1025 yes

EBCDIC - Denmark/ Norway (Euro) 1142 277 yes yes

EBCDIC - Denmark/ Norway 20277 277 yes

EBCDIC - Finland/ Sweden (Euro) 1143 278 yes yes

EBCDIC - Finland/ Sweden 20278 278 yes

EBCDIC - France (Euro) 1147 297 yes yes

EBCDIC - France 20297 297 yes

EBCDIC - Germany (Euro) 1141 273 yes yes

EBCDIC - Germany 20273 273 yes

EBCDIC - Greek (Modern) 875 875 yes

EBCDIC - Greek 20423 423 yes

EBCDIC - Hebrew 20424 424 partial (See Note)

EBCDIC - Icelandic (Euro) 1149 871 yes yes

EBCDIC - Icelandic 20871 871 yes

EBCDIC - International (Euro) 1148 500 yes yes

EBCDIC - International 500 500 yes

EBCDIC - Italy (Euro) 1144 280 yes yes

EBCDIC - Italy 20280 280 yes

EBCDIC - Japan English (Extended) 1027

EBCDIC - Japan English/Kanji (Extended) 939 939 yes

EBCDIC - Japan English/Kanji (Extended) 5035

EBCDIC - Japan Katakana (Extended) 290 290 yes

EBCDIC - Japan Katakana/Kanji (Extend Katakana) 930 930 yes

EBCDIC - Japan Katakana/Kanji (Extend Katakana) 5026

EBCDIC - Japanese 931 931 yes

EBCDIC - Korea (Extended) 933 933 yes

EBCDIC - Latin America/

Spain (Euro)

1145 284 yes yes

EBCDIC - Latin America/

Spain

20284 284 yes

EBCDIC - Multilingual/ ROECE (Latin-2) 870 870 yes

EBCDIC - Simplified Chinese (Extended) 935 935 yes

EBCDIC - Thai 20838 838 yes

EBCDIC - Traditional Chinese (Extended) 937 937 yes

EBCDIC - Turkish (Latin-3) 20905 905 yes

EBCDIC - Turkish (Latin-5) 1026 1026 yes

EBCDIC - U.S./ Canada (Euro) 1140 37 yes yes

EBCDIC - U.S./ Canada 37 37 yes

EBCDIC - United Kingdom (Euro) 1146 285 yes yes

EBCDIC - United Kingdom 20285 285 yes

Note
Support for Arabic and Hebrew code page conversions are limited to left-to-right output. Bidirectional output including the d
efault Arabic and Hebrew right-to-left output is not supported in this release of Host Integration Server.

ISO Code Page Support Using SNANLS
The following table shows the ISO NLS code pages and host character code set identifiers (CCSIDs) supported by SNA National
Language Support (SNANLS) in Host Integration Server 2009.

SNANLS display name NLS code page Host CCSID euro Supported by SNANLS

ISO 6937 Non-Spacing Accent 20269 6937

ISO 8859-1 Latin-1 28591 819

ISO 8859-15 Latin 9 (Euro) 20865 923 yes

ISO 8859-2 Central Europe 28592 912

ISO 8859-3 Latin 3 28593 913

ISO 8859-4 Baltic 28594 914

ISO 8859-5 Cyrillic 28595 915

ISO 8859-6 Arabic 28596 1089

ISO 8859-7 Greek 28597 813

ISO 8859-8 Hebrew (Visually Ordered) 28598 916

ISO 8859-9 Hebrew (Logically Ordered) 28599 920

OEM PC Code Page Support Using SNANLS
The following table shows the OEM PC code pages and character code set identifiers (CCSIDs) supported by SNA National
Language Support (SNANLS) in Host Integration Server 2009.

SNANLS display name NLS code page Host CCSID Type NLS file name Comments

OEM - Arabic 864 864 SBCS c_864.nls

OEM - Baltic 775 775 SBCS c_775.nls

OEM - Canadian French 863 863 SBCS c_863.nls OEM - Canada (850 subset)

OEM - Cyrillic 855 855 SBCS c_855.nls

OEM - Cyrillic II 866 866 SBCS c_866.nls OEM - Russian

OEM - Greek 437G 737 737 SBCS c_737.nls

OEM - Hebrew 862 862 SBCS c_862.nls

OEM - Icelandic 861 861 SBCS c_861.nls OEM - Iceland

OEM - Modern Greek 869 869 SBCS c_869.nls

OEM - Multilingual Latin I 850 850 SBCS c_850.nls

OEM - Multilingual Latin II 852 852 SBCS c_852.nls

OEM - Nordic 865 865 SBCS c_865.nls OEM - Denmark, Norway, Finland, Sweden

OEM - Portuguese 860 860 SBCS c_860.nls OEM - Portugal (850 subset)

OEM - Turkish 857 857 SBCS c_857.nls

OEM - United States 437 437 SBCS c_437.nls

Note
None of these code pages support the euro.

Open Systems Code Page Support Using SNANLS
The following table shows the Open Systems NLS code pages and host character code set identifiers (CCSIDs) supported by
SNA National Language Support (SNANLS) in Host Integration Server 2009.

SNANLS display name NLS code page Host CCSID euro Supported by SNANLS
Latin-1/Open System (Euro) 20924 924 yes

Latin-1/Open System 1047 1047

SNANLS Dependencies
The only file required to support the SNA National Language Support (SNANLS) API on Microsoft Windows Server 2003,
Windows XP, and Windows 2000 is SNANLS.DLL. To link to this .dll, use the SNANLS.H header (located under the
\SDK\INCLUDE subdirectory) and the SNANLS.LIB library file (located under the \SDK\LIB subdirectory) supplied with the Host
Integration Server 2009 SDK. Note that individual Win32 NLS resource files must be installed in order to support the various
languages and code pages on Windows Server 2003, Windows XP, and Windows 2000.

The Win32 NLS files needed to support various languages are normally installed when the operating system is installed during
Setup for Windows Server 2003, Windows XP, and Windows 2000. If these files are not present on Windows Server 2003,
Windows XP, and Windows 2000, they may be installed using Regional and Language Options. Click Start, then click Control
Panel. Click Regional and Language Options, then click the Advanced tab. Select the appropriate settings from this dialog
box.

The registry settings required to use specific NLS files are enabled on Windows Server 2003, Windows XP, and Windows 2000
when the operating system is installed. When you install the end-user client or Administrator clients from Host Integration
Server 2009, the registry settings required to use specific NLS files are automatically created.

The registry settings required for common EBCDIC code pages are listed in the following table.

File name SNANLS display name NLS code pag
e

Host CCSI
D

Registry setting

c_037.nls EBCDIC - U.S./ Canada 37 37 Value Name=37 Type=REG_SZ Data=c_037.nls

c_500.nls EBCDIC - International 500 500 Value Name=500 Type=REG_SZ Data=c_500.nls

c_870.nls EBCDIC - Multilingual/ ROECE (Latin
-2)

870 870 Value Name=870 Type=REG_SZ Data=c_870.nls

c_875.nls EBCDIC - Greek (Modern) 875 875 Value Name=875 Type=REG_SZ Data=c_875.nls

c_1026.nls EBCDIC - Turkish (Latin-5) 1026 1026 Value Name=1026 Type=REG_SZ Data=c_1026.nl
s

c_20273.nl
s

EBCDIC - Germany 20273 273 Value Name=20273 Type=REG_SZ Data=c_2027
3.nls

c_20277.nl
s

EBCDIC - Denmark/ Norway 20277 277 Value Name=20277 Type=REG_SZ Data=c_2027
7.nls

c_20278.nl
s

EBCDIC - Finland/ Sweden 20278 278 Value Name=20278 Type=REG_SZ Data=c_2027
8.nls

c_20280.nl
s

EBCDIC - Italy 20280 280 Value Name=20280 Type=REG_SZ Data=c_2028
0.nls

c_20284.nl
s

EBCDIC - Latin America/

Spain

20285 284 Value Name=20284 Type=REG_SZ Data=c_2028
4.nls

c_20285.nl
s

EBCDIC - United Kingdom 20285 285 Value Name=20285 Type=REG_SZ Data=c_2028
5.nls

c_20297.nl
s

EBCDIC - France 20297 297 Value Name=20297 Type=REG_SZ Data=c_2029
7.nls

c_20420.nl
s

EBCDIC - Arabic 20420 420 Value Name=28596 Type=REG_SZ Data=c_2042
0.nls

c_20423.nl
s

EBCDIC - Greek 20423 423 Value Name=20423 Type=REG_SZ Data=c_2042
3.nls

c_20424.nl
s

EBCDIC - Hebrew 20424 424 Value Name=20424 Type=REG_SZ Data=c_2042
4.nls

c_20838.nl
s

EBCDIC - Thai 20838 838 Value Name=20838 Type=REG_SZ Data=c_2083
8.nls

c_20871.nl
s

EBCDIC - Icelandic 20871 871 Value Name=20871 Type=REG_SZ Data=c_2087
1.nls

c_20880.nl
s

EBCDIC - Cyrillic (Russian) 20880 880 Value Name=20880 Type=REG_SZ Data=c_2088
0.nls

c_20905.nl
s

EBCDIC - Turkish (Latin-3) 20905 905 Value Name=20905 Type=REG_SZ Data=c_2090
5.nls

c_21025.nl
s

EBCDIC - Cyrillic (Serbian, Bulgarian
)

21025 1025 Value Name=21025 Type=REG_SZ Data=c_2102
5.nls

Note
On Windows Server 2003, Windows XP, and Windows 2000, the registry settings are located under the HKEY_LOCAL_MAC
HINE under the following sub key: SYSTEM\CurrentControlSet\Control\Nls\CodePage.

SNANLS API Functions
The SNA National Language Support (SNANLS) API is documented in the SNANLS.H file in the software development kit (SDK)
provided with Host Integration Server 2009.

SNANLS on Host Integration Server 2009 supports the following functions.

In This Section

CloseNlsRegistry

FindCloseCodePage

FindFirstCodePage

FindNextCodePage

GetCodePage

GetCodePageDisplayStr

IsInstalledCodePage

OpenNlsRegistry

SnaNlsInit

SnaNlsMapString

https://msdn.microsoft.com/en-us/library/aa744678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745715(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770753(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744307(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754481(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753906(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771448(v=bts.10).aspx

CloseNlsRegistry
The SNA National Language Support (SNANLS) CloseNlsRegistry function closes an open registry key on a local or remote
computer.

Syntax

Parameters
KeyHandle

Supplied parameter. The handle to a key in the registry opened using OpenNlsRegistry.

Return Value

The CloseNlsRegistry function returns zero on success, otherwise a non-zero value is returned on failure.

Remarks

The KeyHandle parameter passed to this function is the handle returned from a previous call to the OpenNlsRegistry
function. This function is primarily used by the Print service in Host Integration Server 2009 to determine what code pages are
supported on a remote computer providing the print services function.

SNANLS supports this function on Microsoft Host Integration Server 2009.

BOOL WINAPI CloseNlsRegistry(
HKEY KeyHandle
);

FindCloseCodePage
The SNA National Language Support (SNANLS) FindCloseCodePage function closes the handle allocated by a call to the
FindFirstCodePage function.

Syntax

Parameters
hInfo

Supplied parameter. The handle allocated and returned using FindFirstCodePage.

Return Value

The FindCloseCodePage function returns TRUE on success, otherwise the returned value on failure is FALSE.

Remarks

The hInfo parameter passed to this function is the handle returned from a previous call to the FindFirstCodePage function.

SNANLS supports this function on Host Integration Server 2009.

BOOL WINAPI FindCloseCodePage(
 const HANDLEhInfo
);

FindFirstCodePage
The SNA National Language Support (SNANLS) FindFirstCodePage function finds the first instance of a code page satisfying
the condition specified, copies the code page information to a structure passed as a parameter, and opens and returns a handle
used in subsequent calls to the FindNextCodePage function.

Syntax

Parameters
dwEnumOption

Supplied parameter. The set of conditions that a code page should satisfy. These conditions can be any combination of the
following values defined in the SNANLS.h include file:

ENUM_CP_AVAILABLE (0x01)

The code page is installed and available for use.

ENUM_CP_HOST (0x02)

The code page is a host code page (EBCDIC, for example).

ENUM_CP_EURO (0x04)

The code page contains support for the euro character.

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

Note that some of these combinations represent cases that will not match any installed code pages used by SNANLS.

pPage

Supplied and returned parameter. A pointer to a struct CodePage where the code page information should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the information for the first code
page satisfying the conditions in dwEnumOption. On failure, no changes will be made to the memory pointed to by this
parameter.

The CodePage struct is defined in the SNANLS.H include file as follows:

The members of this CodePage structure are as follows:

CodePageKey

const HANDLE WINAPI FindFirstCodePage(
 DWORDdwEnumOption,
 struct CodePage *pPage
);

struct CodePage {
 BYTE CodePageKey;
 DWORD CodePageID;
 WCHAR szFriendlyName[CP_SIZE];
 short eGroup;
 BOOL bAvailable;
 BYTE bccsid;
 BOOL bEuro;
};

A numeric value that represents the index into the array of CodePage structures. This value should be used as an opaque
value, since this value can be changed arbitrarily by Service Packs when additional code pages are supported.

CodePageID

The NLS code page number.

szFriendlyName

The SNANLS display name for this code page.

eGroup

The group that this code page is represented by. .This value can be one of the following enumerations defined in the
SNANLS.h include file for code groups:

ENUM_CP_EBCDIC

This code page is a member of the EBCDIC code page group.

ENUM_CP_ANSI

This code page is a member of the ANSI code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEMPC

This code page is a member of the OEM PC code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEM PC

This code page is a member of the OEM PC code page group.

ENUM_CP_OPEN

This code page is a member of the Open Systems code page group.

ENUM_CP_UCS

This code page is a member of the UCS code page group.

bAvailable

A Boolean used to indicate that this code page is installed on the computer. A value of FALSE for this member indicates that
the computer will not be queried to determine if this code page is installed. A value of TRUE indicated the code page is
installed.

bccsid

A flag used to indicate the type of code page. This flag can be one of the following:

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

bEuro

A Boolean value used to indicate if this code page supports the euro symbol. If this value is TRUE, then the euro symbol is

supported.

Return Value

The FindFirstCodePage function returns a handle used in calls to the FindNextCodePage or FindCloseCodePage on
success. On failure, INVALID_HANDLE_VALUE is returned for the value of this handle.

Remarks

The handle returned by this function should not be tampered with by the user.

This function is supported by SNANLS on Host Integration Server.

FindNextCodePage
The SNA National Language Support (SNANLS) FindNextCodePage function finds the next instance of code page satisfying
the condition specified in the initial call to the FindFirstCodePage function, and copies the code page information to a
structure passed as a parameter.

Syntax

Parameters
hInfo

Supplied parameter. The handle allocated and returned using FindFirstCodePage.

pPage

Supplied and returned parameter. A pointer to struct CodePage where the code page information should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the information for the next code
page satisfying the conditions in dwEnumOption parameter passed to the FindFirstCodePage function.

On failure, no changes will be made to the memory pointed to by this parameter.

The CodePage struct is defined in the SNANLS.H include file as follows:

The members of this CodePage structure are as follows:

CodePageKey

A numeric value that represents the index into the array of CodePage structures. This value should be used as an opaque
value, since this value can be changed arbitrarily by Service Packs when additional code pages are supported.

CodePageID

The NLS code page number.

szFriendlyName

The SNANLS display name for this code page. The character string is null terminated.

eGroup

The group that this code page is represented by. .This value can be one of the following enumerations defined in the
SNANLS.h include file for code groups:

ENUM_CP_EBCDIC

This code page is a member of the EBCDIC code page group.

ENUM_CP_ANSI

This code page is a member of the ANSI code page group.

ENUM_CP_ISO

BOOL WINAPI FindNextCodePage(
 const HANDLE hInfo
struct CodePage *pPage
);

struct CodePage {
 BYTE CodePageKey;
 DWORD CodePageID;
 WCHAR szFriendlyName[CP_SIZE];
 short eGroup;
 BOOL bAvailable;
 BYTE bccsid;
 BOOL bEuro;
};

This code page is a member of the ISO code page group.

ENUM_CP_OEMPC

This code page is a member of the OEM PC code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEM PC

This code page is a member of the OEM PC code page group.

ENUM_CP_OPEN

This code page is a member of the Open Systems code page group.

ENUM_CP_UCS

This code page is a member of the UCS code page group.

bAvailable

A Boolean used to indicate that this code page is installed on the computer. A value of FALSE for this member indicates that
the computer will not be queried to determine if this code page is installed. A value of TRUE indicated the code page is
installed.

bccsid

A flag used to indicate the type of code page. This flag can be one of the following:

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

bEuro

A Boolean value used to indicate if this code page supports the euro symbol. If this value is TRUE, then the euro symbol is
supported.

Return Value

The FindNextCodePage function returns a value of TRUE on success. On failure, the returned value is FALSE.

Remarks

This function is supported by SNANLS on Host Integration Server 2009.

GetCodePage
The SNA National Language Support (SNANLS) GetCodePage function copies the code page information identified by a key
to a structure passed as a parameter.

Syntax

Parameters
nKey

Supplied parameter. The numeric key to a code page. This value is an opaque index into an array containing the code pages
supported by SNANLS. This value is normally the CodePageKey member of a CodePage structure returned from a previous
call to FindFirstCodePage or FindNextCodePage.

pPage

Supplied and returned parameter. A pointer to struct CodePage where the code page information should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the information for the specific
code page.

On failure, no changes will be made to the memory pointed to by this parameter.

The CodePage struct is defined in the SNANLS.H include file as follows:

The members of this CodePage structure are as follows:

CodePageKey

A numeric value that represents the index into the array of CodePage structures. This value should be used as an opaque
value, since this value can be changed arbitrarily by Service Packs when additional code pages are supported.

CodePageID

The NLS code page number.

szFriendlyName

The SNANLS display name for this code page. The character string is null terminated.

eGroup

The group that this code page is represented by. .This value can be one of the following enumerations defined in the
SNANLS.h include file for code groups:

ENUM_CP_EBCDIC

This code page is a member of the EBCDIC code page group.

ENUM_CP_ANSI

This code page is a member of the ANSI code page group.

BOOL WINAPI GetCodePage(
 Int nKey
struct CodePage *pPage
);

struct CodePage {
 BYTE CodePageKey;
 DWORD CodePageID;
 WCHAR szFriendlyName[CP_SIZE];
 short eGroup;
 BOOL bAvailable;
 BYTE bccsid;
 BOOL bEuro;
};

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEMPC

This code page is a member of the OEM PC code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_ISO

This code page is a member of the ISO code page group.

ENUM_CP_OEM PC

This code page is a member of the OEM PC code page group.

ENUM_CP_OPEN

This code page is a member of the Open Systems code page group.

ENUM_CP_UCS

This code page is a member of the UCS code page group.

bAvailable

A Boolean used to indicate that this code page is installed on the computer. A value of FALSE for this member indicates that
the computer will not be queried to determine if this code page is installed. A value of TRUE indicated the code page is
installed.

bccsid

A flag used to indicate the type of code page. This flag can be one of the following:

ENUM_CP_DBCS (0x08)

The code page is for a double-byte character set.

ENUM_CP_MBCS (0x10)

The code page is for a mixed-byte character set.

ENUM_CP_SBCS (0x20)

The code page is for a single-byte character set.

bEuro

A Boolean value used to indicate if this code page supports the Euro symbol. If this value is TRUE, then the euro symbol is
supported.

Return Value

The GetCodePage function returns a value of TRUE on success. On failure, the returned value is FALSE.

Remarks

This function is supported by SNANLS on Host Integration Server 2009.

GetCodePageDisplayStr
The SNA National Language Support (SNANLS) GetCodePageDisplayStr function copies the SNANLS code page display
name identified by a key to a character string passed as a parameter.

Syntax

Parameters
nKey

Supplied parameter. The numeric key to a code page. This value is an opaque index into an array containing the code pages
supported by SNANLS. This value is normally the CodePageKey member of a CodePage structure returned from a previous
call to FindFirstCodePage or FindNextCodePage.

szDisplayStr

Supplied and returned parameter. A pointer to a wide-character array where the SNANLS display name for the specific code
page should be copied.

On a successful return, the memory location pointed to by this parameter will be filled with the SNANLS display name for
the specific code page. The character string is null terminated.

On failure, no changes will be made to the memory pointed to by this parameter.

IDisplayStr

Represents the number of available characters in the szDisplaystr parameter.

Return Value

The GetCodePageDisplayStr function returns a value of TRUE on success. On failure, the returned value is FALSE.

Remarks

This function is supported by SNANLS on Host Integration Server 2009.

BOOL WINAPI GetCodePageDisplayStr(
Int nKey
WCHAR *szDisplayStr
Int IDisplayStr
);

IsInstalledCodePage
The SNA National Language Support (SNANLS) IsInstalledCodePage function determines if a code page is installed on a
local or remote computer.

Syntax

Parameters
CodePage

Supplied parameter. The NLS code page.

KeyHandle

Supplied parameter. The registry key returned from a call to the OpenNlsRegistry function.

Return Value

The IsInstalledCodePage function returns non-zero if a code page is installed, otherwise a zero value is returned on failure.

Remarks

This function is primarily used by the Print Service in Host Integration Server 2009 to determine if what code pages are
supported on a remote computer providing the print services function.

This function is supported by SNANLS on Host Integration Server 2009.

BOOL WINAPI IsInstalledCodePage(
UINTCodePage,
HKEYKeyHandle
);

OpenNlsRegistry
The SNA National Language Support (SNANLS) OpenNlsRegistry function opens a registry key on a local or remote
computer pointing to the NLS Codepage registry entries.

Syntax

Parameters
MachineName

Supplied parameter. The name of the remote computer on which to open the registry. If this parameter is NULL, the registry
on the local computer is opened.

hKey

Supplied parameter. The key to the registry to open. If this parameter is NULL, the HKEY_LOCAL_MACHINE key is used.

Path

Supplied parameter. The path to the key value in the registry hive to open. If this parameter is NULL, the following key is
opened:

SYSTEM\CurrentControlSet\NLS\CodePage.

Return Value

The OpenNlsRegistry function returns a handle to the opened registry key on success, otherwise a NULL value is returned on
failure.

Remarks

This function is primarily used by the Print Service in Host Integration Server 2009 to determine if what code pages are
supported on a remote computer providing the print services function.

This function is supported by SNANLS in Host Integration Server 2009.

HKEY WINAPI OpenNlsRegistry(
char *MachineName,
HKEY hkey,
LPSTR Path
);

SnaNlsInit
The SnaNlsInit function is called to determine if the code page needed is supported by code page translations using SNA
National Language Support (SNANLS). This enables an application to determine if the necessary NLS language files containing
code page translation tables are installed on the local system.

Syntax

Parameters
CodePage

Supplied parameter. The number of the NLS code page for which support is requested. The CodePage parameter
corresponds with the registry settings on Microsoft® Windows® 2000 located under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage subkey.

Return Value

The SnaNlsInit function returns non-zero if code page translations are supported; otherwise 0 is returned.

Remarks

If CP_ACP (the current ANSI code page) is passed as the CodePage parameter, this functions returns non-zero.

This function is supported by SNANLS on Microsoft® Host Integration Server.

int WINAPI SnaNlsInit(
UINTCodePage
);

SnaNlsMapString
The SnaNlsMapString function is called to translate a string from one code page to another.

Syntax

Parameters
lpSrcStr

Supplied parameter. The input source string to be translated.

lpDestStr

Returned parameter. The translated string which may be NULL if out_length was zero.

inCodePage

Supplied parameter. Specifies the code page of the incoming source string; ignored if the input is Unicode.

outCodePage

Supplied parameter. Specifies the code page of the output translated string; ignored if the output is Unicode.

in_length

Supplied parameter. Specifies the length of the input source string in characters if the input is multibyte or in wide characters
if the input is Unicode.

out_length

Supplied parameter. Specifies the maximum length available for the output translated string in characters if the output is
multibyte or in wide characters if the output is Unicode.

in_type

Supplied parameter. Specifies the type of the input source string. Possible values for in_type are SNA_MULTIBYTE for
multibyte and SNA_UNICODE for Unicode.

out_type

Supplied parameter. Specifies the type of the output translated string. Possible values for out_type are SNA_MULTIBYTE for
multibyte and SNA_UNICODE for Unicode.

Options

Supplied and returned parameter. As a supplied parameter, this specifies a set of options that may be applied to the
translation process, including TrnsDT options and the default character for the translation. On return, this parameter
indicates the required buffer length for the output translated string if the function call failed.

Return Value

The SnaNlsMapString function returns the number of characters or wide characters written to lpDestStr on success; otherwise
0 is returned on failure.

On failure, the Win32® GetLastError function should be used to return an error code indicating the cause of the failure.
Possible values returned by GetLastError are as follows:

int WINAPI SnaNlsMapString(
LPCTSTR lpSrcStr,
LPTSTR lpDestStr,
UINT inCodePage,
UINT outCodePage,
Int in_length,
int out_length,
UINT in_type,
UINT out_type,
WORD *Options,
LONG*lConvRequiredLen
);

ERROR_NOT_SUPPORTED

This error is returned for two possible reasons—either the NLS language resource file is not available or the in_type and
out_type of the source and destination strings are not of the same type.

ERROR_BUFFER_OVERFLOW

This error is returned if the output buffer is too small. In such cases, the Options parameter returns with the value needed for
out_length.

ERROR_INVALID_PARAMETER

This error is returned if a bad value was passed in a parameter; for example, if the in_type or out_type parameters contained
undefined values.

ERROR_INVALID_DATA

This error is returned if a bad value was passed in the lpSrcStr parameter; for example, if the input string has a lead byte at the
end.

ERROR_OUTOFMEMORY

This error is returned if memory could not be allocated for use by the SNANLS DLL.

TrnsDT API
The SNA National Language Support (SNANLS) API also enables applications to convert double-byte character stream (DBCS)
EBCDIC-to-ANSI and DBCS ANSI-to-EBCDIC by leveraging another Host Integration Server 2009 API called TrnsDT. The TrnsDT
API has its own mechanism to translate East Asia code pages using conversion table resource files (*.tbl files) that the Setup
program for Host Integration Server 2009 installs on the target computer.

In This Section

TrnsDT Code Page Support

TrnsDT Resource Files

TrnsDT API Functions

https://msdn.microsoft.com/en-us/library/aa771899(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705389(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754486(v=bts.10).aspx

TrnsDT Code Page Support
The TrnsDT API is used to perform all DBCS EBCDIC-to- ASCII conversions throughout Host Integration Server 2009. To a
degree, TrnsDT has been and continues to be a uniform translation method and cross-component resource. TrnsDT also
handles mixed DBCS and SBCS, plus SBCS for Japan.

In This Section

Host EBCDIC SBCS Using TrnsDT

Host EBCDIC DBCS Using TrnsDT

Host EBCDIC Mixed SBCS and DBCS Using TrnsDT

TrnsDT Conversions Possible

https://msdn.microsoft.com/en-us/library/aa745624(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770803(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705490(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744691(v=bts.10).aspx

Host EBCDIC SBCS Using TrnsDT
The following table shows the character code set identifiers (CCSIDs) for EBCDIC single byte character sets (SBCS) supported
by TrnsDT in Host Integration Server 2009.

Code page display name Type CCSID Character set Comments

IBM EBCDIC - U.S./Canada SBCS 037 697 IBM English lowercase

IBM EBCDIC - Japan Katakana (Extended) SBCS 290 1172 IBM Extended English Katakana

IBM EBCDIC - Korean (Extended) SBCS 833 934 Korean (Extended)

IBM EBCDIC - Simplified Chinese (Extended) SBCS 836 935 Simplified Chinese single-byte

IBM EBCDIC - Japan English (Extended) SBCS 1027 1172 IBM Extended lowercase English

IBM EBCDIC - Traditional Chinese (Extended) SBCS 28709 937 Traditional Chinese (Extended)

Host EBCDIC DBCS Using TrnsDT
The following table shows the character code set identifiers (CCSIDs) for EBCDIC double byte character sets (DBCS) supported
by TrnsDT in Host Integration Server 2009.

Code page display name Typ
e

CCSI
D

Character s
et

Comments

IBM EBCDIC - Japan DBC
S

300 1001 IBM Japanese (including 4370 user-defined characters).

IBM EBCDIC - Korea DBC
S

834 933 IBM Korean (including 1880 user-defined characters).

IBM EBCDIC - Traditional Chi
nese

DBC
S

835 937 Traditional Chinese Host double-byte (including 6204 user-defined cha
racters)

IBM EBCDIC - Simplified Chin
ese

DBC
S

837 837 Simplified Chinese Host double-byte

IBM EBCDIC - Japan DBC
S

4396 930, 931, 93
9

IBM Japanese (including 1880 user-defined characters).

Host EBCDIC Mixed SBCS and DBCS Using TrnsDT
The following table shows the character code set identifiers (CCSIDs) for EBCDIC mixed single byte character sets (SBCS) and
double byte character sets (DBCS) supported by TrnsDT in Host Integration Server 2009.

Code page display name Type CCSI
D

Comments

IBM EBCDIC - Japan Katakana/Kanji (Extend
ed)

Mixe
d

930 Japanese Katakana-Kanji mixed with 4370 user-defined characters.

IBM EBCDIC - Japanese Mixe
d

931 Japan (English Lower-Case & Japanese)

IBM EBCDIC - Korea (Extended) Mixe
d

933 Korean Mixed with 1880 user-defined characters.

IBM EBCDIC - Simplified Chinese (Extended) Mixe
d

935 Simplified Chinese Host mixed with 1880 user-defined characters.

IBM EBCDIC - Traditional Chinese (Extended
)

Mixe
d

937 Traditional Chinese Host mixed with 4370/6204 user-defined charact
ers.

IBM EBCDIC - Japan English/Kanji (Extended
)

Mixe
d

939 Japanese Latin Kanji mixed with 4370 user-defined characters.

IBM EBCDIC - Japan Katakana/Kanji (Extend
ed)

Mixe
d

5026 A subset of CCSID 930 Japanese Katakana-Kanji mixed.

IBM EBCDIC - Japan English/Kanji (Extended
)

Mixe
d

5035 A subset of CCSID 939 Japanese Latin Kanji mixed.

TrnsDT Conversions Possible
The following table describes conversions possible for the TrnsDT API.

Country/Region Conversion From CCSID To CCSID

Japan Host-PC 930 932

Japan Host-PC 931 932

Japan Host-PC 939 932

Japan Host-PC 290 932

Japan Host-PC 1027 932

Japan Host-PC 5026 932

Japan Host-PC 5035 932

Japan PC-Host 932 930

Japan PC-Host 932 931

Japan PC-Host 932 939

Japan PC-Host 932 290

Japan PC-Host 932 1027

Japan PC-Host 932 5026

Japan PC-Host 932 5035

Taiwan PC-Host 950 937

Taiwan Host-PC 937 950

Korea PC-Host 949 933

Korea Host-PC 933 949

China PC-Host 936 935

China Host-PC 935 936

TrnsDT Resource Files
The TrnsDt API uses a series of resource files that contain the necessary translation tables, which are listed in the following
table.

File name Description
TRNSDT.DLL Core global resource used by all TrnsDT conversions

TRNSDTJ.DLL Core Japanese resource

TRNSDTS.DLL Core Simplified Chinese (PRC) resource

TRNSDTK.DLL Core Korean resource

TRNSDTT.DLL Core Traditional Chinese (Taiwanese) resource

SNADBC.TBL Japanese double-byte translation tables

SNADBCS.TBL Simplified Chinese (PRC) double-byte translation tables

SNADBCT.TBL Simplified Chinese (Taiwanese) double-byte translation tables

SNADBCK.TBL Korean double-byte translation tables

SNASBC.TBL Japanese single-byte translation tables

SNASBCS.TBL Simplified Chinese (PRC) single-byte translation tables

SNASBCK.TBL Korean single-byte translation tables

SNASBCT.TBL Traditional Chinese (Taiwanese) single-byte translation tables

TrnsDT API Functions
The TrnsDT API consists of a single function.

In This Section

TrnsDT

PASSSTRUCT structure

https://msdn.microsoft.com/en-us/library/aa745357(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745700(v=bts.10).aspx

TrnsDT
The TrnsDT function is called to translate a string from one code page to another.

Syntax

Parameters
PassParm

Supplied parameter. A pointer to a PASSSTRUCT structure containing members that must be supplied as well as members
that are returned by the function.

Return Value

The TrnsDT function returns zero on success. On failure, possible values returned by this function are as follows:

ERR_FILE_NOT_FOUND

This error is returned if the TrnsDT table files (*.tbl) could not be found. Normally TrnsDT uses the conversion tables located in
the Host Integration Server\System directory on Microsoft® Windows Server™ 2003, Windows® XP, and Windows 2000. If
TrnsDT cannot find these tables, it searches for them in the current directory.

ERR_INVALID_PARAMETER

This error is returned if a bad value was passed for one or more of the members of the PassParm structure. Invalid parameters
can include not zeroing the exit_code member, passing an in_length for the input source string of zero or less or greater
than 65535 bytes, passing an out_length for the output string buffer of zero or less, passing in_page or out_page members
containing undefined codepage values.

ERR_BUFFER_OVERFLOW

This error is returned if the output buffer is too small for the converted output string. In such cases, the out_length member
returns with the necessary value in bytes for the output buffer. This error is also returned if the length of the output buffer
needed to convert the source string would exceed 65535 bytes.

ERR_MEMORY_ALLOCATE

This error is returned if memory could not be allocated for use by the TrnsDT DLL.

 WORD WINAPI TrnsDt(
 PASSSTRUCT far* PassParm);

PASSSTRUCT structure
The PASSSTRUCT structure is defined as follows:

Syntax

Members
parm_length

Supplied parameter. The length of the structure passed, normally set to 24. If the option member is not needed or used,
then this parameter can be set to 22.

exit_code

Supplied and returned parameter. On entry this member must be set to zero. On return, this member indicates the exit
status. Legal values for returned exit_code values are as follows:

0

Normal exit code indicating function completed successfully.

1

The requested conversion is not supported.

12

The exit_code field was not properly initialized to zero.

128

The last character in the source input string was a DBCS lead byte.

256

The conversion could not be successfully completed since the length of the resulting converted destination string exceeds
65535 bytes.

257

An error occurred when trying to load one and initialize one of the TrnsDTx.dll files.

in_length

Supplied parameter. Specifies the length of the input source string in bytes.

in_addr

Supplied parameter. A pointer to the buffer containing the source string to be converted.

out_length

Supplied and returned parameter. Specifies the maximum length available for the output translated string in bytes. On
return, this member is set to the length of the converted output string on success or the output buffer length needed if the
buffer was too small.

out_addr

Supplied parameter. A pointer to the buffer that will contain the output destination string after conversion.

typedef struct tagPassParm {
 WORD parm_length;
 WORD exit_code;
 WORD in_length;
 LPBYTE in_addr;
 WORD out_length;
 LPBYTE out_addr;
 WORD trns_id;
 WORD in_page;
 WORD out_page;
 WORD option;
} PASSSTRUCT;

Supplied parameter. A pointer to the buffer that will contain the output destination string after conversion.

trns_id

Supplied parameter. The conversion identifier, which is always zero.

in_page

Supplied parameter. Specifies the code page of the incoming source string.

out_page

Supplied parameter. Specifies the code page of the output translated string.

option

Supplied and returned parameter if parm_length was set to 24. As a supplied parameter, this specifies a set of options that
may be applied to the translation process. Possible values for these options are as follows:

Bits 15-9

Reserved.

Bit 8

Add shift out (SO)/shift in (SI) bytes to the converted output strings.

Bits 3-7

Reserved.

Bit 2

If this bit is set, then convert the input string using the IBM-specified 1-byte code table. This option is only valid when
converting from code page 932 to one of the following code pages: 037, 290, 930, or 931.

If this bit is zero, then convert the input source string using the conversion table that is created using the SYSCTBL utility.

In case of double-byte characters, always use the conversion table created by the SYSCTBL utility.

The SYSCTBL.EXE file is a utility program included with Host Integration Server 2009 that provides a tool that can be used to
create custom conversion tables for use with the TrnsDT function.

Bit 1

If this bit is set, then it indicates that the input source string starts with a 2-byte character. Generally, the host data always
includes SO/SI control characters in pairs, but when converting part of mixed data strings, it is necessary to start the
conversion from a double-byte character without the SO control character. In this case, the data itself does not have
adequate information to determine if it is double-byte or not, so bit 1 must be set.

Bit 0

If this bit is set, then it indicates that the input source string contains SO/SI control characters. Bit 8 and bit 0 should be set as
follows:

Conversion from PC to host Bit 8=1, bit 0 =0 Conversion from host to PC Bit 8=0, bit 0=1

On return, option is set to 4 if the last character was a double-byte character.

Host Integration Server Components and NLS Support
The following table lists the conversion methods and types used by the various components in Microsoft Host Integration
Server 2009.

Component SNAN
LS

TrnsDT (D
BCS)

Bidirectional layout (
Arabic)

Notes

3270 Applet No No No

5250 Applet No No No

Security Integration Service Yes Yes No

Host Security No No No User identifiers and passwords are converted from c
omputer to host.

Only Latin I code pages are supported.

NetView Alert Service No No No

NetView RunCmd Service No No No

CSV Convert Verb No No No

ODBC Driver for DB2 Yes Yes Yes

OLE DB Provider for DB2 Yes Yes Yes

OLE DB Provider for AS/400
and VSAM

Yes Yes Yes

Managed Provider for DB2 Yes Yes Yes

Data Queues ActiveX Control Yes Yes No

Host File Transfer ActiveX Co
ntrol

Yes Yes No

Transaction Integrator Yes Yes Yes

SNA Print Server Data Filter Programmer's Reference
The Host Print Service feature of Host Integration Server 2009 provides server-based 3270 and 5250 printer emulation,
enabling host applications to print to a Local Area Network (LAN) printer supported by Microsoft Windows Server 2003,
Windows XP, Windows 2000 Server, and Novell NetWare. This section introduces the SNA Print Server Data Filter API
(sometimes referred to as the Print Exit API) that can be used to extend the capabilities of the Host Print Service in Host
Integration Server.

This print data filter DLL can do the following:

Send data to the printer when a job starts (print a banner page, for example).

Perform special processing on the data to be printed.

Send data to the printer upon print job completion (print a trailer page, for example).

In This Section

SNA Print Server Data Filter API

PrtFilterAlloc

PrtFilterFree

PrtFilterJobData

PrtFilterJobEnd

PrtFilterJobStart

https://msdn.microsoft.com/en-us/library/aa772006(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705415(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704974(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744686(v=bts.10).aspx

SNA Print Server Data Filter API
You configure the path to the print data filter DLL. This DLL is used by all sessions actively using the Host Print service.
However, the print data filter DLL can specify whether or not it wants a given session's print data passed to it.

The entry points to this DLL are listed as follows:

PrtFilterAlloc
Obtains a data buffer in which to pass print data.

PrtFilterFree
Indicates that a data buffer obtained previously from the DLL is no longer needed and the DLL can free the memory allocated
for this resource.

PrtFilterJobData
Allows the DLL to manipulate print data.

PrtFilterJobEnd
Informs the DLL that a print job has ended.

PrtFilterJobStart
Informs the DLL that a new print job has started and enables the DLL to send special data to the Print Server at the start of a
job.

A description of the example sequence of calls during an ordinary print job is listed below to illustrate how these functions are
normally used:

PrtFilterStartJob is called when a new print job is started. The DLL can return a data buffer with special data that will be
sent to the printer (a special banner page or special printer initialization strings, for example) before printing data.

PrtFilterFree is called if special data was sent in the PrtFilterStartJob function and indicates that the data buffer used to
pass special data can be freed.

The next sequence of function calls is repeated until all of the print data has been sent:

PrtFilterAlloc is called to allocate a data buffer used to pass print data in the subsequent call to PrtFilterJobData.

PrtFilterJobData is called to pass print data to the DLL for possible modification. This allows the user DLL the
opportunity to manipulate the printer data before it is sent to the printer. If the modified print data to be returned
requires a larger data buffer or the DLL needs to use a different data buffer for returning data, the DLL may need to
allocate a new data buffer to return this data. The DLL may also choose to free the data buffer used to pass the incoming
print data if a different data buffer is used to return modified print data. The PrtFilterFree function will not be called with
the pointer to the original data buffer if a different data buffer is returned by PrtFilterJobData.

PrtFilterFree is called to indicate that the data buffer allocated by PrtFilterAlloc for passing incoming data to the
PrtFilterJobData function can be freed. If a different data buffer was returned by PrtFilterJobData, then PrtFilterFree
would be called to indicate that a data buffer allocated by the DLL used to return modified print data in the
PrtFilterJobData function can be freed.

The final sequence occurs when all of the print data has been processed:

PrtFilterEndJob is called to indicate the end of the print job and allows the DLL the option to return special data (a
trailer page, for example) that should be sent to the printer.

PrtFilterFree is called if special data was sent in the PrtFilterEndJob function and indicates that the data buffer used to
pass special data can be freed.

https://msdn.microsoft.com/en-us/library/aa705415(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704974(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745819(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771092(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744686(v=bts.10).aspx

PrtFilterAlloc
The PrtFilterAlloc function is called to obtain a data buffer from the user filter DLL in which to pass it the print data.

Syntax

Parameters
BufLen

Supplied parameter. Indicates the length of buffer required.

Return Value

The PrtFilterAlloc function allocates a memory block of BufLen size and returns a pointer to the buffer. This function should
return a NULL pointer on failure.

See Also
Reference
PrtFilterFree

 void * WINAPI PrtFilterAlloc(
 DWORD BufLen
);

https://msdn.microsoft.com/en-us/library/aa704974(v=bts.10).aspx

PrtFilterFree
The PrtFilterFree function is called to indicate that a data buffer obtained previously from the DLL is no longer needed and the
DLL can free the memory allocated for this resource. This function is called for data buffers returned from calls to
PrtFilterAlloc as well as buffers that were allocated by the DLL to pass data in the PrtFilterStartJob, PrtFilterJobData, and
PrtFilterEndJob functions.

Syntax

Parameters
pBuf

Supplied parameter. Points to the data buffer that can be freed.

See Also
Reference
PrtFilterAlloc

 void WINAPI PrtFilterFree(
 void *pBuf
);

https://msdn.microsoft.com/en-us/library/aa705415(v=bts.10).aspx

PrtFilterJobData
The PrtFilterJobData function is called to give the user DLL the opportunity to manipulate the printer data before it is printed.
This allows the DLL to provide custom processing for print data sent to the print server.

Syntax

Parameters
UniqueID

Supplied parameter. The UniqueID value returned by the PrtFilterJobStart function to identify a print job.

pBufPtr

The print server passes the print data received from the host to the user DLL for processing in this incoming buffer. The user
DLL returns to the print server a pointer to an outgoing buffer of data to be printed. This outgoing buffer pointer can be
different from the received buffer pointer because the print data filter DLL can modify the data. Note that in this case
PrtFilterFree will only be called by the Host Print Service for the outgoing buffer pointer. If necessary, the print data filter
DLL must call its own free function on the incoming buffer pointer that was supplied to the PrtFilterJobData function. This
incoming buffer was allocated by a Host Print Service by a previous call to PrtFilterAlloc.

pBufLen

Indicates the length of the data passed in the buffer to the print server and the length of the buffer returned to the print
server by the user-provided DLL.

Remarks

The data in the buffer is printable ASCII and/or printer control sequences if these are being sent in the print jobs. The buffer
returned by the user DLL does not have to be the same as the buffer passed in. The returned buffer will always be freed by
calling PrtFilterFree after the data has been spooled. The unique identifier parameter UniqueID is the identifier returned from
a previous call to the PrtFilterJobStart function.

See Also
Reference
PrtFilterFree
PrtFilterJobStart

 void WINAPI PrtFilterJobData(
 void *UniqueID,
 char **pBufPtr,
 DWORD *pBufLen);

https://msdn.microsoft.com/en-us/library/aa704974(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744686(v=bts.10).aspx

PrtFilterJobEnd
The PrtFilterJobEnd function is called to inform the print data filter DLL that a print job is about to end. This allows the DLL to
provide custom processing and send special data to the print server at the end of a print job.

Syntax

Parameters
UniqueID

Supplied parameter. The UniqueID value returned by the PrtFilterJobStart function to identify a print job.

pBufPtr

Returned parameter. Specifies a pointer to a buffer pointer holding additional data to be printed by the print server.

pBufLen

Returned parameter. Pointer to the length of the data provided by the print data filter DLL in the buffer.

Remarks

No data is passed in the buffer, but the user DLL can return print data which will be sent to the printer before the print job is
ended.

See Also
Reference
PrtFilterJobStart

 void * WINAPI PrtFilterJobEnd(
 void *UniqueID,
 char **pBufPtr,
 DWORD *pBufLen
);

https://msdn.microsoft.com/en-us/library/aa744686(v=bts.10).aspx

PrtFilterJobStart
The PrtFilterJobStart function is called to inform the print data filter DLL that a new job has just been started. This allows the
DLL to provide custom processing and send special data to the print server at the beginning of a job.

Syntax

Parameters
SessionName

Supplied parameter. The name of the print session which has just started a print job. The SessionName is the same as that
configured in using the SNA Print Service Admin tool.

LUType

Supplied parameter. Specifies the printer type. Valid values are LU 1, LU 3, or LU 6.2 printers, represented by an LUType
value of 1, 3, or 6.

pBufPtr

Returned parameter. Specifies a pointer to a buffer pointer holding additional data to be printed by the print server.

pBufLen

Returned parameter. Pointer to the length of the data provided by the print data filter DLL in the buffer.

Return Value

The PrtFilterJobStart function returns a unique identifier (cast to a pointer to a void) if it wants the opportunity to filter the
data for this print job.

If the user DLL returns a NULL pointer, it is indicating that it is not interested in filtering this job. No further calls to the user
DLL will be made for this print job.

Remarks

No data is passed in the data buffer to the print data filter DLL in this call, but the DLL can return data in pBufPtr (for example, a
banner page). The data returned from this call should be printable ASCII and/or printer control sequences.

 void * WINAPI PrtFilterJobStart(
 char *SessionName,
 DWORD LUType,
 char **pBufPtr,
 DWORD *pBufLen);

SNADIS Drivers Programmer's Reference
This section provides reference material for developers writing their own SNALink software.

In This Section

Base/DMOD and SNALink Entry Points

SNADIS Message Formats

Configuration Entry Points

Setup Functions

IOCTL Commands

SNA Modem API

SNA Perfmon API

https://msdn.microsoft.com/en-us/library/aa705026(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704718(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754031(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746009(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705129(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771320(v=bts.10).aspx

Base/DMOD and SNALink Entry Points
This section gives definitions for Base/DMOD and SNALink entry points that must be supplied in an SNALink.

In This Section

SNAGetBuffer

SNAGetElement

SNAGetLinkName

SNAGetVersion

SNALinkDispatchProc

SNALinkInitialize

SNALinkTerminate

SNALinkWorkProc

SNAReleaseBuffer

SNAReleaseElement

SNASendAlert

SNASendMessage

https://msdn.microsoft.com/en-us/library/aa754240(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746059(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746098(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746128(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705234(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771909(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754402(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771871(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705609(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754786(v=bts.10).aspx

SNAGetBuffer
The SNAGetBuffer function is called by an application to get a buffer with a requested number of elements.

Parameters
numelts

Number of elements required.

Return Values

A pointer to the buffer obtained. NULL if a buffer could not be obtained.

Remarks

Each element has a size of 268, the constant SNANBEDA in the header file SNA_DLC.H.

The returned buffer consists of a header and the required number of elements. The header points to the first element, which
points to the next element and so on to make an element chain.

It is possible to add an element to an existing buffer by calling SNAGetElement to get the extra element. The new element
should be added to the element chain of the buffer, and the number of elements count should be updated.

The application must release any buffers that are not transmitted.

PTRBFHDR SNAGetBuffer(
INTEGER numelts
);

https://msdn.microsoft.com/en-us/library/aa746059(v=bts.10).aspx

SNAGetElement
The SNAGetElement function is called by an application to get a buffer element to append to an existing buffer.

Parameters
eltptr

Pointer to a pointer to an element. On return, this points to a pointer to the element obtained, or to NULL if an element was
not obtained (an internal error).

Remarks

This function should only be used to get extra elements for an existing buffer. SNAGetBuffer should be used to get a new
buffer.

The new element should be added to the chain of elements from the existing buffer header and the count of the number of
elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is longer than the incoming
message.

VOID SNAGetElement(
PTRBFELT *eltptr
);

https://msdn.microsoft.com/en-us/library/aa754240(v=bts.10).aspx

SNAGetLinkName
The SNALink can call the SNAGetLinkName function to obtain its configured SNALink name.

Parameters
linkname

A pointer to a buffer where the NULL-terminated SNALink name is stored.

Remarks

The buffer should be at least nine bytes in length.

VOID SNAGetLinkName(
VCHAR *linkname
);

SNAGetVersion
The SNAGetVersion function returns the major version number in the low byte and minor version number in the high byte.

VSHORT FAR SNAGetVersion(void);

SNALinkDispatchProc
The SNALinkDispatchProc function is the link dispatcher function. The Base calls this function whenever one of the following
events occurs:

A message arrives for the link.

The Base timer expires.

Contact is lost with the local node.

Parameters
msgptr

The message to be processed, or NULL if some other event is being notified.

function

The reason for SNALinkDispatchProc being called.

locality

L value (only valid for function SBLOST).

Remarks

The function parameter can have one of three values:

0—Message received.

SBLOST—Contact lost with local node; L-value of locality.

SBTICK—Base timer has expired; occurs every five seconds.

For suggested usage of this function, see Sample Code for SNALinkDispatchProc.

VOID SNALinkDispatchProc(
PTRBFNDR msgptr,
INTEGER function,
INTEGER locality
);

https://msdn.microsoft.com/en-us/library/aa753897(v=bts.10).aspx

SNALinkInitialize
The SNALinkInitialize function initializes the SNALink. The Base calls this function when the SNALink is loaded into memory.

Parameters
event

A handle to the global Base event.

Remarks

This function should:

Read in required configuration information.

Perform any required initialization of the hardware or device driver.

Set up control blocks and data structures required internally by the SNALink.

VOID SNALinkInitializer(
HANDLE event
);

SNALinkTerminate
The SNALinkTerminate function terminates the SNALink. The Base calls this function, when present, during service shutdown.
This allows the DLL to free memory, release system resources (such as events), and close drivers.

Remarks

This function must not send messages to other SNA components.

VOID SNALinkTerminate(void);

SNALinkWorkProc
The SNALinkWorkProc function is the work manager function. The Base calls this function whenever the global Base event is
triggered by the SNALink, or at least once every five seconds.

Remarks

This function can be used to perform any general processing required by the SNALink, in particular to process messages
received from the link.

VOID SNALinkWorkProc(void);

SNAReleaseBuffer
The SNAReleaseBuffer function is called by an application to release a buffer.

Parameters
msgptr

Pointer to the buffer to be released.

Remarks

It is important that buffers are released after use. This is done automatically when a message is transmitted. For messages
received, it is the responsibility of the application either to release or to reuse the buffer.

This function releases both the buffer header and any associated buffer elements. It is possible to release single elements from
a buffer by using the function SNAReleaseElement.

VOID SNAReleaseBuffer(
PTRBFHDR msgptr
);

https://msdn.microsoft.com/en-us/library/aa771871(v=bts.10).aspx

SNAReleaseElement
The SNAReleaseElement function is called by an application to release a buffer element from an existing buffer.

Parameters
eltptr

Pointer to a pointer to the element to be released.

Remarks

This function should only be used to release surplus elements from a buffer. SNAReleaseBuffer should be called to release the
entire buffer.

The released element should first be removed from the element chain and the count of the number of elements updated.

This function is typically used when a received buffer is being reused to transmit a message that is shorter than the incoming
message.

VOID SNAReleaseElement(
PTRBFELT *eltptr
);

https://msdn.microsoft.com/en-us/library/aa771720(v=bts.10).aspx

SNASendAlert
The SNALink calls the SNASendAlert function to send a complete preformatted Network Management Vector Transport
(NMVT) alert to NetView.

Parameters
msgptr

Pointer to the NMVT alert to be sent.

severity

The severity of the problem that caused the alert (ranges from 0 through 16).

Remarks

The complete NMVT to be sent must be generated by the SNALink and inserted into a buffer. Only the elements are used—the
buffer header need not be set up before sending. The fields startd and endd should be set to reflect the location of the NMVT
within the element. Multiple elements can be used to store the NMVT, up to a maximum length of 512 bytes. The buffer will be
freed by the Base after the NMVT has been sent.

Any NMVT sent refers to a particular Host Integration Server 2009 connection. It is recommended that the NMVT include at
least a hierarchy resource list, giving the name of the remote physical unit (PU) that the connection is associated with. This
name is supplied to the SNALink on the Open(STATION) message.

For complete details of the format of an NMVT, see the IBM manual SNA Formats (GA27-3136).

VOID SNASendAlert(
PTRBFHDR msgptr,
INTEGER severity
);

https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx

SNASendMessage
The SNASendMessage function is called by an application to send messages to other localities (in the case of an SNALink, the
local 2.1 node).

Parameters
msgptr

Pointer to message to be sent.

Remarks

The locality, partner, index (LPI) values on the message should be set up to reference the correct connection for the data to be
passed.

VOID SNASendMessage(
PTRBFHDR *msgptr
);

SNADIS Message Formats
This section describes the SNA Device Interface Specification interface in terms of message formats. These are presented in a
language-independent notation that is described below.

The messages used between the node and the SNALinks are shown in the following table.

Message type Direction LPI connection

Open(LINK)Request NODE ------> DLC LINK

Close(LINK)Request NODE ------> DLC LINK

Send-XID NODE ------> DLC LINK

Open(STATION) Request NODE ------> DLC STATION

Close(STATION) Request NODE ------> DLC STATION

Open(LINK) Response NODE <------ DLC LINK

Close(LINK) Response NODE <------ DLC LINK

Request-Open-Station NODE <------ DLC LINK

Open(STATION) Response NODE <------ DLC STATION

Close(STATION) Response NODE <------ DLC STATION

Station-Contacted NODE <------ DLC STATION

Outage NODE <------ DLC LINK/STATION

DLC-Data NODE <-----> DLC STATION

Status-Resource NODE <-----> DLC STATION

Details of the message format notation and key assumptions about the contents of the message formats are as follows:

"Reserved" indicates that the field must be set to zero (for a numeric field) or all nulls (for names) by the sender of the
message.

"Undefined" indicates that the value of the field is indeterminate. The field is not set by the sender and should not be
examined by the receiver of the message.

Fields that occupy two bytes — the srci field in all messages, and fields such as opresid in Open(LINK) Request — are
represented with the arithmetically most significant byte in the lowest byte address, irrespective of the normal byte order
used by the processor on which the software executes. That is, the 2-byte value 0x1234 has the byte 0x12 in the lowest
byte address. The exception to this is the startd and endd fields in all elements, which are always stored in the
processor's normal byte order.

Messages are composed of buffers, consisting of a buffer header and zero or more buffer elements. For more
information on buffer formats, see Messages.

The startd field in each element gives the offset of the first byte of data in the element after the trpad field. Its value will
either be 1 (data starts in the byte after the trpad field), 10 (nine bytes of padding are included between the trpad field

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745211(v=bts.10).aspx

and the start of the data), or 13 (12 bytes of padding are included between the trpad field and the start of the data). Any
extra bytes are used by the local node for additional header information. This avoids having to copy data into a new
buffer when adding this information.

Because startd indicates the index into dataru starting from 1, not 0, the first byte of valid data will always be at
dataru[startd–1].

All fields within dataru are of type unsigned character (UCHAR), except where the notes indicate otherwise.

In This Section

Open(LINK)

Open(LINK) Request

Open(LINK) Response

Close(LINK)

Close(LINK) Request

Close(LINK) Response

Open(STATION)

Open(STATION) Request

Open(STATION) OK Response

Open(STATION) Error Response

Close(STATION)

Close(STATION) Request

Close(STATION) Response

Request-Open-Station

Station-Contacted

Outage

Status-Resource

Send-XID

DLC-Data

https://msdn.microsoft.com/en-us/library/aa746228(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771920(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705276(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745642(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745610(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744289(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746184(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705812(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746176(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746175(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744921(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770316(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753915(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745800(v=bts.10).aspx

Open(LINK)
 

Open(LINK) is used by the node to open the LINK LPI connection.

Open(LINK) Request
Flow : NODE ------> DLC

Header
Field Type Description

nxtqptr PTRBFHD
R

Pointer to next buffer header in a queue.

hdreptr PTRBFELT Pointer to first buffer element.

numelts CHAR Number of buffer elements: 1 (Number of elements can be 2 if the connection is for an X.25 SVC
).

msgtype CHAR Message type: OPENMSG (0x01).

srcl CHAR Source locality.

srcp CHAR Source partner.

srci INTEGER Source index.

destl CHAR Destination locality.

destp CHAR Destination partner.

desti INTEGER Destination index.

ophdr.openqua
l

CHAR Open qualifier: REQU (0x01).

ophdr.opentyp
e

CHAR Open type: LINK (0x10).

ophdr.opresid INTEGER Resource identifier.

Element 1
Field Type Description

hdreptr–>elteptr PTRBFELT Pointer to optional second buffer element (NULL if only one element).

hdreptr–>startd INTEGER Index to start of data in this buffer element's data array.

hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array.

hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd–1

dataru[s..s+9] Not applicable Source name — name of local node.

dataru[s+10..s+19] Not applicable Destination name—name of remote PU (blank for incoming calls).

dataru[s+20..s+21] Not applicable Link index.

Link Data (depends on DLC type)

Unless otherwise stated, these fields are valid for outgoing calls only.

SDLC link data field Description

dataru[s+22] XID supplied 0x00 Do not send initial XID 0x01 Send initial XID from this message (may be a NULL XID)

dataru[s+23] Link operational role 0x00 Primary 0x01 Secondary 0x02 Negotiable

dataru[s+24] Use Reject_Command indicator 0x00 Do use it 0x01 Do not use it

dataru[s+25] Address match byte 0x00 Primary/Negotiable SDLC 0x01 to 0xFE Secondary SDLC

dataru[s+26] Second SDLC address match byte 0x00 Primary SDLC 0xFF Secondary/Negotiable SDLC

dataru[s+27] Reserved

Channel adapter link da
ta

Description

dataru[s+22] XID supplied. 0x00 Do not send initial XID. 0x01 Send initial XID from this message (may be a NULL
XID).

dataru[s+23] PU emulation type. 0x00 Unknown. 0x20 PU 2.0 (format 0 XID). 0x21 PU 2.1 (format 3 XID).

dataru[s+24] Control Unit Image number (0 to 15) on the Channel address configured in SNA Manager.

dataru[s+25] Channel subaddress.

dataru[s+26..s+67] Reserved (may not be zero).

Station timers Description

dataru[s+28..s+29] Contact time-out.

dataru[s+30..s+31] Contact retry limit.

dataru[s+32..s+33] Discontact time-out.

dataru[s+34..s+35] Discontact retry limit.

dataru[s+36..s+37] Negative poll time-out.

dataru[s+38..s+39] Negative poll retry limit.

dataru[s+40..s+41] T1 (no acknowledgment) time-out.

dataru[s+42..s+43] T2 (acknowledgment) time-out.

dataru[s+44..s+45] Remote station busy time-out.

dataru[s+46..s+47] Remote station busy retry limit.

Link ti
mers

Description

dataru
[s+48..
s+49]

Idle time-out.

dataru
[s+50..
s+51]

Idle retry limit.

dataru
[s+52..
s+53]

Nonproductive receive time-out.

dataru
[s+54..
s+55]

Nonproductive receive retry limit.

dataru
[s+56..
s+57]

Write time-out.

dataru
[s+58..
s+59]

Write retry limit.

dataru
[s+60..
s+61]

Link connection time-out.

dataru
[s+62..
s+63]

Link connection retry limit. 0xFFFF for infinite retry.

dataru
[s+64..
s+65]

Reserved.

dataru
[s+66]

Configuration options: Bit 0 : 1 = Constant carrier selected Bit 1 : 1 = NRZI 0 = NRZ Bit 2 : = Reserved Bit 3 : 1 = Full-d
uplex 0 = Half-duplex Bit 4 : 0 = External clocking Bit 5 : 1 = Data signal rate select high 0 = Data signal rate select low
Bit 6 : 1 = Select standby on 0 = Select standby off Bit 7 : = Reserved

dataru
[s+67]

Configuration options: line type 0x00 leased 0x01 switched manual dial 0x02 switched auto-dial

Note that for configuration options, bit 0 is the most significant option and bit 7 is the least significant. Reserved bits are not
always zero, so always use a bitwise AND operation when testing these bits.

The configuration options byte is also valid for incoming calls.

In This Section

Expanded Information About Message Formats for Open(LINK) Request with SDLC

Optional Second Element (Only Used by X.25 SVC)

https://msdn.microsoft.com/en-us/library/aa744693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771041(v=bts.10).aspx

Expanded Information About Message Formats for Open(LINK)
Request with SDLC

The following list supplements the information found in the table in Open(LINK) Request. The timers described in the lists are
used by a synchronous data link control (SDLC) link service to determine when to retry communication and when to generate
outages. Generally, after the time interval specified by the time-out (usually 1000 milliseconds), the communication is retried.
The cycle of time-out and retry is repeated until the retry limit is reached. Then an Outage message is sent by the SDLC link
service.

With some timers, there are no communication retries. Such timers simply cycle through the time-out as many times as
allowed in the retry limit (without actually retrying), then generate an Outage message.

Each description indicates whether you can configure the field through a Microsoft Host Integration Server 2009 interface
(such as the SNA Manager program). If the field is not configurable, the built-in setting for the field is shown.

SDLC Link Data

dataru[s+22] XID supplied

This field controls whether an initial exchange identification (XID) is sent on this connection. The value used is determined
by the leased or switched setting for the line:

Leased line: 0x00 Do not send an initial XID. Switched line: 0x01 Send an initial XID (may be a NULL XID).

A line is configured as leased or switched in Host Integration Server Setup.

dataru[s+24] Use Reject_Command indicator

This field determines that the link service will not send a Reject command (an SDLC command, not often used, value
0x19) if a frame is received with an invalid next-to-send (NS) value. Instead, the link service waits until the next poll
before requesting retransmission of the frame.

This field is not configurable and must remain at the setting of "Do not use."

Station Timers (described for SDLC only)

dataru[s+28..s+29] Contact time-out

dataru[s+30..s+31] Contact retry limit

This timer is started when an XID or set normal response mode (SNRM) is transmitted. If the time-out expires without
acknowledgment, the frame is retransmitted. When the number of retransmitted frames reaches the retry limit, an
outage is generated. Note that for XIDs, the time-out value is randomized to prevent possible clashes between two
servers sending XIDs simultaneously.

This timer is configurable in SNA Manager, in the advanced settings for an SDLC connection.

dataru[s+32..s+33] Discontact time-out

dataru[s+34..s+35] Discontact retry limit

This timer is started when a discontact (DISC) is sent. It is stopped when an unnumbered acknowledgment (UA) or
disconnect mode (DM) is received. If the number of sent DISCs reaches the retry limit, an outage is generated.

This timer is not configurable. The discontact time-out is 1000 milliseconds; the discontact retry limit is 3.

dataru[s+36..s+37] Negative poll time-out

https://msdn.microsoft.com/en-us/library/aa754046(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744921(v=bts.10).aspx

dataru[s+38..s+39] Negative poll retry limit

This timer is used for primary SDLC only. At intervals specified by the negative poll time-out, a receive ready (RR) is
transmitted. The negative poll retry limit is set at no limit; therefore, no outage is generated, no matter how many RRs are
transmitted without acknowledgment being received.

The negative poll time-out is configurable in SNA Manager, in the advanced settings for an SDLC connection, where the
time-out is called poll rate. Poll rate is set in polls per second (and translated internally into the negative poll time-out,
timed in milliseconds).

The negative poll retry limit is not configurable. It is set at –1, meaning no limit.

dataru[s+40..s+41] T1 (no acknowledgment) time-out

dataru[s+42..s+43] N2 (no acknowledgment) retry limit

This timer is used for primary SDLC and is started when a poll/final bit is expected. If the time-out expires before a frame
containing a poll/final bit is received, an RR is sent. When the number of sent RRs reaches the retry limit, an outage is
generated.

This timer is configurable in SNA Manager, in the advanced settings for an SDLC connection, where it is called the poll
time-out and poll retry limit.

dataru[s+44..s+45] Remote station busy time-out

dataru[s+46..s+47] Remote station busy retry limit

This timer is used for primary SDLC and is started when a receive not ready (RNR) is received. It is stopped when an RR is
received. If the time-out expires the number of times specified by the retry limit, an outage is generated.

This timer is not configurable. The remote station busy time-out is 1000 milliseconds. The remote station busy retry limit
is 30. Therefore, the time allowed before an outage is 30 seconds.

Link Timers (described for SDLC only)

dataru[s+48..s+49] Idle time-out

dataru[s+50..s+51] Idle retry limit

This timer is configurable in SNA Manager, in the advanced settings for an SDLC connection.

dataru[s+52..s+53] Nonproductive receive time-out

dataru[s+54..s+55] Nonproductive receive retry limit

This timer is used for secondary SDLC only and is started when any frame is received for this station. It is stopped when
additional frames are received for this station. If the time-out expires the number of times specified by the retry limit, the
link service causes a pop-up message, but does not generate an outage (because multidrop lines can be very slow).

This timer is not configurable. The nonproductive receive time-out is 1000 milliseconds (1 second); the nonproductive
receive retry limit is 60. Therefore, the time allowed before a pop-up message is 60 seconds.

dataru[s+56..s+57] Write time-out

dataru[s+58..s+59] Write retry limit

This timer is started after an information frame has been transmitted to the hardware and stopped when the hardware

acknowledges the frame. If the time-out expires the number of times specified by the retry limit, an outage is generated.

This timer is not configurable. The write time-out is 1000 milliseconds (one second). The write retry limit is 15. Therefore,
the time allowed before an outage is 15 seconds.

dataru[s+60..s+61] Link connection time-out

dataru[s+62..s+63] Link connection retry limit

This timer is started when an open link for a leased line is received, and stopped when Data Set Ready (DSR) is raised. If
the time-out expires the number of times specified by the retry limit, an outage is generated.

This timer is not configurable. The link connection time-out is 1000 milliseconds (one second). The link connection retry
limit is 300. Therefore, the time allowed before an outage is 300 seconds.

X.25 link data Description

dataru[s+22] Circuit type 0x00 PVC 0x01 SVC

dataru[s+23] PVC alias, starting at 1 for lowest PVC channel number (reserved for SVC).

dataru[s+24..s+25] PVC packet size (reserved for SVC).

dataru[s+26] Default level 3 window size for PVC (reserved for SVC).

dataru[s+27] Link role: 0x00 Primary 0x01 Secondary 0x02 Negotiable

802.2 link da
ta

Description

dataru[s+22] Maximum receives without a transmit acknowledgment.

dataru[s+23] Maximum transmits without a receive acknowledgment.

dataru[s+24] Dynamic window increment value.

dataru[s+25] Remote local service access point (SAP) address.

dataru[s+26] Local SAP address (for incoming calls).

dataru[s+27] Value for t1 timer multiplier.

dataru[s+31] Value for t2 timer multiplier.

dataru[s+35] Value for t3 timer multiplier.

dataru[s+42] Maximum retry count (N2 value). Note that this 802.2 link data is required for the 802.2 command DLC.O
PEN.STATION.

Note that if the fields in the preceding table for timer multipliers are set to zero, the SNALink should use appropriate
defaults.

End of link data section Description

dataru[s+68..s+69] Length of link connection data (= a) (0x0000) None present

dataru[s+70..s+70+a] Link connection data

dataru[s+70+b..s+71+b] Where b is maximum of a and 20. Size of XID I-frame (= n) (0x0000) NULL XID

dataru[s+72+b] XID

Note that if there are 20 or fewer bytes of link connection data, the XID length is at s+90 and the actual XID starts at
s+92.

The link connection data can contain one of the following:

Media access control (MAC) address of remote station

X.25 address of remote station

Dial-digits for manual or auto-dial modems

Optional Second Element (Only Used by X.25 SVC)
Element 2

Field Type Description

hdreptr–>elteptr–>eltept
r

PTRBFELT Pointer to next buffer element: NULL

hdreptr–>elteptr–>startd INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>elteptr–>endd INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>elteptr–>datar
u

CHAR[SNANBEDA
]

Defined as follows, where s = startd–1

dataru[s] Not applicable Length of facilities data field (= c) inclusive of this length byte 0x01 no facilities d
ata

dataru[s+1..s+c–1] Not applicable CHAR[c–1]Facilities data

dataru[s+c] Not applicable CHARLength of user data field (= d) inclusive of this length byte 0x01 no user dat
a

dataru[s+c+1..s+c+d] Not applicable User data

Open(LINK) Response
Flow : DLC ------> NODE

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element

numelts CHAR Number of buffer elements: 1

msgtype CHAR Message type: OPENMSG (0x01)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

ophdr.ope
nqual

CHAR Open qualifier - RSPOK (0x02) - RSPERR (0x03)

ophdr.ope
ntype

CHAR Open type - LINK (0x10)

ophdr.opre
sid

INTEGER Resource identifier

ophdr.oper
r1

INTEGER Error code (see immediately following the table)

ophdr.oper
r2

INTEGER Reserved

hdreptr–>e
lteptr

PTRBFELT Pointer to next buffer element: NULL

hdreptr–>s
tartd

INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>e
ndd

INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>
dataru

CHAR[SNA
NBEDA]

Defined as follows, where s = startd–1

dataru[s..s
+9]

Not applic
able

Source name—same as destination name from Open(LINK) Request

dataru[s+1
0..s+19]

Not applic
able

Destination name—name of local node; same as source name from Open(LINK) Request

dataru[s+2
2..s+23]

Not applic
able

The maximum BTU size supported by SNALink. This size is 65,536 (largest number in an unsigned shor
t) for channel connections and 32,768 for non-channel connections.

Note that this limit does not guarantee that the SNA connection will actually use this value. The individ
ual link service or the host can negotiate it downward.

The error codes (for an ERROR-RESPONSE) are defined as follows in SNA_CNST.H:

Symbolic constant Value Description
ERINIFAIL 0x01 Hardware initialization failed

ERINVXID 0x08 Invalid XID length

ERLINKOPN 0x09 Link already open

ERLLCERR 0x0A LCC error; fatal hardware failure

ERBADINDX 0x0B Invalid link index

ERBADOPN 0x0C Open(LINK) has insufficient data

ERCONNTO 0x0D Link connection time-out

ERNORES 0x0E Maximum connection count reached –or– No more internal control blocks

EROPNPND 0x11 Close(LINK) arrived while Open(LINK) pending

ERDUPREQ 0x12 Duplicate request

Close(LINK)
 

Close(LINK) is used by the node to close the LINK LPI connection.

Close(LINK) Request
Flow : NODE ------> DLC

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: CLOSEMSG (0x02)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

clhdr.closqual CHAR Close qualifier: REQU (0x01)

clhdr.clstype CHAR Close type: LINK (0x10)

Note that the message consists of a buffer header only.

Close(LINK) Response
Flow : DLC ------> NODE

Header
Field Type Description

nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: CLOSEMSG (0x02)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

clhdr.closqual CHAR Close qualifier - RSPOK (0x02) - RSPERR (0x03)

clhdr.clstype CHAR Close type: LINK (0x10)

clhdr.clserr1 INTEGER Error code (see immediately following the table)

The error codes (for an ERROR-RESPONSE) are defined as:

0x03 — Link not open

0x04 — Invalid link index

Note
The Close(LINK) message unconditionally shuts down the link.

Open(STATION)
 

Open(STATION) is used by the node to open the STATION LPI connection.

Open(STATION) Request
Flow : NODE ------> DLC

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element

numelts CHAR Number of buffer elements: 1

msgtype CHAR Message type: OPENMSG (0x01)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

ophdr.openqual CHAR Open qualifier: REQU (0x01)

ophdr.opentype CHAR Open type: STAT (0x11)

ophdr.opresid INTEGER Resource identifier

ophdr.icreditr INTEGER Initial credit for flow DLC –> NODE

Element
Field Type Description
hdreptr–
>elteptr

PTRBFE
LT

Pointer to optional second buffer element (NULL if only one element)

hdreptr–
>startd

INTEGE
R

Index to start of data in this buffer element's data array: 1

hdreptr–
>endd

INTEGE
R

Index to last byte of data in this buffer element's data array

hdreptr–
>dataru

CHAR[
SNANB
EDA]

Defined as follows, where s = startd–1

dataru[s.
.s+9]

Not ap
plicable

Source name—name of local node

dataru[s
+10..s+1
9]

Not ap
plicable

Destination name

dataru[s
+20..s+2
1]

Not ap
plicable

Link index as specified in Open(LINK) Request

dataru[s
+22]

Not ap
plicable

If NODE is primary, address of secondary station to initiate contact procedure with. 0x00 if NODE is secondar
y

dataru[s
+23]

Not ap
plicable

FID2 indicator 0x00 FID2 used

dataru[s
+24]

Not ap
plicable

Station type 0x00 Subarea 0x01 Peer

dataru[s
+25..s+2
6]

Not ap
plicable

Length of network name from received XID 0000 = No name

dataru[s
+27..s+2
7+n]

Not ap
plicable

Network name from received XID, in local character set, or if this is null, the name of the remote PU record in
the COM.CFG file. This name can be fully qualified and has a maximum length of 17 characters.

dataru[s
+44..s+8
9]

Not ap
plicable

Link data—a copy of that supplied on the Open(LINK) Request

dataru[s
+90..s+9
1]

Not ap
plicable

The maximum BTU size to be used with this station. This size is 65,536 (largest number in an unsigned short)
for channel connections and 32,768 for non-channel connections.

Note that this limit does not guarantee that the SNA connection will actually use this value. The individual lin
k service or the host can negotiate it downward.

dataru[s
+m+1]

Not ap
plicable

Local service access point (SAP) used by remote station. The remote SAP information is only allowed for 802.
2 connections, and may only be present if Signaling information is present. It is used along with the Signalin
g Information to identify the remote station.

Open(STATION) OResponse
Flow : DLC ------> NODE

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element

numelts CHAR Number of buffer elements: 1

msgtype CHAR Message type: OPENMSG (0x01)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

ophdr.openqual CHAR Open qualifier: RSPOK (0x02)

ophdr.opentype CHAR Open type: STAT (0x11)

ophdr.opresid INTEGER Resource identifier

ophdr.icreditr INTEGER Initial Credit for flow DLC –> NODE

ophdr.icredits INTEGER Initial Credit for flow NODE –> DLC

Element
Field Type Description
hdreptr–>elteptr PTRBFELT Pointer to next buffer element (NULL is only one element)

hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>dataru CHAR[SNANBED
A]

Defined as follows, where s = startd–1

dataru[s..s+9] Not applicable Source name—same as destination name from Open(STATION) Request

dataru[s+10..s+1
9]

Not applicable Destination name—name of local node; same as source name from Open(STATION) Re
quest

Open(STATION) Error Response
Flow : DLC ------> NODE

Header
Field Type Description

nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element

numelts CHAR Number of buffer elements: 1

msgtype CHAR Message type: OPENMSG (0x01)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

ophdr.openqual CHAR Open qualifier: RSPERR (0x03)

ophdr.opentype CHAR Open type: STAT (0x11)

ophdr.opresid INTEGER Resource identifier

ophdr.operr1 INTEGER Error code

ophdr.operr2 INTEGER Reserved

Element
Field Type Description

hdreptr–>elteptr PTRBFELT Pointer to next buffer element (NULL is only one element)

hdreptr–>startd INTEGER Index to start of data in this buffer element's data array - 1

hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd - 1

dataru[s..s+9] Not applicable Source name

dataru[s+10..s+19] Not applicable Destination name

The error codes are defined as follows:

Symbolic constant Value Description

ERLKNOTOPEN 0x03 Link not open

ERSTATOPEN 0x05 Station already open

ERNOCB 0x06 Station control blocks depleted

ERINVINDX 0x07 Invalid link index

ERMAXSTAT 0x08 Limit for number of stations per link reached

ERDIFADDR 0x09 Address different from that on Request-Open-Station

ERBADADDR 0x0A Invalid DLC address

Close(STATION)
 

Close(STATION) is used by the node to close the STATION LPI connection.

Close(STATION) Request
Flow : NODE ------> DLC

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: CLOSEMSG (0x02)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

clhdr.closqual CHAR Close qualifier: REQU (0x01)

clhdr.clstype CHAR Close type: STAT (0x11)

Note that the message consists of a buffer header only.

Close(STATION) Response
Flow : DLC ------> NODE

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: CLOSEMSG (0x02)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

clhdr.clsequal CHAR Close qualifier - RSPOK (0x02) - RSPERR (0x03)

clhdr.clstype CHAR Close type: STAT (0x11)

clhdr.clserr1 INTEGER Error code

The error codes (for an ERROR-RESPONSE) are defined as:

0x03 — Station not open

0x04 — Link not connected

0x05 — Invalid station index

70x06 — Duplicate request

Note
The message consists of a buffer header only.

Note
The Close(STATION) message unconditionally closes the station connection.

Request-Open-Station
Flow : DLC ------> NODE (link connection)

Header
Field Type Description
nxtqptr PTRBFH

DR
Pointer to next buffer header in a queue

hdreptr PTRBFE
LT

Pointer to first buffer element if present

numelts CHAR Number of buffer elements

msgtype CHAR Message type: DLCSTAT (0x11)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGE
R

Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGE
R

Destination index

dshdr.dsty
pe

CHAR Status type: QOPNSTN (0x16)

dshdr.dsqu
al

CHAR Station address on XID or mode-set command. Set to 0x01 for 802.2

dshdr.dsm
dset

CHAR Rcv-Set-Mode flag 0x00 XID received 0x01 Mode set command received for example, SNRM for SDLC SA
BME for 802.2 QSM for X.25

Element fie
ld

Type Description

hdreptr–>elt
eptr

PTRBFELT Pointer to next buffer element (NULL is only one element)

hdreptr–>st
artd

INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>en
dd

INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>da
taru

CHAR[SNANB
EDA]

Defined as follows, where s = startd–1

dataru[s..s+n
–1]

Not applicable XID-starting at first byte of received XID information field. 0x00 NULL XID received (n = 1) and sig
naling information present.

Optional Signaling Information
Field Description
dataru[s+n] Length of data, including this byte

dataru[s+n+1] Type of data (not used at present)

dataru[s+n+2..s
+m]

Address or other identifier data. For example, media access control (MAC) address of remote station X.25 add
ress of remote station

The signaling information is used by the node to identify the remote station on 802.2 and X.25 links.

Note
If a NULL XID is received and no signaling information is required, the element can be omitted.

Note
If a NULL XID is received and signaling information is required, an 0x00 byte should be put in the element followed by the si
gnaling information.

Note
If the Rcv-Set-Mode flag is set to 0x01, the element can be omitted.

Station-Contacted
Flow : DLC ------> NODE (station connection)

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: DLCSTAT (0x11)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

dshdr.dstype CHAR Status type: STNCTCTD (0x17)

Note that this message contains a buffer header only.

Outage
Flow : DLC ------> NODE (link or station connection)

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: DLCSTAT (0x11)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

dshdr.dstype CHAR Status type: OUTAGE (0x18)

dshdr.dsqual CHAR Outage qualifier

dshdr.dsoutsq CHAR Outage subqualifier (optional)

Note the following:

This message contains a buffer header only.

Outage qualifier codes are given in Outages.

https://msdn.microsoft.com/en-us/library/aa705465(v=bts.10).aspx

Status-Resource
Flow : DLC <------> NODE (station connection)

Header
Field Type Description

nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element: NULL

numelts CHAR Number of buffer elements: 0

msgtype CHAR Message type: DLCSTAT (0x11)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

dshdr.dstype CHAR Status type: RESOURCE (0x04)

dshdr.dlccred INTEGER DLC credit

Note
This message contains a buffer header only.

Note
The dlccred field indicates that the message sender can receive a further dlccred DLC-Data message.

Send-XID
Flow : NODE ------> DLC (link connection)

Header
Field Type Description
nxtqptr PTRBFHDR Pointer to next buffer header in a queue

hdreptr PTRBFELT Pointer to first buffer element

numelts CHAR Number of buffer elements

msgtype CHAR Message type: DLCSTAT (0x11)

srcl CHAR Source locality

srcp CHAR Source partner

srci INTEGER Source index

destl CHAR Destination locality

destp CHAR Destination partner

desti INTEGER Destination index

dshdr.dstype CHAR Status type: SENDXID (0x1A)

dshdr.dsqual CHAR Station address on XID

Element
Field Type Description
hdreptr–>elteptr PTRBFELT Pointer to next buffer element: (NULL is only one element)

hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>dataru CHAR[SNANBEDA] Defined as follows, where s = startd–1

dataru[s..s+n–1] Not applicable XID information frame

Note that the dshdr.dsqual field is valid only for primary multipoint connections where station is specified on a multidrop line
that the XID should be sent to. In all other cases, it is set to 0xFF.

In situations where the link protocol requires the address field on the XID to be set to a value other than 0xFF (for example, to
specify that the XID is a response), it is the responsibility of the link service to set this byte appropriately.

The Send-XID message can contain zero elements (numelts = 0) or a single, empty element (hdreptr–>startd < hdreptr–
>endd). In these cases, the link service is expected to transmit a NULL XID.

DLC-Data
Flow : DLC <------> NODE

Header
Field Type Description
nxtqptr PPTRBFHDR Pointer to next buffer header in a queue

hdreptr PPTRBFELT Pointer to first buffer element

numelts CCHAR Number of buffer elements

msgtype CCHAR Message type: DLCDATA (0x10)

srcl CCHAR Source locality

srcp CCHAR Source partner

srci INTEGER Source index

destl CCHAR Destination locality

destp CCHAR Destination partner

desti INTEGER Destination index

ddhdr.ddth01 CCHAR[6] Transmission header

Element
Field Type Description
hdreptr–>eltept
r

PPTRBFELT Pointer to next buffer element: (NULL is only one element)

hdreptr–>startd INTEGER Index to start of data in this buffer element's data array: 1

hdreptr–>endd INTEGER Index to last byte of data in this buffer element's data array

hdreptr–>datar
u

CHAR[SNANBEDA
]

Defined as follows, where s = startd–1

dataru[s..s+n–1] Not applicable SNA request/response header (RH) if present, and request/response unit (RU) if not prese
nt

Configuration Entry Points
The following topics describe the entry points used by SNALink to obtain configuration information.

In This Section

SNAGetConfigValue

SNAGetSystemInfo

pCSInfo

https://msdn.microsoft.com/en-us/library/aa704821(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705486(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745437(v=bts.10).aspx

SNAGetConfigValue
SNALink calls the SNAGetConfigValue function to obtain the value of a specific configuration parameter.

Syntax

Parameters
entryName

The name of the configuration parameter required.

pBuffer

A pointer to a buffer (if the parameter is a string), or a pointer to a LONGINT (if the parameter is an integer).

bufferLen

The length of the buffer. Only required if the parameter is TYPESTRING.

parmType

TYPESTRING if the parameter is a string.

TYPELONG if the parameter is an integer.

pRetLength

Number of bytes returned if the parameter is TYPESTRING, or number of bytes available if the buffer was too short.

Return Value
NO_ERROR

OK.

ERBADCFG

Error reading configuration file.

ERNOTFND

Entry not found in configuration record.

ERTOOLONG

Data available exceeded the size of the buffer.

ERBADTYPE

A bad type was specified for the parmType parameter.

Remarks

It is strongly recommended that SNALink read all required configuration parameters at initialization time (when
SNALinkInitialize is called by the Base).

USHORT SNAGetConfigValue(
UCHAR *entryName,
VOID *pBuffer,
ULONGbufferLen,
UCHARparmType,
ULONG *pRetLength
);

https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx

SNAGetSystemInfo
SNALink calls the SNAGetSystemInfo function to obtain information about the SNA server and the network operating
system.

Syntax

Parameters
pCSInfo

Pointer to a buffer supplied by the application that contains a data structure in which system information is returned. The
application must set the length field in this data structure. (For details, see Remarks.) The other fields should be set to nulls
or blanks.

Return Value
NO_ERROR

OK.

ERNOCFGSVR

No configuration file server available.

ERMOREDATA

Supplied buffer was too small.

Remarks

The application must set the length parameter to the length of the cs_info structure (86 bytes in the current version). Any
other value is rejected. This parameter is used to ensure compatibility with future versions. An application supplying this length
will always obtain the information shown, but in future versions it may be possible to specify larger values and obtain further
information.

On successful return, the cs_info data structure contains the version number of the SNA server, the path to the current
configuration file, and the network operating system over which the SNA server is running.

If there is no configuration file server available, only the version number fields are valid. The other fields should not be
checked.

INTEGER SNAGetSystemInfo(
struct cs_info *pCSInfo
);

pCSInfo
Syntax

Members
length

Length of the data structure supplied by the application.

major_ver

Major version number:

1 for Communications Server 1.1

2 for SNA Server 2.0 or 2.1

3 for SNA Server 3.0

4 for SNA Server 4.0

minor_ver

Minor version number (decimal):

10 for Communications Server 1.1

00 for SNA Server 2.0

20 for SNA Server 2.1

00 for SNA Server 3.0

00 for SNA Server 4.0

config_share[80]

The name of the share point of the current configuration file (\\server\share\, for example). This path name must be a null-
terminated string.

nos

Transport protocol in use:

bit 0: LAN Manager/LAN Server (named pipes)

bit 1: NetWare (IPX/SPX)

bit 2: AppleTalk (Not supported in Host Integration Server 2009)

bit 3: Banyan VINES (VINES IP)

bit 4: TCP/IP

struct cs_info {
 unsigned short length;
 unsigned char major_ver;
 unsigned char minor_ver;
 unsigned char config_share[80];
 unsigned short nos;
};

Setup Functions
This section provides a reference for the functions used with the integrated link service dynamic-link library (DLL) architecture
as well as INF-based Setup.

This section contains:

Integrated Link Service Configuration Functions

Inf-Based Setup Functions

https://msdn.microsoft.com/en-us/library/aa770703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771743(v=bts.10).aspx

Integrated Link Service Configuration Functions
This section provides a reference for exported dynamic-link library (DLL) entry points and utility functions used when building
an integrated link service configuration dynamic-link library (DLL).

This section contains:

Functions Exported from a Link Service Configuration DLL

Utility Functions Used by a Link Service Configuration DLL

https://msdn.microsoft.com/en-us/library/aa754398(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705252(v=bts.10).aspx

Functions Exported from a Link Service Configuration DLL
This section provides a reference for functions that must be exported from an integrated link service configuration dynamic-
link library (DLL).

In This Section

CommandLineAdd

ConfigureLinkService

ConfigureLinkServiceEx

DisplayHelpInfo

RemoveAllLinkServices

RemoveLinkService

https://msdn.microsoft.com/en-us/library/aa705574(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754717(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753890(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745690(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754483(v=bts.10).aspx

CommandLineAdd
The CommandLineAdd function is used to add a new link service using a command-line interface. This function must be
exported from a link service configuration dynamic-link library (DLL) supplied with each link service.

Syntax

Parameters
szCommandLine

This supplied parameter specifies the command line containing information on the computer and link service to be
configured.

szConfigInfo

This supplied and returned parameter points to a configuration buffer that is used to configure the link service.

dConfigInfoSize

This supplied parameter specifies the size of the szConfigInfo configuration buffer .

Return Value
TRUE

The function executed successfully.

FALSE

One or more of the parameters passed to this function are invalid or the function failed.

__declspec(dllexport) BOOL WINAPI CommandLineAdd(LPSTRszCommandLine,
 LPSTR *szConfigInfo,
 LPDWORD dConfigInfoSize);

ConfigureLinkService
The ConfigureLinkService function is used to add or modify a link service. This function must be exported from a link service
configuration dynamic-link library (DLL) supplied with each link service.

Syntax

Parameters
szComputerName

This supplied parameter specifies the name of the computer that is to be configured.

szLinkServiceTitle

This supplied parameter specifies the title of the link service that is to be configured.

Return Value
TRUE

The function executed successfully and network bindings need to be recalculated.

FALSE

One or more of the parameters passed to this function are invalid or network bindings do not need to be recalculated.

 __declspec(dllexport) BOOL WINAPI ConfigureLinkService(
 LPSTR szComputerName,
 LPSTRszLinkServiceTitle);

ConfigureLinkServiceEx
The ConfigureLinkServiceEx function is used to add or modify a link service. This function must be exported from a link
service configuration dynamic-link library (DLL) supplied with each link service.

Syntax

Parameters
szComputerName

This supplied parameter specifies the name of the computer that is to be configured.

szLinkServiceTitle

This supplied parameter specifies the title of the link service that is to be configured.

pvConfigInfo

This supplied and returned parameter points to a configuration buffer that is used to configure the link service.

dConfigInfoSize

This supplied parameter specifies the size of the pvConfigInfo configuration buffer.

Return Value
TRUE

The function executed successfully and network bindings need to be recalculated.

FALSE

One or more of the parameters passed to this function are invalid or network bindings do not need to be recalculated.

 __declspec(dllexport) BOOL WINAPI ConfigureLinkServiceEx(
 LPSTRszComputerName,
 LPSTRszLinkServiceTitle,
 LPSTR* pvConfigInfo,
 LPDWORD dConfigInfoSize);

DisplayHelpInfo
The DisplayHelpInfo function is used to generate help information used by the command-line interface to a link service
dynamic-link library (DLL). This function must be exported from a link service configuration DLL supplied with each link
service.

Syntax

Parameters
szHelpInfoBuffer

This supplied and returned parameter points to a buffer that on successful return contains help information that can be used
to configure the link service.

Return Value
TRUE

The function executed successfully.

FALSE

The parameter passed to this function is invalid or the function failed.

 __declspec(dllexport) BOOL WINAPI DisplayHelpInfo(
 LPSTR*szHelpInfoBuffer);

RemoveAllLinkServices
The RemoveAllLinkServices function is used to remove all link services from a machine. This function must be exported from
a link service configuration dynamic-link library (DLL) supplied with each link service.

Syntax

Parameters
szComputerName

This supplied parameter specifies the name of the computer that is to have all link services removed.

Return Value
TRUE

The function executed successfully and network bindings need to be recalculated.

FALSE

The parameter passed to this function is invalid or network bindings do not need to be recalculated.

 __declspec(dllexport) BOOL WINAPI RemoveAllLinkServices(
 LPSTRszComputerName);

RemoveLinkService
The RemoveLinkService function is used to remove a link service. This function must be exported from a link service
configuration dynamic-link library (DLL) supplied with each link service.

Syntax

Parameters
szComputerName

This supplied parameter specifies the name of the computer that is to have the link service removed.

szLinkServiceTitle

This supplied parameter specifies the title of the link service that is to be removed.

Return Value
TRUE

The function executed successfully and network bindings need to be recalculated.

FALSE

One or more of the parameters passed to this function are invalid or network bindings do not need to be recalculated.

This section contains:

Utility Functions Used by a Link Service Configuration DLL

 __declspec(dllexport) BOOL WINAPI RemoveLinkService(
 LPSTRszComputerName,
 LPSTRszLinkServiceTitle);

https://msdn.microsoft.com/en-us/library/aa705252(v=bts.10).aspx

Utility Functions Used by a Link Service Configuration DLL
This section provides a reference for utility functions used by an integrated link service configuration dynamic-link library
(DLL).

This section contains:

AddPerfmonCounters

bCreateService

bDeleteService

bStopService

CheckForExistingLinkService

ConvertHexStringToDWORD

ExtractNextParameter

fAddRegistryEntry

fCanWeAdministerRemoteBox

fConnectRegistry

fDisconnectRegistry

fFindAndReplaceString

fFindString

fFindStringInMultiSZ

fQueryRegistryValue

fRegistryKeyExists

fRemoveRegistryEntry

fRemoveRegistryValue

fStringCompare

LoadStringResource

ParseNextField

RemovePerfmonCounters

https://msdn.microsoft.com/en-us/library/aa754242(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705188(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705171(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745417(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705605(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745726(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704510(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745740(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771282(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754393(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771672(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704932(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746055(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746252(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771922(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704674(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753893(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745426(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754738(v=bts.10).aspx

AddPerfmonCounters
The AddPerfmonCounters function is used to add Perfmon counters to a link service. This utility function is used to construct
an integrated link service configuration dynamic-link library (DLL).

Syntax

Parameters
pszComputerName

This supplied parameter specifies the name of the computer that is to have Perfmon counters added.

pszService

This supplied parameter specifies the name of the link service that is to have Perfmon counters added.

Return Value

None.

Remarks

SNA RPC Service must be running or an error message will indicate a failure.

 void AddPerfmonCounters(
 LPSTRpszComputerName,
 LPSTRpszService);

bCreateService
The bCreateService function is used to create a service on a computer for a link service. This utility function is used to
construct an integrated link service configuration dynamic-link library (DLL).

Syntax

Parameters
szComputerName

This supplied parameter specifies the name of the computer to create the service on.

szServiceName

This supplied parameter specifies the name of the link service that is to be created. This parameter is passed unchanged to
the Microsoft® Windows® 2000 CreateService function.

szServicePath

This supplied parameter specifies the binary path to the link service that is to be created. This parameter is passed
unchanged to the Windows 2000 CreateService function.

szServiceDependencies

This supplied parameter specifies the service dependencies of the link service that is to be created. This parameter is passed
unchanged to the Windows 2000 CreateService function.

dServiceType

This supplied parameter specifies the type of service that is to be created. This parameter is passed unchanged to the
Windows 2000 CreateService function.

dServiceLoadType

This supplied parameter specifies the load type of service that is to be created. This parameter is passed unchanged to the
Windows 2000 CreateService function.

szDomainName

This supplied parameter specifies the domain name for the service to run in.

szUserid

This supplied parameter specifies the user identifier for the service to run in.

szPassword

This supplied parameter specifies the password for the domain account.

Return Value
TRUE

The function executed successfully and the service was created.

FALSE

One or more of the parameters passed to this function are invalid or the function failed.

 BOOL bCreateService(
 LPSTRszComputerName,
 LPSTRszServiceName,
 LPSTRszServicePath,
 LPSTRszServiceDependencies,
 DWORDdServiceType,
 DWORDdServiceLoadType,
 LPSTRszDomainName,
 LPSTRszUserid,
 LPSTRszPassword);

Remarks

If the szUserid parameter is not supplied, then the szDomainName parameter is used to construct the Account parameter
passed to the Windows 2000 CreateService function.

bDeleteService
The bDeleteService function is used to delete a service on a computer for a link service. This utility function is used to
construct an integrated link service configuration dynamic-link library (DLL).

Syntax

Parameters
szComputerName

This supplied parameter specifies the name of the computer to delete the service on.

szServiceName

This supplied parameter specifies the name of the service that is to be deleted. This parameter is passed unchanged to the
Microsoft® Windows® 2000 OpenService function.

Return Value
TRUE

The function executed successfully and the service was deleted.

FALSE

One or more of the parameters passed to this function are invalid or the function failed.

 BOOL bDeleteService(
 LPSTRszComputerName,
 LPSTRszServiceName);

bStopService
The bStopService function is used to stop a service running on a computer for a link service. This utility function is used to
construct an integrated link service configuration dynamic-link library (DLL).

Syntax

Parameters
szServiceName

This supplied parameter specifies the name of the service that is to be stopped. This parameter is passed unchanged to the
Microsoft® Windows® 2000 OpenService function.

szComputerName

This supplied parameter specifies the name of the computer to stop the service on.

Return Value
TRUE

The function executed successfully and the service was stopped.

FALSE

One or more of the parameters passed to this function are invalid or the function failed.

 BOOL bStopService(
 LPSTRszServiceName,
 LPSTRszComputerName);

CheckForExistingLinkService
The CheckForExistingLinkService function is used to check to see if a link service of this type exists with this title. This utility
function is used to construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry to search.

szLinkRegistryRoot

This supplied parameter specifies the registry root for this type of link service to search for.

szTitle

This supplied parameter specifies the title of the link service to search for.

Return Value
TRUE

The link service was located.

FALSE

One or more of the parameters passed to this function are invalid or the link service was not located.

 BOOL bCreateService(
 HKEY *hGlobalKey,
 LPSTRszLinkRegistryRoot,
 LPSTRszTitle);

ConvertHexStringToDWORD
The ConvertHexStringToDWORD function is used to convert a hexadecimal string to a DWORD value. This utility function is
used to construct an integrated link service configuration DLL.

Syntax

Parameters
szHexString

This supplied parameter specifies the hexadecimal string to be converted.

dHexValue

This supplied and returned parameter contains the DWORD value of the hexadecimal string if the function was successful.

Return Value
TRUE

The function executed successfully and the hexadecimal string was converted.

FALSE

One or more of the parameters passed to this function are invalid or the function failed.

Remarks

This function scans until a nonhexadecimal character is encountered. The hexadecimal formats recognized are xnnnn, 0xnnnn,
or nnnn.

 BOOL ConvertHexStringToDWORD(
 LPSTRszHexString,
 LPDWORDdHexValue);

ExtractNextParameter
The ExtractNextParameter function is used to get the next parameter from a buffer. This utility function is used to construct
an integrated link service configuration DLL.

Syntax

Parameters
szSourceBuffer

This supplied parameter specifies the source buffer.

szParameter

This supplied and returned parameter specifies the return buffer for parameters.

dStartIndex

This supplied parameter contains the DWORD index to begin parameter scan.

Return Value
TRUE

The function executed successfully and the next parameter was located and returned in the szParameter argument.

FALSE

The function failed.

Remarks

Parameters are delimited by a space character. Quotes can be used to include spaces in a parameter.

 BOOL ExtractNextParameter(
 LPSTRszSourceBuffer,
 LPSTRszParameter,
 LPDWORDdStartIndex);

fAddRegistryEntry
The fAddRegistryEntry function is used to add a new registry value to the registry. This utility function is used to construct an
integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry to modify.

szRegistryValue

This supplied parameter specifies the registry value name to add.

szRegistryData

This supplied parameter specifies the registry value data to add.

dType

This supplied parameter specifies the registry value type. This parameter is supplied unchanged to the Win32®
RegSetValueEx function.

dSize

This supplied parameter specifies the size of the registry value data. This parameter is supplied unchanged to the Win32
RegSetValueEx function.

Return Value
TRUE

The function executed successfully and the registry entry was added.

FALSE

The function failed and the registry entry was not added.

 BOOL fAddRegistryEntry(
 HKEY *hGlobalKey,
 char *szRegistryValue,
 char *szRegistryData,
 DWORDdType,
 DWORDdSize);

fCanWeAdministerRemoteBox
The fCanWeAdministerRemoteBox function is used to determine if the caller has administrative privileges on the remote
computer. This utility function is used to construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle to the remote computer's registry.

Return Value
TRUE

The caller has administrative privileges on the remote computer.

FALSE

The caller lacks administrative privileges.

 BOOL fCanWeAdministerRemoteBox(
 HKEY *hGlobalKey);

fConnectRegistry
The fConnectRegistry function is used to connect to a remote computer's registry and return a handle to the remote registry.
This utility function is used to construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry to connect to.

szComputerName

This supplied parameter specifies the computer name to connect to.

Return Value
TRUE

The function executed successfully and the function was able to connect to the registry.

FALSE

The function failed.

 BOOL fConnectRegistry(
 HKEY *hGlobalKey,
 LPSTR *szComputerName);

fDisconnectRegistry
The fDisconnectRegistry function is used to disconnect from a remote computer's registry. This utility function is used to
construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry from which to disconnect.

Return Value
TRUE

The function executed successfully and the function was able to disconnect from the registry.

FALSE

The function failed.

 BOOL fDisconnectRegistry(
 HKEY *hGlobalKey);

fFindAndReplaceString
The fFindAndReplaceString function is used to find and replace a substring within a string. This utility function is used to
construct an integrated link service configuration DLL.

Syntax

Parameters
szStringBuffer

This supplied parameter specifies the string buffer to search.

szSearchString

This supplied parameter specifies the string to search for.

szReplaceString

This supplied parameter specifies the replacement string.

Return Value
TRUE

The string was found.

FALSE

The string was not found.

 BOOL fFindAndReplaceString(
 LPSTRszStringBuffer,
 LPSTRszSearchString,
 LPSTRszReplaceString);

fFindString
The fFindString function is used to determine if a string exists within a string buffer. This utility function is used to construct
an integrated link service configuration DLL.

Syntax

Parameters
szStringBuffer

This supplied parameter specifies the string buffer to search.

szSearchString

This supplied parameter specifies the string to search for.

Return Value
TRUE

The string was found.

FALSE

The string was not found.

 BOOL fFindString(
 LPSTRszStringBuffer,
 LPSTRszSearchString);

fFindStringInMultiSZ
The fFindStringInMultiSZ function is used to determine if string exists in a REG_MULTI_SZ string list and return entire string.
This utility function is used to construct an integrated link service configuration DLL.

Syntax

Parameters
szStringBuffer

This supplied parameter specifies the string buffer to search.

szSearchString

This supplied parameter specifies the string to search for.

szFoundString

This supplied and returned parameter specifies the full string containing string if successful.

Return Value
TRUE

The string was found and returned.

FALSE

The string was not found.

 BOOL fFindString(
 LPSTR
 szStringBuffer,
 LPSTRszSearchString,
 LPSTRszFoundString);

fQueryRegistryValue
The fQueryRegistryValue function is used to query a value from the registry. This utility function is used to construct an
integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry.

szRegistryKey

This supplied parameter specifies the registry key.

szRegistryValue

This supplied parameter specifies the registry value name.

szRegistryData

This supplied parameter specifies the registry value data.

dSize

This supplied parameter specifies the size of the registry data.

Return Value
TRUE

The function executed successfully and the function was able to connect to the registry.

FALSE

The function failed.

 BOOL fQueryRegistryValue(
 HKEY *
 hGlobalKey,
 LPSTRszRegistryKey,
 LPSTRszRegistryValue,
 LPSTRszRegistryData,
 LPDWORDdSize);

fRegistryKeyExists
The fRegistryKeyExists function is used to determine if a registry key already exists in the registry. This utility function is used
to construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry.

szRegistryKey

This supplied parameter specifies the registry key.

Return Value
TRUE

The registry key exists.

FALSE

The function failed or the registry key does not exist.

 BOOL fRegistryKeyExists (
 HKEY *hGlobalKey,
 LPSTRszRegistryKey
);

fRemoveRegistryEntry
The fRemoveRegistryEntry function is used to remove a registry key from the registry. This utility function is used to
construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry.

szRegistryKey

This supplied parameter specifies the registry key.

Return Value
TRUE

The function was successful and the registry key was removed.

FALSE

The function failed or the registry key could not be removed.

 BOOL
 fRemoveRegistryEntry
 (
 HKEY *
 hGlobalKey,
 char *szRegistryKey
);

fRemoveRegistryValue
The fRemoveRegistryValue function is used to remove a registry value from the registry. This utility function is used to
construct an integrated link service configuration DLL.

Syntax

Parameters
hGlobalKey

This supplied parameter specifies the handle of the registry.

szRegistryKey

This supplied parameter specifies the registry key.

szRegistryValue

This supplied parameter specifies the registry value to remove.

Return Value
TRUE

The function was successful and the registry value was removed.

FALSE

The function failed or the registry value could not be removed.

 BOOL fRemoveRegistryValue (
 HKEY *
 hGlobalKey,
 char *szRegistryKey,
 char *szRegistryValue
);

fStringCompare
The fStringCompare function is used to determine if string exists in another string. This utility function is used to construct an
integrated link service configuration DLL.

Syntax

Parameters
lpszString1

This supplied parameter specifies the string to search for.

lpszString2

This supplied parameter specifies the string to compare.

Return Value
TRUE

The string was found.

FALSE

The string was not found.

BOOL fStringCompare (
 LPSTR lpszString1,
 LPSTR lpszString2
);

LoadStringResource
The LoadStringResource function is used to load a string from a string resource. This utility function is used to construct an
integrated link service configuration DLL.

Syntax

Parameters
dStringResource

This supplied parameter specifies the resource ID of the string resource.

pszString

This supplied and returned parameter specifies the buffer to place the string in.

Return Value

None

 void LoadStringResource (
 DWORDdStringResource,
 LPSTRpszString);

ParseNextField
The ParseNextField function is used to parse and return the next field from string. This utility function is used to construct an
integrated link service configuration DLL.

Syntax

Parameters
szParseString

This supplied parameter specifies the string to parse.

szField

This supplied and returned specifies the return buffer for the next field.

scDelimiter

This supplied parameter specifies the delimiter character for the end of a field.

dStartIndex

This supplied parameter specifies a pointer to the index in bytes from beginning of the szParseString to start the search from.

Return Value
TRUE

The next field was found.

FALSE

The next field was not found.

Note
The '^' character can be used as an escape character to allow the delimiter to be used.

 void ParseNextField(
 LPSTR
 szParseString,
 LPSTRszField,
 charscDelimiter,
 LPDWORDdStartIndex);

RemovePerfmonCounters
The RemovePerfmonCounters function is used to remove counters from a link service. This utility function is used to
construct an integrated link service configuration DLL.

Syntax

Parameters
pszComputerName

This supplied parameter specifies the name of the computer that is to have Perfmon counters removed.

pszService

This supplied parameter specifies the name of the link service that is to have Perfmon counters removed.

Return Value

None.

Remarks

SNA RPC Service must be running or an error message will indicate a failure.

 void RemovePerfmonCounters(
 LPSTRpszComputerName,
 LPSTRpszService);

Inf-Based Setup Functions
This section provides a reference for some of the useful entry points in the .inf file that contains utility functions. The file name
is in the variable UtilityInf; usually set to SNAUTILS.INF.

This section contains:

CreateSNARegEntry

CreateSNAService

DeleteSNAService

EnterServiceName

FindNextAvailableIndex

FindSNAProductServices

FindSNARegEntry

FindSNAService

GrepUniqueServiceInfo

SetupMessage

https://msdn.microsoft.com/en-us/library/aa770646(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754064(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705762(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746209(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745387(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705638(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771906(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745659(v=bts.10).aspx

CreateSNARegEntry
The CreateSNARegEntry function creates the necessary entries for an instance in the SOFTWARE\Microsoft registry tree. If
the product is not already in the registry, it creates an entry for the product. It then creates an entry for the particular instance
of the product and for the NetRules key under that entry. This function leaves open handles to all the important subkeys for
further use.

Parameters
Argument 0

Name of the top-level registry node to use. This should be a full registry path. For most scenarios, this is the value held in the
ProductRegBase variable (SOFTWARE\Microsoft).

Argument 1

Name of the product. This is the name of the key that will be created for this product.

Argument 2

Instance index. This is the index of this particular instance of this product.

Return Values
Return 0

Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.

STATUS_FAILED: Operation failed.

Return 1

Handle to the top-level registry node.

Return 2

Handle to the products registry key under the top-level node.

Return 3

Handle to the instance entry under the product key.

Return 4

Handle to the NetRules entry under the instance key.

CreateSNAService
The CreateSNAService function creates the necessary entries for an instance in the Services registry tree. This function adds
particular values that are necessary for the service as well as all the subkeys under the service key, including Parameters and
ExtraParameters.

Parameters
Argument 0

Name of the service to be created.

Argument 1

Type of SNA Service (SNAServiceType variable).

Argument 2

Image path of this component (ImagePath variable).

Argument 3

Dependency list (ProductDepends variable).

Argument 4

Parameter list (ProductParams variable).

Argument 5

Extra parameter list (ProductExtraParams variable).

Argument 6

Event Log message file.

Argument 7

Event types supported (usually 0x07).

Return Values
Return 0

Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.

STATUS_FAILED: Operation failed.

Return 1

Handle to the service key.

Return 2

Handle to the Parameters key under the service key.

Return 3

Handle to the ExtraParameters key under the Parameters key.

DeleteSNAService
The DeleteSNAService function deletes a particular service using the Service Control Manager. All the keys for the service are
deleted as well.

Parameters
Argument 0

Name of the service to be deleted.

Return Values
Return 0

Status of the operation.

EnterServiceName
The EnterServiceName function presents the user with an algorithmically determined service name for a component and
allows the user to change it before returning the final value. This function ensures that the new service name is unique in the
Service Control Architecture before accepting it.

Parameters
Argument 0

Title of the product the user should be queried about.

Argument 1

Default service name prefix.

Argument 2

Index for this instance of the product. The algorithm uses this index to determine the default name.

Return Values
Return 0

Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.

STATUS_NOSUCHLANGUAGE: The language specified is not supported.

STATUS_USERCANCEL: User pressed the Cancel button.

Return 1

Service name that the user entered.

FindNextAvailableIndex
The FindNextAvailableIndex function is used to determine the index a new instance should receive. For example, if the
current indexes in use are { 01, 02, 04 }, this function would return 03 as its return value.

Parameters
Argument 0

A list of the indexes currently in use. This list can be obtained by using the FindSNAProductServices function.

Return Values
Return 0

Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.

STATUS_FAILED: Operation failed.

Return 1

First available index for the list.

https://msdn.microsoft.com/en-us/library/aa745387(v=bts.10).aspx

FindSNAProductServices
The FindSNAProductServices function enumerates all instances of a product. It returns lists of information for the instances
that can be used in the script. This function can also be used to determine whether or not a product exists in the registry by
analyzing the return status.

Parameters
Argument 0

Name of top-level registry node to use.

Argument 1

Name of the product.

Return Values
Return 0

Status of the operation:

STATUS_SUCCESSFUL: Operation succeeded.

STATUS_NOSUCHPRODUCT: The product does not exist in the registry.

STATUS_FAILED: Operation failed.

Return 1

List of indexes for the instances of this product.

Return 2

List of service names for the instances of this product.

Return 3

List of titles for the instances of this product.

Return 4

List of descriptions for the instances of this product.

FindSNARegEntry
The FindSNARegEntry function is written as a parallel to CreateSNARegEntry. When called, it attempts to open all of the
necessary registry keys and return open handles to them.

Parameters
Argument 0

Name of the top-level registry node to use.

Argument 1

Name of the product.

Argument 2

Instance index.

Return Values
Return 0

Status of the operation.

Return 1

Handle to the top-level registry node.

Return 2

Handle to the products registry key under the top-level node.

Return 3

Handle to the instance entry under the product key.

Return 4

Handle to the NetRules entry under the instance key.

https://msdn.microsoft.com/en-us/library/aa770646(v=bts.10).aspx

FindSNAService
The FindSNAService function is written as a parallel to CreateSNAService. It is written to provide an easy way to access the
keys for a particular service.

Parameters
Argument 0

Name of the service to look for.

Return Values
Return 0

Status of the operation.

Return 1

Handle to the service key.

Return 2

Handle to the Parameters key under the service key.

Return 3

Handle to the ExtraParameters key under the Parameters key.

https://msdn.microsoft.com/en-us/library/aa754064(v=bts.10).aspx

GrepUniqueServiceInfo
The GrepUniqueServiceInfo function is used to determine information about a particular instance when only one of the four
elements (index, name, title, or description) is available. Because there is no way to determine the position of an element in a
list, it is hard to figure out the respective name, title, or description of an instance given only the index. This function searches
the list and returns the rest of the information about the instance.

Parameters
Argument 0

Type of information to search:

INDEX: Search the list of indexes.

NAME: Search the list of service names.

TITLE: Search the list of titles.

DESC: Search the list of descriptions.

Argument 1

Keyword to search for in the list.

Argument 2

List of indexes for the instances of this product.

Argument 3

List of service names for the instances of this product.

Argument 4

List of titles for the instances of this product.

Argument 5

List of descriptions for the instances of this product.

Return Values
Return 0

Status of the operation.

Return 1

Index for this instance of the product.

Return 2

Service name for this instance of the product.

Return 3

Title for this instance of the product.

Return 4

Description for this instance of the product.

SetupMessage
The SetupMessage function displays a dialog box with user-defined text plus OK and Cancel buttons. It is useful for
debugging.

Parameters
Argument 0

Language to use (STF_LANGUAGE).

Argument 1

Which icon to display in the dialog box: STATUS, WARNING, NONFATAL, and so on.

Argument 2

The text to be displayed. Can contain line feeds using the LF symbol.

Return Values
Return 0

Status of the operation.

IOCTL Commands
This section provides reference information about the IOCTL functions.

This section contains:

Function 0x41: Set Event/Semaphore Handle

Function 0x42: Set Link Characteristics

Function 0x43: Set V24 Output Status

Function 0x44: Transmit Frame

Function 0x45: Abort Transmitter

Function 0x46: Abort Receiver

Function 0x47: Off-Board Load

Function 0x61: Get/Set Interface Record

Function 0x62: Get V24 Status

Function 0x63: Receive Frame

Function 0x64: Read Interface Record

https://msdn.microsoft.com/en-us/library/aa770474(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744967(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704953(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744320(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705500(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705771(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704708(v=bts.10).aspx

Function 0x41: Set Event/Semaphore Handle
This function supplies the driver with the handle of an event that can be used for signaling the SNALink software.

Parameters
IRP.UserEvent

This parameter is taken from the IOCTL call, and is an event handle. The handle must refer to an Event/Semaphore owned by
the SNALink process. The driver sets the event to indicate the completion of a transmission or the availability of received
data or status. Although not required by the driver, the event passed here by the SNALink is normally the global Base event.

Return Values

If the supplied parameter is NULL, the function returns a status of STATUS_INVALID_PARAMETER, with additional information
of INFO_SET_EVENT_NO_EVENT. For any other illegal parameter, an exception is raised.

Remarks

This function should be called only once, immediately after the OPEN is issued. The event is set when:

lFrames are transmitted from the driver buffers.

lFrames are received into the driver buffers.

lStatus information is updated in the Interface Record (see function 0x64).

Function 0x42: Set Link Characteristics
This function sets the link protocol parameters required by the driver.

Packet Formats
Type Description

WORD Frame Size

DWORD Data rate

BYTE Station address 1

BYTE Station address 2

BYTE Link Options

BYTE Reserved

Parameters
Frame Size(packet format WORD)

Indicates to the driver the minimum amount of contiguous receiver buffering that must be available for any individual frame.

Data Rate(packet format DWORD)

Line speed in bits per second. If Link Options bit 3 is not set, this field is ignored.

Station Address 1(packet format BYTE)

Station Address 2(packet format BYTE)

Station addresses that the user wishes to receive on if selective reception is to be used (typically for multidropped
secondaries). Only frames of data beginning with either of these values will be passed to the user—others are ignored or
discarded.

If the SNALink wishes to listen on only one station address, Station Address 2 should be set to zero.

A value of zero in both fields indicates that all error-free received frames are to be passed to the SNALink, regardless of the
contents of their first address byte.

Link Options(packet format BYTE)

Link Options is a bitmap. The default is all values set to zero. The bits are used as shown in the following table. Note that not
all of these options are supported by the standard Microsoft Host Integration Server 2009 synchronous card drivers.

Bit Value

Bit 7 1 = Four wire (constant RTS/CTS). 0 = Two wire (switched RTS/CTS).

Bit 6 1 = NRZI encoding. 0 = NRZ encoding.

Bit 5 1 = HDLC level 1 conventions. 0 = SDLC level 1 conventions.

Bit 4 1 = Full-duplex (simultaneous 2-way) data. 0 = Half-duplex (alternating 1-way) data.

Bit 3 1 = Generate internal clocking. 0 = Take external clocking.

Bit 2 1 = Use DMA if available. 0 = Do not use DMA on this link.

Bit 1 1 = Reset all statistics to zero. 0 = Leave accumulated statistics as is.

Bit 0 Reserved.

Reserved(packet format BYTE).

Reserved.

Note
Not all of the above options are supported by the standard Host Integration Server synchronous card drivers.

Return Values
IoStatus.Status IoStatus.Information Description

STATUS_INVALID_PARAMETER IO_ERR_LINKCHARBUF_ WRONG_SIZE

STATUS_INVALID_PARAMETER IO_ERR_FRAME_BUF_ TOO_SMALL Buffer must be at least 268 bytes.

STATUS_INVALID_PARAMETER IO_ERR_FRAME_BUF_ TOO_BIG Buffer maximum size is 2048 bytes.

STATUS_INVALID_PARAMETER IO_ERR_NO_CLOCKS No internal clocking available.

STATUS_DATA_ERROR IO_ERR_HARDWARE_ 8273CMD_TIMEOUT

STATUS_SUCCESS IO_ERR_NO_DMA_FDX DMA requested, but cannot be used.

Remarks

The driver should always start the receiver after processing this request. If either the transmitter or receiver is active when this
request is issued, the driver stops the current frame before resetting the link characteristics, and then restarts the previous
operation.

Link Service DLLs that support the synchronous dumb card interface use the following registry entries to the control this
feature.

SYSTEM\CurrentControlSet\Services\<linkService>\Parameters

where <linkService> is the name of the link service.

Under this node, the following entries and values must be entered or modified:

A node called ExtraParameters must be created or modified with the following registry entries and values:

InternalClock

The value of this entry should be defined and set to a REG_DWORD of any value to enable the internal clock.

InternalClockRate

The value of this entry should be set to a REG_DWORD equal to the number of bits per second.

Function 0x43: Set V24 Output Status
This function allows the SNALink software to alter the modem output status on the adapter V.24 interface. There is no
parameter or data packet on this request. The relevant V.24 settings are put into the driver interface record (see function 0x61)
by the SNALink prior to calling the driver.

Return Values
IoStatus.Status IoStatus.Information

STATUS_DATA_ERROR IO_ERR_HARDWARE_8273CMD_TIMEOUT

Function 0x44: Transmit Frame
The SNALink calls this function to transfer a frame of data to the driver.

Parameters
IRP.CurrentStackLocation.OutputBufferLength

Frame length—the size of the frame pointed to by the data buffer pointer. The frame includes the control, address, and
information field (if present), but no allowance should be made for flags or CRC bytes.

IRP.UserBuffer

Frame data—the contents of the frame.

Return Values
IoStatus.Status IoStatus.Information

STATUS_BUFFER_TOO_SMALL IO_ERR_TX_BUFFER_FULL

STATUS_INVALID_PARAMETER IO_ERR_TX_FRAME_TOO_BIG

Refer also to the description of the interface record—the driver updates a field within the interface record reflecting the
amount of buffer space available.

Remarks

In two-wire configurations, the driver must raise RTS and wait for CTS from the modem before initiating a transmission. The
driver should then drop RTS when all frames have been transmitted. The driver assumes that the transmission is complete
when both of the following are true:

The transmit buffer becomes empty (if the link is configured as half-duplex).

The last frame transmitted had the Poll/Final bit set in the second byte.

Function 0x45: Abort Transmitter
The SNALink calls this function to clear down the driver's transmitter.

Remarks

This request causes the driver to stop the current frame transmission and to flush its internal buffers of any further data
pending transmission. In two-wire configurations, the driver should also drop RTS.

Function 0x46: Abort Receiver
The SNALink calls this function to clear down the driver's receiver.

Remarks

This request causes the driver to stop the receiver and to flush its internal buffers of any received data. It should be used to
clear down the receiver, for instance, before altering the link characteristics.

Function 0x47: Off-Board Load
 

This function is not supported.

Function 0x61: Get/Set Interface Record
 

This function has been superseded by Function 0x64: Read Interface Record.

Function 0x62: Get V24 Status
 

The SNALink calls this function to read the current state of the modem interface lines. No parameter or data packet is passed.
This request causes the driver to update the Input V.24 Status field in the driver interface record.

Function 0x63: Receive Frame
The SNALink calls this function to read a data frame from the driver's buffers.

Parameters
IRP.CurrentStackLocation.OutputBufferLength

Frame length—the size of the frame transferred into the data buffer by the driver. The frame includes the control, address,
and information field (if present), but no flags or CRC bytes. When the request is issued, frame length is set to the maximum
length of the buffer addressed by the data packet pointer.

IRP.UserBuffer

Frame data—the contents of the frame that has been received.

Return Values
IoStatus.Status IoStatus.Information

STATUS_BUFFER_TOO_SMALL None

Remarks

The driver transfers the next available received frame to the supplied buffer. Note that if the buffer is not large enough, a buffer
overflow error is returned. This allows the application to decide if oversize frames are an error. If not, then a second attempt to
read should be made, using a buffer at least Frame Length bytes long. A length of zero is returned if there are no frames ready
to be received.

Function 0x64: Read Interface Record
This function reads the driver's interface record and copies it into the buffer passed by the SNALink. The buffer must be
allocated by the SNALink prior to making this call.

Parameters
IRP.System.Buffer

Interface Record Address (IN)—a 32-bit pointer to the driver's interface record area.

The interface record format is as follows:

Description Type

Received Frames int

Transmit Buffer Space int

Status Events int

Input V.24 Status UCHAR

Output V.24 Status UCHAR

Statistics Counters int[11]

Received Frames is the number of frames currently queued in the driver receive buffers.

Transmit Buffer Space is used to signal to the SNALink:

Whether more frames can be provided to the driver.

Whether the driver still has frames waiting to be sent.

The Transmit Buffer Space field indicates the maximum frame size that the driver can currently accept. This is updated
after each successful Transmit Frame IOCTL, and should be checked by the SNALink before sending further frames to
the driver.

Status Events is a count of the total number of increments made to the Statistics Counters.

Input V.24 Status is a bitmap of the current logical state of the input interface lines, a value of 1 meaning ON and a
value of 0 meaning OFF. The pins are mapped as follows:

Bit number V.24 circuit name Circuit number RS-232C pin

7 - 5 Reserved 142 25

4 Test Indicator 125 22

3 Calling Indicator 125 22

2 RLSD (commonly DCD) 109 8

1 Data Set Ready (DSR) 107 6

0 Clear to send (CTS) 106 5

Output V.24 Status is a bitmap of the current logical state of the output interface lines, a value of 1 meaning ON and a

value of 0 meaning OFF. The pins are mapped as follows:

Bit number V.24 circuit name Circuit number RS-232C pin

7 - 5 Reserved

4 Maintenance Test 140 18

3 Select Standby 116 11

2 Data Signal Rate Selector 111 23

1 Data Terminal Ready (DTR) 108/2 22

0 Request to Send (RTS) 105 4

Note that the driver will raise and lower RTS as necessary while transmitting, reflecting the state of RTS in the output
V.24 status field. The application should not, therefore, try to manipulate RTS.

The Statistics Counters are running counts of various kinds of link status information.The events they relate to are:

Counter number Description

1 Frames received with incorrect CRC.

2 Frames larger than the maximum size received.

3 Frames smaller than 32 bits received.

4 Frames received that are not a multiple of 8 bits.

5 Aborted frames received.

6 Transmitter underruns.

7 Receiver overruns.

8 RLSD drops in mid-reception.

9 CTS drops in mid-transmission.

10 DSR drops.

11 Hardware failures (adapter or modem).

Remarks

The interface record provides a fast mechanism to use to decide whether a frame can be transmitted, whether there are any
frames to be received, and so on. The driver maintains this information. Each time the SNALink requires this information, it
calls Read Interface Record to get a copy of the current interface record. After each call, the driver clears the statistics
counters in its own interface record. The V.24 status and transmit and receive data information are unchanged.

SNA Modem API
This section provides reference material for the SNA Modem API structure and functions.

In This Section

MODEM_STATUS

SNAModemInitialize

SNAModemAddLink

SNAModemDeleteLink

SNAModemTerminate

https://msdn.microsoft.com/en-us/library/aa744326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745852(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745177(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744288(v=bts.10).aspx

MODEM_STATUS
A MODEM_STATUS structure for each SNA link contains status information used by the SNA Modem Status interface.

Syntax

Remarks

Members
LSName

A character array containing the link service name.

V24In

A set of bit fields representing the V.24 input flags that determine which signal lines to mask. These bit fields can be joined
with OR to create a complete mask. The defined bit fields for V24In are as follows:

MASK_CTS Mask the clear to send line.

MASK_DSR Mask the data set ready line.

MASK_DCD Mask the data carrier detect line.

MASK_DRI Mask the data ring indicator line.

V24Out

A set of bit fields representing the V.24 output flags that determine which signal lines to mask. These bit fields can be joined
with OR to create a complete mask. The defined bit fields for V24Out are as follows:

MASK_RTS Mask the request to send line.

MASK_DTR Mask the data terminal ready line.

RxFrameCount

A count of received frames.

TxFrameCount

A count of transmitted frames.

Reserved

Padding for future expansion.

struct _ModemStatus{
....char LSName[12];
 char V24In;
 char V24Out;
 unsigned short RxFrameCount;
 unsigned short TxFrameCount;
 char Reserved[6];
} MODEM_STATUS;

SNAModemInitialize
The SNAModemInitialize function should be called once per link service process at initialization. This function initializes the
communication path to the SNA Modem application. The ideal place to call this function is in the SNALinkInitialize function.

Syntax

See Also
Reference
SNALinkInitialize

 void SNAModemInitialize();

https://msdn.microsoft.com/en-us/library/aa705509(v=bts.10).aspx

SNAModemAddLink
The SNAModemAddLink function should be called once per link initialization. For link services that support more than a
single SNA link, this call can be made multiple times. For link services that support only a single link, this call can be made
immediately after SNAModemInitialize; otherwise it is preferable to call SNAModemAddLink as each port is initialized.

Syntax

Parameters
ppModemStatus

The address of a pointer to a MODEM_STATUS structure that will be used for storing modem status information. The
returned MODEM_STATUS structure will contain a link service name.

Remarks
Note

The IHV should declare a pointer to a MODEM_STATUS structure and pass its address to SNAModemAddLink.

Note
The LSName is initially the name of the link service, but may need to be altered for multiport link services.The IHV can replac
e the link service name returned in the MODEM_STATUS structure to differentiate between possible multiple connections th
rough a single link service.

Note
The IHV should maintain the various input and output signal lines and the data flow frame counts in the returned MODEM_S
TATUS structure. The Microsoft Host Integration Server 2009 Modem Monitor application will periodically read and display t
he data stored in this MODEM_STATUS structure.

Note
Internally SNAModemAddLink increments the usage count of the shared memory, and signals the Host Integration Server
2009 Modem Monitor application that a new link has been added.

See Also
Reference
MODEM_STATUS
SNAModemInitialize

 void SNAModemAddLink(
MODEM_STATUS **ppModemStatus);

https://msdn.microsoft.com/en-us/library/aa744326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745852(v=bts.10).aspx

SNAModemDeleteLink
The SNAModemDeleteLink function should be called when a link is terminating to delete the resources associated with the
link. The parameters passed in must correspond to those returned by a call to SNAModemAddLink.

Syntax

Parameters
pModemStatus

A pointer to a MODEM_STATUS structure that was passed to the SNAModemAddLink function used for storing modem
status interface.

Remarks

All resources in the link service associated with the modem status are deleted, and they must not be accessed by the IHV code
after calling this function.

See Also
Reference
MODEM_STATUS
SNAModemAddLink

 void SNAModemDeleteLink(
MODEM_STATUS *pModemStatus);

https://msdn.microsoft.com/en-us/library/aa744326(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705676(v=bts.10).aspx

SNAModemTerminate
The SNAModemTerminate function should be called once per link service process, at termination. The ideal place is
SNALinkTerminate. If the link service supports a single link, it is appropriate to call SNAModemDeleteLink immediately
before SNAModemTerminate. Otherwise it is better to call SNAModemDeleteLink as each link instance is terminated.

Syntax

See Also
Reference
SNALinkTerminate
SNAModemDeleteLink

 void SNAModemTerminate();

https://msdn.microsoft.com/en-us/library/aa771909(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745177(v=bts.10).aspx

SNA Perfmon API
This section provides reference material for the SNA performance monitoring structures and functions.

In This Section

ADAPTERCOUNTER

ADAPTERPERFDATA

SNAInitLinkPerfmon

SNAGetLinkPerfArea

SNAGetPerfValues

https://msdn.microsoft.com/en-us/library/aa704604(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753899(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746262(v=bts.10).aspx

ADAPTERCOUNTER
The ADAPTERCOUNTER structure represents an individual SNA Perfmon event that can be monitored, such as the total bytes
transmitted. All of the data needed to display a single Perfmon event is stored in this structure.

Syntax

Members
count

The count for a specific Perfmon event since startup of the link service. Each time a Perfmon event takes place, the count is
incremented accordingly, based on the type of event being counted. This count is maintained by the link service.

type

The event type that is being monitored with this ADAPTERCOUNTER. The type member instructs Perfmon whether the
count member represents a numeric counter such as number of connection failures, a rate such as throughput in bytes
transferred per second, or a percentage. For suitable values, see the platform SDK documentation of PERF_COUNTER_* (for
example, PERF_COUNTER_COUNTER or PERF_COUNTER_RAWCOUNT).

scale

The default scale to be used by the Perfmon application when displaying this event. The count member is scaled by 10
raised to the power of scale such that a scale member of –1 multiplies count by 0.1.

typedef struct adaptercounter
{
 ULONG count;
 ULONG type;
 LONG scale;
} ADAPTERCOUNTER;

ADAPTERPERFDATA
The ADAPTERPERFDATA structure groups all of the ADAPTERCOUNTER structures for an SNA link service together into a
single block. It also has a few fields used internally by the SNA Perfmon code. The SNA link driver should not change the first
three members of this structure.

Syntax

Members
inuse

A flag that indicates that the link service is using this section of shared memory.

ServiceNameIndex

An index into an array of strings describing events that can be monitored by the Perfmon functions. These strings are stored
in the registry under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib key.

FirstCounterIndex

An index into an array of events that can be monitored by the Perfmon functions.

TotalBytesReceived

The number of data bytes received per second.

TotalBytesTransmitted

The number of data bytes transmitted per second.

TotalFramesReceived

The number of data frames received per second. A frame is an information structure recognized by one of the various
protocols related to SNA. Frames contain multiple bytes of data.

TotalFramesTransmitted

The number of data frames transmitted per second.

SuccessfulConnects

The number of times since startup that a successful connection has been made.

ConnectionFailures

The number of times since startup that a connection has encountered an error condition.

TotalBytesThroughput

The total number of bytes flowing through Host Integration Server 2009 per second. This includes both incoming and
outgoing bytes, and is a good indicator of how heavily your Host Integration Server is loaded.

typedef struct adapterperfdata
{
 ULONG inuse;
 ULONG ServiceNameIndex;
 ULONG FirstCounterIndex;
 ADAPTERCOUNTER TotalBytesReceived;
 ADAPTERCOUNTER TotalBytesTransmitted;
 ADAPTERCOUNTER TotalFramesReceived;
 ADAPTERCOUNTER TotalFramesTransmitted;
 ADAPTERCOUNTER SuccessfulConnects;
 ADAPTERCOUNTER ConnectionFailures;
 ADAPTERCOUNTER TotalBytesThroughput;
 ADAPTERCOUNTER TotalFramesThroughput;
 ADAPTERCOUNTER AdapterFailures;
 ADAPTERCOUNTER reserved[11];
 ULONG pad;
} ADAPTERPERFDATA;

https://msdn.microsoft.com/en-us/library/aa704604(v=bts.10).aspx

TotalFramesThroughput

The total number of data frames flowing through Host Integration Server per second. This includes both incoming and
outgoing frames, and is a good indicator of how heavily your Host Integration Server is loaded.

AdapterFailures

The number of times since startup that a network adapter has encountered an error condition.

reserved

An array of ADAPTERCOUNTER structures for future expansion.

pad

Padding.

SNAInitLinkPerfmon
The SNAInitLinkPerfmon function initializes the Perfmon data structures and code for an SNA link. The user defines the
address of a handle and a void pointer that are passed as parameters to this function. This function returns values in these
parameters that are then used by subsequent calls to the Perfmon code. The SNA link driver should not modify the parameters
returned by this function.

Syntax

Parameters
shrlockmutx

An address of a handle of a mutex used to protect a block of shared memory. This handle address is used when calling other
Perfmon functions after initialization.

shrptr

The address of a pointer to a block of shared memory used by subsequent Perfmon functions.

 void SNAInitLinkPerfmon(
 HANDLE *shrlockmutx,
 void **shrptr
);

SNAGetLinkPerfArea
The SNAGetLinkPerfArea function returns a pointer to the shared data area used by the Perfmon application to store the link
statistics. The parameters are the returned values from SNAInitLinkPerfmon. The SNA link then maintains the
ADAPTERCOUNTER members of the returned ADAPTERPERFDATA structure.

Syntax

Parameters
shrlockmutx

The handle of a mutex used to protect a block of shared memory that will contain the ADAPTERPERFDATA structure for this
SNA link. The address of this handle is returned by the SNAInitLinkPerfmon function.

shrptr

A pointer to a block of shared memory returned by SNAInitLinkPerfmon that will contain the ADAPTERPERFDATA
structure used by the Perfmon functions for this SNA link.

See Also
Reference
ADAPTERPERFDATA
SNAInitLinkPerfmon

 ADAPTERPERFDATA * SNAGetLinkPerfArea(
HANDLEshrlockmutx,
ADAPTERPERFDATA *shrptr
);

https://msdn.microsoft.com/en-us/library/aa754724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753899(v=bts.10).aspx

SNAGetPerfValues
The SNAGetPerfValues function is used to provide pointers to the ServiceNameIndex and FirstCounterIndex variables so that
the Perfmon application knows where to get the descriptions of the performance counters from the registry. These variables
are returned as members in the ADAPTERPERFDATA structure returned by the SNAGetLinkPerfArea function.

Syntax

Parameters
pServiceNameIndex

A pointer to the ServiceNameIndex member of the ADAPTERPERFDATA structure.

pFirstCounterIndex

A pointer to the FirstCounterIndex member of the ADAPTERPERFDATA structure.

See Also
Reference
ADAPTERPERFDATA
SNAGetLinkPerfArea

 USHORT SNAGetPerfValues(
 int *pServiceNameIndex,int *pFirstCounterIndex
);

https://msdn.microsoft.com/en-us/library/aa754724(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746257(v=bts.10).aspx

Session Integrator Programmer's Reference
The following topics contain the COM reference material for the Session Integrator feature for Host Integration Server.

In This Section

Session Integrator COM Reference

Related Sections

LUA Programmer's Guide

Session Integrator Programmer's Guide

Microsoft.HostIntegration.SNA.Session

See Also
Other Resources
Network Integration Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa744714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746022(v=bts.10).aspx

Session Integrator COM Reference
The following topics contain the COM reference material for the Session Integrator feature for Host Integration Server.

In This Section

IcomLU0 Interface

Icom3270 Interface

Reference

Microsoft.HostIntegration.SNA.Session

Related Sections

Session Integrator Programmer's Guide

LUA Programmer's Guide

See Also
Other Resources
Session Integrator Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704693(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745583(v=bts.10).aspx

IcomLU0 Interface
The IcomLU0 interface allows access to an LU0 session.

Note
For more information about accessing IcomLU0 from managed text, see Microsoft.HostIntegration.SNA.Session.

Requirements

Type Library: COM3270 1.0 Type Library (siproxy.dll)

Platforms: Windows Server 2003 SP1 Standard and Enterprise Editions

See Also
Concepts
IcomLU0 Members
Other Resources
Session Integrator Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx

IcomLU0 Members
The following table shows the IcomLU0 members.

Public Methods
Method Description

IcomLUO.CreateSession Method Creates a new LU0 session.

IcomLUO.SetProperty Method Allows the comLU0 client to set property values for a session.

IcomLUO.GetProperty Method Extracts both pre-defined and application-specific properties for the session.

IcomLUO.Connect Method Connects a comLU0 client to an existing session.

IcomLUO.Disconnect Method Disconnects the comLU0 client from a previously-connected session.

IcomLUO.Receive Method Receives outbound data on a LU0 session.

IcomLUO.Send Method Sends a complete inbound chain of data on an LU0 session.

IcomLUO.SendResponse Method Sends a response or courtesy acknowledgement to the host.

IcomLUO.Online Method Sets the LU0 session back in an on-line state after a call to Offline.

IcomLUO.Offline Method Switches the LU0 session into an off-line state, which in turn causes the underlying SNA sess
ion to deactivate.

See Also
Concepts
IcomLU0 Interface

https://msdn.microsoft.com/en-us/library/aa745249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705595(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704842(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705169(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754281(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754399(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx

IcomLU0 Methods
The methods of the IcomLU0 interfaces are listed in the following table. For a complete list of the IcomLU0 members, see
IcomLU0 Members.

Public Methods
Method Description

IcomLUO.CreateSession Method Creates a new LU0 session.

IcomLUO.SetProperty Method Allows the comLU0 client to set property values for a session.

IcomLUO.GetProperty Method Extracts both pre-defined and application-specific properties for the session.

IcomLUO.Connect Method Connects a comLU0 client to an existing session.

IcomLUO.Disconnect Method Disconnects the comLU0 client from a previously-connected session.

IcomLUO.Receive Method Receives outbound data on a LU0 session.

IcomLUO.Send Method Sends a complete inbound chain of data on an LU0 session.

IcomLUO.SendResponse Method Sends a response or courtesy acknowledgement to the host.

IcomLUO.Online Method Sets the LU0 session back in an on-line state after a call to Offline.

IcomLUO.Offline Method Switches the LU0 session into an off-line state, which in turn causes the underlying SNA sess
ion to deactivate.

See Also
Concepts
IcomLU0 Interface

https://msdn.microsoft.com/en-us/library/aa772049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705595(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704842(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754434(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744931(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705067(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705169(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754281(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754399(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704704(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772017(v=bts.10).aspx

IcomLUO.CreateSession Method
Creates a new LU0 session.

Syntax

Parameters
Para
met
er

Description

conn
ectio
nSTR

NULL-terminated string that indicates the connection properties of the new session. The string is presented in a "PROPE
RTY=VALUE", space-delineated format. Connection property names and values are case insensitive. For more informatio
n about connection properties, see IcomLUO Session Properties.

initTy
pe

Contains the session initialization type. For more information, see the Comments section.

data Pointer an array of type unsigned char that contains the INITSELF or SSCP logon message. Used only if initType contains
INIT_INITSELF or INIT_LOGON.

time
out

The period of time in milliseconds to wait for the BIND and SDT commands to arrive. If the timeout expires before the S
DT arrives the SNA server LU will be released and an error returned.

Entering 0xfffffff into timeout indicates an infinite wait time.

sessi
onHa
ndle

When this method successfully returns, contains a pointer to the IUnknown interface to the comLU0 session object repre
senting the underlying LU0 session. As along as a reference is kept to this interface, the session object will remain intact.

This interface may be passed to the IcomLU0.Connect method to connect to the comLU0 object with the session.

If no LU property is specified, comLU0 will select the best available LU assigned to the user account under which it is run
ning.

Return Value

The following table describes the return codes for CreateSession.

Value Description

S_OK The LU0 session was successfully created. The LU session is active and ready to receive input.

CLU0_S_SSCP_ACTIV
E

The LU0 session was successfully created. The SSCP session is active and ready to receive input.

This return code is valid only when initType is set to INIT_SSCP.

CLU0_E_NEG_RESPO
NSE

The host or SNA server sent a negative response to the INITSELF.

Optionally, the host or SNA server may have sent an unformatted logon command. This is true only if in
itType is set to INIT_INITSELF or INIT_LOGON.

CLU0_E_BADPARM connectionStr contained an invalid property setting.

void CreateSession(
 string connectionSTR,
 short initType,
 ref System.Array data,
 int timeout,
 out object sessionHandle
)

CLU0_E_NOFREELU The LU specified in luname is an SNA server LU pool. The pool does not currently have any free LUs.

CLU0_E_LUINUSE The LU specified in luname is an SNA server LU. This LU is currently being used by another application.

CLU0_E_LUNOTFOU
ND

The LU or pool name does not exist.

CLU0_E_TIMEDOUT The session was not started within the specified timeout.

CLU0_E_SESSION_FA
ILED

The session failed to activate and is not connected to any TSS LU0 session.

The application should attempt to create a new session using the same or different connection propertie
s, or else connect to a different TSS session handle.

CLU0_E_ACCESSDEN
IED

The user account for the client does not have permission to use the requested LU or pool.

CLU0_E_ALREADY_C
ONNECTED

The comLU0 client is already connected to another session.

CLU0_E_SYSERROR Failed due to an internal error.

Remarks

The following table contains the possible values for initType.

Name Valu
e

Description

INIT_BIND 0 Wait for an unsolicited BIND and SDT from the PLU.

INIT_SSCP 1 Wait for a BIND and SDT to arrive but allow access to the SSCP session for the application to send SSCP dat
a and commands.

INIT_INITSE
LF

2 Wait for a BIND and SDT to arrive after sending the INITSELF command specified in data.

INIT_LOGO
N

3 Wait for a BIND and SDT to arrive after sending the UNFORMATTED SSCP logon message specified in data.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.SetProperty Method
Allows the comLU0 client to set property values for a session.

Syntax

Parameters
Parameter Description

PropertyName The name of the property to be added or updated.

Value The value of the specified property.

Return Value
Value Description

S_OK The requested property was added successfully.

CLU0_S_PROP_UPDATE
D

The existing property specified was updated successfully

CLU0_E_NOT_CONNECT
ED

The comLU0 client object is not connected to a session object through a call to the IcomLU0.Connect
method.

CLU0_E_SERVER_FAILUR
E

The TSS session is no longer valid. You should release the session handle.

CLU0_E_WAITING Another thread has issued a Receive call for the specified comLU0 method which has not yet returne
d.

CLU0_E_BADPARAM The specified property is a pre-defined session property, and therefore could not be updated.

Remarks

Property names are case-insensitive.

You cannot use SetProperty to modify any of the predefined connection properties. Instead, you can change only the
properties defined with CreateSession.

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

void SetProperty(
 string PropertyName,
 ref object value)

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.GetProperty Method
Extracts both pre-defined and application-specific properties for the session.

Syntax

Parameters
Parameter Description

PropertyName The Name of the property to be extracted.

value When the method returns, contains the value of the specified property.

Return Value
Value Description

S_OK The method completed successfully.

CLU0_E_NOT_CONNECTE
D

The comLU0 client object is not connected to a session object through a call to Icom3270.Connect.

CLU0_E_SERVER_FAILURE The TSS session is no longer valid. You should release the session handle.

CLU0_E_WAITING Another thread has issued a Receive call for the specified comLU0 method, and has not yet returne
d.

CLU0_E_BADPARAM The specified property has not been defined for this session.

Remarks

You can use getParameter, to determine the name of the pooled LU selected for the session when an LU0 session was
originally created using an SNA Server pool name.

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

void SetProperty(
 string PropertyName,
 ref object value)

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.Connect Method
Connects a comLU0 client to an existing session.

Syntax

Parameters
Parameter Description

sessionHandle Pointer to an IUnknown that contains the session handle of the session to connect to.

Return Value
Value Description

S_OK The method has completed successfully.

CLU0_S_SSCP_ACTIVE The comLU0 session is connected to an SSCP initiated session whose LU-LU session is not yet active.

You should send the appropriate messages to the SSCP to solicit activation of the session.

CLU0_S_OFFLINE The comLU0 session is connected to an SNA session that is currently offline. You should call IcomLU
0.Online to activate the session.

CLU0_E_SESSION_FAILE
D

The underlying SNA session failed.

You must disconnect and release the server session.

CLU0_E_ALREADY_CON
NECTED

Another comLU0 client is connected to this session.

CLU0_E_SYSERROR Connect failed due to an internal systems error.

E_NOINTERFACE The session handle is not a valid IUnknown interface pointer.

Exceptions

Remarks

Once you connect successfully to a session, you are responsible for calling IcomLU0.Receive to provide processing time for
outbound data.

You are guaranteed exclusive access to the session until you call IcomLU0.Disconnect.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Void Connect(
 object sessionHandle
)

IcomLUO.Disconnect Method
Disconnects from a previously-connected session.

Syntax

Parameters

Return Value
Value Description

S_OK The method completed successfully.

CLU0_E_NOTCONNECTED The comLU0 client is not connected to a session through a call to IcomLU0.Connect.

CLU0_E_SERVER_FAILURE The TSS session is no longer valid.

You should release the session handle.

CLU_E_WAITING Another thread has issued a receive call for this comLU0 method, and has not yet returned.

CLU0_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

After your call to Disconnect is complete, you must call Connect again in order to access the session. This is true regardless of
whether your call to Disconnect was successful.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

void Disconnect()

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.Receive Method
Receives outbound data on a LU0 session.

Syntax

Parameters
Value Description

timeout The period of time in milliseconds that the thread can wait for data to arrive.

By setting dataSize, you can indicate if the application is willing to accept partial data after a timeout.

Entering 0xffffffff into howLong indicates an infinite length of time.

datasiz
e

The maximum amount of data that the application is willing to accept.

If dataSize bytes of data are received before the timeout is compete, Receive will return the partial chain.

When this method returns, contains the number of bytes present in the data buffer.

indicati
on

One or more flags in a bitwise OR containing additional information about the outbound datastream. For more infor
mation, see the Remarks section.

seqno When this method returns, contains the SNA sequence number of the chain.

If NEG_RESPONSE is set in indication, seqno may instead contain the sequence number of the chain to which the host
sent a response.

The value returned in seqno may be used in IcomLU0.SendResponse to transmit a SNA response.

data An array containing the data to receive.

Return Value
Value Description

S_OK A complete, or else the remainder of a partial, chain of data was received into the data buffer.

CLU0_S_PARTIA
L_CHAIN

A partial chain of data was received into the data buffer.

CLU0_S_TIMEO
UT

No data was received within the timeout specified.

You should issue another Receive.

CLU0_E_SESSIO
NFAILURE

The LU0 session failed.

CLU0_E_SERVE
R_FAILURE

The TSS session is no longer valid.

The application should release the session handle.

void Receive(
 int timeout,
 ref int datasize,
 out int indication,
 out short seqno,
 ref System.Array data
)

CLU0_E_WAITIN
G

Another thread has issued a Receive call for this method, and has not yet returned.

CLU0_E_SESSIO
N_FAILED

The underlying SNA session failed, possibly due to a link outage or other transient failure.

You must either disconnect and release the server session. Alternately, you may call IcomLU0.Offline to reset
the session, and then call IcomLU0.Online to reactive the session.

CLU0_E_NOTCO
NNECTED

The comLU0 client is not connected to a session through a call to Icom3270.Connect.

CLU0_E_BADPA
RAM

One of the parameters contained an invalid value.

CLU0_E_SYSER
ROR

The method failed due to an internal error.

Exceptions

Remarks

Normally, Receive blocks until a complete chain of SNA data is available. However, the application can control the block
through howLong, maxData, and incompleteData.

Receive returns only application-level data. Specifically, Receive will not return the SNA TH and RH headers.

The following table describes the possible values for indication.

Value Description

SESSION_STARTED One of the following:

The SSCP-initiated session has been activated.

A session that was reset by a CLEAR has been restarted by an SDT.

A session that previously received an UNBIUND has been reactivated by a BIND and SDT.

BEGIN_BRACKET The host started a new bracket.

END_BRACKET The host terminated the current bracket.

SEND The host has given permission to send.

DATA_COMPLETE The data represents a complete data chain or the end of a data chain.

DATA_INCOMPLETE The data represents an incomplete data chain.

CANCEL The last chain from the host was cancelled.

NO_RESPONSE The application should not send a response to the data.

EXCEPTION_RESPONSE1/2 The application may send a negative response to reject the data, or a courtesy acknowledgement.

DEFINITE_RESPONSE1/2 The application must send a response to the data.

POS_RESPONSE The host sent a positive response.

NEG_RESPONSE The host sent a negative response.

EXR_REQUEST The SNA server converted the host request into an exception request.

CHASE The host requests that all outstanding responses be sent.

NORMAL_DATA The data was received on the normal data flow.

EXPEDITED_DATA The data was received on the expedited data flow.

APPL_DATA The data is application (FMD) data.

FM_DATA The data is Function Management (FMH) data.

LU_DATA The data was received on the LU session.

SSCP_DATA The data was received on the SSCP session.

CLEAR The host has cleared the session.

QUIESCE The host has quiesced the session.

SHUTDOWN The host is shutting down the session.

RELEASE The host cancelled the quiesce or shutdown state.

UNBIND The host unbound the LU-LU session.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.Send Method
Sends a complete inbound chain of data on an LU0 session.

Syntax

Parameters
Paramete
r

Description

hint A hint from the application regarding how the data is to be processed. For more information, see the remarks secti
on.

data The data to send.

seqno When this method returns, contains the SNA sequence number of the chain.

You can use the value returned by seqno to correlate any response the host may send later.

Return Value
Value Description

S_OK The data was sent successfully. If relevant, positive response was also received.

CLU0_S_MULTI_CHII
N

The session does not support multi-RU chains, but the data was larger than the RU size. comLU0 sent the
data as a sequence of single RU chains.

CLU0_S_DEFINITE_R
SP_MODE

comLU0 sent the data using DEFINITE_RESPONSE mode when EXCEPTION_RESPONSE or NO_RESPONS
E was requested.

CLU0_S_EXCEPTION
_RSP_MODE

comLU0 send the data using EXCEPTION_RESPONSE mode when DEFINITE_RESPONSE or NO_RESPONS
E was requested.

CLU0_S_NO_RSP_M
ODE

comLU0 sent the data using NO_RESPONSE mode when DEFINITE_RESPONSE or EXCEPTION_RESPONS
E was requested.

CLU0_E_NEG_RESP
ONSE

The host or SNA server sent a negative response to the DEFINITE_RESPONSE.

CLU0_E_NO_RSP_R
EQUESTED

No response was received from the host to a RQD request.

You should call IcomLU0.Receive to determine the reason that he response was not received. For exampl
e, a CLEAR may have been received, or the session experienced an outage.

CLU0_E_BRACKED_
NOT_ALLOWED

The session was between brackets but comLU0 was not allowed to start a new bracket. This occurred due
to comLU0 receiving an SBI from the host.

CLU0_E_SESSION_F
AILED

The underlying SNA session failed, possibly do to a link outage or other transient failure.

You must disconnect and release the server session. Optionally, you may call IcomLU0.Offline to reset the
session, and then call IcomLU0.Online to reactive the session.

void Send(
 int hint,
 ref System.Array data,
 out short seqno)

CLU0_E_RECEIVE_IN
_PROGRESS

The application has not completed receiving the last chain sent by the host. This is likely indicated by Rec
eive returning the DATA_INCOMPLETE message.

You should re-issue IcomLU0.Receive call to collect the remaining data and then call Send again.

CLU0_E_SERVER_FA
ILURE

The TSS session is no longer valid.

You should release the session handle.

CLU0_E_WAITING Another thread has issued a Receive call for this method, which has not yet returned.

CLU0_E_SESSIONFA
ILURE

The LU0 session failed.

CLU0_E_NOTCONN
ECTED

The comLU0 client is not connected to a session through a call to Icom3270.Connect.

CLU0_E_SYSERROR The send failed due to a system error.

Exceptions

Remarks

The SNA TH and RH are provided by comLU0 and must not be present in the data presented by the application.

The following table describes the possible values for hint.

Value Description

END_BRACKET comLU0 should end the current bracket.

PREPARE_TO_RECEIVE The application is about to enter the receive state.

NO_RESPONSE The application does not need a response from the host.

EXCEPTION_RESPONSE1/2 The application requires that the host send a negative response only.

DEFINITIE_RESPONSE1/2 The application requires that the host send a response to the data.

NORMAL_DATA The application is sending the on the normal data flow.

EXPEDITED_DATA The application is sending the data on the expedited data flow.

APPL_DATA The data is application (FMD) data.

FM_DATA The data is Function Management (FMH) data

LU_DATA The application is sending the data on the LU session.

SCP_DATA The application is sending the data on the SSCP session.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.SendResponse Method
Sends a response or courtesy acknowledgement to the host.

Syntax

Parameters
Parameter Description

senseCode The sense code to send to the host, in Intel byte order.

0x00000000 indicates a positive response or a courtesy acknowledgement to exception response data.

hint A hint to indicate the message flow on which the response is to be sent.

Hint should be a bitwise combination of LU_DATA or SSCP_DATA and NORMAL_DATA or EXPEDITED_DATA.

seqno The sequence number of the request to respond to.

The value used in seqno is returned by IcomLU0.Receive.

Return Value
Value Description

S_OK The method sent the message successfully.

CLU0_E_SESSION
_FAILED

The underlying SNA session failed, possibly due to a link outage or other transient failure.

You must disconnect and release the server session. Optionally, you may issue a call to IcomLU0.Offline to
reset the session, and then reactivate the session with a call to IcomLU0.Online.

CLU0_E_RECEIVE_I
N_PROGRESS

The application has not completed receiving the last chain sent by the host. This may be indicated by Receiv
e returning DATA_INCOMPLETE.

The you should re-issue the IcomLU0.Receive call to collect the remaining data and then retry the call to Se
ndResponse.

CLU0_E_SERVER_
FAILURE

The TSS session is no longer valid.

You should release the session handle.

CLU0_E_WAITING Another thread has issued a Receive call for this comLU0 method which has not yet returned.

CLU0_E_NOTCON
NECTED

The comLU0 client is not connected to a session object through a call to Connect.

CLU0_E_SYSERRO
R

This method failed due to an internal error.

Exceptions

Remarks

Example

This is the description for a Code Example.

void SendResponse(
 int senseCode,
 int hint,
 short seqno
)

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.Online Method
Sets the LU0 session back in an on-line state after a call to Offline.

Syntax

Parameters
Param
eter

Description

initTyp
e

Describes the session initiation type. For more information, see the Remarks section.

data Contains the INITSELF or SSCP logon message, if necessary.

timeou
t

The period of time in milliseconds to wait for the BIND and SDT to arrive. If the timeout expires before the SDT arrives,
the SNA server LU will be released and an error returned.

0xffffffff indicates an infinite timeout.

Return Value
Value Description

S_OK The LU0 session was successfully reactivated and the LU session is active and ready to receive input.

CLU0_S_SSCP_
ACTIVE

The LU0 session was successfully reactivated and the SSCP session is active and ready to receive input.

Valid only when initType is set to INIT_SSCP.

CLU0_E_NEG_
RESPONSE

The host or SNA server sent a negative response to the INITSELF or unformatted logon command.

Valid only if initType is set to INIT_INITSELF or INIT_LOGON

CLU0_E_BADP
ARAM

connectionStr contained an invalid property setting.

CLU0_E_NOFR
EELU

luname specified an SNA server LU pool, and no LUs are free in that pool.

CLU0_E_LUIN
USE

luname specified an SNA server LU, and the LU is currently in use by another application.

CLU0_E_LUNO
TFOUND

The LU or pool name does not exist.

CLU0_E_TIMED
OUT

The session was not started within the timeout specified.

CLU0_E_SESSI
ON_FAILED

The underlying SNA session failed, possibly due to a link outage or other transient failure.

You must disconnect and release the server session. Optionally, you may issue a call to Icom3270.Offline to res
et the server, and then reactivate the session using a call to Icom3270.Online.

void Online(
 short initType,
 ref System.Array data,
 int timeout)

CLU0_E_SERVE
R_FAILURE

The TSS session is no longer valid.

You should release the session handle.

CLU_E_WAITIN
G

Another thread has issued a Receive call for this method, which has not yet returned.

CLU_E_SYSER
ROR

This method failed due to an internal error.

Exceptions

Remarks

Online will attempt to acquire the same SNA server LU, and therefore the same SNA server, used when the session was last
on-line.

The following table describes the possible values for initType.

Name Valu
e

Description

INIT_BIND 0 Wait for unsolicited BIND and SDT from the PLU.

INIT_SSCP 1 Wait for a BIND and SDT to arrive but allow access to the SSCP session for the application to send SSCP dat
a and commands.

INIT_INITSE
LF

2 Wait for a BIND and SDT to arrive after sending the INITSELF command specified in data.

INIT_LOGO
N

3 Wait for a BIND and SDT to arrive after sending the UNFORMATTED SSCP logon message specified in data.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

See Also
Concepts
IcomLU0 Methods
Other Resources
Using Session Integrator for LU0

https://msdn.microsoft.com/en-us/library/aa772052(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746201(v=bts.10).aspx

IcomLUO.Offline Method
Switches the LU0 session into an off-line state, which in turn causes the underlying SNA session to deactivate.

Syntax

Parameters

Return Value
Value Description

S_OK The session has been successfully deactivated.

CLU0_E_WAITING Another thread has issued a Receive call for this comLU0 method, which has not yet returned.

CLU_E_SERVER_FAILU
RE

The TSS session is no longer valid.

The application should release the session handle.

CLU0_E_RECEIVE_IN_P
ROGRESS

The application has not yet completed receiving the last chain sent by the host. This may be indicated b
y Receive returning DATA_INCOMPLETE.

You should re-issue the IcomLU0.Receive call to collect the remaining data, and then call IcomLU0.Offli
ne again.

CLU0_E_SYSERROR This method failed due to an internal error.

Exceptions

Remarks

After calling Offline, the client application can later reactivate the session using a call to Online.

Note that Offline releases the SNA server LU. Therefore, it is possible for another application to acquire the LU before your
application calls Online again.

You can use Online to recover a session that has returned CLU0_E_SESSION_FAILED.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void Offline()

Icom3270 Interface
The Icom3270 interface allows access to an LU0 session.

Note
For more information about accessing IcomLU0 from managed text, see Microsoft.HostIntegration.SNA.Session.

Requirements

Type Library: COM3270 1.0 Type Library (siproxy.dll)

Platforms: Windows Server 2003 SP1 Standard and Enterprise Editions.

https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx

Icom3270 Members
The following table describes the Icom3270 members.

Public Methods
Method Description

Icom3270.createSession Method Creates a new 3270 session.

Icom3270.getProperty Method Describes the properties of a session.

Icom3270.connect Method Connects a com3270 client to an existing session.

Icom3270.disconnect Method Disconnects from a session.

Icom3270.setCursorPosition Method Sets the position of the cursor on the 3270 screen.

Icom3270.getCursorPosition Method Retrieves the current cursor position as an offset of the 3270 display buffer.

Icom3270.sendKey Method Sends one or more keystrokes to the Host session.

Icom3270.wait Method Waits for the session to enter a state where input is allowed or the screen is modified.

Icom3270.getOIA Method Returns a copy of the Operator Information Area (OIA) for the 3270 session.

Icom3270.getScreenSize Method Returns the size, in rows and columns, of the current 3270 screen.

Icom3270.getField Method Returns the starting position and length of the field containing the specified screen offset
.

Icom3270.getNextField Method Finds the starting position and length of the field located after the specified offset.

Icom3270.getPrevField Method Finds the starting position and length of the field before the specified screen offset.

Icom3270.getFieldData Method Extracts the data contents of the specified field.

Icom3270.setFieldData Method Sets the data contents pf the specified field.

Icom3270.findFieldData Method Searches the specified field for the specified data string.

Icom3270.getScreenData Method Extracts the data contents of the 3270 screen.

Icom3270.setScreenData Method Copies data characters, character attributes, and extended attributers to all or part of the
screen.

Icom3270.findScreenData Method Searches the screen for a specified data string.

See Also
Concepts
Icom3270 Interface

https://msdn.microsoft.com/en-us/library/aa754321(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745593(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772115(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705008(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746110(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771262(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705144(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771040(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704693(v=bts.10).aspx

Icom3270 Methods
The methods of the Icom3720 interfaces are listed in the following table. For a complete list of the IcomLU0 members, see
Icom3270 Members.

Public Methods
Method Description

Icom3270.createSession Method Creates a new 3270 session.

Icom3270.getProperty Method Describes the properties of a session.

Icom3270.connect Method Connects a com3270 client to an existing session.

Icom3270.disconnect Method Disconnects from a session.

Icom3270.setCursorPosition Method Sets the position of the cursor on the 3270 screen.

Icom3270.getCursorPosition Method Retrieves the current cursor position as an offset of the 3270 display buffer.

Icom3270.sendKey Method Sends one or more keystrokes to the Host session.

Icom3270.wait Method Waits for the session to enter a state where input is allowed or the screen is modified.

Icom3270.getOIA Method Returns a copy of the Operator Information Area (OIA) for the 3270 session.

Icom3270.getScreenSize Method Returns the size, in rows and columns, of the current 3270 screen.

Icom3270.getField Method Returns the starting position and length of the field containing the specified screen offset
.

Icom3270.getNextField Method Finds the starting position and length of the field located after the specified offset.

Icom3270.getPrevField Method Finds the starting position and length of the field before the specified screen offset.

Icom3270.getFieldData Method Extracts the data contents of the specified field.

Icom3270.setFieldData Method Sets the data contents pf the specified field.

Icom3270.findFieldData Method Searches the specified field for the specified data string.

Icom3270.getScreenData Method Extracts the data contents of the 3270 screen.

Icom3270.setScreenData Method Copies data characters, character attributes, and extended attributers to all or part of the
screen.

Icom3270.findScreenData Method Searches the screen for a specified data string.

https://msdn.microsoft.com/en-us/library/aa705015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754321(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745698(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745593(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772115(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705673(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745868(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753853(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705008(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746110(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771262(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745988(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704676(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705144(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771002(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745838(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745358(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771040(v=bts.10).aspx

Icom3270.createSession Method
The creaetSession method creates a new 3270 session.

Syntax

Parameters
Para
mete
r

Description

conne
ctionS
tr

NULL-terminated string containing the connection properties of the new session. The string is presented in a space-deli
neated "PROPERTY=VALUE" format. Property names and values are case-insensitive. For more information, see Icom32
70 Session Properties.

sessio
nHan
dle

When this method returns, contains a pointer to the IUnknown interface for the comSNA3270 session. This session repr
esents the underlying SNA session.

You will use sessionHandle in Icom3270.Connect to connect the com3270 object with the session.

Return Value
Value Description

C3270_S_LINKINAC The SNA session was successfully created, but the underlying SNA connection is not yet active.

You should use Icom3270.wait to wait for the session to become active.

C3270_S_PUINAC The SNA session was successfully created, but the SNA PU is not yet active.

You should use Icom3270.wait to wait for the session to become active.

C3270_S_LUINAC The SNA session was successfully created, but he LU is not yet active.

You should use Icom3270.wait to wait for the session to become active.

C3270_S_TN3270E The TN3270 session was successfully created in TN3270E, or RFC 1647, mode.

C3270_S_TN3270 The TN3270 session was successfully created in TN3270, or RFC 1576, mode.

S_OK The SNA or local session was successfully created and the LU_SSCP session is active and ready to rece
ive input.

C3280_E_BADPARAM connectionStr contained an invalid property setting.

C3270_E_NOFREELU luname specified an SNA Server LU pool. However, there are no LUs free in that pool.

C3270_E_LUINUSE luname specified an SNA server LU pool. However, the LU is currently in use by another application.

C3270_E_LUNOTFOUN
D

The LU or pool name does not exist.

C3270_E_SYSERROR The method failed due to an internal error.

void CreateSession(
 string connectionStr,
 out object sessionHandle
)

C3270_E_ACCESSDENI
ED

The user account for the client does not have permission to use the requested LU or pool.

C3270_E_NOTFOUND The remote system specified by the IP property in connectionStr could not be located.

C3270_E_REFUSED The remote system specified by the IP and PORT properties in connectionSTR refused the connection s
tring.

Exceptions

Remarks

The following list describes the location of the session, as determined by to the session type. A session type is also known as
the MODE property.

Local session - created on the client.

SNA session - created on the SNA server machine that is configured with the requested LU or pool.

TN3270 session - created on the COM server specified by the SERVER property.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Icom3270.getProperty Method
The getProperty method describes the properties of a session.

Syntax

Parameters
Parameter Description

propertyName The name of the property to be returned.

propertyValue When this method returns, contains the value of the specified property.

Return Value
Value Description

S_OK The method completed successfully.

C3270_E_NOT_CONNECTED The com3270 client is not connected to a session object through Icom3270.Connect.

C3270_E_INVALIDMODE The property described in propertyName is not valid for the session MODE setting.

Exceptions

Remarks

You can use getProperty to determine the name of the pooled LU selected for the session when an SNA session was originally
created using an SNA server pool name. For more information, see Supported com3270 Session Properties.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void GetProperty(
 string PropertyName,
 out object value
)

Icom3270.connect Method
The connect method connects a com3270 client to an existing session.

Syntax

Parameters
Parameter Description

sessionHandle Session handle of the session to connect to.

Return Value
Value Description

S_OK The method completed successfully.

C3270_E_ALREADY_CONN
ECTED

Another com3270 client is connected to the specified session.

C3270_E_SYSERROR The method failed due to an internal error.

E_NOINTERFACE The specified session handle is not a valid comSNA3270, COMTN3270, or comLocal3270 IUnkno
wn interface pointer.

Exceptions

Remarks

Once you connect successfully to a session, you are responsible for calling Icom3270.wait in order to provide processing time
for incoming 3270 data stream packets.

You are guaranteed exclusive access to the session until you call disconnect. Specifically, the screen buffers and screen size are
guarnenteed not to change unless you call Icom3270.wait.

If connect completes successfully, you should then call Icom3270.wait. Calling wait allows you to process any unprocessed
3270 data and to ensure that the session is in an unlocked state. After calling wait, you can then update or read the display
buffers or send keystrokes to the host application.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void Connect(
 object sessionHandle
)

Icom3270.disconnect Method
The disconnect method disconnects from a session.

Syntax

Parameters
Return Value
Value Description

S_OK The method completed successfully

C3270_E_NOTCONNECTED The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

After you call disconnect, even if the call fails, you must call Icom3270.connect again before accessing the session.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void Disconnect()

Icom3270.setCursorPosition Method
The setCursorPosition sets the position of the cursor on the 3270 screen.

Syntax

Parameters
Parameter Description

pos A 0-based offset within the screen buffer that describes the location of the cursor.

Return Value
Value Description

S_OK The method has completed successfully.

C3270_E_INVALIDPOS The specified screen position is greater than the maximum character position for the current screen siz
e.

C3270_E_SESSIONBU
SY

The 3270 session is busy.

You may call Icom3270.wait to determine when input is allowed. Afterwards, you can attempt to call se
tCursorPosition again.

C3270_E_NOTCONNE
CTED

The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

After you call setCursor, you may call sendKey. Calling sendKey will write printable character, starting from the location
specified by setCursor.

To determine the offset of a particular row and column character address, you can use getScreenSize to retrieve the number of
columns in each screen row.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void SetCursorPosition(
 ushort position
)

Icom3270.getCursorPosition Method
The getCursorPosition method retrieves the current cursor position as an offset of the 3270 display buffer.

Syntax

Parameters
Parameter Description

position When this method returns, contains a 0-based offset describing the current cursor position.

Return Value
Value Description

S_OK The method has completed successfully.

C3270_E_SESSIONBUSY The 3270 session is busy.

You may call wait to determine when input is allowed and getCurrentPosition can be retried.

C3270_E_NOTCONNECTED The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

The cursor position may change as a result of a call to setCursorPosition, sendKey, or wait.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void GetCursorPosition(
 out ushort position
)

Icom3270.sendKey Method
The sendKey method sends one or more keystrokes to the Host session.

Syntax

Parameters
Parameter Description

count The number of bytes in the buffer.

keys A pointer to the buffer containing the keystrokes to send.

Return Value
Value Description

S_OK The method has returned successfully.

C3270_E_BAD
PARAM

One of the parameters is invalid.

C3270_E_SES
SIONBUSY

The 3270 session is busy.

You may call Icom3270.wait to determine when input is allowed before retrying sendKey.

C3270_E_SES
SIONLOCKED

The 3270 session is locked due to a local lock condition.

You may examine the OIA buffer to determine the reason for the error. Afterwards, you may want to send a RE
SET keystroke to unlock the keyboard before calling sendKey again or any other recovery action.

C3270_E_SYS
ERROR

The method failed due to an internal error.

Exceptions

Remarks

sendKey emulates a user typing at the 3270 keyboard. You can use sendkey to send3270 functions, such as RESET, INSERT, or
TAB, to the session. You can also send both single and double-byte graphic keys to the session.

Note that if you send an AID key, the host will ignore any subsequent keys in the buffer. As such, the AID key should be the last
keystroke you send.

Graphic keys are represented by their EBCIDIC character balue, or two characters for DBCS in the Host code page. 3270
Function and AID keys are represented by the multi-byte EBCIDIK key codes described in the Microsoft SNA Server Windows
HLLAPI Specification.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void SendKey(
 ushort count,
 ref System.Array keys
)

Icom3270.wait Method
The wait method waits for the session to enter a state where input is allowed or the screen is modified.

Syntax

Parameters
Parame
ters

Value

howLon
g

A period of time, measured in units of 0.5 seconds, that the thread is willing to waif for input to be enabled or the scr
een to be updated. 0xffffffff indicates that the thread should wait indefinitely.

waitFor
Update

If false, this method will return as soon as the session is in an input allowed state.

The session returns immediately if the session is currently in an input allowed state.

For more information, see the Remarks section.

Return Value
Value Description

S_OK The session is available for input.

C3270_S_SIZE
CHANGED

The session is available for input, but the screen size was modified during the invocation of wait. You should g
all getScreenSize to determine the new screen size.

C3270_E_SESSI
ONBUSY

The 3270 session is still busy, but the time-out period specified by howLong expired.

You should perform any necessary processing before calling wait again.

C3270_E_SESS
SIONLOCKED

The 3270 session is locked due to a local lock condition.

You should examine the OIA buffer to determine the reason for the error. You may also send a RESET keystrok
e to unlock the keyboard before calling wait again or performing any other recovery action.

C3270_E_SESSI
ONFAILURE

The 3270 session failed. Either the PLU_SLU or SSCP session was deactivated while the wait was in progress.

You should examine the session status in the OIA for the session and take appropriate recovery action.

C3270_E_SYSE
RROR

The method failed due to an internal error.

Remarks

Calling wait allows the session to process messages from the host when the application is active, connected to the host, and
waiting for data.

You should set waitForUpdate to true when the Host unlocks the keyboard and sends screen updates in separate operations. In
particular, you should do this on the SSCP session, where input is enabled on receipt of an SNA response to data from the
client. The reply data is dent on a subsequent message.

Example

void Wait(
 uint howLong,
 int waitForUpdate
)

Icom3270.getOIA Method
The getOIA method returns a copy of the Operator Information Area (OIA) for the 3270 session.

Syntax

Parameters
Paramet
er

Description

oiaBuffer When this method returns, contains the buffer into which the current OIA is copied. For more information, see the R
emarks section.

Return Value
Value Description

S_OK The method has completed successfully.

C3270_NOTCONNECTED The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

The OIA is a bit map that provides information regarding the status of the current screen. You may use the OIA to determine
the ownership of the session, and the reason for input-inhibited errors.

As defined by COM, it is your responsibility to release the memory of the returned SAFEARRAY structures.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void GetOIA(
 out System.Array oiaBuffer
)

Icom3270.getScreenSize Method
The getScreenSize method returns the size, in rows and columns, of the current 3270 screen.

Syntax

Parameters
Parameter Description

rows When this method returns, contains the number of rows on the current screen.

cols When this method returns, contains the number of columns on the current screen.

Return Value
Value Description

S_OK The method has returned successfully.

C3270_E_NOTCONNECTED The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

You should call getScreenSize immediately after Icom3270.wait to determine whether the screen size has changed as a result
of a Host application command.

You should not attempt to access or modify the screen buffers returned by the Icom3270.connect beyond the limits of the
current screen size.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void GetScreenSize(
 out ushort rows,
 out ushort cols
)

Icom3270.getField Method
The getField method returns the starting position and length of the field containing the specified screen offset.

Syntax

Parameters
Param
eter

Description

position The 0-based screen offset of a character in the desired field.

Note that the calculation used by getField considers the field attribute character part of the field. The field attribute ch
aracter immediately precedes the field data.

When this method returns, contains the 0-based offset of the first data position of the field.

length When this method returns, contains the length of the desired field, excluding the field attribute character.

Possible values range between 0 and (screen size - 1).

Return Value
Value Description

S_OK The method has completed successfully.

C3270_E_INVALIDPOS The screen position specified is greater than the maximum character position for the current screen
size.

C3270_E_UNFORMATTED The screen is unformatted. Therefore, the specified field does not exist.

C3270_E_NOTCONNECTE
D

The com3270 client is not connected to a session object through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void GetField(
 ref ushort position,
 out ushort length
)

Icom3270.getNextField Method
The getNextField method finds the starting position and length of the field located after the specified offset.

Syntax

Parameters
Parameter Description

position The 0-based screen offset from which to start the search.

When this method returns, contains the 0-based offset of the first data position of the following field.

fieldType The type of field requested. For more information, see the Remarks section.

length When this method returns, contains the length of the desired field, excluding the field attribute character.

Possible values are 0 through (screen size - 1).

Return Value
Value Description

S_OK The method has returned successfully.

C3270_E_INVALIDPOS The specified screen position is greater than the maximum character position for the current screen
size.

C3270_E_UNFORMATTED The screen is unformatted. Therefore, the specified field does not exist.

C3270_E_NOTFOUND The specified field could not be found.

C3270_E_NOTCONNECTE
D

The com3270 client is not connected to a session through a call to Icon3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

For the purpose of this search, the field attribute character is considered part of the field. The field attribute character
immediately precedes the field data.

The following table describes the possible values for fieldType.

Value Description

0 Either protected or unprotected.

1 Unprotected field only.

2 Protected field only.

Example

This is the description for a Code Example.

void GetNextField(
 ref ushort position,
 ushort fieldType,
 out ushort length
)

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Icom3270.getPrevField Method
The getPrevField finds the starting position and length of the field before the specified screen offset.

Syntax

Parameters
Parameter Description

position The 0-based screen offset to start searching from.

When this method returns, contains the 0-based offset of the first data position in the previous field.

fieldType The type of field requested. For more information, see the Remarks section.

length When this method returns, contains the length of the desired field, excluding the field attribute character.

Possible values are 0 through (screen size - 1).

Return Value
Value Description

S_OK The method has returned successfully

C3270_E_INVALIDPOS The specified screen position is greater than the maximum character position for the current screen
size.

C3270_E_UNFORMATTED The screen is unformatted. Therefore, the specified field does not exist.

C3270_E_NOTCONNECTE
D

The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

For the purpose of getPrevField, the field attribute character is considered part of the field. The field attribute character
immediately precedes the field.

The following table describes the possible values for fieldType.

Value Description

0 Either protected or unprotected

1 Unprotected field only

2 Protected field only

Example

This is the description for a Code Example.

Optional comments.

void GetPrevField(
 ref ushort position,
 ushort fieldType,
 out ushort length
)

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Icom3270.getFieldData Method
Extracts the data contents of the specified field.

Syntax

Parameters
Parameter Description

position The 0-based screen offset of a character in the specified field.

dataRequested A bitwise combination describing the data requested. For more information, see the Remarks section.

maxLen The maximum number of .screen positions requested.

0 indicates a request for the entire field.

dbuf When this method returns, contains the screen data buffer data, if necessary.

abuf When this method returns, contains the screen character attribute buffer data, if necessary.

eabuff When this method returns, contains the screen extended attribute buffer data, if necessary.

Property Value/Return Value
Exceptions

Remarks

getFieldData does not extract the Field Attribute character.

You may request any combination of the displayable characters, character attributes, and extended attributes of the field.

You are responsible for releasing the SAFEARRAYs that the method returns the specified data in.

For the purpose of getFieldData the field attribute character, which immediately precedes the field data, is considered part of
the field.

The following table describes the possible values for dataRequested.

Value Description

1 Display buffer data

2 Character attribute buffer data

4 Extended attribute buffer data

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

void GetFieldData(
 ushort position,
 ushort dataRequested,
 ushort maxLen,
 out System.Array dbuf,
 out System.Array abuf,
 out System.Array eabuf
)

Requirements
Subhead

Icom3270.setFieldData Method
The setFieldData method sets the data contents of the specified field.

Syntax

Parameters
Parameter Value

position The 0-based screen offset of a character in the desired field.

length The length of the data to copy.

overwritePr
otected

If true, allows you to write data to a protected file. Otherwise, attempting to write to a protected field will cause an
error.

dbuf The data to copy to the screen data buffer data. NULL indicates that you do not want to alter the screen data.

abuf The data to copy to the screen character attribute buffer data. NULL indicates that you do not want to alter the ch
aracter attribute buffer.

eabuf When this method returns, contains the data to copy to the screen extended attribute buffer data. NULL indicates
that you do not want to alter the extended attribute buffer.

Return Value
Value Description

S_OK The method completed successfully.

C3270_S_T
RUNCATED

The copy extended past the end of the field. Therefore, the extra data was ignored.

C3270_E_IN
VALIDPOS

The screen position specified is greated than the maximum character position for the current screen size.

C3270_E_IN
VALIDDATA

The bounds of any of the non-NULL SAFEARRA parameters were not identical.

C3270_E_U
NFORMATT
ED

The screen is unformatted. As such, the specified field does not exist.

C3270_E_SE
SSIONBUSY

The 3270 session is busy. Call Icom3270.wait to determine when input is allowed so that you may call this metho
d again.

C3270_E_SE
SSIONLOCK
ED

The 3270 session is loced due to a local lock condition. Examine the OIA buffer to determine the reason for the er
ror. Also, you may also send a RESET keystroke to unlock the keyboard before calling this method or taking any o
ther recovery action.

void SetFieldData(
 ushort position,
 ushort length,
 int overwriteProtected,
 ref System.Array dbuf,
 ref System.Array abuf,
 ref System.Array eabuf
)

C3270_E_N
OTCONNEC
TED

The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SY
SERROR

The method failed due to an internal error.

Exceptions

Remarks

You cannot use setFieldData to modify the Field attribute character.

For the purpose of setFieldData, the field attribute character is considered part of the field. The field attribute character
immediately precedes the field data.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Icom3270.findFieldData Method
The findFieldData method searches the specified field for the specified data string.

Syntax

Parameters
Parameter Description

pos The 0-based screen offset of a character in the field to search.

When this method returns, contains the screen offset of the start of the data string, if the string was found.

length The length of the data to search on

dbuf Array containing the data to search on.

Return Value
Value Description

S_OK The method has completed successfully.

C3270_S_TRUNCATED The copy extended past the end of the field. The extra data was ignored.

C3270_E_UNFORMATTED The screen is formatted; therefore, the specified field does not exist.

C3270_E_NOTFOUND The specified data string could not be found.

C3270_E_NOTCONNECTED The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

For the purpose of findFieldData, the field attribute character is considered part of the field. The field attribute character
immediately precedes the field data.

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void FindFieldData(
 ref ushort position,
 ushort length,
 ref System.Array dbuf
)

Icom3270.getScreenData Method
The getScreenData method extracts the data contents of the 3270 screen.

Syntax

Parameters
Parameter Description

position The 0-based screen offset of the first character requested.

dataRequested A bitwise combination describing the requested data. For more information, see the Remarks section.

maxLen The maximum number of .screen position requested.

Setting maxLen to 0 requests the remainder of the screen.

dbuf When this method returns, contains the screen data buffer data, if requested.

abuf When this method returns, contains the screen character attribute buffer data, if requested.

eabuf When this method returns, contains the screen extended attribute buffer data, if requested.

Return Value
Value Description

S_OK The method has returned successfully

C3270_E_INVALIDPOS The specified screen position is greater than the maximum character position for the current screen
size.

C3270_E_NOTCONNECTE
D

The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

You may request any combination of the displayable characters, character attributes, and extended attributes, of the screen.

Note that the returned data is contained in one or more SAFEARRAYS. You are responsible for releasing the SAFEARRAYS after
processing.

The following table describes the possible values of dataRequested.

Value Description

1 Display buffer data

2 Character attribute buffer data

void GetScreenData(
 ushort position,
 ushort dataRequested,
 ushort maxLen,
 out System.Array dbuf,
 out System.Array abuf,
 out System.Array eabuf
)

4 Extended attribute buffer data

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Icom3270.setScreenData Method
The setScreenData method copies data characters, character attributes, and extended attributers to all or part of the screen.

Syntax

Parameters
Parameter Description

position The 0-based screen offset of the screen position to start copying.

length The length of the data to search on.

overwritePr
otected

true to allow the application to write data to a protected field; otherwise attempting to write to a protected field w
ill cause an error.

dbuf The data to copy to the screen data buffer data. NULL indicates that you do not want to alter the data buffer.

abuf The data to copy to the screen character attribute buffer data. NULL indicates that you do not want to alter the ch
aracter attribute buffer.

eabuf When this method returns, contains the data to copy to the screen extended attribute buffer data. NULL indicates
that you do not want to alter the extended attribute buffer.

Return Value
Value Description

S_OK The method has returned successfully

C3270_E_TR
UNCATED

The copy extended past the end of the buffer screen. The extra data was ignored.

C3270_E_INV
ALIDPOS

The specified screen position is greater than the maximum character position for the current screen size.

C3270_E_INV
ALIDDATA

The bounds of any non-NULL SAFEARRAY parameters were not identical.

C3270_E_SES
SIONBUSY

The 3270 session was busy.

You should call Icom3270.wait to determine when input is allowed and this method can be retried.

C3270_E_SES
SIONLOCKED

The 3270 session is locked to to a local lock condition. You should examine the OIA buffer to determine the reas
on for the lock. You may also send a RESET keystroke to unlock the keyboard before calling this method again.

C3270_E_NO
TCONNECTE
D

The com3270 client is not connected to a session through a call to Icom3270.connect.

void SetScreenData(
 ushort position,
 ushort length,
 int overwriteProtected,
 ref System.Array dbuf,
 ref System.Array abuf,
 ref System.Array eabuf
)

C3270_E_SYS
ERROR

The method failed due to an internal error.

Exceptions

Remarks
Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

Icom3270.findScreenData Method
The findScreenData method searches the screen for a specified data string.

Syntax

Parameters
Parameter Description

position on input, the 0-based screen offset describing the location on which to begin the search.

On a successful return, contains the screen offset of the start of the data string.

length The length of the array containing the data to search on.

dbuf An array containing the data to search on.

Return Value
Value Description

S_OK The method has returned successfully

C3270_E_INVALIDPOS The specified screen position is greater than the maximum character position for the current screen
size.

C3270_E_NOTFOUND The specified data string could not be found.

C3270_E_NOTCONNECTE
D

The com3270 client is not connected to a session through a call to Icom3270.connect.

C3270_E_SYSERROR The method failed due to an internal error.

Exceptions

Remarks

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

void FindScreenData(
 ref ushort position,
 ushort length,
 ref System.Array dbuf
)

Client-Based BizTalk Adapter for WebSphere MQ
Programmer's Reference

The following section describes the data types and context properties for the Client-Based BizTalk adapter for WebSphere MQ.

In This Section

Data Type

Context Properties

See Also
Other Resources
Messaging Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa771711(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704984(v=bts.10).aspx

Data Type
Header properties in MQSeries messages are data structures contained in the message itself. The adapter automatically
validates and converts certain values in MQSeries message headers when sending and receiving messages.

The following table describes the MQSeries data types and their validation and conversion.

MQSeries Data
Type

Validation and Conversion

MQLONG MQSeries performs the validation. Converts to a long integer. Values that are not valid prevent the message f
rom going to the MQSeries queue.

MQCHAR Converts to a string.

MQBYTE Converts to a string that contains the characters 0-9, and a-f or A-F, representing the hexadecimal value of th
e number.

Many of the MQSeries properties are 32-bit (4-byte) unsigned integers. Because uint is not a Common Language Specification
(CLS)-compliant type, you must assign them to object types before using them in .NET methods. For more information about
CLS-compliant types, see "What Is the Common Language Specification?" in .NET Framework Help.

See Also
Other Resources
Client-Based BizTalk Adapter for WebSphere MQ Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa754729(v=bts.10).aspx

Context Properties
These context properties are only meaningful from BizTalk Server concepts and are available to be used by BizTalk applications.

In This Section

BizTalk-Specific Properties

Advanced End-Point Configuration Properties

MQSeries Header Properties

See Also
Other Resources
Network Integration Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa745168(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770993(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745339(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746022(v=bts.10).aspx

BizTalk-Specific Properties
These context properties are only meaningful from BizTalk Server concepts and are available to be used by BizTalk applications.

Name Ty
pe

Receive and
/or Send

Description

URI Stri
ng

Receive and
send

The URI defines the end-point for receive locations and send ports. The URI for receive location
s and send ports for MQSC Adapter are in the following format:

mqsc://<CHANNELNAME>/<TRANSPORTTYPE>/

<CONNECTIONNAME>/<QUEUEMANAGERNAME>/<QUEUENAME>

Receive example: mqsc://MYCHANNEL/tcp/MQSERVER(1414)/QM1/RECVQ

Send example:

mqsc://MYCHANNEL/tcp/MQSERVER(1414)/QM2/SENDQ

BizTalk_Corr
elationID

Stri
ng

Receive Use this property to have the MQSeries server generate a correlation identifier for use with the
message.

Advanced End-Point Configuration Properties
The following topics describe the Advanced End-Point configuration properties for the Client-Based BizTalk Adapter for
WebSphere MQ.

In This Section

MQSeries.MQSPropertySchema Properties

MQSeriesEx.MQSPropertySchema Properties

See Also
Other Resources
Context Properties

https://msdn.microsoft.com/en-us/library/aa770691(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746183(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705423(v=bts.10).aspx

MQSeries.MQSPropertySchema Properties
The MQSC Adapter exposes the following context properties that are not related to MQSeries Message Descriptor or other
MQSeries header structures that can be used in your BizTalk applications. These are part of the MQSeries.dll property schema
assembly (MQSeries.MQSPropertySchema) that is deployed in the BizTalk Management database from the server-based
MQSeries Adapter. The same property schema is used by the MQSC (client-based) adapter.

Name T
y
p
e

Receiv
e and/
or Sen
d

Description

Complet
eMessa
ge

St
ri
n
g

Receive Set MQSeries to assemble segmented messages or to get the message as is. Use NoAction to read messa
ges from the MQSeries queue without enabling segmentation. Use CompleteMessage to have MQSeries a
ssemble segmented messages before passing them on to the adapter.

Default: No Action

This is not applicable to the MQSC Adapter. Used only for the Server-Based MQSeries Adapter in ‘dynamic
receive’ type scenarios.

DataCo
nversio
n

St
ri
n
g

Receive Character set to which the message should be converted to when retrieving messages from the MQSeries
Queue. If this property is set to a value other than ‘None’, the adapter sets the MQGMO CONVERT option
when performing an MQGet.

None - Do not convert.

UCS-2 and UTF-16 - Convert to these character sets. MQSeries does not distinguish between them.

UTF-8 - Convert to the UTF-8 character set.

Default: None

Note – Not supported in this pre-release.

Ordered St
ri
n
g

Receive Specify Yes to maintain the order of the messages as they are received from the MQSeries queue and sub
mitted to the BizTalk Server Message Box.

For the send side, the adapter sends the message to the queue in the same order that it receives it from th
e message box.

Specify No to not maintain message order.

Note – For send side ordering, if you are not using Orchestration, you must enable ‘Ordered Delivery’ in t
he ‘Transport Advanced Options’ in the send port configuration.

Note – For receive, if you are using Orchestration, you must also set the Ordered Delivery property to True
in your orchestration for this receive location.

Note – If ordering is enabled, the adapter switches to single-thread mode and uses synchronous-mode del
ivery of messages into BizTalk Server. This results in performance degradation, so unless you require orde
red delivery, it is not recommended to enable this feature.

Default: No

Segmen
tationAll
owed

St
ri
n
g

Send Set this to Yes to tell MQSeries Queue Manager to create segmented messages when submitting large me
ssages to MQSeries Queues.

Default: No

SSOAffil
iateAppl
ication

St
ri
n
g

Send Sets the Single Sign-On (SSO) Affiliate Application name. You use the user ID and password from SSO for
the MQMD_UserIdentifier, and the MQIIH_Authenticator (or MQCIH_Authenticator) property respectively.

Default: Blank

WaitInte
rval

In
t

Receive When performing MQGet, specify the Wait Interval MQGMO option in seconds by setting this property. If
there are no messages in the queue, the client will continue waiting for messages in the Queue without clo
sing the connection.

Unit – Seconds

Default – 3

Transact
ionSupp
orted

St
ri
n
g

Receive
and Sen
d

When set to Yes, the adapter begins a Microsoft Distributed Transaction Coordinator (DTC) transaction bet
ween BizTalk Server and MQSeries. This guarantees once and only once delivery of messages and prevent
s loss of messages.

Setting this option to Yes means that WebSphere MQ Extended Transactional Client (Extended-Client) is u
sed on the BizTalk Server computer by the adapter.

When set to No, there could be message duplication. In this case, the adapter uses the non-transactional
WebSphere MQ Client (Base-Client) for integration with MQSeries.

Default: Yes

MQSeriesEx.MQSPropertySchema Properties
This contains additional context properties that are applicable only to the MQSC adapter (client-based MQSeries Adapter) for
receive location and send port configurations. They are not applicable to the server-based adapter. These properties are
associated with the channel configuration.

Name Ty
pe

Rece
ive a
nd/o
r Sen
d

Description

Channe
l_Heart
Beat

un
si
gn
ed
Int

Recei
ve an
d Se
nd

The time between checks to verify if the client-server connection is working.

Unit – Seconds

Default - 300

Channe
l_UserId

St
rin
g

Recei
ve an
d Se
nd

Set MQSeries to assemble segmented messages or to get the message as is. Use NoAction to read messages
from the MQSeries queue without enabling segmentation. Use CompleteMessage to have MQSeries assemb
le segmented messages before passing them on to the adapter.

Default: NoAction

Channe
l_Passw
ord

St
rin
g

Recei
ve an
d Se
nd

The password may be used by the MCA when attempting to initiate a secure LU 6.2 session with a remote M
CA.

The initial value is null. This is an optional property.

Channe
l_SslCip
herSpec
ification

St
rin
g

Recei
ve an
d Se
nd

This defines a single CipherSpec for an SSL connection that will be used by the end-point configured in the a
dapter. Both ends of a WebSphere MQ SSL channel definition must include the attribute and the value specif
ied here should match the name specified on the server end of the channel. The value is a string with a maxi
mum length of 32 characters.

This is required only when SSL is configured for the MQSeries Client to remote Queue Managers communic
ation.

Channe
l_SslCli
entAuth
enticati
on

St
rin
g

Recei
ve an
d Se
nd

This property determines whether the channel needs to receive and authenticate an SSL certificate from an S
SL client. This is Optional by default. If two-way authentication (client/server) is required, this property shoul
d be set to Required. Before doing this, you must have configured SSL in MQSeries to enable client/server au
thentication so that the SSL client can send a valid certificate for authentication to succeed.

Default: Optional

Channe
l_SslPee
rName

St
rin
g

Recei
ve an
d Se
nd

The property is used to check the Distinguished Name (DN) of the certificate from the peer queue manager o
r client at the other end of a WebSphere MQ channel. If the DN received from the peer does not match this v
alue, the channel does not start.

This is required only when SSL is configured for the MQSeries Client to Queue Managers communication.

MQSeries Header Properties
MQSC Adapter provides a set of context properties, specific to MQSeries, for use in your applications. You can use these
properties in pipeline components, in your orchestrations and in filter expressions. For easy programmatic access, MQMD,
MQXQH, MQCIH and MQIIH header structures can be directly accessed using these context properties.

All other MQSeries header structures (example: MQRFH) are supported by the MQSC Adapter. However, to access these
headers, you need to do so with custom pipeline components and retrieve them from the body of the message. If you are
setting them in the outbound message, then the pipeline component is responsible for ensuring that the message is
constructed correctly.

To assign MQSeries context properties to a message destined to a send port that is bound to MQSC Adapter, use the message
assignment operator and specify one of the available context properties in the MQSeries namespace.

The following is an example of setting the MQSeries MQMD_UserIdentifier property:

Message_2(MQSeries.MQMD_UserIdentifier) = "MeMyselfAndI";

You must obtain enumerated values from the C programming language header files included with the IBM MQSeries SDK. You
can find these files in the Program Files\IBM\WebSphere MQ\Tools\c\include folder. These files define the values to use when
setting or reading MQSeries context property values.

Hexadecimal string values are character strings representing binary values. They do not have a prefix such as 0x. They contain
digits from 0 through 9 and letters from "a" through "f" or "A" through "F". The adapter ignores white space in them.

For more information about these properties, see the IBM WebSphere MQ documentation.

In This Section

Message Descriptor Properties

Additional MQSeries Related Properties

See Also
Other Resources
Context Properties

https://msdn.microsoft.com/en-us/library/aa745874(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745998(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705423(v=bts.10).aspx

Message Descriptor Properties
The following table shows the complete set of available Message Descriptor (MQMD structure) properties and their
corresponding types and values. These are part of the MQSeries.dll assembly that is deployed with the server-based MQSeries
Adapter. The same assembly is used by the MQSC Adapter.

Name Type Length Value

MQMD_AccountingToken String 64 Hexadecimal string

MQMD_ApplIdentityData String 32 Hexadecimal string

MQMD_ApplOriginData String 4 String
Default: space

MQMD_BackoutCount unsigned int 4 Number
Read only
Default: 0

MQMD_CodedCharSetId unsigned int 4 Number
Default: 0

MQMD_CorrelId String 48 Hexadecimal string

MQMD_Encoding unsigned int 4 Number
Use header file value. Default: 0

MQMD_Expiry unsigned int 4 Number

MQMD_Feedback unsigned int 4 Number
Use header file value. Default: 0

MQMD_Format String 8 String
If set to MQXMIT, makes sure that the MQXQH properties have values.

MQMD_GroupID String 48 Hexadecimal string

MQMD_MsgFlags unsigned int 4 Number
Use header file value. Default: 0

MQMD_MsgId String 48 Hexadecimal string

MQMD_MsgSeqNumber unsigned int 4

MQMD_MsgType unsigned int 4 Number
Use header file value.

MQMD_Offset unsigned int 4

MQMD_OriginalLength unsigned int 4

MQMD_Persistence unsigned int 4 Number
Use header file value.

MQMD_Priority unsigned int 4 Number

MQMD_PutApplName string 28 String
Default: space

MQMD_PutApplType unsigned int 4 Number
Use header file value. Default: 0

MQMD_PutDate string 8 Date

MQMD_PutTime string 8 Time

MQMD_ReplyToQ string 48 String
Default: space

MQMD_ReplyToQMgr string 48 String
Default: space

MQMD_Report unsigned int 4 Number
Use header file value.

MQMD_UserIdentifier string 12 String

Contains the user identifier when you use the SSOAffiliateApplication property.

When receiving messages directly from MQSeries transmission queues, BizTalk Adapter for MQSeries formats the
transmission queue header properties (the MQXQH data structure) and places them in their corresponding context properties.
When sending messages directly to MQSeries transmission queues, the header properties are formatted and assigned values
from the corresponding context properties only if the MQMD_Format property has a value of MQXMIT. The following table
describes the properties.

Name Type Length Value

MQXQH_RemoteQMgrName String 48 string

MQXQH_RemoteQName String 48 string

Together with the properties listed earlier in this topic, the adapter populates the following Message Descriptor values
following the same rules. The adapter prefixes these property names with MQXQH_ instead of MQMD_, but otherwise they
map directly to those properties defined in the Message Descriptor table:

MQXQH_MsgDesc_AccountingToken

MQXQH_MsgDesc_ApplIdentityData

MQXQH_MsgDesc_ApplOriginData

MQXQH_MsgDesc_BackoutCount

MQXQH_MsgDesc_CodedCharSetId

MQXQH_MsgDesc_CorrelId

MQXQH_MsgDesc_Encoding

MQXQH_MsgDesc_Expiry

MQXQH_MsgDesc_Feedback

MQXQH_MsgDesc_Format

MQXQH_MsgDesc_MsgId

MQXQH_MsgDesc_MsgType

MQXQH_MsgDesc_Persistence

MQXQH_MsgDesc_Priority

MQXQH_MsgDesc_PutApplName

MQXQH_MsgDesc_PutApplType

MQXQH_MsgDesc_PutDate

MQXQH_MsgDesc_PutTime

MQXQH_MsgDesc_ReplyToQ

MQXQH_MsgDesc_ReplyToQMgr

MQXQH_MsgDesc_Report

MQXQH_MsgDesc_UserIdentifier

Additional MQSeries Related Properties
There are additional MQSeries-related properties included in the property schema and available for use within your BizTalk
Server application. These are applicable when dealing with CICS or IMS applications. The following table lists these properties.

Name Type Length Value

MQCIH_AbendCode String 4

MQCIH_ADSDescriptor unsigned int 4

MQCIH_AttentionId string 4

MQCIH_Authenticator string 8 Set to the SSO password when you use the SSOAffiliateApplication property.

MQCIH_CancelCode string 4

MQCIH_CompCode unsigned int 4

MQCIH_ConversationalTask unsigned int 4

MQCIH_CursorPosition unsigned int 4

MQCIH_ErrorOffset unsigned int 4

MQCIH_Facility string 16 Hexadecimal string

MQCIH_FacilityKeepTime unsigned int 4

MQCIH_FacilityLike String 4

MQCIH_Flags unsigned int 4

MQCIH_Format String

MQCIH_Function String 4

MQCIH_GetWaitInterval unsigned int 4

MQCIH_LinkType unsigned int 4

MQCIH_NextTransactionId String 4

MQCIH_OutputDataLength unsigned int 4

MQCIH_Reason unsigned int 4

MQCIH_ReplyToFormat String

MQCIH_ReturnCode unsigned int 4

MQCIH_StartCode String 4

MQCIH_TaskEndStatus unsigned int 4

MQCIH_TransactionId String 4

MQCIH_UOWControl unsigned int 4

MQIIH_Authenticator String 8 Set to the SSO password when you use the SSOAffiliateApplication property.

MQIIH_CommitMode String

MQIIH_Flags unsigned int 4

MQIIH_Format String

MQIIH_LTermOverride String 8

MQIIH_MFSMapName String 8

MQIIH_ReplyToFormat String

MQIIH_SecurityScope String

MQIIH_TranInstanceId String 32 Hexadecimal string

MQIIH_TranState String

Administration and Management Programmer's Reference
Host Integration Server 2009 included the following Windows Management Interface (WMI) providers to enable scripted
management.

For general information about programming for WMI providers, see Administration and Management Programmer's Guide
section of the SDK.

For sample code illustrating WMI providers, see Administration and Management Samples.

In This Section

Configuration Provider WMI Programmer's Reference

IPC-DLC WMI Programmer's Reference

SNA Trace Provider WMI Programmer’s Reference

SNA Status Provider WMI Programmer's Reference

SNA Provider WMI Programmer's Reference

MQBridge WMI Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771365(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745385(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745372(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770528(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770496(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746185(v=bts.10).aspx

Configuration Provider WMI Programmer's Reference
The Configuration Provider WMI Programmer's Reference describes the classes you can use to monitor the configuration of
Host Integration Server 2009.

In This Section

wmiHIS WMI Provider Classes

https://msdn.microsoft.com/en-us/library/aa705628(v=bts.10).aspx

wmiHIS WMI Provider Classes
Microsoft® Host Integration Server provider supplies information regarding the configuration of Host Integration Server. As
an instance provider, the wmiHIS provider implements the standard IWbemProviderInit interface and the following
IWbemServices methods:

CreateInstanceEnumAsync

DeleteInstanceAsync

GetObjectAsync

PutInstanceAsync

For more information on IWbemProviderInit and IWbemServices, see "COM API for WMI" in the MSDN Library at
http://msdn.microsoft.com/library.

You can access the WmiHIS provider classes in the \root\MicrosoftHIS namespace.

Class Description

MsHis_Locale Queries for locale support.

MsHis_CodePage Queries for code page support.

https://msdn.microsoft.com/en-us/library/aa754301(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704817(v=bts.10).aspx

MsHis_Locale
The MsHIS_Locale class is used to query for locale support.

The following syntax is simplified from MOF code.

Syntax

Properties
ID

Data Type: uint32

Qualifiers: Key

Access Type: Read-Only

The locale identifier. Used for internal reference.

Name

Data Type: String

Access Type: Read-Only

The locale name.

Available

Data Type: Boolean

Access Type: Read-Only

true if the locale is available on the system; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
wmiHIS WMI Provider Classes
Administration and Management Programmer's Guide

class MsHis_Locale : MsHis_Config
{
 uint32 ID;
 string Name;
 boolean Available;
};

https://msdn.microsoft.com/en-us/library/aa705628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHis_CodePage Class
The MsHIS_CodePage class is used to query for code page support.

The following syntax is simplified from MOF code.

Syntax

Properties
ID

Data Type: uint32

Qualifiers: Key

Access Type: Read-Only

The code page identifier. Used for internal reference.

Name

Data Type: String

Access Type: Read-Only

The name of the code page.

Available

Data Type: Boolean

Access Type: Read-Only

true if the code page is supported by code page translations using SNANLS; otherwise, false.

CodePage

Data Type: uint32

Access Type: Read-Only

The number of the NLS code page.

DBCSEnabled

Data Type: Boolean

Access Type: Read-Only

true if this code page supports Double Byte Character Sets; otherwise, false.

SBCSEnabled

Data Type: Boolean

Access Type: Read-Only

true if this code page supports Single Byte Character Sets; otherwise, false.

MBCSEnabled

class MsHis_CodePage : MsHis_Config
{
 uint32 ID;
 string Name;
 boolean Available;
 uint32 CodePage;
 boolean DBCSEnabled;
 boolean SBCSEnabled;
 boolean MBCSEnabled;
 boolean EuroEnabled;
};

Data Type: Boolean

Access Type: Read-Only

true if this code page supports Multi-Byte Character Sets; otherwise, false.

EuroEnabled

Data Type: Boolean

Access Type: Read-Only

true if this code page has Euro support; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
wmiHIS WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705628(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

IPC-DLC WMI Programmer's Reference
The IPC-DLC WMI Programmer's Reference describes the classes you can use to monitor the Host Integration Server 2009 link
service.

In This Section

WmiSnaLinkServiceMS WMI Provider Classes

https://msdn.microsoft.com/en-us/library/aa705697(v=bts.10).aspx

WmiSnaLinkServiceMS WMI Provider Classes
The following table describes the Common Information Model (CIM) classes used by the WmiSnaLinkService instance and
method Windows Management Instrumentation (WMI) provider.

Class Description

MsSna_LinkService SNA Link service base class.

MsSna_LinkService_IpDlc SNA IP-DLC link service.

https://msdn.microsoft.com/en-us/library/aa745671(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770925(v=bts.10).aspx

MsSna_LinkService Class
The abstract MsSna_LinkService class represents an SNA link service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key, MaxLen(8) Access Type: Read-Only

A US_ASCII string containing the name of the link service. The name will be assigned automatically for a new link service.

DllName

Data Type: StringAccess Type: Read-Only

The name of the .dll that implements the link service.

IsRemotable

Data Type: BooleanAccess Type: Read/Write

true if the link service can be used from a remote node; otherwise, false.

Title

Data Type: StringQualifiers: MaxLen(255) Access Type: Read/Write

The title of the link service, up to 128 symbols long.

DriverName

Data Type: String Access Type: Read-Only

The device driver associated with the link service.

Type

Data Type: uint32 Access Type: Read-Only

The type of link service. The following table describes the possible values for Type.

Value Meaning

3 SDLC

4 X25

10 DFT

11 DLC8022

31 TWINAX

class MsSna_LinkService
{
 String Name;
 String DllName;
 Boolean IsRemotable;
 String Title;
 String DriverName;
 uint32 Type;
}

32 CHANNEL

35 IPDLC

Requirements

Windows Server 2003, Windows XP Professional, Windows 2000

See Also
Other Resources
WmiSnaLinkServiceMS WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LinkService_IpDlc Class
The MsSna_LinkService_IpDlc class represents the SNA IP-DLC link service.

The following syntax is simplified from MOF code and includes all inherited properties. For reference information about
methods, see the table of methods later in this topic.

Syntax

Properties
Name

Data Type: String Qualifiers: Key, MaxLen(8) Access Type: Read-Only

A US_ASCII string containing the name of the link service. The name will be assigned automatically for a new link service.

DllName

Data Type: StringAccess Type: Read-Only

The name of the .dll that implements the link service.

IsRemotable

Data Type: BooleanAccess Type: Read/Write

true if the link service can be used from a remote node; otherwise, false. IsRemotable is always false for the IP-DLC link
service.

Title

Data Type: StringQualifiers: MaxLen(255) Access Type: Read/Write

The title of the link service, up to 128 symbols long.

DriverName

Data Type: String Access Type: Read-Only

The device driver associated with the link service. DriverName is used for the IP-DLC link service.

Type

Data Type: uint32 Access Type: Read-Only

The type of link service. The following table describes the possible values for Type.

Value Meaning

3 SDLC

Class MsSna_LinkService_IpDlc : MsSNA_LinkService
{
 String Name;
 String DllName;
 Boolean IsRemotable;
 String Title;
 String DriverName;
 uint32 Type;
 String PrimaryNNS;
 String BackupNNS;
 uint32 AddressType;
 String LocalAddress;
 String NetworkName;
 String CPName;
 String NodeID;
 String LENNode;
 String ResolvedIP;
}

4 X25

10 DFT

11 DLC8022

31 TWINAX

32 CHANNEL

35 IPDLC

As an IP-DLC link service, MsSna_LinkService_IpDlc.Type will always be set to 35.

PrimaryNNS

Data Type: String Qualifiers: MaxLen(128) Access Type: Read/Write

Contains the name of the primary NNS server.

BackupNNS

Data Type: String Qualifiers: MaxLen(1024) Access Type: Read-Only

Contains the list of backup NNS delimited with semicolons. While BackupNNS may contain additional names, the current
build is tested only for BackupNNS to be equal to the PrimaryNNS.

AddressType

Data Type: uint32 Access Type: Read/Write

Describes the local address type. The following table describes the possible values of AddressType.

Value Description

1 ADAPTER

2 STATICIP

LocalAddress

Data Type: String Qualifiers: MaxLen(256) Access Type: Read/Write

Contains the local network adapter or address. If AddressType contains a 1, LocalAddress will contain a valid network
adapter; otherwise, LocalAddress contains a static IP address.

NetworkName

Data Type: String Qualifiers: MaxLen(8), ToUpperCase Access Type: Read/Write

The network name of the Branch Network Node as implemented by the link service. The string will be a Type A string
containing up to eight symbols.

CPName

Data Type: String Qualifiers: MaxLen(8), ToUpperCase Access Type: Read/Write

Control point name of the Branch Network Node as implemented by the link service. The string will be a Type A string
containing up to eight symbols.

NodeID

Data Type: String Qualifiers: MaxLen(9) Access Type: Read/Write

The identity of the Branch Network Node as implemented by the link service. NodeID will be in format HHH.HHHHH, where
H is a hexadecimal digit.

LENNode

Data Type: String Qualifiers: MaxLen(20) Access Type: Read/Write

Data Type: String Qualifiers: MaxLen(20) Access Type: Read/Write

The name of the Associated LEN node.

ResolvedIP

Data Type: String Access Type: Read-only

The resolved IP address of the network adapter or local address.

Methods

The following table describes the methods implemented for the MsSna_LinkService_IpDlc class.

Method Description

GetAllStaticIPs Returns the list of all the static IP addresses on the local machine.

GetAllNetworkAdapters Returns the list of all network adapters with the IP protocols enabled.

GetNextAvailableOrdinal Internal. Provides the next available link service number.

Requirements

Windows Server 2003, Windows XP Professional, Windows 2000

See Also
Other Resources
WmiSnaLinkServiceMS WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754025(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770560(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771950(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LinkService_IpDlc.GetAllStaticIPs Method
The GetAllStaticIPs method returns the list of all the static IP addresses on the local machine.

Syntax

Parameters
IPs

[out] Returns an array of strings containing the static IP addresses on the local machine.

Requirements

Windows Server 2003, Windows XP Professional, Windows 2000

See Also
Reference
MsSna_LinkService_IpDlc Class
Other Resources
WmiSnaLinkServiceMS WMI Provider Classes
Administration and Management Programmer's Guide

void GetAllStaticIps(
 string IPs[]
);

https://msdn.microsoft.com/en-us/library/aa770925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LinkService_IpDlc.GetAllNetworkAdapters Method
The GetAllNetworkAdapters method returns the list of all network adapters with the IP protocols enabled.

Syntax

Parameters
Adapters

[out] Returns an array of strings containing the network adapters with the IP protocols enabled.

Requirements

Windows Server 2003, Windows XP Professional, Windows 2000

See Also
Reference
MsSna_LinkService_IpDlc Class
Other Resources
WmiSnaLinkServiceMS WMI Provider Classes
Administration and Management Programmer's Guide

void GetAllNetworkAdapters(
 string Adapters[]
);

https://msdn.microsoft.com/en-us/library/aa770925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LinkService_IpDlc.GetNextAvailableOrdinal Method
Internal. The GetNextAvailableOrdinal method returns the next available link service number.

Syntax

Return Value

The next available link service number.

Remarks

GetNextAvailableOrdinal is an internal method, and as such should not be used by third parties.

Requirements

Windows Server 2003, Windows XP Professional, Windows 2000

See Also
Reference
MsSna_LinkService_IpDlc Class
Other Resources
WmiSnaLinkServiceMS WMI Provider Classes
Administration and Management Programmer's Guide

uint32 GetNextAvailableOrdinal()

https://msdn.microsoft.com/en-us/library/aa770925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705697(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

SNA Trace Provider WMI Programmer’s Reference
The SNA Trace Provider WMI Programmer's Reference describes the Windows Management Instrumentation (WMI) classes
you can use to capture trace messages from your Host Integration Server 2009 enterprise application.

For more information, see How to Capture a Trace with WMI.

In This Section

WmiSnaTrace WMI Provider Classes

https://msdn.microsoft.com/en-us/library/aa770961(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx

WmiSnaTrace WMI Provider Classes
The Microsoft Host Integration Server SNA Trace provider supplies information regarding the SNA service trace. As an instance
and method provider, the WmiSnaStatus provider implements the standard IWbemProviderInit interface and the following
IWbemServices methods:

CreateInstanceEnumAsync

DeleteInstanceAsync

ExecMethodAsync

GetObjectAsync

PutInstanceAsync

For more information on IWbemProviderInit and IWbemServices, see "COM API for WMI" in the MSDN Library at
http://msdn.microsoft.com/library.

You can access these provider classes in the \root\MicrosoftHIS namespace.

Class Description

MsHisTrace_Global Contains the global settings for Host Integration Server tracing.

MsHisTrace_COMTI Describes tracing properties for Transaction Integrator (TI).

MsHisTrace_SharedFoldersGateway Contains tracing properties for the Shared Folders Gateway service.

MsHisTrace_SNAApplication Contains tracing properties for any application that runs on top of Host Integration Server
 2009.

MsHisTrace_SNAManageClient Contains tracing properties for the SNA Manage Client.

MsHisTrace_SNAMngAgent Contains tracing properties for the SNA Manage Agent.

MsHisTrace_SNAServerManager Contains tracing properties for the SNA Manager.

MsHisTrace_SNABase Contains tracing properties for the SNA Base service.

MsHisTrace_SNANetMn Contains tracing properties for an SNA Net Manager.

MsHisTrace_SNAPrint Contains tracing properties for the Host Print service.

MsHisTrace_SNAServer Contains tracing properties for an SNA service

MsHisTrace_TN3270 Contains tracing properties for the TN3270 service.

MsHisTrace_Config Contains tracing properties for the TN5250 service.

MsHisTrace_ExtendedStatus Returns error information.

MsHisTrace_Event Retrieves error information.

https://msdn.microsoft.com/en-us/library/aa744716(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744909(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771104(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745604(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744381(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771248(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771459(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771858(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744338(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754784(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754432(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744969(v=bts.10).aspx

MsHisTrace_Config Class
The abstract MsHisTrace_Config class describes the general properties of a configuration file.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes

class MsHisTrace_Config
{
 string Name;
};

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx

MsHisTrace_Global Class
The MsHisTrace_Global class contains the global settings for Microsoft® Host Integration Server tracing.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

AsyncThreadPriority

Data Type: uint32 Access Type: Read/Write

If AsyncTraceFlag is true, AsyncThreadFlag specifies the level of priority for tracing to run within the Windows® operating
system.

AsyncTraceFlag

Data Type: Boolean Access Type: Read/Write

true to cause tracing to be run on a background thread; otherwise, false.

FlipLength

Data Type: uint32 Access Type: Read/Write

The size a trace file should be before the trace utility switches to recording trace data in a second file.

TraceFileDirectory

Data Type: String Access Type: Read/Write

The directory in which to store trace files.

Requirements

Platforms: Microsoft Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

class MsHisTrace_Global : MsHisTrace_Config
{
 string Name;
 uint32 AsyncThreadPriority;
 Boolean AsyncTraceFlag;
 uint32 FlipLength;
 string TraceFileDirectory;
};

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_COMTI Class
The MsHisTrace_COMTI class describes tracing properties for Transaction Integrator (TI).

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Qualifiers: Qualifiers Access Type: Read-Only

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

class MsHisTrace_COMTI : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean DPLHeaderTrace;
 Boolean LU62Trace;
 Boolean BriefLU62Trace;
 Boolean COMTIProxy;
 Boolean PipeLine;
 Boolean BlackBoard;
 Boolean GeneralService;
 Boolean Repository;
 Boolean DataTransit;
 Boolean DataLayout;
 Boolean Conversions;
 Boolean Transport;
 Boolean Registrar;
 Boolean Scripting;
 Boolean SessionManager;
};

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

DPLHeaderTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of DPL Headers; otherwise, false.

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

BriefLU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable a briefer version LU 6.2 tracing; otherwise, false.

COMTIProxy

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the COMPI Proxy API; otherwise, false.

PipeLine

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the PipeLine API; otherwise, false.

BlackBoard

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the BlackBoard API; otherwise, false.

GeneralService

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the GeneralService API; otherwise, false.

Repository

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the Repository API; otherwise, false.

DataTransit

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the DataTransit API; otherwise, false.

Conversions

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the Conversions API; otherwise, false.

Transport

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the Transport API; otherwise, false.

Registrar

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the Registrar API; otherwise, false.

Scripting

Data Type: Boolean Access Type: Read/Write

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the Scripting API; otherwise, false.

SessionManager

Data Type: Boolean Access Type: Read/Write

true to enable tracing of the SessionManager API; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SharedFoldersGateway Class
The MsHisTrace_SharedFoldersGateway class contains tracing properties for the Shared Folders Gateway service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

class MsHisTrace_SharedFoldersGateway : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean APPCTrace;
 Boolean CPICTrace;
 Boolean LUATrace;
 Boolean CSVTrace;
};

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

APPCTrace

Data Type: Boolean Access Type: Read/Write

true to enable APPC tracing; otherwise, false.

CPICTrace

Data Type: Boolean Access Type: Read/Write

true to enable CPI-C tracing; otherwise, false.

LUATrace

Data Type: Boolean Access Type: Read/Write

true to enable LUA tracing; otherwise, false.

CSVTrace

Data Type: Boolean Access Type: Read/Write

true to enable CSV tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNAApplication Class
The MsHisTrace_SNAApplication class contains tracing properties for any application that runs on top of Host Integration
Server 2009.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap indicating which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

class MsHisTrace_SNAApplication : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean APPCTrace;
 Boolean CPICTrace;
 Boolean LUATrace;
 Boolean CSVTrace;
};

true to enable T3270 tracing; otherwise, false.

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

APPCTrace

Data Type: Boolean Access Type: Read/Write

true to enable APPC tracing; otherwise, false.

CPICTrace

Data Type: Boolean Access Type: Read/Write

true to enable CPI-C tracing; otherwise, false.

LUATrace

Data Type: Boolean Access Type: Read/Write

true to enable LUA tracing; otherwise, false.

CSVTrace

Data Type: Boolean Access Type: Read/Write

true to enable CSV tracing; otherwise, false.

Requirements

Platforms: Microsoft Windows Server 2003, Windows XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNAManageClient Class
The MsHisTrace_SNAManageClient contains tracing properties for the SNA Manage Client.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap indicating which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

class MsHisTrace_SNAManageClient : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
};

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNAMngAgent Class
The MsHisTrace_SNAMngAgent class contains tracing properties for the SNA Manage Agent.

The following syntax is simplified from MOF code.

Syntax

Remarks
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap indicating which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

class MsHisTrace_SNAMngAgent : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
};

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNAServerManager Class
The MsHisTrace_SNAServerManager class contains tracing properties for the SNA Manager.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap indicating which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

class MsHisTrace_SNAServerManager : MsHisTrace_Config
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean APPCTrace;
 Boolean CPICTrace;
 Boolean LUATrace;
 Boolean CSVTrace;
};

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

APPCTrace

Data Type: Boolean Access Type: Read/Write

true to enable APPC tracing; otherwise, false.

CPICTrace

Data Type: Boolean Access Type: Read/Write

true to enable CPI-C tracing; otherwise, false.

LUATrace

Data Type: Boolean Access Type: Read/Write

true to enable LUA tracing; otherwise, false.

CSVTrace

Data Type: Boolean Access Type: Read/Write

true to enable CSV tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNABase Class
The MsHisTrace_SNABase class contains tracing properties for the SNA Base service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

LU62Trace

Data Type: Boolean Access Type: Read/Write

class MsHisTrace_SNABase : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
}

true to enable LU 6.2 tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNANetMn Class
The MsHisTrace_SNANetMn class contains SNA Net Management trace content.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

LU62Trace

Data Type: Boolean Access Type: Read/Write

class MsHisTrace_SNANetMn : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean DLCTrace;
 Boolean SnaTrace;
};

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

DLCTrace

Data Type: Boolean Access Type: Read/Write

true to enable DLC tracing; otherwise, false.

SnaTrace

Data Type: Boolean Access Type: Read/Write

true to enable SNA tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNAPrint Class
The MsHisTrace_SNAPrint class contains tracing properties for the Host Print service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

class MsHisTrace_SNAPrint : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean APPCTrace;
 Boolean CPICTrace;
 Boolean LUATrace;
 Boolean CSVTrace;
};

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

APPCTrace

Data Type: Boolean Access Type: Read/Write

true to enable APPC tracing; otherwise, false.

CPICTrace

Data Type: Boolean Access Type: Read/Write

true to enable CPI-C tracing; otherwise, false.

LUATrace

Data Type: Boolean Access Type: Read/Write

true to enable LUA tracing; otherwise, false.

CSVTrace

Data Type: Boolean Access Type: Read/Write

true to enable CSV tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_SNAServer Class
The MsHisTrace_SNAServer class represents tracing properties for an SNA service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Indicates which Internal Trace conditions to record. The following table describes the possible values for EnabledTraces.

Value Description

class MsHisTrace_SNAServer : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean DLCTrace;
 Boolean SnaTrace;
};

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

DLCTrace

Data Type: Boolean Access Type: Read/Write

true to enable DLC tracing; otherwise, false.

SnaTrace

Data Type: Boolean Access Type: Read/Write

true to enable SNA tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_TN3270 Class
The MsHisTrace_TN3270 class contains tracing properties for the TN3270 service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

class MsHisTrace_TN3270 : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean APPCTrace;
 Boolean CPICTrace;
 Boolean LUATrace;
 Boolean CSVTrace;
 Boolean TraceState;
}

true to enable T3270 tracing; otherwise, false.

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

APPCTrace

Data Type: Boolean Access Type: Read/Write

true to enable APPC tracing; otherwise, false.

CPICTrace

Data Type: Boolean Access Type: Read/Write

true to enable CPI-C tracing; otherwise, false.

LUATrace

Data Type: Boolean Access Type: Read/Write

true to enable LUA tracing; otherwise, false.

CSVTrace

Data Type: Boolean Access Type: Read/Write

true to enable CSV tracing; otherwise, false.

TraceState

Data Type: Boolean Access Type: Read/Write

true to enable the TN3270 Internal Trace; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_Config Class
The MsHisTrace_Config class contains tracing properties for the TN5250 service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read/Write

Name of the configuration file.

EnabledTraces

Data Type: uint32 Access Type: Read/Write

Bitmap that indicates which Internal Trace conditions to record. The following table describes the possible values for
EnabledTraces.

Value Description

1 Fatal trace mask

2 Error trace mask

4 Debug trace mask

8 State trace mask

16 Function trace mask

32 Message trace mask

64 Custom trace mask

128 Plan enter exit mask

InternalMessageTrace

Data Type: Boolean Access Type: Read/Write

true to enable tracing of internal messages; otherwise, false.

T3270Trace

Data Type: Boolean Access Type: Read/Write

true to enable T3270 tracing; otherwise, false.

class MsHisTrace_TN5250 : MsHisTrace_Config
{
 string Name;
 uint32 EnabledTraces;
 Boolean InternalMessageTrace;
 Boolean T3270Trace;
 Boolean LU62Trace;
 Boolean APPCTrace;
 Boolean CPICTrace;
 Boolean LUATrace;
 Boolean CSVTrace;
};

LU62Trace

Data Type: Boolean Access Type: Read/Write

true to enable LU 6.2 tracing; otherwise, false.

APPCTrace

Data Type: Boolean Access Type: Read/Write

true to enable APPC tracing; otherwise, false.

CPICTrace

Data Type: Boolean Access Type: Read/Write

true to enable CPI-C tracing; otherwise, false.

LUATrace

Data Type: Boolean Access Type: Read/Write

true to enable LUA tracing; otherwise, false.

CSVTrace

Data Type: Boolean Access Type: Read/Write

true to enable CSV tracing; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_ExtendedStatus Class
The MsHisTrace_ExtendedStatus class returns error information.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

class MsHisTrace_ExtendedStatus : __ExtendedStatus
{
};

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisTrace_Event Class
The MsHisTrace_Event class retrieves error information.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Access Type: Read/Write

Name of the event that occurred.

PathToObj

Data Type: String Access Type: Read/Write

Path to the object that describes the event.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WmiSnaTrace WMI Provider Classes
Administration and Management Programmer's Guide

class MsHisTrace_Event : __ExtrinsicEvent
{
 string Name;
 string PathToObj;
};

https://msdn.microsoft.com/en-us/library/aa744703(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

SNA Status Provider WMI Programmer's Reference
The SNA Status Provider WMI Programmer's Reference describes the Windows Management Instrumentation (WMI) classes
you can use to monitor the health of your SNA servers for Host Integration Server 2009.

For more information, see How to Monitor the Health of Host Integration Server with WMI.

In This Section

WmiSnaStatus WMI Provider Classes

https://msdn.microsoft.com/en-us/library/aa771734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx

WmiSnaStatus WMI Provider Classes
The Microsoft® Host Integration Server SNA Status provider supplies information regarding the SNA service status. As an
instance and method provider, the WmiSnaStatus provider implements the standard IWbemProviderInit interface and the
following IWbemServices methods:

CreateInstanceEnumAsync

DeleteInstanceAsync

ExecMethodAsync

ExecQueryAsync

GetObjectAsync

PutInstanceAsync

For more information on IWbemProviderInit and IWbemServices, see "COM API for WMI" in the MSDN Library at
http://msdn.microsoft.com/library.

The WmiSnaStatus.mof and WmiSnaStatus_XP file contains the WMISNA provider, and association and registration classes.
You can access these provider classes in the \root\MicrosoftHIS namespace.

Class Description

MsSnaStatus_EventServiceSna Describes a change to the EventServiceSna class.

MsSnaStatus_EventConnection Describes a change to the EventConnection class

MsSnaStatus_EventLu3270 Describes a change to the EventLu3270 class.

MsSnaStatus_EventUser Describes a change to the EventUser class.

MsSnaStatus_EventAppcLocalLu Describes a change to the EventAppcLocalLu class.

MsSnaStatus_EventAppcSession Describes a change to the EventAppcSession class.

MsSnaStatus_EventServicePrint Describes a change to the EventServicePrint class.

MsSnaStatus_EventPrintSession Describes a change to the EventPrintSession class.

MsSnaStatus_EventServiceTN3270 Describes a change to the EventServiceTN3270 class.

MsSnaStatus_EventTN3270Session Describes a change to the EventTN3270Session class.

MsSnaStatus_EventServiceTN5250 Describes a change to the EventTN5250Session class.

MsSnaStatus_EventServiceSharedFolder Describes a change to the EventServiceSharedFolder class.

SNA_ExtendedStatus Used to return error information if required.

MsSnaStatus_ServiceSna Get information on the status of the SNA service.

MsSnaStatus_Connection Represents a SNA Service connection status.

MsSnaStatus_Lu3270 Represents a SNA Service display LU, printer LU, or LUA LU status.

MsSnaStatus_ClientConnections Represents a SNA Service client connection status.

https://msdn.microsoft.com/en-us/library/aa746016(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705404(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745023(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771239(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771425(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745795(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745021(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746062(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770810(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705467(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744981(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754027(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744702(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745861(v=bts.10).aspx

MsSnaStatus_AppcLocalLu Represents an APPC Local LU status.

MsSnaStatus_AppcSession Represents an APPC session status.

MsSnaStatus_ServicePrint Represents an Host Printer service status.

MsSnaStatus_PrintSession Represents an Host Printer session status.

MsSnaStatus_ServiceTN3270 Represents a TN3270 service status.

MsSnaStatus_TN3270Session Represents a TN3270 session status.

MsSnaStatus_ServiceTN5250 Represents a TN5250 service status.

MsSnaStatus_TN5250Session Represents a TN5250 session status.

MsSnaStatus_ServiceSharedFolder Represents a TN3270 service status.

MsSnaStatus_Lu3270ToActiveUser Represents an association between a User connection and a 3270 type LU.

MsSnaStatus_APPCSessionToActiveUser Represents an association between a User connection and an APPC session.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

https://msdn.microsoft.com/en-us/library/aa744766(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704811(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770929(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772069(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744696(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745413(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770989(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771934(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745675(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704846(v=bts.10).aspx

MsSnaStatus_EventServiceSna Class
The MsSnaStatus_EventServiceSna class describes a change to the EventServiceSna class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes

class MsSnaStatus_EventServiceSna : MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx

MsSnaStatus_EventConnection Class
The MsSnaStatus_EventConnection class describes a change to the EventConnection class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventConnection: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventLu3270 Class
The MsSnaStatus_EventLu3270 class describes a change to the EventLu3270 class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventLu3270: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventUser Class
The MsSnaStatus_EventUser class describes a change to the EventUser class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventUser: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventAppcLocalLu Class
The MsSnaStatus_EventAppcLocalLu class describes a change to the EventAppcLocalLu class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server2003

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventAppcLocalLu: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventAppcSession Class
The MsSnaStatus_EventAppcSession class describes a change to the EventAppcSession class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventAppcSession: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventServicePrint Class
The MsSnaStatus_EventServicePrint class describes a change to the EventServicePrint class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventServicePrint: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventPrintSession Class
The MsSnaStatus_EventPrintSession class describes a change to the EventPrintSession class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventPrintSession: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventServiceTN3270 Class
The MsSnaStatus_EventServiceTN3270 class describes a change to the EventServiceTN3270 class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventServiceTN3270: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventTN3270Session Class
The MsSnaStatus_EventTN3270Session class describes a change to the EventTN3270Session class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventTN3270Session: MsSnaStatus_Event
{
 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventServiceTN5250 Class
The MsSnaStatus_EventServiceTN5250 class describes a change to the EventServiceTN5250 class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventServiceTN5250: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventTN5250Session Class
The MsSnaStatus_EventTN5250 class describes a change to the EventTN5250Session class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventTN5250Session: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_EventServiceSharedFolder Class
The MsSnaStatus_EventServiceSharedFolder class describes a change to the EventServiceSharedFolder class.

The following syntax is simplified from MOF code.

Syntax

Remarks
Path

Data Type: Object refAccess Type: Read-Only

The relative path to the corresponding object.

Action

Data Type: sint16 Access Type: Read-Only

The event that occurred to the object specified in Path. The following table describes the valid values for Action.

Value Description

0 Create

1 Destroy

2 Modify

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_EventServiceSharedFolder: MsSnaStatus_Event

 object ref Path;
 sint16 Action;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

SNA_ExtendedStatus Class
Used to return error information if required

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_ExtendedStatus : __ExtendedStatus
{
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSna Class
The MsSnaStatus_ServiceSna class is used to get information on the status of the SNA service.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The name of the service. The string can contain more than one service, in the following format:<ComputerName>,
<ComputerName>.01, <ComputerName>.02, <ComputerName>.03

Status

Data Type: sint32 Access Type: Read-Only

The current status of the service. The following table describes the possible values for Status.

Value Description

0

1 Inactive

2 Pending

3 Stopping

4 Active

StatusText

Data Type: String Access Type: Read-Only

One of the status values.

bOutOfDate

Data Type: Boolean Access Type: Read-Only

true indicates that the configuration has changed and that the service must be restarted; otherwise, false.

AppcSessions

Data Type:uint16 Access Type: Read-Only

Statistics on APPC sessions on the service.

LU3270Sessions

Data Type:uint16 Access Type: Read-Only

Statistics on LU 3270 sessions on the service.

class MsSnaStatus_ServiceSna : MsSnaStatus_Config
{
 string Name;
 sint32 Status;
 string StatusText;
 Boolean bOutOfDate;
 uint16 AppcSessions;
 uint16 LU3270Sessions;
 uint16 Users;
}

Users

Data Type:uint16 Access Type: Read-Only

Statistics on users on the service.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Start Starts the service.

Stop Stops the service.

Pause Pauses the service.

Resume Resumes the service.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Remarks

There may be more than one service running on a computer.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa770823(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745863(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705460(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705136(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSna.Start Method
Starts the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSna.Stop Method
Stops the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSna.Pause Method
Pauses the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Pause();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSna.Resume Method
Resumes the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Resume();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_Connection Class
The MsSnaStatus_Connection class represents a SNA service connection status.

The following is simplified MOF syntax.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The name of the connection.

ServiceName

Data Type: String Access Type: Read-Only

Name of the SNA service to which this connection belongs.

Status

Data Type: uint32 Access Type: Read-Only

Name of the SNA service to which this connection belongs.

Value Description

0

1 Inactive

2 Pending

3 Stopping

4 Active

StatusText

Data Type: String Access Type: Read-Only

One of the status values. The following table describes the potential values for StatusText.

Value Description

0

1 Stopping

2 Active

class MsSnaStatus_Connection : MsSnaStatus_Config
{
 string Name;
 string ServiceName;
 uint32 Status;
 string StatusText;
 uint32 InactiveState;
 uint16 Failcode;
 DateTime FailTime;
}

3 Incoming

4 OnDemand

5 OnDemandIncoming

InactiveState

Data Type: uint32 Access Type: Read-Only

Additional detail on inactive connections. The following table describes the possible values for InactiveState.

Value Description

0 Inactive

1 Incoming

2 OnDemand

3 OnDemandIncoming

Failcode

Data Type: uint16 Access Type: Read-Only

The failure code. 0 indicates a non-failure.

FailTime

Data Type: DateTime Access Type: Read-Only

The time the failure occurred. Valid only if Failcode is not 0.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Start Starts the connection.

Stop Stops the connection.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705128(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_Connection.Start Method
Starts the connection.

Syntax

Requirements

Platforms: Windows 2000, Windows XP Professional, Windows Server 2003

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_Connection.Stop Method
Stops the connection.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_Lu3270 Class
The MsSnaStatus_Lu3270 class represents a SNA Service display LU, printer LU, or LUA LU status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The name of the LU.

ConnectionName

Data Type: String Access Type: Read-Only

The connection on which this LU is defined.

Status

Data Type: uint32 Access Type: Read-Only

The current status of the connection. The following table describes the potential values for Status.

Value Description

0

1 Inactive

2 Pending

3 Stopping

4 Active

StatusText

Data Type: String Access Type: Read-Only

One of the status values. The following table describes the potential values for StatusText.

Value Description

0

1 Inactive

2 Pending

3 Stopping

class MsSnaStatus_Lu3270 : MsSnaStatus_Config
{
 string Name;
 string ConnectionName;
 uint32 Status;
 string StatusText;
 uint32 ActiveState;
 string HostAppl;
}

4 Available

5 InSession

6 SSCP

ActiveState

Data Type: uint32 Access Type: Read-Only

Additional detail on active ULs. The following table describes the possible values for ActiveState.

Value Description

0 Available

1 InSession

2 SSCP

HostAppl

Data Type: string Access Type: Read-Only

The short name of the host application.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Stop Stops the LU.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

https://msdn.microsoft.com/en-us/library/aa705168(v=bts.10).aspx

MsSnaStatus_Lu3270.Stop Method
Stops the LU.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ClientConnections Class
The MsSnaStatus_ClientConnections class represents a SNA service client connection status.

Syntax

Properties
UserId

Data Type: String Qualifiers: Key Access Type: Read-Only

An arbitrary unique key.

Domain

Data Type: String Access Type: Read-Only

The domain on which the user is located.

User

Data Type: String Access Type: Read-Only

The username of the user.

ClientMachine

Data Type: String Access Type: Read-Only

The computer name on which the client application is running.

ClientConnectTime

Data Type: DateTime Access Type: Read-Only

The client-server connection start time.

ClientAppl

Data Type: string Access Type: Read-Only

The name of the client application.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

For more information on GetObject and EnumerateInstances, see "IWbemServices interface" in the MSDN Library at
http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference

class MsSnaStatus_ClientConnections : MsSnaStatus_Config
{
 string UserId;
 string Domain;
 string User;
 string ClientMachine;
 DateTime ClientConnectTime;
 string ClientAppl;
};

WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_AppcLocalLu Class
The MsSnaStatus_AppcLocalLu class represents an APPC Local LU status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The Local LU alias.

ServiceName

Data Type: String Access Type: Read-Only

The name of the SNA service on which this Local LU is defined.

SessionLimit

Data Type: uint16 Access Type: Read-Only

The session limit for the LU.

SessionCount

Data Type: uint16 Access Type: Read-Only

The current session count.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

For more information on GetObject and EnumerateInstances, see "IWbemServices interface" in the MSDN Library at
http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_AppcLocalLu : MsSnaStatus_Config
{
 string Name;
 string ServiceName;
 uint16 SessionLimit;
 uint16 SessionCount;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_AppcSession Class
The MsSnaStatus_AppcSession class represents an APPC session status.

Syntax

Properties
APPCLU

Data Type: String Qualifiers: Key Access Type: Read-Only

The Local APPC LU.

SessionID

Data Type: String Access Type: Read-Only

A unique ID for this session.

PartnerLU

Data Type: String Access Type: Read-Only

The Partner LU alias. PartnerLU can be a Remote LU or another Local LU.

Mode

Data Type: String Access Type: Read-Only

The mode name for this session.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Stop Stops the session.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_AppcSession : MsSnaStatus_Config
{
 string APPCLU;
 string SessionID;
 string PartnerLU;
 string Mode;
};

https://msdn.microsoft.com/en-us/library/aa705657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_AppcSession.Stop Method
Stops the session.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServicePrint Class
The MsSnaStatus_ServicePrint class represents an SNA Print service status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The name of the Print Service. Name will be the same as the computer name.

Status

Data Type: sint32 Access Type: Read-Only

The current status of the service. The following table describes the possible values for Status.

Value Description

0 Inactive

1 Pending

2 Stopping

3 Active

StatusText

Data Type: String Access Type: Read-Only

One of the Status values.

Mode

Data Type: String Access Type: Read-Only

The mode name for this session.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Start Starts the print service.

Stop Stops the print service

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

class MsSnaStatus_ServicePrint : MsSnaStatus_Config
{
 string Name;
 sint32 Status;
 string StatusText;
};

https://msdn.microsoft.com/en-us/library/aa770920(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753909(v=bts.10).aspx

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServicePrint.Start Method
Starts the print service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServicePrint.Stop Method
Stops the print service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession Class
The MsSnaStatus_PrintSession class represents an SNA Print session status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

A unique ID for the session.

Status

Data Type: sint32 Access Type: Read-Only

The current status of the service. The following table describes the possible values for Status.

Value Description

0 Inactive

1 Pending

2 Stopping

3 Active

StatusText

Data Type: String Access Type: Read-Only

One of the Status values. The following describes the possible values for StatusText.

Value

Inactive

Pending

Stopping

Spooling

Printing

Paper Out

Printer Offline

Printer Error

class MsSnaStatus_PrintSession : MsSnaStatus_Config
{
 string Name;
 uint32 Status;
 string StatusText;
 uint32 PrintState;
 uint16 Type;
}

Printer Paused

Printer Idle

InSession

Ready

Paused

Unknown

PrintState

Data Type: String Access Type: Read-Only

The printer state that indicates the status of the printer or any printer errors. The following table describes the possible
values for PrintState.

Value

Spooling

Printing

Paper Out

Printer Offline

Printer Error

Printer Paused

Printer Idle

InSession

Ready

Paused

Unknown

Type

Data Type: uint16 Access Type: Read-Only

The type of print session. The following table describes the possible values for Type.

Value Description

0 3270

1 APPC

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Start Starts the print session.

Stop Stops the print session.

Pause Pauses the print session.

Restart Restarts the print session.

PA1Key Simulates pressing the PA1Key.

PA2Key Simulates pressing the PA2Key.

Cancel Cancels the print session.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa705662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771014(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745990(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705405(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754329(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771257(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753917(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.Start Method
Starts the print session.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.Stop Method
Stops the print session.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.Pause Method
Pauses the print session.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Pause();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.Restart Method
Restarts the print session.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Restart();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.PA1Key Method
Simulates pressing the PA1 key.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void PA1Key();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.PA2Key Method
Simulates pressing the PA2 key.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void PA2Key();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_PrintSession.Cancel Method
Cancels the print session.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Cancel();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceTN3270 Class
The MsSnaStatus_ServiceTN3270 class represents a TN3270 service status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The service name. Name will be identical to the local computer name.

Status

Data Type: sint32 Access Type: Read-Only

The current status of the service. The following table describes the possible values for Status.

Value Description

0

1 Inactive

2 Pending

3 Stopping

4 Active

StatusText

Data Type: String Access Type: Read-Only

One of the status values.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Start Starts the service.

Stop Stops the service.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

class MsSnaStatus_ServiceTN3270 : MsSnaStatus_Config
{
 string Name;
 sint32 Status;
 string StatusText;
}

https://msdn.microsoft.com/en-us/library/aa746131(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754083(v=bts.10).aspx

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceTN3270.Start Method
Starts the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceTN3270.Stop Method
Stops the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_TN3270Session Class
The MsSnaStatus_TN3270Session class represents a TN3270 session status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The service name. Name will be identical to the LUA LU or Pool name.

Client

Data Type: String Access Type: Read-Only

The client computer name or IP address.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_TN3270Session : MsSnaStatus_Config
{
 string Name;
 string Client;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceTN5250 Class
The MsSnaStatus_ServiceTN5250 class represents a TN5250 service status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The service name. Name will be identical to the local computer name.

Status

Data Type: sint32 Access Type: Read-Only

The current status of the service. The following table describes the possible values for Status.

Value Description

0

1 Inactive

2 Pending

3 Stopping

4 Active

StatusText

Data Type: String Access Type: Read-Only

One of the status values.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

ExecMethod Executes the specified method.

Start Starts the method.

Stop Stops the method.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

class MsSnaStatus_ServiceTN5250 : MsSnaStatus_Config
{
 string Name;
 sint32 Status;
 string StatusText;
}

https://msdn.microsoft.com/en-us/library/aa771233(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744764(v=bts.10).aspx

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceTN5250.Start Method
Starts the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceTN5250.Stop Method
Stops the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_TN5250Session Class
The MsSnaStatus_TN5250Session class represents a TN5250 session status.

Syntax

Properties
TNSessionID

Data Type: String Qualifiers: Key Access Type: Read-Only

An arbitrary unique ID representing the session ID.

APPCLU

Data Type: String Access Type: Read-Only

APPC Local LU alias.

PartnerLU

Data Type: String Access Type: Read-Only

APPC Partner LU alias. PartnerLU can be a Remote LU or another Local LU.

Mode

Data Type: String Access Type: Read-Only

The mode name for this session.

Client

Data Type: String Access Type: Read-Only

The client computer name or IP address.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

For more information on GetObject and EnumerateInstances, see "IWbemServices interface" in the MSDN Library at
http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_TN5250Session : MsSnaStatus_Config
{
 string TNSessionID;
 string APPCLU;
 string PartnerLU;
 string Mode;
 string Client;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSharedFolder Class
The MsSnaStatus_ServiceSharedFolder class represents a TN3270 service status.

Syntax

Properties
Name

Data Type: String Qualifiers: Key Access Type: Read-Only

The name of the service. Name will be the same as the local computer name.

Status

Data Type: sint32 Qualifiers: Key Access Type: Read-Only

The status of the service. The following table describes the potential values for Status.

Value Description

0

1 Inactive

2 Pending

3 Stopping

4 Active

StatusText

Data Type: String Access Type: Read-Only

One of the status values.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates the instance.

ExecMethod Executes the specified method.

Start Starts the service.

Stop Stops the service.

For more information on GetObject, EnumerateInstances, and ExecMethod, see "IWbemServices interface" in the MSDN
Library at http://msdn.microsoft.com/library.

class MsSnaStatus_ServiceSharedFolder : MsSnaStatus_Config
{
 string Name;
 sint32 Status;
 string StatusText;
}

https://msdn.microsoft.com/en-us/library/aa705388(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770928(v=bts.10).aspx

MsSnaStatus_ServiceSharedFolder.Start Method
Starts the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_ServiceSharedFolder.Stop Method
Stops the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_Lu3270ToActiveUser Class
The MsSnaStatus_Lu3270ToActiveUser class represents an association between a User connection and a 3270 type LU.

Syntax

Properties
PathToLU3270

Data Type: MsSnaStatus_Lu3270 ref Qualifiers: Key Access Type: Read-Only

The path to the APPC session.

PathToUser

Data Type: MsSnaStatus_ActiveUser ref Qualifiers: Key Access Type: Read-Only

The path to the user.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

For more information on GetObject and EnumerateInstances see "IWbemServices interface" in the MSDN Library at
http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_Lu3270ToActiveUser : MsSnaStatus_Association
{
 MsSnaStatus_Lu3270 ref PathToLU3270;
 MsSnaStatus_ActiveUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSnaStatus_APPCSessionToActiveUser Class
The MsSnaStatus_APPCSessionToActiveUser class represents an association between a User connection and an APPC
session.

Syntax

Properties
PathToAPPCSession

Data Type: MsSnaStatus_AppcSession ref Qualifiers: Key Access Type: Read-Only

The path to the APPC session.

PathToUser

Data Type: StringQualifiers: Key Access Type: MsSnaStatus_ActiveUser ref

The path to the user.

Methods
Method Description

GetObject Retrieves the instance.

EnumerateInstances Enumerates all instances of the object.

For more information on GetObject and EnumerateInstances, see "IWbemServices interface" in the MSDN Library at
http://msdn.microsoft.com/library.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WmiSnaStatus WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsSnaStatus_APPCSessionToActiveUser : MsSnaStatus_Association
{
 MsSnaStatus_AppcSession ref PathToAPPCSession;
 MsSnaStatus_ActiveUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa771916(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

SNA Provider WMI Programmer's Reference
The SNA Provider WMI Programmer's Reference describes the Windows® Management Instrumentation (WMI) classes you
can use to monitor and control SNA services.

For more information, see Controlling Services and Connections with WMI.

In This Section

WMISNA WMI Provider Classes

https://msdn.microsoft.com/en-us/library/aa754058(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx

WMISNA WMI Provider Classes
The Microsoft Host Integration Server SNA configuration provider supplies information regarding the SNA service
configuration. As an instance and method provider, the WMISNA provider implements the standard IWbemProviderInit
interface and the following IWbemServices methods:

CreateInstanceEnumAsync

DeleteInstanceAsync

ExecMethodAsync

ExecQueryAsync

GetObjectAsync

PutInstanceAsync

For more information on IWbemProviderInit and IWbemServices, see "COM API for WMI" in the MSDN Library at
http://msdn.microsoft.com/library.

The WmiSna.mof and WmiSna_XP.mof files contain the WMISNA provider, and association and registration classes. You can
access the WMISNA provider classes in the \root\MicrosoftHIS namespace.

Class Description

MsSna_Domain Global properties that affect all servers in the group. Sometimes called a subdoma
in or OU.

MsSna_ServiceSNA SNA service implements the SNA protocol. Contains the connections and LU reso
urces.

MsSna_ServiceTN3270 TN3270 service enables clients to connect to a host via the TN3270 protocol.

MsSna_ServiceTN5250 TN5250 service enables clients to connect via the TN5250 protocol to a host.

MsSna_ServiceSharedFolder The Shared Folders Gateway service for AS/400 file access.

MsSna_ServicePrint Host Print service contains print sessions.

MsSna_UserInfo Base class for a User or Group account configured in SNA.

MsSna_ConfiguredUser A User or Group account configured in SNA. Can determine access to LUs and poo
ls.

MsSna_LogInUserAndGroups For the logged-on user, an enumeration returns the configured user and groups.

MsSna_Workstation A workstation configured in SNA, specified by name or IP address. Can determine
access to LUs and pools.

MsSna_Lu3270 Base class for 3270 LU resource. Each 3270 LU must belong to a connection.

MsSna_LuDisplay A 3270 LU display resource. Often used for terminal emulator access.

MsSna_LuLua A 3270 LU LUA resource. Often used for programmatic access.

https://msdn.microsoft.com/en-us/library/aa754725(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704952(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771247(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753845(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704970(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771079(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771939(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754330(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771678(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746124(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705650(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754774(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744942(v=bts.10).aspx

MsSna_TN3270Session The part of the TN3270 session that specifies client configuration. References a SN
A_LU_LUA class.

MsSna_TN3270Port Describes a port with security properties.

MsSna_TN3270SessionIPFilter An IP address/name assigned to a TN3270 session. Multiple IP address/name pair
s of these can be assigned to one session.

MsSna_TN5250SessionIPFilter An IP address/name assigned to a TN5250 session. Multiple IP address/name pair
s of these can be assigned to one session.

MsSna_LuPassThrough One half of the dowstream LU/pool pairs. Represents a downstream LU/pool that
is associated with a downstream connection.

MsSna_LuDown A 3270 LU downstream resource. Reserved for use with downstream connections.

MsSna_LuPrint A 3270 LU printer resource. Used by Print Session or by printer emulator.

MsSna_Pool Base class for 3270 LU pools. A pool is associated with one or more 3270 LUs.

MsSna_PoolDisplay The 3270 LU display pool.

MsSna_PoolLua The 3270 LU LUA pool.

MsSna_PoolDown The 3270 LU downstream pool.

MsSna_LuAppcLocal An APPC Local LU resource. Used for LU 6.2 protocol.

MsSna_LuAppcRemote An APPC remote LU resource. Used for LU 6.2 protocol. References a connection.

MsSna_AppcMode An APPC Mode definition. Defines properties of an LU 6.2 session.

MsSna_Connection Base class for SNA connection. Belongs to an SNA service. May own 3270 LUs.

MsSna_Connection8022Dlc A type of SNA connection that uses DLC 802.2 protocol over Token Ring or Ethern
et.

MsSna_ConnectionSdlc A type of SNA connection that uses SDLC protocol over dial-up or leased lines.

MsSna_ConnectionX25 A type of SNA connection that uses X.25 protocol over dial-up or leased lines.

MsSna_ConnectionChannel A type of SNA connection that uses Channel links.

MsSna_ConnectionDft A type of SNA connection that uses DFT over coaxial cable.

MsSna_ConnectionTwinax A type of SNA connection that uses twinax cable. Host Integration Server 2009 do
es not support twinax cable.

MsSna_Cpic A global CPI-C definition for APPC.

MsSna_TN5250Definition The definition of a TN5250 session.

MsSna_PrintSession Base class for a print session on a Host Print service.

https://msdn.microsoft.com/en-us/library/aa745843(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705441(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746072(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704986(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745807(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745451(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771103(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771313(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754291(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771318(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754268(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745439(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771885(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744903(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754254(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746265(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746012(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745534(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745544(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745418(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705199(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771656(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753896(v=bts.10).aspx

MsSna_PrintSession3270 Extends a Print session. Uses 3270 protocols to communicate with the host.

MsSna_PrintSessionAppc Extends a Print session. Uses APPC LU 6.2 protocols to communicate with the host
.

MsSna_AppcPartner A preconfigured combination of APPC Local LU, Remote LU, and Mode.

MsSna_AccountAssigned3270 Used to query for 3270 LUs assigned to a specific workstation or user.

MsSna_AccountAssignedLua Used to query for LUA LUs assigned to a specific workstation or user.

MsSna_AccountAssigned3270Services Used to query for services on which a specific workstation or user has 3270 LUs/p
ools.

MsSna_AccountAssignedLuaServices Used to query for services on which a specific workstation or user has LUA LUs/po
ols.

MsSna_AccountAvailableAppcLu For the logged-on user account and workstation, the assigned APPC LU resources.

MsSna_AdapterOnMachine Associates an adapter with a computer.

MsSna_ConnectionOnServer Associates a connection with a server.

MsSna_Lu3270OnConnection Associates a 3270 LU with a connection.

MsSna_LuDisplayAssignedToUser Associates a display LU with a user.

MsSna_LuPrintAssignedToUser Associates a print LU with a user.

MsSna_LuLuaAssignedToUser Associates an LUA LU with a user.

MsSna_PoolDisplayAssignedToUser Associates a display pool with a user.

MsSna_PoolLuaAssignedToUser Associates the pool LUA with a user.

MsSna_LuDisplayAssignedToWorkstation Associates a display LU with a workstation.

MsSna_LuPrintAssignedToWorkstation Associates a print LU with a workstation.

MsSna_LuLuaAssignedToWorkstation Associates an LUA LU with a workstation.

MsSna_PoolDisplayAssignedToWorkstation Associates a display pool with a workstation.

MsSna_PoolLuaAssignedToWorkstation Associates an LUA pool with a workstation.

MsSna_ConnectionUsingAdapter Associates a connection with an adapter.

MsSna_Lu3270AssignedToPool Associates a 3270 LU with a pool.

MsSna_PoolOnServer Associates a pool with a server.

MsSna_ExtendedStatus Describes the extended status of a specified message.

https://msdn.microsoft.com/en-us/library/aa704793(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744896(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771378(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745565(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746219(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705074(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705494(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745695(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754347(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705481(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745640(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746003(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744765(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704983(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754077(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754754(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746258(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770548(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754782(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745595(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705165(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746080(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744720(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744295(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744357(v=bts.10).aspx

MsSna_Domain Class
Contains global properties that affect all servers in the group.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String

Qualifiers: Key

Access Type: Read-Only

The name of the subdomain.

NetViewConnection

Data Type: String

Qualifiers: MAXLEN(8)

Access Type: Read/Write

A connection to which NetView data should be sent.

DispVerbConnection

Data Type: String

Qualifiers: MAXLEN(8)

Access Type: Read/Write

The default connection for Display verbs. If set to null, selects a random connection.

class MsSna_Domain : MsSna_Config
{
 String Name;
 String NetViewConnection;
 String DispVerbConnection;
 String EventlogServer;
 String PopupServer;
 sint16 AuditLevel;
 sint32 BroadcastMeanTime;
 boolean NamedPipes;
 boolean IpxSpx;
 boolean BanyanVines;
 boolean TcpIp;
 boolean RTMOverflow;
 boolean RTMEndOfSession;
 sint16 RTMTimerUntil;
 sint16 RTMThreshold1;
 sint16 RTMThreshold2;
 sint16 RTMThreshold3;
 sint16 RTMThreshold4;
 String ConfigServer;
 String ClientBackupSponsorNames; // names separated by ';'
 String ClientBackupDomainName;
 sint16 ClientDomainBackupType;
 boolean Security3270;
 boolean SecurityLUA;
 boolean SecurityAPPC;
 sint32 Status;
 datetime DateTimeSaved;
};

EventlogServer

Data Type: String

Qualifiers: MAXLEN(16)

Access Type: Read/Write

The name of the server on which Windows 2000 Event Logs for this server installation should be stored.

PopupServer

Data Type: String

Qualifiers: MAXLEN(16)

Access Type: Read/Write

The name of the server to which pop-up error messages should be routed.

AuditLevel

Data Type: sint16

Qualifiers: QualifierType

Access Type: Read/Write

The default audit log level, which determines what events, if any, are audited. The following table describes the possible
values for AuditLevel.

Value Description

0 Detailed

1 General

2 Significant

3 Disabled

BroadcastMeanTime

Data Type: sint32

Qualifiers: MINVALUE(45), MAXVALUE(65535), UNITS("sec") Access Type: Read/Write

The interval at which server broadcasts are repeated.

NamedPipes

Data Type: Boolean

Access Type: Read/Write

true to send server broadcasts over Windows Networking, also known as named pipes; otherwise, false.

IpxSpx

Data Type: Boolean

Access Type: Read/Write

true to sends server broadcasts over IPX/SPX, also known as Novell NetWare; otherwise, false.

BanyanVines

Data Type: Boolean

Access Type: Read/Write

true to send server broadcasts over Banyan VINES; otherwise, false.

TcpIp

Data Type: Boolean

Access Type: Read/Write

true to send server broadcasts over TCP/IP; otherwise, false.

RTMOverflow

Data Type: Boolean

Access Type: Read/Write

true to cause Response Time Monitor (RTM) data to be sent to the host when the number of host responses in a given time
period overflows the size of the available counter; otherwise, false.

RTMEndOfSession

Data Type: Boolean

Qualifiers: QualifierType

Access Type: Read-Only

true to cause Response Time Monitor (RTM) data to be sent to the host at the end of each LU-to-LU session; otherwise, false.

RTMTimerUntil

Data Type: sint16

Access Type: Read-Only

The point at which the Response Time Monitor (RTM) registers that a host has responded, at which point the RTM stops the
timers. The following table describes the possible values for RTMTimerUnit.

Value Description

0 FirstData

1 Unlock

2 AllowSent

RTMThreshold1

Data Type: sint16

Qualifiers: MINVALUE(1), MAXVALUE(1000), UNITS("tenthsec")

Access Type: Read/Write

The cut-off times at which the RTM saves the count of host responses, and then restarts the count.

RTMThreshold2

Data Type: sint16

Qualifiers: MINVALUE(1), MAXVALUE(1000), UNITS("tenthsec")

Access Type: Read/Write

The cut-off times at which the RTM saves the count of host responses, and then restarts the count.

RTMThreshold3

Data Type: sint16

Qualifiers: MINVALUE(1), MAXVALUE(1000), UNITS("tenthsec")

Access Type: Read/Write

The cut-off times at which the RTM saves the count of host responses, and then restarts the count.

RTMThreshold4

Data Type: sint16

Data Type: sint16

Qualifiers: MINVALUE(1), MAXVALUE(1000), UNITS("tenthsec")

Access Type: Read/Write

The cut-off times at which the RTM saves the count of host responses, and then restarts the count.

ConfigServer

Data Type: sint16

Qualifiers: MAXLEN(16)

Access Type: Read/Write

The primary configuration server for the subdomain.

ClientBackupSponsorNames

Data Type: String

Qualifiers: MAXLEN(256)

Access Type: Read/Write

A list describing all of the SNA sponsor servers to which the server updates the client. The names of each server must be
separated with a semicolon (;).

ClientBackupDomainName

Data Type: String

Qualifies: MAXLEN(16)

Access Type: Read/Write

A list of backup SNA subdomains with which the server updates the client.

ClientDomainBackupType

Data Type: sint16

Access Type: Read/Write

A value describing how client backup information is sent. The following table describes the possible values for
ClientDomainBackupType.

Value Description

0 None

1 Domain

2 Sponsors

Security3270

Data Type: Boolean

Access Type: Read/Write

true if access to 3270 LUs is restricted to users assigned to the LU; otherwise, false.

SecurityLUA

Data Type: Boolean

Access Type: Read/Write

true if access to LUA LUs is restricted to users assigned to the LU; otherwise, false.

SecurityAPPC

Data Type: Boolean

Access Type: Read/Write

true if access to APPC LUs is restricted to users assigned to the LU; otherwise, false.

Status

Data Type: sint32

Access Type: Read-Only

The status of the subdomain.

DateTimeSaved

Data Type: datetime

Access Type: Read-Only

The time and date for which the object was saved.

Remarks

The object MsSna_Domain represents can also be referred to as a subdomain or OU.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

MsSna_ServiceSNA Class
Implements the SNA protocol, which contains the connections and LU resources.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifier: Key, MAXLEN(20) Access Type: Read-Only

The service name.

Comment

Data Type: StringQualifiers: MAXLEN(25) Access Type: Read/Write

An optional comment field.

ControlPoint

Data Type: StringQualifiers: MAXLEN(8) Access Type: Read/Write

The control point for this SNA node.

NetworkName

Data Type: StringQualifiers: MAXLEN(8) Access Type: Read/Write

The Network Name name for this SNA node.

StatusText

Data Type: StringAccess Type: Read-Only

The status of the service. The following table describes the possible values for StatusText.

Value Description

Not configured The service is not currently configured.

Inactive The service is inactive.

Stopping The service is in the process of stopping.

Active The service is active.

Out of Date The service is out-of-date.

Paused The service is paused.

Status

Data Type: sint32Access Type: Read-Only

class MsSna_ServiceSNA : MsSna_Service
{
 String Name;
 String Comment;
 String ControlPoint;
 String NetworkName;
 String StatusText;
 sint32 Status;
};

The status of the service. The following table describes the status of the service:

Value Description

0 Not configured

1 Inactive

2 Inactive

3 Stopping

4 Active

5

6 Out-of-date

7 Paused

8

9

Methods
Method Description

Start Starts the service.

Stop Stops the service.

Pauses Pauses the service.

Resume Restarts a paused service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

MsSna_ServiceSNA.Start Method
Starts the service.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceSNA.Stop Method
Stops the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceSNA.Pauses Method
Pauses the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Pause();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceSNA.Resume Method
Restarts a paused service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Resume();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceTN3270 Class
Enables clients to connect to a host via the TN3270 protocol.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: MAXLEN(16) Access Type: Read-Only

The TN3270 service name. Name is the same as the computer name.

Comment

Data Type: StringQualifiers: MAXLEN(25) Access Type: Read/Write

An optional comment string.

LogNormal

Data Type: BooleanAccess Type: Read/Write

true if access to log successful client connections and successful client terminations; otherwise, false.

LogSna

Data Type: BooleanAccess Type: Read/Write

true to log all TN3270 service event messages to the Event Log being used by the Host Integration Server 2009 system,
instead of to the Event Log on the local computer; otherwise, false.

UseNameResolution

Data Type: BooleanAccess Type: Read/Write

true to specify the name of a computer rather than the IP address—use only if you are running a domain name resolver;
otherwise, false.

PrinterFlowControl

Data Type: BooleanAccess Type: Read/Write

true to have the TN3270 service send all messages to a TN3270 printer client as RESPONSE-REQUIRED, and not to send any
messages until it has received a response for the previous message; otherwise, false.

SocketListen

Data Type: BooleanAccess Type: Read/Write

class MsSna_ServiceTN3270 : MsSna_Service
{
 String Name;
 String Comment;
 boolean LogNormal;
 boolean LogSna;
 boolean UseNameResolution;
 boolean PrinterFlowControl;
 boolean TNModeOnly;
 sint32 CloseDelay;
 sint32 IdleTimeout;
 sint32 InboundRU;
 sint32 OutboundRU;
 sint32 RefreshTime;
 sint32 StatusDelay;
 sint32 Port;
 String StatusText;
};

To have the TN3270 service stop listening on this socket once all of the defined LUs are in use; otherwise, false.

TNModeOnly

Data Type: BooleanAccess Type: Read/Write

true to prevent the TN3270 service from using TN3270E, an enhancement to TN3270; otherwise, false.

CloseDelay

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(86400),UNITS("sec") Access Type: Read/Write

The time between sending a disconnect message to the client computer and closing the socket with the client computer.

IdleTimeout

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(70560),UNITS("min") Access Type: Read/Write

The time in which the session idles before the TN3270 service disconnects the client system. Specifying 0 means there will be
no time-out.

InboundRU

Data Type: sint32Qualifiers: MINVALUE(256), MAXVALUE(32768),UNITS("bytes") Access Type: Read/Write

The RU, or SNA message, size used by the TN3270 service for logon messages from the host.

OutboundRU

Data Type: sint32Qualifiers: MINVALUE(256), MAXVALUE(32768),UNITS("bytes") Access Type: Read/Write

The RU, or SNA message, size used by the TN3270 service for logon messages to the host.

RefreshTime

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(60),UNITS("sec") Access Type: Read/Write

The delay between updates of the status on the display.

StatusDelay

Data Type: sint32Qualifiers:MINVALUE(0), MAXVALUE(86400),UNITS("sec") Access Type: Read/Write

The delay between the time when TN3270 service connects to a host session and the time the TN3270 service starts
updating the client screen.

Port

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(9999)Access Type: Read/Write

The default port number for the TN3270 service. You can override Port on a per-session basis. Use 0 for the default TN3270
port.

StatusText

Data Type: StringAccess Type: Read-Only

The current status of the service. The following table describes the possible values for StatusText.

Value Description

Not configured The status is not configured.

Inactive The status is inactive.

Pending The status is pending.

Stopping The status is stopping.

Active The status is active.

Out of Date The status is out-of-date.

Paused The status is paused.

Methods
Method Description

Start Starts the service.

Stop Stops the service.

Requirements

Platforms: Microsoft Windows Server 2003, Windows XP Professional, Windows 2000 Server

MsSna_ServiceTN3270.Start Method
Starts the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceTN3270.Stop Method
Stops the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceTN5250 Class
Enables clients to connect via the TN5250 protocol to a host.

The following syntax is simplified from MOF code.

Syntax

Remarks
Name

Data Type: StringQualifiers: Key, MAXLEN(16)Access Type: Read-Only

The TN5250 service name. Name is the same as the computer name.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

Port

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(9999)Access Type: Read/Write

The default port number for the TN5250 service. Port can be overridden on a per-session basis. Use 0 for the default TN5250
port.

StatusText

Data Type: StringAccess Type: Read-Only

The current status of the service. The following table describes the possible values for StatusText.

Value Description

Not configured The service is not configured.

Inactive The service is inactive.

Pending The service is pending.

Stopping The service is stopping.

Active The service is active.

Out of Date The service is out-of-date.

Paused The service is paused.

Methods
Method Description

Start Starts the service.

Stop Stops the service.

class MsSna_ServiceTN5250 : MsSna_Service
{
 String Name;
 String Comment;
 sint32 Port;
 String StatusText;
};

https://msdn.microsoft.com/en-us/library/aa745586(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745032(v=bts.10).aspx

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceTN5250.Start Method
Starts the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceTN5250.Stop Method
Stops the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceSharedFolder Class
Describes a service for AS/400 file access.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(16)Access Type: Read-Only

The Shared Folder Gateway service name. Name is the same as the computer name.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

StatusText

Data Type: StringAccess Type: Read/Write

The current status of the service. The following table describes the possible values for StatusText.

Value Description

Not configured The service is not configured.

Inactive The service is inactive.

Pending The service is pending.

Stopping The service is stopping.

Active The service is active.

Out of Date The service is out-of-date.

Paused The service is paused.

Methods
Method Description

Start Starts the service.

Stop Stops the service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes

class MsSna_ServiceSharedFolder : MsSna_Service
{
 String Name;
 String Comment;
 String StatusText;
};

https://msdn.microsoft.com/en-us/library/aa772013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771735(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx

Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceSharedFolder.Start Method
Starts the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServiceSharedFolder.Stop Method
Stops the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServicePrint Class
Contains print sessions.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(16)Access Type: Read/Write

The Host Print service name. Name is the same as the machine name.

NoEventLogOnSkippingTransparentSection

Data Type: BooleanAccess Type: Read/Write

true to prevent an entry in the Event Log every time a print service skips a transparent section found while printing a host
print job; otherwise, false.

UseProportionalFontChange

Data Type: BooleanAccess Type: Read/Write

true to prevent overlapping characters in documents containing nonfixed type fonts printed through Host Print service;
otherwise, false.

FlushFinalFF

Data Type: BooleanAccess Type: Read/Write

true to cause Host Print service to explicitly form-feed the document at the end of a print job; otherwise, false.

DelayPrintStart

Data Type: BooleanAccess Type: Read/Write

true to delay the start of the print job until printable data is received by Host Print services; otherwise, false.

AlwaysDoNL

Data Type: BooleanAccess Type: Read/Write

true to insert a new line when the Host Print service determines that the Maximum Print Position has been reached for a
particular line of data; otherwise, false.

NoSpaceAfterFF

Data Type: BooleanAccess Type: Read/Write

true to prevent print services from inserting a space character following a form feed; otherwise, false.

class MsSna_ServicePrint : MsSna_Service
{
 String Name;
 boolean NoEventLogOnSkippingTransparentSection;
 boolean UseProportionalFontChange;
 boolean FlushFinalFF;
 boolean DelayPrintStart;
 boolean AlwaysDoNL;
 boolean NoSpaceAfterFF;
 boolean DoAllFF;
 boolean IgnoreCharsUnder3F;
 boolean UseFixedTabs;
 sint32 ActivationRetryInterval;
 sint32 ActivationRetryLimit;
 String StatusText;
};

DoAllFF

Data Type: BooleanAccess Type: Read/Write

true to force the printer driver to honor all form-feed commands; otherwise, false.

IgnoreCharsUnder3F

Data Type: BooleanAccess Type: Read/Write

true to cause the Host Print service to ignore hexadecimal characters 3F and below; otherwise, false.

UseFixedTabs

Data Type: BooleanAccess Type: Read/Write

true to disable normal tab functionality (such as aligning tabs in columns) and interpret each tab as a fixed number of
spaces; otherwise, false.

ActivationRetryInterval

Data Type: sint32Access Type: Read/Write

The number of seconds to wait before trying to print the job again. The default value is 10 seconds.

ActivationRetryLimit

Data Type: sint32Access Type: Read/Write

The number of times Host Print service attempts to activate the APPC conversation following a terminated connection. The
default value is -1 (infinite).

StatusText

Data Type: StringAccess Type: Read/Write

The current status of Host Print service. The following table describes the possible values for StatusText.

Value Description

Not configured The service is not configured.

Inactive The service is inactive.

Pending The service is pending.

Stopping The service is stopping.

Active The service is active.

Out of Date The service is out-of-date.

Paused The service is paused.

Methods
Method Description

Start Starts the service.

Stop Stops the service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa770512(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServicePrint.Start Method
Starts the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Start();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ServicePrint.Stop Method
Stops the service.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

void Stop();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_UserInfo Class
Base class for a User or Group account configured in SNA.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(255)Access Type: Read-Only

The user name.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

UserType

Data Type: StringAccess Type: Read-Only

The account type. The following table describes the possible values for UserType.

Value Description

1 User

2 Group

3 Domain

4 Alias

5 WellKnownGroup

6 DeletedAccount

7 Invalid

8 Unknown

9 Computer

DynRemote

Data Type: BooleanAccess Type: Read/Write

true to let this user or group use dynamically created APPC LUs.

DefLocalLu

class MsSna_UserInfo : MsSna_Config
{
 String Name;
 sint32 UserType;
 boolean DynRemote;
 String DefLocalLu;
 String DefRemoteLu;
 boolean Encryption;
};

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read/Write

A default local APPC LU to be used when the user starts APPC programs.

DefRemoteLu

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read/Write

A default remote APPC LU to be used when the user starts APPC programs.

Encryption

Data Type: BooleanAccess Type: Read/Write

true to enable encryption between the client system and Host Integration Server 2009; otherwise, false.

Requirements

Platforms: Microsoft Windows Server 2003, Windows XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConfiguredUser Class
Describes a User or Group account configured in SNA.

The following syntax is simplified from MOF code.

Syntax

Remarks

MsSna_ConfiguredUser can determine access to LUs and Pools.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_ConfiguredUser : MsSna_UserInfo
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LogInUserAndGroups Class
Enumerates the configured user and groups for a logged-on user.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LogInUserAndGroups : MsSna_UserInfo
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Workstation Class
Describes a workstation configured in SNA, specified by name or IP address.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(20)Access Type: Read-Only

The workstation ID. Name is usually the workstation name.

IdType

Data Type: sint32Access Type: Read/Write

The type of workstation specified in Name. The following table describes the possible values for IdType.

Value Description

0 Name

1 IPAddress

2 IPSubnet

Secure

Data Type: sint16Access Type: Read/Write

Describes a value indicating whether the workstation can access LUs that are not directly assigned to it. The following table
describes the possible values for Secure.

Value Description

0 False

1 True

IPmask

Data Type: StringQualifiers: MAXLEN(20)Access Type: Read/Write

The IP Subnet mask. Use IPmask only if WorkstationIdType is set to IPSubnet.

DynRemote

Data Type: BooleanAccess Type: Read/Write

true to enable users access to remote APPC LU as they are created; otherwise, false.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

class MsSna_Workstation : MsSna_Config
{
 String Name;
 sint32 IdType;
 sint16 Secure;
 String IPmask;
 boolean DynRemote;
 String Comment;
};

An optional comment field.

Remarks

MsSna_Workstation can describe access to LUs and Pools.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Lu3270 Class
Describes the base class for a 3270 LU resource.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(8), TOUPPERCASEAccess Type: Read-Only

The LU Name.

ConnectionName

Data Type: StringQualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

The connection on which this LU is defined.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

PoolName

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read-Only

The pool name. PoolName is valid only if the LU has already been assigned to a pool.

Number

Data Type: sint16Qualifiers: MINVALUE(1), MAXVALUE(254) Access Type: Read/Write

The LU Number for LUs on 802.2, SDLC, or X.25. For a DFT connection, Number is (Port Number * 16 + LT Number).

Compression

Data Type: BooleanAccess Type: Read/Write

true to enable 3270 LU data stream compression; otherwise, false. This option must also be set in the host VTAM
configuration for the LU.

UserWksSecure

Data Type: BooleanAccess Type: Read/Write

true to require both the user and the workstation be assigned to this LU in order to acquire it; otherwise, false.

Remarks

Each 3270 LU must belong to a connection.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also

class MsSna_Lu3270 : MsSna_Resource
{
 String Name;
 String ConnectionName;
 String Comment;
 String PoolName;
 sint16 Number;
 boolean Compression;
 boolean UserWksSecure;
};

Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuDisplay Class
Describes a 3270 LU display resource.

Syntax

Properties
Model

Data Type: sint16Access Type: Read/Write

The default display model for Terminal service. The following table describes the possible values for Model.

Value Description

0 Model12

1 Model13

2 Model14

3 Model1215

ModelOverride

Data Type: BooleanAccess Type: Read/Write

true to indicate whether the default model can be overridden; otherwise, false. Some emulators can only emulate certain
display models.

AssociatedLU

Data Type: StringQualifiers:MAXLEN(8)Access Type: Read-Only

Associates a printer LU with the current object.

Remarks

MsSna_LuDisplay is often used for terminal emulator access.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuDisplay : MsSna_Lu3270
{
 sint16 Model;
 boolean ModelOverride;
 String AssociatedLU;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuLua Class
Describes a 3270 LU LUA resource.

The following syntax is simplified from MOF code.

Syntax

Properties
HighPriorityMode

Data Type: BooleanAccess Type: Read/Write

true to increase the priority for this LU; otherwise, false.

Remarks

MsSna_LuLua is often used for programmatic access.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuLua : MsSna_Lu3270
{
 boolean HighPriorityMode;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_TN3270Session Class
Describes the part of the TN3270 session that specifies client configuration.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(8)Access Type: Read-Only

The LU name.

ConnectionName

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read-Only

The connection on which this LU is defined.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

PoolName

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read-Only

If the LU has already been assigned to a pool, the pool name appears here.

Number

Data Type: sint16Qualifiers: MINVALUE(1), MAXVALUE(254) Access Type: Read/Write

The LU Number for LUs on 802.2, SDLC, or X.25. For a DFT connection, this should be the Port Number * 16 + LT Number.

Compression

Data Type: BooleanAccess Type: Read/Write

true to enable 3270 LU data stream compression; otherwise, false. This option must also be set in the host VTAM
configuration for the LU.

UserWksSecure

Data Type: BooleanAccess Type: Read/Write

true to require both the user and the workstation to be assigned to this LU in order to acquire it; otherwise, false.

Service

class MsSna_TN3270Session : MsSna_Config
{
 String Name;
 String ConnectionName;
 String Comment;
 String PoolName;
 sint16 Number;
 boolean Compression;
 boolean UserWksSecure;
 String Service;
 sint32 TnType;
 sint32 NumSessions;
 sint32 TermTypes;
 String AssociatedLu;
 sint32 Port;
};

Data Type: StringQualifiers: Key, MAXLEN(20)Access Type: Read/Write

The SNA service to which this LU belongs.

TnType

Data Type: sint32Access Type: Read/Write

The display or printer type. The following table describes the possible values for TnType.

Value Description

0 Generic

1 Specific

2 GenericPrinter

3 SpecificPrinter

4 AssoicatedPrinter

NumSessions

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(65535)Access Type: Read/Write

This is the number of TN3270 sessions allowed for the selected LU or pool.

TermTypes

Data Type: sint32Access Type: Read/Write

The terminal names supported by this LU. The following table describes the possible values for TermTypes.

Value Description

0 3275-2

1 3276_2

2 3277_2

3 3278_2

4 3278_2_E

5 3279_2

6 3279_2_

7 E 3276_3

8 3278_3

9 3278_3_E

10 3279_3

11 3279_3_E

12 3276_4

13 3278_4

14 3278_4_E

15 3279_4

16 3279_4_E

17 3278_5

18 3278_5_E

19 3279_5

20 3279_5_E

AssociatedLu

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read/Write

Used to associate a printer LU with this display LU.

Port

Data Type: sint32Qualifiers: MINVALUE(0), MAXVALUE(9999)Access Type: Read/Write

The port to be used for this session—or 0 to use the default TN3270 port.

Remarks

MsSna_TN3270Session references a SNA_LU_LUA class.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_TN3270Port Class
Describes a port with security properties.

The following syntax is simplified from MOF code.

Syntax

Properties
Service

Data Type: StringQualifiers: Key, MAXLEN(20)Access Type: Read/Write

The TN service to which this LU belongs.

Port

Data Type: sint32Qualifiers: Key, MINVALUE(1), MAXVALUE(0xffff) Access Type: Read/Write

The port number.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An option comment field.

Security

Data Type: sint16Access Type: Read/Write

The security level. The following table describes the possible values for Security.

Value Description

0 Unsecured

1 Low

2 Medium

3 High

ClientCertVal

Data Type: BooleanAccess Type: Read/Write

true to indicate that the client ceritificate should be validated; otherwise, false.

Default

Data Type: BooleanQualifiers: (TRUE)Access Type: Read-Only

true to indicate a default port; otherwise, false.

Name

class MsSna_TN3270Port : MsSna_Config
{
 String Service;
 sint32 Port;
 String Comment;
 sint16 Security;
 boolean ClientCertVal;
 boolean Default;
 String Name;
};

Data Type: StringQualifiers: SomethingAccess Type: Read/Write

Name of the port.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_TN3270SessionIPFilter Class
An IP address or name assigned to a TN3270 session.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(15)Access Type: Read-Only

The IP address or name of the computer assigned to the TN3270 session.

Session

Data Type: StringQualifiers: Key, MAXLEN(8)Access Type: Read-Only

The TN3270 session name.

Type

Data Type: sint16Qualifiers: KeyAccess Type: Read/Write

A value that determines if Name contains an IP address or a name. The following table describes the possible values for
Type.

Value Description

0 Name

1 IPAddress

SubnetMask

Data Type: StringAccess Type: Read/Write

The IP Subnet mask, if an IP address is specified for Name.

Remarks

Multiple IP addresses or names can be assigned to one session.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_TN3270SessionIPFilter : MsSna_Config
{
 String Name;
 String Session;
 sint16 Type;
 String SubnetMask;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_TN5250SessionIPFilter Class
Contains the IP address or name assigned to a TN5250 session.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(15)Access Type: Read-Only

The IP address or name of the computer assigned to the TN5250 session.

AS400

Data Type: StringQualifiers: Key, MAXLEN(8)Access Type: Read-Only

The AS/400 definition.

Type

Data Type: sint16Qualifiers: KeyA value that indicates whether Name contains an IP address or a name. The following table
describes the possible values for Type.

Value Description

0 Name

1 IPAddress

SubnetMask

Data Type: StringAccess Type: Read/Write

The IP Subnet mask, if an IP address is specified for 'Name'.

Remarks

You may assign multiple IP addresses or names in a single session.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_TN5250SessionIPFilter : MsSna_Config
{
 String Name;
 String AS400;
 sint16 Type;
 String SubnetMask;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuPassThrough Class
Contains one half of a dowstream LU/pool pair.

The following syntax is simplified from MOF code.

Syntax

Properties
Connection

Data Type: StringQualifiers: Key, MAXLEN(8)Access Type: Read-Only

The associated downstream connection.

Number

Data Type: sint16Qualifiers: Key, MINVALUE(0)Access Type: Read-Only

The number of the downstream connection.

Name

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read/Write

The downstream LU or pool name.

IsPool

Data Type: BooleanAccess Type: Read/Write

true to indicate that the object is a downstream a pool; false to indicate that the object is a downstream LU.

Remarks

MsSna_LuPassThrough represents a downstream LU/pool associated with a downstream connection.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuPassThrough : MsSna_Config
{
 String Connection;
 sint16 Number;
 String Name;
 boolean IsPool;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuDown Class
A 3270 LU downstream resource.

The following syntax is simplified from MOF code.

Syntax

Remarks

MsSna_LuDown is reserved for use with downstream connections.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuDown : MsSna_Lu3270
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuPrint Class
Describes a 3270 LU printer resource.

The following syntax is simplified from MOF code.

Syntax

Properties
AssociatedLU

Data Type: StringQualifiers: MAXLEN(8)Access Type: Read/Write

The associated display LU.

Remarks

MsSna_LuPrint is used by Print session or by printer emulation.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuPrint : MsSna_Lu3270
{
 String AssociatedLU;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Pool Class
Base class for 3270 LU pools.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: StringQualifiers: Key, MAXLEN(8)Access Type: Read-Only

The pool name.

Comment

Data Type: StringQualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

Remarks

A pool is associated with one or more 3270 LUs.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_Pool : MsSna_Resource
{
 String Name;
 String Comment;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolDisplay Class
Contains the 3270 LU Display pool.

The following syntax is simplified from MOF code.

Syntax

Properties
Model

Data Type: sint16 Access Type: Read/Write

The default display model for terminal emulation. The following table describes the possible values for Model.

Value Description

0 Model2

1 Model3

2 Model4

3 Model5

ModelOverride

Data Type: Boolean Access Type: Read/Write

true to indicate that the default model can be overridden; otherwise, false. Some emulators can only emulate certain display
models.

AssocPrint

Data Type: Boolean Qualifiers: Something Access Type: Read/Write

true to associate a printer LU with this display LU pool; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolDisplay : MsSna_Pool
{
 sint16 Model;
 boolean ModelOverride;
 boolean AssocPrint;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolLua Class
The 3270 LU LUA pool.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolLua : MsSna_Pool
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolDown Class
The 3270 LU downstream pool.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolDown : MsSna_Pool
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuAppcLocal Class
An APPC local LU resource.

The following syntax is simplified from MOF code.

Syntax

Properties
Service

Data Type: String Qualifiers: Key, MAXLEN(20), TOUPPERCASE Access Type: Read-Only

The SNA service to which this LU belongs.

Alias

Data Type: String Qualifiers: Key, MAXLEN(8), TOUPPERCASE Access Type: Read-Only

The LU alias.

Comment

Data Type: String Qualifiers: MAXLEN(25) Access Type: Read/Write

An optional comment field.

NetName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The network name, which must match that configured on the remote computer.

LUName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The LU name, which can be the same as the LU alias.

PoolMember

Data Type: Boolean Access Type: Read/Write

true to indicate that this LU is a member of the default outgoing Local APPC LU pool; otherwise, false.

IncomingLu

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

An implicit incoming remote LU.

TpTimeout

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(3600) Access Type: Read/Write

class MsSna_LuAppcLocal : MsSna_Config
{
 String Service;
 String Alias;
 String Comment;
 String NetName;
 String LUName;
 boolean PoolMember;
 String IncomingLu;
 sint16 TpTimeout;
 sint16 Number;
 string Connection;
 boolean SyncPoint;
 String SyncPointClient;
};

The time-out value, in seconds. If you want to manually start the invokable TP, be sure to specify at least 60 seconds; this will
give the operator sufficient time to perform the necessary actions.

Number

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(254) Access Type: Read/Write

The LU number, for dependent LUs.

Connection

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The connection on which a dependent LU is configured.

SyncPoint

Data Type: Boolean Access Type: Read/Write

true to indicate that you have a very specialized transaction program (TP) that requires Resync Service; otherwise, false.

SyncPointClient

Data Type: String Qualifiers: MAXLEN(15) Access Type: Read/Write

The IP address or the name of the client computer.

Remarks

MsSna_LuAppcLocal is used for LU 6.2 protocols.

Requirements

Platforms: Microsoft Windows Server 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuAppcRemote Class
An APPC remote LU resource.

The following syntax is simplified from MOF code.

Syntax

Properties
Service

Data Type: String Qualifiers: MAXLEN(20), TOUPPERCASE Access Type: Read-Only

The SNA service to which this LU belongs.

Connection

Data Type: String Qualifiers: Key,MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The connection on which a dependent LU is configured.

Alias

Data Type: String Qualifiers: Key, MAXLEN(8) Access Type: Read-Only

The LU Alias.

Comment

Data Type: String Qualifiers: MAXLEN(25) Access Type: Read/Write

An optional comment field.

NetName

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The network name. You can obtain the correct name from the host or peer administrator.

LUName

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The LU name, which can be the same as the LU alias.

UnName

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The uninterpreted LU name for LUs, which are paired with a dependent local APPC LU.

Parallel

Data Type: String Access Type: Read/Write

class MsSna_LuAppcRemote : MsSna_Config
{
 String Service;
 String Connection;
 String Alias;
 String Comment;
 String NetName;
 String LUName;
 String UnName;
 boolean Parallel;
 String IncomingMode;
 sint16 Security;
 String SecKeyHex;
 String SecKeyChar;
 boolean SyncPoint;
};

A value that indicates that parallel sessions will be used. Parallel must be used with an independent, local LU.

IncomingMode

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The implicit incoming mode for this LU.

Security

Data Type: sint16 Access Type: Read/Write

A value that indicates what sort of session-level security will be used with this LU. The following table describes the possible
values for Security.

Value Description

0 None

1 Hex

2 Characters

SecKeyHex

Data Type: String Qualifiers: MAXLEN(16) Access Type: Read/Write

The security key, in hexadecimal. Requires that Security be set to '1'.

SecKeyChar

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The security key, in characters. Requires that Security be set to 2.

SyncPoint

Data Type: Boolean Access Type: Read/Write

true to enable SyncPoint; otherwise, false. SyncPoint requires that the Local LU alias be unique.

Remarks

MsSna_LuAppcRemote is used for LU 6.2 protocol, and references a connection.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AppcMode Class
Contains an APPC Mode definition.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read-Only

The mode name.

Comment

Data Type: String Qualifiers: MAXLEN(25) Access Type: Read/Write

An optional comment field.

SessionLimit

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(15000) Access Type: Read/Write

The maximum number of parallel sessions allowed with this mode.

MinContWin

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(15000) Access Type: Read/Write

The minimum contention winner limit.

PartMinContWin

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(15000) Access Type: Read/Write

The partner minimum contention winner limit.

AutoActivate

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(15000) Access Type: Read/Write

The number of contention winner sessions to be activated for the local LU whenever the connection for this mode is started.

Priority

Data Type: Boolean Access Type: Read/Write

true to give preference to communication with this mode over communication with a low-priority mode; otherwise, false.

TxPacing

class MsSna_AppcMode : MsSna_Config
{
 String Name;
 String Comment;
 sint32 SessionLimit;
 sint32 MinContWin;
 sint32 PartMinContWin;
 sint32 AutoActivate;
 boolean Priority;
 sint32 TxPacing;
 sint32 RxPacing;
 sint32 TxRu;
 sint32 RxRu;
 sint16 MaxSendCompression;
 sint16 MaxRcvCompression;
 boolean AllowLZandRLE;
 boolean EndpointOnly;
};

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(63) Access Type: Read/Write

The maximum number of frames for the local LU to send without an SNA pacing response from the partner LU. Setting
TxPacing to 0 indicates a unlimited number of frames.

RxPacing

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(63) Access Type: Read/Write

The maximum number of frames for the local LU to receive from the partner LU before the local LU sends an SNA pacing
response. Setting RxPacing to 0 (zero) indicates a unlimited number of frames.

TxRu

Data Type: sint32 Qualifiers: MINVALUE(256), MAXVALUE(65527) Access Type: Read/Write

The maximum size for RUs sent by the TPs on the local system.

RxRu

Data Type: sint32 Qualifiers: MINVALUE(256), MAXVALUE(65527) Access Type: Read/Write

The maximum size for RUs received from the TPs on the remote system.

MaxSendCompression

Data Type: sint32 Access Type: Read/Write

The maximum compression allowed when sending. The following table describes the possible values for
MaxSendCompression.

Values Description

0 None

1 RLE

2 LZ9

MaxRcvCompression

Data Type: sint16 Access Type: Read/Write

The maximum compression allowed when receiving. The following table describes the possible values for
MaxRcvCompression.

Values Description

0 None

1 RLE

2 LZ9

AllowLZandRLE

Data Type: Boolean Access Type: Read/Write

true to compress data using RLE before being further compressed using LZ9; otherwise, false. AllowLZandRLE is valid only
if you are using LZ9.

EndpointOnly

Data Type: Boolean Access Type: Read/Write

true to allow intermediate nodes to use compression if one of the endpoints does not support or otherwise does not use
compression; otherwise, false.

Remarks

MsSna_AppcMode defines properties of an LU 6.2 session.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Connection Class
Base class for SNA connection.

The following syntax is simplified from MOF code.

Syntax

Properties
Service

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read-Only

The SNA service to which this connection belongs.

Name

Data Type: String Qualifiers: Key, MAXLEN(8) Access Type: Read-ONly

The connection name.

Comment

Data Type: String Qualifiers: MAXLEN(25) Access Type: Read/Write

An optional comment field.

Adapter

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The link service to be used by this connection.

RemoteEnd

Data Type: sint32 Access Type: Read/Write

The remote end. The following table describes the possible values of RemoteEnd.

Value Description

0 Host

class MsSna_Connection : MsSna_Config
{
 String Service;
 String Name;
 String Comment;
 String Adapter;
 sint32 RemoteEnd;
 sint16 PeerRole;
 sint16 Activation;
 boolean AllowIncoming;
 boolean DynamicLuDef;
 String PartnerConnectionName;
 String BlockId;
 String NodeId;
 String RemoteNetName;
 String RemoteControlPoint;
 String RemoteBlockId;
 String RemoteNodeId;
 sint16 XIDFormat;
 String LocalNetName;
 String LocalControlPoint;
 sint16 CompressionLevel;
 sint16 RetryLimit;
 sint16 RetryDelay;
 String StatusText;
}

1 Peer

2 Downstream

3 Passthrough

For 3270 or LUA access, be sure to set RemoteEnd to Host.

PeerRole

Data Type: String Access Type: Read/Write

The peer role. The following table describes the possible values of PeerRole.

Value Description

0 Primary

1 Secondary

2 Negotiable

-1 Invalid

PeerRole only applies to connections with RemoteEnd set to Peer or Passthrough.

Activation

Data Type: sint16 Access Type: Read/Write

The activation setting. Applicable only if Outgoing Calls are included in Allowed Directions. The following table describes the
possible values for Activation.

Value Description

0 Initial

1 OnDemand

2 Administrator

3 Incoming

AllowIncoming

Data Type: Boolean Access Type: Read/Write

true to indicate that incoming calls are allowed; otherwise, false.

DynamicLuDef

Data Type: Boolean Access Type: Read/Write

true to automatically configure the APPC Remote LUs as users request them; otherwise, false. DynamicLuDef requires that
an APPN End Node or Net Node be available on the connection.

PartnerConnectionName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The name of the connecting partner. Valid only if RemoteEnd is of Passthrough.

BlockId

Data Type: String Qualifiers: MAXLEN(3), TOUPPERCASE Access Type: Read/Write

The block ID.

NodeId

Data Type: String Qualifiers: MAXLEN(5), TOUPPERCASE Access Type: Read/Write

The local node ID. Applicable only for connections which use a switched SDLC line (standard telephone line) to connect to a
host system.

RemoteNetName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The network name of the remote system. Applicable if you are using Format 3 XIDs.

RemoteControlPoint

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The control point of the reomote system. Applicable if you are using Format 3 XIDs.

RemoteBlockId

Data Type: String Qualifiers: MAXLEN(3), TOUPPERCASE Access Type: Read/Write

The remote block ID.

RemoteNodeId

Data Type: String Qualifiers: MAXLEN(5), TOUPPERCASE Access Type: Read/Write

The remote node ID.

XIDFormat

Data Type: sint16 Access Type: Read/Write

The XID Type. The following table describes the possible values for XIDFormat.

Value Description

0 Format 0

3 Format 3

Most systems use Format 3.

LocalNetName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The network name that, along with the LocalControlPoint, identifies a system.

LocalControlPoint

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The control point that, along with LocalNetName, identifies a system.

CompressionLevel

Data Type: sint16 Access Type: Read/Write

The compression type used by this connection. The following table describes the possible values for CompressionLevel.

Value Description

0 None

1 RLE

2 LZ9

3 LZ10

4 LZ12

RetryLimit

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(255) Access Type: Read/Write

The number of times the local system tries to send data to the remote system if there is no response.

RetryDelay

Data Type: String Qualifiers: MINVALUE(0), MAXVALUE(255), UNITS("sec") Access Type: Read/Write

The length of time for the local system to wait for a response to a transmission before trying again.

StatusText

Data Type: String Access Type: Read-Only

The current status of the connection. The following table describes the possible values of StatusText.

Value Description

0 Unconfigured

1 Inactive

2 Incoming

3 OnDemand

4 OnDemand/Incoming

5 Pending

6 Stopping

7 Active

8 Error

9

Name

Data Type: String Qualifiers: Something Access Type: Read/Write

The name of the connection.

Methods
Method Description

Start Starts the connection.

Stop Stops the connection.

ExchangePassthroughLus Returns a value that determines if two LUs are part of a passthrough connection pair.

Remarks

MsSna_Connection belongs to a SNA service, and may own 3270 LUs.

Requirements

https://msdn.microsoft.com/en-us/library/aa754494(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704596(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771001(v=bts.10).aspx

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Connection.Start Method
Starts the connection.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

 void Start();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Connection.Stop Method
Stops the connection.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

 void Stop();

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Connection.ExchangePassthroughLus Method
Returns a value that determines if two LUs are part of a passthrough connection pair.

The following syntax is simplified from MOF code.

Syntax

Parameters
FirstLu

The first LU.

SecondLu

The second LU.

Return Value

true if the LUs are part of a passthrough pair; otherwise, false.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

boolean ExchangePassthroughLus
(

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Connection8022Dlc Class
Describes a type of SNA connection that uses DLC 802.2 protocol over a Token Ring or Ethernet.

The following syntax is simplified from MOF code.

Syntax

Parameters
Address

Data Type: String Qualifiers: MAXLEN(12), TOUPPERCASE Access Type: Read/Write

The 12-digit hexadecimal remote network address. You can receive the correct value for Address by contacting the
administrator of the remote system.

DlcRetryLimit

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(255) Access Type: Read/Write

The number of times that the local system should retransmit a frame if no response is received from the remote system.

DlcTimerT1

Data Type: sint16 Access Type: Read/Write

The amount of time that the local system should wait for the remote system to respond to a transmission before the local
system tries again. The following table describes the possible values for DlcTimer.

Value Description

0 Default

1 200 ms

2 400 ms

3 600 ms

4 800 ms

5 1000 ms

6 1 s

7 2 s

8 3 s

class MsSna_Connection8022Dlc : MsSna_Connection
{
 String Address;
 sint16 DlcRetryLimit;
 sint16 DlcTimerT1;
 sint16 DlcTimerT2;
 sint16 DlcXidRetry;
 sint16 DlcRecvThresh;
 sint16 DlcSendLimit;
 sint16 DlcRemoteSAP;
 sint16 DLCType;
 sint16 DlcLocalSAP;
 sint32 MaxBtu;
};

9 4 s

10 5 s

DlcTimerT2

Data Type: sint16 Access Type: Read/Write

The maximum amount of time that should be allowed before the local system sends an acknowledgment of a received
transmission. The following table describes the possible values for DlcTimerT2.

Value Description

0 Default

1 40 ms

2 80 ms

3 120 ms

4 160 ms

5 200 ms

6 400 ms

7 800 ms

8 1200 ms

9 1600 ms

10 2000 ms

DlcXidRetry

Data Type: sint16 Qualifiers: QualiferValueHere Access Type: Read/Write

The amount of time that the link can be inactive before the local system treats it as nonfunctioning and shuts it down. The
following table describes the possible values for DlcXidRetry.

Value Description

0 1 s

1 2 s

2 3 s

3 4 s

4 5 s

5 5 s (2)

6 10 s

7 15 s

8 20 s

9 25 s

DlcXidRetry

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(30) Access Type: Read/Write

The number of times that the local system should retransmit an XID, an identifying message, if no response is received from
the remote system.

DlcRecvThresh

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(127) Access Type: Read/Write

The maximum number of frames that the local system can receive from the remote system before sending a response.

DlcSendLimit

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(127) Access Type: Read/Write

The maximum number of frames that the local system can send without receiving a response from the remote system.

DlcRemoteSAP

Data Type: sint16 Qualifiers: MINVALUE(4), MAXVALUE(252) Access Type: Read/Write

A 2-digit hexadecimal number that is a multiple of 04, between 04 and EC. See your Token Ring or Ethernet manual for more
information.

DLCType

Data Type: sint16 Access Type: Read-Only

The DLC type. The following table describes the possible values for DLCType.

Value Description

0 Token

1 Ether

DlcLocalSAP

Data Type: sint16 Qualifiers: MINVALUE(4), MAXVALUE(252) Access Type: Read/Write

A 2-digit hexadecimal number that is a multiple of 04, between 04 and EC. See your Token Ring or Ethernet manual for more
information.

MaxBtu

Data Type: sint16 Qualifiers: MINVALUE(265), MAXVALUE(16393) Access Type: Read/Write

The maximum Basic Transmission Unit (BTU) Length.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionSdlc Class
A type of SNA connection that uses SDLC protocol over dial-up or leased lines.

The following syntax is simplified from MOF code.

Syntax

Parameters
DialData

Data Type: String Qualifiers: MAXLEN(40) The dial data for connections which use a switched line and the phone number is
not stored in the modem.

SdlcEncoding

Data Type: sint16 Access Type: Read/Write

The encoding scheme (NRZ or NRZI) for the modem to use. The following table describes the possible values for
3dlcEncoding.

Value Description

0 NRZ

1 NRZI

SdlcEncoding must match the remote modem.

SdlcDuplex

Data Type: sint16 Access Type: Read/Write

The duplex setting of the modem. The following table describes the possible values for SdlcDuplex.

Value Description

0 Half

1 Full

SdlcPollAddress

Data Type: String Qualifiers: MAXLEN(2) Access Type: Read/Write

class MsSna_ConnectionSdlc : MsSna_Connection
{
 String DialData;
 sint16 SdlcEncoding;
 sint16 SdlcDuplex;
 String SdlcPollAddress;
 boolean SdlcLeasedLine;
 sint16 SdlcDataRate;
 sint16 SdlcContactLimit;
 sint16 SdlcContactTO;
 sint16 SdlcIdleLimit;
 sint16 SdlcIdleTO;
 boolean SdlcMultiPrimary;
 sint16 SdlcPollLimit;
 sint16 SdlcPollTO;
 sint16 SdlcPollRate;
 boolean SdlcStandby;
 sint16 SdlcSwitchTO;
 sint32 MaxBtu;
};

A 2-digit hexadecimal number describing the poll address. Contact the administrator of the remote system to determine the
appropriate value.

SdlcLeasedLine

Data Type: Boolean Access Type: Read-Only

The value depends on the Link service.

SdlcDataRate

Data Type: sint16 Access Type: Read/Write

The data rate for transmissions between the communications adapter and the modem. The following table describes the
possible values for SdlcDataRate.

Value Description

0 Low

1 High

SdlcContactLimit

Data Type: String Qualifiers: MINVALUE(1), MAXVALUE(20) Access Type: Read/Write

The maximum number of times the link service resends an XID or SNRM before declaring an outage to Host Integration
Server 2009.

SdlcContactTO

Data Type: String Qualifiers: MINVALUE(5), MAXVALUE(300) Access Type: Read/Write

The length of time, in tenths of a second, which the SDLC link service waits for an XID or SNRM response before resending
the XID or SNRM.

SdlcIdleLimit

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(255) Access Type: Read/Write

The number of times for the local system to try to send data to the remote system if there is no response.

SdlcIdleTO

Data Type: sint16 Access Type: MINVALUE(1), MAXVALUE(300)

The length of time, in tenths of a second, for the local system to wait for a response to a transmission before trying again.

SdlcMultiPrimary

Data Type: Boolean Access Type: Read/Write

true to indicate this is a leased SDLC line to downstream systems, and this server will be the primary station for a multidrop
connection; otherwise, false.

SdlcPollLimit

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(255) Access Type: Read/Write

The number of times for the local system to poll the remote system, if there is no response.

SdlcPollTO

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(300) Access Type: Read/Write

The length of time, in tenths of a second, for the local system to wait for a response to a poll before trying again.

SdlcPollRate

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(50) Access Type: Read/Write

The poll rate, in polls per second. Valid only if the remote system is a peer or downstream system.

SdlcStandby

Data Type: Boolean Access Type: Read/Write

true to set the Standby line to of a modem; otherwise, false.

SdlcSwitchTO

Data Type: sint16 Qualifiers: MINVALUE(10), MAXVALUE(500) Access Type: Read/Write

The number of seconds that are allowed for the user or modem to dial and make a connection to the remote computer.

MaxBtu

Data Type: sint32 Qualifiers: MINVALUE(265), MAXVALUE(16393) Access Type: Read/Write

The Maximum Basic Transmission Unit (BTU) length.

Requirements

Platforms: Microsoft Windows Server 2003, Windows XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionX25 Class
Describes a type of SNA connection that uses X.25 protocol over dial-up or leased lines.

The following syntax is simplified from MOF code.

Syntax

Parameters
Address

Data Type: String Qualifiers: MAXLEN(15), TOUPPERCASE Access Type: Read/Write

The Switched Virtual Circuit (SVC) address of the host for connections using switched virtual circuit.

PVCAlias

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(65535) Access Type: Read/Write

The Permanent Virtual Circuit (PVC) alias of the host for connections using permanent virtual circuit.

VCType

Data Type: sint16 Access Type: Read/Write

The type of virtual circuit used by the connection. The following table describes the possible values for VCType.

Value Description

0 Switched

1 Permanent

X25Facility

Data Type: String Qualifiers: MAXLEN(132), TOUPPERCASE Access Type: Read/Write

The codes for any Facility Data required by your network provider or by the administrator of the remote system. Valid only
for an SVC channel.

X25UserData

Data Type: String Qualifiers: MAXLEN(32), TOUPPERCASE Access Type: Read/Write

The codes for any User Data required by your network provider. Valid only for an SVC channel.

X25PacketSize

Data Type: sint16 Qualifiers: QualiferValueHere Access Type: Read/Write

The maximum number of data bytes, not header bytes, to be sent in a frame. The following table describes the possible
values for X25PacketSize.

Value Description

0 64

class MsSna_ConnectionX25 : MsSna_Connection
{
 String Address;
 sint16 PVCAlias;
 sint16 VCType;
 String X25Facility;
 String X25UserData;
 sint16 X25PacketSize;
 sint16 X25WindowSize;
 sint32 MaxBtu;
};

1 128

2 256

3 512

4 1024

X23PacketSize is valid only for a PVC channel.

X25WindowSize

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(7) Access Type: Read/Write

The maximum number of frames that the local system can send without receiving a response from the remote system. Valid
only for a PVC channel.

MaxBtu

Data Type: sin32 Qualifiers: MINVALUE(265), MAXVALUE(16393) Access Type: Read/Write

The Maximum Basic Transmission Unit (BTU) length.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionChannel Class
A type of SNA connection that uses channel links.

The following syntax is simplified from MOF code.

Syntax

Properties
Address

Data Type: String Qualifiers: MAXLEN(2) Access Type: Read/Write

A 2-digit hexadecimal number identifying the channel. The range is from 00 through FF; the default is FF.

CtrlUnit

Data Type: String Qualifiers: MAXLEN(1) Access Type: Read-Only

A value for the control unit image number. The range is 0 through F; the default is 0 (zero).

MaxBtu

Data Type: String Qualifiers: MINVALUE(265), MAXVALUE(65536) Access Type: Read/Write

The Maximum Basic Transmission Unit (BTU) length.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_ConnectionChannel : MsSna_Connection
{
 String Address;
 String CtrlUnit;
 sint32 MaxBtu;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionDft Class
A type of SNA connection that uses DFT over a coaxial cable.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_ConnectionDft : MsSna_Connection
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionTwinax Class
A type of SNA connection that uses a Twinax cable.

The following syntax is simplified from MOF code.

Syntax

Remarks

Twinax is not supported by Host Integration Server 2009.

Requirements

Operating Systems: Microsoft Windows Server 2003, Windows XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_ConnectionTwinax : MsSna_Connection
{
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Cpic Class
A global CPI-C definition for APPC.

The following syntax is simplified from MOF code.

Syntax

Parameters
Name

Data Type: String Qualifiers: Key, MAXLEN(8), TOUPPERCASE Access Type: Read-Only

The Symbolic Destination name.

Comment

Data Type: String Qualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

ApplicationTPName

Data Type: String Qualifiers: MAXLEN(64)Access Type: Read/Write

The application TP name.

ServiceTPHexName

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

A hexadecimal value describing the SNA service TP number.

FullLUName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

The partner LU name. Valid only for identifying a partner LU with a fully qualified name.

FullNetName

Data Type: String Qualifiers: MAXLEN(8)Access Type: Read/Write

The partner network name. Valid only for identifying a partner LU with a fully qualified name.

SecurityType

Data Type: sint16 Qualifiers: QualiferValueHere Access Type: Read/Write

The Conversation Security option to be used. The following table describes the possible values for SecurityType.

Value Description

0 None

class MsSna_Cpic : MsSna_Config
{
 String Name;
 String ApplicationTPName;
 String ServiceTPHexName;
 String FullLUName;
 String FullNetName;
 sint16 SecurityType;
 String UserId;
 String Password;
 String AliasLUName;
 sint16 LUNameType;
 sint16 TPNameType;
 String ModeName;
};

1 Same

2 Program

UserId

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The user ID to be used when specifying Program for SecurityType.

Password

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The password to be used when specifying Program for SecurityType

AliasLUName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASE Access Type: Read/Write

An alias. Valid only when identifying the Partner LU by alias.

LUNameType

Data Type: sint16 Access Type: Read/Write

A value that indicates whether the Partner LU name is specified with an alias or a fully qualified LU name. The following table
describes the possible values for LUNameType.

Value Description

0 Alias

1 Full

TPNameType

Data Type: sint16 Qualifiers: QualiferValueHere Access Type: Read/Write

A value that indicates whether the Partner TP name is specified in characters or hex. The following table describes the
possible values for TPNameType.

Value Description

0 Character

1 Hex

ModeName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

The name of the mode to be used.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_TN5250Definition Class
The definition of a TN5250 session.

The following syntax is simplified from MOF code.

Syntax

Parameters
Name

Data Type: String Qualifiers: Key,MAXLEN(10) Access Type: Read/Write

The session name.

Service

Data Type: String Qualifiers: MAXLEN(20), TOUPPERCASE Access Type: Read/Write

The SNA service to which this session belongs.

RemoteLUAlias

Data Type: String Qualifiers: MAXLEN(8)Access Type: Read/Write

The local LU alias used in the session.

LocalLUAlias

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The local LU alias used in the session.

Comment

Data Type: String Qualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

User

Data Type: String Qualifiers: MAXLEN(10)Access Type: Read/Write

The AS/400 user name used in the session.

Password

Data Type: String Qualifiers: MAXLEN(10)Access Type: Read/Write

The AS/400 password used in the session.

Mode

Data Type: String Access Type: Read/Write

The mode used in the session (QPCSUPP).

TermTypes

class MsSna_TN5250Definition : MsSna_Config
{
 String Name;
 String Service;
 String RemoteLUAlias;
 String LocalLUAlias;
 String Comment;
 String User;
 String Password;
 String Mode;
 sint32 TermTypes;
 sint32 Port;
};

Data Type: String Qualifiers: QualiferValueHere Access Type: Read/Write

The terminal types allowed for the session. The following list describes the possible values for TermType.

5555_C01

5555_B01

3477_FC

3180_2

3179_2

3196_A1

5292_2

5291_1

5251_11

Port

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(9999)Access Type: Read/Write

The port used for the session. By default the value is 0.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PrintSession Class
A base class for a print session on a Print service.

The following syntax is simplified from MOF code.

Syntax

Parameters
Name

Data Type: String Qualifiers: Key, MAXLEN(32), TOUPPERCASEAccess Type: Read/Write

The session name, which distinguishes different printers on the network.

Service

Data Type: String Qualifiers: MAXLEN(20)Access Type: Read/Write

The SNA service to which the print session belongs.

Comment

Data Type: String Qualifiers: MAXLEN(25)Access Type: Read/Write

An optional comment field.

StatusText

Data Type: String Access Type: Read/Write

The status of the print session.

class MsSna_PrintSession : MsSna_Config
{
 String Name;
 String Service;
 String Comment;
 String StatusText;
 sint16 Activation;
 sint16 CodePage;
 sint16 CodePageLanguage;
 String PrinterDeviceName;
 String CodePageCustomFile;
 String PrinterFile;
 boolean PrintToFile;
 String FaceName;
 boolean FaceNameOverride;
 sint32 LeftMargin;
 sint32 RightMargin;
 sint32 TopMargin;
 sint32 BottomMargin;
 boolean MarginOverride;
 boolean UniqueExtension;
 String PDTFile;
 boolean CheckPDTFile;
 String Filter;
 boolean bFilter;
 sint16 FontSize;
 sint16 SessionType;
 sint16 LinesPerInch;
 sint16 CharsPerLine;
 boolean IgnoreTransparentSections;
 boolean NoHorizontalScaling;
 boolean NoVerticalScaling;
 boolean LPIOverride;
 boolean PageSetupOverride;
};

Activation

Data Type: String Access Type: Read/Write

The print session activation. The following table describes the possible values for Activation.

Value Description

0 Automatic. Activates the print session automatically when the Host Print service is started

1 Manual. Activates the print session manually.

CodePage

Data Type: sint16Access Type: Read/Write

A value that indicates whether a standard language code or a custom code page will be used. The following table describes
the possible values for CodePage.

Value Description

0 Language

1 Custom

CodePageLanguage

Data Type: sint16Access Type: Read/Write

The code page to be used in the print session. For more information about the possible values for CodePageLanguage, see
the Remarks section.

PrinterDeviceName

Data Type: String Qualifiers: MAXLEN(256)Access Type: Read/Write

The name of the destination printer.

CodePageCustomFile

Data Type: String Qualifiers: MAXLEN(256)Access Type: Read/Write

The file name if a custom code page is to be used.

PrinterFile

Data Type: String Qualifiers: MAXLEN(256)Access Type: Read/Write

The name of the file. Valid only when printing to a file.

PrintToFile

Data Type: Boolean Access Type: Read/Write

true to indicate that the print job will be sent to a file; otherwise, false. Note that you must still configure a destination
printer.

FaceName

Data Type: String Qualifiers: MAXLEN(31)Access Type: Read/Write

The name of the face.

FaceNameOverride

Data Type: Boolean Access Type: Read/Write

true to override the host commands; otherwise, false.

LeftMargin

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(255)Access Type: Read/Write

The left margin, in inches.

RightMargin

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(255) Access Type: Read/Write

The right margin, in inches.

TopMargin

Data Type: String Qualifiers: MINVALUE(0), MAXVALUE(255) Access Type: Read/Write

The top margin, in inches.

BottomMargin

Data Type: sint32 Qualifiers: MINVALUE(0), MAXVALUE(255)Access Type: Read/Write

The bottom margin, in inches.

MarginOverride

Data Type: Boolean Access Type: Read/Write

true to override the host margin commands; otherwise, false.

UniqueExtension

Data Type: Boolean Access Type: Read/Write

true to instruct the print service to give each file a unique extension when printing a file.

PDTFile

Data Type: String Qualifiers: MAXLEN(256)Access Type: Read/Write

A PDT file used to format the print job.

CheckPDTFile

Data Type: Boolean Access Type: Read/Write

true to indicate that a PDT file will be used to format the print job; otherwise, false.

Filter

Data Type: String Qualifiers: MAXLEN(256)Access Type: Read/Write

The filter DLL to be used to filter the printer data stream.

bFilter

Data Type: Boolean Qualifiers: QualiferValueHere Access Type: Read/Write

true to indicate that a filter DLL will be used to filter the printer data stream; otherwise, false.

FontSizeOverride

Data Type: Boolean Access Type: Read/Write

true to override the host font size commands.

FontSize

Data Type: sint16 Qualifiers: MINVALUE(0), MAXVALUE(3276) Access Type: Read/Write

The font size to be used when printing.

SessionType

Data Type: sint16 Access Type: Read/Write

A value that indicates whether this is an APPC or 3270 print session. The following table describes the possible values for
SessionType.

Value Description

0 APPC

1 3270

LinesPerInch

Data Type: sint16 Qualifiers: MINVALUE(1), MAXVALUE(12) Access Type: Read/Write

The number of lines per inch to be printed.

CharsPerLine

Data Type: sint16 Access Type: Read/Write

The number of characters per line to be printed.

IgnoreTransparentSections

Data Type: Boolean Access Type: Read/Write

true to ignore sections of the print data stream that have been marked as Transparent; otherwise, false. This value is valid
only when using a PDT file to format the data.

NoHorizontalScaling

Data Type: Boolean Access Type: Read/Write

true to turn off off the horizontal scaling feature of the printer driver; otherwise, false.

NoVerticalScaling

Data Type: Boolean Access Type: Read/Write

true to turn off off the vertical scaling feature of the printer driver; otherwise, false.

LPIOverride

Data Type: Boolean Access Type: Read/Write

true to enable host commands for lines per inch to be overridden; otherwise, false.

PageSetupOverride

Data Type: String Access Type: Read/Write

The override for the page setup.

Remarks

The following table describes the possible values for CodePageLanguage.

0 Afrikaans[500]

1 Albanian[870]

2 Arabic (Algeria)[420]

3 Arabic (Kingdom of Bahrain)[420]

4 Arabic (Egypt)[420]

5 Arabic (Iraq)[420]

6 Arabic (Jordan)[420]

7 Arabic (Kuwait)[420]

8 Arabic (Lebanon)[420]

9 Arabic (Libya)[420]

10 Arabic (Morocco)[420]

11 Arabic (Oman)[420]

12 Arabic (Qatar)[420]

13 Arabic (Saudi Arabia)[420]

14 Arabic (Syria)[420]

15 Arabic (Tunisia)[420]

16 Arabic (U.A.E.)[420]

17 Arabic (Yemen)[420]

18 Basque[284]

19 Belarusian[1025]

20 Bulgarian[1025]

21 Catalan[284]

22 Chinese (PRC)[935]

23 Chinese (Singapore)[935]

24 Chinese (Hong Kong)[937]

25 Chinese (Macau)[937]

26 Chinese (Taiwan)[937]

27 Croatian[870]

28 Czech[870]

29 Danish[277]

30 Dutch (Belgium)[500]

31 Dutch (Standard)[037]

32 English (Australian)[037]

33 English (Belize)[500]

34 English (Canadian)[037]

35 English (Caribbean)[500]

36 English (Ireland)[285]

37 English (Jamaica)[500]

38 English (New Zealand)[037]

39 English (South Africa)[037]

40 English (Trinidad)[500]

41 English (United Kingdom)[285]

42 English (United States)[037]

43 Estonian[1112]

44 Faeroese[277]

45 Finnish[278]

46 French (Belgium)[500]

47 French (Canadian)[037]

48 French (Luxembourg)[500]

49 French (Standard)[297]

50 French (Swiss)[500]

51 German (Austrian)[273]

52 German (Liechtenstein)[500]

53 German (Luxembourg)[500]

54 German (Standard)[273]

55 German (Swiss)[500]

56 Greek[423]

57 Greek (Modern)[875]

58 Hebrew[424]

59 Hungarian[870]

60 Icelandic[871]

61 Indonesian[037]

62 Italian[280]

63 Italian (Swiss)[500]

64 International[500]

65 Japanese (Extend Katakana)[930]

66 Japanese (English-lower)[931]

67 Japanese (Extend English)[939]

68 Japanese (Katakana)[290]

69 Korean[933]

70 Latvian[1112]

71 Lithuanian[1112]

72 Macedonian[1025]

73 Malay[037]

74 Norwegian (Bokmal)[277]

75 Norwegian (Nynorsk)[277]

76 Polish[870]

77 Portuguese (Brazil)[037]

78 Portuguese (Portugal)[037]

79 Romanian[870]

80 Russian[880]

81 Serbian (Cyrillic)[1025]

82 Serbian (Latin)[870]

83 Slovak[870]

84 Slovenian[870]

85 Spanish (Argentina)[284]

86 Spanish (Bolivia)[284]

87 Spanish (Chile)[284]

88 Spanish (Columbia)[284]

89 Spanish (Costa Rica)[284]

90 Spanish (Dominican Rep.)[284]

91 Spanish (Ecuador)[284]

92 Spanish (El Salvador)[284]

93 Spanish (Guatemala)[284]

94 Spanish (Honduras)[284]

95 Spanish (Mexico)[284]

96 Spanish (Modern Sort)[284]

97 Spanish (Nicaragua)[284]

98 Spanish (Panama)[284]

99 Spanish (Paraguay)[284]

100 Spanish (Peru)[284]

101 Spanish (Puerto Rico)[284]

102 Spanish (Trad. Sort)[284]

103 Spanish (Uruguay)[284]

104 Spanish (Venezuela)[284]

105 Swedish[278]

106 Thai[838]

107 Turkish[905]

108 Turkish (Latin-5)[1026]

109 Ukrainian[1025]

110 Danish (Euro)[1142]

111 English (Canadian) (Euro)[1140]

112 English (United Kingdom) (Euro)[1146]

113 English (United States) (Euro)[1140]

114 Finnish (Euro)[1143]

115 French (Standard) (Euro)[1147]

116 German (Standard) (Euro)[1141]

117 Icelandic (Euro)[1149]

118 International (Euro)[1148]

119 Italian (Euro)[1144]

120 Latin-1 Open System (Euro)[924]

121 Norwegian (Bokmal) (Euro)[1142]

122 Norwegian (Nynorsk) (Euro)[1142]

123 Spanish (Trad. Sort) (Euro)[1145]

124 Swedish (Euro)[1143]

125 Latin-1 Open System[1047]

126 English (Australian) (Euro)[1140]

127 French (Canadian) (Euro)[1140]

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PrintSession3270 Class
Extends a print session.

The following syntax is simplified from MOF code.

Syntax

Parameters
JobTermination

Data Type: sint16 Access Type: Read/Write

'EndBracket' means the job completes when the print server receives the End Bracket notification—otherwise, the print
server spools the job until the session ends. The following table describes the possible values for JobTermination.

Value Description

0 EndBracket

1 UnBind

JobTimeoutSecs

Data Type: sint16 Qualifiers: MINVALUE(0),MAXVALUE(99),UNITS("sec") Access Type: Read/Write

The timeout for terminating 3270 print jobs—use with 'JobTimeout'.

JobTimeout

Data Type: Boolean Access Type: Read/Write

true to indicate whether a time-out will be used; otherwise, false. JobTimeout is most often used with JobTimeoutSecs.

UseGDI

Data Type: Boolean Access Type: Read/Write

true to indicate that the Windows Graphical Device Interface (GDI) is used to format the print job; otherwise, false.

TRNisASCII

Data Type: Boolean Access Type: Read/Write

true to indicate that transparent data from the host is in ASCII and needs no translation from EBCDIC to ASCII; otherwise,
false.

CustomTRN

Data Type: Boolean Access Type: Read/Write

true to indicate that a custom transparency byte, such as one other than the IBM standard of 0x35, will be used; otherwise,
false.

class MsSna_PrintSession3270 : MsSna_PrintSession
{
 sint16 JobTermination;
 sint16 JobTimeoutSecs;
 boolean JobTimeout;
 boolean UseGDI;
 boolean TRNisASCII;
 boolean CustomTRN;
 sint32 CustomTRNChar;
 String LUName;
 boolean MonitorJob;
 boolean LineWrap;
 boolean JobRenderedAtHost;
};

CustomTRNChar

Data Type: sint32 Qualifiers: MINVALUE(0),MAXVALUE(255)Access Type: Read/Write

The custom transparency byte—use this with 'CustomTRN' set to true.

LUName

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

The 3270 printer LU for the print session.

MonitorJob

Data Type: Boolean Access Type: Read/Write

true to cause the print server to send a message to the host stating that the print job completed; otherwise, false.

LineWrap

Data Type: Boolean Access Type: Read/Write

true to line wrap; otherwise, false.

JobRenderedAtHost

Data Type: Boolean Access Type: Read/Write

true to indicate that the print job is rendered at the host rather than by the Host Integration Server Host Print service;
otherwise, false.

Remarks

MsSna_PrintSession3270 uses 3270 protocols to communicate with the host.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PrintSessionAppc Class
Extends a print session. Uses APPC LU 6.2 protocols to communicate with the host.

The following syntax is simplified from MOF code.

Syntax

Parameters
LocalLUAlias

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

The local LU alias to be used for this print session. Valid only when a RemoteLUAlias is provided.

RemoteLUAlias

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

The remote LU alias. Valid only if a fully qualified name is not provided.

RemoteFQName

Data Type: String Qualifiers: MAXLEN(17)Access Type: Read/Write

The remote LU fully qualified name. Valid only if RemoteLUAlias and LocalLUAlias are not provided.

Remote

Data Type: sint16 Access Type: Read/Write

A value that specifies what type of connection to use: either a remote APPC LU alias or a fully qualified name. The following
table describes the possible values for Remote.

Value Description

0 Alias

1 Fully qualified name

Mode

Data Type: String Qualifiers: MAXLEN(8), TOUPPERCASEAccess Type: Read/Write

class MsSna_PrintSessionAppc : MsSna_PrintSession
{
 String LocalLUAlias;
 String RemoteLUAlias;
 String RemoteFQName;
 sint16 Remote;
 String Mode;
 String UserId;
 String Password;
 String AS400Device;
 sint16 System36;
 sint16 HostPrintTransform;
 sint16 DeviceType;
 String FontId;
 String MsgQName;
 String MsgLibName;
 String PrinterName;
 sint16 PaperSrc1;
 sint16 PaperSrc2;
 sint16 CodePage899;
 String SpecialObjName;
 String SpecialLibName;
};

The name of the mode to use. The default mode name is QPCSUPP.

UserId

Data Type: String Qualifiers: MAXLEN(10)Access Type: Read/Write

The remote user name.

Password

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The remote password.

AS400Device

Data Type: String Qualifiers: MAXLEN(10), TOUPPERCASE Access Type: Read/Write

The name for the AS/400 printer device. AS400Device should be a descriptive name that distinguishes different printers on
the network.

System36

Data Type: sint16 Access Type: Read/Write

A value that indicates whether the remote system is an AS/400 or a System/36. The following table describes the possible
values for System36.

Value Description

0 AS400

1 System/36

HostPrintTransform

Data Type: sint16 Access Type: Read/Write

A value that indicates whether Host Print Transform (HPT) will be used. The following table describes the possible values for
HostPrintTransform.

Value Description

0 FALSE

1 TRUE

DeviceType

Data Type: sint16 Access Type: Read/Write

The print device for Host Print Transform. The following table describes the possible values for DeviceType.

Value Description

0 5224

1 3812

The default value for DeviceType is 5224.

FontId

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

A font, which should be used instead of the default.

MsgQName

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The qualified name of the message queue to which operational messages for this device are sent.

MsgLibName

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The name of the library in which the message queue is located.

PrinterName

Data Type: TOUPPERCASE Access Type: Read/Write

The printer type to be used with Host Print Transform. For more information on the possible values for PrinterName, see
the Remarks section.

PaperSrc1

Data Type: sint16 Access Type: Read/Write

The type of paper used in paper source 1. The following table describes the possible values for PaperSrc1.

Value Description

0 Default

1 Letter (8.5 x 11 inches)

2 Legal (8.5 x 14 inches)

3 Executive (7.25 x 10.5 inches)

4 A4 (210 x 297 mm)

5 A5 (148 x 210 mm)

6 B5 (182 x 257 mm)

7 Continuous Form (8.0 inches)

8 Continuous Form (13.2 inches)

9 None

PaperSrc2

Data Type: sint16 Access Type: Read/Write

The type of paper used in paper source 2. The following table describes the possible values for PaperSrc2.

Value Description

0 Default

1 Letter (8.5 x 11 inches)

2 Legal (8.5 x 14 inches)

3 Executive (7.25 x 10.5 inches)

4 A4 (210 x 297 mm)

5 A5 (148 x 210 mm)

6 B5 (182 x 257 mm)

7 Continuous Form (8.0 inches)

8 Continuous Form (13.2 inches)

9 None

CodePage899

Data Type: sint16 Access Type: Read/Write

A value that indicates whether code page 899 is used. The following table describes the possible values of CodePage899.

Value Description

0 FALSE

1 TRUE

SpecialObjName

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The name of the special object.

SpecialLibName

Data Type: String Qualifiers: MAXLEN(10) Access Type: Read/Write

The name of the special library.

Remarks

The following table describes the possible values for PrinterName.

Value Description

0 *IBM2380

1 *IBM2381

2 *IBM2390

3 *IBM2391

4 *IBM3812

5 *IBM3816

6 *IBM3912HP

7 *IBM3916HP

8 *IBM39302

9 *IBM39303

10 *IBM4019

11 *IBM4019HP

12 *IBM4029

13 *IBM4029HP

14 *IBM4037

15 *IBM4037HP

16 *IBM4070

17 *IBM4070EP

18 *IBM42011

19 *IBM42012

20 *IBM42013

21 *IBM42021

22 *IBM42022

23 *IBM42023

24 *IBM42071

25 *IBM42072

26 *IBM42081

27 *IBM4212

28 *IBM4216

29 *IBM4226

30 *IBM4230

31 *IBM4232

32 *IBM47121

33 *IBM47122

34 *IBM47221

35 *IBM47222

36 *IBM4770

37 *IBM5152

38 *IBM5210

39 *IBM5202

40 *IBM5204

41 *IBM5216

42 *IBM6408

43 *IBM6412

44 *CPQPM15

45 *CPQPM20

46 *HPII

47 *HPIID

48 *HPIIP

49 *HPIIID

50 *HPIIIP

51 *HPIIISI

52 *HP4

53 *HP500

54 *HP550C

55 *HP560C

56 *HPPAINT

57 *EPAP2250

58 *EPAP3250

59 *EPAP5000

60 *EPAP5500

61 *EPDFX5000

62 *EPDFX8000

63 *EPDFX850

64 *EPDFX870

65 *EPDFX1170

66 *EPLQ570

67 *EPLQ860

68 *EPLQ870

69 *EPLQ1070

70 *EPLQ1170

71 *EPLX810

72 *EPLQ510

73 *EPLQ2550

74 *EPSQ870

75 *EPSQ1170

76 *EPEPL7000

77 *EPEPL8000

78 *OKI320IBM

79 *OKI321IBM

80 *OKI390IBM

81 *OKI393IBM

82 *OKI590IBM

83 *OKI591IBM

84 *OKI400

85 *OKI800

86 *OKI810

87 *OKI820

88 *OKI3410

89 *NECP2

90 *NEC2200

91 *NECP2200XE

92 *NECP5200

93 *NECP5300

94 *NECP6200

95 *NECP6300

96 *PAN1123EP

97 *PAN1124

98 *PAN1124IEP

99 *PAN1180EP

100 *PAN1180IEP

101 *PAN1191

102 *PAN1624EP

103 *PAN1654EP

104 *PAN1695EP

105 *PAN2123EP

106 *PAN2124

107 *PAN2180

108 *PAN2624EP

109 *PAN4410

110 *PAN4420

111 *PAN4430

112 *PAN4450IHP

113 *PAN4451HP

114 *XRX4215MRP

115 *XRX4219MRP

116 *XRX4220MRP

117 *XRX4235

118 *XRX4700II

119 *WSCST

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AppcPartner Class
A preconfigured combination of APPC local LU, remote LU, and Mode.

The following syntax is simplified from MOF code.

Syntax

Properties
Mode

Data Type: String Qualifiers: Key, MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The mode to be used in the partnership.

Server

Data Type: String Qualifiers: Key, MAXLEN(16), TOUPPERCASE Access Type: Read/Write

The Host Integration Server name on which this partnership will be added.

LocalLUAlias

Data Type: String Qualifiers: Key, MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The Local LU alias to be used in the partnership.

PartnerLUAlias

Data Type: String Qualifiers: Key, MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The partner LU. PartnerLUAlias can be a Remote LU or a different Local LU.

Connection

Data Type: String Qualifiers: Key, MAXLEN(8), TOUPPERCASE Access Type: Read/Write

The connection name for the Remote LU.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_AppcPartner : MsSna_Config
{
 String Mode;
 String Server;
 String LocalLUAlias;
 String PartnerLUAlias;
 String Connection;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AccountAssigned3270 Class
This is used to query for 3270 LUs assigned to a specific workstation or user.

The following syntax is simplified from MOF code.

Syntax

Parameters
Wks

Data Type: String Qualifiers: MAXLEN(20)Access Type: Read/Write

The workstation name. By default, returns LUs assigned to all workstations.

IPAddress

Data Type: String Qualifiers: MAXLEN(20)Access Type: Read/Write

The workstation IP. By default, returns LUs assigned to all workstations.

MacAddress

Data Type: String Qualifiers: MAXLEN(20)Access Type: Read/Write

A value that returns LUs configured to a specific media access control (MAC) address.

Account

Data Type: String Access Type: Read/Write

The user for which to query for LUs. By default, will return LUs assigned to all users.

Service

Data Type: String Access Type: Read/Write

The SNA service on which to query for LUs.

LU

Data Type: String Qualifiers: Key, MAXLEN(8) Access Type: Read/Write

A value that indicates whether the returned LU is part of an LU pool.

IsPool

Data Type: Boolean Access Type: Read/Write

true to indicate that the returned LU is part of an LU pool; otherwise, false.

IsAssociatedPrinterLU

Data Type: Boolean Access Type: Read/Write

true to indicate that the returned LU has an Associated Printer LU; otherwise, false.

ModelOverridable

class MsSna_AccountAssigned3270 : MsSna_Assigned
{
 String Wks;
 String IPAddress;
 String MacAddress;
 String Account;
 String Service;
 String LU;
 boolean IsPool;
 boolean IsAssociatedPrinterLU;
 boolean ModelOverridable;
 sint16 Model;
};

Data Type: Boolean Access Type: Read/Write

true to indicate that the returned LU has an display model which can be overridden; otherwise, false.

Model

Data Type: sint16 Access Type: Read/Write

The default display model of the returned LU. The following table describes the possible values for Model.

Value Description

0 Model12

1 Model13

2 Model14

3 Model15

Remarks

MsSna_AccountAssigned3270 is used in querying for LUA LUs assigned to a workstation as well as to the specified user.

On specifying "" for Workstation, only the LUs for the user will be returned.

On specifying "*" for User, the LUs for the logged in user will be returned.

If User is omitted, LUs assigned to all Users will be returned.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AccountAssignedLua Class
Used to query for LUA LUs assigned to a specific workstation or user.

The following syntax is simplified from MOF code.

Syntax

Properties
Wks

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The workstation name. By default, LUs assigned to all workstations are returned.

IPAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The workstation IP. By default, LUs assigned to all workstations are returned.

MacAddress

Data Type: String Access Type: Read/Write

The user for which to query for LUs. By default, returns LUs assigned to all users.

Account

Data Type: String Qualifiers: Key Access Type: Read/Write

The name of the service.

Service

Data Type: String Qualifiers: Key Access Type: Read/Write

The SNA service on which to query for LUs.

LU

Data Type: String Qualifiers: Key, MAXLEN(8) Access Type: Read/Write

The name of the LU.

IsPool

Data Type: Boolean Access Type: Read/Write

true to indicate that the returned LU is part of an LU pool; otherwise, false.

ModelOverridable

Data Type: Boolean Access Type: Read/Write

true if the LU has a display model which can be overridden.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

class MsSna_AccountAssignedLua : MsSna_Assigned
{
 String Wks;
 String IPAddress;
 String MacAddress;
 String Account;
 String Service;
 String LU;
 boolean IsPool;
 boolean ModelOverridable;
};

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AccountAssigned3270Services Class
Used to query for services on which a specific workstation or user has 3270 LUs/pools.

The following syntax is simplified from MOF code.

Syntax

Properties
Wks

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The workstation name. By default, those assigned to all workstations are returned.

IPAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read-Only

The workstation IP address. By default, those assigned to all workstations are returned.

MacAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

Returns services with LUs configured to a specific media access control (MAC) address.

Account

Data Type: String Access Type: Read/Write

The user to which the LUs are assigned. By default, returns services with LUs assigned to all users.

Service

Data Type: String Qualifiers: Key Access Type: Read/Write

The name of the service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_AccountAssigned3270Services : MsSna_Assigned
{
 String Wks;
 String IPAddress;
 String MacAddress;
 String Account;
 String Service;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AccountAssignedLuaServices Class
Used to query for services on which a specific workstation or user has LUA LUs/pools.

The following syntax is simplified from MOF code.

Syntax

Properties
Wks

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The workstation name. By default, those assigned to all workstations are returned.

IPAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The workstation IP address. By default, those assigned to all workstations are returned.

MacAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

Returns services with LUs configured to a specific media access control (MAC) address.

Account

Data Type: String Access Type: Read/Write

The user to which the LUs are assigned. By default, returns services with LUs assigned to all users.

Service

Data Type: String Qualifiers: Key Access Type: Read/Write

Returns the name of the service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_AccountAssignedLuaServices : MsSna_Assigned
{
 String Wks;
 String IPAddress;
 String MacAddress;
 String Account;
 String Service;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AccountAvailableAppcLu Class
For the logged-on user account and workstation, the assigned APPC LU resources.

The following syntax is simplified from MOF code.

Syntax

Properties
LocalLu

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The local LU name.

RemoteLu

Data Type: String Qualifiers: MAXLEN(8) Access Type: Read/Write

The remote LU name.

Wks

Data Type: String Qualifiers: MAXLEN(20 Access Type: Read/Write

The workstation name.

IPAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The workstation IP address.

MacAddress

Data Type: String Qualifiers: MAXLEN(20) Access Type: Read/Write

The MAC address.

Remarks

MsSna_AccountAvailableAppcLu is used in querying for the remote APPC LUs for a given local APPC LU on a given
workstation and associated with the logged-on user.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_AccountAvailableAppcLu : MsSna_Assigned
{
 String LocalLu;
 String RemoteLu;
 String Wks;
 String IPAddress;
 String MacAddress;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_AdapterOnMachine Class
Associates an adapter with a computer.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_Adapter

Data Type: ref PathToAdapter Qualifiers: Key Access Type: Read-Only

The adapter to associate with.

MsSna_Server

Data Type: ref PathToServer Qualifiers: Key Access Type: Read-Only

The server to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_AdapterOnMachine : MsSna_Association
{
 MsSna_Adapter ref PathToAdapter;
 MsSna_Server ref PathToServer;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionOnServer Class
Associates a connection with a server.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_Connection

Data Type: ref PathToConnection Qualifiers: Key Access Type: Read-Only

The connection to associate with.

MsSna_Server

Data Type: ref PathToServer Qualifiers: Key Access Type: Read-Only

The path to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_ConnectionOnServer : MsSna_Association
{
 MsSna_Connection ref PathToConnection;
 MsSna_Server ref PathToServer;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Lu3270OnConnection Class
Associates a 3270 LU with a connection.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_Connection

Data Type: ref PathToConnection Qualifiers: Key Access Type: Read-Only

The connection to associate with.

MsSna_Lu3270

Data Type: ref PathToLu3270 Qualifiers: Key Access Type: Read-Only

The 3270 LU to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_Lu3270OnConnection : MsSna_Association
{
 MsSna_Connection ref PathToConnection;
 MsSna_Lu3270 ref PathToLu3270;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuDisplayAssignedToUser Class
Associates a display LU with a user.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_LuDisplay

Data Type: ref PathToLuDisplay Qualifiers: Key Access Type: Read-Only

The display LU to associate with.

MsSna_ConfiguredUser

Data Type: ref PathToUser Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuDisplayAssignedToUser : MsSna_Lu3270AssignedToUser
{
 MsSna_LuDisplay ref PathToLuDisplay;
 MsSna_ConfiguredUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuPrintAssignedToUser Class
Associates a print LU with a user.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_LuPrint

Data Type: ref PathToLuPrint Qualifiers: Key Access Type: Read-Only

The print LU to associate with.

MsSna_ConfiguredUser

Data Type: ref PathToUser Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuPrintAssignedToUser : MsSna_Lu3270AssignedToUser
{
 MsSna_LuPrint ref PathToLuPrint;
 MsSna_ConfiguredUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuLuaAssignedToUser Class
Associates an LUA LU with a user.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_LuLua

Data Type: ref PathToLuLua Qualifiers: Key Access Type: Read-Only

The LUA LU to associate with.

MsSna_ConfiguredUser

Data Type: ref PathToUser Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuLuaAssignedToUser : MsSna_Lu3270AssignedToUser
{
 MsSna_LuLua ref PathToLuLua;
 MsSna_ConfiguredUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolDisplayAssignedToUser Class
Associates a display pool with a user.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_PoolDisplay

Data Type: ref PathToPoolDisplay Qualifiers: Key Access Type: Read-Only

The display pool to associate with.

MsSna_ConfiguredUser

Data Type: ref PathToUser Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolDisplayAssignedToUser : MsSna_PoolAssignedToUser
{
 MsSna_PoolDisplay ref PathToPoolDisplay;
 MsSna_ConfiguredUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolLuaAssignedToUser Class
Associates a pool LUA with a user.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_PoolLua

Data Type: ref PathToPoolLua Qualifiers: Key Access Type: Read-Only

The pool LUA to associate with.

MsSna_ConfiguredUser

Data Type: ref PathToUser Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolLuaAssignedToUser : MsSna_PoolAssignedToUser
{
 MsSna_PoolLua ref PathToPoolLua;
 MsSna_ConfiguredUser ref PathToUser;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuDisplayAssignedToWorkstation Class
Associates a display LU with a workstation.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_LuDisplay

Data Type: ref PathToLuDisplay Qualifiers: Key Access Type: Read-Only

The display LU to associate with.

MsSna_Workstation

Data Type: ref PathToWorkstation Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuDisplayAssignedToWorkstation : MsSna_Lu3270AssignedToWorkstation
{
 MsSna_LuDisplay ref PathToLuDisplay;
 MsSna_Workstation ref PathToWorkstation;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuPrintAssignedToWorkstation Class
Associates a print LU with a workstation.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_LuPrint

Data Type: ref PathToLuPrint Qualifiers: Key Access Type: Read-Only

The print LU to associate with.

MsSna_Workstation

Data Type: ref PathToWorkstation Qualifiers: Key Access Type: Read-Only

The user to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuPrintAssignedToWorkstation : MsSna_Lu3270AssignedToWorkstation
{
 MsSna_LuPrint ref PathToLuPrint;
 MsSna_Workstation ref PathToWorkstation;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_LuLuaAssignedToWorkstation Class
Associates an LUA LU with a workstation.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_LuLua

Data Type: ref PathToLuLua Qualifiers: Key Access Type: Read-Only

The LUA LU to associate with.

MsSna_Workstation

Data Type: ref PathToWorkstation Qualifiers: Key Access Type: Read-Only

The workstation to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_LuLuaAssignedToWorkstation : MsSna_Lu3270AssignedToWorkstation
{
 MsSna_LuLua ref PathToLuLua;
 MsSna_Workstation ref PathToWorkstation;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolDisplayAssignedToWorkstation Class
Associates a display pool with a workstation.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_PoolDisplay

Data Type: ref PathToPoolDisplay Qualifiers: Key Access Type: Read-Only

The display pool to associate with.

MsSna_Workstation

Data Type: ref PathToWorkstation Qualifiers: Key Access Type: Read-Only

The workstation to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolDisplayAssignedToWorkstation : MsSna_PoolAssignedToWorkstation
{
 MsSna_PoolDisplay ref PathToPoolDisplay;
 MsSna_Workstation ref PathToWorkstation;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolLuaAssignedToWorkstation Class
Associates an LUA pool with a workstation.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_PoolLua

Data Type: ref PathToPoolLua Qualifiers: Key Access Type: Read-Only

The LUA pool to associate with.

MsSna_Workstation

Data Type: ref PathToWorkstation Qualifiers: Key Access Type: Read-Only

The workstation to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolLuaAssignedToWorkstation : MsSna_PoolAssignedToWorkstation
{
 MsSna_PoolLua ref PathToPoolLua;
 MsSna_Workstation ref PathToWorkstation;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ConnectionUsingAdapter Class
Associates a connection with an adapter.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_Adapter

Data Type: ref PathToAdapter Qualifiers: Key Access Type: Read-Only

The adapter to associate with.

MsSna_Connection

Data Type: ref PathToConnection Qualifiers: Key Access Type: Read-Only

The connection to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_ConnectionUsingAdapter : MsSna_Association
{
 MsSna_Adapter ref PathToAdapter;
 MsSna_Connection ref PathToConnection;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_Lu3270AssignedToPool Class
Associates a 3270 LU with a pool.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_Pool

Data Type: ref PathToPool3270 Qualifiers: Key Access Type: Read-Only

The pool to associate with.

MsSna_Lu3270

Data Type: ref PathToLu3270 Qualifiers: Key Access Type: Read-Only

The 3270 LU to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_Lu3270AssignedToPool : MsSna_Association
{
 MsSna_Pool ref PathToPool3270;
 MsSna_Lu3270 ref PathToLu3270;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_PoolOnServer Class
Associates a pool with a server.

The following syntax is simplified from MOF code.

Syntax

Properties
MsSna_Pool

Data Type: ref PathToPool3270 Qualifiers: Key Access Type: Read-Only

The pool to associate with.

MsSna_Server

Data Type: ref PathToServer Qualifiers: Key Access Type: Read-Only

The server to associate with.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Other Resources
WMISNA WMI Provider Classes
Administration and Management Programmer's Guide

class MsSna_PoolOnServer : MsSna_Association
{
 MsSna_Pool ref PathToPool3270;
 MsSna_Server ref PathToServer;
};

https://msdn.microsoft.com/en-us/library/aa704944(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsSna_ExtendedStatus Class
Describes the extended status of a specified message.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

class MsSna_ExtendedStatus: __ExtendedStatus
{
};

MQBridge WMI Programmer's Reference
The MQBridge WMI Programmer's Reference describes the WMI provider classes that you can use to monitor the MSMQ-
MQSeries Bridge.

For general information about programming for messaging, see theMessaging Programmer's Guide section of the SDK.

For sample programs illustratating MSMQ-MQSeries Bridge, see the Messaging Samples section of the SDK.

This section contains:

WMIMQBridge WMI Provider Classes

https://msdn.microsoft.com/en-us/library/aa771685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754390(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx

WMIMQBridge WMI Provider Classes
The Microsoft® Host Integration Server MSMQ-MQSeries Bridge provider supplies information regarding the MSMQ-
MQSeries Bridge. As an instance and method provider, the WMIMQBridge provider implements the standard
IWbemProviderInit interface and the following IWbemServices methods:

CreateInstanceEnumAsync

DeleteInstanceAsync

ExecMethodAsync

GetObjectAsync

PutInstanceAsync

For more information on IWbemProviderInit and IWbemServices, see "COM API for WMI" in the MSDN Library at
http://msdn.microsoft.com/library.

You can access these provider classes in the \root\MicrosoftHIS namespace.

Class Description

MsHisBridge_ExtendedStatus Returns error information.

MsHisBridge_Service Describes the MQSeries Bridge service.

MsHisBridge_Channel Describes an MQI channel.

MsHisBridge_Channel_In_Service Associates the channel and the service.

MsHisBridge_MessagePipe Describes an MSMQ-MQSeries message pipe.

MsHisBridge_ConnectedNetwork Describes a connected network.

MsHisBridge_ConnectedNetwork_In_Service Associates the connected network to a specified service.

Requirements

Platforms: Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

https://msdn.microsoft.com/en-us/library/aa754346(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771297(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771880(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745842(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705261(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746166(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771276(v=bts.10).aspx

MsHisBridge_ExtendedStatus Class
Returns error information.

The following syntax is simplified from MOF code.

Syntax

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsHisBridge_ExtendedStatus : __ExtendedStatus
{
};

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisBridge_Service Class
Describes the MQSeries Bridge service.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String

Qualifiers: keyAccess Type: Read/Write

The name of the computer.

F2QR_MaxThreads

Data Type: uint32

Access Type: Read/Write

The maximum number of threads for the MSMQ-to-MQSeries High service message pipe.

F2QT_MaxThreads

Data Type: uint32

Access Type: Read/Write

The maximum number of threads for the MSMQ-to-MQSeries Normal service message pipe.

Q2FD_MaxThreads

Data Type: uint32

Access Type: Read/Write

The maximum number of threads for the MQSeries-to-MSMQ High service message pipe.

Q2FO_MaxThreads

Data Type: uint32

Access Type: Read/Write

The maximum number of threads for the MQSeries-to-MSMQ Normal service message pipe.

CacheReresh

Data Type: uint32

Access Type: Read/Write

The interval (in minutes) at which the message pipes check for Cache Time-out.

Encryption

Data Type: Boolean

class MsHisMQBridge_Service : MsHisMQBridge_Config
{
 string Name;
 uint32 F2QR_MaxThreads;
 uint32 F2QT_MaxThreads;
 uint32 Q2FD_MaxThreads;
 uint32 Q2FO_MaxThreads;
 uint32 CacheReresh;
 Boolean Encryption;
};

Access Type: Read/Write

Enables the Encryption feature from MSMQ to MSMQ-MQSeries Bridge.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisBridge_Channel Class
Describes an MQI channel.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String

Qualifiers: keyAccess Type: Read/Write

The name of the computer.

QueueManagerName

Data Type: StringAccess Type: Read/Write

The MQSeries Queue Manager to which the channel connects.

TransportType

Data Type: uint32Access Type: Read-Only

Specifies whether TCP/IP or SNA LU 6.2 communication will be used. The following table describes the possible values for
TransportType.

Value Description

1 LU 6.2

2 TCP/IP

TCPAddress

Data Type: StringAccess Type: Read/Write

The TCP/IP Address of the MQSeries listener (used with TCP/IP transport).

TCPPort

Data Type: StringAccess Type: Read/Write

The TCP/IP Port of the MQSeries listener (used with TCP/IP transport).

LU62SideInfoRecord

Data Type: StringAccess Type: Read/Write

The CPI-C Symbolic Name defined in Host Integration Server 2009 (used with SNA LU 6.2 transport).

McaUser

Data Type: StringAccess Type: Read/Write

An existing or new MQSeries user name, such as FMQUSER1, under which the server side of the MQI channel runs.

class MsHisMQBridge_Channel : MsHisMQBridge_Config
{
 string Name;
 string QueueManagerName;
 uint32 TransportType;
 string TCPAddress;
 string TCPPort;
 string LU62SideInfoRecord;
 string McaUser;
};

Requirements

Platforms: Microsoft Windows Server 2003, Windows XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisBridge_Channel_In_Service Class
Associates the channel and the service.

Syntax

Properties
PathToChannel

Data Type: MsHisMQBridge_Channel refQualifiers: keyAccess Type: Read-Only

The path to the channel.

PathToService

Data Type: MsHisMQBridge_Service refQualifiers: keyAccess Type: Read-Only

The path to the service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes

class MsHisMQBridge_Channel_In_Service : MsHisMQBridge_Association
{
 MsHisMQBridge_Channel ref PathToChannel;
 MsHisMQBridge_Service ref PathToService;
};

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx

MsHisBridge_MessagePipe Class
Describes an MSMQ-MQSeries message pipe.

The following syntax is simplified from MOF code.

Syntax

Properties
TransmitQueue

Data Type: StringAccess Type: Read/Write

A unique MQSeries transmission queue name for the pipe. The default names are <CN name>.XMITQ for the transactional
message pipe, and <CN name>.XMITQ.HIGH for the nontransactional message pipe.

Startup

Data Type: uint32Access Type: Read/Write

Enabled or disabled at MSMQ-MQSeries Bridge Startup.

MaxMessageCount

Data Type: uint32Access Type: Read/Write

The maximum number of messages in a batch.

MaxMessageSize

Data Type: uint32Access Type: Read/Write

The maximum size (in bytes) of a batch.

MaxTime

Data Type: uint32Access Type: Read/Write

The interval (in minutes) at which the message pipes check for Cache Time-out.

CacheReresh

Data Type: uint32Access Type: Read/Write

The maximum time (in milliseconds) during which messages are batched.

ShortRetryCount

Data Type: uint32Access Type: Read/Write

The maximum number of retries for the short retry cycle.

ShortRetryDelay

Data Type: uint32Access Type: Read/Write

The interval between retries for the short retry cycle.

class MsHisMQBridge_MessagePipe
{
 string TransmitQueue;
 uint32 Startup;
 uint32 MaxMessageCount;
 uint32 MaxMessageSize;
 uint32 MaxTime;
 uint32 CacheReresh;
 uint32 ShortRetryCount;
 uint32 ShortRetryDelay;
 uint32 LongRetryCount;
 uint32 LongRetryDelay;
};

LongRetryCount

Data Type: uint32Access Type: Read/Write

The maximum number of retries for the long retry cycle.

LongRetryDelay

Data Type: uint32Access Type: Read/Write

The interval between retries for the long retry cycle.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisBridge_ConnectedNetwork Class
Describes a connected network.

The following syntax is simplified from MOF code.

Syntax

Properties
Name

Data Type: String

Qualifiers: keyAccess Type: Read/Write

The name of the computer.

MQSeriesQMNGR

Data Type: StringAccess Type: Read/Write

The MQSeries Queue Manager to which this CN is connected.

ReplyToQMNGR

Data Type: StringAccess Type: Read/Write

The default MSMQ QM to which MQSeries should return report or acknowledgment messages. Ordinarily, ReplyToQMNGR
contains the name of the MSMQ-MQSeries Bridge computer.

Startup

Data Type: uint32Access Type: Read/Write

Enabled or disabled at MSMQ-MQSeries Bridge Startup.

MSMQ2MQSeries_MessagePipe

Data Type: MsHisMQBridge_MessagePipeAccess Type: Read/Write

The MSMQ to MQ Series High service (nontransacted) message pipe.

MSMQ2MQSeriesTx_MessagePipe

Data Type: MsHisMQBridge_MessagePipeAccess Type: Read/Write

The MSMQ to MQ Series Normal service (transacted) message pipe.

MQSeries2MSMQ_MessagePipe

Data Type: MsHisMQBridge_MessagePipeAccess Type: Read/Write

The MQ Series to MSMQ High service (nontransacted) message pipe.

MQSeries2MSMQTx_MessagePipe

Data Type: MsHisMQBridge_MessagePipeAccess Type: Read/Write

The MQ Series to MSMQ Normal service (transacted) message pipe.

class MsHisMQBridge_ConnectedNetwork : MsHisMQBridge_Config
{
 string Name;
 string MQSeriesQMNGR;
 string ReplyToQMNGR;
 uint32 Startup;
 MsHisMQBridge_MessagePipe MSMQ2MQSeries_MessagePipe;
 MsHisMQBridge_MessagePipe MSMQ2MQSeriesTx_MessagePipe;
 MsHisMQBridge_MessagePipe MQSeries2MSMQ_MessagePipe;
 MsHisMQBridge_MessagePipe MQSeries2MSMQTx_MessagePipe;
};

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

MsHisBridge_ConnectedNetwork_In_Service Class
Associates the connected network to a specified service.

The following syntax is simplified from MOF code.

Syntax

Properties
PathToConnectedNetwork

Data Type: MsHisMQBridge_ConnectedNetwork ref

Qualifiers: keyAccess Type: Read-Only

The path to the connected network.

PathToService

Data Type: MsHisMQBridge_Service ref

Qualifiers: keyAccess Type: Read-Only

The path to the service.

Requirements

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

See Also
Reference
WMIMQBridge WMI Provider Classes
Other Resources
Administration and Management Programmer's Guide

class MsHisMQBridge_ConnectedNetwork_In_Service : MsHisMQBridge_Association
{
 MsHisMQBridge_ConnectedNetwork ref PathToConnectedNetwork;
 MsHisMQBridge_Service ref PathToService;
};

https://msdn.microsoft.com/en-us/library/aa754246(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx

Messaging Programmer's Reference
This section of the Microsoft Host Integration Server 2009 Developer's Guide lists the extensions and components that make
up the MSMQ-MQSeries Bridge.

For general information about programming for the MSMQ-MQSeries Bridge, see the Messaging Programmer's Guide section
of the SDK.

For sample code using the MSMQ-MQSeries Bridge, see the Messaging Programmer's Guide section of the SDK.

In This Section

MSMQ-MQSeries Bridge Extensions Reference

SDComponents for MSMQ-MQSeries Bridge Extensions

https://msdn.microsoft.com/en-us/library/aa771685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754299(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771121(v=bts.10).aspx

MSMQ-MQSeries Bridge Extensions Reference
This section provides an alphabetic reference to all of the API calls for the Microsoft® MSMQ-MQSeries Bridge Extension
Property API.

In This Section

EPAdd

EPClose

EPDelete

EPDeleteAll

EPGet

EPGetBuffer

EPOpen

EPUpdate

https://msdn.microsoft.com/en-us/library/aa770524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745217(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705269(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705700(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705758(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705660(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770342(v=bts.10).aspx

EPAdd
The EPAdd function adds a new extension field at the end of an existing EP object and optionally returns a cursor pointing to
the new extension field in the EP object.

Syntax

Parameters
hExtension

Supplied parameter. The EP object handle to the EP object that is to have data added.

pFieldID

Supplied parameter. A pointer to the GUID of the new extension field. A GUID is 16 bytes in length.

pFieldData

Supplied parameter. A pointer to the buffer containing the data for the new extension field.

dwDataLength

Supplied parameter. The length of the buffer containing the data for the new extension field.

phCursor

Supplied and returned parameter. A pointer to a cursor, which points to the new extension field. If phCursor is NULL when
this function is called; the cursor is not created.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_ALLOC_FAIL

The function failed because memory could not be allocated for the internal data buffers used to extend the EP object.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

Remarks

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension
field. The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

The following example illustrates how to use this function.

HRESULT EPAdd(
 HANDLE hExtension,
 PCGUID pFieldID
 void *pFieldData,
 DWORD dwDataLength,
 PHANDLE phCursor
);

HANDLE hExt;
HANDLE hCursor;
GUID guid;
...
/* Add a new field containing the data "test" */
EPAdd(hExt, &guid, "test", 5, NULL);

See Also
Reference
EPDelete
EPDeleteAll

/* Add a new field and create a cursor */
EPAdd(hExt, &guid, "another test", 13, &hCursor);

https://msdn.microsoft.com/en-us/library/aa771249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705269(v=bts.10).aspx

EPClose
The EPClose function closes an open EP object freeing the extension handle and associated memory of an EP object. The
entire contents of the object are deleted.

Syntax

Parameters
phExtension

Supplied and returned parameter. A pointer to an existing EP object handle to close.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because the parameter passed to this function is invalid.

Remarks

If the EP object handle is successfully closed, phExtension is reset to NULL on output.

See Also
Reference
EPOpen

HRESULT EPClose(
 PHANDLE phExtension
);

https://msdn.microsoft.com/en-us/library/aa705660(v=bts.10).aspx

EPDelete
The EPDelete function deletes a single extension field from an existing EP object.

Syntax

Parameters
hExtension

Supplied parameter. The EP object handle to the EP object that is to have extension field deleted.

phCursor

Supplied and returned parameter. On input, phCursor is a cursor pointing to the extension field to be deleted. On output,
phCursor is set to the next extension field in the extension, or to NULL if there are no more fields.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

Remarks

After successful deletion, the cursor is set to point to the next field after the deleted one. If the last field is deleted, the cursor is
set to NULL (to the beginning).

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension
field. The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

See Also
Reference
EPDeleteAll

HRESULT EPDelete(
 HANDLE hExtension,
 PHANDLE phCursor
);

https://msdn.microsoft.com/en-us/library/aa705269(v=bts.10).aspx

EPDeleteAll
The EPDeleteAll function deletes all extension fields from an existing EP object or all extension fields matching a specific
GUID.

Syntax

Parameters
hExtension

Supplied parameter. The EP object handle to the EP object that is to have extension field deleted.

pFieldsId

Supplied parameter. A pointer to a 16-byte buffer containing the GUID of the fields to delete. If this parameter is NULL, all
extension fields are deleted.

phCursor

Supplied and returned parameter. On output, this field is a pointer to an extension field cursor. The cursor is positioned at the
first field of the next higher GUID after the one that was deleted. If there are no more GUIDs, or if all fields were deleted,
phCursor is set to NULL. The phCursor may be NULL on input if no cursor is desired.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_EXTENSION_FIELD_NOT_FOUND

The function failed because the extension field matching the specified GUID could not be found.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

Remarks

If the phCursor parameter is not NULL, *phCursor will point to the next field after all the deleted ones (even if
MQ_ERROR_EXTENSION_FIELD_NOT_FOUND is returned). If the last field is deleted, the cursor is set to NULL.

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension
field. The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

The following example illustrates how to use this function.

HRESULT EPDeleteAll(
 HANDLEhExtension,
 PCGUIDpFieldsId,
 PHANDLEphCursor
);

HANDLE hExt;
GUID guid;
HANDLE hCursor;
...
/* Delete all fields having a specified GUID and set a cursor */
EPDeleteAll(hExt, &guid, &hCursor);

/* Delete all extension fields */
EPDeleteAll(hExt, NULL, NULL);

See Also
Reference
EPDelete

https://msdn.microsoft.com/en-us/library/aa771249(v=bts.10).aspx

EPGet
The EPGet function reads a specified extension field from an EP object, storing the GUID, length, and data subfields in separate
variables. EPGet can also be used to locate extension fields containing a specified GUID

Syntax

Parameters
hExtension

Supplied parameter. The EP object handle.

Directive

Supplied parameter. This parameter and phCursor together control the behavior of the function. Possible values and their
usage are discussed in the table following this parameter list.

phCursor

Supplied and returned parameter. A pointer to a cursor, which points to the matching extension field. If phCursor is NULL,
the first field having a GUID matching pFieldID is read, and the cursor is positioned to this field. See the Directive argument
in this list for specific details.

pFieldID

Supplied and returned parameter. If the Directive argument is EP_NEXT_KEY_FIELD, pFieldId is a pointer to a 16-byte buffer
containing the GUID to be read. If the Directive argument is EP_CURRENT_FIELD or EP_NEXT_FIELD, on output this parameter
is a pointer to a 16-byte buffer where the function stores the GUID. The GUID can be NULL if the GUID output is not desired.

pFieldData

Supplied and returned parameter. On input, a pointer to a buffer where the function should store the extension field data. On
input, this parameter can be NULL if the data output is not desired. On output, a pointer to a buffer where the function stores
the extension field data.

pdwDataLength

Supplied and returned parameter. On input, the length of the buffer for the data from the extension field. On output, the
actual length of the data. If the buffer is too short or NULL, the data is not read but pdwDataLength is reset to the required
buffer length.

Values for the Directive parameter
Dir
ecti
ve

Description

EP_
CU
RRE
NT_
FIEL
D

Retrieves the extension field pointed to by the phCursor parameter, which must be a valid non-NULL cursor handle.

HRESULT EPGet(
 HANDLE hExtension,
 NAVTYPE Directive,
 PHANDLE phCursor,
 GUID *pFieldID,
 void *pFieldData,
 PDWORD pdwDataLength,
);

EP_
NEX
T_FI
ELD

Advances the cursor and reads the next field. If there are no more fields, returns MQ_ERROR_EXTENSION_FIELD_NOT_FO
UND and phCursor is set to NULL.

If phCursor is NULL or *phCursor is NULL, the cursor is positioned to the first field (sorted in ascending order of GUID) an
d this field is read.

If phCursor is not NULL, *phCursor is set to the extension field.

If phCursor is not NULL and *phCursor is not NULL, the cursor (phCursor) is positioned to the first field (sorted in ascendi
ng order of GUID) and this field's ID and data are read and returned.

EP_
NEX
T_K
EY_
FIEL
D

Advances the cursor and reads the next field having a GUID matching pFieldID. If there are no more matching fields, retur
ns MQ_ERROR_EXTENSION_FIELD_NOT_FOUND and sets phCursor to the first field having the next higher GUID, or to N
ULL if there are no more fields. If phCursor is NULL or *phCursor is NULL, then the first field having a GUID matching pFie
ldID is read, and the cursor is positioned to this field. If the field is found, its field ID and data are returned and if phCursor
is not NULL, *phCursor is set to the field.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_ALLOC_FAIL

The function failed because memory could not be allocated for the internal data buffers used for the EP object.

MQ_ERROR_EXTENSION_FIELD_NOT_FOUND

The function failed because the extension field matching the specified GUID could not be found.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

MQ_ERROR_USER_BUFFER_TOO_SMALL

The function failed because the length of the buffer passed was too small for the data.

Remarks

In an EP object possessing a cursor, the extension fields are sorted in ascending order based on the GUID of each extension
field. The message extension API functions may run more slowly while the cursor is in effect.

All cursors are canceled if the EPDeleteAll function is called with a pFieldID of NULL.

The following example illustrates how to use this function.

HANDLE hExt;
HANDLE hCursor;
GUID guid;
void *pBuffer;
DWORD dwSize, dwCount;
DWORD dwTotalSize = 0;
...

/* Retrieve one field by GUID */
dwSize = 1024;
EPGet(hExt, EP_NEXT_KEY_FIELD, NULL, &guid, pBuffer, &dwSize);

/* Count the fields in a message extension */
for (hCursor = NULL, dwCount = 0;
 EPGet(hExt, EP_NEXT_FIELD, &hCursor, NULL, NULL, NULL)==MQ_OK;
 dwCount++);

/* Compute the total length of all extension fields
 having a given GUID */

See Also
Reference
EPDelete
EPDeleteAll

for (hCursor = NULL, dwCount = 0;
 EPGet(hExt, EP_NEXT_KEY_FIELD, &hCursor, &guid, NULL,
 &dwSize) == MQ_OK;
 dwTotalSize += dwSize);

https://msdn.microsoft.com/en-us/library/aa771249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705269(v=bts.10).aspx

EPGetBuffer
The EPGetBuffer function converts an EP object to a message extension (PROPID_M_EXTENSION format) that can be sent in a
message and packs the message extension into the supplied buffer.

Syntax

Parameters
hExtension

Supplied parameter. The EP object handle.

pBuf

Supplied parameter. A pointer to the buffer where this function will store the PROPID_M_EXTENSION message extension.

pdwBufLength

Supplied and returned parameter. On input, the length of the buffer for the message extension. On output, the actual length
of the stored data. If the buffer is too short or NULL, the data is not converted but pdwBufLength is reset to the required
buffer length.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

MQ_ERROR_USER_BUFFER_TOO_SMALL

The function failed because the length of the buffer passed was too small for the data.

Remarks

If this function executed successfully, the pdwBufLength parameter contains the actual length of the packed extension buffer. If
MQ_ERROR_USER_BUFFER_TOO_SMALL is returned, pdwBufLength contains the required buffer length.

The following example illustrates how to use this function.

See Also
Reference

HRESULT EPGetBuffer(
 HANDLE hExtension,
 void *pBuf,
 PDWORD pdwBufLength,
);

HANDLE hExt;
void *pBuffer;
DWORD dwSize;

/* Read the required buffer length */
dwSize = 0;
EPGetBuffer(hExt, NULL, &dwSize);

/* Allocate the buffer */
pBuffer = malloc(dwSize);

/* Write the message extension to the buffer */
EPGetBuffer(hExt, pBuffer, &dwSize);

EPAdd
EPOpen

https://msdn.microsoft.com/en-us/library/aa770524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705660(v=bts.10).aspx

EPOpen
The EPOpen function creates an EP object and optionally unpacks the supplied message extension buffer into it.

Syntax

Parameters
phExtension

Returned parameter. A pointer to an EP object handle of the EP object that is created.

pExtBuffer

Supplied parameter. The pointer to a buffer containing the message extension data in the sequence GUID (16 bytes), length
of data (4 bytes), data, GUID, length of data, data, etc.

dwExtBufLength

Supplied parameter. The length of the buffer containing the message extension data.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_ALLOC_FAIL

The function failed because memory could not be allocated for the EP object handle and internal data buffers.

MQ_ERROR_CORRUPTED_EXTENSION_BUFFER

The function failed because the buffer containing the message extension data was corrupted.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

Remarks

If a NULL pointer is passed for pExtBuffer or dwExtBufLength is zero, an EP object with no extension fields is created.

The following example illustrates how to use this function.

See Also
Reference
EPClose

HRESULT EPOpen(
 PHANDLE phExtension,
 Void *pExtBuffer,
 DWORD dwExtBufLength
);

HANDLE hExt1, hExt2;
void *pBuffer;
DWORD dwBufLength;
...
/* Create an empty EP object */
EPOpen(&hExt1, NULL, 0);
/* Create an EP object, copying data from a message extension */
EPOpen(&hExt2, pBuffer, dwBufLength);

https://msdn.microsoft.com/en-us/library/aa745217(v=bts.10).aspx

EPUpdate
The EPUpdate function updates (replaces) the data and length subfields of an existing extension field in an EP object.

Syntax

Parameters
hExtension

Supplied parameter. The EP object handle to the EP object that is to have data updated.

hCursor

Supplied parameter. The cursor pointing to the extension field to be updated which must not be NULL.

pFieldData

Supplied parameter. A pointer to the buffer containing the new data for the extension field. This parameter may be NULL for
an empty data subfield.

dwDataLength

Supplied parameter. The length of the buffer containing the new data for the extension field.

Return Codes
MQ_OK

The function executed successfully.

MQ_ERROR_ALLOC_FAIL

The function failed because memory could not be allocated for the internal data buffers used to update the EP object.

MQ_ERROR_INVALID_HANDLE

The function failed because the EP object handle passed to the function is invalid.

MQ_ERROR_INVALID_PARAMETER

The function failed because one or more of the parameters passed to this function are invalid.

Remarks

The following example illustrates how to use this function.

See Also
Reference
EPAdd
EPGet

HRESULT EPUpdate(
 HANDLE hExtension,
 HANDLE hCursor
 void *pFieldData,
 DWORD dwDataLength,
);

HANDLE hExt;
HANDLE hCursor;
GUID guid;
...
/* Find an extension field containing a specified GUID */
EPGet (hExt, EP_NEXT_KEY_FIELD, &hCursor, &guid, NULL, 0)
/* Change the length and data subfields of the extension field */
EPUpdate(hExt, hCursor, "newdata", 8);

https://msdn.microsoft.com/en-us/library/aa770524(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705700(v=bts.10).aspx

SDComponents for MSMQ-MQSeries Bridge Extensions
The Host Integration Server 2009 SDK contains software components used for application integration using messaging and
the MSMQ-MQSeries Bridge.

In This Section

Program and DLL Files for MSMQ-MQSeries Bridge

Symbol Files for MSMQ-MQSeries Bridge

Header Files for MSMQ-MQSeries Bridge

Import Library Files for MSMQ-MQSeries Bridge

https://msdn.microsoft.com/en-us/library/aa770457(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745727(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771125(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705755(v=bts.10).aspx

Program and DLL Files for MSMQ-MQSeries Bridge
The following table lists the executable system files, DLL library files, and other files that are included with the Host Integration
Server 2009 SDK for use with the MSMQ-MQSeries Bridge.

File nam
e

Description

BCluster.
exe

A program used to create or remove the MSMQ-MQSeries Bridge Service resource in a cluster.

explres.dl
l

The resource file for Q2QEXPL.exe, the MSMQ-MQSeries Bridge explorer program.

MQBInst.
dll

The COM component used to create, delete, or modify MSMQ-MQSeries Bridge objects in Active Directory® directo
ry service.

mqfrgnk
y.dll

A library to provide a function for the MSMQ-MQSeries Bridge to store a public key in a foreign computer object (fo
r example, MQFrgn_StorePubKeysInDS).

MQSRRe
cv.exe

A sample program that uses the MQSeries API to receive messages from a specified MQSeries queue. This program
can be used to test the operation of the MSMQ-MQSeries Bridge.

MQSRSe
nd.exe

A sample program that uses the MQSeries API to send ten test messages to a specified MQSeries queue. This progra
m can be used to test the operation of the MSMQ-MQSeries Bridge.

MSMQR
ecv.exe

A sample program that uses the Message Queuing (also known as MSMQ) API to receive messages from a specified
Message Queuing queue. This program can be used to test the operation of the MSMQ-MQSeries Bridge.

MSMQSe
nd.exe

A sample program that uses the Message Queuing API to sends 10 test messages to a specified Message Queuing lo
cal or foreign queue. This program can be used to test the operation of the MSMQ-MQSeries Bridge.

Q2QCLD
LL.dll

A helper DLL (now obsolete) that contains functions to work with a cluster.

Q2QEXP
L.exe

The MSMQ-MQSeries Bridge explorer program.

Q2QGW.
exe

The MSMQ-MQSeries Bridge service program.

q2qmsg.
dll

The Event Log message file.

q2qperf.i
ni

The performance counter definition file for the MSMQ-MQSeries Bridge.

q2qprfdl.
dll

The performance counter implementation DLL for the MSMQ-MQSeries Bridge extension.

q2qprfs
m.def

Defines the performance counter object in q2qperf.ini.

Q2QSHD
LL.dll

A helper DLL (now obsolete) that contains functions for installing and uninstalling the MSMQ-MQSeries Bridge.

SHDLLRe
s.dll

The resource DLL (now obsolete) for Q2QSHDLL.DLL for installing and uninstalling the MSMQ-MQSeries Bridge.

wmiMQB
ridge.dll

The MSMQ-MQSeries Bridge Windows Management Instrumentation (WMI) Provider.

wmimqb
ridge.mo
f

The WMI Managed Object File (MOF) for the MSMQ-MQSeries Bridge.

Symbol Files for MSMQ-MQSeries Bridge
The following symbol files for use when debugging are included with Host Integration Server 2009 for use with the MSMQ-
MQSeries Bridge. These files are installed as part of the Host Integration Server package and copies of these files are also
located on the Host Integration Server CD under the Support\Symbols folder.

File name Description

EXE\BCluster.dbg Symbols from BCluster.exe

DLL\explres.dbg Symbols from Explres.dll

DLL\MQBInst.dbg Symbols from MQBInst.dll

EXE\MQSRRecv.dbg Symbols from MQSRRecv.exe

EXE\MQSRSend.dbg Symbols from MQSRSend.exe

EXE\MSMQRecv.dbg Symbols from MSMQRecv.exe

EXE\MSMQSend.dbg Symbols from MSMQSend.exe

DLL\Q2QCLDLL.dbg Symbols from Q2QCLDLL.dll.

EXE\Q2QClIns.dbg Symbols from Q2QClIns.exe.

EXE\Q2QClUni.dbg Symbols from Q2QClUni.exe.

EXE\Q2QEXPL.dbg Symbols from Q2QEXPL.exe.

EXE\Q2QGW.dbg Symbols from Q2QGW.exe.

EXE\Q2QInst.dbg Symbols from Q2QInst.exe.

DLL\q2qmsg.dbg Symbols from q2qmsg.dll.

DLL\q2qprfdl.dbg Symbols from q2qprfdl.dll.

DLL\Q2QSHDLL.dbg Symbols from Q2QSHDLL.dll.

DLL\SHDLLRes.dbg Symbols from SHDLLRes.dll.

DLL\wmiMQBridge.dbg Symbols from wmiMQBridge.dll.

Header Files for MSMQ-MQSeries Bridge
Provider-specific header files needed to build the MSMQ-MQSeries Bridge sample applications are included with Host
Integration Server 2009. These files are installed as part of the Host Integration Server package and copies of these files are
also located on the Host Integration Server CD under the SDK\Include folder.

The following provider-specific files are provided with Host Integration Server for developing applications using the MSMQ-
MQSeries Bridge.

File nam
e

Description

msmqep.
h

Globally unique identifier (GUID) definitions, enumeration constants, and error codes for use with the MSMQ-MQSe
ries Bridge.

Import Library Files for MSMQ-MQSeries Bridge
Provider-specific import library files needed to build the MSMQ-MQSeries Bridge extension sample applications are included
with Host Integration Server 2009. These files are installed as part of the Host Integration Server package and copies of these
files are also located on the Host Integration Server CD under the SDK\Lib folder.

The following provider-specific files are provided with Host Integration Server for developing applications using the MSMQ-
MQSeries Bridge:

File name Description
msmqep.lib Import library of functions for use with the MSMQ-MQSeries Bridge extension.

See Also

Security Programmer's Reference
This section provides information required to develop applications which use the Enterprise Single Sign-On features integrated
into Host Integration Server 2009.

Enterprise Single Sign-On (SSO) provides a way to map a Windows user ID to non-Windows user credentials. This service can
simplify business processes that use applications on diverse systems.

In This Section

Single Sign-on Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa705594(v=bts.10).aspx

Single Sign-on Programmer's Reference
Enterprise Single Sign-On (SSO) is a technology that enables you to map a Microsoft Windows user ID to a non-Windows user
credential, thus enabling your users to transparently log on to non-Windows servers.

In This Section

COM Mapper Programmer's Reference

Enterprise Single Sign-On Flags

Related Sections

Creating a Single Sign-On Application

Microsoft.EnterpriseSingleSignOn.Interop

https://msdn.microsoft.com/en-us/library/aa753910(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771662(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704815(v=bts.10).aspx

COM Mapper Programmer's Reference
Component Object Model (COM) objects are used for accessing the Enterprise Single Sign-On (SSO) technology for Microsoft
Host Integration Server.

In This Section

IPropertyBag Interface

ISSOAdmin Interface (COM)

ISSOAdmin2 Interface (COM)

ISSOConfigDB Interface (COM)

ISSOConfigOM Interface (COM)

ISSOConfigSS Interface (COM)

ISSOConfigStore Interface (COM)

ISSOLookup1 Interface (COM)

ISSOLookup2 Interface (COM)

ISSOMapper Interface (COM)

ISSOMapper2 Interface (COM)

ISSOMapping Interface (COM)

ISSONotification Interface (COM)

ISSOTicket Interface (COM)

SAdapter Structure (COM)

SExternalAccount Structure (COM)

SPasswordChange Structure (COM)

SPasswordChangeComplete Structure (COM)

SSO_NOTIFICATION_TYPE Enumeration (COM)

SSO_NOTIFICATION_FLAG Enumeration (COM)

SStatus Structure (COM)

See Also
Other Resources
Single Sign-on Programmer's Reference

https://msdn.microsoft.com/en-us/library/aa772071(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745857(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771128(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745348(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771290(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771044(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745573(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771951(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745019(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705776(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770323(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705082(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770461(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770683(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770517(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705271(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746024(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772068(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705202(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705594(v=bts.10).aspx

IPropertyBag Interface
The IPropertyBag interface acts as a parameter for ISSOConfigStore, and also allows you to change the behavior of specific
interfaces in the Enterprise Single Sign-On (SSO) object model.

Requirements

Type Library: SSOAdminLib 1.0 Type Library (SSOAdminLib.dll), SSOConfigStoreLib 1.0 Type Library (SSOConfigStoreLib),
and SSOPSAdmin 1.0 Type Library (SSOPSAdmin.dll)

Platforms: Microsoft® Windows Server™ 2003, Windows® XP Professional, Windows 2000 Server

IPropertyBag Members
The member of the IPropertyBag interface is described in the following table.

Public Members
Member Description

IPropertyBag.RemoteRead Method Reads the specified Single Sign-On property.

IPropertyBag.Write Method Writes the specified Single Sign-on property.

See Also
Concepts
IPropertyBag Interface

https://msdn.microsoft.com/en-us/library/aa745623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772071(v=bts.10).aspx

IPropertyBag Methods
The method of the IPropertyBag interface is described in the following table. For a complete list of IPropertyBag interface
members, see IPropertyBag Members.

Public Methods
Method Description

IPropertyBag.RemoteRead Method Reads the specified Single Sign-On property.

IPropertyBag.Write Method Writes the specified Single Sign-on property.

See Also
Concepts
IPropertyBag Interface

https://msdn.microsoft.com/en-us/library/aa753859(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745623(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745013(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772071(v=bts.10).aspx

IPropertyBag.RemoteRead Method
Writes the specified Single Sign-on (SSO) property.

Syntax
C#

Parameters
Parameters Description

pszPropName The property name to read.

pVar When returned, the object containing the property value.

pErrorLog An IErrorLog containing the error log, if applicable.

varType The object type of the property.

pUnkObj Pointer to the unknown object to read.

Remarks

You can use IPropertyBag.Read to read the current settings for the SSO object model.

See Also
Concepts
IPropertyBag Methods

void RemoteRead(
string pszPropName,
[out] object pVar,
SSOAdminLib.IErrorLog pErrorLog,
uint varType,
object pUnkObj
);

https://msdn.microsoft.com/en-us/library/aa771241(v=bts.10).aspx

IPropertyBag.Write Method
Writes the specified Single Sign-on property.

Syntax
C#

Parameters
Parameters Reference

pszPropName The name of the property to write.

pVar The value of the property to write.

Remarks

If you call QueryInterface on an SSO object, you can retrieve the IPropertyBag interface and use it to change the behavior
of your current object.

See Also
Reference
Enterprise Single Sign-On Flags
Concepts
IPropertyBag Methods

void Write(
 string pszPpropName,
 object pVar
)

https://msdn.microsoft.com/en-us/library/aa746198(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771241(v=bts.10).aspx

ISSOAdmin Interface (COM)
The ISSOAdmin interface provides administration functions for the Enterprise Single Sign-On (SSO) server database.

Requirements

Type Library: SSOAdmin 1.0 Type Library (SSOAdmin.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin Members
The following table shows the IISOAdmin members.

Public Methods
Member Description

 CreateApplication Creates an application in the Single Sign-On (SSO) server database.

 CreateFieldInfo Creates field information for an application.

 DeleteApplication Deletes an application from the SSO server database.

 GetApplicationInfo Gets the application information from the SSO server database.

 GetGlobalInfo Returns the global SSO server configuration information from the SSO server database.

 PurgeCacheForApplication Purges the cached credentials for an application on all SSO servers.

 UpdateApplication Updates the application information in the SSO server database.

See Also
Concepts
ISSOAdmin Interface (COM)

ISSOAdmin Methods
The methods of the ISSOAdmin interface are listed in the following table. For a complete list of ISSOAdmin interface
members, see ISSOAdmin Members.

Public Methods
Method Description

 CreateApplication Creates an application in the Single Sign-On (SSO) server database.

 CreateFieldInfo Creates field information for an application.

 DeleteApplication Deletes an application from the SSO server database.

 GetApplicationInfo Gets the application information from the SSO server database.

 GetGlobalInfo Returns the global SSO server configuration information from the SSO server database.

 PurgeCacheForApplication Purges the cached credentials for an application on all SSO servers.

 UpdateApplication Updates the application information in the SSO server database.

See Also
Concepts
ISSOAdmin Interface (COM)

ISSOAdmin.CreateApplication Method
The CreateApplication method creates an application in the Enterprise Single Sign-On (SSO) server database.

Syntax
C++

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrDescription

[in] String that specifies the description for the application. This parameter can be NULL, an empty string, or contain spaces.

bstrDescription

[in] String that specifies the description for the application. This parameter can be NULL, an empty string, or contain spaces.

bstrContactInfo

[in] String that specifies the contact information for this application. This parameter can be NULL, an empty string, or contain
spaces.

bstrContactInfo

[in] String that specifies the contact information for this application. This parameter can be NULL, an empty string, or contain
spaces.

bstrUserGroupName

[in] String that specifies the application users group name. This parameter must contain a valid global group.

bstrUserGroupName

[in] String that specifies the application users group name. This parameter must contain a valid global group.

HRESULT CreateApplication(
BSTR bstrApplicationName,
BSTR bstrDescription,
BSTR bstrContactInfo,
BSTR bstrUserGroupName,
BSTR bstrAdminGroupName,
LONG lFlags,
LONG lNumFields
);

[Visual Basic]
Sub CreateApplication(
bstrApplicationName As String,
bstrDescription As String,
bstrContactInfo As String,
bstrUserGroupName As String,
bstrAdminGroupName As String,
lFlags As Long,
lNumFields As Long
)

bstrAdminGroupName

[in] String that specifies the Application Administrator group name. This parameter must contain a valid global group.

bstrAdminGroupName

[in] String that specifies the Application Administrator group name. This parameter must contain a valid global group.

lFlags

[in] Long integer that specifies whether the application is a group application. If a group application is required, specify
SSO_FLAG_APP_USES_GROUP_MAPPING.

lFlags

[in] Long integer that specifies whether the application is a group application. If a group application is required, specify
SSO_FLAG_APP_USES_GROUP_MAPPING.

lNumFields

[in] Long integer that specifies the number of fields that will be added for this application. The minimum value is 1 (one
external user ID). An application can have no credential fields.

lNumFields

[in] Long integer that specifies the number of fields that will be added for this application. The minimum value is 1 (one
external user ID). An application can have no credential fields.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

An application is always created as disabled.

After the field information is added by using the CreateFieldInfo method, then the application can be enabled by using the
UpdateApplication method. The number of fields added by CreateFieldInfo must match the number of fields specified by
the numFields parameter. The numFields value cannot be changed after the application is created.

To access this method, you must be an SSO Administrator or an SSO Affiliate Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Interface (COM)
ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin.CreateFieldInfo Method
The CreateFieldInfo method creates field information for an application.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrLabel

[in] String that specifies the label value. This parameter cannot be NULL or an empty string.

bstrLabel

[in] String that specifies the label value. This parameter cannot be NULL or an empty string.

lFlags

[in] Long integer specifies whether the field is masked. If a field must be masked when displayed in the user interface, specify
SSO_FLAG_FIELD_INFO_MASK. The flag parameter will be ignored for the first (user ID) field, as it will not be masked.

lFlags

[in] Long integer specifies whether the field is masked. If a field must be masked when displayed in the user interface, specify
SSO_FLAG_FIELD_INFO_MASK. The flag parameter will be ignored for the first (user ID) field, as it will not be masked.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

HRESULT CreateFieldInfo(
BSTR bstrApplicationName,
BSTR bstrLabel,
LONG lFlags
);

Sub CreateFieldInfo(
bstrApplicationName As String,
bstrLabel As String,
lFlags As Long
)

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

The application must exist before its field information can be created. The number of fields added must equal the numFields
value specified when the application was created, otherwise the application will be disabled at run time.

Although the external user ID is not considered to be an external credential, it requires a field to describe how it will be
displayed by the user interface. The first field created will be considered as the field that describes the external user ID. A
minimum of one field is required, and typically at least two fields should be specified to provide credentials. An application can
have no credentials.

To access this method, you must be an SSO Administrator, SSO Affiliate Administrator, or an SSO Application Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Interface (COM)
ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin.DeleteApplication Method
The DeleteApplication method deletes an application from the Enterprise Single Sign-On (SSO) server database.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

S_FALSE The application was not found.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

All fields, mappings, and external credentials associated with this application are deleted.

To access this method, you must be an SSO Administrator or an SSO Affiliate Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Interface (COM)

HRESULT DeleteApplication(
BSTR bstrApplicationName
);

Sub DeleteApplication(
bstrApplicationName As String
)

ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin.GetApplicationInfo Method
The GetApplicationInfo method gets the application information from the Enterprise Single Sign-On (SSO) server database.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

pbstrDescription

[out] Pointer to a string that receives the description for the application.

pbstrDescription

[out] String that receives the description for the application.

pbstrContactInfo

[out] Pointer to a string that receives the contact information for the application.

pbstrContactInfo

[out] String that receives the contact information for the application.

pbstrUserGroupName

[out] Pointer to a string that receives the application user group name.

pbstrUserGroupName

[out] String that receives the application user group name.

pbstrAdminGroupName

[out] Pointer to a string that receives the Application Administrator group name.

HRESULT GetApplicationInfo(
BSTR bstrApplicationName,
BSTR* pbstrDescription,
BSTR* pbstrContactInfo,
BSTR* pbstrUserGroupName,
BSTR* pbstrAdminGroupName,
LONG* plFlags,
LONG* plNumFields
);

Function GetApplicationInfo(
bstrApplicationName As String,
pbstrDescription As String,
pbstrContactInfo As String,
pbstrUserGroupName As String,
pbstrAdminGroupName As String,
plFlags As Long
)
As Long

[out] Pointer to a string that receives the Application Administrator group name.

pbstrAdminGroupName

[out] String that receives the Application Administrator group name.

plFlags

[out] Pointer to a long integer that receives the flags currently set for the application.

plFlags

[out] Long that receives the flags currently set for the application.

plNumFields

[out] Pointer to a long integer that receives the number of fields associated with the application.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

This method returns a Long that receives the number of fields associated with the application.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

To access this method, you must be an SSO Administrator, SSO Affiliate Administrator, or an SSO Application Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Interface (COM)
ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin.GetGlobalInfo Method
The GetGlobalInfo method gets the global Enterprise Single Sign-On (SSO) configuration information from the Enterprise
Single Sign-On server database.

Syntax
C++

VB

Parameters
plFlags

[out] Pointer to a long integer that receives the global flags.

plFlags

[out] Long that receives the global flags.

plAuditAppDeleteMax

[out] Pointer to a long integer that receives the current size of the AuditAppDelete table.

plAuditAppDeleteMax

[out] Long integer that receives the current size of the AuditAppDelete table.

plAuditMappingDeleteMax

[out] Pointer to a long integer that receives the current size of the AuditMappingDelete table.

plAuditMappingDeleteMax

[out] Long that receives the current size of the AuditMappingDelete table.

plAuditNtpLookupMax

[out] Pointer to a long integer that receives the current size of the AuditNtpLookup table.

plAuditNtpLookupMax

HRESULT GetGlobalInfo(
LONG* plFlags,
LONG* plAuditAppDeleteMax,
LONG* plAuditMappingDeleteMax,
LONG* plAuditNtpLookupMax,
LONG* plAuditXpLookupMax,
LONG* plTicketTimeout,
LONG* plCredCacheTimeout,
BSTR* pbstrSecretServer,
BSTR* pbstrSSOAdminGroup,
BSTR* pbstrAffiliateAppMgrGroup
);

Function GetGlobalInfo(
plFlags As Long,
plAuditAppDeleteMax As Long,
plAuditMappingDeleteMax As Long,
plAuditNtpLookupMax As Long,
plAuditXpLookupMax As Long,
plTicketTimeout As Long,
plCredCacheTimeout As Long,
pbstrSecretServer As String,
pbstrSSOAdminGroup As String
)
As String

[out] Long that receives the current size of the AuditNtpLookup table.

plAuditXpLookupMax

[out] Pointer to a long integer that receives the current size of the AuditXpLookup table.

plAuditXpLookupMax

[out] Long that receives the current size of the AuditXpLookup table.

plTicketTimeout

[out] Pointer to a long integer that receives the current ticket time-out value in minutes.

plTicketTimeout

[out] Long that receives the current ticket time-out value in minutes.

plCredCacheTimeout

[out] Pointer to a long integer that receives the current credential cache time-out value in minutes.

plCredCacheTimeout

[out] Long that receives the current credential cache time-out value in minutes.

pbstrSecretServer

[out] Pointer to a string that receives the current secret server computer name.

pbstrSecretServer

[out] String that receives the current secret server computer name.

pbstrSSOAdminGroup

[out] Pointer to a string that receives the current SSO server Administrator group name.

pbstrSSOAdminGroup

[out] String that receives the current SSO server Administrator group name.

pbstrAffiliateAppMgrGroup

[out] Pointer to a string that receives the current SSO server Affiliate Administrator group name.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

This method returns a String that receives the current SSO server Affiliate Administrator group name.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

To access this method, you must be an SSO Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts

ISSOAdmin Interface (COM)
ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin.PurgeCacheForApplication Method
The PurgeCacheForApplication method purges the cached credentials for an application on all Enterprise Single Sign-On
(SSO) servers.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

There may be a short time delay while this operation is applied to all SSO servers.

To access this method, you must be an SSO Administrator, SSO Affiliate Administrator, or an Application Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Interface (COM)
ISSOAdmin Members
Other Resources

HRESULT PurgeCacheForApplication(
BSTR bstrApplicationName
);

Sub PurgeCacheForApplication(
bstrApplicationName As String
)

Programming with Enterprise Single Sign-On

ISSOAdmin.UpdateApplication Method
The UpdateApplication method updates the application information in the Enterprise Single Sign-On (SSO) server database.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrDescription

[in] String that specifies the description of the application.

bstrDescription

[in] String that specifies the description of the application.

bstrContactInfo

[in] String that specifies the contact information for this application.

bstrContactInfo

[in] String that specifies the contact information for this application.

bstrUserGroupName

[in] String that specifies the Application Users group name. This must be a valid global group.

bstrUserGroupName

[in] String that specifies the Application Users group name. This must be a valid global group.

bstrAdminGroupName

[in] String that specifies the Application Administrator group name. This must be a valid global group. If running as an

HRESULT UpdateApplication(
BSTR bstrApplicationName,
BSTR bstrDescription,
BSTR bstrContactInfo,
BSTR bstrUserGroupName,
BSTR bstrAdminGroupName,
LONG lFlags,
LONG lFlagMask
);

Function UpdateApplication(
bstrApplicationName As String,
bstrDescription As String,
bstrContactInfo As String,
bstrUserGroupName As String,
bstrAdminGroupName As String,
lFlags As Long
)

Application Administrator, this parameter will be ignored.

bstrAdminGroupName

[in] String that specifies the Application Administrator group name. This must be a valid global group. If running as an
Application Administrator, this parameter will be ignored.

lFlags

[in] Integer that specifies whether the application is enabled. To enable the application, set the SSO_FLAG_ENABLED flag.

lFlags

[in] Integer that specifies whether the application is enabled. To enable the application, set the SSO_FLAG_ENABLED flag.

lFlagMask

[in] To change the flag value, set this mask to the flag that you need to change. For example, to enable or disable Enterprise
SSO, set this flag to SSO_FLAG_ENABLED. The flagMask parameter indicates which flag you want to change, while the flags
parameter indicates the new value of that flag.

lFlagMask

[in] To change the flag value, set this mask to the flag that you need to change. For example, to enable or disable Enterprise
SSO, set this flag to SSO_FLAG_ENABLED. The flagMask parameter indicates which flag you want to change, while the flags
parameter indicates the new value of that flag.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

To access this method, you must be an SSO Administrator, SSO Affiliate Administrator, or an Application Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOAdmin Interface (COM)
ISSOAdmin Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOAdmin2 Interface (COM)
The ISSOAdmin2 interface provides additional administration functions for the Enterprise Single Sign-On (SSO) server
database.

Requirements

Type Library: SSOAdmin 1.0 Type Library (SSOAdmin.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

ISSOAdmin2 Members
The following table shows the IISOAdmin2 members.

Public Methods
Member Description

ISSOAdmin.CreateApplication Method Creates an application in the SSO server database.

ISSOAdmin.CreateFieldInfo Method Creates field information for an application.

ISSOAdmin.DeleteApplication Method Deletes an application from the SSO server database.

ISSOAdmin.GetApplicationInfo Method Gets the application information from the SSO server database.

ISSOAdmin.GetGlobalInfo Method Returns the global SSO server configuration information from the SSO server
database.

ISSOAdmin.PurgeCacheForApplication Method Purges the cached credentials for an application on all SSO server servers.

ISSOAdmin.UpdateApplication Method Updates the application information in the SSO server database.

ISSOAdmin2.GetApplicationInfo2 Method Gets the application information from the Enterprise Single Sign-On (SSO) ser
ver database.

ISSOAdmin2.UpdateApplication2 Method Updates the application information in the Enterprise Single Sign-On (SSO) ser
ver database.

ISSOAdmin2 Methods
The following table shows the IISOAdmin2 methods.

Public Methods
Method Description

ISSOAdmin2.GetApplicationInfo2 Method Gets the application information from the Enterprise Single Sign-On (SSO) server d
atabase.

ISSOAdmin2.UpdateApplication2 Method Updates the application information in the Enterprise Single Sign-On (SSO) server d
atabase.

ISSOAdmin2.GetApplicationInfo2 Method
The GetApplicationInfo2 method gets the application information from the Enterprise Single Sign-On (SSO) server database.

Syntax
VB

C++

Parameters

applicationName

String containing the name of the application.

appInfoProps

IPropertyBag containing additional application information properties. For more information, see below.

Property Value/ Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

Remarks

The following table describes the accepted values for appInfoProps:

propName Type ptrValue

Contact VT_BSTR Contact name

Computer VT_BSTR Computer name

appAdminAccount VT_BSTR Application admin account

GetApplicationInfo2(
applicationName As String,
appInfoProps As object
)

HRESULT GetApplicationInfo2(
BSTR applicationName,
IPropertyBag* appInfoProps
)

appUserAccount VT_BSTR Application user account

windowsAccount VT_BSTR Windows account

appTicketTimeout VT_UI4 Application ticket timeout

In addition, individual flags may also use the following values:

propName Type ptrValue

enableApp VT_BOOL Enable application

hostInitiatedSSO VT_BOOL Host initiated SSO

validatePassword VT_BOOL Validate password

allowTickets VT_BOOL Allow tickets

syncFromAdapter VT_BOOL Synchronize from adapter

syncToAdapter VT_BOOL Synchronize to adapter

changeWindowsPassword VT_BOOL Change windows password

verifyOldPassword VT_BOOL Verify old password

sendOldPassword VT_BOOL Send old password

allowMappingConflicts VT_BOOL Allow mapping conflicts

groupApp VT_BOOL Group application

groupAdapter VT_BOOL Group adapter

allowLocalAccounts VT_BOOL Allow local accounts

adminAccountSame VT_BOOL Administration account same

configStoreApp VT_BOOL Config store application

timeoutTickets VT_BOOL Timeout tickets

directPasswordSync VT_BOOL Direct password synchronization

windowsCreds VT_BOOL Windows credentials

restrictedCreds VT_BOOL Restricted credentials

showFilterOnly VT_BOOL Show filter only

restrictMappingCreate VT_BOOL Restrict mapping create

windowsInitiatedSSO VT_BOOL Windows-initiated SSO

disableCredCache VT_BOOL Disable credentials cache

ISSOAdmin2.UpdateApplication2 Method
The UpdateApplication2 method updates the application information in the Enterprise Single Sign-On (SSO) server database.

Syntax
VB

C++

Parameters

applicationName

String containing the new application name.

appInfoProps

IPropertyBag containing additional application information properties. For more information, see below.

Property Value/ Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

Remarks

The following table describes the accepted values for appInfoProps:

propName Type ptrValue

Contact VT_BSTR Contact name

Computer VT_BSTR Computer name

appAdminAccount VT_BSTR Application admin account

appUserAccount VT_BSTR Application user account

UpdateApplication2(
applicationName As String,
appInfoProps As object
);

void UpdateApplication2(
string applicationName,
IPropertyBag appInfoProps
);

windowsAccount VT_BSTR Windows account

appTicketTimeout VT_UI4 Application ticket timeout

In addition, individual flags may also use the following values:

propName Type ptrValue

enableApp VT_BOOL Enable application

hostInitiatedSSO VT_BOOL Host initiated SSO

validatePassword VT_BOOL Validate password

allowTickets VT_BOOL Allow tickets

syncFromAdapter VT_BOOL Synchronize from adapter

syncToAdapter VT_BOOL Synchronize to adapter

changeWindowsPassword VT_BOOL Change windows password

verifyOldPassword VT_BOOL Verify old password

sendOldPassword VT_BOOL Send old password

allowMappingConflicts VT_BOOL Allow mapping conflicts

groupApp VT_BOOL Group application

groupAdapter VT_BOOL Group adapter

allowLocalAccounts VT_BOOL Allow local accounts

adminAccountSame VT_BOOL Administration account same

configStoreApp VT_BOOL Config store application

timeoutTickets VT_BOOL Timeout tickets

directPasswordSync VT_BOOL Direct password synchronization

windowsCreds VT_BOOL Windows credentials

restrictedCreds VT_BOOL Restricted credentials

showFilterOnly VT_BOOL Show filter only

restrictMappingCreate VT_BOOL Restrict mapping create

windowsInitiatedSSO VT_BOOL Windows-initiated SSO

disableCredCache VT_BOOL Disable credentials cache

In addition, you may directly specify flags using the following properties:

propName Type ptrValue

flags VT_UI4 Flags to specify

flagsMask VT_UI4 Flag mask to specify

ISSOConfigDB Interface (COM)
The ISSOConfigDB object allows you to create and configure an SSO database.

Type Library: SSOConfigDB 1.0 Type Library (SSOConfigDB.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

ISSOConfigDB Members
The following table describes the ISSOConfig DB members.

Method Description

ISSOConfigDB.CreateDatabase Method Creates a SQL database for SSO.

ISSOConfigDB.GetDBInfo Method Retrieves information about the specified database.

ISSOConfigDB.UpgradeDB Method Upgrades the specified Single Sign-On (SSO) database to SSO version 3.

ISSOConfigDB Methods
The following table describes the ISSOConfig DB methods

Method Description

ISSOConfigDB.CreateDatabase Method Creates a SQL database for SSO.

ISSOConfigDB.GetDBInfo Method Retrieves information about the specified database.

ISSOConfigDB.UpgradeDB Method Upgrades the specified Single Sign-On (SSO) database to SSO version 3.

ISSOConfigDB.CreateDatabase Method
The CreateDatabase method creates a SQL database for SSO.

Syntax
VB

C++

Parameters
Parameter Description

sqlServer String containing the name of the SQL server for the database.

sqlDatabase String containing the name of the SQL database.

configureOnly True to configure an already-existing database; otherwise, false.

secretServer String containing the name of the secret server.

ssoAdminAccount String containing the name of the SSO administration account for the server.

ssoAffilateAdminAccount String containing the name of the SSO affiliate administration account.

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

Sub CreateDatabase(
sqlServer As String,
sqlDatabase As String,
configureOnly As Boolean,
secretServer As String,
ssoAdminAccount As String,
ssoAffilateAdminAccount As String
);

HRESULT CreateDatabase(
BSTR sqlServer,
BSTR sqlDatabase,
bool configureOnly,
BSTR secretServer,
BSTR ssoAdminAccount,
BSTR ssoAffilateAdminAccount
);

E_INVALIDREG An invalid parameter was detected.

ISSOConfigDB.GetDBInfo Method
The GetDBInfo method retrieves information about the specified database.

Syntax
VB

C++

Parameters
Parameter Description

sqlServer String containing the name of the SQL server.

sqlDatabase String containing the name of the specified database.

exists Returns true if the database exists; otherwise, false.

isConfigured Returns true if the database is configured; otherwise, false.

needsUpgrade Returns true if the database needs to be upgraded; otherwise, false.

secretServer Returns a string containing the name of the secret server of the database.

ssoAdminAccount Returns a string containing the name of the SSO administration account.

ssoAffilateAdminAccount Returns a string containing the SSO affiliate administration account.

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

Sub GetDBInfo(
sqlServer As String,
sqlDatabase As String,
exists As Boolean,
isConfigured As Boolean,
needsUpgrade As Boolean,
secretServer As String,
ssoAdminAccount As String,
ssoAffilateAdminAccount As String
);

HRESULT GetDBInfo(
string sqlServer,
string sqlDatabase,
out bool exists,
out bool isConfigured,
out bool needsUpgrade,
out string secretServer,
out string ssoAdminAccount,
out string ssoAffilateAdminAccount
);

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

ISSOConfigDB.UpgradeDB Method
The UpgradeDatabase method upgrades the specified Single Sign-On (SSO) database to SSO version 3.

Syntax
VB

C++

Parameters
Parameter Description

sqlServer String containing the SQL server in which the database exists.

sqlDatabase String containing the name of the database.

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

Sub UpgradeDB (
sqlServer As String,
sqlDatabase As String
);

HRESULT UpgradeDB (
BSTR sqlServer,
BSTR sqlDatabase
);

ISSOConfigOM Interface (COM)
The ISSOConfigOM grants access to the Single Sign-On (SSO) object model for server configuration.

Requirements

Type Library: SSOConfigOM 1.0 Type Library (SSOConfigOM.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

ISSOConfigOM Members
The following table shows the ISSOConfigOM members.

Public Methods
Method Description

ISSOConfigOM.DiscoverServer Method Discovers the currently-available servers.

ISSOConfigOM.GetServerStatus Describes the status of the current server.

ISSOConfigOM Methods
The following table shows the ISSOConfigOM methods.

Public Methods
Method Description

ISSOConfigOM.DiscoverServer Method Discovers the currently-available servers.

ISSOConfigOM.GetServerStatus Describes the status of the current server.

ISSOConfigOM.DiscoverServer Method
The DiscoverServers method discovers the currently-available servers.

Syntax
VB

C#

Parameters
Parameter Reference

Servers Returns a string containing the currently-available servers.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

Servers As String
);

BSTR Servers
);

ISSOConfigOM.GetServerStatus
The GetServerStatus method describes the status of the current server.

Syntax
VB

C++

Parameters
Parameter Description

flags Not used in this version. Should be set to zero.

ssoServerName Returns a string containing the current SSO server name.

sqlServer Returns a string containing the name of the SQL server of the current server.

sqlDatabase Returns a string containing the name of the SQL database of the current server.

serviceAccount Returns a string containing the current service account.

GetServerStatus(
flags As Integer,
ssoServerName As String,
sqlServer As String,
sqlDatabase As String,
serviceAccount As String,
computerNameCluster As String,
computerNameNode As String,
eventCountInformational As Integer,
eventCountWarning As Integer,
eventCountError As Integer,
versionInfoM As Integer,
versionInfoL As Integer,
auditLevelN As Integer,
auditLevelP As Integer,
passwordSyncAge As Integer,
statusFlags As Integer
);

HRESULT GetServerStatus(
int flags,
BSTR ssoServerName,
BSTR sqlServer,
BSTR sqlDatabase,
BSTR serviceAccount,
BSTR computerNameCluster,
BSTR computerNameNode,
BSTR eventCountInformational,
int eventCountWarning,
int eventCountError,
int versionInfoM,
int versionInfoL,
int auditLevelN,
int auditLevelP,
int passwordSyncAge,
int statusFlags
);

computerNameCluster Returns a string containing the name of the current computer cluster.

computerNameNode Returns the name of the current computer.

eventCountInformational Returns an integer containing information regarding the event count.

eventCountWarning Returns an integer containing the event count warning.

eventCountError Returns an integer containing the event count error.

versionInfoM Returns an integer containing the MSB version info.

versionInfoL Returns an integer containing the LSB version info.

auditLevelN Returns an integer containing the negative audit level.

auditLevelP Returns an integer containing the positive audit level.

passwordSyncAge Returns an integer containing the password sync age.

statusFlags Returns an integer containing the status flags. For more information, see SSOStatusFlags.

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

ISSOConfigSS Interface (COM)
The ISSOConfigSS interface configures the secret server.

Requirements

Type Library: SSOConfigSS 1.0 Type Library (SSOConfigSS.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

ISSOConfigSS Members
The following table describes the ISSOConfigSS members.

Method Description

ISSOConfigSS.BackupSecret Method Backs up the secret server.

ISSOConfigSS.GenerateSecret Method Generates the secret for the secret server.

ISSOConfigSS.GetFilePasswordReminder Method Retrieves the file password reminder for the secret server.

ISSOConfigSS.RestoreSecret Method Restores the secret from the specified restore file.

ISSOConfigSS Methods
The following table describes the ISSOConfigSS methods.

Method Description

ISSOConfigSS.BackupSecret Method Backs up the secret server.

ISSOConfigSS.GenerateSecret Method Generates the secret for the secret server.

ISSOConfigSS.GetFilePasswordReminder Method Retrieves the file password reminder for the secret server.

ISSOConfigSS.RestoreSecret Method Restores the secret from the specified restore file.

ISSOConfigSS.BackupSecret Method
The BackupSecret method backs up the secret server.

Syntax
VB

C++

Parameters
Parameter Description

backupFile String containing the path and name of the secret server backup file.

filePassword String containing the backup file password.

filePasswordReminder String containing the secret server file password reminder.

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

backupFile As String,
filePassword As String,
filePasswordReminder As String
);

BSTR backupFile,
BSTR filePassword,
BSTR filePasswordReminder
);

ISSOConfigSS.GenerateSecret Method
The GenerateSecret method generates the secret for the secret server.

Syntax
VB

C++

Parameters
Parameter Description

backupFile String containing the path and name of the backup file for the secret server.

filePassword String containing the backup file password.

filePasswordReminder String containing the secret server file password reminder

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

GenerateSecret(
backupFile As String,
filePassword As String,
filePasswordReminder As String
);

HRESULT GenerateSecret(
BSTR backupFile,
BSTR filePassword,
BSTR filePasswordReminder
);

ISSOConfigSS.GetFilePasswordReminder Method
The GetFilePasswordReminder method gets the password reminder from the backup file.

Syntax
VB

C#

Parameters
Parameter Description

restoreFile The file from which the reminder is to be retrieved.

filePasswordReminder The reminder for the file password.

Property Value/Return Value

[Visual Basic] The file password reminder.

Remarks

This function goes directly to the restore file to get the password reminder, hence the user must have read access to the restore
file.

Function GetFilePasswordReminder(
restoreFile as String);

void GetFilePasswordReminder(
string restoreFile,
out string filePasswordReminder);

ISSOConfigSS.RestoreSecret Method
The RestoreSecret method restores master secrets from the password protected backup file.

Syntax
VB

C#

Parameters
Parameter Description

restoreFile The file from which the secrets are to be restored.

filePasswordReminder The password used to protect the restore file.

Sub RestoreSecret(
restoreFile as String,
filePassword as String);

void RestoreSecret(
string restoreFile,
string filePassword);

ISSOConfigStore Interface (COM)
The ISSOConfigStore interface provides administration functions for the Enterprise Single Sign-On (SSO) config store.

Requirements

Type Library: SSOConfigStore 1.0 Type Library (SSOConfigStore.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOConfigStore Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOConfigStore Members
The following table shows the ISSOConfigStore members.

Public Methods
Member Description

DeleteConfigInfo Delete the configuration information from the config store.

GetConfigInfo Get the configuration information from the config store.

SetConfigInfo Sets the configuration information in the config store.

See Also
Concepts
ISSOConfigStore Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOConfigStore Methods
The methods of the ISSOConfigStore interface are listed in the following table. For a complete list of ISSOConfigStore
interface members, see ISSOConfigStore Members.

Public Methods
Method Description

DeleteConfigInfo Deletes the configuration information from the config store.

GetConfigInfo Gets the configuration information from the config store.

SetConfigInfo Sets the configuration information in the config store.

See Also
Concepts
ISSOConfigStore Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOConfigStore::DeleteConfigInfo
The DeleteConfigInfo method deletes the configuration information from the config store.

Syntax
C++

VB

Parameters
bstrApplication

[in] String containing the external application name.

bstrApplication

[in] String containing the external application name.

bstrIdentifier

[in] String containing the identifier for the config info. This will typically be a GUID string.

bstrIdentifier

[in] String containing the identifier for the config info. This will typically be a GUID string.

Return Value

This method does not return a value.

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

S_OK The config info was successfully returned from the config store.

S_FALSE The config info did not already exist.

E_ACCESSDENIED Access denied.

E_INVALIDARG Invalid argument.

Remarks

If the config info specified by the parameters does not already exist in the config store, this method will return S_FALSE.

If the bstrSSOServer parameter is NULL, the Single Sign-On (SSO) server location is obtained from the registry. If the server
location is not available in the registry, the local computer is used.

Example

HRESULT DeleteConfigInfo(
BSTR bstrApplication,
BSTR bstrIdentifier,
);

DeleteConfigInfo(
bstrApplication As BSTR,
bstrIdentifier As BSTR,
)

 ConfigStore

 bstrApplication

See Also
Concepts
ISSOConfigStore Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

 bstrIdentifier

ISSOConfigStore::GetConfigInfo
The GetConfigInfo method gets the configuration information from the config store.

Syntax
C++

VB

Parameters
bstrApplication

[in] String containing the Single Sign-On (SSO) server. This property is optional.

bstrApplication

[in] String containing the SSO server. This property is optional.

bstrIdentifier

[in] String containing the identifier for the config info. This string is typically a GUID string.

bstrIdentifier

[in] String containing the identifier for the config info. This string is typically a GUID string.

lFlags

[in] Long integer containing the flags.

lFlags

[in] Long integer containing the flags.

ppbConfigInfo

[in] Pointer to an empty property bag that is populated with the config info as name/value pairs.

ppbConfigInfo

[in] Pointer to an empty property bag that is populated with the config info as name/value pairs.

Return Value

This method does not return a value.

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

S_OK The config info was successfully returned from the config store.

E_ACCESSDENIED Access denied.

HRESULT GetConfigInfo(
BSTR bstrApplication,
BSTR bstrIdentifier,
LONG lFlags,
IPropertyBag* ppbConfigInfo
);

GetConfigInfo(
bstrApplication As BSTR,
bstrIdentifier As BSTR,
lFlags As LONG,
ppbConfigInfo As IPropertyBag
)

E_INVALIDARG Invalid argument.

Remarks

This method can be executed either in admin or run-time (lookup) mode. The caller specifies SSO_FLAG_LOOKUP if the run-
time (lookup) mode is required. The default mode is admin mode.

In admin mode, masked properties are not returned. Instead, the property is missing. Unmasked properties are returned.
Admin mode can specify any SSO server, not just the local computer.

In run-time mode, all properties, including masked properties, are returned. Because run-time mode only uses the SSO server
on the current computer, the bstrSSOServer parameter will be ignored.

If the bstrSSOServer parameter is NULL, the SSO server location is obtained from the registry. (This applies to admin mode
only. Run-time mode always uses the local computer.) If the server location is not available in the registry, the local computer is
used.

To get the config info, this method is provided with an empty property bag that is populated with the properties. This allows
the BizTalk Server 2006 implementation of the property bag to be used, which can handle the type conversion from BSTRs to
the actual variant types based on a format convention specific to BizTalk Server 2006. The property values will be XML tags for
Host Integration Server.

Example Code

See Also
Concepts
ISSOConfigStore Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

 ConfigStore

 bstrApplication

 bstrIdentifier

 lFlags

 ppbConfigInfo

ISSOConfigStore::SetConfigInfo
The SetConfigInfo method sets the configuration information in the config store.

Syntax
C++

VB

Remarks
bstrApplication

[in] String containing the external application name.

bstrApplication

[in] String containing the external application name.

bstrIdentifier

[in] String containing the identifier for the config info. This string will typically be a GUID.

bstrIdentifier

[in] String containing the identifier for the config info. This string will typically be a GUID.

ppbConfigInfo

[in] Contains a pointer to a property bag containing the config info as name/value pairs.

ppbConfigInfo

[in] Contains a pointer to a property bag containing the config info as name/value pairs.

Return Values

This method does not return a value.

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

S_OK The config info was successfully stored in the config store.

E_ACCESSDENIED Access denied.

E_INVALIDARG Invalid argument.

Remarks

This method can be used for originally creating the config info or for updating the config info.

If the config info does not already exist, all properties of the config info, as defined by the field info for the specified application,
must be provided.

HRESULT SetConfigInfo(
BSTR bstrApplication,
BSTR bstrIdentifier,
IPropertyBag* ppbConfigInfo
);

SetConfigInfo(
bstrApplication As BSTR,
bstrIdentifier As BSTR,
ppbConfigInfo As IPropertyBag
)

If the config info does already exist, a property within the config info can be missing. Only properties that are provided will be
updated. At least one property must be provided.

Note that due to the use of the Single Sign-On (SSO) store, the first property cannot be masked.

If the bstrSSOServer parameter is NULL, the SSO server location is obtained from the registry. If not available in the registry,
the local computer will be used.

Example

See Also
Reference
ISSOConfigStore::GetConfigInfo
Concepts
ISSOConfigStore Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

 ConfigStore

 bstrApplication

 bstrIdentifier

 ppbConfigInfo

ISSOLookup1 Interface (COM)
The ISSOLookup1 interface provides a lookup for user credentials associated with an application.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOLookup1 Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup1 Members
The following table shows the ISSOLookup1 member.

Public Methods
Member Description

 GetCredentials Retrieves the user credentials for an application.

See Also
Concepts
ISSOLookup1 Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup1 Methods
The method of the ISSOLookup1 interface is listed in the following table. For a complete list of ISSOLookup1 interface
members, see ISSOLookup1 Members.

Public Methods
Method Description

 GetCredentials Retrieves the user credentials for an application.

See Also
Concepts
ISSOLookup1 Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup1.GetCredentials Method
The GetCredentials method retrieves the user credentials for an application.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

lFlags

[in] Long integer that specifies the flags to set. Using the SSO_FLAG_REFRESH indicates that the credential cache should be
bypassed.

lFlags

[in] Long that specifies the flags to set. Using the SSO_FLAG_REFRESH indicates that the credential cache should be
bypassed.

pbstrExternalUserName

[out] Pointer to a string that receives the external user name.

pbstrExternalUserName

[out] String that receives the external user name.

credentials

[out] String array that receives the credentials.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

String array that receives the credentials.

Error Values

This method returns an HRESULT containing one of the values in the following table.

HRESULT GetCredentials(
BSTR bstrApplicationName,
LONG lFlags,
BSTR* pbstrExternalUserName,
SAFEARRAY credentials
);

Function GetCredentials(
bstrApplicationName As String,
lFlags As Long,
pbstrExternalUserName As String
)
As String

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

To access this method, you must be an Application User. You can only retrieve your own credential.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOLookup1 Interface (COM)
ISSOLookup1 Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup2 Interface (COM)
The ISSOLookup2 interface provides a lookup for user credentials associated with an application.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOLookup2 Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup2 Members
The following table shows the ISSOLookup1 members.

Public Methods
Member Description

 GetCredentials Retrieves the user credentials for an application.

 LogonExternalUser Logs on an external user.

See Also
Concepts
ISSOLookup2 Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup2 Methods
The methods of the ISSOLookup2 interface are listed in the following table. For a complete list of ISSOLookup2 interface
members, see ISSOLookup2 Members.

Public Methods
Method Description

 GetCredentials Retrieves the user credentials for an application.

 LogonExternalUser Logs on an external user.

See Also
Concepts
ISSOLookup2 Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup2.GetCredentials Method
The GetCredentials method retrieves the user credentials for an application.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be the
same application.

lFlags

[in] Long integer that specifies the flags to set. Using the SSO_FLAG_REFRESH indicates that the credential cache should be
bypassed.

lFlags

[in] Long that specifies the flags to set. Using the SSO_FLAG_REFRESH indicates that the credential cache should be
bypassed.

pbstrExternalUserName

[out] Pointer to a string that receives the external user name.

pbstrExternalUserName

[out] String that receives the external user name.

credentials

[out] String array that receives the credentials.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

String array that receives the credentials.

Error Values

This method returns an HRESULT containing one of the values in the following table.

HRESULT GetCredentials(
BSTR bstrApplicationName,
LONG lFlags,
BSTR* pbstrExternalUserName,
SAFEARRAY credentials
);

Function GetCredentials(
bstrApplicationName As String,
lFlags As Long,
pbstrExternalUserName As String
)
As String

This method indicates errors by setting the Number property of the global Err object to one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

To access this method, you must be an Application User. You can only retrieve your own credential.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOLookup2 Interface (COM)
ISSOLookup2 Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOLookup2.LogonExternalUser Method
The LogonExternalUser method logs on an external user.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specified the name of the application to log on to.

bstrApplicationName

[in] String that specified the name of the application to log on to.

bstrUserName

[in] String that specified the name of the external user to log on.

bstrUserName

[in] String that specified the name of the external user to log on.

lFlags

[in] Long integer that specifies the flags to set.

lFlags

[in] Long integer that specifies the flags to set.

ppsaCredentials

Array that holds the credentials of the user.

ppsaCredentials

Array that holds the credentials of the user.

Return Value

A windows handle.

A windows handle.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts

Int GetCredentials(
BSTR bstrApplicationName,
BSTR bstrUserName,
LONG lFlags,
Array ppsaCredentials
);

Function GetCredentials(
bstrApplicationName As String,
bstrUserName As String,
lFlags As Long,
ppsaCredentials As String
)
As Integer

ISSOLookup2 Interface (COM)
ISSOLookup2 Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper Interface (COM)
The ISSOMapper interface creates mappings between users and applications.

Requirements

Type Library: SSOMapper 1.0 Type Library (SSOMapper.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapper Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper Members
The following table shows the ISSOMapper members.

Public Methods
Member Description

 GetApplications Retrieves the available applications for a Microsoft® Windows® user.

 GetFieldInfo Retrieves the field information for an application.

 GetMappingsForExternalUser Retrieves the mappings for an external user.

 GetMappingsForWindowsUser Retrieves the mappings for a Microsoft Windows user.

 SetExternalCredentials Stores a set of external credentials in the Single Sign-On (SSO) server database.

 SetWindowsPassword Sets the Microsoft Windows password. This method is not currently implemented.

See Also
Concepts
ISSOMapper Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper Methods
The methods of the ISSOMapper interface are listed in the following table. For a complete list of ISSOMapper interface
members, see ISSOMapper Members.

Public Methods
Method Description

 GetApplications Retrieves the available applications for a Microsoft® Windows® user.

 GetFieldInfo Retrieves the field information for an application.

 GetMappingsForExternalUser Retrieves the mappings for an external user.

 GetMappingsForWindowsUser Retrieves the mappings for a Microsoft Windows user.

 SetExternalCredentials Stores a set of external credentials in the Enterprise Single Sign-On (SSO) server database.

 SetWindowsPassword Sets the Microsoft Windows password. This method is not currently implemented.

See Also
Concepts
ISSOMapper Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper.GetApplications Method
The GetApplications method retrieves the available applications for a Microsoft Windows user.

Syntax
C++

VB

Parameters
applications

[out] String array that returns the application name.

applications

[out] String array that returns the application name.

descriptions

[out] String array that returns a description for the application.

descriptions

[out] String array that returns a description for the application.

contactInfo

[out] String array that returns the contact information for the application.

contactInfo

[out] String array that returns the contact information for the application.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

HRESULT GetApplications(
SAFEARRAY applications,
SAFEARRAY descriptions,
SAFEARRAY contactInfo
)

Sub GetApplications(
applications As String,
descriptions As String,
contactInfo As String
)

See Also
Concepts
ISSOMapper Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper.GetFieldInfo Method
The GetFieldInfo method retrieves the field information for an application.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

labels

[out] String array that returns the field labels.

labels

[out] String array that returns the field labels.

flags

[out] Long integer array that returns the field flags.

flags

[out] Long array that returns the field flags.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

HRESULT GetFieldInfo(
BSTR bstrApplicationName,
SAFEARRAY labels,
SAFEARRAY flags
);

Sub GetFieldInfo(
bstrApplicationName As String,
labels As String
flags As Long
)

E_ACCESSDENIED Access is denied to the caller.

E_FAIL The application is disabled.

E_INVALIDARG An invalid parameter was detected.

Remarks

The field information will only be returned if the application is currently enabled. An application cannot be enabled unless its
field information is complete.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapper Interface (COM)
ISSOMapper Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper.GetMappingsForExternalUser Method
The GetMappingsForExternalUser method retrieves the mappings for an external user.

Syntax
C++

VB

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrExternalUserName

[in] String that specifies the external user name. This value can contain spaces. If a NULL value is specified for this parameter,
all mappings are returned for the specified application.

bstrExternalUserName

[in] String that specifies the external user name. This value can contain spaces. If a NULL value is specified for this parameter,
all mappings are returned for the specified application.

mappings

[out] Object array that contains the mappings as ISSOMapping objects.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Variant array that contains the mappings as ISSOMapping objects.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

HRESULT GetMappingsForExternalUser(
BSTR bstrApplicationName,
BSTR bstrExternalUserName,
SAFEARRAY mappings
);

Function GetMappingsForExternalUser(
bstrApplicationName As String,
bstrExternalUserName As String)
As Variant

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapper Interface (COM)
ISSOMapper Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper.GetMappingsForWindowsUser Method
The GetMappingsForWindowsUser method retrieves the mappings for a Microsoft Windows user.

Syntax
C++

VB

Parameters
bstrWindowsDomainName

[in] String that specifies the Microsoft Windows domain name. This parameter is optional, but if it is specified, the
windowsUserName parameter must also be specified. If this parameter is not specified, the current user context is used.

bstrWindowsDomainName

[in] String that specifies the Microsoft Windows domain name. This parameter is optional, but if it is specified, the
windowsUserName parameter must also be specified. If this parameter is not specified, the current user context is used.

bstrWindowsUserName

[in] String that specifies the Microsoft Windows domain name. This parameter is optional, but if it is specified, the
windowsUserName parameter must also be specified. If this parameter is not specified, the current user context is used.

bstrWindowsUserName

[in] String that specifies the Microsoft Windows domain name. This parameter is optional, but if it is specified, the
windowsUserName parameter must also be specified. If this parameter is not specified, the current user context is used.

bstrApplicationName

[in] String that specifies the external application name. If this parameter is specified, only one mapping is returned if it exists.
If this parameter is NULL, all mappings for the specified user are returned. This parameter is optional.

bstrApplicationName

[in] String that specifies the external application name. If this parameter is specified, only one mapping is returned if it exists.
If this parameter is NULL, all mappings for the specified user are returned. This parameter is optional.

mappings

[out] Object array that contains the mappings as ISSOMapping objects.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Variant array that contains the mappings as ISSOMapping objects.

Error Values

This method returns an HRESULT containing one of the values in the following table.

HRESULT GetMappingsForWindowsUser(
BSTR bstrWindowsDomainName,
BSTR bstrWindowsUserName,
BSTR bstrApplicationName,
SAFEARRAY mappings
);

Function GetMappingsForWindowsUser(
bstrWindowsDomainName As String,
bstrWindowsUserName As String,
bstrApplicationName As String
)
As Variant

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

An Application Administrator must specify the bstrApplicationName value.

Users described as Application User can only access their own mappings. They cannot access the mappings for another user.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapper Interface (COM)
ISSOMapper Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper.SetExternalCredentials Method
The SetExternalCredentials method stores a set of external credentials in the Enterprise Single Sign-On (SSO) server
database.

Syntax
C++

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrExternalUserName

[in] String that specifies the external user name.

bstrExternalUserName

[in] String that specifies the external user name.

externalCredentials

[in] String array that specifies the external credentials to be stored.

externalCredentials

[in] String array that specifies the external credentials to be stored.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

HRESULT SetExternalCredentials(
BSTR bstrApplicationName,
BSTR bstrExternalUserName,
SAFEARRAY externalCredentials
);

[Visual Basic]
Sub SetExternalCredentials(
bstrApplicationName As String,
bstrExternalUserName As String,
externalCredentials As String
)

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

Users described as Application User can only set their own credentials. Also, the number of external credentials provided must
match the number of fields expected by the external application.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapper Interface (COM)
ISSOMapper Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapper.SetWindowsPassword Method
The SetWindowsPassword method sets the Microsoft Windows password. This method is not currently implemented.

Syntax
C++

VB

Parameters
bstrWindowsPassword

[in] String that specifies the Windows password.

bstrWindowsPassword

[in] String that specifies the Windows password.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

E_NOTIMPL The method is not implemented.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapper Interface (COM)
ISSOMapper Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT SetWindowsPassword(
BSTR bstrWindowsPassword
);

Sub SetWindowsPassword(
bstrWindowsPassword As String
)

ISSOMapper2 Interface (COM)
The ISSOMapper2 interface creates mappings between users and applications

Requirements

Type Library: SSOMapper 1.0 Type Library (SSOMapper.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

ISSOMapper2 Members
The following table shows the ISSOMapper2 methods.

Public Methods

ISSOMapper2.GetApplications2 Method Retrieves the available applications for a Microsoft® Windows® user.

ISSOMapper.GetFieldInfo Method Retrieves the field information for an application.

ISSOMapper.GetMappingsForExternalUser Method Retrieves the mappings for an external user.

ISSOMapper.GetMappingsForWindowsUser Method Retrieves the mappings for a Microsoft Windows user.

ISSOMapper.SetExternalCredentials Method Stores a set of external credentials in the Single Sign-On database.

ISSOMapper.SetWindowsPassword Method Sets the Microsoft Windows password. This method is not currently impl
emented.

ISSOMapper2 Methods
The following table shows the ISSOMapper2 methods.

Public Methods
Method Description

ISSOMapper2.GetApplications2 Method Retrieves the available applications for a Microsoft® Windows® user.

ISSOMapper2.GetApplications2 Method
The GetApplications2 method retrieves the available applications for a Microsoft Windows user.

Syntax
VB

C#

Parameters
Paramete
r

Description

application
s

String array that returns the application name.

description
s

String array that returns a description of the application.

contactInfo String array that returns the contact information for the application.

userAccou
nts

String array that returns all user accounts for the application. GetApplications2 returns a null in this parameter wh
en called by an application user.

adminAcco
unts

String array that returns all administration accounts for the application. GetApplications2 returns a null in this para
meter when called by an application user.

flags Integer array that returns the flags for the application.

Property Value/Return Value

[C++] This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values
section.

[Visual Basic] Not Applicable.

Exceptions

[C++] This method returns an HRESULT containing one of the values in the following table.

[Visual Basic] This method indicates errors by setting the Number property of the global Err object to one of the values in the
following table.

Value Description

Sub GetApplications2(
applications As String,
descriptions As String,
contactInfo As String,
userAccounts As String,
adminAccounts As String,
flags As Long
);

HRESULT GetApplications2(
SAFEARRAY applications,
SAFEARRAY descriptions,
SAFEARRAY contactInfo,
SAFEARRAY userAccounts,
SAFEARRAY adminAccounts,
SAFEARRAY flags
);

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDREG An invalid parameter was detected.

ISSOMapping Interface (COM)
The ISSOMapping interface manages the state of a mapping instance.

Requirements

Type Library: SSOMapper 1.0 Type Library (SSOMapper.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapping Members
The following tables show the ISSOMapper members.

Public Properties
Property Description

 ApplicationName Specifies the name of the application.

 ExternalUserName Specifies the external (non-Microsoft® Windows®) user name.

 Flags Reserved for internal use only.

 WindowsDomainName Specifies the Microsoft Windows domain name.

 WindowsUserName Specifies the Microsoft Windows user name.

Public Methods
Method Description

 Create Creates the mapping.

 Delete Deletes the mapping.

 Disable Disables the mapping.

 Enable Enables the mapping.

See Also
Concepts
ISSOMapping Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapping Properties
The properties of the ISSOMapping interface are listed in the following table. For a complete list of ISSOMapping interface
members, see ISSOMapping Members.

Public Properties
Property Description

 ApplicationName Specifies the name of the application.

 ExternalUserName Specifies the external (non-Microsoft® Windows®) user name.

 Flags Reserved for internal use only.

 WindowsDomainName Specifies the Microsoft Windows domain name.

 WindowsUserName Specifies the Microsoft Windows user name.

See Also
Concepts
ISSOMapping Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapping.ApplicationName Property
The ApplicationName property specifies the name of the application.

Syntax
C++

VB

Parameters
ApplicationName

[in] When putting the property, a string that contains the application name. [out, retval] When getting the property, a string
used to return the application name.

None.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT ISSOMapping::get_ApplicationName(
BSTR* ApplicationName
);
HRESULT ISSOMapping::put_ApplicationName(
BSTR ApplicationName
);

Property ApplicationName() As String

ISSOMapping.ExternalUserName Property
The ExternalUserName property specifies the external (non-Microsoft Windows) user name.

Syntax
C++

VB

Parameters
ExternalUserName

[in] When putting the property, a string that contains the external user name. [out, retval] When getting the property, a string
used to return the external user name.

None.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT ISSOMapping::get_ExternalUserName(BSTR* ExternalUserName);
HRESULT ISSOMapping::put_ExternalUserName(BSTR ExternalUserName);

Property ExternalUserName() As String

ISSOMapping.Flags Property
The Flags property is reserved for internal use only.

Syntax
C++

VB

Parameters
Flags

[in] When putting the property, a string that contains the flag value. [out, retval] When getting the property, a string used to
return the flag value.

None.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT ISSOMapping::get_Flags(BSTR* Flags);
HRESULT ISSOMapping::put_Flags(BSTR Flags);

Property Flags() As String

ISSOMapping.WindowsDomainName Property
The WindowsDomainName property specifies the Microsoft Windows domain name.

Syntax
C++

VB

Parameters
WindowsDomainName

[in] When putting the property, a string that contains the Windows domain name. Maximum length is 15 characters.

[out, retval] When getting the property, a string used to return the Windows domain name.

None.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT ISSOMapping::get_WindowsDomainName(BSTR* WindowsDomainName);
HRESULT ISSOMapping::put_WindowsDomainName(BSTR WindowsDomainName);

Property WindowsDomainName() As String

ISSOMapping.WindowsUserName Property
The WindowsUserName property specifies the Microsoft Windows user name.

Get method:

Syntax
C++

VB

Parameters
WindowsUserName

[in] When putting the property, a string that contains the Windows user name. [out, retval] When getting the property, a
string used to return the Windows user name.

None.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT ISSOMapping::get_WindowsUserName(BSTR*WindowsUserName);
HRESULT ISSOMapping::put_WindowsUserName(BSTR WindowsUserName);

Property WindowsUserName() As String

ISSOMapping Methods
The methods of the ISSOMapping interface are listed in the following table. For a complete list of ISSOMapping interface
members, see ISSOMapping Members.

Public Methods
Method Description

 Create Creates the mapping.

 Delete Deletes the mapping.

 Disable Disables the mapping.

 Enable Enables the mapping.

See Also
Concepts
ISSOMapping Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOMapping.Create Method
The Create method creates the mapping.

Syntax
C++

VB

Parameters
lFlags

For the current release, lFlags can be set to SSO_FLAG_REFRESH only.

lFlags

For the current release, lFlags can be set to SSO_FLAG_REFRESH only.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT Create(
LONG lFlags
);

Sub Create(
lFlags As Long
)

ISSOMapping.Delete Method
The Delete method deletes the mapping.

Syntax
C++

VB

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

After the mapping has been deleted, the mapping object can no longer be used and should be released.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT Delete();

Sub Delete()

ISSOMapping.Disable Method
The Disable method disables the mapping.

Syntax
C++

VB

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT Disable();

Sub Disable()

ISSOMapping.Enable Method
The Enable method enables the mapping.

Syntax
C++

VB

Parameters
lFlags

Not currently implemented.

lFlags

Not currently implemented.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Not applicable.

Error Values

This method returns an HRESULT containing one of the values in the following table.

This method indicates errors by setting the Number property of the global Err object to one of the values in the following
table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOMapping Interface (COM)
ISSOMapping Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT Enable(
LONG lFlags
);

Sub Enable(
lFlags As Long
)

ISSONotification Interface (COM)
The ISSONotification interface handles password changes to and from the client and server.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSONotification Members
Other Resources
Programming with Enterprise Single Sign-On

ISSONotification Members
The following table shows the ISSONotification members.

Public Methods
Member Description

 InitializeAdapter Initializes the password sync adapter to the ENTSSO system.

 SendNotification Sends a notification, such as a password change, from the adapter to the ENTSSO system.

 ReceiveNotification Receives a notification from the ENTSSO system, such as password changes.

 ShutdownAdapter Indicates that the password sync adapter is shutting down.

See Also
Concepts
ISSONotification Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSONotification Methods
The method of the ISSONotification interface is listed in the following table. For a complete list of ISSONotification
interface members, see ISSONotification Members.

Public Methods
Member Description

 InitializeAdapter Initializes the password sync adapter to the ENTSSO system.

 SendNotification Sends a notification, such as a password change, from the adapter to the ENTSSO system.

 ReceiveNotification Receives a notification from the ENTSSO system, such as password changes.

 ShutdownAdapter Indicates that the password sync adapter is shutting down.

See Also
Concepts
ISSONotification Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSONotification.InitializeAdapter Method
Initializes the password sync adapter to the ENTSSO system.

Syntax
C++

Parameters
bstrAdapterName

[in] The unique adapter name.

ulFlags

[in] A bitwise combination of the SSO_NOTIFICATION_FLAG values.

phNotifyEvent

[out] When this method returns, contains an event handle created by PS Helper. You should cast the return value to a
HANDLE on return, as MIDL does not support the HANDLE data type. This parameter can be NULL if the event handle is not
required by the adapter.

pguidTrackingId

[out] When this method returns, contains the tracking ID generated by ENTSSO. The tracking ID is used for auditing
purposes. This parameter can be NULL if the tracking ID is not required by the adapter.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Error Values section.

Error Values

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The initialization was successful.

S_FALSE The initialization was successful, but was a reconnect. For more information, see the Remarks section.

E_ACCESSDENIED Access is denied.

ENTSSO_E_NO_SERVER Could not contact the ENTSSO server. Check that the ENTSSO service is running.

Remarks

Before calling InitializeAdapter, you must have entered the relevant adapter name into ENTSSO.

InitializeAdapter should be the first method your adapter calls, because you cannot call any other ISSONotification
methods before you call InitializeAdapter. You should not call InitializeAdapter again until after you call
ShutdownAdapter. Once you shut down the adapter, however, you may call InitializeAdapter at any time to reconnect.

InitializeAdapter initiates communication between the PS Helper and the adapter. When your adapter calls
InitializeAdapter, the PS Helper calls the Enterprise Single Sign-On (ENTSSO) service over encrypted LRPC. Using the adapter
name, the ENTSSO service grants or denies access based on the access account that was defined for the current adapter.

You must have started the ENTSSO service before calling InitializeAdapter. PS Helper cannot automatically start ENTSSO
because the adapter process might not be running with sufficient privileges to start a service. Therefore, your adapter must
initiate all communication between the adapter and ENTSSO.

HRESULT InitializeAdapter(
BSTR strAdapterName,
ULONG lFlags,
ULONGLONG* hNotifyEvent,
GUID* guidTrackingId);

PS Helper first establishes a connection with the ENTSSO service, and then creates a named event. PS Helper then passes the
named event to the ENTSSO service. ENTSSO uses the event signal to the PS Helper when a notification arrives for the adapter.
ENTSSO returns the event to the adapter so that the adapter can wait on the event, or else ignore the event and allow PS
Helper to wait instead. This gives more flexibility to the adapter for the adapter threading model. The event is valid for the
adapter until ENTSSO completes the processing initiated by a call to ShutdownAdapter.

The ENTSSO service accepts the initial remote procedure call (RPC) call from the PS Helper if ENTSSO is running. ENTSSO then
performs an access check. If ENTSSO is unable to access the database to obtain the adapter configuration information, then
ENTSSO returns an E_ACCESSDENIED event. If ENTSSO has the adapter configuration information, but cannot currently
contact the database, then ENTSSO continues to accept password change notifications and buffers the notifications locally and
encrypt the notifications in a local temporary file.

InitializeAdapter also returns E_ACCESSDENIED if the adapter is deleted or disabled.

For all errors, more detailed information will be available in the Windows Event Log.

It is assumed that the adapter knows the appropriate name to use when communicating with ENTSSO.

InitializeAdapter is single-threaded. All other threads calling InitializeAdapter are blocked until InitializeAdapter has
completed. It is also synchronized with the ShutdownAdapter method.

It is possible that the adapter process terminates before you can issue a ShutdownAdapter. In this case, and if ENTSSO
receives another InitializeAdapter before ENTSSO receives a corresponding ShutdownAdapter, ENTSSO treats the second
ShutdownAdapter call as a reconnect. In this case, ENTSSO cleans up and invalidates the existing event, and creates a new
handle. ENTSSO also completes any pending ReceiveNotifications for the old event handle with a shutdown notification.

In the case of a reconnect, a new tracking ID is returned from the InitializeAdapter. ENTSSO returns a new tracking ID
because the tracking ID returned from InitializeAdapter can be considered a session ID. Further, ENTSSO reissues any
pending (but unconfirmed) notifications to the adapter.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSONotification Interface (COM)
ISSONotification Members
Other Resources
Programming with Enterprise Single Sign-On

ISSONotification.SendNotification Method
Sends a notification, such as a password change, from the adapter to the ENTSSO system.

Syntax
C++

Parameters
SendNotification

[in] The notification to send to ENTSSO from the adapter.

pguidTrackingId

[out] When this method returns, contains the tracking ID generated by ENTSSO. You can use the tracking ID for auditing
purposes or to correlate request responses. May be NULL.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Error Values section.

Error Values

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The method was successful.

E_ACCESSDENIED Access is denied.

ENTSSO_E_NO_SERVER Could not contact the ENTSSO server. Check that the ENTSSO service is running.

ENTSSO_E_WRONG_STATE This method has been called in the wrong state.

ENTSSO_E_INVALID_NOTIFICATION Invalid notification type.

Remarks

You can use SendNotification to send password changes and other notifications to the ENTSSO system.

If SendNotification returns S_OK, this does not mean that a password change was completed on the destination system.
Instead, receiving an S_OK means ENTSSO has accepted and eventually will complete your request.

A password change from an external system can have several consequences:

If a partial password sync is configured, then the SSO database might be updated, if a current mapping exists for the
external account.

If a full password sync is configured, then the password change might also be made to a Windows account.

If the external account has no current mapping in the SSO database, the password change might have no effect.

The password change complete notification is issued when the password change is considered complete from the ENTSSO
point-of-view, which as discussed above, could mean different things. In some cases, it could mean no change was done, that
only the SSO database was updated, or that the Windows password was changed.

Note that password change complete notifications sent back to the adapter are not completely reliable. Under some error
conditions, Single Sign-On may never actually receives the requested notifications.

HRESULT SendNotification(
SSendNotification SendNotification,
GUID* pguidTrackingId
);

In ENTSSO, the definition of credentials, such as those sent by SendNotification for password updates, is more flexible than a
simple password. When you define an SSO application, you also define the credential fields. The fields identify the labels to use
for the UI fields, and whether those fields are masked or not. In addition, there is also a special flage which specifies whether
the field should be synchronized or not. Field 0 is a special case and defines the label for the user ID. For more information, see
the ISSOAdmin Interface.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSONotification Interface (COM)
ISSONotification Members
Other Resources
Programming with Enterprise Single Sign-On

ISSONotification.ReceiveNotification Method
Receives a notification from the ENTSSO system, such as password changes.

Syntax
C++

Parameters
bstrAdapterName

[in] The unique adapter name.

ulNotificationFlagsIn

[in] The notification flags to control this notification, from the SSO_NOTIFICATION_FLAG enumeration.

pReceiveNotification

[in] Pointer for the received notification.

pguidTrackingId

[out] The tracking ID. The ENTSSO system will generate a tracking ID and return it to the caller. The tracking ID is used for
auditing purposes and can also be used by the adapter to correlate responses to requests. This parameter can be NULL if the
tracking ID is not required by the adapter.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Error Values section.

Error Values

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The method was successful.

E_ACCESSDENIED Access is denied.

ENTSSO_E_NO_SERVER Could not contact the ENTSSO server. Check that the ENTSSO service is running.

ENTSSO_E_NO_NOTIFICATIONS There are no notifications to be received.

ENTSSO_E_WRONG_STATE This method has been called in the wrong state.

Remarks

You can use ReceiveNotification to receive both password changes and other notifications from the ENTSSO system.

You may call ReceiveNotification with or without a WAIT flag. If you specify the WAIT flag, ReceiveNotification blocks until
a notification is available. Doing so enables you to determine if you want to dedicate a thread for receiving notifications from
the ENTSSO service, or whether you want to use the event handle returned from InitializeAdapter to perform your own
waits, shared with other events.

If ReceiveNotification is waiting when you call ShutdownAdapter, then ReceiveNotification returns a SHUTDOWN
notification as the last notification. The SHUTDOWN notification preempts any other pending notifications.

It is possible that multiple threads could be calling ReceiveNotification for the same adapter name. In this case, the request is
single-threaded at the ENTSSO service, and only one ReceiveNotification completes with valid information. The threads

HRESULT ReceiveNotification(
ULONG ulNotificationFlagsIn,
SReceiveNotification* pReceiveNotification,
GUID* pguidTrackingId
);

complete with either the next notification or NONE. The reason is that each of these threads waits for the same event.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSONotification Interface (COM)
ISSONotification Members
Other Resources
Programming with Enterprise Single Sign-On

ISSONotification.ShutdownAdapter Method
Indicates that the password sync adapter is shutting down.

Syntax
C++

Parameters
pguidTrackingId

[out] When this method returns, contains the tracking ID. The tracking ID is the same tracking ID that ENTSSO returns in the
initialization process, which you can use for auditing purposes. May be NULL.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Error Values section.

Error Values

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The shutdown was successful.

E_ACCESSDENIED Access is denied.

ENTSSO_E_NO_SERVER Could not contact the ENTSSO server. Check that the ENTSSO service is running.

ENTSSO_E_WRONG_STATE This method has been called in the wrong state.

Remarks

ShutdownAdapter should be the last method you call. You may call neither SendNotification nor ReceiveNotification after
you call ShutdownAdapter. The only method you may call afterward is InitializeAdapter, which initializes a new session.

Calls to SendNotification or ReceiveNotification that are in progress (on other threads) when you call ShutdownAdapter
may receive ENTSSO_E_WRONG_STATE, although one thread calling ReceiveNotification receives the
SHUTDOWN_COMPLETE notification.

ShutdownAdapter is single-threaded. ENTSSO blocks all other threads calling ShutdownAdapter until ShutdownAdapter
has completed. ShutdownAdapter is also synchronized with the InitializeAdapter method.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSONotification Interface (COM)
ISSONotification Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT ShutDownAdapter(
GUID* pguidTrackingId
);

ISSOTicket Interface (COM)
The ISSOTicket interface issues and redeems Enterprise Single Sign-On (SSO) server tickets.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOTicket Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOTicket Members
The following table shows the ISSOTicket members.

Public Methods
Member Description

 IssueTicket Issues an Enterprise Single Sign-On (SSO) server ticket for authenticating a user on an application.

 RedeemTicket Redeems an SSO server ticket that was previously issued with the IssueTicket method.

See Also
Concepts
ISSOTicket Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOTicket Methods
The methods of the ISSOTicket interface are listed in the following table. For a complete list of ISSOTicket interface members,
see ISSOTicket Members.

Public Methods
Method Description

 IssueTicket Issues an Enterprise Single Sign-On (SSO) server ticket for authenticating a user on an application.

 RedeemTicket Redeems an SSO server ticket that was previously issued with the IssueTicket method.

See Also
Concepts
ISSOTicket Interface (COM)
Other Resources
Programming with Enterprise Single Sign-On

ISSOTicket.IssueTicket Method
The IssueTicket method issues an Enterprise Single Sign-On (SSO) server ticket for authenticating a user on an application.

Syntax
C++

Parameters
lFlags

[in] This parameter is ignored in the current release.

lFlags

[in] This parameter is ignored in the current release.

pbstrTicket

[out] Pointer to a string that receives the ticket. This is a Base64-encoded value for use in XML documents.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Error Values

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

To access this method, you must be an Application User. You can only issue a ticket for yourself.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
ISSOTicket Interface (COM)
ISSOTicket Members
Other Resources
Programming with Enterprise Single Sign-On

HRESULT IssueTicket(
LONG lFlags,
BSTR* pbstrTicket
);

ISSOTicket.RedeemTicket Method
The RedeemTicket method redeems an Enterprise Single Sign-On (SSO) server ticket that was previously issued with the
IssueTicket method.

Syntax
C++

Parameters
bstrApplicationName

[in] String that specifies the application name. This parameter cannot be NULL, an empty string, or contain spaces.
Application names are not case-sensitive, but case will be preserved. For example, ABC, abc, and AbC are considered to be
the same application.

bstrTicket

[in] String that specifies the ticket value obtained from the IssueTicket method.

lFlags

[in] Long integer that specifies the flags to set. Use the flag SSO_FLAG_REFRESH to indicate that the credential cache should
be bypassed.

pbstrExternalUserName

[out] Pointer to a string that receives the external user name associated with the ticket.

BSTR

[out] String that receives the external credentials associated with the ticket. If there are no credentials, the size of the returned
array is zero.

Return Value

This method returns an HRESULT indicating whether it completed successfully. For more details, see the Error Values section.

Error Values

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The method succeeded.

E_ACCESSDENIED Access is denied to the caller.

E_INVALIDARG An invalid parameter was detected.

Remarks

Because the credentials are returned in plain text by this method, the caller should be careful to clear (overwrite) them as soon
as possible after use.

To access this method, you must be an SSO Administrator, SSO Affiliate Administrator, or an Application Administrator.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

HRESULT RedeemTicket(
BSTR bstrApplicationName,
BSTR bstrTicket,
LONG lFlags,
BSTR* pbstrExternalUserName,
SAFEARRAY BSTR
);

See Also
Concepts
ISSOTicket Interface (COM)
ISSOTicket Members
Other Resources
Programming with Enterprise Single Sign-On

ISSOPSWrapper Interface (COM)
The ISSOPSWrapper interface allows developers to create password sync adapters in either managed or native code.

Requirements

Type Library: SSOPSHelper 1.0 Type Library (SSOPSHelper.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

Remarks

ISSOPSWrapper implements the same methods as ISSONotification but does not use structures.

See Also
Other Resources
Programming with Enterprise Single Sign-On

ISSOPSWrapper Members
The following table shows the ISSOPSWraper members.

Public Methods
ISSOWrapper.InitializeAdapter Method

Initializes the adapter.

ISSOWrapper.ReceiveNotification Method

Receives a notification to the adapter from the ENTSSO service.

ISSOWrapper.SendNotification Method

Sends a notification from the adapter to the ENTSSO service.

ISSOWrapper.ShutdownAdapter Method

Indicates to the ENTSSO service that the adapter is shutting down.

ISSOWrapper Methods
The following table describes the ISSOWrapper methods.

Public Methods
ISSOWrapper.InitializeAdapter Method

Initializes the adapter.

ISSOWrapper.ReceiveNotification Method

Receives a notification to the adapter from the ENTSSO service.

ISSOWrapper.SendNotification Method

Sends a notification from the adapter to the ENTSSO service.

ISSOWrapper.ShutdownAdapter Method

Indicates to the ENTSSO service that the adapter is shutting down.

ISSOWrapper.InitializeAdapter Method
Initializes the password sync adapter to the ENTSSO system.

Syntax
C++

Parameters
bstrAdapterName

The unique adapter name.

ulFlags

A bitwise combination of the SSO_NOTIFICATION_FLAG values.

phNotifyEvent

When this method returns, contains an event handle created by PS Helper. You should cast the return value to a HANDLE on
return, as MIDL does not support the HANDLE data type. This parameter can be NULL if the event handle is not required by
the adapter.

pguidTrackingId

When this method returns, contains the tracking ID generated by ENTSSO. The tracking ID is used for auditing purposes. This
parameter can be NULL if the tracking ID is not required by the adapter.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Exceptions section.

Exceptions

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The initialization was successful.

S_FALSE The initialization was successful, but was a reconnect. For more information, see the Remarks section.

E_ACCESSDENIED Access is denied.

ENTSSO_E_NO_SERVER Could not contact the ENTSSO server. Check that the ENTSSO service is running.

Remarks

InitializeAdapter acts in the same way as the ISSONotification.InitializeAdapter Method.

HRESULT InitializeAdapter(
BSTR bstrAdapterName,
ULONG ulFlags,
ULONGLONG* phNotifyEvent,
GUID* pguidTrackingId
);

ISSOWrapper.SendNotification Method
Sends a notification from the adapter to the ENTSSO service.

Syntax
C++

Parameters
Parameter Description

ulNotificationType Notification type.

ulNotificationFlags Notification flags.

guidTrackingIdIn The tracking id of the password change to be confirmed.

bstrExternalAccoun
t

The external account for which the password has changed.

bstrNewExternalPa
ssword

The new password for the external account.

bstrOldExternalPass
word

Optional. The old password for the external account.

ullTimestamp The timestamp when the password change was made, or zero to use the current time.

ullErrorCode If non-zero, the external password change failed. errorCode will be written to the event log. Zero for succe
ssful external password changes.

bstrErrorMessage Optional. The message to write to the event log if the password change failed.

pguidTrackingIdOu
t

Optional. On return, contains a pointer to a GUID to receive the tracking id.

Property Value/Return Value
E_ACCESS_DENIED

Access is denied.

Exceptions

Remarks

SendNotification uses different parameters depending on the notificationType. The following table describes the necessary
parameters for each type of notification.

notificationType Parameters

HRESULT SendNotification(
ULONG ulNotificationType,
ULONG ulNotificationFlags,
Guid guidTrackingIdIn,
bstr bstrExternalAccount,
bstr bstrNewExternalPassword,
bstr bstrOldExternalPassword,
ulonglong ullTimestamp,
ulonglong ullErrorCode,
bstr bstrErrorMessage,
out Guid *pguidTrackingIdOut
);

SSO_NOTIFICATION_TYPE_PASSWORD_CHANGE externalAccount

newExternalPassword

oldExternalPassword

timestamp

SSO_NOTIFICATION_TYPE_PASSWORD_CHANGE_COMPLETE trackingIdIn

errorCode

errorMessage

SSO_NOTIFICATION_TYPE_STATUS_OFFLINE errorCode

errorMessage

SSO_NOTIFICATION_TYPE_PASSWORD_EXPIRED externalAccount

SSO_NOTIFICATION_TYPE_STATUS_REQUEST None

SSO_NOTIFICATION_TYPE_STATUS_ONLINE None

Requirements

ISSOWrapper.ReceiveNotification Method
Receives a notification to the adapter from the ENTSSO service.

Syntax
C++

Parameters
Parameter Description

ulNotificationFlag
sIn

The notification flags. Specify SSO_NOTIFICATION_FLAG_WAIT if you want your call to block waiting for a n
otification, or SSO_NOTIFICATION_FLAG_NONE.

guidTrackingIdIn The tracking ID.

pulNnotificationT
ype

On return, contains a pointer to a ULONG that will receive the notification type.

pulNotificationFla
gsOut

On return, contains a pointer to a ULONG that will receive the notification flags

pbstrExternalAcco
unt

On return, contains the external account for which the password should be changed.

newExternalPass
word

On return, contains the new password for the external account.

pbstrOldExternalP
assword

Optional. On return, contains the old password for the external account.

pullTimestamp On return, contains the timestamp when the password change was made.

pullErrorCode On return, contains the error code.

pbstrErrorMessag
e

On return, contains an error message.

ppsaAdapters On return, contains an array of adapter names.

pbstrAdapterNa
me

On return, contains the adapter name.

void ReceiveNotification(
ULONG ulNotificationFlagsIn,
GUID guidTrackingIdIn,
out ULONG *pulNotificationType,
out ULONG *pulNotificationFlagsOut,
out BSTR *pbstrExternalAccount,
out BSTR *pbstrNewExternalPassword,
out BSTR *pbstrOldExternalPassword,
out ULONGLONG *pullTimestamp,
out ULONGLONG *pullErrorCode,
out BSTR *pbstrErrorMessage,
out SAFEARRAY(BSTR) *ppsaAdapters,
out BSTR *pbstrAdapterName,
out GUID *pguidTrackingIdOut
);

pbuidTrackingIdO
ut

On return, contains the tracking ID.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Exceptions section.

Exceptions
E_ACCESS_DENIED

Access is denied.

Remarks

ReceiveNotification uses different parameters to return information depending on the notificationType. The following table
describes the relationship between the different parameters and types of notifications.

notificationType Parameters

SSO_NOTIFICATION_TYPE_PASSWORD_CHANGE externalAccount

newExternalPassword

oldExternalPassword

timestamp

SSO_NOTIFICATION_TYPE_PASSWORD_CHANGE_COMPLETE trackingIdIn

errorCode

errorMessage

SSO_NOTIFICATION_TYPE_STATUS_OFFLINE errorCode

errorMessage

SSO_NOTIFICATION_TYPE_PASSWORD_EXPIRED externalAccount

SSO_NOTIFICATION_TYPE_STATUS_REQUEST None

SSO_NOTIFICATION_TYPE_STATUS_ONLINE None

ISSOWrapper.ShutdownAdapter Method
Indicates to the ENTSSO service that the adapter is shutting down.

Syntax
C++

Parameters
Paramet
er

Description

pguidtra
ckingId

When this method returns, contains the tracking ID. The tracking ID is the same tracking ID that ENTSSO returns in t
he initialization process, which you can use for auditing purposes. May be NULL.

Return Value

This method returns an HRESULT indicating whether it completed correctly. For more information, see the Error Values section.

Exceptions

This method returns an HRESULT containing one of the values in the following table.

Value Description

S_OK The shutdown was successful.

E_ACCESSDENIED Access is denied.

ENTSSO_E_NO_SERVER Could not contact the ENTSSO server. Check that the ENTSSO service is running.

ENTSSO_E_WRONG_STATE This method has been called in the wrong state.

Remarks

Example

This is the description for a Code Example.

Optional comments.

.NET Framework Equivalent

Optional .NET Framework equivalent section.

Requirements
Subhead

HRESULT ShutDownAdapter(
GUID* pguidTrackingId
);

SAdapter Structure (COM)
Describes an adapter.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
SAdapter Members
Other Resources
Programming with Enterprise Single Sign-On

SAdapter Members
The following table shows the SAdapter members.

Public Fields
Field Description

bstrAdapterName String containing the adapter name.

See Also
Concepts
SAdapter Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SAdapter Fields
The fields of the SAdapter interface is listed in the following table. For a complete list of SExternal interface members, see
SAdapter Members.

Public Fields
Field Description

bstrAdapterName String containing the adapter name.

See Also
Concepts
SAdapter Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SAdapter.bstrAdapterName Field
String containing the adapter name.

Remarks

You must free the string after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
SAdapter Structure (COM)
SAdapter Members
Other Resources
Programming with Enterprise Single Sign-On

SAdapterInGroup Structure (COM)
Describes the names of one or more adapters in a group.

Syntax

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
SAdapterInGroup Members
Other Resources
Creating a Single Sign-On Application

 public: __value struct SAdapterInGroup

SAdapterInGroup Members
The following table shows the SAdapterInGroup members.

Public Fields
Field Description

psaAdapters Pointer to a SafeArray of adapter names in the group.

See Also
Reference
SAdapterInGroup Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SAdapterInGroup Fields
The fields of the SAdapterInGroup interface are listed in the following table. For a complete list of SExternal interface
members, see SAdapterInGroup Members.

Public Fields
Field Description

psaAdapters Pointer to a SafeArray of adapter names in the group.

See Also
Reference
SAdapterInGroup Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SAdapterInGroup.psaAdapters Field
Pointer to a SafeArray of adapter names in the group.

Remarks

This SafeArray must be destroyed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SAdapterInGroup Structure (COM)
Concepts
SAdapterInGroup Members
Other Resources
Programming with Enterprise Single Sign-On

SExternalAccount Structure (COM)
Describes an external account.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
SExternalAccount Members
Other Resources
Programming with Enterprise Single Sign-On

SExternalAccount Members
The following table shows the SExternal members.

Public Fields
Field Description

bstrExternalAccount A string describing the external account.

See Also
Other Resources
Programming with Enterprise Single Sign-On

SExternalAccount Fields
The fields of the SExternalAccount interface are listed in the following table. For a complete list of SExternal interface
members, see SExternalAccount Members.

Public Fields
Field Description

bstrExternalAccount A string describing the external account.

See Also
Concepts
SExternalAccount Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SExternalAccount.bstrExternalAccount Field
A string describing the external account.

Syntax
C++

Remarks

BSTR must be freed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
SExternalAccount Structure (COM)
SExternalAccount Members
Other Resources
Programming with Enterprise Single Sign-On

public: BSTR bstrExternalAccount;

SPasswordChange Structure (COM)
Describes change to a password.

Syntax

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Concepts
SPasswordChange Members
Other Resources
Programming with Enterprise Single Sign-On

 public: __value struct SPasswordChange

SPasswordChange Members
The following table shows the SPasswordChange members.

Public Fields
Field Description

bstrExternalAccount A string describing the external account.

psaNewExternalPassword Pointer to a SafeArray of new external credentials.

psaOldExternalPassword Pointer to a SafeArray of new external credentials.

ullTimestamp An integer containing a UTC timestamp in FILETIME format.

See Also
Reference
SPasswordChange Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SPasswordChange Fields
The fields of the SPasswordChange interface are listed in the following table. For a complete list of SExternal interface
members, see SPasswordChange Members

Public Fields
Field Description

bstrExternalAccount A string describing the external account.

psaNewExternalPassword A string containing the new external credentials.

psaOldExternalPassword A string containing the new external credentials.

ullTimeStamp An integer containing a UTC timestamp in FILETIME format.

See Also
Reference
SPasswordChange Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SPasswordChange.bstrExternalAccount Field
A string describing the external account.

Syntax
C++

Remarks

BSTR must be freed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChange Structure (COM)
Concepts
SPasswordChange Members
Other Resources
Programming with Enterprise Single Sign-On

public: BSTR bstrExternalAccount;

SPasswordChange.psaNewExternalPassword Field
A string containing the new external credentials.

Syntax
C++

Remarks

Must be freed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChange Structure (COM)
Concepts
SPasswordChange Members
Other Resources
Programming with Enterprise Single Sign-On

public: BSTR psaNewExternalCredentials;

SPasswordChange.psaOldExternalPassword Field
A string containing the new external credentials.

Syntax
C++

Remarks

Can be NULL. Must be freed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChange Structure (COM)
Concepts
SPasswordChange Members
Other Resources
Programming with Enterprise Single Sign-On

public: BSTR psaOldExternalCredentials;

SPasswordChange.ullTimeStamp Field
An integer containing a UTC timestamp in FILETIME format.

Syntax
C++

Remarks

If zero, then Enterprise Single Sign-On (ENTSSO) uses the current time.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChange Structure (COM)
Concepts
SPasswordChange Members
Other Resources
Programming with Enterprise Single Sign-On

public: ULONGLONG ullTimeStamp;

SPasswordChangeComplete Structure (COM)
Describes when a change to a password has been completed.

Syntax

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChangeComplete Members
Other Resources
Programming with Enterprise Single Sign-On

 public: __value struct SPasswordChangeComplete

SPasswordChangeComplete Members
The following table shows the SPasswordChangeComplete members.

Public Fields
Field Description

guidTrackingId A GUID containing the tracking ID from the original PASSWORD_CHANGE.

ullErrorCode An integer containing an error code.

bstrErrorMessage A string containing an error message.

See Also
Reference
SPasswordChangeComplete Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SPasswordChangeComplete Fields
The fields of the SPasswordChangeComplete interface is listed in the following table. For a complete list of SExternal
interface members, see SPasswordChangeComplete Members.

Public Fields
Field Description

guidTrackingId A GUID containing the tracking ID from the original PASSWORD_CHANGE.

ullErrorCode An integer containing an error code.

bstrErrorMessage A string containing an error message.

See Also
Reference
SPasswordChangeComplete Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SPasswordChangeComplete.guidTrackingId Field
A GUID containing the tracking ID from the original PASSWORD_CHANGE.

Syntax
C++

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChangeComplete Structure (COM)
SPasswordChangeComplete Members
Other Resources
Programming with Enterprise Single Sign-On

public: GUID guidTrackingId;

SPasswordChangeComplete.ullErrorCode Field
An integer containing an error code.

Syntax
C++

Remarks

The string must be freed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChangeComplete Structure (COM)
SPasswordChangeComplete Members
Other Resources
Programming with Enterprise Single Sign-On

public: ULONGLONG ullErrorCode;

SPasswordChangeComplete.bstrErrorMessage Field
A string containing an error message.

Syntax
C++

Remarks

Can be NULL. BSTR must be freed after use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SPasswordChangeComplete Structure (COM)
SPasswordChangeComplete Members
Other Resources
Programming with Enterprise Single Sign-On

public: BSTR bstrErrorMessage;

SSO_NOTIFICATION_TYPE Enumeration (COM)
Specifies the different notification types used for Enterprise Single Sign-On (SSO).

Syntax
VB

C#

C++

JScript

Members
Member N
ame

V
al
u
e

Dir
ect
io
n

Description

SSO_NOTIFI
CATION_TY
PE_NONE

0
x
0
0
0
0
0
0
0
0

EN
TS
SO
to
ad
apt
er

No notifications are pending. This notification type is supported by group adapters. It is not necessary to c
onfirm this notification.

SSO_NOTIFI
CATION_TY
PE_SHUTD
OWN

0
x
0
0
0
0
0
0
0
1

EN
TS
SO
to
ad
apt
er

The ENTSSO service requires the adapter to shutdown. The adapter should respond by calling
ISSONotification.ShutdownAdapter Method.

This notification type is supported by group adapters. It indicates that the group adapter only should shut
down. Each individual adapter that is part of the adapter group gets its own SHUTDOWN notification.

It is not necessary to confirm this notification.

<Serializable>
Public Enum SSO_NOTIFICATION_FLAG

[Serializable]
public enum SSO_NOTIFICATION_FLAG

[Serializable]
__value public enum SSO_NOTIFICATION_FLAG

 public
 Serializable
enum SSO_NOTIFICATION_FLAG

SSO_NOTIFI
CATION_TY
PE_SHUTD
OWN_COM
PLETE

0
x
0
0
0
0
0
0
0
2

EN
TS
SO
to
ad
apt
er

The ENTSSO service has processed the ShutdownAdapter method. This is the last notification that is rece
ived by the adapter using the current event handle.

This notification type is supported by group adapters.

It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_PASSW
ORD_CHAN
GE

0
x
0
0
0
0
0
0
0
3

Bot
h

A password has changed.

When sending a password change from an adapter to ENTSSO, the password change is considered to be a
ccepted, and durable, on return from the notification to ENTSSO through SendNotification. That does not i
ndicate that the password change is complete, but rather that it has been accepted, is durable, and is likely
to be accomplished. Under some error conditions queues could fill up, in which case older password chan
ges could be discarded. In general, you should perform more recent password changes than older ones.

An adapter should make password changes received through ReceiveNotification, The adapter should mak
e that change durable or effect the change immediately. The adapter should then call SendNotification w
ith PASSWORD_CHANGE_COMPLETE for that password change to delete it from the database queue.

This notification type is not supported by group adapters.

An adapter must confirm this notification. It is optional for ENTSSO to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_PASSW
ORD_CHAN
GE_COMPL
ETE

0
x
0
0
0
0
0
0
0
4

Bot
h

The ENTSSO service completed the password change. Note that the definition of complete may vary depe
nding on what is configured. For more information, see the Remarks section of ReceiveNotification.

You can use the tracking ID to correlate the original request with the response.

This notification type is not supported by group adapters.

It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_PASSW
ORD_EXPIR
ED

0
x
0
0
0
0
0
0
0
5

Bot
h

The password for an account has expired. For ENTSSO, this causes the stored password for this account to
be flagged as expired.

This notification type is not supported by group adapters.

It is necessary for an adapter to confirm this notification. It is optional for ENTSSO to confirm this notificati
on.

Note that this notification is currently not implemented. ENTSSO will ignore any SSO_NOTIFICATION_TYP
E_PASSWORD_EXPIRE messages, and will never send a message of this type to an adapter.

SSO_NOTIFI
CATION_TY
PE_STATUS
_REQUEST

0
x
0
0
0
0
0
0
0
6

Bot
h

An inquiry regarding the status of the adapter or ENTSSO service, or as a response.

If the ENTSSO service detects that a password sync adapter has not sent any password changes for some t
ime, it may send a STATUS notification to that adapter as a "keep alive". The adapter should respond with a
STATUS_ONLINE or STATUS_OFFLINE notification.

This notification type is supported by group adapters. It applies only for the status of the group adapter, no
t for the adapters within the adapter group.

It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_STATUS
_ONLINE

0
x
0
0
0
0
0
0
0
7

Bot
h

The status of an adapter or ENTSSO service is online.

If the ENTSSO service detects that a password sync adapter has not sent any password changes for some t
ime, it may send a STATUS notification to that adapter as a "keep alive". If online, the adapter should respo
nd with a STATUS_ONLINE.

If the adapter detects that it is offline, it can send these notifications unsolicited.

This notification type is supported by group adapters. It applies only for the status of the group adapter, no
t for the adapters within the adapter group.

It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_STATUS
_OFFLINE

0
x
0
0
0
0
0
0
0
8

Bot
h

The adapter or ENTSSO service is offline.

If the ENTSSO service detects that a password sync adapter has not sent any password changes for some t
ime, it may send a STATUS notification to that adapter as a "keep alive". If your adapter is offline, it should
respond with a STATUS_OFFLINE notification.

If the adapter detects that it is offline, it can send these notifications unsolicited.

This notification type is supported by group adapters. It applies only for the status of the group adapter, no
t for the adapters within the adapter group.

It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_ADAPTE
RS_IN_GRO
UP

0
x
0
0
0
0
1
0
0
0

EN
TS
SO
to
ad
apt
er

An adapter is contained within a specified adapter group. It is one of the first notifications received by a gr
oup adapter after initialization.

The adapter names are contained within the "new external credentials array" parameter. If there are a very
large number of adapters in this adapter group, it is possible that this notification is received by the group
adapter more than once with the remaining adapter names.

This notification type is only issued to group adapters. It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_ADD_A
DAPTER

0
x
0
0
0
0
1
0
0
1

EN
TS
SO
to
ad
apt
er

An adapter has been added to the adapter group.

The adapter name that has been added is contained within the "notification string" parameter.

This notification type is only issued to group adapters. It is not necessary to confirm this notification.

SSO_NOTIFI
CATION_TY
PE_DELETE_
ADAPTER

0
x
0
0
0
0
1
0
0
2

EN
TS
SO
to
ad
apt
er

An adapter has been deleted from the adapter group.

The adapter name that has been deleted is contained within the "notification string" parameter.

This notification type is only issued to group adapters. It is not necessary to confirm this notification.

Remarks

There is no online or offline notification for adapters to the group adapter. This is because control of the individual adapters is
handled by each adapter itself.

In general, the notifications that require confirmation are those that are durable in the database queue. The other notifications
are control and status information which are transient. Notifications that require confirmation have one of the confirm flags
set.

There is no notification to or from the adapter about enabled or disabled status. This is because the enable and disable is
handled by the enable and disable of the underlying configuration store application. Thus, when the adapter is disabled by an
administrator, the adapter receives access denied messages from all calls to ENTSSO.

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Other Resources
Programming with Enterprise Single Sign-On

SSO_NOTIFICATION_FLAG Enumeration (COM)
Specifies the different types of flags used for Enterprise Single Sign-On (SSO).

Syntax
VB

C#

C++

JScript

Remarks

The following table describes the possible values for the notification flags.

Members
Member Name Valu

e
Directio
n

Description

SSO_NOTIFICATION
_FLAG_NONE

0x00
0000
00

Both Null value.

SSO_NOTIFICATION
_FLAG_ADMIN_CHA
NGE

0x00
0000
01

Both The password change was a result of an administrator action. Some systems will be abl
e to distinguish between an administrator action, while some will not. ENTSSO will not s
et this flag.

This flag is currently not used.

SSO_NOTIFICATION
_FLAG_TEST

0x00
0000
08

Both The current notification is a test request.

Your adapter can safely ignore this notification. You can use this notification for testing
and diagnostics purposes.

This flag is currently not used.

SSO_NOTIFICATION
_FLAG_AUDIT

0x00
0000
10

Both The current request requires auditing.

This flag is currently not used.

<Serializable>
Public Enum SSO_NOTIFICATION_FLAG

[Serializable]
public enum SSO_NOTIFICATION_FLAG

[Serializable]
__value public enum SSO_NOTIFICATION_FLAG

 public
 Serializable
enum SSO_NOTIFICATION_FLAG

SSO_NOTIFICATION
_FLAG_WINDOWS

0x00
0000
20

Not appl
icable

Reserved for internal use.

SSO_NOTIFICATION
_FLAG_WAIT

0x00
0000
40

Adapter
to ENTS
SO

ReceiveNotification should block and wait until a notification is available.

Best practice indicates you should set this flag and allow the PS Helper to wait for notific
ations.

SSO_NOTIFICATION
_FLAG_SEND_ONLY

0x00
0000
80

Adapter
to ENTS
SO

Indicates that this PS Helper should initialize for sending only. It assumes that another P
S Helper will be initialized normally.

You should use this flag when using one PS Helper for ReceiveNotification (for receivin
g password changes), and another fro SendNotification (for sending password changes)
.

Requirements

Type Library: SSOPSHelper 1.0 Type Library (SSOPSHelper.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Other Resources
Programming with Enterprise Single Sign-On

SStatus Structure (COM)
Describes the current status.

Syntax

Requirements

Type Library: SSOLookup 1.0 Type Library (SSOLookup.dll)

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SStatus Members
Other Resources
Programming with Enterprise Single Sign-On

 public: __value struct SStatus

SStatus Members
The following table shows the SStatus members.

Public Fields
Field Description

ullErrorCode An integer that contains an error code.

bstrErrorMessage A string that contains an error message.

See Also
Other Resources
Programming with Enterprise Single Sign-On

SStatus Fields
The fields of the SStatus interface are listed in the following table. For a complete list of SExternal interface members, see
SStatus Members.

Public Fields
Field Description

ullErrorCode An integer that contains an error code.

bstrErrorMessage A string that contains an error message.

See Also
Reference
SStatus Structure (COM)
Other Resources
Programming with Enterprise Single Sign-On

SStatus.ullErrorCode Field
An integer that contains an error code.

Syntax
C++

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SStatus Structure (COM)
SStatus Members
Other Resources
Programming with Enterprise Single Sign-On

public: ULONGLONG ullErrorCode;

SStatus.bstrErrorMessage Field
A string that contains an error message.

Syntax
C++

Remarks

bstrErrorMessage Can be NULL. You must free bstrEerrorMessage after every use.

Requirements

Platforms: Windows XP Professional, Windows Vista, Windows Server 2003, Windows Server 2008

See Also
Reference
SStatus Structure (COM)
SStatus Members
Other Resources
Programming with Enterprise Single Sign-On

public: BSTR bstrErrorMessage;

Enterprise Single Sign-On Flags
The following flags are used with the Microsoft® Host Integration Server Enterprise Single Sign-On (SSO) methods.

Common flags
Member name Value

SSO_FLAG_NONE 0x00000000

SSO_FLAG_REFRESH 0x00000001

SSO_FLAG_ENABLED 0x00000002

SSO_FLAG_RUNTIME 0x00000004

SSO_FLAG_SSO_EXTERNAL_TO_WINDOWS 0x00000008

SSO_FLAG_SSO_VERIFY_EXTERNAL_CREDS 0x00000010

SSO_FLAG_ALLOW_TICKETS 0x00000020

SSO_FLAG_VALIDATE_TICKETS 0x00000040

SSO_FLAG_ADMIN_ENABLED 0x80

SSO_FLAG_READ_MODIFY_WRITE 0x100

SSO_FLAG_REPLAY 0x100

Password synchronization flags
Member name Value

SSO_FLAG_PARTIAL_SYNC_FROM_WINDOWS_TO_DB 0x00000100

SSO_FLAG_PARTIAL_SYNC_FROM_EXTERNAL_TO_DB 0x00000200

SSO_FLAG_FULL_SYNC_FROM_WINDOWS_TO_EXTERNAL 0x00000400

SSO_FLAG_FULL_SYNC_FROM_EXTERNAL_TO_WINDOWS 0x00000800

SSO_FLAG_SYNC_VERIFY_EXTERNAL_CREDS 0x00001000

SSO_FLAG_SYNC_PROVIDE_OLD_EXTERNAL_CREDS 0x00002000

SSO_FLAG_SYNC_ALLOW_MAPPING_CONFLICTS 0x00004000

Application flags
Member name Value

SSO_FLAG_APP_GROUP 0x10000

SSO_FLAG_APP_USES_GROUP_MAPPING 0x00010000

SSO_FLAG_APP_EXTERNAL_NAME_SAME 0x00020000

SSO_FLAG_APP_ALLOW_LOCAL 0x40000

SSO_FLAG_APP_ADMIN_SAME 0x80000

SSO_FLAG_APP_CONFIG_STORE 0x100000

SSO_FLAG_APP_TICKET_TIMEOUT 0x200000

SSO_FLAG_APP_ADAPTER 0x400000

SSO_FLAG_APP_FILTER_BY_TYPE 0x1

SSO_FLAG_APP_SENSITIVE_INFO_REMOVED 0x80000000

SSO_FLAG_APP_DIRECT_PASSWORD_SYNC 0x2000000

SSO_FLAG_APP_WINDOWS_CREDS 0x800000

SSO_FLAG_APP_RESTRICTED_CREDS 0x1000000

Application Type flags
Member name Value

SSO_APP_TYPE_NONE 0

SSO_APP_TYPE_INDIVIDUAL 0x1

SSO_APP_TYPE_GROUP 0x2

SSO_APP_TYPE_CONFIG_STORE 0x4

SSO_APP_TYPE_HOST_GROUP 0x8

SSO_APP_TYPE_PS_ADAPTER 0x10

SSO_APP_TYPE_PS_GROUP_ADAPTER 0x20

Mapping flags
Member name Value

SSO_FLAG_MAPPING_REQUIRES_WINDOWS_PASSWORD 0x01000000

SSO_FLAG_MAPPING_REQUIRES_EXTERNAL_CREDS 0x02000000

SSO_FLAG_MAPPING_ENABLE_AUDIT 0x04000000

SSO_FLAG_MAPPING_CONFIG_STORE 0x8000000

SSO_FLAG_MAPPING_ADMIN 0x10000000

SSO_FLAG_MAPPING_HOSTGROUP 0x20000000

SSO_FLAG_MAPPING_GROUP 0x40000000

SSO_FLAG_MAPPING_HIDE 0x80000000

SSO_FLAG_MAPPING_CHECK 0x100000

Field information flags
Member name Value

SSO_FLAG_FIELD_INFO_MASK 0x10000000

SSO_FLAG_FIELD_INFO_SYNC 0x20000000

Requirements

Platforms: MicrosoftWindows Server™ 2003, Windows® XP Professional, Windows 2000 Server

Samples
This section of Microsoft Host Integration Server 2009 Help provides information for the samples contained in the Host
Integration Server 2009 SDK.

In This Section

Adapter Samples

Application Integration Samples

Data Integration Samples

End-to-End Scenario Sample

Messaging Samples

Network Integration Samples

Single Sign-On Samples

See Also
Other Resources
Development

https://msdn.microsoft.com/en-us/library/aa745649(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754723(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754390(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705232(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746171(v=bts.10).aspx

Adapter Samples
The Adapter Samples section describes the sample applications located in the <directory>\Program Files\Microsoft Host
Integration Server 2009\SDK\Samples\Adapter directory.

In This Section

Host Applications Samples

MQSC Adapter Samples

Reference

Client-Based BizTalk Adapter for WebSphere MQ Programmer's Reference

Related Sections

BizTalk Adapters

See Also
Other Resources
Samples

https://msdn.microsoft.com/en-us/library/aa744739(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745597(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770734(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Host Applications Samples
The HostApplications sample demonstrates the BizTalk Adapter for Host Applications.

Location in SDK

<installation directory>\Program Files\Microsoft Host Integration Server\SDK\Samples\Adapter\HostApplications

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the root directory Contains detailed setup, configuration, deployment, and execution instructions.

In the \BtsMsiFiles directory BizTalk Server installation files.

In the \CICSPrograms directory The cobol files for the sample application.

In the \Documents directory Contains the XML documents used by BizTalk.

In the \FiledropApplication directory The Visual Studio files for creating a file drop application.

In the \HTTPApplication directory The Visual Studio files for creating an http application.

In the \InputDocuments directory The directory to drop input documents for the sample application.

In the \OutputDocuments directory The directory for the application to drop documents to.

In the \TIConfiguration directory Contains components used to configure TI.

See Also
Other Resources
Adapter Samples

https://msdn.microsoft.com/en-us/library/aa745649(v=bts.10).aspx

MQSC Adapter Samples
This section describes the samples provided for the BizTalk Adapter for WebSphere MQ.

In This Section

Pipeline Component Sample

BizTalk Correlation Sample

Related Sections

Client-Based BizTalk Adapter for WebSphere MQ Programmer's Reference

Client-Based BizTalk Adapter for WebSphere MQ Programmer's Guide

BizTalk Adapter for WebSphere MQ

See Also
Other Resources
Network Integration Samples

https://msdn.microsoft.com/en-us/library/aa745367(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754041(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754729(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770924(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772116(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx

Pipeline Component Sample
The Pipeline component sample describes the three components necessary to put messages into an MQSeries queue with the
MQRFH2 header: a pipeline component project, a pipeline project that makes use of the pipeline component, and a test
application that puts messages into the queue.

Location in the SDK

<Installation directory>\SDK\Samples\Adapters\MQSC\MQRFH2Sample

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the / BizTalk
ServerMQRFH
2Pipeline folde
r

Describes the BizTalk pipeline project that contains both receive and send pipeline.

In the / MQRF
H2PipelineCo
mponent folde
r

Contains the pipeline component that reads MQRFH2 properties from the MQSeries message and promotes it
into BizTalk context properties in the receive scenario. Similarly, on the send side, the component can set these
MQRFH2 properties in the MQSeries message based on values provided through the context properties..

In the MQRFH
2TestDriver fol
der

Contains an application that can send MQSeries messages to an MQSeries queue with the MQRFH2 header.

How to Use the Sample

Use the following instructions to build, deploy, configure, and run the sample.

To build and deploy the sample

1. Open MQRFH2TestDriver.cpp and specify the correct channelName, connectionName, qmgrName and qName to correct
values that match what you have configured in your WebSphere MQ Server configuration.

2. Save the file.

3. Run <InstallPath>\SDK\Samples\Adapters\MQSC\MQRFH2Sample\setup.bat to build the projects and deploy the
pipeline component and pipeline project in BizTalk.

To configure and run the sample

1. Create a BizTalk receive port and receive location using MQSC adapter to point to an MQ queue on a MQ Server
(MQServer1\QM1\RECVQ).

2. Associate MQRFHReceivePipeline with this receive location.

3. Configure a send port using MQSC Adapter to point to an MQ queue on a MQ Server (MQServer1\QM2\SENDQ).

4. Create a subscription that uses the receive port created in step1.

This will enable a round trip receive-send scenario between MQ->BizTalk->MQ. Associate MQRFHSendPipeline with this
send port.

5. Enable the receive location and start the send port.

6. Start the host instance associated with these end-points.

7. Use MQRFH2TestDriver.exe to put an MQSeries message to MQServer1\QM1\RECVQ.

8. Check the MQSeries queue MQServer1\QM2\SENDQ to see the new message that was sent from BizTalk Server.

You can view the message in MQSeries queue to see the MQRFH2 header.

See Also
Other Resources
MQSC Adapter Samples

https://msdn.microsoft.com/en-us/library/aa745597(v=bts.10).aspx

BizTalk Correlation Sample
The BizTalk Correlation sample describes how to retrieve messages from an MQSeries queue and put the response messages
into another MQSeries queue.

Location in the SDK

<Installation directory>\SDK\Samples\Adapters\MQSC\ MQSSolicitResponse

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /MQSCorrelationSetOrchestrationW
ithSolicitResponse folder

The BizTalk Orchestration project that contains associations between file and MQS
eries end-points along with the correlation sets.

In the / MQSSolicitResponseApp folder The application that retrieves messages from an MQSeries queue and puts a respo
nse message to another MQSeries queue.

How to Use the Sample

Use the following procedures to build, deploy, configure, and run the sample.

To build and deploy the sample

1. On your BizTalk Server computer, open the orchestration project
MQSCorrelationSetOrchestrationWithSolicitResponse\MQSCorrelationSolicitResponse.sln.

2. Open the orchestration MQSCorrelationSolicitResponse.odx.

3. Double-click on the message assignment shape MessageAssignment_1.

4. Adjust the assignment statements for the MQMD_ReplyToQ and MQMD_ReplyToQMgr context properties to point to
MQServer1\QM1\QUEUEB.

5. Save the changes to this orchestration.

6. Run MQSCorrelationSetOrchestrationWithSolicitResponse\Setup.bat to build and deploy the orchestration to BizTalk.

7. Run MQSSolicitResponseApp\Setup.bat to build the test application.

To configure and run the sample

1. Create a solicit-response send port, point it at MQServer1\QM1\QUEUEA

2. Create a receive port and a receive location, point it at MQServer1\QM1\QUEUEB

3. Bind the orchestration you deployed earlier to the solicit-response send port and receive port.

4. Create three folders: c:\temp\pickup2, c:\temp\moveit, and c:\temp\dropit2

5. Start the receive locations, send ports and the orchestration.

6. Put an XML file in the pickup2 folder.

For example, <test>This is a test</test>.

7. Observe the file disappear as it is picked up by BizTalk.

8. Observe the message arrive in MQServer1\QM1\QUEUEA.

9. Observe the MQSeries response message arrive in c:\temp\moveit.

This message will be an XML file describing the message ID and correlation ID the MQSeries server assigned to the
message.

10. Observe that there is one active orchestration instance in the BizTalk Administration Console.

This is the long-running orchestration waiting for a message to correlate with the message that it already received.

11. Use the test application MQSSolicitResponseApp to read the message BizTalk sent and send a response message.

You may also use the command line parameters to receive the message from MQServer1\QM1\QUEUEA.

12. Observe a message arrive in c:\temp\dropit2.

This message is the response message from the test application.

See Also
Other Resources
MQSC Adapter Samples

https://msdn.microsoft.com/en-us/library/aa745597(v=bts.10).aspx

Application Integration Samples
This section provides information about the samples that use Transaction Integration to integrate applications between the
client and the host server.

In This Section

COMTIIntrinsic Sample

Host-Initiated Processing Samples

Windows-Initiated Processing Samples

Related Sections
See Also
Other Resources
Samples

https://msdn.microsoft.com/en-us/library/aa754071(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772100(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

COMTIIntrinsic Sample
The COMTIIntrinsic sample is a single VBScript file that sets the COMTIIntrinsic value for a specified application.

Location in SDK

<drive>:\Program Files\Microsoft Host Integration Server\SDK\Samples\ApplicationIntegration\COMTIIntrinsic.

See Also
Other Resources
Application Integration Samples

https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx

Host-Initiated Processing Samples
Transaction Integrator supports host-initiated processing (HIP) that is, a workflow in which a host-based application is a client
to a COM-based or .NET Framework-based server program running on the Microsoft Windows operating system. The
HostInitiated folder contains samples designed to demonstrate various aspects of HIP.

In This Section

Batch Sample

CICS Sample

OS400 Sample

See Also
Other Resources
Application Integration Samples

https://msdn.microsoft.com/en-us/library/aa771864(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771311(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705739(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx

Batch Sample
The Batch sample describes how to use TCP/IP HIP client programs in conjunction with batch files on the host server.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIngetration\HostInitiated\Batch

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /BatchBanking
folder

BatchBanking.csproj

BatchBanking.sln

BatchBanking.suo

BatchBAnkingExcepti
on.cs

Class1.cs

Meadme.txt

TI_HIP_SQLServer.sq
l

The files that contain the sample client application. The readme files describe the different setup and sup
port files necessary for the various configurations. The SQL file contains the sample database.

In the /BatchBanking
/Properties folder

AssemblyInfo.cs

Contains the assembly information for the sample application.

In the /BatchBanking
/TIClientDefs folder

alloc.jcl

delete.jcl

gaccclie.jcl

gbalcle.jcl

getaccoud.cbl

getaccud.ldk

getbalk.cbl

getbalk.lkd

mshiplkb.cbl

mshiplkb.lkd

mshipudb.cbl

mshipudb.lkd

prtvsam.jcl

TIClientDefs.tiproj

Contains the batch files for the remote host.

In the /BatchBanking
/TIServerDefs

BatchBanking.DLL

BatchBanking.TIM

TIServerDefs.tiproj

Contains the support files that describe the remote host application to the sample application.

See Also
Other Resources
Application Integration Samples

https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx

CICS Sample
The CICS sample describes how to compile and access the Woodgrove Bank CICS using host-initiated processing.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\HostInitiated\CICS

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /CICSBanking folde
r

CICSBanking.csproj

CICSBanking.sln

CICSBanking.suo

CICSBankingExceptions.cs

Class1.cs

Readme-01-VTAM-LU0-L
U2-Setup.txt

Readme-02-CICS-LU0-LU
2-Setup.txt

Readme-06-Configure-HI
S.txt

ReadMeSNA.txt

REadMeTCPIP.txt

The files that contain the sample application. The readme files describe the different setup and supp
ort files necessary for the various configurations.

In the /CICSBanking/Prop
erties folder

AssemblyInfo.cs

Contains the assembly information for the sample application.

In the /CICSBanking/TIClie
ntDefs folder

MSHIPLNK.cbl

MSHIPLNK.lkd

TIClientDefs.tiproj

WBCLKNPS.cbl

WBCLKNPS.lkd

WBCLKNPT.cbl

WBCLNKNPT.lkd

WBCUDPCS.cbl

WBCUBPCS.lkd

WBCUDPCT.cbl

WBCUDPCT.lkd

wgbmaps.bms

wgmaps.lkd

Contains the files that describe the programs, transitions, and maps for the host application.

In the /CICSBanking/TISer
verDefs

CICSBanking.DLL

CICSBanking.TIM

TIServerDefs.tiproj

Contains the support files that describe the remote host application to the sample application.

OS400 Sample
The OS400 sample describes how to verify an installation of an application on a remote host.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration Server\SDK\Samples\ApplicationIntegration\HostInt\OS400

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /OS400/OS400Ban
king folder

Class1.cs

OS400Banking.csproj

OS400Banking.sln

OS400Banking.suo

OS400BankingException.c
s

ReadMeTCPIP.txt

The files that contain the sample application. The readme files describe the different setup and supp
ort files necessary for the various configurations.

In the /OS400Banking/Pro
perties folder

AssemblyInfo.cs

Contains the assembly information for the sample application.

In the /OS400/TIClientDef
s folder

Mshiplnk.rpg

qrpglesrc_ernno_h.txt

qrpglesrc_socket_h.txt

qrpglesrc_socketutil_h.txt

qrpglesrc_socketutilr4.txt

TIClientDefs.tiproj

wbclknpt.rpg

wgbmaps.scr

Contains the files that describe the remote host application.

In the /OS400/TIServerDe
fs folder

OS400Banking.DLL

OS400Banking.TIM

TIServerDefs.tiproj

Contains the support files that describe the remote host application to the sample application.

See Also
Other Resources
Application Integration Samples

https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx

Windows-Initiated Processing Samples
This section describes three sets of samples showing you how to use Windows®-initiated processing.

In This Section

BasicScenarios Sample

Bounded Recordsets Sample

CPlusPlus Sample

DiscriminatedUnions Sample

DotNetRemoting Sample

IMSConnect Sample

InstallationVerification Sample

OS400DPCWithSecurityOverride Sample

PersistentConnections Sample

REOverride Sample

SampleMainframeCode Sample

TIExceptionHandling Sample

Transactions2PC Sample

WebServiceUsingReturnValue Sample

See Also
Other Resources
Application Integration Samples

https://msdn.microsoft.com/en-us/library/aa771005(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745709(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744941(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771302(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754056(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705155(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745679(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771892(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704586(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771657(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744346(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745408(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705172(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745233(v=bts.10).aspx

BasicScenarios Sample
The BasicScenarios code samples demonstrate how to create, set up, configure, and run a complete C++, C#, or VB.NET
application using Application Integration technologies.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration Server\SDK\Samples\ApplicationIntegration\BasicScenarios

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the root folder The source files to build the general TI solution. The readme contains the specific instructions on how to set
up and compile the sample.

In the /CPlusPlus
Client folder

The files specific to the C++ solution.

In the CSharpClie
nt folder

The files specific to the C# solution.

In the TIHostAppli
cationDef folder

The support files that define the remote connection and system for the sample. Use these files, along with th
e SimHost.exe application, to simulate a remote system. For more information, see the readme.

In the VBNetClien
t folder

The files specific to the VB.NET solution.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

Bounded Recordsets Sample
The Bounded Recordsets sample demonstrates how to use Transaction Integrator (TI) with Microsoft Visual Basic bounded
recordsets. This sample includes Visual Basic code and Customer Information Control System (CICS) COBOL code showing
how to use bounded recordsets by calling into a CICS transaction program through LU 6.2 (Remote Environment CICS using
LU 6.2).

Location in SDK

<Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\BoundedRecordsets\

File Inventory

The following table shows the files in this sample and describes their purpose.

File(s) Description

In the \B
oundedR
ecordset
s\COBOL
-CICS fol
der

RecordS
etSample
.cbl

RecordS
etSample
.tlb

A TI type library (.tlb file) that can be used with this sample. The type library is set up for accessing a transaction nam
ed GETI on the host. This folder also contains sample COBOL code that can be compiled and linked on the mainfram
e side. The compiled code should be set up to run on the host as a transaction named GETI or the TI type library mus
t be changed to reflect the name of the transaction if it is different.

In the \B
oundedR
ecordset
s\VB fold
er

RecordS
etSample
.bas

RecordS
etSample
.exe

RecordS
etSample
.vbp

RecordS
etSample
.vbw

A Visual Basic class file that illustrates the use of bounded recordsets. Note that additional Visual Basic code would n
eed to be written to use this Visual Basic class file in a project. The code in the class file demonstrates how to create a
recordset and populate it with data to send to the mainframe. Note that there is no code that actually displays the da
ta that comes back from the mainframe. You can put in a breakpoint in the Visual Basic code using the debugger and
use the immediate window to view the data or insert further code to examine the data that is returned.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

CPlusPlus Sample
The CPlusPlus code sample demonstrates how to create, set up, configure, and run a complete C++ application using
Application Integration technologies.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\CPlusPlus

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /CPlusPlus folde
r

CPlusPlus.cpp

CPlusPlus.h

CPlusPlus.rc

CPlusPlus.sln

CPlusPlus.suo

CPlusPlus.vcproj

Readme.txt

Resource.h

StdAfx.cpp

StdAfx.h

The source files to build the application. The readme contains the specific instructions on how to set up
and compile the sample.

In the /CPlusPlus/TIHo
stApplicationDef folde
r

BankingELMLink.tlb

BankingSNALink.tlb

GetBalance.cbl

TIHostAppliationDef.ti
proj

WIPExportedConfig.x
ml

The support files that define the remote connection and system for the sample. Use these files, along w
ith the SimHost.exe application, to simulate a remote system. For more information, see the readme.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

DiscriminatedUnions Sample
The Discriminated Unions sample describes how to create an application that uses discriminated unions.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\DiscriminatedUnions

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /DiscriminatedU
nions folder

DiscriminatedUnions.c
sproj

DiscriminatedUions.sln

DiscriminatedUinions.s
uo

Program.cs

Readme-01-Setup.txt

Readme-02-Step-By-St
ep.txt

The file necessary to create and build the DiscriminatedUnions sample. Readme-01-Setup.txt contains i
nstructions on how to set up and build the application, while Readme-02-Step-By-Step.txt describes h
ow to recreate the entire sample manually.

In the /DiscriminatedU
nions/TIHostApplicatio
nDef folder

Banking.DLL

GetAInfo.cbl

TIHostApplicationDef.ti
proj

WIPExportedConfig.xm
l

The support files that define the remote system and data for the sample.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

Host Integration Server Designer Discriminated Union Tutorials
In This Section

Tutorial 1: Creating a Project that Uses Discriminated Unions

Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application

https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx

Tutorial 1: Creating a Project that Uses Discriminated Unions
This tutorial provides a simple walkthrough on how to build a project that uses discriminated unions. This tutorial also sets up
environmental parameters that you can use in the second tutorial.

In This Section

Import the Discriminated Union Tutorial into TI Manager

Start SimHost for the Discriminated Union Tutorial

Build and Execute the Discriminated Union Tutorial

https://msdn.microsoft.com/en-us/library/aa744306(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704850(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744356(v=bts.10).aspx

Import the Discriminated Union Tutorial into TI Manager
To follow the steps in Tutorial 1: Creating a Project that Uses Discriminated Unions, first, you must import the files necessary to
run the tutorial.

To import the discriminated union tutorial

1. In TI Manager, expand the Transaction Integrator node.

2. Right-click the Window-Initiated Processing node, and then click Import.

3. On the Welcome page of the Import WIP Definitions Wizard, click Next.

4. On the Define Import characteristics page, confirm that the Use Original Definitions radio button is selected.

5. Use Browse to locate the TIHostApplicationDef folder, and then click Next.

The TIHostApplicationDef folder contains all of the relevant files for describing the host environment for this tutorial. The
folder is located in <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\AppInt\DiscriminatedUnions\TIHostApplicationDef.

6. On the Importing WIP Definitions page, wait for the import to complete, and then click Next.

7. On the Completing the Import WIP Definitions Wizard page, click Finish.

See Also
Concepts
Start SimHost for the Discriminated Union Tutorial
Other Resources
Tutorial 1: Creating a Project that Uses Discriminated Unions

https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704850(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx

Start SimHost for the Discriminated Union Tutorial
The second step in Tutorial 1: Creating a Project that Uses Discriminated Unions turns on SimHost, which simulates a remove
mainframe for the tutorial to connect to.

Procedures To start SimHost for the discriminated union tutorial

1. Right-click Start, and then click Explore.

2. Locate the SimHost folder.

For this tutorial, the SimHost folder is located in <Installation directory>\Program Files\Microsoft Host Integration
Server\System.

3. Double-click SimHost.exe.

This starts the Microsoft Transaction Integrator Host Simulator. You can use the Host Simulator to simulate a Host
Environment. For this tutorial, you will use it to act as a remote Host operating over a TCP/IP CICS connection.

4. Click Start TCP.

See Also
Concepts
Build and Execute the Discriminated Union Tutorial
Other Resources
Tutorial 1: Creating a Project that Uses Discriminated Unions

https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744356(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx

Build and Execute the Discriminated Union Tutorial
Finally, you can build and execute the discriminated union tutorial sample application. After you examine this application, you
can create your own application in Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedures To build and execute the discriminated union tutorial

1. In Visual Studio, on the File menu, click Open, and then click Project/Solution.

2. In the Open Project dialog box, locate the folder that contains the tutorial solution file.

For this tutorial, the tutorial solution file is located in <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\AppInt\DiscriminatedUnions.

3. Click DiscriminatedUnions.sln, and then click Open.

4. Click Build, and then click Build Solution.

5. Click Debug, and then click Start Debugging.

A console window appears and displays the output of the application.

6. End the debugging session by closing the console window.

See Also
Other Resources
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application
Tutorial 1: Creating a Project that Uses Discriminated Unions

https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx

Tutorial 2: A Step-by-Step Guide to Creating a Simple
Discriminated Union Application

In this tutorial, you import a COBOL file, create a Discriminated Value Table to map union members, and write code to access
the remote host.

In This Section

Create a New Project for the Discriminated Union Tutorial

Create the Transaction Integration Project

Import the Host Definition File

Modify the Discriminant Value Table

Save and Deploy the GetAInfo Interface

Create a Visual C# Project for the Discriminated Union Tutorial

Code the C# Application for the Discriminated Union Tutorial

See Also
Other Resources
Tutorial 1: Creating a Project that Uses Discriminated Unions

https://msdn.microsoft.com/en-us/library/aa753905(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744345(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771714(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746169(v=bts.10).aspx

Create a New Project for the Discriminated Union Tutorial
To start Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application, you must create a new project
to contain your code.

Procedures To create a new project for the discriminated union tutorial

1. In Visual Studio, on the File menu, select New, and then click Project.

2. In the New Project dialog box, in the Project Types pane, select Host Integration Projects.

3. In the Templates pane, select Transaction Integrator Project.

4. In the Name field, type DiscrUnionTutorial.

5. In the Location field, type the location where you want to save the tutorial, and then click OK.

For this tutorial, the location of the project will be <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\AppInt.

See Also
Concepts
Create the Transaction Integration Project
Other Resources
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application

https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx

Create the Transaction Integration Project
To use a discriminated union, you must create a Transaction Integration project for your solution.

Follow these steps to create a project for
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedures To create the Transaction Integration project

1. In Solution Explorer, right-click DiscrUnionTutorial, point to Add, and then click Add .NET Client Library.

2. On the Add New Item dialog box, confirm that .NET Client Library is selected in the Templates pane.

3. In the Name field, type Banking, and then click Add.

4. On the .NET Client Library page, click Next.

5. On the Library page, in the Interface Name field, type Accounts, and then click Next.

6. On the Remote Environment page, in the Programming Model list, select ELM Link, and then click Next.

7. Click Create.

See Also
Concepts
Import the Host Definition File

https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772088(v=bts.10).aspx

Import the Host Definition File
After you create a Transaction Integrator project (in Create the Transaction Integration Project), you can import the host
definition file.

Follow these steps to import the host definition file for
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedures To import the host definition file

1. On the menu bar in Visual Studio, click View, and then click Properties Window.

2. On the Banking.DLL tab, right-click the Banking node, point to Import, and then click Host Definition.

3. On the Welcome page of the Import COBOL wizard, click Next.

4. On the Import COBOL Source File page, click Browse, and then locate the TIHostApplicationDef folder.

For this tutorial, the TIHostApplicationDef folder is located at <Installation Directory>\Program Files\Microsoft Host
Integration Server\SDK\Samples\AppInt\DiscriminatedUnions\TIHostApplicationDef.

5. Click the GetAInfo.cbl file, click Open, and then click Next.

6. On the Import Options page, click Next.

7. On the DFHCOMMAREA page, select the box next to the DFHCOMMAREA node, and then click Next.

8. Expand the DFHCOMMAREA node.

9. Click the arrows next to the 05 SSN field, and then click In.

10. Click the arrows next to the 05 ACCT-ARRAY OCCURS 2 TIMES field, and then click In\Out.

11. Click Next.

12. On the Data Tables, Structures and Unions page, click Next.

13. On the Completing the Import COBOL Wizard page, click Modify.

See Also
Concepts
Modify the Discriminant Value Table

https://msdn.microsoft.com/en-us/library/aa771936(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771925(v=bts.10).aspx

Modify the Discriminant Value Table
After you import the host definition file (in Import the Host Definition File), you can modify the logic of the associated
discriminant value table.

Follow these steps to modify the discriminant value table for
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedures To modify the discriminant value table

1. On the Banking.dll tab, expand the Banking .dll node, expand the Accounts interface node, expand the GetAInfo
method node, and then expand the ACCT_ARRAY parameter node.

2. Right-click the UNION1 node, and then click Properties.

3. In the Properties window, in the Discriminant field, click the drop-down button, and then click the
ACCT_ARRAY.ACCT_TYPE value.

4. Click the DVT field, and then click the ellipsis (…) button.

5. In the Discriminant Value Table dialog box, click the drop-down button under the Union Member field, and then click
Checking.

6. Double-click the field in the Condition column, and type C.

7. In the Union Member column, click the drop-down button under the Checking field, and then click Savings.

8. Double-click the Condition field under the C, and then type S.

9. Click OK.

See Also
Concepts
Save and Deploy the GetAInfo Interface

https://msdn.microsoft.com/en-us/library/aa772088(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704987(v=bts.10).aspx

Save and Deploy the GetAInfo Interface
After you modify the discriminant value table (in Modify the Discriminant Value Table), you can save and deploy the interface.

Follow these steps to deploy the GetAInfo interface for
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedures To save and deploy the GetAInfo interface

1. In the Banking.dll tab, click the GetAInfo node.

2. In the Properties window, click the Include Context Parameters field, and then click False in the list.

3. On the File menu, click Save All.

4. In the Banking .dll tab, click the Banking node.

5. In the Properties window, click the Remote Environment field, and then select SimHost using ELM Link.

6. In the Banking.dll tab, right-click the Banking node, and then click Deploy.

See Also
Concepts
Create a Visual C# Project for the Discriminated Union Tutorial

https://msdn.microsoft.com/en-us/library/aa771925(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744345(v=bts.10).aspx

Create a Visual C# Project for the Discriminated Union Tutorial
After you deploy the GetAInfo interface (in Save and Deploy the GetAInfo Interface), you can create a C# project that can use
that interface to access the remote mainframe.

Follow these steps to create a C# project for
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedure To crate a Visual C# project for the tutorial

1. In Visual Studio, on the File menu, select Add, and then click New Project.

2. In the Add New Project dialog box, in the Project Types pane, click Visual C#.

3. In the Templates pane, click Console Application, and then click OK.

See Also
Concepts
Code the C# Application for the Discriminated Union Tutorial

https://msdn.microsoft.com/en-us/library/aa704987(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771714(v=bts.10).aspx

Code the C# Application for the Discriminated Union Tutorial
After you create the C# project to contain your code (in Create a Visual C# Project for the Discriminated Union Tutorial), you
can write code for the C# application that uses the deployed interface to access the remote mainframe.

Follow these steps to write code for the application in
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application.

Procedure To code the C# application for the discriminated union tutorial

1. In Solution Explorer, expand the ConsoleApplication1 node.

2. Right-click References, and then click Add Reference.

3. In the Add Reference dialog box, select the Browse tab, and locate the DiscrUnionTutorial folder.

For this tutorial, the DiscrUnionTutorial folder is located at <Installation Directory>\Program Files\Microsoft Host
Integration Server\SDK\Samples\AppInt\DiscrUnionTutorial\DiscrUnionTutorial.

4. Click Banking.DLL, and then click OK.

5. Add the following code to your Program.cs file:

using System;
using System.Collections.Generic;
using System.Text;
using Banking;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 Banking.Accounts MyBankObj = new Banking.Accounts();
 Banking.ACCT_ARRAY[] accountInfoArray = new Banking.ACCT_ARRAY[2];
 Banking.SAVINGS MySavInfo = new Banking.SAVINGS();
 Banking.CHECKING MyChkInfo = new Banking.CHECKING();

 accountInfoArray[0].ACCT_NUM = "SAV1234567";
 accountInfoArray[0].ACCT_TYPE = "S";
 accountInfoArray[0].UNION1 = MySavInfo;

 accountInfoArray[1].ACCT_NUM = "CHK4566112";
 accountInfoArray[1].ACCT_TYPE = "C";
 accountInfoArray[1].UNION1 = MyChkInfo;

 MyBankObj.GetAInfo("11223333", ref accountInfoArray);

 foreach (ACCT_ARRAY aa in accountInfoArray)
 {
 switch (aa.ACCT_TYPE)
 {
 case "C":
 Banking.CHECKING ChkInfo = (Banking.CHECKING)aa.UNION1;
 break;
 case "S":
 Banking.SAVINGS SavInfo = (Banking.SAVINGS)aa.UNION1;
 break;
 }
 }

https://msdn.microsoft.com/en-us/library/aa744345(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx

6. On the File menu, click Save All.

7. Click Build, and then click Build ConsoleApplication1.

8. Click Debug, and then click Start.

See Also
Other Resources
Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application

 }
 }
}

https://msdn.microsoft.com/en-us/library/aa745210(v=bts.10).aspx

DotNetRemoting Sample
The DotNetRemoting sample describes how to perform remoting using Application Integration and .NET technologies.

Location in SDK

<installation directory>\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\DotNetRemoting

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /DotNetRemoting folder

DotNetRemoting.sln

DotNetRemoting.suo

Readme.txt

Service.asmx

Web.config

The main files that describe the application.

In the /DotNetRemoting/App_Code folder

Service.cs

Defines the web service for the application.

In the /DotNetRemoting/TIHostApplicationDef fold
er

GetBalance.cbl

RemBanking.DLL

TIHostApplicationDef.tiproj

Web.config

The support files that define the remote environment and data for the sam
ple.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

IMSConnect Sample
The IMSConnect sample demonstrates executing a method call to an IMS program using IMS Connect.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\IMSConnect

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the IMSConnect folder

IMSConnect.csproj

IMSConnect.sln

IMSConnect.suo

Program.cs

Readme.txt

The files that contain the sample application. The Readme.txt file contains instructions on how
to set up, compile, and execute the sample.

In the IMSConnect/Properties f
older

AssemblyInfo.cs

Contains the assembly information for the project.

In the IMSConnect/TIHostApplic
ationDef folder

GetBalance.cbl

IMSBanking.DLL

TIHostApplicationDef.tiproj

WIPExportedConfig.xml

The support files that describe the remote system and data to the sample application.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

InstallationVerification Sample
The InstallationVerification sample describes how to verify an installation of an application on a remote host.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\CSharpInstallationVerification

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /InstallationVerification folde
r

InstallationVerification.csproj

InstallationVerification.sln

InstallationVerification.suo

Program.cs

Readme-01-First.txt

Readme-02-VTAM-Setup.txt

Readme-03-CICS-SNA-Setup.txt

Readme-04-IMS-SNA-Setup.txt

Readme-05-Configure-HIS.txt

Readme-06-TCPIP-Setup.txt

Readme-07-CICS-TCPIP-Setup.txt

Readme-08-IMS-TCPIP-Setup.txt

Readme-09-OS400-TCPIP-Setup.tx
t

The files that contain the sample application. The readme files describe the different setup
and support files necessary for the various configurations.

In the /InstallationVerification/Prop
erties folder

AssemblyInfo.cs

Contains the assembly information for the sample application.

In the /InstallationVerification/TIHo
stApplicationDef folder

CICSSNALink.cbl

CICSSNALink.lkd

CICSSNAUserData.lkd

CICSTCPUserDAta.cbl

CICSTCPUserDAta.lkd

IMS.cbl

IMS.lkd

IMSCONV.cbl

IMSCONV.lkd

ivp.exe

IVP_CICS_ELMLink.dll

IVP_CICS_SNALink.dll

IVP_CICS_SNAUserData.dll

IVP_CICS_TRMLink.DLL

IVP_CICS_TRMUserData.DLL

IVP_CICS_IMSConnect.dll

IVP_CICS_SNAUserData.dll

IVP_OS400_DCP.dll

Mscmtics.cbl

Mscmtics.lkd

OS400DCP.rpg

TiHostApplicationDefltiproj

WIPExportedConfig.xml

Contains the support files that describe the remote host application to the sample applicati
on.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

OS400DPCWithSecurityOverride Sample
The OS400PDCWithSecurityOverride sample demonstrates how to use the OS400 DPC security override.

Location in SDK

<installation directory>\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\OS400DPCWithSecurityOverride

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /OS400DPCWithSecurityOver
ride folder

OS400DPCWithSecurityOverride.cs
proj

OS400DPCWithSecurityOverride.sl
n

OS400DPCWithSecurityOverridesu
o

Program.cs

Readme-01-Setup.txt

Readme-02-Step-By-Step.txt

Contains the code for the sample application. The Readme files describe the general setup
, as well as the step-by-step process of setting up and executing the application.

In the /OS400DPCWithSecurityOver
ride/Properties folder

AssemblyInfo.cs

Contains the assembly information for the sample application.

In the /OS400DPCWithSecurityOver
ride/TIHostApplicationDef folder

GetBalance.rpg

SecureBanking.DLL

TIHostApplicationDef.tiproj

WIPExportedconfig.xml

Contains the support files that describe the remote host system to the sample application.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

PersistentConnections Sample
The PersistentConnections sample demonstrates using the Transaction Integrator Client Context to provide persistent
connection Open, Use, and Close calls.

Location in SDK

<installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\PersistentConnections

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the PersistentConnections
folder

PersistentConnections.csproj

PersistentConnections.sln

PersistentConnections.suo

Program.cs

Readme-01-Setup.txt

Readme-02-Step-By-Step.txt

The main files that contain the sample. Readme-01-Setup.txt describes how to set up and run the
sample, while Readme-02-Step-By-Step.txt describes how to recreate the sample manually.

In the PersistentConnections
/Properties folder

AssemblyInfo.cs

The assembly information for the sample.

In the PersistentConnections
/TIHostApplicationDef folder

GetBalance.cbl

PCBanking.DLL

TIHostApplicationDef.tiproj

WIPExportedConfig.xml

The support files that describe the remote host system and data to the sample.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

REOverride Sample
The REOverride sample demonstrates using the Transaction Integrator (TI) Client Context to provide a Remote Environment
(RE) Override.

Location in SDK

<installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\REOverride

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the REOverride folde
r

Program.cs

Readme-01-Setup.txt

Readme-02-Step-By-St
ep.txt

REOverride.csproj

REOverride.sln

REOverride.suo

The files that contain the sample application. Readme-01-Setup.txt describes how to set up, compile, a
nd run the sample, while Readme-02-Step-By-Step describes how to build the sample manually.

In the REOverride/Prop
erties folder

AssemblyInfo.cs

The assembly information for the sample.

In the REOverride/TIHo
stApplicationDef folder

GetBalance.cbl

REOBanking.DLL

TIHostApplicationDef.ti
proj

WIPExportedConfig.xml

The support files that describe the remote host system and data for the sample.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

Tutorial: Creating an RE Override
When your application uses a Transaction Integrator (TI) component, you can specify the remote environment (RE) used by the
TI run-time environment. This tutorial describes how to create such an RE override, using the REOverride sample found in the
Host Integration Server SDK. After you are finished with this tutorial, you will be able to:

Set up SimHost

Import a host application definition

Create and deploy a host application interface

Create an application that performs an RE override.

Compiling and Running the REOverride Sample

The following procedures describe how to compile and run the REOverride sample application. After you have run the
application once, you can perform the tutorial to rebuild the sample in a step-by-step process.

To start the primary instance of SimHost for the REOverride tutorial

1. Right-click Start, and then click Explore.

2. Locate the SimHost folder.

For this tutorial, the SimHost folder is located in <Installation directory>\Program Files\Microsoft Host Integration
Server\System.

3. Double-click SimHost.exe.

This starts the Microsoft Transaction Integrator Host Simulator. You can use the Host Simulator to simulate a host
environment. For this tutorial, you will use it to act as a remote host operating over a TCP/IP CICS connection.

4. Click Options, and then click Reset to default values.

5. Click Start TCP.

To start the secondary instance of SimHost for the REOverride tutorial

1. Double-click SimHost.exe.

2. Click Options, and then click Reset to default values.

3. In the TCP/IP CICS ELM dialog box, in the Link Port field, enter 6511.

4. Make sure there are no duplicate port numbers being used by the Host Simulator.

5. Click Start TCP.

To import the host application definitions for the REOverride tutorial

1. In TI Manager, expand the Transaction Integrator node.

2. Right-click the Window-Initiated Processing node, and then click Import.

3. On the Welcome to the Import WIP Definitions Wizard page, click Next.

4. On the Define Import Characteristics page, confirm that the Use Original Definitions option button is selected.

5. Use Browse to locate the TIHostApplicationDef folder, and then click Next.

The TIHostApplicationDef folder contains all of the relevant files for describing the host environment for this tutorial. The
folder is located in <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\AppInt\REOverride\TIHostApplicationDef.

6. On the Importing WIP Definitions page, wait for the import to complete, and then click Next.

Note that the RE0Banking.Accounts.1 file is registered to the "SimHost ELM Link" host, and not to the "SimHost ELM Link
Secondary" host.

7. On the Completing the Import WIP Definitions Wizard page, click Finish.

To build and execute the REOverride sample

1. In Visual Studio, on the File menu, click Open, and then click Project/Solution.

2. In the Open Project dialog box, locate the folder that contains the tutorial solution file.

For this tutorial, the tutorial solution file is located in <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\AppInt\REOverride.

3. Click REOverride.sln, and then click Open.

4. Click Build, and then click Build Solution.

5. Click Debug, and then click Start Debugging.

A console window appears and displays the output of the application. You should see one message for the primary host
simulator, and one for the secondary host simulator.

6. End the debugging session by closing the console window.

To cause the REOverride sample to fail

1. click Stop TCP on the secondary SimHost.

2. Build and execute the REOverride sample again.

The call to the primary SimHost will succeed, while the call with the RE Override will fail.

A Step-by-Step Guide to the RE Override Tutorial

After you have set up and run the REOverride sample, you can go back and rebuild the solution manually by creating the TI
project, adding a .NET client object, importing the host definition file, deploying the .hdf file, and then creating and coding the
application.

Step 1: Create a Transaction Integrator Project
To create a new project for the RE Override tutorial

1. In Visual Studio, on the File menu, point to New, and then click Project.

2. In the New Project dialog box, in the Project Types pane, select Host Integration Projects.

3. In the Templates pane, select Transaction Integrator Project.

4. In the Name field, type REOverrideTutorial.

5. In the Location field, type the location where you want to save the tutorial, and then click OK.

For this tutorial, the location of the project will be <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration.

Step 2: Add a .NET Client Object
To add a .NET client object

1. In Solution Explorer, right-click REOverrideTutorial, point to Add, and then click Add .NET Client Library.

2. In the Add New Item dialog box, confirm that .NET Client Library is selected in the Templates pane.

3. In the Name field, type REOBanking, and then click Add.

4. On the .NET Client Library page, click Next.

5. On the Library page, in the Interface Name field, type GetBalance, and then click Next.

6. On the Remote Environment page, in the Programming Model list, select ELM Link, and then click Next.

7. Click Create.

Step 3: Import the Host Definition File

To import the host definition file

1. On the menu bar in Visual Studio, click View, and then click Properties Window.

2. On the REOBanking.dll tab, right-click the REOBanking node, point to Import, and then click Host Definition.

3. On the Welcome to the Import COBOL Wizard page, click Next.

4. On the Import COBOL Source File page, click Browse, and then locate the TIHostApplicationDef folder.

For this tutorial, the TIHostApplicationDef folder is located at <Installation directory>\Program Files\Microsoft Host
Integration Server\SDK\Samples\ApplicationIntegration\REOBanking\TIHostApplicationDef.

5. Click the GetBalance.cbl file, click Open, and then click Next.

6. On the Import Options page, click Next.

7. On the 01 DFHCOMMAREA page, select the check box next to the DFHCOMMAREA node, and then click Next.

8. Expand the DFHCOMMAREA node.

9. Click the arrows next to the name field, and then click In.

10. Click the arrows next to the ACCNUM field, and then click In.

11. Click the arrows next to the ACCBAL field, and then click Out.

12. Click Next.

13. On the Data Tables, Structures and Unions page, click Next.

14. On the Completing the Import COBOL Wizard page, click Modify.

Step 4: Save and Deploy the Interface
To save and deploy the GetAInfo interface

1. On the REOBanking.dll tab, click the GetBalance node.

2. In the Properties window, click the Include Context Parameters field, and then click True in the list.

3. On the File menu, click Save All.

4. On the REOBanking.dll tab, click the REOBanking node.

5. In the Properties window, click the Remote Environment field, and then select SimHost using ELM Link.

6. On the REOBanking.dll tab, right-click the REOBanking node, and then click Deploy.

Step 5: Create a Visual Studio Project
To create a Visual C# project for the tutorial

1. In Visual Studio, on the File menu, point to Add, and then click New Project.

2. In the Add New Project dialog box, in the Project Types pane, click Visual C#.

3. In the Templates pane, click Console Application, and then click OK.

Step 6: Code the Client Application
To code the C# application for the RE Override tutorial

1. In Solution Explorer, expand the ConsoleApplication1 node.

2. Right-click References, and then click Add Reference.

3. In the Add Reference dialog box, click the Browse tab, and locate the REOverride folder.

For this tutorial, the REOverride folder is located at <Installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\REOverride.

4. Click REOBanking.dll, and then click OK.

5. Add the following code to your Program.cs file:

6. }On the File menu, click Save All.

7. Click Build, and then click Build ConsoleApplication1.

8. Click Debug, and then click Start.

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.HostIntegration.TI;
using REOBanking;

namespace REOverride
{
 class Program
 {
 static void Main(string[] args)
 {
 object[] contextArray = null;
 decimal Balance = 0.0m;
 ClientContext TIClientContext = new ClientContext();
 REOBanking.Accounts MyBankObj = new REOBanking.Accounts();
 try
 {
 MyBankObj.GetBalance("Kim Akers", "123456", out Balance, ref contextAr
ray);
 Console.WriteLine("Account balance from the primary RE {0,9:C2}\n", Ba
lance);
 TIClientContext.WriteContext("REOverride", "SimHost ELM Link Secondary
", ref contextArray);
 MyBankObj.GetBalance("Kim Akers", "123456", out Balance, ref contextAr
ray);
 Console.WriteLine("Account balance from the Secondary RE {0,9:C2}\n",
Balance);
 }

 catch (Microsoft.HostIntegration.TI.CustomTIException Ex)
 {
 Console.WriteLine("Exception: TI Runtime Error {0}", Ex.Message);
 }
 catch (Exception Ex)
 {
 Console.WriteLine("Exception: {0}", Ex.Message);
 if (Ex.Message.StartsWith("ClassFactory cannot supply requested class"
, StringComparison.CurrentCultureIgnoreCase))
 {
 Console.WriteLine("Error: REOBanking object could not be created.
Use TI Manager to ensure it is registered");
 }
 }

 Console.WriteLine("\nPress any key to continue...");
 Console.Read();
 }
 }

SampleMainframeCode Sample
The SampleMainframeCode sample contains sample code for a variety of mainframe environments.

Location in SDK

<installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\SampleMainframeCode

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the SampleMainframeCode folder

SampleMainframePrograms.sln

SampleMainframePrograms.suo

Visual Studio solution containing the SampleMainframeCode files.

In the SampleMainframeCode/SNA CICS folder The mainframe files for an SNA CICS sample application.

In the SampleMainframeCode/SNA CICS Link folder The mainframe files for an SNA CICS Link sample application.

In the SampleMainframeCode/SNA IMS folder The mainframe files for an SNA IMS sample application.

In the SampleMainframeCode/TCP CICS Concurrent folder The mainframe files for a TCP CICS Concurrent sample application.

In the SampleMainframeCode/TCP CICS MSLink folder The mainframe files for a TCP CICS MSLink sample application.

In the SampleMainframeCode/TCP IMS Connect folder The mainframe files for a TCP IMS Connect sample application.

In the SampleMainframeCode/TCP IMS Explicit folder The mainframe files for a TCP IMS Explicit sample application.

In the SampleMainframeCode/TCP IMS Implicit folder The mainframe files for a TCP IMS Implicit sample application.

In the SampleMainframeCode/TCP OS400 DPC folder The mainframe files for a TCP OS400 sample application.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

TIExceptionHandling Sample
The TIExceptionHandling sample demonstrates the use of the meta data error block.

Location in SDK

<installation directory>\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\TIExceptionHandling

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /TIExceptionHandling folder

Program.cs

Readme.txt

TIExceptionHandling.csproj

TIExceptionHandling.sln

TIExceptionHandlingsuo

Contains the code for the sample application. The readme.txt file describes how to set
up, build, and execute the sample.

In the /TIExceptionHandling/Properties f
older

AssemblyInfo.cs

Describes the sample assembly information.

In the /TIExceptionHandling/TIHostAppli
cationDef folder

MDEBBanking.DLL

mdebgal.cbl

mscmtics.cbl

TIHostApplicationDef.tiproj

WIPExportedConfig.xml

The support files that describe the remote host system for the sample application.

Transactions2PC Sample
The Transactions2PC sample demonstrates the user of two-phase commit (2PC) transactional processing using .NET
transactions.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\Transactions2PC

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /Transactions2PC folder

Program.cs

Readme-03-VTAM-LU62-Setup
.txt

Readme-04-CICS-LU62-Setup.t
xt

Readme-05-Configure-HIS.txt

Readme-06-TI-Setup.txt

Readme-07-Step-By-Step.txt

Transaction2PC.csproj

Transactions2PC.sln

Transactions2PC.suo

The source code for the samples. The Setup.txt files describe how to set up, configure, and exec
ute the application based on different hosting environments.

In the /Transactions2PC/Proper
ties folder

AssemblyInfo.cs

Contains the assembly information description for the code sample.

In the /Transactions2PC/TIHost
ApplicationDef folder

GetBAl62.cbl

GetBalance.cbl

TIHostApplicationDef.tiproj

Tx2PCBankingLink.DLL

Tx2PCBankingUserData.DLL

WIPExportedConfig

The support files that describe the remote host system for the sample application.

WebServiceUsingReturnValue Sample
The WebServiceUsingReturnValue sample demonstrates creating and interacting with a Web service by using Application
Integration technnologies.

Location in SDK

<installation directory>\Program Files\Microsoft Host Integration
Server\SDK\Samples\ApplicationIntegration\WindowsInitiated\WebServiceUsingReturnValue

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /WebServiceUsingReturnValue f
older

Program.cs

Readme-01-Setup-IIS.txt

WEbServiceUsingReturnValue.csproj

WEbServiceUsingReturnValue.sln

WEbServiceUsingReturnValue.suo

The files that contain the code sample. Readme-01-Setup-IIS contains detailed instruct
ions for setting up, configuring, and running the sample.

In the /WebServiceUsingReturnValue/P
roperties folder

AssemblyInfo.cs

Contains the assembly information for the sample application.

In the /WebServiceUsingReturnValue/T
IHostApplicationDef folder

GetBalance.cbl

TIHostApplicationDef.tiproj

WSBanking.DLL

The support files that describe the remote host environment for the sample applicatio
n.

See Also
Other Resources
Windows-Initiated Processing Samples

https://msdn.microsoft.com/en-us/library/aa754335(v=bts.10).aspx

Data Integration Samples
This section of the Host Integration Server 2009 Developer's Guide describes the sample applications that implement data
integration using DB providers, drivers, and Microsoft ActiveX controls.

In This Section

Data Access Samples

Data Queues Sample

File Transfer Sample

Reference

Data Integration Programmer's Reference

Related Sections

Data Integration Programmer's Guide

See Also
Other Resources
Samples

https://msdn.microsoft.com/en-us/library/aa746121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771708(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705732(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771301(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746049(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Data Access Samples
The following topics describe the code samples available for the Managed Provider for DB2.

In This Section

ManagedDb2Client Sample

MsDb2WebApp Sample

MsDb2WebService Sample

Reference

Microsoft.HostIntegration.MsDb2Client

Related Sections

Managed Provider for DB2 Programmer's Guide

See Also
Other Resources
Data Integration Samples

https://msdn.microsoft.com/en-us/library/aa705489(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744682(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744319(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx

ManagedDb2Client Sample
The ManagedDb2Client sample describes how to create a client application that accesses a remote DB2 database.

Location in SDK

<installation directory>\Program Files\<version>\SDK\Samples\DataIntegration\DataAccess\ManagedDb2Client

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /ManagedDb2Client directory

AboutBox.cs

AboutBox.resx

AssemblyInfo.cs

MainForm.cs

Mainform.resx

ManagedDb2client.csproj

ManagedDb2client.sln

SQLstatement.cs

SQLStatement.resx

Contains the primary and support files for creating the client application.

See Also
Reference
Microsoft.HostIntegration.MsDb2Client
Other Resources
Data Access Samples
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

MsDb2WebApp Sample
The MsDb2WebApplication sample describes how to create a web application that accesses a remote DB2 database.

Location in SDK

<installation directory>\SDK\Samples\DataIntegration\DataAccess\MsDb2WebApp

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /MsDb2WebApp directory

BankClient.aspx

BankClient.aspx.cs

BankClient.aspx.resx

Global.asax

Globabl.asax.resx

MsDb2WebApp.sln

Web.config

Contains the primary and support files for creating a
web application.

In the /MsDb2WebApp/App_Code directory

AssemblyInfo.cs

Global.asax.cs

Contains the application code files for the web applica
tion.

In the /MsDb2WebApp/App_WebReferences/MsDb2WebApp/MsDb2
WebService directory

BankService.disco

BankService.discomap

BankService.wsdl

Descriptions of a web service used by the application

See Also
Reference
Microsoft.HostIntegration.MsDb2Client
Other Resources
Data Access Samples
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

MsDb2WebService Sample
The MsDb2WebService sample describes how to create a web service that accesses a remote DB2 database.

Location in SDK

<installation directory>\Program Files\<version>\SDK\Samples\DataIntegration\DataAccess\MsDb2WebService

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /MsDb2WebService directory

BankService.asmx

BankService.asmx.resx

Global.asax

Global.asax.resx

Key.snk

Web.Config

Contains the primary and support files for creating a web service.

In the /MsDb2WebService/App_Code directory

AssemblyInfo.cs

BankService.asmx.cs

Global.asax.cs

Contains the application code files for the web service.

See Also
Reference
Microsoft.HostIntegration.MsDb2Client
Other Resources
Data Access Samples
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa771384(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746121(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

Data Queues Sample
The DataQueue sample uses the AS/400 Data Queue ActiveX control to connect, send, and receive messages to and from an
AS/400.

Location in SDK

<installation directory>\Program Files\<version>\SDK\Samples\DataIntegration\DataQueues

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /DataQueues direct
ory

AboutBox.cs

AboutBox.Designer.cs

AboutBox.resx

DataQueues.csproj

MainForm.cs

MainForm.Designer.cs

MainForm.resx

Program.cs

README.txt

Contains the primary and support files for creating the C# application. The readme also contains det
ailed file descriptions as well as setup, configuration, building, and execution details.

In the /DataQueues/AS_4
00 directory

Dqdemo.chat

Dqdemo.dqcreate

Dqdemo.dqdelete

Dqdemo.dqreadfifo

Dqdemo.dqtalk

Dqdemo.dqtalklcl

Contains the source files for the target AS/400.

In the /DataQueues/bin/D
ebug directory

DataQueues.vshost.exe

Contains the DataQueues ActiveX control

In the /DataQueues/obje/
Debug directory

DataQueues.csproj.Resolv
eComReference.cache

Interop.DATAQUEUELib.dl
l

Support files for the application.

See Also
Other Resources
Data Integration Samples
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

File Transfer Sample
The FileTransfer sample uses the Host File Transfer ActiveX control to connect to and send files to a host system.

Location in SDK

<installation directory>\Program Files\<version>\SDK\Samples\DataIntegration\FileTransfer

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /FileTransfer direct
ory

AboutBox.cs

AboutBox.Designer.cs

AboutBox.resx

FileTransfer.csproj

MainForm.cs

MainForm.Designer.cs

MainForm.resx

Program.cs

Readme.txt

Contains the primary and support files for creating the C# application. The readme also contains det
ailed file descriptions as well as setup, configuration, building, and execution details.

In the /FileTransfer/bin/D
ebug directory

FileTransfer.vshost.exe

Contains the Host File Transfer ActiveX control

In the /FileTransfer/obj/D
ebug directory

FileTransfer.csproj.Resolv
eComReference.cache

Interop.MSEIGFTLib.dll

Support files for the application.

See Also
Other Resources
Data Integration Samples
Managed Provider for DB2 Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa754322(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704800(v=bts.10).aspx

End-to-End Scenario Sample
The End-to-End Scenario sample describes a complete solution using different Host Integration Server technologies.

Location in the SDK

<installation directory>\Program Files\<version>\SDK\Samples\EndToEndScenarios\WoodgroveBank

File Inventory
File(s) Description

In the \3270Application fo
lder

A 3270 application for CICS

In the \CustomerCare fold
er

Contains C# and TI objects for CICS and OS400 that demonstrate a 3270 Application using Transact
ion Integrator technology.

Also contains a C# application using Session Integrator technology to provide screen scraping servi
ces against the 3270 application.

In the \Account Managem
ent folder

Contains C# and TI objects for Host Files that demonstrate how to populate a VSAM dataset using t
he Managed Provider for Host Files.

In the \ATM folder Describes a C# application using Session Integrator technology to provide LUA interaction (ATMs) t
o CICS.

In the \MainFrameJobs fol
der

Contains the data for the associated mainframe applications.

See Also
Other Resources
Samples

https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Messaging Samples
This section describes program samples that demonstrate the use of the extensions and components that make up Microsoft®
MSMQ-MQSeries Bridge.

In This Section

Sample Programs for MSMQ-MQSeries Bridge

Reference

Messaging Programmer's Reference

Related Sections

Messaging Programmer's Guide

See Also
Other Resources
Samples

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704984(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771685(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Sample Programs for MSMQ-MQSeries Bridge
The source code for several sample programs that illustrate using MSMQ-MQSeries Bridge are included in the Host Integration
Server 2009 SDK. These files are copied to your hard drive during Host Integration Server software or Host Integration Client
software installation when the Host Integration Server Software Development Kit option is selected. These samples are
installed in the Samples\AppInt\Bridge subdirectory below where the Host Integration Server SDK software is installed
(C:\Program Files\Microsoft Host Integration Server\SDK, by default).

These sample programs include the files in the subdirectories listed in the following table.

Subdi
rector
y

Description

EPRec
v

EPRecv Sample A sample program in C that uses the MSMQ-MQSeries Bridge Extensions API to display the MQMD str
ucture in the Message Queuing (also known as MSMQ) extension property.

EPSen
d

EPSend Sample A sample program in C that uses the MSMQ-MQSeries Bridge Extensions API to override the default M
SMQ-MQseries Bridge message property mapping MsgType, ReplyToQMgr, and ReplyToQ in the MQSeries MQMD str
ucture.

MQSR
Recv

MQSRRecv Sample A sample program in C that uses the MQSeries API to receive messages from a specified MQSeries
queue.

MQSR
Send

MQSRSend Sample A sample program in C that uses the MQSeries API to send ten test messages to a specified MQSer
ies queue.

MSM
QRecv

MSMQRecv Sample A sample program in C that uses the Message Queuing API to receive messages from a specified
Message Queuing queue.

MSM
QSen
d

MSMQSend Sample A sample program in C that uses the Message Queuing API to sends ten test messages to a specifi
ed Message Queuing local or foreign queue.

WMI WMI MSMQ-MQSeries Bridge Sample A collection of Windows Management Instrumentation (WMI) sample scripts wri
tten in Active Server Pages (ASP) that shows how to use WMI to configure the MSMQ-MQSeries Bridge.

Several sample programs with source code are provided with Host Integration Server 2009 that illustrate how to use the
MSMQ-MQSeries Bridge and Bridge Extensions.

The MSMQ-MQSeries Bridge samples are designed to be built using Microsoft Visual Studio .NET 2003 or later. Most of these
samples also require that the IBM MQSeries Client toolkit be installed, providing access to several MQSeries include and library
files.

To build the MSMQ-MQSeries Bridge samples using the command-line compiler, set up your build environment as follows:

Run VSVARS32.bat from the Visual Studio bin directory (by default, C:\Program Files\Microsoft Visual Studio .NET
2003\Common7\Tools.

Set the MQS_INC environment variable so it points to the INCLUDE directory where MQSeries was installed. The default
location for this variable is normally C:\Program Files\MQSeries Client\tools\c\include.

Set the MQS_LIB environment variable so it points to the LIB directory where MQSeries was installed. The default
location for this variable is normally C:\Program Files\MQSeries Client\tools\lib.

For example, set the following environment variables for building the MQS samples:

set MQS_INC=C:\Program Files\MQSeries Client\tools\c\include
set MQS_LIB=C:\Program Files\MQSeries Client\tools\lib

https://msdn.microsoft.com/en-us/library/aa705642(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746232(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744359(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771893(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705571(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745381(v=bts.10).aspx

To build all the C/C++ samples (EPSend, EPRecv, MQSRRecv, MQSRSend, MSMQSend and MSMQRecv), open a Command
Prompt window, navigate to the Bridge subdirectory, and invoke NMAKE. This recursively invokes NMAKE and builds all of the
Bridge samples.

To build a specific sample (EPSend, for example), using the command-line compiler, open a Command Prompt window,
navigate to the appropriate subdirectory (Bridge\EPSend, for example), and invoke NMAKE.

Note
To build a specific sample (EPSend, for example) using Visual Studio .NET 2003, open the appropriate Visual C++ project file
(epsend.vcproj, for example) from the File menu. Select a configuration and build the sample from the Build menu. Each pro
ject file has two configurations, one for a DEBUG build and one for a RETAIL build.

Note
Several of the MSMQ-MQSeries Bridge samples require access to the IBM MQSeries Client toolkit and library files.

The project files for these samples assume that the IBM MQSeries Client toolkit is installed in the default location at
C:\Program Files\MQSeries Client\tools. You need to modify the project files if the IBM MQSeries Client toolkit is installed in a
different location. For each C source file, you need to change the Additional Include Directories property under
C/C++/General. For the target, you need to change the Additional Dependencies property under Linker/Input.

In This Section

EPRecv Sample

EPSend Sample

MQSRRecv Sample

MQSRSend Sample

MSMQRecv Sample

MSMQSend Sample

WMI MSMQ-MQSeries Bridge Sample

https://msdn.microsoft.com/en-us/library/aa705642(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746232(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744359(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771893(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705571(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745381(v=bts.10).aspx

EPRecv Sample
The MSMQ-MQSeries Bridge Extension API can be used to obtain the original MQSeries message properties for an MQSeries
message sent using the MSMQ-MQSeries Bridge to Message Queuing (also known as MSMQ). The Bridge\EPRecv folder
contains a sample program written in C that receives messages from a Message Queuing queue using the Message Queuing
APIs and prints the original MQSeries message descriptor (MQMD) properties in the PROPID_M_EXTENSION, if they exist. The
sample illustrates how to use MSMQ-MQSeries Bridge Extensions. You can use it for testing or troubleshooting the MSMQ-
MQSeries Bridge and Bridge Extensions.

The usage for this command-line tool is as follows:

The parameter <computer name>\<queue name> is the path name where messages are received. This is a Message Queuing
queue name and is specified in UNC or DNS format.

Sample program usage and sample output are as follows:

Queue opened.

Waiting for messages to arrive.

Use CTLR-C to stop.

-------> Message arrived:

Label = ''

Body (256) = 'Test Message 0 - 19:41:26'

Body Type (4113)

Extension property found. Dumping values:

MQMD1 Extension Field found. Dumping values:

MQMD1.Report = 00000000 MQMD1.MsgType = 00000008

MQMD1.Feedback = 00000000 MQMD1.Priority = 0

MQMD1.Version = 00000001 MQMD1.Expiry = -1

MQMD1.ReplyToQMgr = 'BRIDGE2K_QM '

MQMD1.ReplyToQ = ' '

MQMD1.UserIdentifier = 'testuser '

MQMD1.ApplIdentityData = ' '

MQMD1.PutApplName = 'n Server\sys'

MQMD1.PutDate = '20000628'

MQMD1.PutTime = '02530720'

MQMD1.MsgId = '414D512053544152 5741525F514D2020 9197523913300000'

MQMD1.CorrelId = '0000000000000000 0000000000000000 0000000000000000'

See Also
Other Resources
Sample Programs for MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge Programmer's Guide

EPRecv <computer name>\<queue name>

eprecv MSBRIDGE\QUEUE

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

EPSend Sample
You can use the MSMQ-MQSeries Bridge Extension API to override the default MSMQ-MQSeries Bridge message property
mapping.

The Bridge\EPSend folder contains a sample written in C that illustrates how to use the MSMQ-MQSeries Bridge Extension API
to override the default MSMQ-MQSeries Bridge message property mapping for MsgType, ReplyToQMgr, and ReplyToQ in the
MQSeries MQMD structure. This sample sends messages to the Message Queuing (also known as MSMQ) queue, overriding
the default values for these MQMD extension fields.

This sample can be used for testing or troubleshooting the MSMQ-MQSeries Bridge and Bridge Extensions.

The usage for this command-line tool is as follows:

The parameter <computer name>\<queue name> is the path name of the specified Message Queuing queue name where
messages are to be sent. This Message Queuing queue name can be specified in UNC or DNS format.

Sample program usage and sample output are as follows:

Queue opened.

Reply Q Manager Name : MSBRIDGE1

Reply Q Name : QUEUE

------> Sending message (Use CTRL-C to stop).Label: ABC

Body: ABC

EPSend <computer name>\<queue name>

epsend IBMNT_QM\QUEUE

MQSRRecv Sample
The Bridge\MQSRRecv folder contains a sample program written in C that uses the MQSeries API to receive messages from a
specified MQSeries queue. This sample can be used to receive messages sent from MQSeries or sent from Message Queuing
(also known as MSMQ) using the MSMQ-MQSeries Bridge. The sample can be used for testing or troubleshooting the MSMQ-
MQSeries Bridge.

The usage for this command-line tool is as follows:

The first parameter, QM name, is the name of the MQSeries Queue Manager. The second parameter, queue name, is the queue
name from which to receive the messages. Note that the program assumes that queue name is located on the QM name
computer.

You can run the MQSRRecv program on a computer where the MQSeries Client is installed and configured. The environment
variables used by the MQSeries client should point to the appropriate channel table file. The computer running the MSMQ-
MQSeries Bridge is a good choice because it should already be properly configured.

See Also
Other Resources
Sample Programs for MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge Programmer's Guide

MQSRRecv <QM name> <queue name>

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

MQSRSend Sample
The Bridge\MQSRSend folder contains a sample written in C that uses the MQSeries API to send ten test messages to a
specified MQSeries queue. This sample can be used to send messages to a specified MQSeries queue or to a specified Message
Queuing (also known as MSMQ) queue using the MSMQ-MQSeries Bridge. The sample can be used for testing or
troubleshooting the MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The first parameter, local QM name, is the name of the immediate MQSeries Queue Manager to connect to (the server side of
the MQI channel). MQSRSend needs this information to establish the MQI channel connection.

The second parameter, destination QM name, is the destination queue manager for the messages. To send messages to
Message Queuing, specify the queue manager alias for the destination QM name representing the Message Queuing queue.

The third parameter, queue name, is the name of the queue where the messages should be sent.

You can send MQSeries message to a Message Queuing queue with one of the following methods.

1. Specify the MSMQ-MQSeries Bridge computer name in the destination QM name and the Message Queuing format
name in the queue name.

2. Define QREMOTE for the Message Queuing destination QM name in MQSeries.

You can run the MQSRSend program on a computer where the MQSeries Client is installed and configured. The environment
variables used by the MQSeries client should point to the appropriate channel table file. The computer running the MSMQ-
MQSeries Bridge is a good choice because it should already be properly configured.

See Also
Other Resources
Sample Programs for MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge Programmer's Guide

MQSRSend <local QM name> <destination QM name>
 <queue name>

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

MSMQRecv Sample
The Bridge\MSMQRecv folder contains a sample written in C that uses the Message Queuing (also known as MSMQ) API to
receive messages from a specified Message Queuing queue. This sample can be used to receive messages sent from Message
Queuing or receive messages sent from MQSeries using the MSMQ-MQSeries Bridge. The sample illustrates how to receive
messages using Message Queuing and can be used for testing or troubleshooting the MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The parameter <computer name>\<queue name> is the path name of the specified Message Queuing queue name where
messages are received. This Message Queuing queue name can be specified in UNC or DNS format.

You can run the MSMQRecv program on any computer where Message Queuing is installed, not necessarily the computer
running the MSMQ-MQSeries Bridge.

See Also
Other Resources
Sample Programs for MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge Programmer's Guide

MSMQRecv <computer name>\<queue name>

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

MSMQSend Sample
The SDK\Samples\Bridge\MSMQSend folder contains a sample written in C that sends ten test messages using the Message
Queuing (also known as MSMQ) APIs. This sample can be used to send messages to a specified Message Queuing queue or a
foreign MQSeries queue through the MSMQ-MQSeries Bridge. The sample illustrates how to send messages using Message
Queuing and can be used for testing or troubleshooting the MSMQ-MQSeries Bridge.

The usage for this command-line tool is as follows:

The parameter <computer name>\<queue name> is the path name of the specified Message Queuing queue name where
messages are to be sent. This Message Queuing queue name can be specified in UNC or DNS format.

You can run the MSMQSend program on any computer where Message Queuing is installed, not necessarily the computer
running the MSMQ-MQSeries Bridge.

See Also
Other Resources
Sample Programs for MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge Programmer's Guide

MSMQSend <computer name>\<queue name>

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

WMI MSMQ-MQSeries Bridge Sample
The Bridge\WMI folder contains a collection of Active Server Pages (ASP) for use with a Web server application that enables
you to view and make changes to the MSMQ-MQSeries Bridge configuration using Windows Management Instrumentation
(WMI). These sample applications require Microsoft Internet Information Services (IIS) version 3.0 or greater with ASP installed.
Host Integration Server 2009 and IIS must be installed and be running on the same computer.

The WMI ASP samples must be installed into the Web server's public directories below WWWRoot. Copy the contents of the
entire WMI directory from the SDK\Samples\Bridge\WMI subdirectory to your WWWROOT directory on the Web server. After
these files have been copied you should have a WWWROOT\WMI folder containing a number of ASP and GIF files.

The samples may then be run by opening Microsoft Internet Explorer or some other Web browser on the same computer or a
different computer and entering the following URL in the address line:

Substitute the network name of the computer hosting the Web server and the MSMQ-MQSeries Bridge for the computer name
(in angle brackets in the URL above). This will open the main page of the Bridge WMI ASP application and enable you to select
any of the other sample ASP pages. Information about each sample is provided on this Web page.

These ASP pages illustrate using WMI to view and make changes to the MSMQ-MQSeries Bridge configuration. The
management functions supported by this application enable you to create a new instance, move to other instances (previous
and next), delete an instance, and save an instance.

The WMI subdirectory below WWWROOT needs to have IIS security enabled (no anonymous access). Otherwise, the scripts in
these subdirectories will fail since the anonymous user account by default does not have access rights that would allow it to
start or stop services on Windows 2000 or make changes to the MSMQ-MQSeries Bridge on the Host Integration Server
system.

It is possible to host these ASP pages on a computer running the Web server that is different from the computer running the
MSMQ-MQSeries Bridge and Host Integration Server. However, this requires some changes to the ASP pages to handle
connections to a different computer, security, and authentication issues.

See Also
Other Resources
Sample Programs for MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge Programmer's Guide

http://<computer name>/WMI/WMI_Test_Main.asp

https://msdn.microsoft.com/en-us/library/aa704798(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771082(v=bts.10).aspx

Network Integration Samples
This section of the Host Integration Server 2009 Developer's Guide describes the sample applications that implement APPC,
CPI-C, LUA, and SNA print server data filter network integration.

In This Section

Administration and Management Samples

APPC Samples

CPI-C Samples

LUA Samples

SNA Print Server Data Filter Samples

Session Integrator Samples

Reference

Network Integration Programmer's Reference

Microsoft.HostIntegration.SNA.Session

Related Sections

Network Integration Programmer's Guide

See Also
Other Resources
Samples

https://msdn.microsoft.com/en-us/library/aa771365(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704940(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704991(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746022(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744362(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771022(v=bts.10).aspx

Administration and Management Samples
The source code for several sample programs that illustrate using Windows Management Instrumentation (WMI) for
administration and management of Host Integration Server 2009 are included in the Host Integration Server 2009 SDK. These
files are copied to your hard drive during Host Integration Server software or Host Integration Server Client software
installation when you select the Host Integration Server Software Development Kit option. These samples are installed in
the Samples\NetworkIntegration\Administration subdirectory below where the Host Integration Server 2009 SDK is installed
(C:\Program Files\Microsoft Host Integration Server\SDK, by default).

These sample programs include the files in the following subdirectories:

File or
subdir
ectory

Description

\VBScri
pt

A WMI sample script written in Microsoft Visual Basic Scripting Edition (VBScript) that illustrates how to import and ex
port configuration information from Host Integration Server.

\Scripts The main page of a WMI sample script written in Microsoft Active Server Pages (ASP) for retrieving configuration info
rmation from Host Integration Server using WMI.

\ASP-S
NAWeb
Admin

Subsidiary pages of WMI sample scripts written in Microsoft Active Server Pages (ASP) for retrieving configuration inf
ormation from HIS using WMI. Each one of these subdirectories contains ASP sample scripts that illustrate how to retr
ieve information from Host Integration Server on a specific feature.

Several sample programs (with source code) that illustrate administration and management are provided with HIS.

In This Section

Active Server Pages SNAWebAdmin Sample

VBScript ImportExport Sample

Reference

Administration and Management Programmer's Reference

Related Sections

Administration and Management Programmer's Guide

See Also
Other Resources
Network Integration Samples

https://msdn.microsoft.com/en-us/library/aa754068(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754276(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771048(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745591(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx

Active Server Pages SNAWebAdmin Sample
The Administration\ASP-SnaWebAdmin folder contains a collection of Active Server Pages (ASP) for use with a Web server
application designed to access configuration, management, and status information from the SNA server component of Host
Integration Server 2009. These sample applications require Microsoft Internet Information Services (IIS) version 5.0 or later
with ASP installed. Host Integration Server 2009 and IIS must be installed and running on the same computer.

The Windows Management Instrumentation (WMI) ASP samples must be installed into the public directories of the Web server
below WWWRoot. Copy the contents of the Admin directory from the SDK\Samples\NetworkIntegration\Administration
subdirectory, including SNAWebAdmin subdirectory, to your WWWROOT directory on the Web server. After these files have
been copied, you should have a copy of the SNAWMI.ASP, fphover.class, and fphoverx.class files in WWWROOT and a
WWWROOT\SNAWebAdmin folder with a series of subdirectories containing several ASP and Graphics Interchange Format
(GIF) files.

You can then run the samples by using Microsoft Internet Explorer, or some other Web browser on the same computer, or a
different computer. Type HTTP://<computer name>/SNAWMI.asp in the Address box.

Substitute the network name of the computer hosting the Web server and HIS for the computer name in angle brackets in the
URL above. This opens the main page of the SNAWebAdmin ASP application and enables you to select any of the other sample
ASP pages. Information about each sample is provided on this Web page. Additional information is available at
HTTP://<computer name>/admin/headers/welcome.htm.

These ASP pages illustrate using WMI to retrieve SNA management and configuration from Host Integration Server 2009.

The two Java class files, fphover.class and fphoverx.class, are redistributable files that are included with Microsoft FrontPage.
These files are used in some of the WMI sample scripts instead of a Submit button to stop and start services.

Several subdirectories below SNAWebAdmin must have IIS security enabled (no anonymous access); otherwise the scripts in
these subdirectories fail since the anonymous user account by default does not have permissions that would allow it to start or
stop services on Microsoft Windows 2000 or make changes to the Host Integration Server 2009 system. The subdirectories
that must have IIS security enabled are as follows:

SNASebAdmin\Change

SNASebAdmin\Connections

SNASebAdmin\Services

SNASebAdmin\Status

It is possible to host these ASP pages on a computer running the Web server that is different from the computer running Host
Integration Server 2009. However, this requires some changes to the ASP pages to handle connections to a different computer,
security, and authentication issues.

See Also
Other Resources
Administration and Management Samples

https://msdn.microsoft.com/en-us/library/aa771365(v=bts.10).aspx

VBScript ImportExport Sample
The Administration\VBScript folder contains a sample written in Microsoft Visual Basic Scripting Edition (VBScript) that
illustrates how to import and export SNA configuration information from Host Integration Server 2009 in managed object
format (MOF) using Windows Management Instrumentation (WMI). This sample relies on the MOFCOMP.exe application
supplied with Microsoft Windows for importing.

In the following examples, ImportExport.VBS has been renamed to HISCFG.vbs.

The usage for this command-line tool for exporting configuration information is as follows:

The various command-line options are explained in the following table.

Note
Case is ignored for command-line options except for help and either the '/' or '-' character is interpreted as the leading chara
cter for an option. The following table uses the '/' character for illustration.

Command-Lin
e Switch

Comments

/? This flag shows the usage for this command and exits.

/C The name of the WMI parent class to be queried. This should be set to one of the WMI classes defined in the
MOF files supplied with Host Integration Server 2009.

This parameter defaults to MsSna_Config and exports all of the classes SNA classes and their associations.

/h This flag shows the usage for this command and exits.

/N The WMI namespace to be queried. This parameter defaults to "root\MicrosoftHIS" for Host Integration Server
 2009.

/O The name of the file used for output. This parameter has no default value.

/Q This Boolean flag indicates whether this is query should be completed quietly without displaying any status or
error messages. This parameter defaults to verbose option.

/S The name of the computer running Host Integration Server 2009. This parameter has no default value.

/U The user name of a user on the domain or active directory where Host Integration Server 2009 is running wit
h administrative rights. This parameter has no default value.

/W The password of a user on the domain or active directory where Host Integration Server 2009 is running with
administrative rights. This parameter has no default value.

The usage for this command-line tool for importing SNA configuration information is as follows:

A potential problem using WMI can occur with duplicate logical unit (LU) pools that can be illustrated using this sample
program. Normally, exporting and re-importing the MOF file would not create duplicates. However, the HIS WMI provider
allows pool-to-workstation association instances to be duplicated because, by design, duplicates of this type of object are
allowed. It is possible to associate the same pool to the same workstation or user multiple times. Emulators use this to create
more sessions for clients. Therefore, it is not possible to identify one such association from another. The WMISNA Provider,

HISCFG [/S:server] [/N:namespace] [/C:class] [/O:outfile]
 [/U:username] [/W:password] [/Q]

HISCFG [/I:inputfilename]

WMISNA.DLL, always create new associations of these types, even if an association with the same pair (Pool, Wks) already
exists. Only in the case of this object type is this allowed. However, this can create a problem for applications developed using
WMI (the Import/Export sample, for example) if the application does not know to not create the duplicates.

The following sequence illustrates this issue using the ImportExport sample:

1. Create a Pool-Workstation association by using Host Integration Server Manager or the Administration Manager client.

2. Export the SNA configuration to a MOF file using the ImportExport utility.

3. Import that same MOF file again using the ImportExport utility.

4. Duplicate Pool-Workstation associations will be created.

The result is that if a client uses the import/export sample or a similar application developed using WMI on a Host Integration
Server 2009 configuration that has pool-to-workstation associations, then the number of associations will effectively double
after running the sample. The workaround using the ImportExport sample would be as follows:

1. Export the configuration to a MOF file.

2. Remove the pool to workstation associations from the MOF file just created.

3. Import the MOF file back.

When importing the configuration from one domain to another using the ImportExport sample or a similar application
developed using WMI, then step 2 should be ignored. Normally, WMI applications should copy an existing configuration to a
blank configuration file so this condition does not arise.

See Also
Other Resources
Administration and Management Samples

https://msdn.microsoft.com/en-us/library/aa771365(v=bts.10).aspx

APPC Samples
The Host Integration Server 2009 SDK includes the source code for several sample programs that illustrate using Advanced
Program-to-Program Communications (APPC). These sample programs are copied to your hard drive during Host Integration
Server software or Host Integration Client software installation when the Host Integration Server Software Development
Kit option is selected. These samples are installed in the Samples\NetworkIntegration\APPC subdirectory below where the
Host Integration Server SDK software is installed (C:\Program Files\Microsoft Host Integration Server\SDK, by default).

These APPC sample programs include the following:

APPC TP samples Description

APPC Send and Receive TPs Sample programs in C that represent simple APPC send and receive transaction program
s (TPs) illustrating the use of asynchronous verb completion. The samples located in the S
ENDRECV subdirectory implement simple bulk data sending and receiving TPs (SENDTP
and RECVTP). These samples are located in the \APPC\SendRecv subdirectory on the CD.

Multithreaded Send and Receive TPs Sample programs in C that represent more advanced APPC send and receive TPs illustrati
ng the use of multiple threads and multiple conversations per thread. The multithreaded
receive TP samples illustrate using events or IO completion ports for notification These sa
mples are located in the \APPC\msendrcv subdirectory on the CD.

In addition to these APPC sample programs, the following supplemental programs are included on the Host Integration Server
CD-ROM.

Supple
mental
progra
m

Description

TPSETUP A sample installation program in C demonstrating an interface that assists in the configuration of autostarted invoka
ble TPs. This sample is located in the \APPC\tpsetup subdirectory on the CD.

TPSTART A sample program in C required for the automatic startup of invokable TPs that run as applications under Microsoft
Windows 2000. TPSTART is not required if a TP is written as a Windows 2000 service. An executable binary of TPSTA
RT is installed by Host Integration Server Setup in the SYSTEM subdirectory of the Host Integration Server root direct
ory. This sample is located in the \APPC\tpstart subdirectory on the CD.

In This Section

Building the TPs

TPSETUP

TPSTART

TPSTART.ini

APPC Send and Receive TPs

Multithreaded Send and Receive TPs

Reference

APPC Programmer's Reference

Related Sections

APPC Programmer's Guide

See Also
Other Resources
Network Integration Samples

https://msdn.microsoft.com/en-us/library/aa746084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745529(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa746084(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745429(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771668(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705653(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx

Building the TPs
The APPC samples are designed to be built by using the command-line compiler or the interactive development environment
(IDE) in Microsoft Visual Studio .NET 2003 or later.

To build the APPC samples installed from the Host Integration Server CD, set the following environment variables:

Variable Specifies

ISVLIBS Directory containing the Microsoft Host Integration Server LIB files for Microsoft Windows 2000

ISVINCS Directory containing the WINSNA header files

SAMPLEROOT Root directory of the sample code

For example, if you installed the Host Integration Server SDK directory to the default location (C:\Program Files\Microsoft Host
Integration Server\SDK), use the following lines to set the variables (assuming that Intel binaries are being produced for
Windows 2000):

To build a specific sample (SendTp, for example) using the Visual Studio IDE, start Visual Studio and open the appropriate
Microsoft Visual C++ project file (NetworkIntegration\appc\sendtp.vcproj, for example) from the File menu. Select a
configuration and build the sample from the Build menu. Each Visual C++ project file has two configurations, one for a
DEBUG build and one for a RETAIL build.

See Also
Other Resources
APPC Samples

ISVLIBS=C:\Program Files\Microsoft Host Integration Server\SDK\LIB
ISVINCS=C:\Program Files\ Microsoft Host Integration Server \SDK\Include
SAMPLEROOT=C:\Program Files\ Microsoft Host Integration Server \SDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

TPSETUP
TPSETUP is a program that simplifies the setting of registry or environment variables needed by autostarted invokable TPs.
Without an interface like that provided by TPSETUP, configuring such variables can be complicated and error prone. Therefore,
it is recommended that you use code like TPSETUP in installation programs for autostarted invokable TPs.

Operation

INSTALL.C, the source code for TPSETUP, can be compiled to work in Microsoft® Windows® 2000.

It is recommended that autostarted invokable TPs be written as Windows 2000 services. To create the installation program for
such TPs, study the code in INSTALL.C. For example, use the CreateService function or similar code when installing a TP that
will run as a service under Windows 2000. (For important information about how services work under Windows 2000, see the
documentation for Windows 2000.)

See Also
Other Resources
APPC Samples

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

TPSTART
An autostarted TP that runs as an application under Microsoft® Windows® 2000 requires the support of the TPSTART
program, which is installed with the Microsoft Host Integration Server software in the SYSTEM subdirectory of the Host
Integration Server root directory. Therefore, the TPSTART program must be started on a Windows 2000-based client before an
autostarted invokable TP can be started as an application. You can start TPSTART by using standard Windows 2000 methods,
such as including TPSTART in the Startup group on the client.

See Also
Other Resources
APPC Samples

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

TPSTART.ini
You can use TpStart.ini to specify custom tracing options when using TPSTART.exe.

The TpStart.ini file should be placed in the <snaroot> folder.

TpStart.ini sample

For additional information about TpStart.exe, see KB article 137074 at http://support.microsoft.com/kb/137074.

[TpStart]
HIDE=0
QSIZE=64
TRACE=1
FILE=C:\traces\tpstart.txt
LEVEL=0
FSIZE=2000000

Details for the entries are:

HIDE - 1: Hides the icon
 0: Shows the icon

QSIZE - Size of the pending queue, MIN=16,MAX=256
 Note, if QSIZE is not included in the ini file, a size of 16 is used

TRACE - 1: Enable tracing
 0: Disable tracing

FILE - The path and filename to be created for the trace, note the folder must already exis
t

LEVEL - The level of tracing (0 - 10): 0 - the most detailed tracing, 10 - no tracing

FSIZE - Maximum file size, MIN=10000, MAX=0xFFFFFFFF
 Note, if FSIZE is not included in the ini file, a size of 10000 is used.

http://support.microsoft.com/kb/137074

APPC Send and Receive TPs
These are simple APPC send and receive TPs that illustrate the use of asynchronous verb completion. This sample implements
simple bulk data sending and receiving TPs (SENDTP and RECVTP).

Setup

To set up these TPs, create an appropriate APPC LU-LU-mode triplet. The default is SENDLU-RECVLU-#INTER, but this can be
configured (see the following sections).

Input and Output

The APPC send and receive TPs each use a configuration file for input. To name the file, use .CFG as the extension, and use the
same base file name as the TP executable file (SENDTP.CFG, for example). Save this configuration file in the same directory
location as the executable file (the TP itself).

For SENDTP, the configuration file (called SENDTP.CFG if the executable file is SENDTP.EXE) can contain the following items,
one per line, in any order. If a variable is not found in the file or the file is not present at all, the default is used.

Line Default val
ue

Value to supply

ResultFile = C:\SENDTP.
OUT

File name to print timings to

LocalLUAlias = SENDLU Local LU alias

RemoteLUAlias = RECVLU Remote LU alias

ModeName = #INTER Mode name

LocalTPName = SENDTP Name of local TP

RemoteTPName
=

RECVTP Name of remote TP

NumConversatio
ns =

1 Number of conversations

NumSends = 2 Number of SEND_DATA verbs per conversation

SendSize = 1024 Size in bytes of data sent each time

ConfirmEvery = 1 Number of SEND_DATA verbs between CONFIRM verbs

SendConversatio
n =

No Yes or No: Use the SEND_CONVERSATION verb rather than the sequence of ALLOCATE, SEND
_DATA, DEALLOCATE

RECVTP uses a RECVTP.CFG file in a similar way, but only to read the LocalTPName field.

The output from SENDTP and RECVTP consists of details of the configuration and the time taken for each conversation, and is
sent to the result file specified in SENDTP.CFG.

Operation

RECVTP should be started first; it issues RECEIVE_ALLOCATE with the specified TP name. SENDTP is then started; it first issues
MC_SEND_CONVERSATION to tell RECVTP how many conversations will be carried out. It then carries out the specified
number of conversations.

For SENDTP, each conversation consists of an MC_ALLOCATE verb, followed by a given number of MC_SEND_DATA verbs of a
given size, and interspersed with MC_CONFIRM verbs at a given interval, followed by an MC_DEALLOCATE.

https://msdn.microsoft.com/en-us/library/aa754701(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771469(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745867(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771015(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771498(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770808(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754392(v=bts.10).aspx

RECVTP issues MC_RECEIVE_AND_WAIT when RECEIVE_ALLOCATE completes, and then issues either
MC_RECEIVE_AND_WAIT or MC_CONFIRMED according to the return from the previous MC_RECEIVE_AND_WAIT.

At any stage, if the TPs encounter an error, they terminate. Use APPC API tracing to diagnose problems with the configuration.

At the end of the specified number of conversations, SENDTP sends timing information to a file.

Both TPs are built from a single source code file, SENDRECV.C. SENDTP is compiled only if -DSENDTP is used on the
command line.

The TPs run as Microsoft® Windows® 2000 applications with a minimized window, the title bar of which displays the status.
When the WndProc of this window, TPWndProc, receives the WM_CREATE message for the window, this triggers the issuing of
the first verb. When TPWndProc receives an ASYNC_COMPLETE message from Windows APPC, this triggers the issuing of the
next verb, dependent on what the previous verb was. When the window is closed, WinAPPCCleanup is issued to terminate any
active conversations.

See Also
Other Resources
APPC Samples

https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745423(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

Multithreaded Send and Receive TPs
These multithreaded send and receive TPs are more advanced than the single-threaded equivalents. The samples located in the
MSENDRCV subdirectory all use the asynchronous interface of APPC, with verb completion signaled by events
(WinAsyncAPPCEx) or IO completion ports (WinAsyncAPPCIOCP). These TPs show how to code multithreaded APPC
applications with multiple conversations per thread. They are more complex than the single-threaded equivalents, but are also
more realistic.

If you are unfamiliar with APPC, examine the single-threaded TPs first. If you are unfamiliar with methods of creating threads
or processing events in Microsoft® Windows® 2000, see the Microsoft Platform SDK documentation along with the
multithreaded TPs.

Setup

There are four multithreaded send and receive routines that illustrate using asynchronous APPC calls:

MRCV for receiving using events for notification

MRCVIO for receiving using IO completion ports for notification

MSEND for sending using events for notification

MSENDRCV for simultaneous sending and receiving using events for notification

To set up these TPs, create an appropriate APPC LU-LU-mode triplet. The default is SENDLU-RECVLU-#INTER, but this can be
configured (see the sections that follow). To run a large number of simultaneous conversations, increase the session limits for
#INTER or use another mode with large session limits.

One obvious way of configuring these programs is to configure MSEND to run with MRCV or MRCVIO; another way is to
configure MSENDRCV to run with another copy of MSENDRCV. However, you can also configure MSEND to run with one or
more copies of RECVTP (the single-threaded version) and MRCV or MRCVIO to run with one or more copies of SENDTP. You
can also configure MSENDRCV to run with MSEND, MRCV, SENDTP or RECVTP. For more information, see the sections that
follow.

One possible arrangement is to place SENDTP (single-threaded) on multiple client computers, and configure MRCV or
MRCVIO (multithreaded) on a server so that it interacts with all the TPs on the clients. Many other arrangements are possible.

Configuration for MRCV, MSEND, and MSENDRCV

The MRCV, MSEND, and MSENDRCV TP samples use a configuration file for configuration and input. To name the file, use .CFG
as the extension, and use the same base file name and directory location as the executable file (the TP itself).

The following table shows examples of CFG files that could be used with MSEND and MRCV.

Example of MSEND.CFG file Example of MRCV.CFG file

ResultFile=MSEND.OUT TraceFile=MRCV.TRC

TraceFile=MSEND.TRC LocalTPName=MRCVTP

RemoteTPName=MRCVTP NumRcvConvs=32

LocalLUAlias=LUA NumRcvThreads=4

RemoteLUAlias=LUB RcvSize=4096

ModeName=#INTER

NumSendConvs=32

https://msdn.microsoft.com/en-us/library/aa771422(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771032(v=bts.10).aspx

NumSends=128

ConfirmEvery=16

SendSize=256

For MSEND, the configuration file (MSEND.CFG) can contain the following items, one per line, in any order. If a variable is not
found in the file or the file is not present, the default is used.

Line Default value Value to supply

ResultFile = MSEND.OUT File name to print timings to (located in default directory for MSEND)

TraceFile = MSEND.TRC Trace file name (located in default directory for MSEND)

LocalLUAlias = SENDLU Local LU alias

RemoteLUAlias = RECVLU Remote LU alias

ModeName = #INTER Mode name

RemoteTPName = MRCVTP Name of remote TP (for MC_ALLOCATE)

NumSendConvs = 4 Number of conversations to send

NumSends = 8 Number of MC_SEND_DATA verbs per conversation

SendSize = 256 Size in bytes of data sent each time

ConfirmEvery = 2 Number of MC_SEND_DATA verbs between MC_CONFIRM verbs

The following lines are for MRCV:

Line Default value Value to supply

TraceFile = MRCV.TRC Trace file name (located in default directory for MSEND)

LocalTPName = MRCVTP Name of local TP (for RECEIVE_ALLOCATE)

NumRcvConvs = 4 Number of conversations to receive

NumRcvThreads = 2 Number of threads to start for processing receive conversations

RcvSize = 4096 Size in bytes of receive buffer for MC_RECEIVE_AND_WAIT

The following table shows examples of configuration files (MSENDRCV.CFG) that could be used with MSENDRCV. Each row of
the table (Example A and Example B) contains two files that work together on a pair of computers.

Example A of MSENDRCV.CFG Example B of MSENDRCV.CFG

ResultFile=MSENDRCV.OUT ResultFile=MSENDRCV.OUT

TraceFile=MSENDRCV.TRC TraceFile=MSENDRCV.TRC

LocalTPName=TPA LocalTPName=TPB

RemoteTPName=TPB RemoteTPName=TPA

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx

LocalLUAlias=LUA LocalLUAlias=LUB

RemoteLUAlias=LUB RemoteLUAlias=LUA

ModeName=#INTER ModeName=#INTER

NumRcvConvs=50 NumRcvConvs=25

NumRcvThreads=4 NumRcvThreads=4

RcvSize=4096 RcvSize=4096

NumSendConvs=25 NumSendConvs=50

NumSends=100 NumSends=100

ConfirmEvery=10 ConfirmEvery=10

SendSize=256 SendSize=256

The following lines are for MSENDRCV:

Line Default value Value to supply

ResultFile = MSENDRCV.O
UT

File name to print timings to (located in default directory for the MSEND or MSENDRCV sen
ding TP)

TraceFile = MSENDRCV.TR
C

Trace file name (located in default directory for the MSEND or MSENDRCV sending TP)

LocalLUAlias = SENDLU Local LU alias

RemoteLUAlias
=

RECVLU Remote LU alias

ModeName = #INTER Mode name

RemoteTPName
=

MRCVTP Name of remote TP (for MC_ALLOCATE)

NumSendConvs
=

4 Number of conversations to send

NumSends = 8 Number of MC_SEND_DATA verbs per conversation

SendSize = 256 Size in bytes of data sent each time

ConfirmEvery = 2 Number of MC_SEND_DATA verbs between MC_CONFIRM verbs

LocalTPName = MRCVTP Name of local TP (for RECEIVE_ALLOCATE)

NumRcvConvs = 4 Number of conversations to receive

NumRcvThreads
=

2 Number of threads to start for processing receive conversations

https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

RcvSize = 4096 Size in bytes of receive buffer for MC_RECEIVE_AND_WAIT

The output from MSEND and MSENDRCV consists of details of the configuration and the time taken for each conversation, and
is sent to the result file specified in MSEND.CFG or MSENDRCV.CFG.

Operation of MRCV, MSEND, and MSENDRCV

The MRCV, MSEND, and MSENDRCV TPs use multiple event processing in Windows 2000 to avoid creating an unnecessary
number of threads.

These TPs also use Windows-based processing, but this is incidental. Its only purpose is to display beneath the icon on the
screen a running count of threads, the number of conversations currently sending or receiving data, and the number of
conversations completed. The Windows-based processing could easily be removed to create a completely batch-oriented
program. To do this, termination would need to be signaled with an event rather than with WM_CLOSE.

The TP name used in TP_STARTED is the name of the executable file (MSEND, MRCV, or MSENDRCV). The TP names used in
MC_ALLOCATE and RECEIVE_ALLOCATE can be configured, as shown in the preceding tables.

MSEND reads its configuration file (or uses defaults) to determine the number of send conversations to start. Each
conversation reads the value of NumSends (or uses the default), issues that number of MC_SEND_DATA verbs, and then
terminates. When all of the conversations for a thread have terminated, the thread itself terminates. When all of the send
threads have terminated, the program terminates.

An MC_CONFIRM verb is issued before the first MC_SEND_DATA and then at the intervals specified by ConfirmEvery. The
complete data flow for a conversation is as follows:

TP_STARTED

MC_ALLOCATE

MC_CONFIRM

MC_SEND_DATA (repeated the number of times specified by ConfirmEvery)

MC_CONFIRM

MC_SEND_DATA (repeated the number of times specified by ConfirmEvery)

MC_CONFIRM

(Pattern repeats until the number of MC_SEND_DATA verbs equals NumSends.)

MC_DEALLOCATE

TP_ENDED

MRCV starts up an initial thread for issuing RECEIVE_ALLOCATE verbs, and then reads its configuration file (or uses defaults) to
determine the number of receive threads to start and the number of conversations to receive. The initial thread issues a
RECEIVE_ALLOCATE and waits. When the RECEIVE_ALLOCATE completes, the initial thread turns the processing of the
conversation over to the next available receive thread, and issues another RECEIVE_ALLOCATE. This process continues until
the configured number of RECEIVE_ALLOCATE verbs (that is, NumRcvConvs) have completed.

There is a limit to the number of conversations that can be supported on a thread, because of the limit to the number of events
that can be waited for with WaitForMultipleObjects (a function in the Win32® API). For send threads, the limit is 64
conversations per thread; for receive threads, the limit is 63 conversations per thread.

MSEND works with this limit by starting enough threads to support the configured number of conversations. For example, if
NumSendConvs is set to 200, four send threads are started: three of them process 64 conversations each and one processes
the remaining eight conversations.

MRCV works with this limit by comparing NumRcvConvs to NumRcvThreads. If NumRcvConvs is more than (63 *
NumRcvThreads), NumRcvThreads is increased. If NumRcvThreads is greater than NumRcvConvs, NumRcvThreads is
reduced to prevent creating unneeded threads.

With MRCV, to ensure that a receive thread correctly picks up the conversation, two special events are used per thread: event1
and event2. The following table illustrates their use.

RECEIVE_ALLOCATE thread Receive thread

Issue RECEIVE_ALLOCATE and wait Wait for event1

https://msdn.microsoft.com/en-us/library/aa744661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771926(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704353(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx

(RECEIVE_ALLOCATE completes)

Select next receive thread and set event1 for that thread; then wait for event2
for that thread

 (Event1 completes)

 Add conversation to list of conversations being
processed

 Set event2

(Event2 completes)

REPEAT REPEAT

The receive thread waits not only on the event1 set for it, but also on one event for each conversation the thread is processing.

If NumRcvConvs is set to zero, the RECEIVE_ALLOCATE thread will never terminate. If NumSends is set to zero, the
conversation will never terminate; this is useful for getting the maximum number of simultaneous conversations.

Tracing of MRCV, MSEND, and MSENDRCV

If you want to observe the detailed processing of the MRCV, MSEND, or MSENDRCV sample TPs, you can enable tracing. To do
this, find the following line, commented out, near the top of the file:

Enable this line or define this value on the command-line option to the compiler, and trace statements will be written to the
trace file(s) specified by the TraceFile variable in the configuration.

There are also some trace statements that have been commented out. If they are left commented out, only MC_CONFIRM and
MC_CONFIRMED processing is traced while a conversation is running, to maintain a send or receive count without generating
a large amount of trace information. You can activate the detailed tracing of events (such as the sending of data) by enabling
one or more trace statements.

The Trace Initiator (snatrace.exe) tool provides APPC API tracing for Microsoft Host Integration Server applications. For more
information about the Trace Initiator and Trace Viewer tools, see Microsoft Host Integration Server Help.

Configuration for MRCVIO

The MRCVIO TP sample is a multithreaded console application that uses command-line options for configuration and input. If
an option is not provided on the command line, then the default is used. The following table lists the possible command-line
options for MRCVIO.

Command-line op
tion

Description

-? Displays usage information for this sample and exits.

-c numRcvConvs The maximum number of APPC conversations to support.

The default value is 8 with a maximum value of 64.

-d duration The number of seconds that the sample application should run. The default value is 60 seconds.

A value of 0 for duration means run indefinitely.

-h Displays usage information for this sample and exits.

#define SRTRC

https://msdn.microsoft.com/en-us/library/aa754664(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770968(v=bts.10).aspx

-i IntTraceFile The name of the internal trace file if tracing is required. When this command-line option is specified, inter
nal tracing is enabled.

This option has no default value and internal tracing is turned off.

-n numRcvThreads The number of Completion Port threads to allocate.

The default value is 4 with a maximum value of 32.

-r rcvSize The size in bytes of the buffer supplied on each RECEIVE_ALLOCATE.

The default value is 4096 with a maximum value of 65535.

-t TPName The name supplied on the RECEIVE_ALLOCATE verbs.

The default value is the "MRCVTP" string.

Operation of MRCVIO

The MRCVIO TP sample uses IO completion ports for notification and will only operate on Windows 2000. Using the IO
completion port mechanism is the preferable method for writing scalable APPC server applications.

The MRCVIO TP sample contains the routines for a multithreaded console application that uses asynchronous APPC calls on a
single I/O completion port to receive data. The MRCVIO sample creates a small pool of threads that will be used for processing
RECEIVE requests. It operates in conjunction with one of the following:

Single-threaded version of send(SENDTP)

Multithreaded event-based versions of send (MSEND, MSENDRCV)

The MRCVIO sample uses a server model that continues to accept conversations via RECEIVE_ALLOCATE until the application is
manually terminated, or a specified timer expires. The conversations do not belong to any particular RECEIVE thread. Each
receive thread issues GetQueuedCompletionStatus calls to wait for completion of an APPC verb (on any conversation). Each
conversation issues MC_RECEIVE_AND_WAIT verbs to receive data. If confirmation is requested, an MC_CONFIRM verb is
issued.

The TP name used in MC_ALLOCATE and RECEIVE_ALLOCATE can be configured by using the command-line options as shown
in the preceding table of options for the configuration of MRCVIO.

MRCVIO starts up and parses its command-line options (or uses defaults) to determine the number of receive threads to start,
the number of conversations to receive, the buffer size for each RECEIVE_ALLOCATE, its TP name, how long the application
should run, and whether internal tracing is enabled.

Once command-line options are parsed, the MRCVIO sample calls the CreateCompletionPort function to allocate the IO
completion port. If this call is successful, then the specified number of threads are created with the thread start routine pointing
to the MRCVIO ReceiveThread function and the thread priority for each thread is lowered. Then the specified number of APPC
conversations are started.

The MRCVIO sample uses the IO completion port structure and the WinAsyncAPPCIOCP function as listed below.

The APPC_CompletionPort must be a HANDLE returned by the CreateIoCompletionPort function issued by the application
before using WinAsyncAPPCIOCP. The other three fields can be set to any value whatsoever. The APPC library does nothing
with these other fields, except to return them unaltered on the GetQueuedCompletionStatus when the APPC verb

/* IOCP - Structure and function prototype */
typedef struct
{
 HANDLE APPC_CompletionPort;
 DWORD APPC_NumberOfBytesTransferred;
 DWORD APPC_CompletionKey;
 LPOVERLAPPED APPC_pOverlapped;
} APPC_IOCP_INFO;
extern HANDLE WINAPI WinAsyncAPPCIOCP(
 APPC_IOCP_INFO* iocp_handle, // IO completion port information
 long lpVcb); // pointer to APPC verb control block

https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705503(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745576(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771032(v=bts.10).aspx

completes. Application developers can set these values to whatever they like, but assuming the server application is handling
multiple concurrent APPC conversations, an application will need to use one of these three fields to correlate APPC verbs with
their completions.

For example, the MRCVIO sample passes a pointer to a Conversation Control Block into the APPC_pOverlapped field when it
issues an APPC verb. The same value is returned when the APPC verb completes on the GetQueuedCompletionStatus. This
allows the sample MRCVIO TP to figure out which APPC verb has actually completed. APPC developers can use a different
method (an index into an array of VCBs, for example) to provide the same effect.

Also, an application might use the APPC_CompletionKey field to distinguish between APPC events and other events posted to
this IO Completion port. For example, the MRCVIO sample sets this value to a user-defined constant IOCP_VERB_COMPLETE so
that the GetQueuedCompletionStatus function can distinguish APPC verb completions from the other events that are
posted to this IO Completion port (IOCP_START_CONVERSATION, IOCP_END_CONVERSATION and
IOCP_TERMINATE_THREAD). However, this is purely for the convenience of the application. An APPC developer could decide
not to post any events to its IO Completion port (except implicitly for APPC completions). In such a case, it would be
unnecessary to set any value in the APPC_CompletionKey.

See Also
Other Resources
APPC Samples

https://msdn.microsoft.com/en-us/library/aa754736(v=bts.10).aspx

CPI-C Samples
Host Integration Server 2009 SDK includes the source code for several sample programs that illustrate using Common
Programming Interface for Communications (CPI-C) for transaction programs (TPs).

These files are copied to your hard drive during Host Integration Server software or Host Integration Client software
installation when the Host Integration Server Software Development Kit option is selected. These samples are installed in the
Samples\NetworkIntegration\CPI-C subdirectory below where the Host Integration Server SDK software is installed
(C:\Program Files\Microsoft Host Integration Server\SDK, by default).

These sample programs include the files listed in the following table.

Sample TP program Description

APING and APINGD Sample programs that provide a simple test for end-to-end connectivity. These samples are locate
d in the \CPI-C\aping folder on the CD.

Multithreaded APINGD A multithreaded connectivity test that illustrates nonqueued behavior in Microsoft Windows Serv
er 2003 and Windows 2000. This sample is located in the \CPI-C\mping folder on the CD.

CPI-C Send and Receive TPs A pair of simple CPI-C TPs that illustrate the use of asynchronous CPI-C calls. These samples are lo
cated in the \CPI-C\CpicSendRecv folder on the CD.

AREXEC and AREXECD A pair of TPs that execute commands on a remote computer and send the output back across the
connection. These samples are located in the \CPI-C\ArExec folder on the CD.

AREMOTE A sample client and server program using APPC that enables you to invoke and control a text-mo
de program from another computer. This sample using APPC was based a Win32 sample progra
m that originally used named pipes. These samples are located in the \CPI-C\ARemote folder on t
he CD.

In addition to these TPs, the following supplemental programs are included on the Host Integration Server 2009 CD.

Supple
mental
progra
m

Description

TPSETUP A sample installation program, demonstrating an interface that assists in configuring autostarted invokable TPs. This
sample is located in the \NetworkIntegration\APPC\tpsetup folder on the CD.

TPSTART A program required for the automatic startup of invokable TPs that run as applications under Windows Server 2003
or Windows 2000. TPSTART is not required if the TP has been written as a Windows Server 2003 or Windows 2000 s
ervice.TPSTART is installed by Host Integration Server Setup in the System folder of the Host Integration Server root
directory. This sample is located in the \NetworkIntegration\APPC\tpstart folder on the CD.

In This Section

Building the TPs

APING and APINGD

Multithreaded APINGD

CPI-C Send and Receive TPs

AREXEC and AREXECD

AREMOTE

Reference

CPI-C Programmer's Reference.

Related Sections

https://msdn.microsoft.com/en-us/library/aa771010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745992(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754050(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704350(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753947(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705633(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771010(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744960(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745992(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754050(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754255(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745359(v=bts.10).aspx

CPI-C Programmer's Guide.

See Also
Other Resources
Network Integration Samples

https://msdn.microsoft.com/en-us/library/aa754719(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx

Building the TPs
The Common Programming Interface for Communications (CPI-C) samples are designed to be built using the command-line
compiler or the IDE in Microsoft Visual Studio.

To build the CPI-C samples installed from the Host Integration Server CD, set the following environment variables listed in the
following table.

Variable Description

ISVLIBS The directory containing the Host Integration Server 2009 LIB files for Microsoft Windows Server 2003 or Windo
ws 2000.

ISVINCS The directory containing the Host Integration Server 2009 header files.

SAMPLEROO
T

The root directory where the sample code provided as part of the SDK has been installed on a local hard disk.

For example, if you installed the Host Integration Server SDK directory to the default location (C:\Program Files\Microsoft
Host Integration Server\SDK), use the following lines to set the variables (assumes Intel binaries are being produced for
Windows Server 2003 or Windows 2000.

To build a specific sample (APING, for example) using Visual Studio .NET 2003, open the appropriate Microsoft Visual C++
project file (SNA\aping\aping.vcproj, for example) from the File menu. Select a configuration and build the sample from the
Build menu. Each project file has two configurations, one for a DEBUG build and one for a RETAIL build.

See Also
Other Resources
CPI-C Samples

ISVLIBS=C:\Program Files\Microsoft Host Integration Server\SDK\LIB
ISVINCS=C:\Program Files\Microsoft Host Integration Server\SDK\Include
SAMPLEROOT=C:\Program Files\Microsoft Host Integration Server\SDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

APING and APINGD
The sample code for APING and APINGD is ported from code on the IBM Advanced Program-to-Program Communications
(APPC)/Common Programming Interface for Communications (CPI-C) disk. These samples are used to test end-to-end
connectivity, and simply show that the configuration is correct by exchanging bytes of data across the link. APING is the client
or invoking (local) half and attempts to contact APINGD (the APPC/CPI-C ping daemon or server), which is written here as a
Microsoft Windows Server 2003 or Windows 2000 service so it can be installed as an invokable TP on the remote computer.

Setup

To use the APING and APINGD samples included in the Microsoft Host Integration Server 2009 SDK, follow these steps:.

To set up APING and APINGD

1. Create an appropriate APPC LU-LU-mode triplet (for example, LUPING-LUPINGD-#INTER).

2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The TP name for APINGD
is APINGD.)

3. Assign the local APPC LU to the APING TP, either by using a registry entry of APING:REG_SZ:LocalLUAlias in the
SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
APING.

Input and Output

APING is a console application. The syntax of its command line is

aping [-ssize] [-iiterations] [-cpackets] [-mmode] [-ttpname] PartnerLUName

aping [-ssize] [-iiterations] [-cpackets] SymbolicDestinationName

where

-s size

Specifies the size, in bytes, of the packet transmitted. The default is 100 bytes.

-i iterations

Specifies the number of iterations to carry out. The default is 2.

-c packets

Specifies the number of consecutive packets sent by each side. The default is 1.

-m mode

Specifies the mode name. The default is #INTER.

-t tpname

Specifies the TP name of the TP to start on the remote server. The default is APINGD.

PartnerLUName

Specifies the partner LU name of the destination.

SymbolicDestinationName

Specifies the symbolic destination name of the destination.

Output goes to stdout and stderr, and details the data rates and timings for each iteration.

Operation

Note that with APINGD, Specify_Local_TP_Name is used to set the local TP name, so Wait_For_Conversation must be used to
wait for the Accept_Conversation call to complete, because it will return asynchronously.

The code at the end of APINGD.C is a stub for making any TP into a Windows Server 2003 or Windows 2000 service. There are
three routines that are needed: main, ServiceMain, and ControlHandler. For details about how these work, see the
comments in the file. The TPStart routine is the entry point of the TP proper.

https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx

In particular, note that in response to the SERVICE_CONTROL_STOP or SERVICE_CONTROL_SHUTDOWN messages in the
ControlHandler routine, action should normally be taken to stop the service, but because each run does not last long with
these samples, no code is included to take such an action.

See Also
Other Resources
CPI-C Samples

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

Multithreaded APINGD
The version of MPINGD provided in the sample code illustrates how to achieve nonqueued behavior from an invokable TP in
Microsoft® Windows Server™ 2003 and Windows® 2000. This means that multiple copies of APING can talk to the same copy
of MPINGD at the same time. However, you cannot run multiple copies of a Windows Server 2003 or Windows 2000 service.
The features are achieved by always having a thread with an Accept_Conversation outstanding, so that any incoming attach for
MPINGD will always be satisfied immediately.

Setup

Setup requirements for MPINGD are the same as for the single-threaded version, APINGD. The remote LU and mode that you
use should support parallel sessions so that more than one conversation at a time is possible.

Input and Output

The input and output for MPINGD are the same as for the single-threaded version, APINGD.

Operation

The operation of MPINGD is similar to that of the single-threaded version, APINGD. The same three routines are used (main,
ServiceMain and ControlHandler). ServiceMain calls the TPStart routine. This routine must not return until the service is
ready to terminate.

The TPStart routine does some initialization, creates the first conversation thread, and then waits on an event created by the
ServiceMain routine. This event is set when the service control manager issues an order to STOP or SHUTDOWN. When the
event is set, it calls WinCPICCleanup, which will cancel any active conversations and return outstanding Accept_Conversation
calls, thus making all conversation threads exit. It then marks the service as STOPPED.

The ThreadStart routine is the entry point for each of the conversation threads. It issues Accept_Conversation and
Wait_For_Conversation, and when this completes, it creates another thread to wait for the next attach while the existing thread
services the first attach.

See Also
Other Resources
CPI-C Samples

https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

CPI-C Send and Receive TPs
These transaction programs (TPs) are Common Programming Interface for Communications (CPI-C) versions of the APPC send
and receive TPs. The sample code illustrates the use of asynchronous CPI-C calls.

Setup

In order to use these TPs, follow these steps:

To set up the send and receive TPs

1. Create an appropriate APPC LU-LU-mode triplet.

2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The default symbolic
destination name is CPICRECV.)

3. Assign the local APPC LU to the CPICSEND TP, either by using a registry entry of CPICSEND:REG_SZ:LocalLUAlias in the
SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
CPICSEND.

For example, use SENDLU-RECVLU-#INTER as your LU-LU-mode triplet. Then, create a CPI-C symbolic destination name
CPICRECV containing the application TP name CPICRECV, the partner LU alias RECVLU, and the mode name #INTER. Finally,
add the intended user to the users list, and assign SENDLU as the users default local APPC LU.

Input and Output

CPICSEND and CPICRECV use the files Cpicsend.cfg and Cpicrecv.cfg for input. These files should be placed in the folder that
contains the TP executable file. These files are similar to the input files for the APPC send and receive TPs.

The following entries are for CPICSEND only:

Line Defa
ult V
alue

Description

ResultFil
e =

C:\Cpi
csend.
out

The file name where the timings results will be stored.

NumSe
nds =

2 The number of Send_Data calls per conversation.

SendSiz
e =

1024 The size of data sent each time in bytes .

Confirm
Every =

1 The number of Send_Data calls between Confirm calls. If ConfirmEvery=0, CPICSEND will not issue CONFIRM
verbs.

SymDes
tName
=

CPICR
ECV

The symbolic destination name.

NumCo
nversati
ons =

1 The number of conversations. This setting must be the same for CPICSEND and CPICRECV. (They do not negoti
ate the number.) If this value is zero, the TPs will do an infinite number of conversations.

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx

WaitMo
de=

No Yes, No, or Block.

If WaitMode=No, the verbs are completed through posted windows messages. The TPs issue
Specify_Windows_Handle with a window handle so that Windows CPI-C will post completion messages to this
window handle.

If WaitMode=Yes, verbs are non-blocking and completed using asynchronous call completion. In this case, the
TPs issue Specify_Windows_Handle with NULL so that the TPs must then issue a Wait_For_Conversation call
to wait for the asynchronous call to complete.

If WaitMode=Block, all verbs are blocking.

The following entries are for CPICRECV only:

Line Defa
ult v
alue

Description

ResultFil
e =

C:\Cp
icrecv
.out

The file name where the timings results will be stored.

LocalTP
Name =

CPIC
RECV

The local TP name to use on the Specify_Local_TP_Name call.

NumCo
nversati
ons =

1 The number of conversations. This setting must be the same for CPICSEND and CPICRECV. (They do not negoti
ate the number.) If this value is zero, the TPs will do an infinite number of conversations.

WaitMo
de=

No Yes, No, or Block.

If WaitMode=No, the verbs are completed through posted windows messages. The TPs issue
Specify_Windows_Handle with a window handle so that Windows CPI-C will post completion messages to this
window handle.

If WaitMode=Yes, verbs are non-blocking and completed using asynchronous call completion. In this case, the
TPs issue Specify_Windows_Handle with NULL so that the TPs must then issue a Wait_For_Conversation call
to wait for the asynchronous call to complete.

If WaitMode=Block, all verbs are blocking.

As with CPICSEND, CPICRECV produces C:\Cpicrecv.out (by default) with timings of the conversations in it.

Operation

CPICRECV should be started first. CPICRECV issues Specify_Local_TP_Name to set its local TP name, and then
Accept_Conversation to accept a conversation (note that because Specify_Local_TP_Name is issued, the
Accept_Conversation will complete asynchronously).

Both TPs issue Specify_Windows_Handle during initialization to set either the window handle or NULL. CPICSEND calls
Set_Processing_Mode after completion of Initialize_Conversation to set the processing mode to non-blocking for this
conversation.

After each call is issued, the return code is checked. If the return code is not CM_OPERATION_INCOMPLETE, the call has already
completed, so an ASYNC_COMPLETE message is posted to trigger the next call. If WaitMode is set to YES and the issued call
did not complete immediately, a Wait_For_Conversation call is issued to wait for call completion, at which point an
ASYNC_COMPLETE message is posted. If WaitMode is set to NO and the issued call did not complete immediately, Windows
CPI-C detects call completion and posts an ASYNC_COMPLETE message. The receipt of the ASYNC_COMPLETE message
triggers the next call to be issued.

For CPICSEND, each conversation consists of an Allocate call, followed by a given number of Send_Data calls of given size and
interspersed with Confirm calls at a given interval, followed by a Deallocate.

CPICRECV issues Receive on completion of the Accept_Conversation, and then issues either Receive or Confirmed according
to the return from the previous Receive.

https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754394(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744743(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772045(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704661(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705220(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771371(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745213(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771435(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705001(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771902(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa744742(v=bts.10).aspx

At any stage, if the TPs encounter an error, they terminate. Use CPI-C API tracing to diagnose problems with the configuration.

Both TPs are built from a single source-code file, CPICSR.C. CPICSEND is compiled only if CPICSEND macro is #defined. This
macro is normally defined using the -DCPICSEND option on the command line to the C compiler.

The TPs run as Microsoft® Windows Server™ 2003 or Windows® 2000 applications with a minimized window, the title of
which displays the status. When the WndProc of this window, TPWndProc, receives the WM_CREATE message for the window,
it triggers the issuing of the first call. When TPWndProc receives an ASYNC_COMPLETE message from Windows CPI-C, it
triggers the issuing of the next call, dependent on what the previous call was. When the window is closed, WinCPICCleanupis
issued to terminate any active conversations.

See Also
Other Resources
CPI-C Samples

https://msdn.microsoft.com/en-us/library/aa745712(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

AREXEC and AREXECD
The sample code for these two transaction programs (TPs) provides the ability to execute commands on a remote computer
and to send the output back across the connection to the invoking TP.

Setup

In order to use the AREXEC and AREXECD samples provided with the Microsoft Host Integration Server 2009 SDK, follow these
steps:

To set up AREXEC and AREXECD

1. Create an appropriate APPC LU-LU-mode triplet.

2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The TP name for AREXECD
is AREXECD.)

3. Assign the local APPC LU to the AREXEC TP, either by using a registry entry of AREXEC:REG_SZ:LocalLUAlias in the
SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
AREXEC.

Input and Output

AREXEC is a console application. The syntax of its command line is

arexec [-mmode] [-ttpname] destination command

where

-m mode

Specifies the mode name. The default is #INTER.

-t tpname

Specifies the TP name.

destination

Specifies the destination. Can be either a symbolic destination name or a partner LU name.

command

Specifies the command string to execute on the remote computer.

The stdout and stderr from the command executed at the remote end is sent across the link and printed to stdout on the
invoking end.

Operation

The AREXECD program is a Microsoft Windows Server 2003 or Windows 2000 service, using the same routines in APING,
APINGD, and multithreaded APINGD. The execution of the command and sending back of data are done in the routine
execute_and_send_output in CPICPORT.C. This sample creates a named pipe and connects to the read end of the pipe. It
then creates a process to run the command and gives that process a handle to the write end of the pipe as its stdout and
stderr. Then, the data is read from the pipe, and Send_Data is used to send it across the link.

See Also
Other Resources
CPI-C Samples

https://msdn.microsoft.com/en-us/library/aa705151(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

AREMOTE
The sample code for this TP provides the ability to control a text-mode program on a remote computer. AREMOTE is a Win32
console application that implements a client and a server. The AREMOTE server is invoked with the name of the text-mode
program that the client wishes to control remotely. The AREMOTE client redirects stdin (keyboard input) from the client to the
AREMOTE server. In turn, the AREMOTE server redirects stdin and stderr from the program being controlled back to the
AREMOTE client.

Setup

In order to use the AREMOTE sample provided with the Host Integration Server 2009 SDK, follow these steps:

To set up AREMOTE

1. Create an appropriate APPC LU-LU-mode triplet.

2. Set up a CPI-C symbolic destination name that contains the configured remote LU and mode. (The TP name for
AREMOTE is AREMOTE.)

3. Assign the local APPC LU to the AREMOTE TP, either by using a registry entry of AREMOTE:REG_SZ:LocalLUAlias in the
SnaBase\Parameters\Clients key, or by assigning the local LU as the default local APPC LU for the user who will run
AREMOTE.

Starting the client

The syntax of the command line to start the client end of AREMOTE is as follows.

Parameters
/C

Specifies the client mode.

ServerLU

Specifies the SNA LU for connecting to the server.

/T TPName

Specifies the TP name that the server is using. The default is AREMOTE.

/P TPName

Specifies the TP name that the client is using. The default is AREMOTE

/L LocalLU

Specifies the LU name for the local TP to use. The default is AREMOTE.

/M Modename

Specifies the mode name. The default is #INTER.

/N Lines

Specifies the number of lines to get.

/F Color

Specifies the foreground color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen,
lcyan, lred, lpurple, lyellow, and lwhite.

/B Color

Specifies the background color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen,
lcyan, lred, lpurple, lyellow, and lwhite.

 ServerLU [TPName] [TPName] [LocalLU]
 [Modename] [Lines] [Color] [Color]

Starting the server

The syntax of the command line to start the server end of AREMOTE is as follows.

Parameters
/S

Specifies the server mode.

Cmd

Specifies a text-mode program that you want to control from another computer.

/T TPName

Specifies the TP name that the server is using. The default is AREMOTE.

/M Modename

Specifies the mode name. The default is #INTER.

/F Color

Specifies the foreground color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen,
lcyan, lred, lpurple, lyellow, and lwhite.

/B Color

Specifies the background color. Color options are black, blue, green, cyan, red, purple, yellow, white, lblack, lblue, lgreen,
lcyan, lred, lpurple, lyellow, and lwhite.

Output

The stdout and stderr from the command run at the remote end is sent across the link and printed to stdout on the client. The
stdin from the client is sent across the link and becomes the stdin for the command run at the remote end.

The APPC remote installer (ARSETUP) included with this sample brings up a dialog box that prompts for TP configuration
information. The information is then placed in the registry under Microsoft® Windows Server™ 2003 or Windows® 2000. The
WIN32 compiler flag specifies that the Win32 version of ARSETUP should be built for use on Windows Server 2003 or
Windows 2000.

Notes

The AREMOTE server can also be configured to run as a Windows Server 2003 or Windows 2000 service using the ARSETUP
sample utility included in the same folder on the CD.

The AREMOTE client can exit by inputting the following character sequences:

%cQ : Quit but leave the AREMOTE server running.

%cK : Exit and stop the AREMOTE server.

Other special client commands include the following:

%cM : Send a message to the AREMOTE server.

%cP : Show a popup on the AREMOTE server.

%cS : Report the status of the AREMOTE server.

%cH : Provide help describing these special client commands.

See Also
Other Resources
CPI-C Samples

 Cmd [TPName] [Modename] [Color] [Color]

https://msdn.microsoft.com/en-us/library/aa771051(v=bts.10).aspx

LUA Samples
The source code for several sample programs that illustrate using logical unit application (LUA) are included in the Host
Integration Server 2009 SDK.

These files are copied to your hard drive during Host Integration Server software or Host Integration Client software
installation when the Host Integration Server Software Development Kit option is selected. These samples are installed in the
Samples\SNA subdirectory below where the Host Integration Server SDK software is installed (C:\Program Files\Microsoft
Host Integration Server \SDK\Samples\NetworkIntegration\LUA, by default).

These sample programs include the following files.

Sample transacti
on program (TP)

Description

RUI3270 Sample code for a simple emulator based on using the Request Unit Interface (RUI) API. Sample code is pr
ovided for Win32 applications. This sample is located in the LUA\RUI3270 folder on the CD.

SLI3270 Sample code for a simple emulator based on using the Session Level Interface (SLI) API. Sample code is pr
ovided for Win32 applications. This sample is located in the LUA\SLI3270 folder on the CD.

These samples show how to build a simple 3270 emulator using either the RUI or SLI API. This emulator does not interpret the
data it receives from the host, but does demonstrate how to use the APIs to establish a session with the host.

In This Section

Building the LUA Samples

Specifying a File Name for Table G for Code Conversion

Code Samples Using the RUI API

Code Samples Using the SLI API

Reference

LUA Programmer's Reference.

Related Sections

LUA Programmer's Guide.

See Also
Other Resources
Network Integration Samples

https://msdn.microsoft.com/en-us/library/aa705028(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa772076(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa705020(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704979(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745364(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770687(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx

Building the LUA Samples
The logical unit application (LUA) samples are designed to be built using Microsoft Visual C++ 6.0 or later using the
command-line compiler, or using Microsoft Visual Studio .NET 2003 or later.

To build the LUA samples, set the environment variables listed in the following table.

Variable Description

ISVLIBS The directory containing the Host Integration Server 2009 LIB files for Microsoft Windows Server 2003 or Windo
ws 2000 Server.

ISVINCS The directory containing the Host Integration Server 2009 header files.

SAMPLERO
OT

The root directory where the sample code provided as part of the software development kit (SDK) has been install
ed on a local hard disk.

For example, if you installed the Host Integration Server SDK directory to the default location (C:\Program Files\Microsoft
Host Integration Server\SDK), use the following lines to set the variables (assumes Intel binaries are being produced for
Windows Server 2003 or Windows 2000):

To build a specific sample (the Win32 version of RUI3270, for example) using Visual Studio, open the appropriate Visual C++
project file (SNA\RUI3270\Win32\NRUI3270.vcproj, for example) from the File menu. Select a configuration and build the
sample from the Build menu. Each project file has two configurations, one for a DEBUG build and one for a RETAIL build.

See Also
Other Resources
LUA Samples

ISVLIBS=C:\Program Files\Microsoft Host Integration Server \SDK\LIB
ISVINCS=C:\Program Files\Microsoft Host Integration Server \SDK\Include
SAMPLEROOT=C:\Program Files\Microsoft Host Integration Server \SDK\Samples\SNA

https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx

Specifying a File Name for Table G for Code Conversion
The sample emulators use a user-defined table referred to as Table G in Host Integration Server 2009 for converting between
ASCII and EBCDIC characters. The sample applications require that the file name of this table be specified. Use the COMTBLG
registry or create a COMTBLG environment variable to specify the file name. The registry entry is described in the sections on
Host Integration Server Client Binary Setup.

A sample Table G file, COMTBLG.DAT, is installed with Host Integration Server in the SYSTEM subdirectory below the root
directory where the product is installed. The default location where Host Integration Server is installed is the following:

C:\Program Files\Microsoft Host Integration Server

To use this COMTBLG.DAT file, copy it to the client computers where the sample programs will be run, and specify the file
name using the COMTBLG environment variable or the registry entry.

See Also
Other Resources
LUA Samples

https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx

Code Samples Using the RUI API
The following files located under the LUA\RUI3270 folder can be used to build simple 3270 emulators using the Request Unit
Interface (RUI) API. Study the comments in the .C files for information about how to run the emulators.

File name API u
sed

Type of file Target operating system

RUI3270.C RUI Source code for RUI3270.EXE Microsoft® Windows Server™ 2003 or Wind
ows® 2000 Server

Win32\NRUI32
70.MAK

RUI Makefile Windows Server 2003 or Windows 2000

Win32\RUIINC.
C

RUI Source code that #includes RUI3270.c to build a Win32 v
ersion of WRUI3270.EXE

Windows Server 2003 or Windows 2000

Win32\WRUI32
70.RC

RUI Resource definition file Windows Server 2003 or Windows 2000

See Also
Other Resources
LUA Samples

https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx

Code Samples Using the SLI API
The following files located under the LUA\SLI3270 folder can be used to build simple 3270 emulators using the Session Level
Interface (SLI) API. Study the comments in the .C files for information about how to run the emulators.

File name API u
sed

Type of file Target operating system

SLI3270.C SLI Source code for SLI3270.EXE Microsoft® Windows Server™ 2003 or Wind
ows® 2000 Server

Win32\NSLI327
0.MAK

SLI Makefile Windows Server 2003 or Windows 2000

Win32\SLIINC.C SLI Source code that #includes SLI3270.c to build a Win32
version of SLI3270.EXE

Windows Server 2003 or Windows 2000

Win32\WSLI32
70.RC

SLI Resource definition file Windows Server 2003 or Windows 2000

See Also
Other Resources
LUA Samples

https://msdn.microsoft.com/en-us/library/aa754742(v=bts.10).aspx

SNA Print Server Data Filter Samples
The PrintServer sample illustrates features of the SNA Print Server Data Filter API. These features can be used to extend the
capabilities of the Host Print Service in Host Integration Server 2009. The sample code illustrates how to write a print data filter
dynamic-link library (DLL) that will be called by Host Print Service when a print job is initiated, when data is sent to the printer,
and when the print job is completed.

Location in the SDK

<installation directory>\Program Files\<version>\SDK\Samples\NetworkIntegration\PrinServer

File Inventory
File(s) Description

In the /PrintServer/PrintDefFi
le directory

Hplj2.pdf

The sample file to print

In the /PrintServer/PrnFltr dir
ectory

Makefile

NTFilter.c

NTFilter.Def

NtFilter.h

NTFilter.Mdp

NTFilter.rc

Prntfltr.sln

Prntfltr.vcproj

The sample application an related files, The sample program written in C that illustrates use of t
he SNA Print Server Data Filter API.

Also includes an include file with function defines, a resource file, a command-line makefile, and
a project file.

How to Use the Sample

The PrnFltr sample is designed to be built using Visual Studio .NET 2003 or later.

To build the PrnFltr sample using the command-line compiler

1. Open a command prompt window

2. Run VSVARS32.bat from the Visual Studio bin directory

by default, the location is C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\Tools

3. Navigate to \PrintServer\PrnFlter subdirectory, and invoke NMAKE

To build the PrnFltr sample using Visual Studio

1. open the appropriate Visual C++ project file (PrintServer\PrnFltr\ntfilter.vcproj) from the File menu.

2. Select a configuration and build the sample from the Build menu.

Each project file has two configurations, one for a DEBUG build and one for a RETAIL build.

See Also
Other Resources
Network Integration Samples
SNA Print Server Data Filter Programmer's Reference
SNA Print Server Data Filter Programmer's Guide

https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771497(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa753887(v=bts.10).aspx

Session Integrator Samples
This section contains descriptions of the sample applications that describe the basic capabilities of the Session Integrator
technology,

In This Section

3270NET Sample

LU0NET Sample

Reference

Microsoft.HostIntegration.SNA.Session

Session Integrator Programmer's Reference

Related Sections

Session Integrator Programmer's Guide

See Also
Other Resources
Network Integration Samples

https://msdn.microsoft.com/en-us/library/aa745614(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa770481(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745583(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa745442(v=bts.10).aspx

3270NET Sample
The 3270Net sample shows how to create a 3270 session using a .NET application.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\NetworkIntegration\SessionIntegrator\3270Net

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /3270Net folder

3270LogonScriptReadme.txt

3270TutorialSolution.sln

Contains the solution file. Also contains the readme, which has detailed instructions for se
tting up and deploying the application

In the /3270Net/LogonScriptClient f
older

Form1.cs

Form1.Designer.cs

Form1.resx

LogonClient.csproj

LogonClient.sln

Program.cs

Contains the primary files for the application.

In the /3270Net/LogonScriptClient/
Properties folder

AssemblyInfo.cs

Resources.Designer.cs

Resources.resx

Settings.Designer.cs

Settings.settings

Contains the assembly and resources for the sample.

See Also
Reference
Microsoft.HostIntegration.SNA.Session
Other Resources
Session Integrator Programmer's Guide
Session Integrator Samples

https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704991(v=bts.10).aspx

LU0NET Sample
The LU0NET sample shows how to create a LU0 session using a .NET application.

Location in SDK

<installation directory>:\Program Files\Microsoft Host Integration
Server\SDK\Samples\NetworkIntegration\SessionIntegrator\LU0

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

In the /LU0 folder

LU0LogonScriptReadme.txt

LU0TutorialSolution.sln

Contains the solution file. Also contains the readme, which has detailed instructions for setti
ng up and deploying the application

In the /LU0/LogonScriptClient fol
der

Form1.cs

Form1.Designer.cs

Form1.resx

LogonClient.csproj

LogonClient.sln

Program.cs

Contains the primary files for the application.

In the /LU0/LogonScriptClient/Pr
operties folder

AssemblyInfo.cs

Resources.Designer.cs

Resources.resx

Settings.Designer.cs

Settings.settings

Contains the assembly and resources for the sample.

See Also
Reference
Microsoft.HostIntegration.SNA.Session
Other Resources
Session Integrator Programmer's Guide
Session Integrator Samples

https://msdn.microsoft.com/en-us/library/aa771386(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa754745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704991(v=bts.10).aspx

Single Sign-On Samples
This section of the Host Integration Server 2009 Developer's Guide describes the sample applications that implement Single
Sign-On programming technology.

In This Section

Loopback Adapter Sample

Reference

Microsoft.EnterpriseSingleSignOn.Interop

https://msdn.microsoft.com/en-us/library/aa746249(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa704815(v=bts.10).aspx

Loopback Adapter Sample
The Loopback Adapter sample is a password sync adapter for Enterprise Single-Sign on (ENTSSO) implemented as a windows
NT service written in C#. The sample demonstrates how to use the SSOPSHelper COM component and the ISSOPSWrapper
interface to develop a password sync adapter in managed code.

Location in the SDK

<drive>\Program Files\Common Files\Enterprise Single Sign-On\SDK\Samples\LoopbackAdapter

File Inventory

The following table shows the files in the sample and describes their purpose.

File(s) Description

AssemblyInfo.
cs

Contains the assembly information for the project.

Createadapte
r_LoopbackA
dapter.xml

Used with the ssops command-line tool to create the prototype adapter.

LoopbackAda
pter.cs

LoopbackAda
pter.csproj

LoopbackAda
pter.Designer.
cs

LoopbackAda
pter.resx

Contains the sample code for crating the Loopback adapter.

LoopbackAda
pter.sln

Organizes all the projects, project items, and solution items into the Loopback Solution by providing the environ
ment with references to their locations on disk. Use Visual Studio to view this file, or double-click the file to start
Visual Studio 2005 and displays the solution in Solution Explorer.

LoopbackAda
pter.suo

Records all of the options associated with the Loopback Adapter Solution so that each time you open it, it includ
es customizations that you have made.

ProjectInstalle
r.cs

ProjectInstalle
r.Designer.cs

ProjectInstalle
r.resx

Contains the sample code for the project installer.

Properties_Lo
opbackAdapt
er.xml

Property definitions for the Loopback Adapter.

Program.cs Contains the basic framework of the application.

README.txt Shows the steps to build and run the application.

See Also
Other Resources
Single Sign-On Samples

https://msdn.microsoft.com/en-us/library/aa705232(v=bts.10).aspx

Creating a Single Sign-On Application

https://msdn.microsoft.com/en-us/library/aa771662(v=bts.10).aspx

	Cover Page
	Host Integration Server 2009
	Microsoft Host Integration Server
	Microsoft Host Integration Server
	Getting Started
	What's New for 2009
	BizTalk Adapters
	Transaction Integrator
	Security Integration
	Data Integration
	Network Integration
	Messaging
	Software Development Kit
	Community Resources

	Planning and Architecture
	Planning
	Planning Your Hardware
	Variables Affecting Hardware
	Estimating Hardware Demands
	Best Practices

	Planning 3270 Connectivity
	3270 Access
	Deployment Strategies
	Using LU Pools
	Assigning LUs to Workstations
	Providing Hot Backup and Load Balancing

	TN3270 Access
	Deployment Strategies
	Setting Port Numbers
	Deploying Hot Backup and Load Balancing
	Assigning LUs to an IP Address

	Downstream Connections
	Deployment Strategies

	Planning APPC Connectivity
	Understanding Peer-to-Peer Networking
	Understanding CPI-C

	APPC Applications
	5250 Access
	TN5250 Access

	APPC Deployment Strategies
	Using Independent APPC LUs
	Using Dependent APPC LUs
	Choosing Modes
	Using LU Pools
	Configuring LUs
	Providing Hot Backup
	Choosing IP Settings
	Host Integration Server (SNA) Remote Access Service
	Deployment Strategies

	Planning for Transaction Integrator
	Communication Models

	Transaction Integrator Architecture
	Online Transaction Processing
	CICS Components
	IMS Components
	Two-Phase Commit
	Windows Transactions vs. Mainframe Transactions

	Transaction Integrator Basic Functions
	Managing Data Input/Output
	Data Type Conversion
	Tabular Data Definition
	Code Page Translation

	Transaction Integrator Components
	TI Designer
	TI Manager
	TI Runtime

	Programming Models
	TCP Transaction Request Message Link
	TCP Enhanced Listener Message Link
	TCP Transaction Request Message User Data
	TCP Enhanced Listener Message User Data
	IMS Connect
	IMS Implicit
	IMS Explicit
	OS/400 Distributed Program Calls
	CICS LU6.2 Link
	CICS LU6.2 User Data
	IMS LU6.2 User Data
	Choosing the Appropriate Programming Model
	Supported Data Flow Models
	Non-transactional Data Flows That Support Bounded Recordsets
	Non-transactional Data Flows That Support Unbounded Recordsets
	Transactional Data Flows That Support Bounded Recordsets
	Transactional Data Flows That Support Unbounded Recordsets

	Iterative vs. Concurrent TCP/IP Models
	Iterative Model
	Concurrent Model

	Host-Initiated Processing
	Windows-Initiated Processing
	What WIP Does
	How TI Associates a Method with a TP
	How TI Enables TPs to Return Exceptions

	WIP Programming Model
	Supported Conversational Model
	TPs with Explicit SYNCPOINT Commands
	Support for Transactions and Two-Phase Commit

	Providing a Fail-Safe Environment for ACID Transactions
	Using TI in a Non-DPL Environment

	Security and Protection
	Understanding Windows Security
	Security Overview
	File System Choices and Security
	Securing Host Integration Server 2009 Files and Directories
	Authentication
	Domain Authentication
	Workstation Authentication
	Client Logon
	Denying Access to Host Integration Server
	Security Audit
	Viewing and Interpreting Audited Events
	Firewall Support Overview
	Screening Routers and Internet Firewalls
	Data Encryption

	Maximizing Product Security
	Resource Security
	3270 Terminal Access
	5250 Terminal Access and APPC Access
	Securing the TN3270 and TN5250 Services

	Transaction Integrator Security
	Application-Level Security
	User-Level Security
	Single Sign-On in Transaction Integrator
	Special Security Settings for TCP/IP
	Mainframe Authentication for CICS LINK
	AS/400 Security
	Limitations of User Access Level Sign On
	Transaction Integrator Threat Mitigation
	Protect the MSHIS60_HIP Database and SQL Server Stored Procedures
	Protect the TI DCGen COM+ Application and TCP/IP Listeners
	Protect the COM+ and .NET Servers
	Protect the Raw User Data
	Protect the HIP Listener
	Protect the Local File System, Database, and Registry
	Protect the Client Proxy
	Protect the Remoting Session
	Protect TI from Unauthorized Mainframe or AS/400 Access
	Protect the TI Runtime Environment
	Protect Mainframe Security Credentials from Being Overridden
	Protect the TI Runtime and Host Environments from Data Overflows

	Deployment
	Installation Guide
	Deploying Host Integration Server
	Deployment Overview
	SNA Open Gateway Architecture
	Deploying Host Integration Server 2009

	Connecting Servers
	Connection Methods
	802.2 Data Link Control (DLC)
	Synchronous Data Link Control (SDLC)
	Channel

	Choosing Server-to-Host Connections
	Mainframe Connection Summary
	AS/400 Connection Summary

	Choosing Network Protocols for Host Integration Server
	Choosing Client/Server Network Protocols
	Choosing Server/Server Network Protocols

	Installing Host Integration Server 2009 Clients

	Understanding Connectivity
	Host Integration Server 3270 Connectivity
	LUA Access
	Precedence of Accounts in Determining LU Access
	Downstream Connections

	Host Integration Server 5250 (AS/400) Connectivity
	APPC
	Connecting to an AS/400 Using 5250 Terminals
	Using Wizards

	Independent APPC LUs
	Dependent APPC LUs
	Configuring Dependent LUs

	APPC Mode Definition
	Implicit Incoming Remote LU and Implicit Incoming Mode
	Default Local APPC LU and the Default Remote APPC LU
	Default Outgoing Local APPC LU Pool
	Single-System APPC

	CPI-C Access
	Transaction Programs
	TP Name Unique for Each TP
	TP Name Not Unique; Local LU Alias Unique
	TP Name Not Unique; Local LU Alias Unspecified
	Invoking Transaction Programs
	Invoking TPs and Host Integration Server Configuration
	Invokable Transaction Programs
	Invokable TPs and the Host Integration Server Configuration

	APPC Security
	Optimizing Communications
	APPC Mode
	Notes Section

	Making and Testing a Connection
	Important Connection Information
	Making a Connection
	Items to Consider for a Successful Connection
	Verifying Host Connection Information
	Verifying Operating System Connection Information
	Verifying Host Integration Server Information

	Important Configuration Information
	Using SNA Manager
	How to Open a Subdomain
	How to Configure Server Properties
	How to Configure SNA Service Properties

	Step 1 (L) Creating and Configuring Link Services
	Creating Link Services
	How to Create the DLC 802.2 Link Service
	How to Create the 3270 Demonstration
	How to Create the 5250 Demonstration
	How to Create the LU1 Print Demonstration
	How to Create the LU3 Print Demonstration

	Configuring Link Services
	How to Configure the DLC 802.2 Link Service
	How to Configure the 3270 Demonstration
	How to Configure the 5250 Demonstration
	How to Configure the LU1 Print Demonstration
	How to Configure the LU3 Print Demonstration

	Step 2 (C) Creating and Configuring Connections
	Creating Connections
	How to Create a 3270 Connection Using a Wizard
	How to Create a 3270 Connection Manually
	How to Create a 5250 Connection Using a Wizard
	How to Create a 5250 Connection Manually
	How to Create a 5250 Local APPC LU
	How to Create a 5250 Remote APPC LU

	Configuring Connections
	How to Configure a 3270 Connection
	How to Configure a 5250 Connection
	How to Configure a 5250 Local APPC LU
	How to Configure a 5250 Remote APPC LU

	Step 3 (LU) Creating and Configuring 3270 LUs
	Creating LUs
	How to Create a 3270 Display LU
	How to Create a 3270 Printer LU
	How to Create a 3270 Application LU (LUA)
	How to Create a 3270 Downstream LU
	How to Create a Local APPC LU
	How to Create a Remote APPC LU

	Configuring LUs
	How to Configure a 3270 Display LU
	How to Configure a 3270 Printer LU
	How to Configure a 3270 Application LU (LUA)
	How to Configure a 3270 Downstream LU
	How to Configure a Local APPC LU
	How to Configure a Remote APPC LU

	Step 4 (A) Adding and Assigning Users
	How to Add New Users
	How to Assign LUs to Configured Users
	How to Assign Remote APPC LUs to Configured Users

	Testing Connections
	Testing Connections with the 3270 Client
	How to Run the 3270 Client
	How to Configure the 3270 Client
	How to Run the 3270 Client Demonstration

	Testing Connections with the 5250 Client
	How to Run the 5250 Client
	How to Configure the 5250 Client
	How to Run the 5250 Client Demonstration

	Configuring Your Enterprise
	Creating and Configuring Link Services
	Creating and Configuring Connections
	Service Connection Point
	Creating and Configuring LUs
	How to Configure a Range of 3270 LUs
	How to Create LU Pools
	How to Assign LUs to Workstations
	How to Associate 3270 Printer LUs with 3270 Display LUs
	How to Configure Downstream Connections
	How to Reorder Downstream LUs
	How to Configure APPC LUs for TPs or 5250 Emulation
	Precedence of Accounts in Determining Default LUs

	User Management

	Operations
	BizTalk Adapters
	BizTalk Adapter for DB2
	Installation Components
	How to Create a Send Port for the DB2 Adapter
	How to Create a Receive Port and a Receive Location for the DB2 Adapter
	How to Create a Schema for the DB2 Adapter
	How to Create a BizTalk Application Using the DB2 Adapter

	BizTalk Adapter for Host Files
	Installation Components
	How to Create a Metadata Assembly for the Host File Adapter
	How to Create a Send Port for the Host File Adapter
	How to Create a Receive Port and a Receive Location for the Host File Adapter
	How to Create a Schema for the Host File Adapter
	How to Create a BizTalk Application for the Host File Adapter

	BizTalk Adapter for Host Applications
	Installation Components
	How to Configure SSO for the Host Application Adapter
	How to Create a Send Port for the Host Application Adapter
	Creating an Application for the BizTalk Adapter for Host Applications
	Mainframe Setup
	How to Create a Visual Studio Solution
	How to Create a Transaction Integrator Project and Interface Definition
	How to use a Client Context with the BizTalk Adapter for Host Applications
	How to Create a BizTalk Project
	Creating a BizTalk Application
	How to Associate the Interface Definition with the Mainframe Environment
	How to Export the Schema
	How to Create a BizTalk Server Export Package

	How to Deploy the BizTalk Server Application

	BizTalk Adapter for WebSphere MQ
	MQSC Adapter Features
	How to Install the MQSC Adapter
	How to Add the MQSC Adapter to a BizTalk Server Installation
	How to Configure a Send Port for the MQSC Adapter
	How to Configure a Receive Port and a Receive Location for the MQSC Adapter
	How to Configure a Client Channel Definition File
	How to Configure the MQSC Adapter for Transactional Messaging
	How to Configure SSL for the MQSC Adapter
	MQSC Adapter Schema

	Data Integration User's Guide
	Data Access Tool
	How to Edit a Configuration
	How to Display an Initialization String
	How to Test a Connection
	How to Create Packages
	How to Run a Sample Query
	How to Convert Data Sources
	How to Add a Table
	How to Create a New Data Source or Data Description
	How to Open a File
	How to Import a File
	Other Tasks

	Data Access
	OLE DB Provider for AS/400 and VSAM
	Data Description for AS/400 and VSAM

	OLE DB Provider for DB2
	How to Browse OLE DB Data Sources
	How to Create Packages for DB2
	Create Package Utility

	ODBC Driver for DB2
	How to Add an ODBC Data Source
	How to Create Packages for DB2
	Create Package Utility

	File Transfer
	Host File Transfer
	Data Description

	How to Add or Configure a Data Link for Windows

	Network Integration User's Guide
	IP-DLC Link Service
	Introduction to the IP-DLC Link Service
	System Overview
	Supported Features
	Scalability
	Key Limitations
	IP-DLC Link Service Concepts and Terminology

	Managing IP-DLC Link Services
	Creating an IP-DLC Link Service
	Viewing Link Services
	Viewing Link Service Properties
	Deleting Link Services
	Link Service and the LnkCfg Utility

	Managing IP-DLC Link Service Connections
	Creating an IP-DLC Connection
	Viewing Connections
	Viewing Connection Properties
	Defining Dependent LUs
	Connections and the SnaCfg Utility

	Secure Deployment of the IP-DLC Link Service

	SNA Service
	Communication Between Host Integration Server Computers and a Host Computer
	Physical Unit (PU)
	Logical Unit (LU)
	Choosing a Connection Type

	Communication Between Multiple Host Integration Server Computers
	Configuring a Server Broadcast

	Communication Between Host Integration Server Computers and Client Computers
	Host Integration Server Client and SNA Communications

	Host Print Service
	Using Host Print Services
	Mainframe Printing
	LU 3 Printing
	LU 1 Printing

	Configuring Host Print Service
	AS/400 (APPC) Printing
	How to Configure Host Print Service for an AS/400 Computer
	Custom Host Code Page
	Formatting Print Jobs
	Transparency

	Printer Definition Files
	Creating the Source Text File
	Macro Definition Section
	Parameter Definition Section
	Sample Source Text File
	Compiling the Source Text File

	TN Service
	TN3270
	IP Settings
	Administering TN3270
	TN3270 and Single Sign-On
	TN3270 Configuration
	Managing Certificates
	Server Authentication
	Client Authentication
	Obtaining and Creating Certificates

	Configuring Certificates
	Switching on Security and Changing Certificates
	Changing the Default Values of the Security Parameters
	Changing the Default Server Authentication Certificate Common Name (CN)

	TN5250
	TN5250 Administration

	Active Directory Services
	How Host Integration Server Uses Active Directory
	How to Configure Active Directory During Host Integration Server Installation
	Host Integration Server Active Directory Administration

	Host Configuration
	Mainframe Connections Using XIDs
	Mainframe Connections Not Using XIDs
	AS/400 Connections
	Configuring VTAM for 3270 Access
	802.2 Connection Parameters
	SDLC Connection Parameters
	X.25 Connection Parameters
	Sample VTAM Parameters
	Sample VTAM Parameters for a Token Ring Connection
	Sample VTAM Parameters Including CPNAME
	Sample VTAM Parameters for Independent APPC

	Configuring VTAM for APPC Access
	Sample CICS Configuration Screens for Use with APPC
	Configuring NCP for Independent APPC
	Configuring the AS/400 for 5250 Access
	Table of Parameters for AS/400 Communication

	Applications and Tools
	Network Management Support
	How to Manage the SNA Environment Using NetView
	NVAlert.ini File
	Sending Commands to Host Integration Server from the Mainframe

	Monitoring Mainframe Response Times
	Configuring RTM in Host Integration Server
	How to Configure Response Time Monitor (RTM)
	Defining RTM Thresholds
	Specifying When RTM Data is Sent
	Indicating Lost RTM Data

	Additional Information About NetView and RTM

	Using the SNA Trace Utility
	Using the SNA Trace Utility
	SNA Trace Utility
	System Troubleshooting
	Trace and Diagnostic File Location
	Trace File Names
	Choosing a Trace Type
	Trace Types
	Message Traces
	Interpreting Traces
	Using Trace to Diagnose Problems

	Running the SNA Trace Utility
	Starting the SNA Trace Utility
	How to Start the SNA Trace Utility from the SNA Manager
	How to Start the SNA Trace Utility from the Start Menu
	How to Start the SNA Trace Utility from a Command Prompt

	Tracing Servers Components
	Selecting Components to Trace
	Tracing SNA APIs
	Tracing SnaBase
	Tracing PU 2.1 Node
	Tracing Link Services
	Tracing for TN3270
	Tracing for TN5250

	Status and Performance Tools
	Status and Performance Information
	Status and Performance
	Optimizing Performance
	Network Considerations
	Network Analyzer

	Host Integration Server Status
	Status Information
	Server Status
	Connection Status
	Non-APPC LU Status
	APPC LU Status
	Print Session Status

	Windows Utilities
	Windows Event Viewer
	Event Viewer
	How to Start Event Viewer
	How to Change Event Viewer Settings
	How to Save Event Logs
	How to Clear Event Logs
	How to Select Computers in Event Viewer
	How to Filter Events
	How to Find Events

	Setting Audit Policy
	Audit Policies
	How to Set Audit Policy

	System Monitor
	System Monitor Overview
	Useful Performance Counters
	Performance Counters on Transaction Integrator
	Maximizing Communications Throughput
	How to Start System Monitor
	How to Configure System Monitor
	How to Save Performance Data

	Performance Tuning
	How to Boost Application Performance with Windows
	How to Balance System Performance with Windows

	Messaging User's Guide
	Using MSMQ-MQSeries Bridge
	MSMQ-MQSeries Bridge Overview
	MSMQ-MQSeries Bridge Operation
	MSMQ-MQSeries Bridge Benefits
	Message Queuing and MQSeries Features
	Reference Material

	How MSMQ-MQSeries Bridge Works
	MSMQ-MQSeries Bridge Concepts
	Message Queuing Concepts
	Message Fields or Properties
	Sending and Receiving Messages
	System Components
	Message Conversion
	Network Architecture
	Multiple Connections
	Sending Messages From Message Queuing to MQSeries
	Sending Messages From MQSeries to Message Queuing
	Transactional and Nontransactional Message Pipes

	MSMQ-MQSeries Bridge Setup and Configuration
	MSMQ-MQSeries Bridge Setup Requirements
	MSMQ-MQSeries Bridge Minimal Configuration
	Where You Work When Installing MSMQ-MQSeries Bridge
	Gathering Required Information

	MSMQ-MQSeries Bridge Prerequisites
	MSMQ-MQSeries Bridge Platforms
	Prerequisites for Computers Running Windows Server 2003 or Windows 2000
	Prerequisites for MQSeries Computers

	MSMQ-MQSeries Bridge Properties
	Before Adding a Connected Network
	How to Add a Connected Network
	How to Delete a Connected Network
	How to Set Connected Network Properties
	How to Set Message Pipe Properties

	Naming Message Queuing and MQSeries Entities
	Message Queuing Names
	MQSeries Names

	Installing and Configuring MSMQ-MQSeries Bridge
	How to Install the MSMQ-MQSeries Bridge Software
	Transport Considerations
	Configuring MSMQ-MQSeries Bridge on Windows Server 2003 or Windows 2000
	How to Define a Foreign Site in Windows Server 2003 or Windows 2000
	How to Add a Foreign Computer Representing MQSeries in Windows Server 2003 or Windows 2000
	How to Set the Foreign Site Permission in Windows Server 2003 or Windows 2000
	How to Create a Foreign Queue in Windows Server 2003 or Windows 2000
	How to Add the Connected Network
	How to Disable the Message Pipes
	How to Export an MQSeries Server Definition File
	How to Export an MQSeries Client Definition File
	How to Run the MQSeries Server Definition File
	How to Run the MQSeries Client Definition File
	How to Configure the MQSeries Client

	Testing the Installation
	Creating the Test Queues
	How to Test the MQSeries Client Definitions
	How to Start MSMQ-MQSeries Bridge
	How to Send Test Messages from Message Queuing to MQSeries
	How to Send Test Messages from MQSeries to Message Queuing

	Typical Configuration
	Typical Configuration Diagram
	Typical Configuration Settings

	MSMQ-MQSeries Bridge Manager
	MSMQ-MQSeries Bridge Manager Overview
	MSMQ-MQSeries Bridge Manager Display
	MSMQ-MQSeries Bridge Manager Properties
	Icons for MSMQ-MQSeries Bridge Manager Objects
	Column Display Options for MSMQ-MQSeries Bridge Manager
	MSMQ-MQSeries Bridge Display
	Connected Network Display
	Message Pipe Display
	How to Customize the Column Display
	Shortcut Menu in MSMQ-MQSeries Bridge Manager
	Status Bar

	Controlling MSMQ-MQSeries Bridge
	Starting, Stopping, or Pausing an Object
	Refreshing the Cache
	Configuration Backup
	Additional Information About MSMQ-MQSeries Bridge
	Using a Dash (-) in Message Queuing Computer Names
	Using a Dot (.) in Remote MQSeries Queue Manager Names on Windows Server 2003 or Windows 2000
	MSMQ-MQSeries Bridge Dead Letter Queue
	Notes on the Current Release of MSMQ-MQSeries Bridge
	MSMQ-MQSeries Bridge Terminology

	Security User's Guide
	Understanding Enterprise Single Sign-On
	Enterprise Single Sign-On User Groups
	SSO Components
	SSO Server
	Master Secret Server
	SSO Affiliate Applications
	SSO Mappings
	SSO Tickets
	Configuring Enterprise Single Sign-On

	Installing Enterprise Single Sign-On
	Upgrading from Host Integration Server 2000 or SNA Server 4.0
	Back up the Existing Security Data
	Export the Encryption Key
	Install Enterprise Single Sign-On
	Copy the Migration Utility to the Master Secret Server
	Run the Migration Utility

	Upgrading from an Earlier Version of SSO
	Using Host-Initiated SSO functionality in Enterprise Single Sign-On
	Processing Servers for Enterprise Single Sign-On

	Standard Installation Options
	How to Install the Enterprise Single Sign-On Administration Component
	How to Install the Enterprise Single Sign-On Client Utility

	High-Availability Installation Options
	How to Cluster the Master Secret Server
	How to Cluster the SQL Server
	How to Configure Enterprise Single Sign-On in a Multicomputer Scenario

	How to Remove Enterprise Single Sign-On

	Using Enterprise Single Sign-On
	How to Configure SSO Using the Configuration Wizard
	How to Set the Enterprise Single Sign-On Server
	How to Enable Enterprise Single Sign-On
	How to Change the Master Secret Server
	How to Disable Enterprise Single Sign-On
	How to Update the Credential Database
	How to Display the Credential Database Information
	How to Configure the Enterprise Single Sign-On Tickets
	How to Audit Enterprise Single Sign-On
	How to Enable SSL for Enterprise Single Sign-On
	Managing the Master Secret
	How to Generate the Master Secret
	How to Back Up the Master Secret
	How to Restore the Master Secret

	Specifying Single Sign-On Administrators and Affiliate Administrators Accounts
	Managing Affiliate Applications
	How to Create an Affiliate Application
	How to Delete an Affiliate Application
	How to Update the Properties of an Affiliate Application
	How to Enable an Affiliate Application
	How to Disable an Affiliate Application
	How to List Affiliate Applications
	How to List the Properties of an Affiliate Application
	How to Clear the Application Cache
	How to Set the Enterprise SSO Server Using the Client Utility
	How to Display the Enterprise SSO Server Using the Client Utility
	How to Set Credentials for the Affiliate Application Using the Client Utility

	Managing User Mappings
	How to List User Mappings
	How to Create User Mappings
	How to Delete User Mappings
	How to Set Credentials for a User Mapping
	How to Enable a User Mapping
	How to Disable a User Mapping

	Host Initiated Single Sign-On
	Configuration Requirements for Host Initiated SSO
	Enabling and Disabling Host Initiated SSO
	Creating Affiliate Applications for Host Initiated SSO
	Validating Passwords for Host Initiated SSO
	Managing User Mappings for Host Initiated SSO
	Troubleshooting Host Initiated SSO

	How to Use the ENTSSO Management Agent
	How to Configure the XML File
	How to Configure MIIS for ENTSSO MA
	How to Configure ENTSSO for MIIS Password Sync

	How to Use the Servers Snap-In
	How to Use Direct Password Sync
	How to Use the Mapping Wizard
	How to Use Password Filters

	Secure Deployment of Enterprise Single Sign-On
	Deployment Overview
	Deployment Process

	Password Synchronization
	Installing Password Synchronization
	Administering Password Synchronization
	Configuring Password Synchronization
	Managing Password Synchronization

	SSO Security Recommendations

	Transaction Integrator User's Guide
	Getting Started with TI
	Remotely Administering Transaction Integrator
	Transaction Integrator Manager Console

	Using Windows-Initiated Processing
	Where to Begin
	Learning the Basics
	How to Create a Remote Environment
	Creating TI Components
	How to Deploy a TI Component
	Testing a TI Automation Server

	Creating a Remote Environment
	Windows-Initiated Processing Console
	Remote Environments
	Objects
	Relationships

	Starting the New Remote Environment Wizard
	How to View All Remote Environments
	Adding a Remote Environment

	Creating an Object
	Viewing All Objects

	Creating and Managing Remote Environments Using TI Manager
	How to Start TI Manager
	How to Define an SNA CICS or SNA IMS Remote Environment
	How to Define a Transactional SNA CICS or SNA IMS Remote Environment
	Specifying SNA Attributes for Remote Environments
	How to Assign a TI Component to a Remote Environment
	Working with Unassigned Components
	How to Set a Default Remote Environment
	How to Move a TI Component to Another Remote Environment
	How to Locate a TI Component
	How to Activate or Deactivate a Remote Environment
	How to Delete a TI Component from a Remote Environment
	How to Delete a Remote Environment
	How to Set or View Remote Environment Properties
	Supporting Two-Phase Commit in a Remote Environment

	Managing Transaction Integrator with TI Manager
	How to Add or Remove TI Manager for a Remote Computer
	How to Create Multiple Views of a Single TI Manager Console
	Refreshing the TI Manager Display

	Creating and Managing TI Components
	Reserved Words
	How to Create a New TI Component
	How to Import a TI Component
	How to Import COBOL into a TI Component
	How to Export COBOL from a TI Component
	Adding TI Components to COM+ Applications
	How to Remove a TI Component from a COM+ Application
	How to Set or View Component Properties
	How to Set a TI Component's Transaction Property
	Managing TI Calls Using Status and Timeout Properties
	How to Print a Component Description

	How to Run TI Over TCP/IP
	Configuring CICS for TCP/IP
	Configuring IMS for TCP/IP
	Defining a TCP/IP Remote Environment

	How to Run TI over SNA (APPC/LU 6.2)
	Defining an SNA Remote Environment
	Meeting Specific Real-World Needs
	Determining Who Initiated a Transaction
	Providing a Fail-Safe Environment for ACID Transactions
	Using TI in a Non-DPL Environment

	Using Host-Initiated Processing
	Creating a Local Environment
	Creating a Host Environment
	Creating a Security Policy
	Defining New Objects
	Creating an Object View
	How to Modify Objects
	Creating a New Application

	Transaction Integrator Performance Guide
	Major Elements Affecting Overall Performance
	Host Internal Response Time
	External Computer Response Time
	Network Delay
	True User Response Time

	Performance Monitoring Counters
	How to Add TI Performance Counters to Windows 2000 System Monitor
	Method Calls per Second
	Average Method Call Time
	Errors Per Second
	Host Response Time
	Bytes Sent Per Second
	Bytes Received Per Second

	Windows Server Tuning
	Adjusting Application Priority
	Reducing Context Switching
	Streamlining Authentication
	How to Optimize Network Throughput in Windows

	SNA Communication Tuning
	LU 6.2 Contention Winner Limit
	Pre-Activation of the LU 6.2 Sessions
	SNA Link Tuning
	Host (VTAM, CICS or IMS) Response Time

	SNA vs. TCP/IP
	System Sizing
	LAN Throughput
	Escon Channel Throughput
	Windows 2000 Services
	Normal Load
	Preparing for Running in Degrade Mode
	Considering System Growth
	Estimating the System Load

	Load Balancing and Hot Backup
	Host Integration Server Load Balancing
	Web-to-Host Load Balancing
	TI TCP/IP Load Balancing

	Security Implications
	How to Use Optional Explicit-Level Override Authentication
	Level of Security
	Using Host Security Integration
	How to Use Already Verified Authentication
	Mainframe Authentication for CICS LINREs

	Transaction Size vs. Transaction Throughput
	Transaction Size vs. Data Throughput

	Transaction Programs that Run for a Long Time
	Scalability and Long-Running TPs
	Processing Two-Phase Commit Transactions
	Component Services User Thread Pool
	TI 2PC Thread Pool
	SNA Parallel Sessions

	Two-Phase Commit Performance Considerations
	Data Conversion Cost
	ADO Recordsets vs. User-Defined Types in Structured Data Tests
	Remote Environment Selection Using the SelectionHint Property
	Guidelines for Using Remote Environment Selection
	Writing Code that Specifies a Remote Environment
	Cost of Remote Environment Selection

	Performance Improvements in Host Integration Server

	Technical Reference
	Glossary
	UI Help
	Installation Help
	Welcome Screen
	License Agreement Screen
	User Information Screen
	Select Features Screen
	Services Account Screen
	Begin Installation Screen
	Finish Installation Screen

	Configuration Wizard Help
	Common Settings Page
	Advanced Client Page
	Advanced Client Configuration Page
	Network Integration Page
	Network Integration Advanced Page
	Data Integration Page
	Transaction Integrator Page
	Session Integrator Page
	MSMQ-MQSeries Bridge Page
	Start Page
	Overview Page
	Service Accounts Page
	Database Accounts Page
	Service Accounts View
	Database View Page
	Summary Page
	Progress Page
	Finish Page
	Unconfigure Page

	SNA Manager Help
	Link Service Adapter
	Configure a DLC 802.2 Link Service
	Demo SDLC Link Service
	Distributed Link Service Properties
	APPC Mode Properties
	3270 LU Properties: General
	3270 LU Properties: LUA
	3270 LU Properties: Down Stream
	Pool Properties: General
	User Properties
	TN3270 Properties: General
	Connection Properties: SDLC
	Connection Properties: DLC 802.2
	Connection Properties: X.25
	Connection Properties: Channel
	Local LU Properties: General
	Remote LU Properties: General
	Server Configuration Properties
	Server Configuration
	Workstation Properties: General
	TN5250 Properties
	Domain Properties
	AS400 Definition Properties: General
	Active Users
	LUA LU Properties: General
	CPI-C Symbolic Name: General
	CPI-C Symbolic Name: Security Settings
	Host Integration Server 2009 Folder
	SNA Service Folder
	Link Services Folder
	Connections Folder
	Local APPC LUs Folder
	Remote APPC LUs Folder
	Microsoft SNA Manager
	AS/400 Definitions
	Active TN5250 Sessions
	AS/400 Definition Properties
	APPC Modes Folder
	CPI-C Symbolic Names Folder

	Visual Studio Help
	COM Library Nodes
	Library Name Node
	Interface Name Node (COM)
	Method Name Node (COM)
	Parameter Name Node (COM)
	Recordsets Node
	Recordset Name Node
	Recordset Column Name Node
	User-Defined Types Node
	User-Defined Type Name Node
	User-Defined Type Member Name Node

	.NET Framework Library Nodes
	Interface Name Node (.NET)
	Method Name Node (.NET)
	Parameter Name Node (.NET)
	Data Tables Node

	Data Table Name Node
	Data Table Member Name Node
	Structures Node

	Structure Name Node
	Structure Member Name Node

	Wizards and Dialog Boxes (TI Project)
	New COM Server Library Wizard
	Welcome to the New COM Server Library Wizard Page
	Library Wizard Page (COM Server Wizard)
	Host Environment Wizard Page (COM Server Wizard)
	Completing the New COM Server Library Wizard Page

	New COM Client Library Wizard
	Welcome to the New COM Client Library Wizard Page
	Library Wizard Page (COM Client Wizard)
	Remote Environment Wizard Page 1 (COM Client Wizard)
	Remote Environment Wizard Page 2 (for OS400) (COM Client Wizard)
	Remote Environment Wizard Page 2 (for LU 6.2 Link) (COM Client Wizard)
	Completing the New COM Client Library Wizard Page

	New .NET Client Library Wizard
	Welcome to the New .NET Client Library Wizard Page
	Library Wizard Page (.NET Client Wizard)
	Remote Environment Wizard Page 1 (.NET Client Wizard)
	Remote Environment Wizard Page 2 (for OS400) (.NET Client Wizard)
	Remote Environment Wizard Page 2 (for LU 6.2 Link) (.NET Client Wizard)
	Completing the New .NET Client Library Wizard Page

	New .NET Server Library Wizard
	Welcome to the New .NET Server Library Wizard Page
	Library Wizard Page (.NET Server Wizard)
	Host Environment Wizard Page (.NET Server Wizard)
	Completing the New .NET Server Library Wizard Page

	Import COBOL Wizard
	Welcome to the Import COBOL Wizard Page
	Import COBOL Source File Wizard Page
	Item Options Wizard Page
	DFHCOMMAREA Wizard Page
	DFHCOMMAREA Direction Wizard Page
	Input Area Wizard Page
	Output Area Wizard Page
	Return Value Wizard Page
	Recordsets (COBOL) & UDT Wizard Page
	LL Field Wizard Page
	ZZ Field Wizard Page
	TRANCODE Field Wizard Page
	Recordset Columns Wizard Page
	User-Defined Type Members Wizard Page
	Completing the Import COBOL Wizard Page

	Import RPG Wizard
	Welcome to the Import RPG Wizard Page
	Import RPG Source File Wizard Page
	Select Item Wizard Page
	PLIST Direction Wizard Page
	Recordsets and User-Defined Types (RPG) Wizard Page
	Completing the RPG Import Wizard Page

	Properties (TI Project)
	Library Properties
	Interface Properties
	Method Properties
	Parameter Properties
	Recordset Properties
	Recordset Column Properties
	User-Defined Type Properties
	User-Defined Type Member Properties
	Unions Properties
	Union Type Properties
	Union Member Properties

	Name Conflict Dialog Box
	Array Dimension Dialog Box
	Map Remote Environment Class Dialog Box
	Select Convert Prim Dialog Box

	Host Integration Server Designer UI
	Solution Explorer
	Add New Item Dialog Box (Visual Studio)
	New COM Client Library Wizard
	New COM or .NET Server Library Wizard
	Import Library Wizard
	Welcome to the Import COBOL Wizard
	Export Wizard
	HIS Designer Options
	HIS Designer Views
	HIS Designer Menus
	HIS Designer Main Menu
	HIS Designer Shortcut Menus
	Solution Explorer Shortcut Menu
	Library Shortcut Menu
	Interface Shortcut Menu
	Method Shortcut Menu
	Parameter Shortcut Menu
	DataTables Shortcut Menu
	DataTable Shortcut Menu
	DataTable Column Shortcut Menu
	Structures Shortcut Menu
	Structure Shortcut Menu
	Structure Member Shortcut Menu
	Unions Shortcut Menu
	Union Shortcut Menu
	Union Member Shortcut Menu

	Importing RPG

	Discriminant Value Table Dialog Box

	Host File Designer UI
	Add New Item Dialog Box (Host File Designer)
	Welcome to the Host Files Library Wizard
	Host Environment (Host File Designer)
	Completing the Host Files Library Wizard Page
	Import HCD Source File Wizard Page
	Schemas Wizard Page (Host Files Library)
	Solution Explorer (Host File Designer)
	Host File Designer Views
	Host File Designer Menus
	Host File Designer Main Menu
	Host File Designer Shortcut Menus
	Solution Explorer Shortcut Menu (Host File Designer)
	Library Shortcut Menu (Host File Designer)
	Tables Shortcut Menu
	Table Shortcut Menu
	Table Member Shortcut Menu
	Schemas Shortcut Menu
	Schema Shortcut Menu
	Schema Member Shortcut Menu
	Unions Shortcut Menu (Host File Designer)
	Union Shortcut Menu (Host File Designer)
	Union Member Shortcut Menu (Host File Designer)

	Discriminant Value Table Dialog Box (Host File Designer)

	Transaction Integrator Manager Help
	TI Manager Nodes
	Transaction Integrator (mode) Node
	Host-Initiated Processing Node
	Computers Node
	Computer Node
	Application
	Listener
	View Node (listener)
	Local Environments Node
	Local Environment Node
	Host Environments Node
	Host Environment Node
	Security Policies Node
	Security Policy Node
	Objects Node (HIP)
	Object Node (HIP)
	View Node (object)
	Host Environment Associations Listing
	Methods Listing
	Windows-Initiated Processing Node
	Remote Environments Node
	Remote Environment Node
	Objects Node (WIP)
	Object Node (WIP)

	TI Manager Wizards and Dialog Boxes
	New Application Dialog Box
	Credentials for Service <application name> Dialog Box
	New Application Deployment Wizard
	Welcome to the New Application Deployment Wizard Page
	Create an Application Wizard Page
	Configure a New Local Environment Wizard Page
	Configure Local Environment Endpoints (TCP/IP) Wizard Page
	Configure Local Environment Endpoints (SNA) Wizard Page
	Configure a New Host Environment Wizard Page
	Configure Host Environment Default Method Resolution Wizard Page
	Configure a New Security Policy Wizard Page (in the New Application Deployment Wizard) (1)
	Configure a New Security Policy Wizard Page (in the New Application Deployment Wizard) (2)
	Specify or Locate an Object Wizard Page
	Configure a New Object View Wizard Page
	Configure the New View Wizard Page
	Method Resolution Criteria Dialog Box (in the New Application Deployment Wizard)
	Define Implementation Characteristics for the .NET Object Wizard Page
	Completing the New Application Deployment Wizard Page

	New Local Environment Wizard
	Welcome to the New Local Environment Wizard Page
	Configure a New Local Environment Wizard Page
	Configure Local Environment Endpoints (TCP/IP) Wizard Page
	Configure Local Environment Endpoints (SNA) Wizard Page
	Completing the New Local Environment Wizard

	New Host Environment Wizard
	Welcome to the New Host Environment Wizard
	Configure a New Host Environment Wizard Page
	Configure Host Environment Default Method Resolution Wizard Page
	Completing the New Host Environment Wizard Page

	New Security Policy Wizard
	Welcome to the New Security Policy Wizard Page
	Configure a New Security Policy Wizard Page (in the New Security Policy Wizard) (1)
	Configure a New Security Policy Wizard Page (in the New Security Policy Wizard) (2)
	Completing the Security Policy Wizard Page

	Object Wizard (for HIP)
	Welcome to the Object Wizard Page
	Specify or Locate an Object Wizard Page
	Define Implementation Characteristics for the .NET Object Wizard Page
	Completing the Object Wizard Page

	New Object View Wizard
	Welcome to the New Object View Wizard Page
	Configure a New Object View Wizard Page
	Configure the New View Wizard Page
	Completing the New Object View Wizard Page

	Local Environment Dialog Box
	Reload TIMs Wizard
	Welcome to the Reload TIMs Wizard Page
	Specify or Locate Metadata Files to be Reloaded Wizard Page
	Reloading of Metadata Files Wizard Page
	Completing the Reload TIMs Wizard Page

	New Remote Environment Wizard
	Welcome to the New Remote Environment Wizard Page
	Configure a New Remote Environment Wizard Page
	Configure Host Environment and Programming Model Wizard Page
	Configure Endpoint TCP/IP Wizard Page
	Port List Editing Dialog Box
	Configure Endpoint SNA Wizard Page
	Configure Endpoint IMS Connect Wizard Page
	Configure Endpoint Diagnostic Capture Wizard Page
	Configure Endpoint Playback Wizard Page
	Completing the New Remote Environment Wizard Page

	Object Wizard (for WIP)
	Welcome to the Object Wizard Page
	Specify or Locate an Object Wizard Page
	Define Environment Characteristics for the COM Object Wizard Page
	Define Environment Characteristics for the .NET Object Wizard Page
	Define Remote Environment Wizard Page
	Completing the Object Wizard Page

	Import WIP Definitions Wizard
	Welcome to the Import WIP Definitions Wizard Page
	Define Import Characteristics Page
	Importing WIP Definitions Page
	Import WIP Definitions Wizard Finish Page

	Export WIP Definitions Wizard
	Welcome to the Export WIP Definitions Wizard Page
	Define Export Characteristics Page
	Remote Environment Selection Page
	WIP Object Selection Page
	Exporting WIP Definitions Page
	Export WIP Definitions Wizard Finish Page

	TI Manager Properties
	Timeout Tab
	General Tab (Application Properties)
	Advanced Tab (Application Properties)
	.NET Assembly Path Tab (Application Properties)
	General Tab (Listener Properties)
	Endpoints Tab (TCP/IP Listener Properties)
	Endpoints Tab (SNA Listener Properties)
	Application Tab (Listener Properties)
	General Tab (Local Environment Properties)
	Endpoints Tab (TCP/IP Local Environment Properties)
	Endpoints Tab (SNA Local Environment Properties)
	General Tab (Host Environment Properties)
	Network Tab (Host Environment Properties)
	Conversion Tab (Host Environment Properties)
	Default Tab (Host Environment Properties)
	General Tab (Security Policy Properties)
	Credentials Source Tab (Security Policy Properties)
	Method Resolution Criteria Dialog Box (in the New Object View Wizard)
	General Tab (Object Properties)
	Methods Tab (Object Properties)
	.NET Implementation Tab (Object Properties)
	General Tab (View Properties)
	Host Environments Tab (View Properties)
	Methods Tab (View Properties)
	Method Resolution Criteria Dialog Box (Object Properties)
	General Tab (Remote Environment Properties)
	TCP/IP Tab (Remote Environment Properties)
	LU6.2 Tab (Remote Environment Properties)
	Target Tab (Remote Environment Properties)
	Recording Tab (Remote Environment Properties)
	Locale Tab (Remote Environment Properties)
	Security Tab (Remote Environment Properties)
	Security Tab (Remote Environment Properties)
	TCP/IP Tab (Remote Environment Properties)
	CICS Tab (for LU6.2 Link Properties)
	CICS Tab (for TCP/IP Properties)
	IMS Tab
	SSO tab (Security Policy Properties)
	General Tab (Object Properties)
	Hosting Tab (COM Object Properties)
	Hosting Tab (.NET Object Properties)
	Remote Environment Tab (Object Properties)

	Enterprise Single Sign-On Help
	Affiliate Applications Properties
	Affiliate Applications
	Affiliate Applications Properties: Accounts
	Affiliate Applications Properties: Fields
	Affiliate Applications Properties: General
	Affiliate Applications Properties: Options

	Create New Affiliate Application Wizard
	Create New Affiliate Application Wizard: Welcome
	Create New Affiliate Application Wizard: Accounts
	Create New Affiliate Application Wizard: Fields
	Create New Affiliate Application Wizard: General
	Create New Affiliate Application Wizard: Options
	Create New Affiliate Application Wizard: Finish

	Create New Password Sync Adapter Wizard
	Create New Password Sync Adapter Wizard: Welcome
	Create New Password Sync Adapter Wizard: Accounts
	Create New Password Sync Adapter Wizard: General
	Create New Password Sync Adapter Wizard: Options
	Create New Password Sync Adapter Wizard: Properties
	Create New Password Sync Adapter: Finish

	Mapping Wizard
	Create New Mappings Wizard: Welcome
	Create New Mappings Wizard: Mappings File Option
	Create New Mappings Wizard: Files Location
	Create New Mappings Wizard: Accounts
	Create New Mappings Wizard: External User Name
	Create New Mappings Wizard: Generate
	Create New Mappings Wizard: Options
	Create New Mappings Wizard: Password
	Create New Mappings Wizard: Create
	Create New Mappings Wizard: Finish

	Enterprise Single Sign-On System
	Enterprise Single Sign-On
	SSO System Properties: Accounts
	SSO System Properties: Audits
	SSO System Properties: General
	SSO System Properties: Options
	System
	System Main
	System Main Menu

	Password Sync Adapter Properties
	Password Sync Adapter Properties: Accounts
	Password Sync Adapter Properties: General
	Password Sync Adapter Properties: Options
	Password Sync Adapter Properties: Properties
	Password Synchronization
	Password Sync Adapter Properties: System
	Password Sync Adapter Properties: Custom

	Create Filter Wizard
	Create Filter Wizard: Welcome
	Create Filter Wizard: General
	Create Filter Wizard: Basic
	Create Filter Wizard: Advanced
	Create Filter Wizard: Finish
	Filter Properties: Basic
	Filter Properties: Advanced

	Server Properties
	Server Properties: Audit Levels
	Server Properties: SSO Database
	Server Properties: SSO Service
	Server Properties: Password Sync Properties
	Server Properties: Advanced

	Data Integration Help
	Data Source Wizard
	Welcome Screen
	Data Source Screen
	TCP/IP Network Connection Screen
	APPC Network Connection Screen
	DB2 Database Screen
	Mainframe File System (VSAM) Screen
	AS/400 File System Screen
	Adding a Column
	Options Property Page
	DB2 Locale Screen
	Mainframe and AS/400 Locale Screen
	Security Screen
	DB2 Validation Screen
	Mainframe and AS/400 Validation Screen
	DB2 Saving Information Screen
	Mainframe and AS/400 Saving Information Screen
	Advanced Options Screen
	Finish Screen

	Data User Interface Elements
	Data Source Browser
	Data Source Folder
	Data Source Item
	Data Descriptions Folder
	Data Description File
	Data Description Table
	Data Description Column
	Table Properties

	Configuring a Data Source
	Configuring a Data Source for OLE DB Provider for AS/400 and VSAM
	Configuring a Data Source for the ODBC Driver for DB2

	Network Integration Help
	Print Service Properties
	Print Session Properties
	Print Session Properties
	Print Service Properties
	Configuring an IP-DLC Connection
	Configuring an IP-DLC Link Service
	Downstream Pool
	LUA pool

	Messaging Help
	General Tab
	Advanced Tab
	MQI Channels Tab
	General Tab - CN
	General Tab - Message Pipe
	Batch Tab
	Cache Tab
	Retry Tab

	Trace Utility Help
	Trace Items Tab
	Tracing Global Properties Tab
	Trace File Directory Tab

	3270 Client Help
	Defining Session Settings
	Connecting to a Host Application
	Numeric Override Facility
	How to Record and Play Logon Scripts
	Sample Logon Script

	Defining File Transfer Settings
	Specifying a File
	Sending or Receiving a File
	Using Macros
	Printing the Screen
	Copying and Pasting Displayed Information
	Saving a Configuration
	3270 Client Standard Keyboard Map
	OIA Inidcators

	5250 Client Help
	Defining Session Settings
	Using the Keypad Menu
	Printing the Screen
	Copying and Pasting Displayed Information
	Saving a Configuration
	5250 Client Standard Keyboard Map
	Remapping for the Standard IBM 101 Keyboard Layout
	5250 Client Status Line

	Administrator’s Reference
	Document Conventions
	Common Acronyms and Abbreviations
	Host Integration Server Support
	SNA Session Support
	LU Support
	Session Support

	Command Request Support
	Transmission Service and Function Management Profiles
	TS Profile 1
	TS Profile 2
	TS Profile 3
	TS Profile 4
	TS Profile 7
	FM Profile 0
	FM Profile 2
	FM Profile 3
	FM Profile 4
	FM Profile 7
	FM Profile 18
	FM Profile 19

	Option Set Support
	SNA Sense Codes
	Request Reject (Category X'08')
	Request Errors (Category X'10')
	State Errors (Category X'20')
	RH Usage Errors (Category X'40')
	Path Errors (Category X'80')
	LUSTAT Sense Codes
	Sense Data Specific to LU 6.2

	Network Management
	Connections Used for NetView and RTM
	Link Alerts for SDLC and Token Ring
	Link Alert Format and Common Subvectors
	SDLC Failure Alerts
	SDLC Alert Local Logging
	Identifying Alerts from Local Logs Only

	Token Ring Failure Alerts

	Link Statistics
	Format for Link Statistics
	SDLC Link Statistics
	Token Ring Link Statistics

	Alerts Used by Applications, NVAlert, and NVRunCmd
	Format for Alerts Used by Applications, NVAlert, and NVRunCmd
	Added Headers and Subvectors

	Local Logging of Network Management Data

	Network Protocols and Client/Server Communication
	Overview of Network Protocols for Clients
	Client Logons and the Storing of Passwords
	Types of Client Logons

	Important Host Integration Server Network Options
	Important Network Options on a Host Integration Server Computer
	Important Network Options on a Client

	Adjusting Clients Running Windows for Workgroups
	Domain and Password Settings for Clients Running Windows for Workgroups
	Domain Settings with Windows for Workgroups
	Password Settings with Windows for Workgroups

	Details about How Clients Use Protocols
	Clients Using Microsoft Networking (Named Pipes)
	Microsoft Networking (Named Pipes) Errors

	Clients Using NetWare (IPX/SPX)
	Checklist for Clients Using NetWare (IPX/SPX)
	NetWare Errors

	Clients Using TCP/IP
	TCP/IP Errors

	Error Messages
	Command-Line Interface
	Kerberos Support
	Snacfg Reference
	Task Order
	Help with the Command-Line Interface
	Specify the Subdomain Configuration File
	Use a Command File
	Create a Snacfg Command File from a Configuration File
	General Syntax for the /print Option
	Examples of Syntax for the /print Option
	Use the /print Option
	Display the Contents of a Configuration File
	Snacfg APPCLLU
	Snacfg APPCRLU
	Snacfg Connection
	Snacfg CPIC
	Snacfg Diagnostic
	Snacfg LINK
	Snacfg LU
	Snacfg LUA
	Snacfg LUD
	Snacfg Mode
	Snacfg Pool
	Snacfg PoolA
	Snacfg PoolD
	Snacfg PrintServer
	Snacfg PrintSession3270
	Snacfg PrintSessionAPPC
	Snacfg Server
	Snacfg TN3Server
	Snacfg TN5Server
	Snacfg TN3Session
	Snacfg TN5Session
	Snacfg TNIPID
	Snacfg User
	Snacfg Workstation
	Snacfg Error Messages

	Linkcfg Reference
	Linkcfg
	Linkcfg Error Messages
	Demo SDLC Link Service
	Distributed Link Service
	DLC 802.2 Link Service

	Sample Host Definitions
	Token Ring Definition
	SDLC Definition (for Switched and Leased Lines)
	X.25 Definition

	CICS and VTAM Sample Definitions for LU 6.2
	CICS Tables
	Terminal Control Table
	Program Control Table
	Program Processing Table

	VTAM Definitions
	TP Coding Requirements

	Sense Codes
	Character Tables
	Host Print Service Character Translation Table Format

	Troubleshooting
	Troubleshooting Tools and Tips
	Four Most Common Problems
	APPC or LUA Application Failures

	Adapters and Link Service Problems
	802.2 Adapters and Link Services: Installation Pointers
	SDLC Adapters and Link Services: Installation Pointers
	X.25 Adapters and Link Services: Installation Pointers

	Connection Problems
	Client to Host Integration Server Problems
	Host Integration Server to Host Problems
	Settings to Check for All Connection Types
	802.2 Connection Pointers
	Troubleshooting 802.2 Connections
	SDLC Connection Pointers
	Troubleshooting SDLC Connections
	X.25 Connection Pointers
	Troubleshooting X.25 Connections
	Settings to Check on Channel Connections

	Event and Error Problems
	Additional Help with Events and Errors
	Connection Initialization Sequence
	Connection Initialization Overview
	Connection Initialization Details

	Finding Relevant Information
	Host Integration Server Screens
	AS/400 Screen Walkthrough
	Display Line Descriptions
	Display an Ethernet Line Description
	Display a Token-Ring Line Description
	Change Line Descriptions
	Change an Ethernet Line Description
	Change a Token-Ring Line Description
	Change Line Status
	Change an Ethernet Line's Status
	Change a Token-Ring Line's Status
	Display Controller Descriptions
	Change Controller Descriptions

	802.2 Connection Failures
	Event ID 23
	Event ID 230
	Windows Application Event Log
	Failure Conditions and Solutions
	Common Connection Failure Scenarios

	Event ID 56
	Windows 2000 Application Event Log
	Failure Conditions and Solutions

	Event ID 49
	Windows 2000 Application Event Log
	Failure Conditions and Solutions

	Step-by-Step Configuration Instructions
	Sample AS/400 Configuration
	Troubleshooting Mainframe Pending DLC Connections - Event ID 230
	Troubleshooting AS/400 Pending SDLC Connections
	Troubleshooting Mainframe Pending SDLC Connections

	Performance Problems
	Maximizing Communications Performance
	Maximizing Background Processing on Host Integration Server Computers

	Host Print Service Problems
	Common Problems
	Print Tracing Problems
	3270 Printing Problems
	Non-printable Character Problems

	Configuration Problems
	Config Lock and Out-of-Date Messages in the Status Bar
	Saving Configuration Changes
	Server Configuration Setup Problems

	Problems with Other Features
	DLS Status Problems
	Virus-Checking Tool Problems

	Troubleshooting Network Integration
	Troubleshooting IP-DLC Link Services

	Troubleshooting Transaction Integrator
	How to Check the Windows Event Logs for Errors
	Tracing and Debugging
	Client Application Does Not Start but No Error Given
	Trouble Defining a Recordset for Web-Based Applications
	Cannot Use Save Command in TI Designer
	Trouble Creating an Object
	Case Discrepancies in Assigned Names
	Visual Basic Limitation on Number of Parameters Per Method
	How to Resolve Transactions Manually
	Mainframe Issues Affecting Transaction Recovery
	Allocation Failure
	How to Start and Stop DTC or SNA LU 6.2 Resync TP
	Newly Deployed Components Not Recognized
	Data Type Conversion Errors
	Memory Leak When Using User-Defined Types in User-Defined Types
	Avoiding Data Translation
	Using TI User-Defined Types with the .NET Framework and Visual Studio
	How to Use Variable Length Recordsets with Transaction Integrator

	Development
	Programmer's Guide
	Application Integration Programmer’s Guide
	Application Integration Development Tools
	How to Install Host Integration Server Designer
	How To Migrate from Earlier Versions of Host Integration Server
	How To Report Errors in Host Integration Server Designer

	Application Integration Programming
	Creating an Application using Host Integration Server Designer
	How to Create a New Host Integration Server Designer Project
	How to Add a Library to a Transaction Integrator Project
	How to Import a Host File into a Transaction Integrator Project
	How to Modify and Update a Transaction Integrator Interface
	How to Deploy a Host File Interface
	How to Code a Transaction Integrator Application
	How to Test and Modify a Transaction Integrator Application

	Programming Windows-Initiated Processing
	Creating a Windows-Initiated Application
	How To Confirm that COMTIIntrinsic is Set in Windows XP
	How to Update a Transaction Integrator Assembly
	How to Debug a Visual Basic Application Integration Application
	How To Handle a Host Server Exception

	How To Determine Who Initiated a Transaction
	Managing Security in a Windows-Initiated Application
	How to Call a Transaction Integrator Proxy Object in a Secured Virtual Directory
	How To Impersonate Client Application Security Credentials
	How To Use the DPC Security Override

	Specifying a Remote Environment Programmatically
	How To Use REOverride to Specify a Remote Environment
	Guidelines for Using REOverride

	How to Program with Discriminated Unions
	How To Override Settings in the Type Library
	Using a Persistent Connection
	About Persistent Connections
	Programming Models that Support Persistent Connections
	How To Use a Persistent Connection

	How to Self-Host a Windows-Initiated Process
	How To Verify a Remote Installation

	Programming Host-Initiated Processing
	How To Connect a HIP Component to a Visual Basic Applications
	How to Use a Persistent Connection with Host-Initiated Processing

	Application Integration Security Guide
	Mainframe Authentication for CICS LINK
	AS/400 Security
	Limitations of User Access Level Sign On
	Using SSO with Host-Initiated Processing
	Using SSO with Encrypted Passwords
	Threat Mitigation within Visual Studio
	Protecting the TI COM Type Library or .NET Assembly from Unauthorized Access
	Protecting the Output from Tracing and Network Monitoring Activities
	Protecting the TI Record or Playback Files from Unauthorized Access

	Data Integration Programmer's Guide
	Introduction to the Data Integration Programmer's Guide
	Supported Data Integration Programming Scenarios
	What You Need to Know to Program Data Integration
	Additional Resources for Data Integration Programming

	Data Access Library Programmer's Guide
	Data Access Library
	Goals for the Data Access Library
	Data Access Library Interface
	What You Should Know Before Programming the Data Access Library
	Supported Platforms for the Data Access Library

	Programming with the Data Access Library
	Creating a Connection String
	How to Create a Connection String for a .udl File
	How to Create a Connection String for an ODBC System, User or File DSN

	How to Retrieve Data
	Performing Administrative Tasks
	How to Convert Data Source Information
	How to Create a DB2 Package
	How to Test a Connection
	How to Run a Sample Query

	Managed Provider Programmer's Guide
	Managed Provider for DB2 Programmer's Guide
	Managed Provider for DB2
	Managed Provider for DB2 Goals
	Relationships between the .NET Provider for DB2 Interfaces

	Using the Managed Provider for DB2
	Using the Managed Provider for DB2 with Visual Studio
	Connecting to and Disconnecting from a DB2 Database
	How to Connect with an MsDb2Connection
	How to Connect to a DB2 Connection Pool
	Working with Connection Strings and the Managed Provider for DB2
	Building Connection Strings
	Using Connection String Keywords
	Storing and Retrieving Connection Strings

	Executing Commands in a DB2 Database
	Reading Data from a DB2 Database
	Reading Data from a Database
	How to Retrieve Multiple Result Sets
	Retrieving Schema Information

	Using Stored Procedures in a DB2 Database
	How to Obtain a Single Value from a DB2 Database
	Working with the DataAdapter and the DataSet for a DB2 Database
	Populating a Managed Provider Dataset from a Data Adapter
	Working with DataAdapter Events
	Updating the DB2 Database with a Data Adapter and the Dataset
	Using Parameters with the DB2 DataAdapter
	Adding Constraints to a DB2 DataSet
	Setting up DataTable and DataColumn Mappings for a DB2 Database

	How to Perform Transactions with a DB2 Database
	How to Perform a Two-Phase Commit Transaction over TCP/IP
	Obtaining Schema Information from the Managed Provider for DB2
	Working with the Managed Provider for DB2 GetSchema Methods
	Understanding the Schema Collections for the Managed Provider for DB2

	Managed Provider for DB2 Tutorial
	Getting Started with the Managed Provider for DB2 Tutorial
	Step 1: Configuring a Connection to DB2
	Step 2: Creating an XML Web Service
	Step 3: Adding a Web Service to the Project
	Step 4: Executing the Web Service

	Managed Data Provider for Host Files Programmer's Guide
	Managed Data Provider for Host Files
	Goals for the Managed Data Provider for Host Files

	Using the Managed Data Provider For Host Files
	How to Create an Application Using the Managed Data Provider for Host Files
	How to Create a Project in Visual Studio for the Managed Provider for Host Files
	How to Create an Assembly for the Managed Data Provider for Host Files
	How to Deploy an Assembly for the Managed Data Provider for Host Files

	How to Connect to and Disconnect from a Host File System
	How to Execute Commands in the Host File System
	Retrieving Information from the Host File System
	How to Retrieve Data from the Host File System
	How to Retrieve Multiple Resultsets from the Host File System
	How to Retrieve Schema Sets from the Host File System

	How to Obtain a Single Value from a Host File System
	Working with the Host File Adapter and Dataset
	How to Populate a Host File Dataset from the Data Adapter
	How to Update the Host File System with the Data Adapter
	How to Add Constraints to the Host File Dataset
	How to Close a Connection with the Host File Adapter

	Obtaining Schema Information from the Host File System
	Working with the Host File GetSchema Methods
	Common Schema Collections for the Host File System

	Managed Provider for Host Files Tutorial

	.NET Framework Data Providers for Host Integration Server
	Examining the Core Interface for a Managed Provider

	ADO.NET DataSet for Host Integration Server
	DataTableCollection
	DataRelationCollection
	ExtendedProperties
	XML Support

	OLE DB Providers Programmer's Guides
	OLE DB Provider for AS/400 and VSAM Programmer's Guide
	Goals of the OLE DB Provider for AS/400 and VSAM
	OLE DB Environment
	DDM Record-Level Access
	Platforms Supported by the OLE DB Provider for AS/400 and VSAM
	Indexed File Access
	File and Record Attributes
	Configuring the OLE DB Provider for AS/400 and VSAM
	Creating Data Links for the OLE DB Provider for AS/400 and VSAM
	Configuring Data Links for the OLE DB Provider for AS/400 and VSAM
	Provider
	Connection
	Advanced
	All

	Configuring Data Descriptions
	Host Data Types
	Local OLE DB Data Types

	Converting Existing Data Sources

	Programming Considerations When Using the OLE DB Provider for AS/400 and VSAM
	Record Access and Data Conversion
	Record Locking
	Client Cursor Engines Using the OLE DB Provider for AS/400 and VSAM
	Error Codes Returned by the OLE DB Provider for AS/400 and VSAM

	Host Column Description
	Host Column Description File Format
	Host Column Description Attributes
	Host Column Description Example File

	Conversion from Host to OLE DB Data Types
	Default OLE DB Data Types
	DBDATE
	DBTIME
	DBTIMESTAMP
	DECIMAL
	NUMERIC

	Character Code Conversions
	Host CCSID and SNA OLE DB Provider
	Host CCSID and Data Source
	Host CCSID and Data Description
	Host CCSID and the Process Binary As Character Parameter

	Using Package Designer with the OLE DB Provider for AS/400 and VASM

	OLE DB Provider for DB2 Programmer's Guide
	Goals of the OLE DB Provider for DB2
	Distributed Relational Database Architecture
	Platforms Supported by the OLE DB Provider for DB2
	OLE DB Provider for DB2 Requirements
	Configuring the OLE DB Provider for DB2
	Creating Data Links for the OLE DB Provider for DB2
	Configuring Data Links for the OLE DB Provider for DB2
	Provider
	Connection
	Advanced
	All

	Creating Packages for Use with the OLE DB Provider for DB2

	ADO Object, Method, Property, and Collection Support for AS/400, VSAM and DB2
	ADO Object Support in the OLE DB Provider for AS/400 and VSAM
	ADO Method Support in the OLE DB Provider for AS/400 and VSAM
	ADO Property Support in the OLE DB Provider for AS/400 and VSAM
	ADO Collection Support in the OLE DB Provider for AS/400 and VSAM
	Command Object in the OLE DB Provider for AS/400 and VSAM (ADO)
	Connection Object in the OLE DB Provider for AS/400 and VSAM (ADO)
	Error Object in the OLE DB Provider for AS/400 and VSAM (ADO)
	Field Object in the OLE DB Provider for AS/400 and VSAM (ADO)
	Recordset Object in the OLE DB Provider for AS/400 and VSAM (ADO)

	ADO Object Support in the OLE DB Provider for DB2
	ADO Method Support in the OLE DB Provider for DB2
	ADO Property Support in the OLE DB Provider for DB2
	ADO Collection Support in the OLE DB Provider for DB2
	Command Object in the OLE DB Provider for DB2 (ADO)
	Connection Object in the OLE DB Provider for DB2 (ADO)
	Error Object in the OLE DB Provider for DB2 (ADO)
	Field Object in the OLE DB Provider for DB2 (ADO)
	Recordset Object in the OLE DB Provider for DB2 (ADO)

	ODBC Driver for DB2 Programmer's Guide
	Goals of the ODBC Driver for DB2
	ODBC Driver for DB2 Architecture
	Platforms Supported by the ODBC Driver for DB2
	ODBC Driver for DB2 Requirements
	Configuring ODBC Data Sources
	Using the Microsoft ODBC Driver for DB2 Configuration Dialog Box
	General
	Connection
	Security
	Target Database
	Locale

	Configuration Property Mappings Between the ODBC Driver for DB2 and the OLE DB Provider for DB2
	ODBC Connection String Attributes

	Creating Packages for Use with the ODBC Driver for DB2

	ActiveX Controls Programmer's Guide
	Host File Transfer ActiveX Control Programmer's Guide
	Platforms Supported by the Host File Transfer ActiveX Control
	Configuring Data Descriptions for Host File Transfer
	Registry Settings Used By Host File Transfer
	Object Support Using Host File Transfer
	COM Interface Support Using Host File Transfer
	IEIGFileTransferCtl Object
	IEIGFileTransferCtlEvents Notification

	Programming Considerations When Using Host File Transfer
	Code Page Support Using Host File Transfer
	ISO Code Page Support Using Host File Transfer
	DBCS Code Page Support Using Host File Transfer

	Data Conversion Using Host File Transfer
	Usernames and Passwords Using Host File Transfer
	Troubleshooting the Host File Transfer ActiveX Control

	Data Queue ActiveX Control Programmer's Guide
	Advantages of Data Queues
	Object Support Using Data Queues
	COM Interface Support Using Data Queues
	IEIGDataQueueCtl Object
	IEIGDataQueue Object
	IEIGDataQueueItem Object
	IEIGDataQueueCtlEvents Notifications
	IEIGDataQueueEvents Notifications

	Programming Considerations When Using the Data Queue ActiveX Control
	Code Page Support Using Data Queues
	DBCS Code Page Support Using Data Queues

	User Names and Passwords Using Data Queues
	Troubleshooting the Data Queue ActiveX Control

	Using Data Design Tools
	Using Data Design Tools for the OLE DB Provider for DB2
	Using Data Design Tools for the Managed Provider for DB2
	Using Data Design Tools for the Microsoft OLE DB Provider for AS/400 and VSAM

	Data Integration Security Guide
	Managed Provider Security
	OLE DB Provider for DB 2, AS/400, and VSAM Security
	Host File Transfer Object Security

	Network Integration Programmer's Guide
	APPC Programmer's Guide
	APPC Guide
	Operating Systems Support for APPC Development
	Finding Further Information about APPC

	Introduction to APPC
	APPC Verb Overview
	APPC Verb Summary
	Windows APPC Overview
	Windows APPC Asynchronous Support
	APPC Verbs and Windows Extensions

	Using APPC Verbs in C Programs
	Verb Control Block
	APPC Definition
	Issuing an APPC Verb

	Windows Server 2003, Windows XP, and Windows 2000 Considerations

	Transaction Programs Overview
	Communication between TPs
	Fundamental Terms for TPs and LUs
	Sample TPs Illustrating Fundamental Concepts
	Configuring and Controlling TPs
	Creating TPs and Their Supporting Configuration

	Designing and Coding TPs
	Conversation States
	State Checks
	Changing Conversation States

	Confirmation Processing
	Receiving Data Asynchronously
	Conversation Security
	Basic and Mapped Conversations Compared
	Logical Records Used in Basic Conversations
	An Example of a Mapped Conversation

	Using Invoking and Invokable TPs
	Invoking TPs
	Invoking TPs and Contention
	Invokable TPs
	Subcategories for Invokable TPs
	Matching Invoking and Invokable TPs

	Configuring Invokable TPs
	Clients Running Windows
	Registry Entries for Clients Running Windows 2000
	Example of Windows 2000 Registry Entries for an Invokable TP

	Configuring TPs on Host Integration Server
	Configuring Invoking TPs on Host Integration Server
	Configuring Invokable TPs on Host Integration Server

	Arranging TPs Within an SNA Network
	TP Name Unique for Each TP
	TP Name Not Unique; Local LU Alias Unique
	TP Name Not Unique; Local LU Alias Unspecified

	Troubleshooting for Invokable TPs
	Sync Point Level 2 Support in Host Integration Server
	Sync Point Functional Overview
	Sync Point Support Architecture
	Sync Point Session Support
	Sync Point Session Activation
	Sync Point Session Deactivation

	Starting Local Sync Point TPs
	Sync Point Conversation Activation
	Locally Initiated Conversations
	Remotely Initiated Conversations
	Already Verified Support
	Presentation Header Support in Data Transfers
	User Control Data
	Implied Forget

	Sync Point Level 2 Confirm Support
	Sync Point Backout Support
	Additional Sync Point Return Codes
	Sending Backout on Sync Point Conversations

	LUWID, Conversation Correlators, and Session Identifiers
	Generating and Setting LUWIDs
	Extracting LUWIDs
	Session Identifiers

	Configuration Changes for Sync Point Support
	Accepting Incoming Attaches
	Sync Point Knows Transaction Names
	Sync Point Attach Manager
	Rejecting Remotely Initiated Conversations

	Sync Point Examples
	SYNCPT Verb Issued Locally
	SYNCPT Verb Issued Remotely
	BACKOUT Verb Issued Locally
	BACKOUT Verb Issued Remotely

	Windows CSV Overview
	Host Integration Server Asynchronous Support
	Before Using Windows CSV
	Creating Specific NetView User Alerts
	Using CSVs in C Programs
	Sample Programs
	CSV Verb Control Block
	Bit Ordering
	WINCSV Definition
	WINCSV.H File
	Issuing a CSV

	Support for APPC Automatic Logon

	CPI-C Programmer's Guide
	Introduction to CPI-C
	Windows CPI-C Asynchronous Support
	Before Using Windows CPI-C
	Using Asynchronous Call Completion
	Initial Conversation Characteristics
	Side Information for CPI-C Programs
	Configuration for CPI-C Programs
	CPI-C Considerations on Windows Server 2003, Windows XP, and Windows 2000
	Operating Systems Support for CPI-C Development
	Finding Further Information about CPI-C

	CPI-C Call Summary
	Starting a Conversation
	Sending Data
	Receiving Data
	Confirming Receipt of Data and Reporting Errors
	Getting Information
	Ending a Conversation
	Administering Side Information

	Writing CPI-C Applications
	Communication Between TPs
	Fundamental Terms for TPs and LUs
	Sample TPs Illustrating Fundamental Concepts
	Configuring and Controlling TPs
	Creating TPs and Their Supporting Configuration

	Designing and Coding TPs
	CPI-C Calls in C Programs
	CPI-C and LU 6.2
	Conversation States
	State Checks
	Changing Conversation States

	Confirmation Processing
	Conversation Security
	Basic and Mapped Conversations Compared
	Logical Records Used in Basic Conversations
	An Example of a Mapped Conversation

	Using Invoking and Invokable TPs
	Invoking TPs
	Invoking TPs and Contention
	Invokable TPs
	Subcategories for Invokable TPs
	Matching Invoking and Invokable TPs

	Configuring Invokable TPs
	Clients Running Windows XP or Windows 2000
	Registry Entries for Clients Running Windows XP or Windows 2000
	Example of Registry Entries for Windows XP or Windows 2000

	Configuring Host Integration Server to Support TPs
	Invoking TPs and SNA Service Configuration
	Invokable TPs and the SNA Service Configuration
	Arranging TPs Within an SNA Network
	TP Name Unique for Each TP
	TP Name Not Unique; Local LU Alias Unique
	TP Name Not Unique; Local LU Alias Unspecified

	Troubleshooting for Invokable TPs

	Simplifying CPI-C Configuration

	Support for CPI-C Automatic Logon

	LUA Programmer's Guide
	LUA Guide
	Operating Systems Support for LUA Development
	Finding Further Information about LUA

	LUA Concepts
	Windows LUA Overview
	Windows LUA Asynchronous Support
	Before Using Windows LUA
	Using LUA and Asynchronous Verb Completion

	LUs and Sessions
	Configuring for LUA
	LUA Verb Summary
	A Sample LUA Communication Sequence

	Writing LUA Applications
	Using LUA Verbs
	RUI and SLI Definitions
	Issuing an LUA Verb

	LUA VCB Format
	LUA_VERB_RECORD
	LUA_COMMON
	LUA_SPECIFIC
	LUA_SPECIFIC.SLI_OPEN
	LUA_EXT_ENTRY

	LUA Synchronous and Asynchronous Verb Completion
	Compiling and Linking an LUA Application
	Resetting LUA LUs
	Multiple Processes and Multiple Sessions Using LUA
	Programming Techniques for LUA Pools
	Writing Portable LUA Applications
	LUA System Considerations on Microsoft Windows Server 2003 or Windows 2000
	LUA Considerations on Windows Server 2003 or Windows 2000

	SNA Considerations Using LUA

	Support for LUA Single Sign-On
	Prerequisites for LUA Single Sign-On
	Registry Settings Used for LUA Single Sign-On
	LUA User Name and Password Replacement

	3270 Emulation Programmer's Guide
	Host Integration Server Concepts for 3270 Client Access
	Structure of 3270 Client Access Components
	Role of the Base
	Localities and DMODs
	Application Localities
	Partners

	Messages
	Overview of Message Formats
	Buffer Header Format
	Buffer Element Format

	LPI Connections
	Paths and DMODs
	LPI Addresses
	Making Connections

	DL-BASE/DMOD Interface
	DL-BASE/DMOD
	Initialization
	Sending Messages
	Receiving Messages
	Opening a Connection
	Termination

	DL-BASE/DMOD Entry Point Summary
	Sample Code: Initialization and Routing Procedure

	Function Management Interface
	FMI Concepts
	Sessions and Connections
	Application Flags

	SSCP Connection
	Opening the SSCP Connection
	LU Groups
	Resource Location for Open SSCP

	Closing the SSCP Connection
	Using the SSCP Session
	SSCP Session Characteristics
	SSCP Session Status

	RTM Parameters
	3270 User Alerts

	PLU Connection
	Opening the PLU Connection
	BIND Checking

	Closing the PLU Connection
	Using the PLU Session
	PLU Session Characteristics
	PLU Session Status

	Outbound Chaining
	Inbound Chaining
	Segment Delivery
	Brackets
	Bracket Initiation
	Bracket Termination

	Direction
	Half-Duplex Flip-Flop Direction
	Half-Duplex Contention

	Pacing and Chunking
	Outbound Pacing
	Chunking

	Confirmation and Rejection of Data
	Confirmation and Rejection of Inbound Data
	Confirmation and Rejection of Outbound Data

	Shutdown and Quiesce
	Shutdown
	Quiesce

	Recovery
	Application CANCEL
	Direction after Receiving a Negative Response
	Direction after Sending a Negative Response
	Critical Failure
	RQR and CLEAR
	STSN
	Link Service Failure
	Local Node Failure
	Client Failure

	Application-Initiated Termination
	LUSTATs
	Response Time Monitor Data

	Data Flow
	Outbound Data
	Inbound Data
	Inbound Data from LUA Applications

	Status Messages
	Status-Acknowledge Message
	Status-Control Message
	Status-Control (ACKLUA) Message

	Status-Error Message
	Status-Resource Message
	Status-Session Message
	Status-RTM Message

	FMI Message Summary

	FMI Status, Error, and Sense Codes
	Status-Session Codes
	Error and Sense Codes
	Error Codes for Open Messages
	Error Codes for Open(SSCP) Error Response
	Error Codes for Open(PLU) Error Confirm

	Error Codes for Nack-2 Messages
	Error Codes for Status-Error Messages
	Sense Codes for SDI Messages

	Configuration Information
	3270 User Record Format
	tecwrksd
	tecwrkus

	Diagnostics Record Format
	Tedalert
	tediagns

	Creating NetView User Alerts

	Compiling and Linking 3270 Client Applications
	Building the 3270 Client Samples
	Client Interface Files for 3270 Applications
	3270 Include Files
	Compiler Options for 3270 Applications
	Linking 3270 Client Applications

	Support for 3270 Single Sign-On
	Prerequisites for 3270 Single Sign-On
	Registry Settings Used for 3270 Single Sign-On
	3270 User Name and Password Replacement

	SNA Internationalization Programmer's Guide
	SNA National Language Support Programmer's Guide
	National Language Support in Windows Server 2003, Windows XP, and Windows 2000

	SNA Print Server Data Filter Programmer's Guide
	SNADIS Programmer's Guide
	SNALink Concepts in Host Integration Server
	Overview of SNALink
	SNALink Configuration and Management
	Structure of SNALink Components
	Role of the Base
	Localities and DMODs
	Component Localities
	Partners
	SNALink Structure

	Messages
	Overview of Message Formats
	Buffer Header Format
	Buffer Element Format

	LPI Connections
	Paths and DMODs
	LPI Addresses
	Making Connections

	SNALink Interface
	Process Structure and Scheduling
	SNALink Initialization
	SNALink Termination
	Sending Messages
	Dispatcher
	Receiving Messages
	Work Manager
	Base/DMOD and SNALink Entry Point Summary
	Sample Code for SNALinkDispatchProc

	SNALink Configuration Information
	Accessing Configuration Information

	Data Link Control Interface
	Supported Configurations
	Opening a Connection
	Opening the LINLPI Connection
	Activating a Host Connection
	Leased SDLC Line (No XIDs Exchanged), Channel Adapter
	X.25, 802.2, or Switched SDLC Line (XIDs Exchanged)

	Activating a Peer Connection
	Fixed Link Roles
	Negotiable Link Roles

	Opening the STATION LPI Connection
	Node Identification and Signaling Information
	XID Retries
	Multiple Connections

	DLC Information Transfer
	DLC Flow Control

	Closing a Connection
	Outages
	SDLC Outage Codes
	802.2 Outage Codes
	X.25 Outage Codes

	Connection Retries

	Incoming Call Support
	SDLC Multipoint Connections

	Setup Information
	Setup Registry Architecture
	Product Entries
	Service Entries

	Integrated Link Service Setup on Host Integration Server
	Integrated Link Service Configuration and Reconfiguration on Host Integration Server
	Constructing an Integrated Link Service DLL on Host Integration Server
	Components of an Integrated Link Service Configuration DLL on Host Integration Server
	Contents of IHVLinks Sample Kit on Host Integration Server

	Compiling and Linking a SNALink
	Host Integration Server DLC Header Files
	Included Files
	Required Exports
	Compiler Options
	Linking

	Synchronous Dumb Card Interface
	Driver Interface
	Architecture Overview
	Interface Record
	Event Signaling
	Link Characteristics

	I/O Request Packets
	Initialization
	OPEN Call
	CLOSE Call
	IOCTL Command Summary
	Equates and Structure Layouts

	SNA Modem Status Interface
	SNA Device Driver Interface to Modem Status
	Supporting Modem Status in an SNA Link Service
	Modem API Summary
	DevIoctl Definitions to Support SNA Modem Status

	SNA Performance Monitor Interface

	Network Integration Security Guides
	APPC Programmer's Security Guide
	CPI-C Programmer's Security Guide
	LUA Programmer's Security Guide
	SNA Print Server Data Filter Programmer's Security Guide

	Session Integrator Programmer's Guide
	Session Integrator
	Session Integrator Programming Interfaces
	What You Should Know Before Using Session Integrator
	Supported Platforms for Session Integrator
	COM Security Requirements for Session Integrator

	Using Session Integrator
	Using Session Integrator for LU0
	How to Initialize a Session Integrator Session for LU0
	How to Send a Message Using Transaction Integrator for LU0
	How to Receive a Message Using Transaction Integrator for LU0
	How to Terminate a Connection with Session Integrator for LU0
	Using Pre-Recorded Scripts with Session Integrator
	Session Integrator for LU0 Code Example

	Using Session Integrator for LU2
	How to Initialize a Session Integrator Session for LU2
	How to Send a Message Using Session Integrator for LU2
	How to Receive a Message Using Session Integrator for LU2
	How to Terminate a Connection with Session Integrator for LU2
	Session Integrator for LU2 Code Example

	Using Session Integrator for TN3270

	Client-Based BizTalk Adapter for WebSphere MQ Programmer's Guide
	Correlating Messages using Request-Reply

	Administration and Management Programmer's Guide
	WMI and Host Integration Server
	WMI and the Host Integration Server Architecture
	What You Can Do to Administer Host Integration Server Using WMI
	Administrative Tasks That You Can Perform on Host Integration Server Using WMI
	Sections of Host Integration Server That You Can Administer with WMI

	What You Should Know Before Programming for WMI and Host Integration Server
	Supported Platforms for Administering with WMI

	Using WMI with Host Integration Server
	Installing WMI on Host Integration Server
	Installing WMI Providers on a Host Integration Server
	How to Upgrade to Windows Server 2003 with Host Integration Server and WMI
	How to Set ASP Security for Host Integration Server and WMI

	Basic WMI Tasks for Host Integration Server
	Logging on to Host Integration Server Through a WMI Provider
	Accessing a Host Integration Server Property through WMI
	How to Retrieve an Instance
	How to Retrieve Multiple Instances
	How to Modify or Update an Instance

	Calling a Host Integration Server Method through WMI

	Advanced WMI Tasks for Host Integration Server
	Configuring Host Integration Server with WMI
	How to Configure an IPDLC Link Service
	How to Retrieve an Adapter Name
	How to Create a Link Service
	How to Create an Independent Session
	How to Handle Errors While Creating a Link Service

	Controlling Services and Connections with WMI
	How to Display Connection Status
	How to Retrieve Connection Information

	How to Monitor the Health of Host Integration Server with WMI
	How to Capture a Trace with WMI

	Programming Considerations When Using WMI with Host Integration Server
	Using Host Integration Server and WMI on a Backup Server
	Using Duplicate LU Pools with Host Integration Server and WMI

	Messaging Programmer's Guide
	MSMQ-MQSeries Bridge Programmer's Guide
	Platforms Supported by MSMQ-MQSeries Bridge Extensions
	Queue Addressing Using MSMQ-MQSeries Bridge
	Addressing an MQSeries Queue in Message Queuing
	Sending a Message Queuing Message to an MQSeries Queue
	Addressing a Message Queuing Queue in MQSeries
	Sending a Message to a Message Queuing Queue in MQSeries

	Converting Messages Using MSMQ-MQSeries Bridge
	Converting Messages Sent from Message Queuing to MQSeries
	Converting Message Queuing Properties
	Message Body (PROPID_M_BODY)
	Queue Format Names (PROPID_M_..._QUEUE)
	Message Class (PROPID_M_CLASS)
	Message Expiration (PROPID_M_TIME...)
	Message Acknowledgment (PROPID_M_ACKNOWLEDGE)
	Other Message Queuing Properties with Equivalent Properties
	Unconverted Properties
	Transaction Properties

	Building an MQSeries Message
	Message Buffer
	Object Descriptor (MQOD)
	Message Descriptor (MQMD)

	Converting Messages Sent from MQSeries to Message Queuing
	Converting MQSeries Fields
	Message Buffer
	Object Descriptor (MQOD)
	Character Substitutions in Object Descriptor Conversion
	Format Name Method of Object Descriptor Conversion
	Path Name Method of Object Descriptor Conversion
	Queue Alias Method of Object Descriptor Conversion
	Examples of Object Descriptor Conversion
	Message Descriptor (MQMD)
	MQMD.Report Field
	MQMD.MsgType and MQMD.Feedback Fields
	MQMD.ReplyToQ and MQMD.ReplyToQMgr Fields
	Unconverted MQSeries MQMD Fields

	Building a Message Queuing Message

	MSMQ-MQSeries Bridge Extensions Mechanism
	Data Structure of a Message Extension
	How MSMQ-MQSeries Bridge Creates a Message Extension
	MQMD Extension Field
	Error Extension Field
	Other Extension Fields

	How MSMQ-MQSeries Bridge Converts a Message Extension
	Sender and User Identifiers
	Version Identifiers

	Using Message Extensions
	Sending an MQSeries Message to Message Queuing
	Sending a Message Queuing Message to MQSeries

	Programming a Message Extension
	MSMQ-MQSeries Bridge Extension Property API

	Programming Considerations When Using MSMQ-MQSeries Bridge Extensions
	Transaction Support Using MSMQ-MQSeries Bridge
	Security Using MSMQ-MQSeries Bridge
	Troubleshooting MSMQ-MQSeries Bridge Extensions

	Registry Settings Used By MSMQ-MQSeries Bridge Extensions

	Creating a Single Sign-On Application
	Programming Single Sign-On Overview
	Single Sign-On Interface
	Single Sign-On Applications
	Traditional Single Sign-On Applications
	Password Sync Adapters
	Password Sync Programming Architecture
	Adapter Programming Administration
	Adapter Programming Configuration
	Adapter Groups and Group Adapters

	What You Should Know Before Programming Single Sign-On
	Supported Platforms for Single Sign-On

	Programming with Enterprise Single Sign-On
	How to Determine Current Single Sign-On Access
	How to Configure Single Sign-On
	How to Create and Describe an Application to Single Sign-On
	How to Map Single Sign-On Credentials
	Logging on to a Remote or Local Application
	How to Log a Local User on to a Non-Windows Application
	How to Log a Remote User on to a Local Application

	How to Change the Behavior of a Single Sign-On Interface
	Issuing and Redeeming a Single Sign-On Ticket
	Synchronizing Passwords
	How to Create a Password Sync Adapter
	How to Configure a Password Sync Adapter
	How to Assign an Application to an Adapter
	How to Create and Modify an Adapter Group

	Programmer's Reference
	Application Integration Programmer's Reference
	Introduction to COM and COM+
	COM Defined
	COM+ Defined
	Component Services Features
	Distributed Applications
	Automation
	COM Objects
	COM Methods
	COM Interfaces
	COM Classes
	COM Components and TI Components
	Viewing COM Classes, Interfaces, and Methods
	Windows Script Host COM Client

	Data Types
	Supported TI Data Types
	Supported Automation Data Types
	Supported COM Aggregate Data Types
	Supported .NET Aggregate Data Types
	Supported COBOL Data Types
	Supported RPG Data Types
	Supported RPG Keywords

	Data Type Conversion
	Converting Data Types from Automation to OS/390 COBOL
	Converting Data Types from OS/390 COBOL to Automation
	Converting Data Types from Automation to RPG
	Converting Data Types from RPG to Automation
	Converting Data Types from COM to .NET
	Converting Data Types from .NET to COM
	Zoned Decimal or Packed Decimal Data Types
	Converting Data Types from RPG to OS/400 COBOL

	Integer Data Type
	Decimal Data Type in Visual Basic
	Variant Data Type
	Recordsets and Datatables
	Example Using the New Recordset Call
	Fixed-Size Recordsets
	Bounded Recordsets
	Unbounded Recordsets
	RDS Recordset Requirements for Web Clients
	Recordset Creation When Importing COBOL

	Arrays
	Visual Basic and Arrays

	User-Defined Types
	Requirements for UDT Support in Windows 2000
	Using TI Project to Create UDTs
	Creating UDTs by Importing Host Definitions
	Arrays Defined in UDTs with Visual Basic

	Transaction Request Messages
	Using Custom TRMs and ELMs with COMTIContext
	How to Pass a Custom TRM

	Host and Automation Data
	Variably Sized Data
	Date and Time Parameters
	Parameter Requirements
	Optional Metadata
	Return Value Positioning
	Data Transfer Options
	Using the OCCURS DEPENDING Clause to Define Variable-length Table
	Using Variably Sized Strings
	Using Variably Sized Rows
	Using Bounded Final Fields

	Mainframe Character Strings and Code Pages
	How to Assign a Different Code Page to a Remote Environment
	IBM DBCS Code Pages
	Mainframe Character Formats
	How to Pad Mainframe Character Strings with Spaces
	Truncating Undefined Portions of Strings
	Adding Leading SO and Trailing SI Characters

	Maximum Buffer Sizes for Remote Environments
	Alignment Problems with Generated COBOL
	Filler
	COBOL FILLER
	TI Application Cannot Reference FILLER
	How to Use REDEFINES in COBOL
	FILLER Optimization
	FILLER for Discontiguous Output Area and Return Value

	Variable-length Tables and CICS LINK
	Sending Binary Data to the Host

	COMTIContext Interface
	ClearAllContext
	ClosePersistentConnection
	CountContext
	DeleteContext
	GetConnectionInfo
	QueryContextInfo
	ReadContext
	UpdateContextInfo
	WriteContext

	COMTIContext Keywords
	CONNTIMEOUT
	CONNTYPE
	IMS_LTERM
	IMS_MODNAME
	LibNameOverride
	OverrideSourceTP
	PASSWORD
	PortOverride
	ProgNameOverride
	RecvTimeOut
	REOverride
	SendTimeOut
	TPNameOverride
	TRMIN
	TRMOUT
	USERID

	TI Component Properties
	Standard Transaction Request and Reply Messages
	TRM Format for the TCP TRM Link Programming Model
	TRM Format for the TCP TRM User Data Programming Model

	CICS Enhanced Listener Request and Reply Messages
	ELM Format for the TCP ELM Link Programming Model
	ELM Format for the TCP ELM User Data Programming Model
	Enhanced Listener CICS Administration

	Microsoft Concurrent Server

	Data Integration Programmer's Reference
	OLE DB Providers Programmer's Reference
	OLE DB Object Support Comparison
	OLE DB Interface Support Comparison
	OLE DB Object Support in the OLE DB Provider for AS/400 and VSAM
	OLE DB Interface Support in the OLE DB Provider for AS/400 and VSAM
	Command Object (OLE DB Provider for AS/400 and VSAM)
	DataSource Object (OLE DB Provider for AS/400 and VSAM)
	ErrorObject Object (OLE DB Provider for AS/400 and VSAM)
	ErrorRecord Object (OLE DB Provider for AS/400 and VSAM)
	Index Object (OLE DB Provider for AS/400 and VSAM)
	Rowset Object (OLE DB Provider for AS/400 and VSAM)
	Session Object (OLE DB Provider for AS/400 and VSAM)
	View Object (OLE DB Provider for AS/400 and VSAM)
	OLE DB Property Support in the OLE DB Provider for AS/400 and VSAM

	OLE DB Object Support in the OLE DB Provider for DB2
	OLE DB Interface Support in the OLE DB Provider for DB2
	Command Object (OLE DB Provider for DB2)
	CustomErrorObject Object (OLE DB Provider for DB2)
	DataSource Object (OLE DB Provider for DB2)
	ErrorObject Object (OLE DB Provider for DB2)
	ErrorRecord Object (OLE DB Provider for DB2)
	Rowset Object (OLE DB Provider for DB2)
	Session Object (OLE DB Provider for DB2)
	Transaction Object (OLE DB Provider for DB2)
	OLE DB Property Support in the OLE DB Provider for DB2
	OLE DB Provider-Specific Property Support in the OLE DB Provider for DB2
	OLE DB Data Source Property Support in the OLE DB Provider for DB2

	ODBC Driver for DB2 Programmer's Reference
	Programming Considerations When Using the ODBC Driver for DB2
	Stored Procedure Support Using the ODBC Driver for DB2
	Support for Isolation Levels Using the ODBC Driver for DB2
	Code Page Support Using the ODBC Driver for DB2
	ANSI Code Page Support Using the ODBC Driver for DB2
	EBCDIC Code Page Support Using the ODBC Driver for DB2
	ISO Code Page Support Using the ODBC Driver for DB2
	DBCS Code Page Support Using the ODBC Driver for DB2

	Data Conversion Using the ODBC Driver for DB2
	Floating Point Considerations Using the ODBC Driver for DB2
	Usernames and Passwords Using the ODBC Driver for DB2
	Errors Returned by the ODBC Driver for DB2
	Two-Phase Commit over TCP/IP Support Using the ODBC Driver for DB2
	Troubleshooting the ODBC Driver for DB2

	ODBC Conformance
	Support for ODBC 2 Core Functions
	Support for ODBC 2 Level 1 Functions
	Support for ODBC 2 Level 2 Functions
	Support for ODBC 3 Functions
	Support for ODBC Connection Attributes
	Support for ODBC Statement Attributes

	ADO Object Support in the ODBC Driver for DB2
	ADO Method Support in the ODBC Driver for DB2
	ADO Property Support in the ODBC Driver for DB2
	ADO Collection Support in the ODBC Driver for DB2
	Command Object in the ODBC Driver for DB2 (ADO)
	Connection Object in the ODBC Driver for DB2 (ADO)
	Error Object in the ODBC Driver for DB2 (ADO)
	Field Object in the ODBC Driver for DB2 (ADO)
	Recordset Object in the ODBC Driver for DB2 (ADO)

	Managed Provider for DB2 Programmer's Reference
	Data Access Library Programmer's Reference
	Managed Data Provider for Host Files Programmer's Reference
	SQL Parsing in the Managed Data Provider for Host Files
	SELECT Statement
	INSERT Statement
	UPDATE Statement
	DELETE Statement
	Column Collection Parsing
	WHERE Clause Parsing
	Value Parsing
	Parameterized Queries
	Limitations

	ActiveX Controls Programmer's Reference
	Data Queue ActiveX Control Programmer's Reference
	AddQueueItem Method
	Cancel Method
	CancelQueue Method
	CCSID Property
	ClearAll Method
	Connect Method
	ConnectionState Property
	ConnectionType Property
	CreateQueue Method
	CreateQueueContainer Method
	DeleteQueue Method
	Disconnect Method
	GetQueueItem Method
	LocalLU Property
	ModeName Property
	Password Property
	PCCodePage Property
	QueryAttribute Method
	QueueName Property
	RemoteLU Property
	SetAttribute Method
	StopQueue Method
	UserID Property

	Host File Transfer ActiveX Control Programmer's Reference
	AppendToEnd Property
	Cancel Method
	CCSID Property
	Connect Method
	ConnectionState Property
	ConnectionType Property
	CreateIfNonExisting Property
	Disconnect Method
	GetFile Method
	LocalLU Property
	ModeName Property
	NetAddr Property
	NetPort Property
	OverwriteHostFile Property
	Password Property
	PCCodePage Property
	PutFile Method
	RDBName Property
	RemoteLU Property
	UserID Property

	ADO Programmer's Reference
	ActiveCommand Property (ADO)
	ActiveConnection Property (ADO)
	ActiveConnection Property Support Using the OLE DB Provider for AS/400 and VSAM
	ActiveConnection Property Support Using the OLE DB Provider for DB2
	ActiveConnection Property Support Using the ODBC Driver for DB2

	ActualSize Property (ADO)
	AddNew Method (ADO)
	AppendChunk Method (ADO)
	Attributes Property (ADO)
	BOF Property (ADO)
	Bookmark Property (ADO)
	CacheSize Property (ADO)
	CancelBatch Method (ADO)
	CancelUpdate Method (ADO)
	Clear Method (ADO)
	Clone Method (ADO)
	Close Method (ADO)
	CommandText Property (ADO)
	CommandType Property (ADO)
	ConnectionString Property (ADO)
	CursorLocation Property (ADO)
	CursorType Property (ADO)
	DefinedSize Property (ADO)
	Delete Method (ADO)
	Description Property (ADO)
	EditMode Property (ADO)
	EOF Property (ADO)
	Execute Method on a Command Object (ADO)
	Execute Method on a Connection Object (ADO)
	Filter Property (ADO)
	Find Method (ADO)
	GetChunk Method (ADO)
	GetRows Method (ADO)
	IsolationLevel Property (ADO)
	Item Method (ADO)
	LockType Property (ADO)
	MaxRecords Property (ADO)
	Mode Property (ADO)
	Move Method (ADO)
	MoveFirst Method (ADO)
	MoveLast Method (ADO)
	MoveNext Method (ADO)
	MovePrevious Method (ADO)
	Name Property (ADO)
	NativeError Property (ADO)
	Number Property (ADO)
	NumericScale Property (ADO)
	Open Method on a Connection Object (ADO)
	Open Method on a Recordset Object (ADO)
	OpenSchema Method (ADO)
	adSchemaColumns
	adSchemaIndexes
	adSchemaPrimaryKeys
	adSchemaProcedures
	adSchemaProcedureParameters
	adSchemaProviderTypes
	adSchemaTables

	OriginalValue Property (ADO)
	Precision Property (ADO)
	Provider Property (ADO)
	Refresh Method (ADO)
	Requery Method (ADO)
	Save Method (ADO)
	Sort Property (ADO)
	Source Property on an Error Object (ADO)
	Source Property on a Recordset Object (ADO)
	State Property (ADO)
	Status Property (ADO)
	Supports Method (ADO)
	Type Property (ADO)
	UnderlyingValue Property (ADO)
	Update Method (ADO)
	UpdateBatch Method (ADO)
	Value Property (ADO)
	Version Property (ADO)

	Network Integration Programmer's Reference
	APPC Programmer's Reference
	APPC Management Verbs
	ACTIVATE_SESSION
	CNOS
	Setting a Session Limit to Zero

	DEACTIVATE_SESSION
	DISPLAY
	Host Integration Server Extensions
	Differences by Information Type
	SNA Global Information
	LU 6.2 Information
	Session Information
	Active Link Information
	LU 0 to 3 Information
	System Default Information
	LU 6.2 Definition Information
	Partner Definition Information
	Mode Definition Information
	Link Definition Information
	Management Services Information

	APPC TP Verbs
	GET_TP_PROPERTIES
	SET_TP_PROPERTIES
	TP_ENDED
	TP_STARTED
	Default LUs

	APPC Conversation Verbs
	ALLOCATE
	CONFIRM
	CONFIRMED
	DEALLOCATE
	FLUSH
	GET_ATTRIBUTES
	GET_LU_STATUS
	GET_STATE
	GET_TYPE
	MC_ALLOCATE
	MC_CONFIRM
	MC_CONFIRMED
	MC_DEALLOCATE
	MC_FLUSH
	MC_GET_ATTRIBUTES
	MC_POST_ON_RECEIPT
	MC_PREPARE_TO_RECEIVE
	MC_RECEIVE_AND_POST
	MC_RECEIVE_AND_WAIT
	MC_RECEIVE_IMMEDIATE
	MC_RECEIVE_LOG_DATA
	MC_REQUEST_TO_SEND
	MC_SEND_CONVERSATION
	MC_SEND_DATA
	MC_SEND_ERROR
	MC_TEST_RTS
	MC_TEST_RTS_AND_POST
	POST_ON_RECEIPT
	PREPARE_TO_RECEIVE
	RECEIVE_ALLOCATE
	RECEIVE_ALLOCATE_EX
	RECEIVE_ALLOCATE_EX_END
	RECEIVE_AND_POST
	RECEIVE_AND_WAIT
	RECEIVE_IMMEDIATE
	RECEIVE_LOG_DATA
	REQUEST_TO_SEND
	SEND_CONVERSATION
	SEND_DATA
	SEND_ERROR
	TEST_RTS
	TEST_RTS_AND_POST

	APPC Extensions for the Windows Environment
	WinAsyncAPPC
	WinAsyncAPPCEx
	WinAsyncAPPCIOCP
	WinAPPCCancelAsyncRequest
	WinAPPCCancelBlockingCall
	WinAPPCCleanup
	WinAPPCIsBlocking
	WinAPPCStartup
	WinAPPCSetBlockingHook
	WinAPPCUnhookBlockingHook

	Host Integration Server Enhancements to the Windows Environment
	GetAppcConfig
	GetAppcReturnCode
	GetCsvReturnCode

	Common Service Verbs
	CONVERT
	COPY_TRACE_TO_FILE
	DEFINE_TRACE
	GET_CP_CONVERT_TABLE
	LOG_MESSAGE
	TRANSFER_MS_DATA

	CSV Extensions for the Windows Environment
	WinAsyncCSV
	WinCSVCleanup
	WinCSVStartup

	Common APPC Return Codes
	Primary APPC Return Codes
	Secondary APPC Return Codes

	Common CSV Return Codes
	Primary CSV Return Codes
	Secondary CSV Return Codes

	CPI-C Programmer's Reference
	CPI-C Calls
	Accept_Conversation
	Allocate
	Cancel_Conversation
	Confirm
	Confirmed
	Convert_Incoming
	Convert_Outgoing
	Deallocate
	Delete_CPIC_Side_Information
	Extract_Conversation_Security_Type
	Extract_Conversation_Security_User_ID
	Extract_Conversation_State
	Extract_Conversation_Type
	Extract_CPIC_Side_Information
	Extract_Mode_Name
	Extract_Partner_LU_Name
	Extract_Sync_Level
	Extract_TP_Name
	Flush
	Initialize_Conversation
	Prepare_To_Receive
	Receive
	Confirmation
	Normal Deallocation
	ABEND
	Errors

	Request_To_Send
	Send_Data
	Send_Error
	Set_Conversation_Security_Password
	Set_Conversation_Security_Type
	Set_Conversation_Security_User_ID
	Set_Conversation_Type
	Set_CPIC_Side_Information
	Set_Deallocate_Type
	Set_Error_Direction
	Set_Fill
	Set_Log_Data
	Set_Mode_Name
	Set_Partner_LU_Name
	Set_Prepare_To_Receive_Type
	Set_Processing_Mode
	Set_Receive_Type
	Set_Return_Control
	Set_Send_Type
	Set_Sync_Level
	Set_TP_Name
	Specify_Local_TP_Name
	Specify_Windows_Handle
	Test_Request_To_Send_Received
	Wait_For_Conversation
	CPI-C Functions Not Supported

	Extensions for the Windows Environment
	WinCPICCleanup
	WinCPICExtractEvent
	WinCPICIsBlocking
	WinCPICSetBlockingHook
	WinCPICSetEvent
	WinCPICStartup
	WinCPICUnhookBlockingHook

	CPI-C Common Return Codes

	LUA Programmer's Reference
	LUA RUI Verbs
	RUI_BID
	RUI_INIT
	RUI_PURGE
	RUI_READ
	RUI_TERM
	RUI_WRITE

	LUA SLI Verbs
	SLI_BID
	SLI_CLOSE
	SLI_OPEN
	Secondary with INITSELF
	Secondary with an Unformatted LOGON Message
	Primary Waiting for a BIND Command
	Primary with SSCP Access
	BIND, CRV, and STSN Routines
	BIND Example
	Recovering from SESSION_FAILURE
	Ending a Pending SLI_OPEN

	SLI_PURGE
	SLI_RECEIVE
	SLI_RECEIVE_EX
	SLI_SEND
	SLI_SEND_EX
	SLI_BIND_ROUTINE
	SLI_STSN_ROUTINE

	LUA Extensions for the Windows Environment
	RUI
	SLI
	WinRUI
	WinRUICleanup
	WinRUIGetLastInitStatus
	WinRUIStartup
	WinSLI
	WinSLICleanup
	WinSLIStartup

	SNA Services Enhancement to the Windows LUA Environment
	GetLuaReturnCode

	LUA Verb Control Blocks
	Common Structure of LUA VCBs
	Values for lua_message_type
	Command-Specific Structure of LUA VCBs
	SLI_OPEN VCB Structure

	LUA Common Return Codes
	LUA Primary Return Codes
	LUA Secondary Return Codes

	3270 Emulation Programmer's Reference
	DL-BASE/DMOD Entry Points
	CMDGoTSR
	CMDSemClear
	CMDSemRequest
	CMDSemSet
	CMDSemWait
	CMDStartFG
	CMDStopFG
	RegisterSwitchProc
	routproc
	sbpibegt
	sbpiberl
	sbpuinit
	sbpurcvx
	sbpusend
	sbputerm
	sepdbubl
	sepdburl
	sepdchnk
	sepdcrec
	sepdgetinfo
	sepdrout
	sepwrout

	FMI Message Formats
	Open(SSCP)
	Open(SSCP) Request
	Open(SSCP) Response
	Open(PLU)
	Open(PLU) Request
	Open(PLU) OResponse
	Open(PLU) Error Response
	Open(PLU) OConfirm
	Open(PLU) Error Confirm
	Close(SSCP)
	Close(SSCP) Request
	Close(SSCP) Response
	Close(PLU)
	Close(PLU) Request
	Close(PLU) Response
	Data
	Status-Acknowledge
	Status-Acknowledge(Ack)
	Status-Acknowledge(Nack-1)
	Status-Acknowledge(Nack-2)
	Status-Acknowledge(ACKLUA)
	Status-Control
	Status-Control(...) Request
	Status-Control(...) Acknowledge
	Status-Control(...) Negative-Acknowledge-1
	Status-Control(...) Negative-Acknowledge-2
	Status-Control(...) ACKLUA
	Status-Error
	Status-Resource
	Status-RTM
	Status-Session

	FMI Extension for the Windows Environment
	GetFmiReturnCode

	SNA Internationalization Programmer's Reference
	SNANLS Code Page Support
	ANSI Code Page Support Using SNANLS
	ANSI/OEM Code Page Support Using SNANLS
	EBCDIC Code Page Support Using SNANLS
	ISO Code Page Support Using SNANLS
	OEM PC Code Page Support Using SNANLS
	Open Systems Code Page Support Using SNANLS

	SNANLS Dependencies

	SNANLS API Functions
	CloseNlsRegistry
	FindCloseCodePage
	FindFirstCodePage
	FindNextCodePage
	GetCodePage
	GetCodePageDisplayStr
	IsInstalledCodePage
	OpenNlsRegistry
	SnaNlsInit
	SnaNlsMapString

	TrnsDT API
	TrnsDT Code Page Support
	Host EBCDIC SBCS Using TrnsDT
	Host EBCDIC DBCS Using TrnsDT
	Host EBCDIC Mixed SBCS and DBCS Using TrnsDT
	TrnsDT Conversions Possible

	TrnsDT Resource Files
	TrnsDT API Functions
	TrnsDT
	PASSSTRUCT structure

	Host Integration Server Components and NLS Support

	SNA Print Server Data Filter Programmer's Reference
	SNA Print Server Data Filter API
	PrtFilterAlloc
	PrtFilterFree
	PrtFilterJobData
	PrtFilterJobEnd
	PrtFilterJobStart

	SNADIS Drivers Programmer's Reference
	Base/DMOD and SNALink Entry Points
	SNAGetBuffer
	SNAGetElement
	SNAGetLinkName
	SNAGetVersion
	SNALinkDispatchProc
	SNALinkInitialize
	SNALinkTerminate
	SNALinkWorkProc
	SNAReleaseBuffer
	SNAReleaseElement
	SNASendAlert
	SNASendMessage

	SNADIS Message Formats
	Open(LINK)
	Open(LINK) Request
	Expanded Information About Message Formats for Open(LINK) Request with SDLC
	Optional Second Element (Only Used by X.25 SVC)

	Open(LINK) Response
	Close(LINK)
	Close(LINK) Request
	Close(LINK) Response
	Open(STATION)
	Open(STATION) Request
	Open(STATION) OResponse
	Open(STATION) Error Response
	Close(STATION)
	Close(STATION) Request
	Close(STATION) Response
	Request-Open-Station
	Station-Contacted
	Outage
	Status-Resource
	Send-XID
	DLC-Data

	Configuration Entry Points
	SNAGetConfigValue
	SNAGetSystemInfo
	pCSInfo

	Setup Functions
	Integrated Link Service Configuration Functions
	Functions Exported from a Link Service Configuration DLL
	CommandLineAdd
	ConfigureLinkService
	ConfigureLinkServiceEx
	DisplayHelpInfo
	RemoveAllLinkServices
	RemoveLinkService

	Utility Functions Used by a Link Service Configuration DLL
	AddPerfmonCounters
	bCreateService
	bDeleteService
	bStopService
	CheckForExistingLinkService
	ConvertHexStringToDWORD
	ExtractNextParameter
	fAddRegistryEntry
	fCanWeAdministerRemoteBox
	fConnectRegistry
	fDisconnectRegistry
	fFindAndReplaceString
	fFindString
	fFindStringInMultiSZ
	fQueryRegistryValue
	fRegistryKeyExists
	fRemoveRegistryEntry
	fRemoveRegistryValue
	fStringCompare
	LoadStringResource
	ParseNextField
	RemovePerfmonCounters

	Inf-Based Setup Functions
	CreateSNARegEntry
	CreateSNAService
	DeleteSNAService
	EnterServiceName
	FindNextAvailableIndex
	FindSNAProductServices
	FindSNARegEntry
	FindSNAService
	GrepUniqueServiceInfo
	SetupMessage

	IOCTL Commands
	Function 0x41: Set Event/Semaphore Handle
	Function 0x42: Set Link Characteristics
	Function 0x43: Set V24 Output Status
	Function 0x44: Transmit Frame
	Function 0x45: Abort Transmitter
	Function 0x46: Abort Receiver
	Function 0x47: Off-Board Load
	Function 0x61: Get/Set Interface Record
	Function 0x62: Get V24 Status
	Function 0x63: Receive Frame
	Function 0x64: Read Interface Record

	SNA Modem API
	MODEM_STATUS
	SNAModemInitialize
	SNAModemAddLink
	SNAModemDeleteLink
	SNAModemTerminate

	SNA Perfmon API
	ADAPTERCOUNTER
	ADAPTERPERFDATA
	SNAInitLinkPerfmon
	SNAGetLinkPerfArea
	SNAGetPerfValues

	Session Integrator Programmer's Reference
	Session Integrator COM Reference
	IcomLU0 Interface
	IcomLU0 Members
	IcomLU0 Methods
	IcomLUO.CreateSession Method
	IcomLUO.SetProperty Method
	IcomLUO.GetProperty Method
	IcomLUO.Connect Method
	IcomLUO.Disconnect Method
	IcomLUO.Receive Method
	IcomLUO.Send Method
	IcomLUO.SendResponse Method
	IcomLUO.Online Method
	IcomLUO.Offline Method

	Icom3270 Interface
	Icom3270 Members
	Icom3270 Methods
	Icom3270.createSession Method
	Icom3270.getProperty Method
	Icom3270.connect Method
	Icom3270.disconnect Method
	Icom3270.setCursorPosition Method
	Icom3270.getCursorPosition Method
	Icom3270.sendKey Method
	Icom3270.wait Method
	Icom3270.getOIA Method
	Icom3270.getScreenSize Method
	Icom3270.getField Method
	Icom3270.getNextField Method
	Icom3270.getPrevField Method
	Icom3270.getFieldData Method
	Icom3270.setFieldData Method
	Icom3270.findFieldData Method
	Icom3270.getScreenData Method
	Icom3270.setScreenData Method
	Icom3270.findScreenData Method

	Client-Based BizTalk Adapter for WebSphere MQ Programmer's Reference
	Data Type
	Context Properties
	BizTalk-Specific Properties
	Advanced End-Point Configuration Properties
	MQSeries.MQSPropertySchema Properties
	MQSeriesEx.MQSPropertySchema Properties

	MQSeries Header Properties
	Message Descriptor Properties
	Additional MQSeries Related Properties

	Administration and Management Programmer's Reference
	Configuration Provider WMI Programmer's Reference
	wmiHIS WMI Provider Classes
	MsHis_Locale
	MsHis_CodePage Class

	IPC-DLC WMI Programmer's Reference
	WmiSnaLinkServiceMS WMI Provider Classes
	MsSna_LinkService Class
	MsSna_LinkService_IpDlc Class
	MsSna_LinkService_IpDlc.GetAllStaticIPs Method
	MsSna_LinkService_IpDlc.GetAllNetworkAdapters Method
	MsSna_LinkService_IpDlc.GetNextAvailableOrdinal Method

	SNA Trace Provider WMI Programmer’s Reference
	WmiSnaTrace WMI Provider Classes
	MsHisTrace_Config Class
	MsHisTrace_Global Class
	MsHisTrace_COMTI Class
	MsHisTrace_SharedFoldersGateway Class
	MsHisTrace_SNAApplication Class
	MsHisTrace_SNAManageClient Class
	MsHisTrace_SNAMngAgent Class
	MsHisTrace_SNAServerManager Class
	MsHisTrace_SNABase Class
	MsHisTrace_SNANetMn Class
	MsHisTrace_SNAPrint Class
	MsHisTrace_SNAServer Class
	MsHisTrace_TN3270 Class
	MsHisTrace_Config Class
	MsHisTrace_ExtendedStatus Class
	MsHisTrace_Event Class

	SNA Status Provider WMI Programmer's Reference
	WmiSnaStatus WMI Provider Classes
	MsSnaStatus_EventServiceSna Class
	MsSnaStatus_EventConnection Class
	MsSnaStatus_EventLu3270 Class
	MsSnaStatus_EventUser Class
	MsSnaStatus_EventAppcLocalLu Class
	MsSnaStatus_EventAppcSession Class
	MsSnaStatus_EventServicePrint Class
	MsSnaStatus_EventPrintSession Class
	MsSnaStatus_EventServiceTN3270 Class
	MsSnaStatus_EventTN3270Session Class
	MsSnaStatus_EventServiceTN5250 Class
	MsSnaStatus_EventTN5250Session Class
	MsSnaStatus_EventServiceSharedFolder Class
	SNA_ExtendedStatus Class
	MsSnaStatus_ServiceSna Class
	MsSnaStatus_ServiceSna.Start Method
	MsSnaStatus_ServiceSna.Stop Method
	MsSnaStatus_ServiceSna.Pause Method
	MsSnaStatus_ServiceSna.Resume Method

	MsSnaStatus_Connection Class
	MsSnaStatus_Connection.Start Method
	MsSnaStatus_Connection.Stop Method

	MsSnaStatus_Lu3270 Class
	MsSnaStatus_Lu3270.Stop Method

	MsSnaStatus_ClientConnections Class
	MsSnaStatus_AppcLocalLu Class
	MsSnaStatus_AppcSession Class
	MsSnaStatus_AppcSession.Stop Method

	MsSnaStatus_ServicePrint Class
	MsSnaStatus_ServicePrint.Start Method
	MsSnaStatus_ServicePrint.Stop Method

	MsSnaStatus_PrintSession Class
	MsSnaStatus_PrintSession.Start Method
	MsSnaStatus_PrintSession.Stop Method
	MsSnaStatus_PrintSession.Pause Method
	MsSnaStatus_PrintSession.Restart Method
	MsSnaStatus_PrintSession.PA1Key Method
	MsSnaStatus_PrintSession.PA2Key Method
	MsSnaStatus_PrintSession.Cancel Method

	MsSnaStatus_ServiceTN3270 Class
	MsSnaStatus_ServiceTN3270.Start Method

	MsSnaStatus_ServiceTN3270.Stop Method
	MsSnaStatus_TN3270Session Class
	MsSnaStatus_ServiceTN5250 Class
	MsSnaStatus_ServiceTN5250.Start Method
	MsSnaStatus_ServiceTN5250.Stop Method

	MsSnaStatus_TN5250Session Class
	MsSnaStatus_ServiceSharedFolder Class
	MsSnaStatus_ServiceSharedFolder.Start Method
	MsSnaStatus_ServiceSharedFolder.Stop Method

	MsSnaStatus_Lu3270ToActiveUser Class
	MsSnaStatus_APPCSessionToActiveUser Class

	SNA Provider WMI Programmer's Reference
	WMISNA WMI Provider Classes
	MsSna_Domain Class
	MsSna_ServiceSNA Class
	MsSna_ServiceSNA.Start Method
	MsSna_ServiceSNA.Stop Method
	MsSna_ServiceSNA.Pauses Method
	MsSna_ServiceSNA.Resume Method

	MsSna_ServiceTN3270 Class
	MsSna_ServiceTN3270.Start Method
	MsSna_ServiceTN3270.Stop Method

	MsSna_ServiceTN5250 Class
	MsSna_ServiceTN5250.Start Method
	MsSna_ServiceTN5250.Stop Method

	MsSna_ServiceSharedFolder Class
	MsSna_ServiceSharedFolder.Start Method
	MsSna_ServiceSharedFolder.Stop Method

	MsSna_ServicePrint Class
	MsSna_ServicePrint.Start Method
	MsSna_ServicePrint.Stop Method

	MsSna_UserInfo Class
	MsSna_ConfiguredUser Class
	MsSna_LogInUserAndGroups Class
	MsSna_Workstation Class
	MsSna_Lu3270 Class
	MsSna_LuDisplay Class
	MsSna_LuLua Class
	MsSna_TN3270Session Class
	MsSna_TN3270Port Class
	MsSna_TN3270SessionIPFilter Class
	MsSna_TN5250SessionIPFilter Class
	MsSna_LuPassThrough Class
	MsSna_LuDown Class
	MsSna_LuPrint Class
	MsSna_Pool Class
	MsSna_PoolDisplay Class
	MsSna_PoolLua Class
	MsSna_PoolDown Class
	MsSna_LuAppcLocal Class
	MsSna_LuAppcRemote Class
	MsSna_AppcMode Class
	MsSna_Connection Class
	MsSna_Connection.Start Method
	MsSna_Connection.Stop Method
	MsSna_Connection.ExchangePassthroughLus Method

	MsSna_Connection8022Dlc Class
	MsSna_ConnectionSdlc Class
	MsSna_ConnectionX25 Class
	MsSna_ConnectionChannel Class
	MsSna_ConnectionDft Class
	MsSna_ConnectionTwinax Class
	MsSna_Cpic Class
	MsSna_TN5250Definition Class
	MsSna_PrintSession Class
	MsSna_PrintSession3270 Class
	MsSna_PrintSessionAppc Class
	MsSna_AppcPartner Class
	MsSna_AccountAssigned3270 Class
	MsSna_AccountAssignedLua Class
	MsSna_AccountAssigned3270Services Class
	MsSna_AccountAssignedLuaServices Class
	MsSna_AccountAvailableAppcLu Class
	MsSna_AdapterOnMachine Class
	MsSna_ConnectionOnServer Class
	MsSna_Lu3270OnConnection Class
	MsSna_LuDisplayAssignedToUser Class
	MsSna_LuPrintAssignedToUser Class
	MsSna_LuLuaAssignedToUser Class
	MsSna_PoolDisplayAssignedToUser Class
	MsSna_PoolLuaAssignedToUser Class
	MsSna_LuDisplayAssignedToWorkstation Class
	MsSna_LuPrintAssignedToWorkstation Class
	MsSna_LuLuaAssignedToWorkstation Class
	MsSna_PoolDisplayAssignedToWorkstation Class
	MsSna_PoolLuaAssignedToWorkstation Class
	MsSna_ConnectionUsingAdapter Class
	MsSna_Lu3270AssignedToPool Class
	MsSna_PoolOnServer Class
	MsSna_ExtendedStatus Class

	MQBridge WMI Programmer's Reference
	WMIMQBridge WMI Provider Classes
	MsHisBridge_ExtendedStatus Class
	MsHisBridge_Service Class
	MsHisBridge_Channel Class
	MsHisBridge_Channel_In_Service Class
	MsHisBridge_MessagePipe Class
	MsHisBridge_ConnectedNetwork Class
	MsHisBridge_ConnectedNetwork_In_Service Class

	Messaging Programmer's Reference
	MSMQ-MQSeries Bridge Extensions Reference
	EPAdd
	EPClose
	EPDelete
	EPDeleteAll
	EPGet
	EPGetBuffer
	EPOpen
	EPUpdate

	SDComponents for MSMQ-MQSeries Bridge Extensions
	Program and DLL Files for MSMQ-MQSeries Bridge
	Symbol Files for MSMQ-MQSeries Bridge
	Header Files for MSMQ-MQSeries Bridge
	Import Library Files for MSMQ-MQSeries Bridge

	Security Programmer's Reference
	Single Sign-on Programmer's Reference
	COM Mapper Programmer's Reference
	IPropertyBag Interface
	IPropertyBag Members
	IPropertyBag Methods
	IPropertyBag.RemoteRead Method
	IPropertyBag.Write Method

	ISSOAdmin Interface (COM)
	ISSOAdmin Members
	ISSOAdmin Methods
	ISSOAdmin.CreateApplication Method
	ISSOAdmin.CreateFieldInfo Method
	ISSOAdmin.DeleteApplication Method
	ISSOAdmin.GetApplicationInfo Method
	ISSOAdmin.GetGlobalInfo Method
	ISSOAdmin.PurgeCacheForApplication Method
	ISSOAdmin.UpdateApplication Method

	ISSOAdmin2 Interface (COM)
	ISSOAdmin2 Members
	ISSOAdmin2 Methods
	ISSOAdmin2.GetApplicationInfo2 Method
	ISSOAdmin2.UpdateApplication2 Method

	ISSOConfigDB Interface (COM)
	ISSOConfigDB Members
	ISSOConfigDB Methods
	ISSOConfigDB.CreateDatabase Method
	ISSOConfigDB.GetDBInfo Method
	ISSOConfigDB.UpgradeDB Method

	ISSOConfigOM Interface (COM)
	ISSOConfigOM Members
	ISSOConfigOM Methods
	ISSOConfigOM.DiscoverServer Method
	ISSOConfigOM.GetServerStatus

	ISSOConfigSS Interface (COM)
	ISSOConfigSS Members
	ISSOConfigSS Methods
	ISSOConfigSS.BackupSecret Method
	ISSOConfigSS.GenerateSecret Method
	ISSOConfigSS.GetFilePasswordReminder Method
	ISSOConfigSS.RestoreSecret Method

	ISSOConfigStore Interface (COM)
	ISSOConfigStore Members
	ISSOConfigStore Methods
	ISSOConfigStore::DeleteConfigInfo
	ISSOConfigStore::GetConfigInfo
	ISSOConfigStore::SetConfigInfo

	ISSOLookup1 Interface (COM)
	ISSOLookup1 Members
	ISSOLookup1 Methods
	ISSOLookup1.GetCredentials Method

	ISSOLookup2 Interface (COM)
	ISSOLookup2 Members
	ISSOLookup2 Methods
	ISSOLookup2.GetCredentials Method
	ISSOLookup2.LogonExternalUser Method

	ISSOMapper Interface (COM)
	ISSOMapper Members
	ISSOMapper Methods
	ISSOMapper.GetApplications Method
	ISSOMapper.GetFieldInfo Method
	ISSOMapper.GetMappingsForExternalUser Method
	ISSOMapper.GetMappingsForWindowsUser Method
	ISSOMapper.SetExternalCredentials Method
	ISSOMapper.SetWindowsPassword Method

	ISSOMapper2 Interface (COM)
	ISSOMapper2 Members
	ISSOMapper2 Methods
	ISSOMapper2.GetApplications2 Method

	ISSOMapping Interface (COM)
	ISSOMapping Members
	ISSOMapping Properties
	ISSOMapping.ApplicationName Property
	ISSOMapping.ExternalUserName Property
	ISSOMapping.Flags Property
	ISSOMapping.WindowsDomainName Property
	ISSOMapping.WindowsUserName Property

	ISSOMapping Methods
	ISSOMapping.Create Method
	ISSOMapping.Delete Method
	ISSOMapping.Disable Method
	ISSOMapping.Enable Method

	ISSONotification Interface (COM)
	ISSONotification Members
	ISSONotification Methods
	ISSONotification.InitializeAdapter Method
	ISSONotification.SendNotification Method
	ISSONotification.ReceiveNotification Method
	ISSONotification.ShutdownAdapter Method

	ISSOTicket Interface (COM)
	ISSOTicket Members
	ISSOTicket Methods
	ISSOTicket.IssueTicket Method
	ISSOTicket.RedeemTicket Method

	ISSOPSWrapper Interface (COM)
	ISSOPSWrapper Members
	ISSOWrapper Methods
	ISSOWrapper.InitializeAdapter Method
	ISSOWrapper.SendNotification Method
	ISSOWrapper.ReceiveNotification Method
	ISSOWrapper.ShutdownAdapter Method

	SAdapter Structure (COM)
	SAdapter Members
	SAdapter Fields
	SAdapter.bstrAdapterName Field

	SAdapterInGroup Structure (COM)
	SAdapterInGroup Members
	SAdapterInGroup Fields
	SAdapterInGroup.psaAdapters Field

	SExternalAccount Structure (COM)
	SExternalAccount Members
	SExternalAccount Fields
	SExternalAccount.bstrExternalAccount Field

	SPasswordChange Structure (COM)
	SPasswordChange Members
	SPasswordChange Fields
	SPasswordChange.bstrExternalAccount Field
	SPasswordChange.psaNewExternalPassword Field
	SPasswordChange.psaOldExternalPassword Field
	SPasswordChange.ullTimeStamp Field

	SPasswordChangeComplete Structure (COM)
	SPasswordChangeComplete Members
	SPasswordChangeComplete Fields
	SPasswordChangeComplete.guidTrackingId Field
	SPasswordChangeComplete.ullErrorCode Field
	SPasswordChangeComplete.bstrErrorMessage Field

	SSO_NOTIFICATION_TYPE Enumeration (COM)
	SSO_NOTIFICATION_FLAG Enumeration (COM)
	SStatus Structure (COM)
	SStatus Members
	SStatus Fields
	SStatus.ullErrorCode Field
	SStatus.bstrErrorMessage Field

	Enterprise Single Sign-On Flags

	Samples
	Adapter Samples
	Host Applications Samples
	MQSC Adapter Samples
	Pipeline Component Sample
	BizTalk Correlation Sample

	Application Integration Samples
	COMTIIntrinsic Sample
	Host-Initiated Processing Samples
	Batch Sample
	CICS Sample
	OS400 Sample

	Windows-Initiated Processing Samples
	BasicScenarios Sample
	Bounded Recordsets Sample
	CPlusPlus Sample
	DiscriminatedUnions Sample
	Host Integration Server Designer Discriminated Union Tutorials
	Tutorial 1: Creating a Project that Uses Discriminated Unions
	Import the Discriminated Union Tutorial into TI Manager
	Start SimHost for the Discriminated Union Tutorial
	Build and Execute the Discriminated Union Tutorial

	Tutorial 2: A Step-by-Step Guide to Creating a Simple Discriminated Union Application
	Create a New Project for the Discriminated Union Tutorial
	Create the Transaction Integration Project
	Import the Host Definition File
	Modify the Discriminant Value Table
	Save and Deploy the GetAInfo Interface
	Create a Visual C# Project for the Discriminated Union Tutorial
	Code the C# Application for the Discriminated Union Tutorial

	DotNetRemoting Sample
	IMSConnect Sample
	InstallationVerification Sample
	OS400DPCWithSecurityOverride Sample
	PersistentConnections Sample
	REOverride Sample
	Tutorial: Creating an RE Override

	SampleMainframeCode Sample
	TIExceptionHandling Sample
	Transactions2PC Sample
	WebServiceUsingReturnValue Sample

	Data Integration Samples
	Data Access Samples
	ManagedDb2Client Sample
	MsDb2WebApp Sample
	MsDb2WebService Sample

	Data Queues Sample
	File Transfer Sample

	End-to-End Scenario Sample
	Messaging Samples
	Sample Programs for MSMQ-MQSeries Bridge
	EPRecv Sample
	EPSend Sample
	MQSRRecv Sample
	MQSRSend Sample
	MSMQRecv Sample
	MSMQSend Sample
	WMI MSMQ-MQSeries Bridge Sample

	Network Integration Samples
	Administration and Management Samples
	Active Server Pages SNAWebAdmin Sample
	VBScript ImportExport Sample

	APPC Samples
	Building the TPs
	TPSETUP
	TPSTART
	TPSTART.ini
	APPC Send and Receive TPs
	Multithreaded Send and Receive TPs

	CPI-C Samples
	Building the TPs
	APING and APINGD
	Multithreaded APINGD
	CPI-C Send and Receive TPs
	AREXEC and AREXECD
	AREMOTE

	LUA Samples
	Building the LUA Samples
	Specifying a File Name for Table G for Code Conversion
	Code Samples Using the RUI API
	Code Samples Using the SLI API

	SNA Print Server Data Filter Samples
	Session Integrator Samples
	3270NET Sample
	LU0NET Sample

	Single Sign-On Samples
	Loopback Adapter Sample

